]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/memory.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/hugetlb.h>
46 #include <linux/mman.h>
47 #include <linux/swap.h>
48 #include <linux/highmem.h>
49 #include <linux/pagemap.h>
50 #include <linux/ksm.h>
51 #include <linux/rmap.h>
52 #include <linux/export.h>
53 #include <linux/delayacct.h>
54 #include <linux/init.h>
55 #include <linux/pfn_t.h>
56 #include <linux/writeback.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/kallsyms.h>
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
62 #include <linux/gfp.h>
63 #include <linux/migrate.h>
64 #include <linux/string.h>
65 #include <linux/dma-debug.h>
66 #include <linux/debugfs.h>
67 #include <linux/userfaultfd_k.h>
68 #include <linux/dax.h>
69
70 #include <asm/io.h>
71 #include <asm/mmu_context.h>
72 #include <asm/pgalloc.h>
73 #include <linux/uaccess.h>
74 #include <asm/tlb.h>
75 #include <asm/tlbflush.h>
76 #include <asm/pgtable.h>
77
78 #include "internal.h"
79
80 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
81 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
82 #endif
83
84 #ifndef CONFIG_NEED_MULTIPLE_NODES
85 /* use the per-pgdat data instead for discontigmem - mbligh */
86 unsigned long max_mapnr;
87 EXPORT_SYMBOL(max_mapnr);
88
89 struct page *mem_map;
90 EXPORT_SYMBOL(mem_map);
91 #endif
92
93 /*
94  * A number of key systems in x86 including ioremap() rely on the assumption
95  * that high_memory defines the upper bound on direct map memory, then end
96  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
97  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
98  * and ZONE_HIGHMEM.
99  */
100 void *high_memory;
101 EXPORT_SYMBOL(high_memory);
102
103 /*
104  * Randomize the address space (stacks, mmaps, brk, etc.).
105  *
106  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
107  *   as ancient (libc5 based) binaries can segfault. )
108  */
109 int randomize_va_space __read_mostly =
110 #ifdef CONFIG_COMPAT_BRK
111                                         1;
112 #else
113                                         2;
114 #endif
115
116 static int __init disable_randmaps(char *s)
117 {
118         randomize_va_space = 0;
119         return 1;
120 }
121 __setup("norandmaps", disable_randmaps);
122
123 unsigned long zero_pfn __read_mostly;
124 EXPORT_SYMBOL(zero_pfn);
125
126 unsigned long highest_memmap_pfn __read_mostly;
127
128 /*
129  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
130  */
131 static int __init init_zero_pfn(void)
132 {
133         zero_pfn = page_to_pfn(ZERO_PAGE(0));
134         return 0;
135 }
136 core_initcall(init_zero_pfn);
137
138
139 #if defined(SPLIT_RSS_COUNTING)
140
141 void sync_mm_rss(struct mm_struct *mm)
142 {
143         int i;
144
145         for (i = 0; i < NR_MM_COUNTERS; i++) {
146                 if (current->rss_stat.count[i]) {
147                         add_mm_counter(mm, i, current->rss_stat.count[i]);
148                         current->rss_stat.count[i] = 0;
149                 }
150         }
151         current->rss_stat.events = 0;
152 }
153
154 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
155 {
156         struct task_struct *task = current;
157
158         if (likely(task->mm == mm))
159                 task->rss_stat.count[member] += val;
160         else
161                 add_mm_counter(mm, member, val);
162 }
163 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
164 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
165
166 /* sync counter once per 64 page faults */
167 #define TASK_RSS_EVENTS_THRESH  (64)
168 static void check_sync_rss_stat(struct task_struct *task)
169 {
170         if (unlikely(task != current))
171                 return;
172         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
173                 sync_mm_rss(task->mm);
174 }
175 #else /* SPLIT_RSS_COUNTING */
176
177 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
178 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
179
180 static void check_sync_rss_stat(struct task_struct *task)
181 {
182 }
183
184 #endif /* SPLIT_RSS_COUNTING */
185
186 #ifdef HAVE_GENERIC_MMU_GATHER
187
188 static bool tlb_next_batch(struct mmu_gather *tlb)
189 {
190         struct mmu_gather_batch *batch;
191
192         batch = tlb->active;
193         if (batch->next) {
194                 tlb->active = batch->next;
195                 return true;
196         }
197
198         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
199                 return false;
200
201         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
202         if (!batch)
203                 return false;
204
205         tlb->batch_count++;
206         batch->next = NULL;
207         batch->nr   = 0;
208         batch->max  = MAX_GATHER_BATCH;
209
210         tlb->active->next = batch;
211         tlb->active = batch;
212
213         return true;
214 }
215
216 /* tlb_gather_mmu
217  *      Called to initialize an (on-stack) mmu_gather structure for page-table
218  *      tear-down from @mm. The @fullmm argument is used when @mm is without
219  *      users and we're going to destroy the full address space (exit/execve).
220  */
221 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
222 {
223         tlb->mm = mm;
224
225         /* Is it from 0 to ~0? */
226         tlb->fullmm     = !(start | (end+1));
227         tlb->need_flush_all = 0;
228         tlb->local.next = NULL;
229         tlb->local.nr   = 0;
230         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
231         tlb->active     = &tlb->local;
232         tlb->batch_count = 0;
233
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235         tlb->batch = NULL;
236 #endif
237         tlb->page_size = 0;
238
239         __tlb_reset_range(tlb);
240 }
241
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 {
244         if (!tlb->end)
245                 return;
246
247         tlb_flush(tlb);
248         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
250         tlb_table_flush(tlb);
251 #endif
252         __tlb_reset_range(tlb);
253 }
254
255 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
256 {
257         struct mmu_gather_batch *batch;
258
259         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260                 free_pages_and_swap_cache(batch->pages, batch->nr);
261                 batch->nr = 0;
262         }
263         tlb->active = &tlb->local;
264 }
265
266 void tlb_flush_mmu(struct mmu_gather *tlb)
267 {
268         tlb_flush_mmu_tlbonly(tlb);
269         tlb_flush_mmu_free(tlb);
270 }
271
272 /* tlb_finish_mmu
273  *      Called at the end of the shootdown operation to free up any resources
274  *      that were required.
275  */
276 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
277 {
278         struct mmu_gather_batch *batch, *next;
279
280         tlb_flush_mmu(tlb);
281
282         /* keep the page table cache within bounds */
283         check_pgt_cache();
284
285         for (batch = tlb->local.next; batch; batch = next) {
286                 next = batch->next;
287                 free_pages((unsigned long)batch, 0);
288         }
289         tlb->local.next = NULL;
290 }
291
292 /* __tlb_remove_page
293  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
294  *      handling the additional races in SMP caused by other CPUs caching valid
295  *      mappings in their TLBs. Returns the number of free page slots left.
296  *      When out of page slots we must call tlb_flush_mmu().
297  *returns true if the caller should flush.
298  */
299 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
300 {
301         struct mmu_gather_batch *batch;
302
303         VM_BUG_ON(!tlb->end);
304         VM_WARN_ON(tlb->page_size != page_size);
305
306         batch = tlb->active;
307         /*
308          * Add the page and check if we are full. If so
309          * force a flush.
310          */
311         batch->pages[batch->nr++] = page;
312         if (batch->nr == batch->max) {
313                 if (!tlb_next_batch(tlb))
314                         return true;
315                 batch = tlb->active;
316         }
317         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
318
319         return false;
320 }
321
322 #endif /* HAVE_GENERIC_MMU_GATHER */
323
324 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
325
326 /*
327  * See the comment near struct mmu_table_batch.
328  */
329
330 static void tlb_remove_table_smp_sync(void *arg)
331 {
332         /* Simply deliver the interrupt */
333 }
334
335 static void tlb_remove_table_one(void *table)
336 {
337         /*
338          * This isn't an RCU grace period and hence the page-tables cannot be
339          * assumed to be actually RCU-freed.
340          *
341          * It is however sufficient for software page-table walkers that rely on
342          * IRQ disabling. See the comment near struct mmu_table_batch.
343          */
344         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
345         __tlb_remove_table(table);
346 }
347
348 static void tlb_remove_table_rcu(struct rcu_head *head)
349 {
350         struct mmu_table_batch *batch;
351         int i;
352
353         batch = container_of(head, struct mmu_table_batch, rcu);
354
355         for (i = 0; i < batch->nr; i++)
356                 __tlb_remove_table(batch->tables[i]);
357
358         free_page((unsigned long)batch);
359 }
360
361 void tlb_table_flush(struct mmu_gather *tlb)
362 {
363         struct mmu_table_batch **batch = &tlb->batch;
364
365         if (*batch) {
366                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
367                 *batch = NULL;
368         }
369 }
370
371 void tlb_remove_table(struct mmu_gather *tlb, void *table)
372 {
373         struct mmu_table_batch **batch = &tlb->batch;
374
375         /*
376          * When there's less then two users of this mm there cannot be a
377          * concurrent page-table walk.
378          */
379         if (atomic_read(&tlb->mm->mm_users) < 2) {
380                 __tlb_remove_table(table);
381                 return;
382         }
383
384         if (*batch == NULL) {
385                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
386                 if (*batch == NULL) {
387                         tlb_remove_table_one(table);
388                         return;
389                 }
390                 (*batch)->nr = 0;
391         }
392         (*batch)->tables[(*batch)->nr++] = table;
393         if ((*batch)->nr == MAX_TABLE_BATCH)
394                 tlb_table_flush(tlb);
395 }
396
397 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
398
399 /*
400  * Note: this doesn't free the actual pages themselves. That
401  * has been handled earlier when unmapping all the memory regions.
402  */
403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404                            unsigned long addr)
405 {
406         pgtable_t token = pmd_pgtable(*pmd);
407         pmd_clear(pmd);
408         pte_free_tlb(tlb, token, addr);
409         atomic_long_dec(&tlb->mm->nr_ptes);
410 }
411
412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413                                 unsigned long addr, unsigned long end,
414                                 unsigned long floor, unsigned long ceiling)
415 {
416         pmd_t *pmd;
417         unsigned long next;
418         unsigned long start;
419
420         start = addr;
421         pmd = pmd_offset(pud, addr);
422         do {
423                 next = pmd_addr_end(addr, end);
424                 if (pmd_none_or_clear_bad(pmd))
425                         continue;
426                 free_pte_range(tlb, pmd, addr);
427         } while (pmd++, addr = next, addr != end);
428
429         start &= PUD_MASK;
430         if (start < floor)
431                 return;
432         if (ceiling) {
433                 ceiling &= PUD_MASK;
434                 if (!ceiling)
435                         return;
436         }
437         if (end - 1 > ceiling - 1)
438                 return;
439
440         pmd = pmd_offset(pud, start);
441         pud_clear(pud);
442         pmd_free_tlb(tlb, pmd, start);
443         mm_dec_nr_pmds(tlb->mm);
444 }
445
446 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
447                                 unsigned long addr, unsigned long end,
448                                 unsigned long floor, unsigned long ceiling)
449 {
450         pud_t *pud;
451         unsigned long next;
452         unsigned long start;
453
454         start = addr;
455         pud = pud_offset(pgd, addr);
456         do {
457                 next = pud_addr_end(addr, end);
458                 if (pud_none_or_clear_bad(pud))
459                         continue;
460                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
461         } while (pud++, addr = next, addr != end);
462
463         start &= PGDIR_MASK;
464         if (start < floor)
465                 return;
466         if (ceiling) {
467                 ceiling &= PGDIR_MASK;
468                 if (!ceiling)
469                         return;
470         }
471         if (end - 1 > ceiling - 1)
472                 return;
473
474         pud = pud_offset(pgd, start);
475         pgd_clear(pgd);
476         pud_free_tlb(tlb, pud, start);
477 }
478
479 /*
480  * This function frees user-level page tables of a process.
481  */
482 void free_pgd_range(struct mmu_gather *tlb,
483                         unsigned long addr, unsigned long end,
484                         unsigned long floor, unsigned long ceiling)
485 {
486         pgd_t *pgd;
487         unsigned long next;
488
489         /*
490          * The next few lines have given us lots of grief...
491          *
492          * Why are we testing PMD* at this top level?  Because often
493          * there will be no work to do at all, and we'd prefer not to
494          * go all the way down to the bottom just to discover that.
495          *
496          * Why all these "- 1"s?  Because 0 represents both the bottom
497          * of the address space and the top of it (using -1 for the
498          * top wouldn't help much: the masks would do the wrong thing).
499          * The rule is that addr 0 and floor 0 refer to the bottom of
500          * the address space, but end 0 and ceiling 0 refer to the top
501          * Comparisons need to use "end - 1" and "ceiling - 1" (though
502          * that end 0 case should be mythical).
503          *
504          * Wherever addr is brought up or ceiling brought down, we must
505          * be careful to reject "the opposite 0" before it confuses the
506          * subsequent tests.  But what about where end is brought down
507          * by PMD_SIZE below? no, end can't go down to 0 there.
508          *
509          * Whereas we round start (addr) and ceiling down, by different
510          * masks at different levels, in order to test whether a table
511          * now has no other vmas using it, so can be freed, we don't
512          * bother to round floor or end up - the tests don't need that.
513          */
514
515         addr &= PMD_MASK;
516         if (addr < floor) {
517                 addr += PMD_SIZE;
518                 if (!addr)
519                         return;
520         }
521         if (ceiling) {
522                 ceiling &= PMD_MASK;
523                 if (!ceiling)
524                         return;
525         }
526         if (end - 1 > ceiling - 1)
527                 end -= PMD_SIZE;
528         if (addr > end - 1)
529                 return;
530         /*
531          * We add page table cache pages with PAGE_SIZE,
532          * (see pte_free_tlb()), flush the tlb if we need
533          */
534         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
535         pgd = pgd_offset(tlb->mm, addr);
536         do {
537                 next = pgd_addr_end(addr, end);
538                 if (pgd_none_or_clear_bad(pgd))
539                         continue;
540                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
541         } while (pgd++, addr = next, addr != end);
542 }
543
544 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
545                 unsigned long floor, unsigned long ceiling)
546 {
547         while (vma) {
548                 struct vm_area_struct *next = vma->vm_next;
549                 unsigned long addr = vma->vm_start;
550
551                 /*
552                  * Hide vma from rmap and truncate_pagecache before freeing
553                  * pgtables
554                  */
555                 unlink_anon_vmas(vma);
556                 unlink_file_vma(vma);
557
558                 if (is_vm_hugetlb_page(vma)) {
559                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
560                                 floor, next ? next->vm_start : ceiling);
561                 } else {
562                         /*
563                          * Optimization: gather nearby vmas into one call down
564                          */
565                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
566                                && !is_vm_hugetlb_page(next)) {
567                                 vma = next;
568                                 next = vma->vm_next;
569                                 unlink_anon_vmas(vma);
570                                 unlink_file_vma(vma);
571                         }
572                         free_pgd_range(tlb, addr, vma->vm_end,
573                                 floor, next ? next->vm_start : ceiling);
574                 }
575                 vma = next;
576         }
577 }
578
579 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
580 {
581         spinlock_t *ptl;
582         pgtable_t new = pte_alloc_one(mm, address);
583         if (!new)
584                 return -ENOMEM;
585
586         /*
587          * Ensure all pte setup (eg. pte page lock and page clearing) are
588          * visible before the pte is made visible to other CPUs by being
589          * put into page tables.
590          *
591          * The other side of the story is the pointer chasing in the page
592          * table walking code (when walking the page table without locking;
593          * ie. most of the time). Fortunately, these data accesses consist
594          * of a chain of data-dependent loads, meaning most CPUs (alpha
595          * being the notable exception) will already guarantee loads are
596          * seen in-order. See the alpha page table accessors for the
597          * smp_read_barrier_depends() barriers in page table walking code.
598          */
599         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
600
601         ptl = pmd_lock(mm, pmd);
602         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
603                 atomic_long_inc(&mm->nr_ptes);
604                 pmd_populate(mm, pmd, new);
605                 new = NULL;
606         }
607         spin_unlock(ptl);
608         if (new)
609                 pte_free(mm, new);
610         return 0;
611 }
612
613 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
614 {
615         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
616         if (!new)
617                 return -ENOMEM;
618
619         smp_wmb(); /* See comment in __pte_alloc */
620
621         spin_lock(&init_mm.page_table_lock);
622         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
623                 pmd_populate_kernel(&init_mm, pmd, new);
624                 new = NULL;
625         }
626         spin_unlock(&init_mm.page_table_lock);
627         if (new)
628                 pte_free_kernel(&init_mm, new);
629         return 0;
630 }
631
632 static inline void init_rss_vec(int *rss)
633 {
634         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
635 }
636
637 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
638 {
639         int i;
640
641         if (current->mm == mm)
642                 sync_mm_rss(mm);
643         for (i = 0; i < NR_MM_COUNTERS; i++)
644                 if (rss[i])
645                         add_mm_counter(mm, i, rss[i]);
646 }
647
648 /*
649  * This function is called to print an error when a bad pte
650  * is found. For example, we might have a PFN-mapped pte in
651  * a region that doesn't allow it.
652  *
653  * The calling function must still handle the error.
654  */
655 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
656                           pte_t pte, struct page *page)
657 {
658         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
659         pud_t *pud = pud_offset(pgd, addr);
660         pmd_t *pmd = pmd_offset(pud, addr);
661         struct address_space *mapping;
662         pgoff_t index;
663         static unsigned long resume;
664         static unsigned long nr_shown;
665         static unsigned long nr_unshown;
666
667         /*
668          * Allow a burst of 60 reports, then keep quiet for that minute;
669          * or allow a steady drip of one report per second.
670          */
671         if (nr_shown == 60) {
672                 if (time_before(jiffies, resume)) {
673                         nr_unshown++;
674                         return;
675                 }
676                 if (nr_unshown) {
677                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
678                                  nr_unshown);
679                         nr_unshown = 0;
680                 }
681                 nr_shown = 0;
682         }
683         if (nr_shown++ == 0)
684                 resume = jiffies + 60 * HZ;
685
686         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
687         index = linear_page_index(vma, addr);
688
689         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
690                  current->comm,
691                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
692         if (page)
693                 dump_page(page, "bad pte");
694         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
695                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
696         /*
697          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
698          */
699         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
700                  vma->vm_file,
701                  vma->vm_ops ? vma->vm_ops->fault : NULL,
702                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
703                  mapping ? mapping->a_ops->readpage : NULL);
704         dump_stack();
705         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
706 }
707
708 /*
709  * vm_normal_page -- This function gets the "struct page" associated with a pte.
710  *
711  * "Special" mappings do not wish to be associated with a "struct page" (either
712  * it doesn't exist, or it exists but they don't want to touch it). In this
713  * case, NULL is returned here. "Normal" mappings do have a struct page.
714  *
715  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
716  * pte bit, in which case this function is trivial. Secondly, an architecture
717  * may not have a spare pte bit, which requires a more complicated scheme,
718  * described below.
719  *
720  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
721  * special mapping (even if there are underlying and valid "struct pages").
722  * COWed pages of a VM_PFNMAP are always normal.
723  *
724  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
725  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
726  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
727  * mapping will always honor the rule
728  *
729  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
730  *
731  * And for normal mappings this is false.
732  *
733  * This restricts such mappings to be a linear translation from virtual address
734  * to pfn. To get around this restriction, we allow arbitrary mappings so long
735  * as the vma is not a COW mapping; in that case, we know that all ptes are
736  * special (because none can have been COWed).
737  *
738  *
739  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
740  *
741  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
742  * page" backing, however the difference is that _all_ pages with a struct
743  * page (that is, those where pfn_valid is true) are refcounted and considered
744  * normal pages by the VM. The disadvantage is that pages are refcounted
745  * (which can be slower and simply not an option for some PFNMAP users). The
746  * advantage is that we don't have to follow the strict linearity rule of
747  * PFNMAP mappings in order to support COWable mappings.
748  *
749  */
750 #ifdef __HAVE_ARCH_PTE_SPECIAL
751 # define HAVE_PTE_SPECIAL 1
752 #else
753 # define HAVE_PTE_SPECIAL 0
754 #endif
755 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
756                                 pte_t pte)
757 {
758         unsigned long pfn = pte_pfn(pte);
759
760         if (HAVE_PTE_SPECIAL) {
761                 if (likely(!pte_special(pte)))
762                         goto check_pfn;
763                 if (vma->vm_ops && vma->vm_ops->find_special_page)
764                         return vma->vm_ops->find_special_page(vma, addr);
765                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
766                         return NULL;
767                 if (!is_zero_pfn(pfn))
768                         print_bad_pte(vma, addr, pte, NULL);
769                 return NULL;
770         }
771
772         /* !HAVE_PTE_SPECIAL case follows: */
773
774         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
775                 if (vma->vm_flags & VM_MIXEDMAP) {
776                         if (!pfn_valid(pfn))
777                                 return NULL;
778                         goto out;
779                 } else {
780                         unsigned long off;
781                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
782                         if (pfn == vma->vm_pgoff + off)
783                                 return NULL;
784                         if (!is_cow_mapping(vma->vm_flags))
785                                 return NULL;
786                 }
787         }
788
789         if (is_zero_pfn(pfn))
790                 return NULL;
791 check_pfn:
792         if (unlikely(pfn > highest_memmap_pfn)) {
793                 print_bad_pte(vma, addr, pte, NULL);
794                 return NULL;
795         }
796
797         /*
798          * NOTE! We still have PageReserved() pages in the page tables.
799          * eg. VDSO mappings can cause them to exist.
800          */
801 out:
802         return pfn_to_page(pfn);
803 }
804
805 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
806 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
807                                 pmd_t pmd)
808 {
809         unsigned long pfn = pmd_pfn(pmd);
810
811         /*
812          * There is no pmd_special() but there may be special pmds, e.g.
813          * in a direct-access (dax) mapping, so let's just replicate the
814          * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
815          */
816         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
817                 if (vma->vm_flags & VM_MIXEDMAP) {
818                         if (!pfn_valid(pfn))
819                                 return NULL;
820                         goto out;
821                 } else {
822                         unsigned long off;
823                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
824                         if (pfn == vma->vm_pgoff + off)
825                                 return NULL;
826                         if (!is_cow_mapping(vma->vm_flags))
827                                 return NULL;
828                 }
829         }
830
831         if (is_zero_pfn(pfn))
832                 return NULL;
833         if (unlikely(pfn > highest_memmap_pfn))
834                 return NULL;
835
836         /*
837          * NOTE! We still have PageReserved() pages in the page tables.
838          * eg. VDSO mappings can cause them to exist.
839          */
840 out:
841         return pfn_to_page(pfn);
842 }
843 #endif
844
845 /*
846  * copy one vm_area from one task to the other. Assumes the page tables
847  * already present in the new task to be cleared in the whole range
848  * covered by this vma.
849  */
850
851 static inline unsigned long
852 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
853                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
854                 unsigned long addr, int *rss)
855 {
856         unsigned long vm_flags = vma->vm_flags;
857         pte_t pte = *src_pte;
858         struct page *page;
859
860         /* pte contains position in swap or file, so copy. */
861         if (unlikely(!pte_present(pte))) {
862                 swp_entry_t entry = pte_to_swp_entry(pte);
863
864                 if (likely(!non_swap_entry(entry))) {
865                         if (swap_duplicate(entry) < 0)
866                                 return entry.val;
867
868                         /* make sure dst_mm is on swapoff's mmlist. */
869                         if (unlikely(list_empty(&dst_mm->mmlist))) {
870                                 spin_lock(&mmlist_lock);
871                                 if (list_empty(&dst_mm->mmlist))
872                                         list_add(&dst_mm->mmlist,
873                                                         &src_mm->mmlist);
874                                 spin_unlock(&mmlist_lock);
875                         }
876                         rss[MM_SWAPENTS]++;
877                 } else if (is_migration_entry(entry)) {
878                         page = migration_entry_to_page(entry);
879
880                         rss[mm_counter(page)]++;
881
882                         if (is_write_migration_entry(entry) &&
883                                         is_cow_mapping(vm_flags)) {
884                                 /*
885                                  * COW mappings require pages in both
886                                  * parent and child to be set to read.
887                                  */
888                                 make_migration_entry_read(&entry);
889                                 pte = swp_entry_to_pte(entry);
890                                 if (pte_swp_soft_dirty(*src_pte))
891                                         pte = pte_swp_mksoft_dirty(pte);
892                                 set_pte_at(src_mm, addr, src_pte, pte);
893                         }
894                 }
895                 goto out_set_pte;
896         }
897
898         /*
899          * If it's a COW mapping, write protect it both
900          * in the parent and the child
901          */
902         if (is_cow_mapping(vm_flags)) {
903                 ptep_set_wrprotect(src_mm, addr, src_pte);
904                 pte = pte_wrprotect(pte);
905         }
906
907         /*
908          * If it's a shared mapping, mark it clean in
909          * the child
910          */
911         if (vm_flags & VM_SHARED)
912                 pte = pte_mkclean(pte);
913         pte = pte_mkold(pte);
914
915         page = vm_normal_page(vma, addr, pte);
916         if (page) {
917                 get_page(page);
918                 page_dup_rmap(page, false);
919                 rss[mm_counter(page)]++;
920         }
921
922 out_set_pte:
923         set_pte_at(dst_mm, addr, dst_pte, pte);
924         return 0;
925 }
926
927 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
929                    unsigned long addr, unsigned long end)
930 {
931         pte_t *orig_src_pte, *orig_dst_pte;
932         pte_t *src_pte, *dst_pte;
933         spinlock_t *src_ptl, *dst_ptl;
934         int progress = 0;
935         int rss[NR_MM_COUNTERS];
936         swp_entry_t entry = (swp_entry_t){0};
937
938 again:
939         init_rss_vec(rss);
940
941         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942         if (!dst_pte)
943                 return -ENOMEM;
944         src_pte = pte_offset_map(src_pmd, addr);
945         src_ptl = pte_lockptr(src_mm, src_pmd);
946         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
947         orig_src_pte = src_pte;
948         orig_dst_pte = dst_pte;
949         arch_enter_lazy_mmu_mode();
950
951         do {
952                 /*
953                  * We are holding two locks at this point - either of them
954                  * could generate latencies in another task on another CPU.
955                  */
956                 if (progress >= 32) {
957                         progress = 0;
958                         if (need_resched() ||
959                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
960                                 break;
961                 }
962                 if (pte_none(*src_pte)) {
963                         progress++;
964                         continue;
965                 }
966                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
967                                                         vma, addr, rss);
968                 if (entry.val)
969                         break;
970                 progress += 8;
971         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
972
973         arch_leave_lazy_mmu_mode();
974         spin_unlock(src_ptl);
975         pte_unmap(orig_src_pte);
976         add_mm_rss_vec(dst_mm, rss);
977         pte_unmap_unlock(orig_dst_pte, dst_ptl);
978         cond_resched();
979
980         if (entry.val) {
981                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
982                         return -ENOMEM;
983                 progress = 0;
984         }
985         if (addr != end)
986                 goto again;
987         return 0;
988 }
989
990 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
991                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
992                 unsigned long addr, unsigned long end)
993 {
994         pmd_t *src_pmd, *dst_pmd;
995         unsigned long next;
996
997         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
998         if (!dst_pmd)
999                 return -ENOMEM;
1000         src_pmd = pmd_offset(src_pud, addr);
1001         do {
1002                 next = pmd_addr_end(addr, end);
1003                 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1004                         int err;
1005                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1006                         err = copy_huge_pmd(dst_mm, src_mm,
1007                                             dst_pmd, src_pmd, addr, vma);
1008                         if (err == -ENOMEM)
1009                                 return -ENOMEM;
1010                         if (!err)
1011                                 continue;
1012                         /* fall through */
1013                 }
1014                 if (pmd_none_or_clear_bad(src_pmd))
1015                         continue;
1016                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1017                                                 vma, addr, next))
1018                         return -ENOMEM;
1019         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1020         return 0;
1021 }
1022
1023 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1025                 unsigned long addr, unsigned long end)
1026 {
1027         pud_t *src_pud, *dst_pud;
1028         unsigned long next;
1029
1030         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1031         if (!dst_pud)
1032                 return -ENOMEM;
1033         src_pud = pud_offset(src_pgd, addr);
1034         do {
1035                 next = pud_addr_end(addr, end);
1036                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1037                         int err;
1038
1039                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1040                         err = copy_huge_pud(dst_mm, src_mm,
1041                                             dst_pud, src_pud, addr, vma);
1042                         if (err == -ENOMEM)
1043                                 return -ENOMEM;
1044                         if (!err)
1045                                 continue;
1046                         /* fall through */
1047                 }
1048                 if (pud_none_or_clear_bad(src_pud))
1049                         continue;
1050                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1051                                                 vma, addr, next))
1052                         return -ENOMEM;
1053         } while (dst_pud++, src_pud++, addr = next, addr != end);
1054         return 0;
1055 }
1056
1057 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1058                 struct vm_area_struct *vma)
1059 {
1060         pgd_t *src_pgd, *dst_pgd;
1061         unsigned long next;
1062         unsigned long addr = vma->vm_start;
1063         unsigned long end = vma->vm_end;
1064         unsigned long mmun_start;       /* For mmu_notifiers */
1065         unsigned long mmun_end;         /* For mmu_notifiers */
1066         bool is_cow;
1067         int ret;
1068
1069         /*
1070          * Don't copy ptes where a page fault will fill them correctly.
1071          * Fork becomes much lighter when there are big shared or private
1072          * readonly mappings. The tradeoff is that copy_page_range is more
1073          * efficient than faulting.
1074          */
1075         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1076                         !vma->anon_vma)
1077                 return 0;
1078
1079         if (is_vm_hugetlb_page(vma))
1080                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1081
1082         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1083                 /*
1084                  * We do not free on error cases below as remove_vma
1085                  * gets called on error from higher level routine
1086                  */
1087                 ret = track_pfn_copy(vma);
1088                 if (ret)
1089                         return ret;
1090         }
1091
1092         /*
1093          * We need to invalidate the secondary MMU mappings only when
1094          * there could be a permission downgrade on the ptes of the
1095          * parent mm. And a permission downgrade will only happen if
1096          * is_cow_mapping() returns true.
1097          */
1098         is_cow = is_cow_mapping(vma->vm_flags);
1099         mmun_start = addr;
1100         mmun_end   = end;
1101         if (is_cow)
1102                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1103                                                     mmun_end);
1104
1105         ret = 0;
1106         dst_pgd = pgd_offset(dst_mm, addr);
1107         src_pgd = pgd_offset(src_mm, addr);
1108         do {
1109                 next = pgd_addr_end(addr, end);
1110                 if (pgd_none_or_clear_bad(src_pgd))
1111                         continue;
1112                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1113                                             vma, addr, next))) {
1114                         ret = -ENOMEM;
1115                         break;
1116                 }
1117         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1118
1119         if (is_cow)
1120                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1121         return ret;
1122 }
1123
1124 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1125                                 struct vm_area_struct *vma, pmd_t *pmd,
1126                                 unsigned long addr, unsigned long end,
1127                                 struct zap_details *details)
1128 {
1129         struct mm_struct *mm = tlb->mm;
1130         int force_flush = 0;
1131         int rss[NR_MM_COUNTERS];
1132         spinlock_t *ptl;
1133         pte_t *start_pte;
1134         pte_t *pte;
1135         swp_entry_t entry;
1136
1137         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1138 again:
1139         init_rss_vec(rss);
1140         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1141         pte = start_pte;
1142         arch_enter_lazy_mmu_mode();
1143         do {
1144                 pte_t ptent = *pte;
1145                 if (pte_none(ptent))
1146                         continue;
1147
1148                 if (pte_present(ptent)) {
1149                         struct page *page;
1150
1151                         page = vm_normal_page(vma, addr, ptent);
1152                         if (unlikely(details) && page) {
1153                                 /*
1154                                  * unmap_shared_mapping_pages() wants to
1155                                  * invalidate cache without truncating:
1156                                  * unmap shared but keep private pages.
1157                                  */
1158                                 if (details->check_mapping &&
1159                                     details->check_mapping != page_rmapping(page))
1160                                         continue;
1161                         }
1162                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1163                                                         tlb->fullmm);
1164                         tlb_remove_tlb_entry(tlb, pte, addr);
1165                         if (unlikely(!page))
1166                                 continue;
1167
1168                         if (!PageAnon(page)) {
1169                                 if (pte_dirty(ptent)) {
1170                                         force_flush = 1;
1171                                         set_page_dirty(page);
1172                                 }
1173                                 if (pte_young(ptent) &&
1174                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1175                                         mark_page_accessed(page);
1176                         }
1177                         rss[mm_counter(page)]--;
1178                         page_remove_rmap(page, false);
1179                         if (unlikely(page_mapcount(page) < 0))
1180                                 print_bad_pte(vma, addr, ptent, page);
1181                         if (unlikely(__tlb_remove_page(tlb, page))) {
1182                                 force_flush = 1;
1183                                 addr += PAGE_SIZE;
1184                                 break;
1185                         }
1186                         continue;
1187                 }
1188                 /* If details->check_mapping, we leave swap entries. */
1189                 if (unlikely(details))
1190                         continue;
1191
1192                 entry = pte_to_swp_entry(ptent);
1193                 if (!non_swap_entry(entry))
1194                         rss[MM_SWAPENTS]--;
1195                 else if (is_migration_entry(entry)) {
1196                         struct page *page;
1197
1198                         page = migration_entry_to_page(entry);
1199                         rss[mm_counter(page)]--;
1200                 }
1201                 if (unlikely(!free_swap_and_cache(entry)))
1202                         print_bad_pte(vma, addr, ptent, NULL);
1203                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1204         } while (pte++, addr += PAGE_SIZE, addr != end);
1205
1206         add_mm_rss_vec(mm, rss);
1207         arch_leave_lazy_mmu_mode();
1208
1209         /* Do the actual TLB flush before dropping ptl */
1210         if (force_flush)
1211                 tlb_flush_mmu_tlbonly(tlb);
1212         pte_unmap_unlock(start_pte, ptl);
1213
1214         /*
1215          * If we forced a TLB flush (either due to running out of
1216          * batch buffers or because we needed to flush dirty TLB
1217          * entries before releasing the ptl), free the batched
1218          * memory too. Restart if we didn't do everything.
1219          */
1220         if (force_flush) {
1221                 force_flush = 0;
1222                 tlb_flush_mmu_free(tlb);
1223                 if (addr != end)
1224                         goto again;
1225         }
1226
1227         return addr;
1228 }
1229
1230 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1231                                 struct vm_area_struct *vma, pud_t *pud,
1232                                 unsigned long addr, unsigned long end,
1233                                 struct zap_details *details)
1234 {
1235         pmd_t *pmd;
1236         unsigned long next;
1237
1238         pmd = pmd_offset(pud, addr);
1239         do {
1240                 next = pmd_addr_end(addr, end);
1241                 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1242                         if (next - addr != HPAGE_PMD_SIZE) {
1243                                 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1244                                     !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1245                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1246                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1247                                 goto next;
1248                         /* fall through */
1249                 }
1250                 /*
1251                  * Here there can be other concurrent MADV_DONTNEED or
1252                  * trans huge page faults running, and if the pmd is
1253                  * none or trans huge it can change under us. This is
1254                  * because MADV_DONTNEED holds the mmap_sem in read
1255                  * mode.
1256                  */
1257                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1258                         goto next;
1259                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1260 next:
1261                 cond_resched();
1262         } while (pmd++, addr = next, addr != end);
1263
1264         return addr;
1265 }
1266
1267 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1268                                 struct vm_area_struct *vma, pgd_t *pgd,
1269                                 unsigned long addr, unsigned long end,
1270                                 struct zap_details *details)
1271 {
1272         pud_t *pud;
1273         unsigned long next;
1274
1275         pud = pud_offset(pgd, addr);
1276         do {
1277                 next = pud_addr_end(addr, end);
1278                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1279                         if (next - addr != HPAGE_PUD_SIZE) {
1280                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1281                                 split_huge_pud(vma, pud, addr);
1282                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1283                                 goto next;
1284                         /* fall through */
1285                 }
1286                 if (pud_none_or_clear_bad(pud))
1287                         continue;
1288                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1289 next:
1290                 cond_resched();
1291         } while (pud++, addr = next, addr != end);
1292
1293         return addr;
1294 }
1295
1296 void unmap_page_range(struct mmu_gather *tlb,
1297                              struct vm_area_struct *vma,
1298                              unsigned long addr, unsigned long end,
1299                              struct zap_details *details)
1300 {
1301         pgd_t *pgd;
1302         unsigned long next;
1303
1304         BUG_ON(addr >= end);
1305         tlb_start_vma(tlb, vma);
1306         pgd = pgd_offset(vma->vm_mm, addr);
1307         do {
1308                 next = pgd_addr_end(addr, end);
1309                 if (pgd_none_or_clear_bad(pgd))
1310                         continue;
1311                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1312         } while (pgd++, addr = next, addr != end);
1313         tlb_end_vma(tlb, vma);
1314 }
1315
1316
1317 static void unmap_single_vma(struct mmu_gather *tlb,
1318                 struct vm_area_struct *vma, unsigned long start_addr,
1319                 unsigned long end_addr,
1320                 struct zap_details *details)
1321 {
1322         unsigned long start = max(vma->vm_start, start_addr);
1323         unsigned long end;
1324
1325         if (start >= vma->vm_end)
1326                 return;
1327         end = min(vma->vm_end, end_addr);
1328         if (end <= vma->vm_start)
1329                 return;
1330
1331         if (vma->vm_file)
1332                 uprobe_munmap(vma, start, end);
1333
1334         if (unlikely(vma->vm_flags & VM_PFNMAP))
1335                 untrack_pfn(vma, 0, 0);
1336
1337         if (start != end) {
1338                 if (unlikely(is_vm_hugetlb_page(vma))) {
1339                         /*
1340                          * It is undesirable to test vma->vm_file as it
1341                          * should be non-null for valid hugetlb area.
1342                          * However, vm_file will be NULL in the error
1343                          * cleanup path of mmap_region. When
1344                          * hugetlbfs ->mmap method fails,
1345                          * mmap_region() nullifies vma->vm_file
1346                          * before calling this function to clean up.
1347                          * Since no pte has actually been setup, it is
1348                          * safe to do nothing in this case.
1349                          */
1350                         if (vma->vm_file) {
1351                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1352                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1353                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1354                         }
1355                 } else
1356                         unmap_page_range(tlb, vma, start, end, details);
1357         }
1358 }
1359
1360 /**
1361  * unmap_vmas - unmap a range of memory covered by a list of vma's
1362  * @tlb: address of the caller's struct mmu_gather
1363  * @vma: the starting vma
1364  * @start_addr: virtual address at which to start unmapping
1365  * @end_addr: virtual address at which to end unmapping
1366  *
1367  * Unmap all pages in the vma list.
1368  *
1369  * Only addresses between `start' and `end' will be unmapped.
1370  *
1371  * The VMA list must be sorted in ascending virtual address order.
1372  *
1373  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1374  * range after unmap_vmas() returns.  So the only responsibility here is to
1375  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1376  * drops the lock and schedules.
1377  */
1378 void unmap_vmas(struct mmu_gather *tlb,
1379                 struct vm_area_struct *vma, unsigned long start_addr,
1380                 unsigned long end_addr)
1381 {
1382         struct mm_struct *mm = vma->vm_mm;
1383
1384         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1385         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1386                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1387         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1388 }
1389
1390 /**
1391  * zap_page_range - remove user pages in a given range
1392  * @vma: vm_area_struct holding the applicable pages
1393  * @start: starting address of pages to zap
1394  * @size: number of bytes to zap
1395  *
1396  * Caller must protect the VMA list
1397  */
1398 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1399                 unsigned long size)
1400 {
1401         struct mm_struct *mm = vma->vm_mm;
1402         struct mmu_gather tlb;
1403         unsigned long end = start + size;
1404
1405         lru_add_drain();
1406         tlb_gather_mmu(&tlb, mm, start, end);
1407         update_hiwater_rss(mm);
1408         mmu_notifier_invalidate_range_start(mm, start, end);
1409         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1410                 unmap_single_vma(&tlb, vma, start, end, NULL);
1411         mmu_notifier_invalidate_range_end(mm, start, end);
1412         tlb_finish_mmu(&tlb, start, end);
1413 }
1414
1415 /**
1416  * zap_page_range_single - remove user pages in a given range
1417  * @vma: vm_area_struct holding the applicable pages
1418  * @address: starting address of pages to zap
1419  * @size: number of bytes to zap
1420  * @details: details of shared cache invalidation
1421  *
1422  * The range must fit into one VMA.
1423  */
1424 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1425                 unsigned long size, struct zap_details *details)
1426 {
1427         struct mm_struct *mm = vma->vm_mm;
1428         struct mmu_gather tlb;
1429         unsigned long end = address + size;
1430
1431         lru_add_drain();
1432         tlb_gather_mmu(&tlb, mm, address, end);
1433         update_hiwater_rss(mm);
1434         mmu_notifier_invalidate_range_start(mm, address, end);
1435         unmap_single_vma(&tlb, vma, address, end, details);
1436         mmu_notifier_invalidate_range_end(mm, address, end);
1437         tlb_finish_mmu(&tlb, address, end);
1438 }
1439
1440 /**
1441  * zap_vma_ptes - remove ptes mapping the vma
1442  * @vma: vm_area_struct holding ptes to be zapped
1443  * @address: starting address of pages to zap
1444  * @size: number of bytes to zap
1445  *
1446  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1447  *
1448  * The entire address range must be fully contained within the vma.
1449  *
1450  * Returns 0 if successful.
1451  */
1452 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1453                 unsigned long size)
1454 {
1455         if (address < vma->vm_start || address + size > vma->vm_end ||
1456                         !(vma->vm_flags & VM_PFNMAP))
1457                 return -1;
1458         zap_page_range_single(vma, address, size, NULL);
1459         return 0;
1460 }
1461 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1462
1463 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1464                         spinlock_t **ptl)
1465 {
1466         pgd_t *pgd = pgd_offset(mm, addr);
1467         pud_t *pud = pud_alloc(mm, pgd, addr);
1468         if (pud) {
1469                 pmd_t *pmd = pmd_alloc(mm, pud, addr);
1470                 if (pmd) {
1471                         VM_BUG_ON(pmd_trans_huge(*pmd));
1472                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1473                 }
1474         }
1475         return NULL;
1476 }
1477
1478 /*
1479  * This is the old fallback for page remapping.
1480  *
1481  * For historical reasons, it only allows reserved pages. Only
1482  * old drivers should use this, and they needed to mark their
1483  * pages reserved for the old functions anyway.
1484  */
1485 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1486                         struct page *page, pgprot_t prot)
1487 {
1488         struct mm_struct *mm = vma->vm_mm;
1489         int retval;
1490         pte_t *pte;
1491         spinlock_t *ptl;
1492
1493         retval = -EINVAL;
1494         if (PageAnon(page))
1495                 goto out;
1496         retval = -ENOMEM;
1497         flush_dcache_page(page);
1498         pte = get_locked_pte(mm, addr, &ptl);
1499         if (!pte)
1500                 goto out;
1501         retval = -EBUSY;
1502         if (!pte_none(*pte))
1503                 goto out_unlock;
1504
1505         /* Ok, finally just insert the thing.. */
1506         get_page(page);
1507         inc_mm_counter_fast(mm, mm_counter_file(page));
1508         page_add_file_rmap(page, false);
1509         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1510
1511         retval = 0;
1512         pte_unmap_unlock(pte, ptl);
1513         return retval;
1514 out_unlock:
1515         pte_unmap_unlock(pte, ptl);
1516 out:
1517         return retval;
1518 }
1519
1520 /**
1521  * vm_insert_page - insert single page into user vma
1522  * @vma: user vma to map to
1523  * @addr: target user address of this page
1524  * @page: source kernel page
1525  *
1526  * This allows drivers to insert individual pages they've allocated
1527  * into a user vma.
1528  *
1529  * The page has to be a nice clean _individual_ kernel allocation.
1530  * If you allocate a compound page, you need to have marked it as
1531  * such (__GFP_COMP), or manually just split the page up yourself
1532  * (see split_page()).
1533  *
1534  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1535  * took an arbitrary page protection parameter. This doesn't allow
1536  * that. Your vma protection will have to be set up correctly, which
1537  * means that if you want a shared writable mapping, you'd better
1538  * ask for a shared writable mapping!
1539  *
1540  * The page does not need to be reserved.
1541  *
1542  * Usually this function is called from f_op->mmap() handler
1543  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1544  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1545  * function from other places, for example from page-fault handler.
1546  */
1547 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1548                         struct page *page)
1549 {
1550         if (addr < vma->vm_start || addr >= vma->vm_end)
1551                 return -EFAULT;
1552         if (!page_count(page))
1553                 return -EINVAL;
1554         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1555                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1556                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1557                 vma->vm_flags |= VM_MIXEDMAP;
1558         }
1559         return insert_page(vma, addr, page, vma->vm_page_prot);
1560 }
1561 EXPORT_SYMBOL(vm_insert_page);
1562
1563 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1564                         pfn_t pfn, pgprot_t prot)
1565 {
1566         struct mm_struct *mm = vma->vm_mm;
1567         int retval;
1568         pte_t *pte, entry;
1569         spinlock_t *ptl;
1570
1571         retval = -ENOMEM;
1572         pte = get_locked_pte(mm, addr, &ptl);
1573         if (!pte)
1574                 goto out;
1575         retval = -EBUSY;
1576         if (!pte_none(*pte))
1577                 goto out_unlock;
1578
1579         /* Ok, finally just insert the thing.. */
1580         if (pfn_t_devmap(pfn))
1581                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1582         else
1583                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1584         set_pte_at(mm, addr, pte, entry);
1585         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1586
1587         retval = 0;
1588 out_unlock:
1589         pte_unmap_unlock(pte, ptl);
1590 out:
1591         return retval;
1592 }
1593
1594 /**
1595  * vm_insert_pfn - insert single pfn into user vma
1596  * @vma: user vma to map to
1597  * @addr: target user address of this page
1598  * @pfn: source kernel pfn
1599  *
1600  * Similar to vm_insert_page, this allows drivers to insert individual pages
1601  * they've allocated into a user vma. Same comments apply.
1602  *
1603  * This function should only be called from a vm_ops->fault handler, and
1604  * in that case the handler should return NULL.
1605  *
1606  * vma cannot be a COW mapping.
1607  *
1608  * As this is called only for pages that do not currently exist, we
1609  * do not need to flush old virtual caches or the TLB.
1610  */
1611 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1612                         unsigned long pfn)
1613 {
1614         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1615 }
1616 EXPORT_SYMBOL(vm_insert_pfn);
1617
1618 /**
1619  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1620  * @vma: user vma to map to
1621  * @addr: target user address of this page
1622  * @pfn: source kernel pfn
1623  * @pgprot: pgprot flags for the inserted page
1624  *
1625  * This is exactly like vm_insert_pfn, except that it allows drivers to
1626  * to override pgprot on a per-page basis.
1627  *
1628  * This only makes sense for IO mappings, and it makes no sense for
1629  * cow mappings.  In general, using multiple vmas is preferable;
1630  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1631  * impractical.
1632  */
1633 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1634                         unsigned long pfn, pgprot_t pgprot)
1635 {
1636         int ret;
1637         /*
1638          * Technically, architectures with pte_special can avoid all these
1639          * restrictions (same for remap_pfn_range).  However we would like
1640          * consistency in testing and feature parity among all, so we should
1641          * try to keep these invariants in place for everybody.
1642          */
1643         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1644         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1645                                                 (VM_PFNMAP|VM_MIXEDMAP));
1646         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1647         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1648
1649         if (addr < vma->vm_start || addr >= vma->vm_end)
1650                 return -EFAULT;
1651
1652         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1653
1654         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1655
1656         return ret;
1657 }
1658 EXPORT_SYMBOL(vm_insert_pfn_prot);
1659
1660 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1661                         pfn_t pfn)
1662 {
1663         pgprot_t pgprot = vma->vm_page_prot;
1664
1665         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1666
1667         if (addr < vma->vm_start || addr >= vma->vm_end)
1668                 return -EFAULT;
1669
1670         track_pfn_insert(vma, &pgprot, pfn);
1671
1672         /*
1673          * If we don't have pte special, then we have to use the pfn_valid()
1674          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1675          * refcount the page if pfn_valid is true (hence insert_page rather
1676          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1677          * without pte special, it would there be refcounted as a normal page.
1678          */
1679         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1680                 struct page *page;
1681
1682                 /*
1683                  * At this point we are committed to insert_page()
1684                  * regardless of whether the caller specified flags that
1685                  * result in pfn_t_has_page() == false.
1686                  */
1687                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1688                 return insert_page(vma, addr, page, pgprot);
1689         }
1690         return insert_pfn(vma, addr, pfn, pgprot);
1691 }
1692 EXPORT_SYMBOL(vm_insert_mixed);
1693
1694 /*
1695  * maps a range of physical memory into the requested pages. the old
1696  * mappings are removed. any references to nonexistent pages results
1697  * in null mappings (currently treated as "copy-on-access")
1698  */
1699 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1700                         unsigned long addr, unsigned long end,
1701                         unsigned long pfn, pgprot_t prot)
1702 {
1703         pte_t *pte;
1704         spinlock_t *ptl;
1705
1706         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1707         if (!pte)
1708                 return -ENOMEM;
1709         arch_enter_lazy_mmu_mode();
1710         do {
1711                 BUG_ON(!pte_none(*pte));
1712                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1713                 pfn++;
1714         } while (pte++, addr += PAGE_SIZE, addr != end);
1715         arch_leave_lazy_mmu_mode();
1716         pte_unmap_unlock(pte - 1, ptl);
1717         return 0;
1718 }
1719
1720 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1721                         unsigned long addr, unsigned long end,
1722                         unsigned long pfn, pgprot_t prot)
1723 {
1724         pmd_t *pmd;
1725         unsigned long next;
1726
1727         pfn -= addr >> PAGE_SHIFT;
1728         pmd = pmd_alloc(mm, pud, addr);
1729         if (!pmd)
1730                 return -ENOMEM;
1731         VM_BUG_ON(pmd_trans_huge(*pmd));
1732         do {
1733                 next = pmd_addr_end(addr, end);
1734                 if (remap_pte_range(mm, pmd, addr, next,
1735                                 pfn + (addr >> PAGE_SHIFT), prot))
1736                         return -ENOMEM;
1737         } while (pmd++, addr = next, addr != end);
1738         return 0;
1739 }
1740
1741 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1742                         unsigned long addr, unsigned long end,
1743                         unsigned long pfn, pgprot_t prot)
1744 {
1745         pud_t *pud;
1746         unsigned long next;
1747
1748         pfn -= addr >> PAGE_SHIFT;
1749         pud = pud_alloc(mm, pgd, addr);
1750         if (!pud)
1751                 return -ENOMEM;
1752         do {
1753                 next = pud_addr_end(addr, end);
1754                 if (remap_pmd_range(mm, pud, addr, next,
1755                                 pfn + (addr >> PAGE_SHIFT), prot))
1756                         return -ENOMEM;
1757         } while (pud++, addr = next, addr != end);
1758         return 0;
1759 }
1760
1761 /**
1762  * remap_pfn_range - remap kernel memory to userspace
1763  * @vma: user vma to map to
1764  * @addr: target user address to start at
1765  * @pfn: physical address of kernel memory
1766  * @size: size of map area
1767  * @prot: page protection flags for this mapping
1768  *
1769  *  Note: this is only safe if the mm semaphore is held when called.
1770  */
1771 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1772                     unsigned long pfn, unsigned long size, pgprot_t prot)
1773 {
1774         pgd_t *pgd;
1775         unsigned long next;
1776         unsigned long end = addr + PAGE_ALIGN(size);
1777         struct mm_struct *mm = vma->vm_mm;
1778         unsigned long remap_pfn = pfn;
1779         int err;
1780
1781         /*
1782          * Physically remapped pages are special. Tell the
1783          * rest of the world about it:
1784          *   VM_IO tells people not to look at these pages
1785          *      (accesses can have side effects).
1786          *   VM_PFNMAP tells the core MM that the base pages are just
1787          *      raw PFN mappings, and do not have a "struct page" associated
1788          *      with them.
1789          *   VM_DONTEXPAND
1790          *      Disable vma merging and expanding with mremap().
1791          *   VM_DONTDUMP
1792          *      Omit vma from core dump, even when VM_IO turned off.
1793          *
1794          * There's a horrible special case to handle copy-on-write
1795          * behaviour that some programs depend on. We mark the "original"
1796          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1797          * See vm_normal_page() for details.
1798          */
1799         if (is_cow_mapping(vma->vm_flags)) {
1800                 if (addr != vma->vm_start || end != vma->vm_end)
1801                         return -EINVAL;
1802                 vma->vm_pgoff = pfn;
1803         }
1804
1805         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1806         if (err)
1807                 return -EINVAL;
1808
1809         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1810
1811         BUG_ON(addr >= end);
1812         pfn -= addr >> PAGE_SHIFT;
1813         pgd = pgd_offset(mm, addr);
1814         flush_cache_range(vma, addr, end);
1815         do {
1816                 next = pgd_addr_end(addr, end);
1817                 err = remap_pud_range(mm, pgd, addr, next,
1818                                 pfn + (addr >> PAGE_SHIFT), prot);
1819                 if (err)
1820                         break;
1821         } while (pgd++, addr = next, addr != end);
1822
1823         if (err)
1824                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1825
1826         return err;
1827 }
1828 EXPORT_SYMBOL(remap_pfn_range);
1829
1830 /**
1831  * vm_iomap_memory - remap memory to userspace
1832  * @vma: user vma to map to
1833  * @start: start of area
1834  * @len: size of area
1835  *
1836  * This is a simplified io_remap_pfn_range() for common driver use. The
1837  * driver just needs to give us the physical memory range to be mapped,
1838  * we'll figure out the rest from the vma information.
1839  *
1840  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1841  * whatever write-combining details or similar.
1842  */
1843 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1844 {
1845         unsigned long vm_len, pfn, pages;
1846
1847         /* Check that the physical memory area passed in looks valid */
1848         if (start + len < start)
1849                 return -EINVAL;
1850         /*
1851          * You *really* shouldn't map things that aren't page-aligned,
1852          * but we've historically allowed it because IO memory might
1853          * just have smaller alignment.
1854          */
1855         len += start & ~PAGE_MASK;
1856         pfn = start >> PAGE_SHIFT;
1857         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1858         if (pfn + pages < pfn)
1859                 return -EINVAL;
1860
1861         /* We start the mapping 'vm_pgoff' pages into the area */
1862         if (vma->vm_pgoff > pages)
1863                 return -EINVAL;
1864         pfn += vma->vm_pgoff;
1865         pages -= vma->vm_pgoff;
1866
1867         /* Can we fit all of the mapping? */
1868         vm_len = vma->vm_end - vma->vm_start;
1869         if (vm_len >> PAGE_SHIFT > pages)
1870                 return -EINVAL;
1871
1872         /* Ok, let it rip */
1873         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1874 }
1875 EXPORT_SYMBOL(vm_iomap_memory);
1876
1877 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1878                                      unsigned long addr, unsigned long end,
1879                                      pte_fn_t fn, void *data)
1880 {
1881         pte_t *pte;
1882         int err;
1883         pgtable_t token;
1884         spinlock_t *uninitialized_var(ptl);
1885
1886         pte = (mm == &init_mm) ?
1887                 pte_alloc_kernel(pmd, addr) :
1888                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1889         if (!pte)
1890                 return -ENOMEM;
1891
1892         BUG_ON(pmd_huge(*pmd));
1893
1894         arch_enter_lazy_mmu_mode();
1895
1896         token = pmd_pgtable(*pmd);
1897
1898         do {
1899                 err = fn(pte++, token, addr, data);
1900                 if (err)
1901                         break;
1902         } while (addr += PAGE_SIZE, addr != end);
1903
1904         arch_leave_lazy_mmu_mode();
1905
1906         if (mm != &init_mm)
1907                 pte_unmap_unlock(pte-1, ptl);
1908         return err;
1909 }
1910
1911 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1912                                      unsigned long addr, unsigned long end,
1913                                      pte_fn_t fn, void *data)
1914 {
1915         pmd_t *pmd;
1916         unsigned long next;
1917         int err;
1918
1919         BUG_ON(pud_huge(*pud));
1920
1921         pmd = pmd_alloc(mm, pud, addr);
1922         if (!pmd)
1923                 return -ENOMEM;
1924         do {
1925                 next = pmd_addr_end(addr, end);
1926                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1927                 if (err)
1928                         break;
1929         } while (pmd++, addr = next, addr != end);
1930         return err;
1931 }
1932
1933 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1934                                      unsigned long addr, unsigned long end,
1935                                      pte_fn_t fn, void *data)
1936 {
1937         pud_t *pud;
1938         unsigned long next;
1939         int err;
1940
1941         pud = pud_alloc(mm, pgd, addr);
1942         if (!pud)
1943                 return -ENOMEM;
1944         do {
1945                 next = pud_addr_end(addr, end);
1946                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1947                 if (err)
1948                         break;
1949         } while (pud++, addr = next, addr != end);
1950         return err;
1951 }
1952
1953 /*
1954  * Scan a region of virtual memory, filling in page tables as necessary
1955  * and calling a provided function on each leaf page table.
1956  */
1957 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1958                         unsigned long size, pte_fn_t fn, void *data)
1959 {
1960         pgd_t *pgd;
1961         unsigned long next;
1962         unsigned long end = addr + size;
1963         int err;
1964
1965         if (WARN_ON(addr >= end))
1966                 return -EINVAL;
1967
1968         pgd = pgd_offset(mm, addr);
1969         do {
1970                 next = pgd_addr_end(addr, end);
1971                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1972                 if (err)
1973                         break;
1974         } while (pgd++, addr = next, addr != end);
1975
1976         return err;
1977 }
1978 EXPORT_SYMBOL_GPL(apply_to_page_range);
1979
1980 /*
1981  * handle_pte_fault chooses page fault handler according to an entry which was
1982  * read non-atomically.  Before making any commitment, on those architectures
1983  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1984  * parts, do_swap_page must check under lock before unmapping the pte and
1985  * proceeding (but do_wp_page is only called after already making such a check;
1986  * and do_anonymous_page can safely check later on).
1987  */
1988 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1989                                 pte_t *page_table, pte_t orig_pte)
1990 {
1991         int same = 1;
1992 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1993         if (sizeof(pte_t) > sizeof(unsigned long)) {
1994                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1995                 spin_lock(ptl);
1996                 same = pte_same(*page_table, orig_pte);
1997                 spin_unlock(ptl);
1998         }
1999 #endif
2000         pte_unmap(page_table);
2001         return same;
2002 }
2003
2004 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2005 {
2006         debug_dma_assert_idle(src);
2007
2008         /*
2009          * If the source page was a PFN mapping, we don't have
2010          * a "struct page" for it. We do a best-effort copy by
2011          * just copying from the original user address. If that
2012          * fails, we just zero-fill it. Live with it.
2013          */
2014         if (unlikely(!src)) {
2015                 void *kaddr = kmap_atomic(dst);
2016                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2017
2018                 /*
2019                  * This really shouldn't fail, because the page is there
2020                  * in the page tables. But it might just be unreadable,
2021                  * in which case we just give up and fill the result with
2022                  * zeroes.
2023                  */
2024                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2025                         clear_page(kaddr);
2026                 kunmap_atomic(kaddr);
2027                 flush_dcache_page(dst);
2028         } else
2029                 copy_user_highpage(dst, src, va, vma);
2030 }
2031
2032 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2033 {
2034         struct file *vm_file = vma->vm_file;
2035
2036         if (vm_file)
2037                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2038
2039         /*
2040          * Special mappings (e.g. VDSO) do not have any file so fake
2041          * a default GFP_KERNEL for them.
2042          */
2043         return GFP_KERNEL;
2044 }
2045
2046 /*
2047  * Notify the address space that the page is about to become writable so that
2048  * it can prohibit this or wait for the page to get into an appropriate state.
2049  *
2050  * We do this without the lock held, so that it can sleep if it needs to.
2051  */
2052 static int do_page_mkwrite(struct vm_fault *vmf)
2053 {
2054         int ret;
2055         struct page *page = vmf->page;
2056         unsigned int old_flags = vmf->flags;
2057
2058         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2059
2060         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2061         /* Restore original flags so that caller is not surprised */
2062         vmf->flags = old_flags;
2063         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2064                 return ret;
2065         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2066                 lock_page(page);
2067                 if (!page->mapping) {
2068                         unlock_page(page);
2069                         return 0; /* retry */
2070                 }
2071                 ret |= VM_FAULT_LOCKED;
2072         } else
2073                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2074         return ret;
2075 }
2076
2077 /*
2078  * Handle dirtying of a page in shared file mapping on a write fault.
2079  *
2080  * The function expects the page to be locked and unlocks it.
2081  */
2082 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2083                                     struct page *page)
2084 {
2085         struct address_space *mapping;
2086         bool dirtied;
2087         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2088
2089         dirtied = set_page_dirty(page);
2090         VM_BUG_ON_PAGE(PageAnon(page), page);
2091         /*
2092          * Take a local copy of the address_space - page.mapping may be zeroed
2093          * by truncate after unlock_page().   The address_space itself remains
2094          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2095          * release semantics to prevent the compiler from undoing this copying.
2096          */
2097         mapping = page_rmapping(page);
2098         unlock_page(page);
2099
2100         if ((dirtied || page_mkwrite) && mapping) {
2101                 /*
2102                  * Some device drivers do not set page.mapping
2103                  * but still dirty their pages
2104                  */
2105                 balance_dirty_pages_ratelimited(mapping);
2106         }
2107
2108         if (!page_mkwrite)
2109                 file_update_time(vma->vm_file);
2110 }
2111
2112 /*
2113  * Handle write page faults for pages that can be reused in the current vma
2114  *
2115  * This can happen either due to the mapping being with the VM_SHARED flag,
2116  * or due to us being the last reference standing to the page. In either
2117  * case, all we need to do here is to mark the page as writable and update
2118  * any related book-keeping.
2119  */
2120 static inline void wp_page_reuse(struct vm_fault *vmf)
2121         __releases(vmf->ptl)
2122 {
2123         struct vm_area_struct *vma = vmf->vma;
2124         struct page *page = vmf->page;
2125         pte_t entry;
2126         /*
2127          * Clear the pages cpupid information as the existing
2128          * information potentially belongs to a now completely
2129          * unrelated process.
2130          */
2131         if (page)
2132                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2133
2134         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2135         entry = pte_mkyoung(vmf->orig_pte);
2136         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2137         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2138                 update_mmu_cache(vma, vmf->address, vmf->pte);
2139         pte_unmap_unlock(vmf->pte, vmf->ptl);
2140 }
2141
2142 /*
2143  * Handle the case of a page which we actually need to copy to a new page.
2144  *
2145  * Called with mmap_sem locked and the old page referenced, but
2146  * without the ptl held.
2147  *
2148  * High level logic flow:
2149  *
2150  * - Allocate a page, copy the content of the old page to the new one.
2151  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2152  * - Take the PTL. If the pte changed, bail out and release the allocated page
2153  * - If the pte is still the way we remember it, update the page table and all
2154  *   relevant references. This includes dropping the reference the page-table
2155  *   held to the old page, as well as updating the rmap.
2156  * - In any case, unlock the PTL and drop the reference we took to the old page.
2157  */
2158 static int wp_page_copy(struct vm_fault *vmf)
2159 {
2160         struct vm_area_struct *vma = vmf->vma;
2161         struct mm_struct *mm = vma->vm_mm;
2162         struct page *old_page = vmf->page;
2163         struct page *new_page = NULL;
2164         pte_t entry;
2165         int page_copied = 0;
2166         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2167         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2168         struct mem_cgroup *memcg;
2169
2170         if (unlikely(anon_vma_prepare(vma)))
2171                 goto oom;
2172
2173         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2174                 new_page = alloc_zeroed_user_highpage_movable(vma,
2175                                                               vmf->address);
2176                 if (!new_page)
2177                         goto oom;
2178         } else {
2179                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2180                                 vmf->address);
2181                 if (!new_page)
2182                         goto oom;
2183                 cow_user_page(new_page, old_page, vmf->address, vma);
2184         }
2185
2186         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2187                 goto oom_free_new;
2188
2189         __SetPageUptodate(new_page);
2190
2191         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2192
2193         /*
2194          * Re-check the pte - we dropped the lock
2195          */
2196         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2197         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2198                 if (old_page) {
2199                         if (!PageAnon(old_page)) {
2200                                 dec_mm_counter_fast(mm,
2201                                                 mm_counter_file(old_page));
2202                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2203                         }
2204                 } else {
2205                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2206                 }
2207                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2208                 entry = mk_pte(new_page, vma->vm_page_prot);
2209                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2210                 /*
2211                  * Clear the pte entry and flush it first, before updating the
2212                  * pte with the new entry. This will avoid a race condition
2213                  * seen in the presence of one thread doing SMC and another
2214                  * thread doing COW.
2215                  */
2216                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2217                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2218                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2219                 lru_cache_add_active_or_unevictable(new_page, vma);
2220                 /*
2221                  * We call the notify macro here because, when using secondary
2222                  * mmu page tables (such as kvm shadow page tables), we want the
2223                  * new page to be mapped directly into the secondary page table.
2224                  */
2225                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2226                 update_mmu_cache(vma, vmf->address, vmf->pte);
2227                 if (old_page) {
2228                         /*
2229                          * Only after switching the pte to the new page may
2230                          * we remove the mapcount here. Otherwise another
2231                          * process may come and find the rmap count decremented
2232                          * before the pte is switched to the new page, and
2233                          * "reuse" the old page writing into it while our pte
2234                          * here still points into it and can be read by other
2235                          * threads.
2236                          *
2237                          * The critical issue is to order this
2238                          * page_remove_rmap with the ptp_clear_flush above.
2239                          * Those stores are ordered by (if nothing else,)
2240                          * the barrier present in the atomic_add_negative
2241                          * in page_remove_rmap.
2242                          *
2243                          * Then the TLB flush in ptep_clear_flush ensures that
2244                          * no process can access the old page before the
2245                          * decremented mapcount is visible. And the old page
2246                          * cannot be reused until after the decremented
2247                          * mapcount is visible. So transitively, TLBs to
2248                          * old page will be flushed before it can be reused.
2249                          */
2250                         page_remove_rmap(old_page, false);
2251                 }
2252
2253                 /* Free the old page.. */
2254                 new_page = old_page;
2255                 page_copied = 1;
2256         } else {
2257                 mem_cgroup_cancel_charge(new_page, memcg, false);
2258         }
2259
2260         if (new_page)
2261                 put_page(new_page);
2262
2263         pte_unmap_unlock(vmf->pte, vmf->ptl);
2264         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2265         if (old_page) {
2266                 /*
2267                  * Don't let another task, with possibly unlocked vma,
2268                  * keep the mlocked page.
2269                  */
2270                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2271                         lock_page(old_page);    /* LRU manipulation */
2272                         if (PageMlocked(old_page))
2273                                 munlock_vma_page(old_page);
2274                         unlock_page(old_page);
2275                 }
2276                 put_page(old_page);
2277         }
2278         return page_copied ? VM_FAULT_WRITE : 0;
2279 oom_free_new:
2280         put_page(new_page);
2281 oom:
2282         if (old_page)
2283                 put_page(old_page);
2284         return VM_FAULT_OOM;
2285 }
2286
2287 /**
2288  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2289  *                        writeable once the page is prepared
2290  *
2291  * @vmf: structure describing the fault
2292  *
2293  * This function handles all that is needed to finish a write page fault in a
2294  * shared mapping due to PTE being read-only once the mapped page is prepared.
2295  * It handles locking of PTE and modifying it. The function returns
2296  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2297  * lock.
2298  *
2299  * The function expects the page to be locked or other protection against
2300  * concurrent faults / writeback (such as DAX radix tree locks).
2301  */
2302 int finish_mkwrite_fault(struct vm_fault *vmf)
2303 {
2304         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2305         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2306                                        &vmf->ptl);
2307         /*
2308          * We might have raced with another page fault while we released the
2309          * pte_offset_map_lock.
2310          */
2311         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2312                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2313                 return VM_FAULT_NOPAGE;
2314         }
2315         wp_page_reuse(vmf);
2316         return 0;
2317 }
2318
2319 /*
2320  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2321  * mapping
2322  */
2323 static int wp_pfn_shared(struct vm_fault *vmf)
2324 {
2325         struct vm_area_struct *vma = vmf->vma;
2326
2327         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2328                 int ret;
2329
2330                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2331                 vmf->flags |= FAULT_FLAG_MKWRITE;
2332                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2333                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2334                         return ret;
2335                 return finish_mkwrite_fault(vmf);
2336         }
2337         wp_page_reuse(vmf);
2338         return VM_FAULT_WRITE;
2339 }
2340
2341 static int wp_page_shared(struct vm_fault *vmf)
2342         __releases(vmf->ptl)
2343 {
2344         struct vm_area_struct *vma = vmf->vma;
2345
2346         get_page(vmf->page);
2347
2348         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2349                 int tmp;
2350
2351                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2352                 tmp = do_page_mkwrite(vmf);
2353                 if (unlikely(!tmp || (tmp &
2354                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2355                         put_page(vmf->page);
2356                         return tmp;
2357                 }
2358                 tmp = finish_mkwrite_fault(vmf);
2359                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2360                         unlock_page(vmf->page);
2361                         put_page(vmf->page);
2362                         return tmp;
2363                 }
2364         } else {
2365                 wp_page_reuse(vmf);
2366                 lock_page(vmf->page);
2367         }
2368         fault_dirty_shared_page(vma, vmf->page);
2369         put_page(vmf->page);
2370
2371         return VM_FAULT_WRITE;
2372 }
2373
2374 /*
2375  * This routine handles present pages, when users try to write
2376  * to a shared page. It is done by copying the page to a new address
2377  * and decrementing the shared-page counter for the old page.
2378  *
2379  * Note that this routine assumes that the protection checks have been
2380  * done by the caller (the low-level page fault routine in most cases).
2381  * Thus we can safely just mark it writable once we've done any necessary
2382  * COW.
2383  *
2384  * We also mark the page dirty at this point even though the page will
2385  * change only once the write actually happens. This avoids a few races,
2386  * and potentially makes it more efficient.
2387  *
2388  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2389  * but allow concurrent faults), with pte both mapped and locked.
2390  * We return with mmap_sem still held, but pte unmapped and unlocked.
2391  */
2392 static int do_wp_page(struct vm_fault *vmf)
2393         __releases(vmf->ptl)
2394 {
2395         struct vm_area_struct *vma = vmf->vma;
2396
2397         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2398         if (!vmf->page) {
2399                 /*
2400                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2401                  * VM_PFNMAP VMA.
2402                  *
2403                  * We should not cow pages in a shared writeable mapping.
2404                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2405                  */
2406                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2407                                      (VM_WRITE|VM_SHARED))
2408                         return wp_pfn_shared(vmf);
2409
2410                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2411                 return wp_page_copy(vmf);
2412         }
2413
2414         /*
2415          * Take out anonymous pages first, anonymous shared vmas are
2416          * not dirty accountable.
2417          */
2418         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2419                 int total_mapcount;
2420                 if (!trylock_page(vmf->page)) {
2421                         get_page(vmf->page);
2422                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2423                         lock_page(vmf->page);
2424                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2425                                         vmf->address, &vmf->ptl);
2426                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2427                                 unlock_page(vmf->page);
2428                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2429                                 put_page(vmf->page);
2430                                 return 0;
2431                         }
2432                         put_page(vmf->page);
2433                 }
2434                 if (reuse_swap_page(vmf->page, &total_mapcount)) {
2435                         if (total_mapcount == 1) {
2436                                 /*
2437                                  * The page is all ours. Move it to
2438                                  * our anon_vma so the rmap code will
2439                                  * not search our parent or siblings.
2440                                  * Protected against the rmap code by
2441                                  * the page lock.
2442                                  */
2443                                 page_move_anon_rmap(vmf->page, vma);
2444                         }
2445                         unlock_page(vmf->page);
2446                         wp_page_reuse(vmf);
2447                         return VM_FAULT_WRITE;
2448                 }
2449                 unlock_page(vmf->page);
2450         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2451                                         (VM_WRITE|VM_SHARED))) {
2452                 return wp_page_shared(vmf);
2453         }
2454
2455         /*
2456          * Ok, we need to copy. Oh, well..
2457          */
2458         get_page(vmf->page);
2459
2460         pte_unmap_unlock(vmf->pte, vmf->ptl);
2461         return wp_page_copy(vmf);
2462 }
2463
2464 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2465                 unsigned long start_addr, unsigned long end_addr,
2466                 struct zap_details *details)
2467 {
2468         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2469 }
2470
2471 static inline void unmap_mapping_range_tree(struct rb_root *root,
2472                                             struct zap_details *details)
2473 {
2474         struct vm_area_struct *vma;
2475         pgoff_t vba, vea, zba, zea;
2476
2477         vma_interval_tree_foreach(vma, root,
2478                         details->first_index, details->last_index) {
2479
2480                 vba = vma->vm_pgoff;
2481                 vea = vba + vma_pages(vma) - 1;
2482                 zba = details->first_index;
2483                 if (zba < vba)
2484                         zba = vba;
2485                 zea = details->last_index;
2486                 if (zea > vea)
2487                         zea = vea;
2488
2489                 unmap_mapping_range_vma(vma,
2490                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2491                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2492                                 details);
2493         }
2494 }
2495
2496 /**
2497  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2498  * address_space corresponding to the specified page range in the underlying
2499  * file.
2500  *
2501  * @mapping: the address space containing mmaps to be unmapped.
2502  * @holebegin: byte in first page to unmap, relative to the start of
2503  * the underlying file.  This will be rounded down to a PAGE_SIZE
2504  * boundary.  Note that this is different from truncate_pagecache(), which
2505  * must keep the partial page.  In contrast, we must get rid of
2506  * partial pages.
2507  * @holelen: size of prospective hole in bytes.  This will be rounded
2508  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2509  * end of the file.
2510  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2511  * but 0 when invalidating pagecache, don't throw away private data.
2512  */
2513 void unmap_mapping_range(struct address_space *mapping,
2514                 loff_t const holebegin, loff_t const holelen, int even_cows)
2515 {
2516         struct zap_details details = { };
2517         pgoff_t hba = holebegin >> PAGE_SHIFT;
2518         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2519
2520         /* Check for overflow. */
2521         if (sizeof(holelen) > sizeof(hlen)) {
2522                 long long holeend =
2523                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2524                 if (holeend & ~(long long)ULONG_MAX)
2525                         hlen = ULONG_MAX - hba + 1;
2526         }
2527
2528         details.check_mapping = even_cows ? NULL : mapping;
2529         details.first_index = hba;
2530         details.last_index = hba + hlen - 1;
2531         if (details.last_index < details.first_index)
2532                 details.last_index = ULONG_MAX;
2533
2534         i_mmap_lock_write(mapping);
2535         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2536                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2537         i_mmap_unlock_write(mapping);
2538 }
2539 EXPORT_SYMBOL(unmap_mapping_range);
2540
2541 /*
2542  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2543  * but allow concurrent faults), and pte mapped but not yet locked.
2544  * We return with pte unmapped and unlocked.
2545  *
2546  * We return with the mmap_sem locked or unlocked in the same cases
2547  * as does filemap_fault().
2548  */
2549 int do_swap_page(struct vm_fault *vmf)
2550 {
2551         struct vm_area_struct *vma = vmf->vma;
2552         struct page *page, *swapcache;
2553         struct mem_cgroup *memcg;
2554         swp_entry_t entry;
2555         pte_t pte;
2556         int locked;
2557         int exclusive = 0;
2558         int ret = 0;
2559
2560         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2561                 goto out;
2562
2563         entry = pte_to_swp_entry(vmf->orig_pte);
2564         if (unlikely(non_swap_entry(entry))) {
2565                 if (is_migration_entry(entry)) {
2566                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2567                                              vmf->address);
2568                 } else if (is_hwpoison_entry(entry)) {
2569                         ret = VM_FAULT_HWPOISON;
2570                 } else {
2571                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2572                         ret = VM_FAULT_SIGBUS;
2573                 }
2574                 goto out;
2575         }
2576         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2577         page = lookup_swap_cache(entry);
2578         if (!page) {
2579                 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2580                                         vmf->address);
2581                 if (!page) {
2582                         /*
2583                          * Back out if somebody else faulted in this pte
2584                          * while we released the pte lock.
2585                          */
2586                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2587                                         vmf->address, &vmf->ptl);
2588                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2589                                 ret = VM_FAULT_OOM;
2590                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2591                         goto unlock;
2592                 }
2593
2594                 /* Had to read the page from swap area: Major fault */
2595                 ret = VM_FAULT_MAJOR;
2596                 count_vm_event(PGMAJFAULT);
2597                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2598         } else if (PageHWPoison(page)) {
2599                 /*
2600                  * hwpoisoned dirty swapcache pages are kept for killing
2601                  * owner processes (which may be unknown at hwpoison time)
2602                  */
2603                 ret = VM_FAULT_HWPOISON;
2604                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2605                 swapcache = page;
2606                 goto out_release;
2607         }
2608
2609         swapcache = page;
2610         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2611
2612         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2613         if (!locked) {
2614                 ret |= VM_FAULT_RETRY;
2615                 goto out_release;
2616         }
2617
2618         /*
2619          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2620          * release the swapcache from under us.  The page pin, and pte_same
2621          * test below, are not enough to exclude that.  Even if it is still
2622          * swapcache, we need to check that the page's swap has not changed.
2623          */
2624         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2625                 goto out_page;
2626
2627         page = ksm_might_need_to_copy(page, vma, vmf->address);
2628         if (unlikely(!page)) {
2629                 ret = VM_FAULT_OOM;
2630                 page = swapcache;
2631                 goto out_page;
2632         }
2633
2634         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2635                                 &memcg, false)) {
2636                 ret = VM_FAULT_OOM;
2637                 goto out_page;
2638         }
2639
2640         /*
2641          * Back out if somebody else already faulted in this pte.
2642          */
2643         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2644                         &vmf->ptl);
2645         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2646                 goto out_nomap;
2647
2648         if (unlikely(!PageUptodate(page))) {
2649                 ret = VM_FAULT_SIGBUS;
2650                 goto out_nomap;
2651         }
2652
2653         /*
2654          * The page isn't present yet, go ahead with the fault.
2655          *
2656          * Be careful about the sequence of operations here.
2657          * To get its accounting right, reuse_swap_page() must be called
2658          * while the page is counted on swap but not yet in mapcount i.e.
2659          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2660          * must be called after the swap_free(), or it will never succeed.
2661          */
2662
2663         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2664         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2665         pte = mk_pte(page, vma->vm_page_prot);
2666         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2667                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2668                 vmf->flags &= ~FAULT_FLAG_WRITE;
2669                 ret |= VM_FAULT_WRITE;
2670                 exclusive = RMAP_EXCLUSIVE;
2671         }
2672         flush_icache_page(vma, page);
2673         if (pte_swp_soft_dirty(vmf->orig_pte))
2674                 pte = pte_mksoft_dirty(pte);
2675         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2676         vmf->orig_pte = pte;
2677         if (page == swapcache) {
2678                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2679                 mem_cgroup_commit_charge(page, memcg, true, false);
2680                 activate_page(page);
2681         } else { /* ksm created a completely new copy */
2682                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2683                 mem_cgroup_commit_charge(page, memcg, false, false);
2684                 lru_cache_add_active_or_unevictable(page, vma);
2685         }
2686
2687         swap_free(entry);
2688         if (mem_cgroup_swap_full(page) ||
2689             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2690                 try_to_free_swap(page);
2691         unlock_page(page);
2692         if (page != swapcache) {
2693                 /*
2694                  * Hold the lock to avoid the swap entry to be reused
2695                  * until we take the PT lock for the pte_same() check
2696                  * (to avoid false positives from pte_same). For
2697                  * further safety release the lock after the swap_free
2698                  * so that the swap count won't change under a
2699                  * parallel locked swapcache.
2700                  */
2701                 unlock_page(swapcache);
2702                 put_page(swapcache);
2703         }
2704
2705         if (vmf->flags & FAULT_FLAG_WRITE) {
2706                 ret |= do_wp_page(vmf);
2707                 if (ret & VM_FAULT_ERROR)
2708                         ret &= VM_FAULT_ERROR;
2709                 goto out;
2710         }
2711
2712         /* No need to invalidate - it was non-present before */
2713         update_mmu_cache(vma, vmf->address, vmf->pte);
2714 unlock:
2715         pte_unmap_unlock(vmf->pte, vmf->ptl);
2716 out:
2717         return ret;
2718 out_nomap:
2719         mem_cgroup_cancel_charge(page, memcg, false);
2720         pte_unmap_unlock(vmf->pte, vmf->ptl);
2721 out_page:
2722         unlock_page(page);
2723 out_release:
2724         put_page(page);
2725         if (page != swapcache) {
2726                 unlock_page(swapcache);
2727                 put_page(swapcache);
2728         }
2729         return ret;
2730 }
2731
2732 /*
2733  * This is like a special single-page "expand_{down|up}wards()",
2734  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2735  * doesn't hit another vma.
2736  */
2737 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2738 {
2739         address &= PAGE_MASK;
2740         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2741                 struct vm_area_struct *prev = vma->vm_prev;
2742
2743                 /*
2744                  * Is there a mapping abutting this one below?
2745                  *
2746                  * That's only ok if it's the same stack mapping
2747                  * that has gotten split..
2748                  */
2749                 if (prev && prev->vm_end == address)
2750                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2751
2752                 return expand_downwards(vma, address - PAGE_SIZE);
2753         }
2754         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2755                 struct vm_area_struct *next = vma->vm_next;
2756
2757                 /* As VM_GROWSDOWN but s/below/above/ */
2758                 if (next && next->vm_start == address + PAGE_SIZE)
2759                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2760
2761                 return expand_upwards(vma, address + PAGE_SIZE);
2762         }
2763         return 0;
2764 }
2765
2766 /*
2767  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2768  * but allow concurrent faults), and pte mapped but not yet locked.
2769  * We return with mmap_sem still held, but pte unmapped and unlocked.
2770  */
2771 static int do_anonymous_page(struct vm_fault *vmf)
2772 {
2773         struct vm_area_struct *vma = vmf->vma;
2774         struct mem_cgroup *memcg;
2775         struct page *page;
2776         pte_t entry;
2777
2778         /* File mapping without ->vm_ops ? */
2779         if (vma->vm_flags & VM_SHARED)
2780                 return VM_FAULT_SIGBUS;
2781
2782         /* Check if we need to add a guard page to the stack */
2783         if (check_stack_guard_page(vma, vmf->address) < 0)
2784                 return VM_FAULT_SIGSEGV;
2785
2786         /*
2787          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2788          * pte_offset_map() on pmds where a huge pmd might be created
2789          * from a different thread.
2790          *
2791          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2792          * parallel threads are excluded by other means.
2793          *
2794          * Here we only have down_read(mmap_sem).
2795          */
2796         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2797                 return VM_FAULT_OOM;
2798
2799         /* See the comment in pte_alloc_one_map() */
2800         if (unlikely(pmd_trans_unstable(vmf->pmd)))
2801                 return 0;
2802
2803         /* Use the zero-page for reads */
2804         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2805                         !mm_forbids_zeropage(vma->vm_mm)) {
2806                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2807                                                 vma->vm_page_prot));
2808                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2809                                 vmf->address, &vmf->ptl);
2810                 if (!pte_none(*vmf->pte))
2811                         goto unlock;
2812                 /* Deliver the page fault to userland, check inside PT lock */
2813                 if (userfaultfd_missing(vma)) {
2814                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2815                         return handle_userfault(vmf, VM_UFFD_MISSING);
2816                 }
2817                 goto setpte;
2818         }
2819
2820         /* Allocate our own private page. */
2821         if (unlikely(anon_vma_prepare(vma)))
2822                 goto oom;
2823         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2824         if (!page)
2825                 goto oom;
2826
2827         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2828                 goto oom_free_page;
2829
2830         /*
2831          * The memory barrier inside __SetPageUptodate makes sure that
2832          * preceeding stores to the page contents become visible before
2833          * the set_pte_at() write.
2834          */
2835         __SetPageUptodate(page);
2836
2837         entry = mk_pte(page, vma->vm_page_prot);
2838         if (vma->vm_flags & VM_WRITE)
2839                 entry = pte_mkwrite(pte_mkdirty(entry));
2840
2841         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2842                         &vmf->ptl);
2843         if (!pte_none(*vmf->pte))
2844                 goto release;
2845
2846         /* Deliver the page fault to userland, check inside PT lock */
2847         if (userfaultfd_missing(vma)) {
2848                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2849                 mem_cgroup_cancel_charge(page, memcg, false);
2850                 put_page(page);
2851                 return handle_userfault(vmf, VM_UFFD_MISSING);
2852         }
2853
2854         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2855         page_add_new_anon_rmap(page, vma, vmf->address, false);
2856         mem_cgroup_commit_charge(page, memcg, false, false);
2857         lru_cache_add_active_or_unevictable(page, vma);
2858 setpte:
2859         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2860
2861         /* No need to invalidate - it was non-present before */
2862         update_mmu_cache(vma, vmf->address, vmf->pte);
2863 unlock:
2864         pte_unmap_unlock(vmf->pte, vmf->ptl);
2865         return 0;
2866 release:
2867         mem_cgroup_cancel_charge(page, memcg, false);
2868         put_page(page);
2869         goto unlock;
2870 oom_free_page:
2871         put_page(page);
2872 oom:
2873         return VM_FAULT_OOM;
2874 }
2875
2876 /*
2877  * The mmap_sem must have been held on entry, and may have been
2878  * released depending on flags and vma->vm_ops->fault() return value.
2879  * See filemap_fault() and __lock_page_retry().
2880  */
2881 static int __do_fault(struct vm_fault *vmf)
2882 {
2883         struct vm_area_struct *vma = vmf->vma;
2884         int ret;
2885
2886         ret = vma->vm_ops->fault(vmf);
2887         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2888                             VM_FAULT_DONE_COW)))
2889                 return ret;
2890
2891         if (unlikely(PageHWPoison(vmf->page))) {
2892                 if (ret & VM_FAULT_LOCKED)
2893                         unlock_page(vmf->page);
2894                 put_page(vmf->page);
2895                 vmf->page = NULL;
2896                 return VM_FAULT_HWPOISON;
2897         }
2898
2899         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2900                 lock_page(vmf->page);
2901         else
2902                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
2903
2904         return ret;
2905 }
2906
2907 static int pte_alloc_one_map(struct vm_fault *vmf)
2908 {
2909         struct vm_area_struct *vma = vmf->vma;
2910
2911         if (!pmd_none(*vmf->pmd))
2912                 goto map_pte;
2913         if (vmf->prealloc_pte) {
2914                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2915                 if (unlikely(!pmd_none(*vmf->pmd))) {
2916                         spin_unlock(vmf->ptl);
2917                         goto map_pte;
2918                 }
2919
2920                 atomic_long_inc(&vma->vm_mm->nr_ptes);
2921                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2922                 spin_unlock(vmf->ptl);
2923                 vmf->prealloc_pte = NULL;
2924         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
2925                 return VM_FAULT_OOM;
2926         }
2927 map_pte:
2928         /*
2929          * If a huge pmd materialized under us just retry later.  Use
2930          * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2931          * didn't become pmd_trans_huge under us and then back to pmd_none, as
2932          * a result of MADV_DONTNEED running immediately after a huge pmd fault
2933          * in a different thread of this mm, in turn leading to a misleading
2934          * pmd_trans_huge() retval.  All we have to ensure is that it is a
2935          * regular pmd that we can walk with pte_offset_map() and we can do that
2936          * through an atomic read in C, which is what pmd_trans_unstable()
2937          * provides.
2938          */
2939         if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
2940                 return VM_FAULT_NOPAGE;
2941
2942         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2943                         &vmf->ptl);
2944         return 0;
2945 }
2946
2947 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2948
2949 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2950 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2951                 unsigned long haddr)
2952 {
2953         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2954                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2955                 return false;
2956         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2957                 return false;
2958         return true;
2959 }
2960
2961 static void deposit_prealloc_pte(struct vm_fault *vmf)
2962 {
2963         struct vm_area_struct *vma = vmf->vma;
2964
2965         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2966         /*
2967          * We are going to consume the prealloc table,
2968          * count that as nr_ptes.
2969          */
2970         atomic_long_inc(&vma->vm_mm->nr_ptes);
2971         vmf->prealloc_pte = NULL;
2972 }
2973
2974 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
2975 {
2976         struct vm_area_struct *vma = vmf->vma;
2977         bool write = vmf->flags & FAULT_FLAG_WRITE;
2978         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2979         pmd_t entry;
2980         int i, ret;
2981
2982         if (!transhuge_vma_suitable(vma, haddr))
2983                 return VM_FAULT_FALLBACK;
2984
2985         ret = VM_FAULT_FALLBACK;
2986         page = compound_head(page);
2987
2988         /*
2989          * Archs like ppc64 need additonal space to store information
2990          * related to pte entry. Use the preallocated table for that.
2991          */
2992         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
2993                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
2994                 if (!vmf->prealloc_pte)
2995                         return VM_FAULT_OOM;
2996                 smp_wmb(); /* See comment in __pte_alloc() */
2997         }
2998
2999         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3000         if (unlikely(!pmd_none(*vmf->pmd)))
3001                 goto out;
3002
3003         for (i = 0; i < HPAGE_PMD_NR; i++)
3004                 flush_icache_page(vma, page + i);
3005
3006         entry = mk_huge_pmd(page, vma->vm_page_prot);
3007         if (write)
3008                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3009
3010         add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3011         page_add_file_rmap(page, true);
3012         /*
3013          * deposit and withdraw with pmd lock held
3014          */
3015         if (arch_needs_pgtable_deposit())
3016                 deposit_prealloc_pte(vmf);
3017
3018         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3019
3020         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3021
3022         /* fault is handled */
3023         ret = 0;
3024         count_vm_event(THP_FILE_MAPPED);
3025 out:
3026         spin_unlock(vmf->ptl);
3027         return ret;
3028 }
3029 #else
3030 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3031 {
3032         BUILD_BUG();
3033         return 0;
3034 }
3035 #endif
3036
3037 /**
3038  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3039  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3040  *
3041  * @vmf: fault environment
3042  * @memcg: memcg to charge page (only for private mappings)
3043  * @page: page to map
3044  *
3045  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3046  * return.
3047  *
3048  * Target users are page handler itself and implementations of
3049  * vm_ops->map_pages.
3050  */
3051 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3052                 struct page *page)
3053 {
3054         struct vm_area_struct *vma = vmf->vma;
3055         bool write = vmf->flags & FAULT_FLAG_WRITE;
3056         pte_t entry;
3057         int ret;
3058
3059         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3060                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3061                 /* THP on COW? */
3062                 VM_BUG_ON_PAGE(memcg, page);
3063
3064                 ret = do_set_pmd(vmf, page);
3065                 if (ret != VM_FAULT_FALLBACK)
3066                         return ret;
3067         }
3068
3069         if (!vmf->pte) {
3070                 ret = pte_alloc_one_map(vmf);
3071                 if (ret)
3072                         return ret;
3073         }
3074
3075         /* Re-check under ptl */
3076         if (unlikely(!pte_none(*vmf->pte)))
3077                 return VM_FAULT_NOPAGE;
3078
3079         flush_icache_page(vma, page);
3080         entry = mk_pte(page, vma->vm_page_prot);
3081         if (write)
3082                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3083         /* copy-on-write page */
3084         if (write && !(vma->vm_flags & VM_SHARED)) {
3085                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3086                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3087                 mem_cgroup_commit_charge(page, memcg, false, false);
3088                 lru_cache_add_active_or_unevictable(page, vma);
3089         } else {
3090                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3091                 page_add_file_rmap(page, false);
3092         }
3093         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3094
3095         /* no need to invalidate: a not-present page won't be cached */
3096         update_mmu_cache(vma, vmf->address, vmf->pte);
3097
3098         return 0;
3099 }
3100
3101
3102 /**
3103  * finish_fault - finish page fault once we have prepared the page to fault
3104  *
3105  * @vmf: structure describing the fault
3106  *
3107  * This function handles all that is needed to finish a page fault once the
3108  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3109  * given page, adds reverse page mapping, handles memcg charges and LRU
3110  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3111  * error.
3112  *
3113  * The function expects the page to be locked and on success it consumes a
3114  * reference of a page being mapped (for the PTE which maps it).
3115  */
3116 int finish_fault(struct vm_fault *vmf)
3117 {
3118         struct page *page;
3119         int ret;
3120
3121         /* Did we COW the page? */
3122         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3123             !(vmf->vma->vm_flags & VM_SHARED))
3124                 page = vmf->cow_page;
3125         else
3126                 page = vmf->page;
3127         ret = alloc_set_pte(vmf, vmf->memcg, page);
3128         if (vmf->pte)
3129                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3130         return ret;
3131 }
3132
3133 static unsigned long fault_around_bytes __read_mostly =
3134         rounddown_pow_of_two(65536);
3135
3136 #ifdef CONFIG_DEBUG_FS
3137 static int fault_around_bytes_get(void *data, u64 *val)
3138 {
3139         *val = fault_around_bytes;
3140         return 0;
3141 }
3142
3143 /*
3144  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3145  * rounded down to nearest page order. It's what do_fault_around() expects to
3146  * see.
3147  */
3148 static int fault_around_bytes_set(void *data, u64 val)
3149 {
3150         if (val / PAGE_SIZE > PTRS_PER_PTE)
3151                 return -EINVAL;
3152         if (val > PAGE_SIZE)
3153                 fault_around_bytes = rounddown_pow_of_two(val);
3154         else
3155                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3156         return 0;
3157 }
3158 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3159                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3160
3161 static int __init fault_around_debugfs(void)
3162 {
3163         void *ret;
3164
3165         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3166                         &fault_around_bytes_fops);
3167         if (!ret)
3168                 pr_warn("Failed to create fault_around_bytes in debugfs");
3169         return 0;
3170 }
3171 late_initcall(fault_around_debugfs);
3172 #endif
3173
3174 /*
3175  * do_fault_around() tries to map few pages around the fault address. The hope
3176  * is that the pages will be needed soon and this will lower the number of
3177  * faults to handle.
3178  *
3179  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3180  * not ready to be mapped: not up-to-date, locked, etc.
3181  *
3182  * This function is called with the page table lock taken. In the split ptlock
3183  * case the page table lock only protects only those entries which belong to
3184  * the page table corresponding to the fault address.
3185  *
3186  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3187  * only once.
3188  *
3189  * fault_around_pages() defines how many pages we'll try to map.
3190  * do_fault_around() expects it to return a power of two less than or equal to
3191  * PTRS_PER_PTE.
3192  *
3193  * The virtual address of the area that we map is naturally aligned to the
3194  * fault_around_pages() value (and therefore to page order).  This way it's
3195  * easier to guarantee that we don't cross page table boundaries.
3196  */
3197 static int do_fault_around(struct vm_fault *vmf)
3198 {
3199         unsigned long address = vmf->address, nr_pages, mask;
3200         pgoff_t start_pgoff = vmf->pgoff;
3201         pgoff_t end_pgoff;
3202         int off, ret = 0;
3203
3204         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3205         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3206
3207         vmf->address = max(address & mask, vmf->vma->vm_start);
3208         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3209         start_pgoff -= off;
3210
3211         /*
3212          *  end_pgoff is either end of page table or end of vma
3213          *  or fault_around_pages() from start_pgoff, depending what is nearest.
3214          */
3215         end_pgoff = start_pgoff -
3216                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3217                 PTRS_PER_PTE - 1;
3218         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3219                         start_pgoff + nr_pages - 1);
3220
3221         if (pmd_none(*vmf->pmd)) {
3222                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3223                                                   vmf->address);
3224                 if (!vmf->prealloc_pte)
3225                         goto out;
3226                 smp_wmb(); /* See comment in __pte_alloc() */
3227         }
3228
3229         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3230
3231         /* Huge page is mapped? Page fault is solved */
3232         if (pmd_trans_huge(*vmf->pmd)) {
3233                 ret = VM_FAULT_NOPAGE;
3234                 goto out;
3235         }
3236
3237         /* ->map_pages() haven't done anything useful. Cold page cache? */
3238         if (!vmf->pte)
3239                 goto out;
3240
3241         /* check if the page fault is solved */
3242         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3243         if (!pte_none(*vmf->pte))
3244                 ret = VM_FAULT_NOPAGE;
3245         pte_unmap_unlock(vmf->pte, vmf->ptl);
3246 out:
3247         vmf->address = address;
3248         vmf->pte = NULL;
3249         return ret;
3250 }
3251
3252 static int do_read_fault(struct vm_fault *vmf)
3253 {
3254         struct vm_area_struct *vma = vmf->vma;
3255         int ret = 0;
3256
3257         /*
3258          * Let's call ->map_pages() first and use ->fault() as fallback
3259          * if page by the offset is not ready to be mapped (cold cache or
3260          * something).
3261          */
3262         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3263                 ret = do_fault_around(vmf);
3264                 if (ret)
3265                         return ret;
3266         }
3267
3268         ret = __do_fault(vmf);
3269         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3270                 return ret;
3271
3272         ret |= finish_fault(vmf);
3273         unlock_page(vmf->page);
3274         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3275                 put_page(vmf->page);
3276         return ret;
3277 }
3278
3279 static int do_cow_fault(struct vm_fault *vmf)
3280 {
3281         struct vm_area_struct *vma = vmf->vma;
3282         int ret;
3283
3284         if (unlikely(anon_vma_prepare(vma)))
3285                 return VM_FAULT_OOM;
3286
3287         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3288         if (!vmf->cow_page)
3289                 return VM_FAULT_OOM;
3290
3291         if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3292                                 &vmf->memcg, false)) {
3293                 put_page(vmf->cow_page);
3294                 return VM_FAULT_OOM;
3295         }
3296
3297         ret = __do_fault(vmf);
3298         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3299                 goto uncharge_out;
3300         if (ret & VM_FAULT_DONE_COW)
3301                 return ret;
3302
3303         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3304         __SetPageUptodate(vmf->cow_page);
3305
3306         ret |= finish_fault(vmf);
3307         unlock_page(vmf->page);
3308         put_page(vmf->page);
3309         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3310                 goto uncharge_out;
3311         return ret;
3312 uncharge_out:
3313         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3314         put_page(vmf->cow_page);
3315         return ret;
3316 }
3317
3318 static int do_shared_fault(struct vm_fault *vmf)
3319 {
3320         struct vm_area_struct *vma = vmf->vma;
3321         int ret, tmp;
3322
3323         ret = __do_fault(vmf);
3324         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3325                 return ret;
3326
3327         /*
3328          * Check if the backing address space wants to know that the page is
3329          * about to become writable
3330          */
3331         if (vma->vm_ops->page_mkwrite) {
3332                 unlock_page(vmf->page);
3333                 tmp = do_page_mkwrite(vmf);
3334                 if (unlikely(!tmp ||
3335                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3336                         put_page(vmf->page);
3337                         return tmp;
3338                 }
3339         }
3340
3341         ret |= finish_fault(vmf);
3342         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3343                                         VM_FAULT_RETRY))) {
3344                 unlock_page(vmf->page);
3345                 put_page(vmf->page);
3346                 return ret;
3347         }
3348
3349         fault_dirty_shared_page(vma, vmf->page);
3350         return ret;
3351 }
3352
3353 /*
3354  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3355  * but allow concurrent faults).
3356  * The mmap_sem may have been released depending on flags and our
3357  * return value.  See filemap_fault() and __lock_page_or_retry().
3358  */
3359 static int do_fault(struct vm_fault *vmf)
3360 {
3361         struct vm_area_struct *vma = vmf->vma;
3362         int ret;
3363
3364         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3365         if (!vma->vm_ops->fault)
3366                 ret = VM_FAULT_SIGBUS;
3367         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3368                 ret = do_read_fault(vmf);
3369         else if (!(vma->vm_flags & VM_SHARED))
3370                 ret = do_cow_fault(vmf);
3371         else
3372                 ret = do_shared_fault(vmf);
3373
3374         /* preallocated pagetable is unused: free it */
3375         if (vmf->prealloc_pte) {
3376                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3377                 vmf->prealloc_pte = NULL;
3378         }
3379         return ret;
3380 }
3381
3382 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3383                                 unsigned long addr, int page_nid,
3384                                 int *flags)
3385 {
3386         get_page(page);
3387
3388         count_vm_numa_event(NUMA_HINT_FAULTS);
3389         if (page_nid == numa_node_id()) {
3390                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3391                 *flags |= TNF_FAULT_LOCAL;
3392         }
3393
3394         return mpol_misplaced(page, vma, addr);
3395 }
3396
3397 static int do_numa_page(struct vm_fault *vmf)
3398 {
3399         struct vm_area_struct *vma = vmf->vma;
3400         struct page *page = NULL;
3401         int page_nid = -1;
3402         int last_cpupid;
3403         int target_nid;
3404         bool migrated = false;
3405         pte_t pte;
3406         bool was_writable = pte_savedwrite(vmf->orig_pte);
3407         int flags = 0;
3408
3409         /*
3410          * The "pte" at this point cannot be used safely without
3411          * validation through pte_unmap_same(). It's of NUMA type but
3412          * the pfn may be screwed if the read is non atomic.
3413          */
3414         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3415         spin_lock(vmf->ptl);
3416         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3417                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3418                 goto out;
3419         }
3420
3421         /*
3422          * Make it present again, Depending on how arch implementes non
3423          * accessible ptes, some can allow access by kernel mode.
3424          */
3425         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3426         pte = pte_modify(pte, vma->vm_page_prot);
3427         pte = pte_mkyoung(pte);
3428         if (was_writable)
3429                 pte = pte_mkwrite(pte);
3430         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3431         update_mmu_cache(vma, vmf->address, vmf->pte);
3432
3433         page = vm_normal_page(vma, vmf->address, pte);
3434         if (!page) {
3435                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3436                 return 0;
3437         }
3438
3439         /* TODO: handle PTE-mapped THP */
3440         if (PageCompound(page)) {
3441                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3442                 return 0;
3443         }
3444
3445         /*
3446          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3447          * much anyway since they can be in shared cache state. This misses
3448          * the case where a mapping is writable but the process never writes
3449          * to it but pte_write gets cleared during protection updates and
3450          * pte_dirty has unpredictable behaviour between PTE scan updates,
3451          * background writeback, dirty balancing and application behaviour.
3452          */
3453         if (!pte_write(pte))
3454                 flags |= TNF_NO_GROUP;
3455
3456         /*
3457          * Flag if the page is shared between multiple address spaces. This
3458          * is later used when determining whether to group tasks together
3459          */
3460         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3461                 flags |= TNF_SHARED;
3462
3463         last_cpupid = page_cpupid_last(page);
3464         page_nid = page_to_nid(page);
3465         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3466                         &flags);
3467         pte_unmap_unlock(vmf->pte, vmf->ptl);
3468         if (target_nid == -1) {
3469                 put_page(page);
3470                 goto out;
3471         }
3472
3473         /* Migrate to the requested node */
3474         migrated = migrate_misplaced_page(page, vma, target_nid);
3475         if (migrated) {
3476                 page_nid = target_nid;
3477                 flags |= TNF_MIGRATED;
3478         } else
3479                 flags |= TNF_MIGRATE_FAIL;
3480
3481 out:
3482         if (page_nid != -1)
3483                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3484         return 0;
3485 }
3486
3487 static int create_huge_pmd(struct vm_fault *vmf)
3488 {
3489         if (vma_is_anonymous(vmf->vma))
3490                 return do_huge_pmd_anonymous_page(vmf);
3491         if (vmf->vma->vm_ops->huge_fault)
3492                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3493         return VM_FAULT_FALLBACK;
3494 }
3495
3496 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3497 {
3498         if (vma_is_anonymous(vmf->vma))
3499                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3500         if (vmf->vma->vm_ops->huge_fault)
3501                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3502
3503         /* COW handled on pte level: split pmd */
3504         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3505         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3506
3507         return VM_FAULT_FALLBACK;
3508 }
3509
3510 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3511 {
3512         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3513 }
3514
3515 static int create_huge_pud(struct vm_fault *vmf)
3516 {
3517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3518         /* No support for anonymous transparent PUD pages yet */
3519         if (vma_is_anonymous(vmf->vma))
3520                 return VM_FAULT_FALLBACK;
3521         if (vmf->vma->vm_ops->huge_fault)
3522                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3523 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3524         return VM_FAULT_FALLBACK;
3525 }
3526
3527 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3528 {
3529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3530         /* No support for anonymous transparent PUD pages yet */
3531         if (vma_is_anonymous(vmf->vma))
3532                 return VM_FAULT_FALLBACK;
3533         if (vmf->vma->vm_ops->huge_fault)
3534                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3535 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3536         return VM_FAULT_FALLBACK;
3537 }
3538
3539 /*
3540  * These routines also need to handle stuff like marking pages dirty
3541  * and/or accessed for architectures that don't do it in hardware (most
3542  * RISC architectures).  The early dirtying is also good on the i386.
3543  *
3544  * There is also a hook called "update_mmu_cache()" that architectures
3545  * with external mmu caches can use to update those (ie the Sparc or
3546  * PowerPC hashed page tables that act as extended TLBs).
3547  *
3548  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3549  * concurrent faults).
3550  *
3551  * The mmap_sem may have been released depending on flags and our return value.
3552  * See filemap_fault() and __lock_page_or_retry().
3553  */
3554 static int handle_pte_fault(struct vm_fault *vmf)
3555 {
3556         pte_t entry;
3557
3558         if (unlikely(pmd_none(*vmf->pmd))) {
3559                 /*
3560                  * Leave __pte_alloc() until later: because vm_ops->fault may
3561                  * want to allocate huge page, and if we expose page table
3562                  * for an instant, it will be difficult to retract from
3563                  * concurrent faults and from rmap lookups.
3564                  */
3565                 vmf->pte = NULL;
3566         } else {
3567                 /* See comment in pte_alloc_one_map() */
3568                 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
3569                         return 0;
3570                 /*
3571                  * A regular pmd is established and it can't morph into a huge
3572                  * pmd from under us anymore at this point because we hold the
3573                  * mmap_sem read mode and khugepaged takes it in write mode.
3574                  * So now it's safe to run pte_offset_map().
3575                  */
3576                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3577                 vmf->orig_pte = *vmf->pte;
3578
3579                 /*
3580                  * some architectures can have larger ptes than wordsize,
3581                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3582                  * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3583                  * atomic accesses.  The code below just needs a consistent
3584                  * view for the ifs and we later double check anyway with the
3585                  * ptl lock held. So here a barrier will do.
3586                  */
3587                 barrier();
3588                 if (pte_none(vmf->orig_pte)) {
3589                         pte_unmap(vmf->pte);
3590                         vmf->pte = NULL;
3591                 }
3592         }
3593
3594         if (!vmf->pte) {
3595                 if (vma_is_anonymous(vmf->vma))
3596                         return do_anonymous_page(vmf);
3597                 else
3598                         return do_fault(vmf);
3599         }
3600
3601         if (!pte_present(vmf->orig_pte))
3602                 return do_swap_page(vmf);
3603
3604         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3605                 return do_numa_page(vmf);
3606
3607         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3608         spin_lock(vmf->ptl);
3609         entry = vmf->orig_pte;
3610         if (unlikely(!pte_same(*vmf->pte, entry)))
3611                 goto unlock;
3612         if (vmf->flags & FAULT_FLAG_WRITE) {
3613                 if (!pte_write(entry))
3614                         return do_wp_page(vmf);
3615                 entry = pte_mkdirty(entry);
3616         }
3617         entry = pte_mkyoung(entry);
3618         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3619                                 vmf->flags & FAULT_FLAG_WRITE)) {
3620                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3621         } else {
3622                 /*
3623                  * This is needed only for protection faults but the arch code
3624                  * is not yet telling us if this is a protection fault or not.
3625                  * This still avoids useless tlb flushes for .text page faults
3626                  * with threads.
3627                  */
3628                 if (vmf->flags & FAULT_FLAG_WRITE)
3629                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3630         }
3631 unlock:
3632         pte_unmap_unlock(vmf->pte, vmf->ptl);
3633         return 0;
3634 }
3635
3636 /*
3637  * By the time we get here, we already hold the mm semaphore
3638  *
3639  * The mmap_sem may have been released depending on flags and our
3640  * return value.  See filemap_fault() and __lock_page_or_retry().
3641  */
3642 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3643                 unsigned int flags)
3644 {
3645         struct vm_fault vmf = {
3646                 .vma = vma,
3647                 .address = address & PAGE_MASK,
3648                 .flags = flags,
3649                 .pgoff = linear_page_index(vma, address),
3650                 .gfp_mask = __get_fault_gfp_mask(vma),
3651         };
3652         struct mm_struct *mm = vma->vm_mm;
3653         pgd_t *pgd;
3654         int ret;
3655
3656         pgd = pgd_offset(mm, address);
3657
3658         vmf.pud = pud_alloc(mm, pgd, address);
3659         if (!vmf.pud)
3660                 return VM_FAULT_OOM;
3661         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3662                 ret = create_huge_pud(&vmf);
3663                 if (!(ret & VM_FAULT_FALLBACK))
3664                         return ret;
3665         } else {
3666                 pud_t orig_pud = *vmf.pud;
3667
3668                 barrier();
3669                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3670                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3671
3672                         /* NUMA case for anonymous PUDs would go here */
3673
3674                         if (dirty && !pud_write(orig_pud)) {
3675                                 ret = wp_huge_pud(&vmf, orig_pud);
3676                                 if (!(ret & VM_FAULT_FALLBACK))
3677                                         return ret;
3678                         } else {
3679                                 huge_pud_set_accessed(&vmf, orig_pud);
3680                                 return 0;
3681                         }
3682                 }
3683         }
3684
3685         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3686         if (!vmf.pmd)
3687                 return VM_FAULT_OOM;
3688         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3689                 ret = create_huge_pmd(&vmf);
3690                 if (!(ret & VM_FAULT_FALLBACK))
3691                         return ret;
3692         } else {
3693                 pmd_t orig_pmd = *vmf.pmd;
3694
3695                 barrier();
3696                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3697                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3698                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3699
3700                         if ((vmf.flags & FAULT_FLAG_WRITE) &&
3701                                         !pmd_write(orig_pmd)) {
3702                                 ret = wp_huge_pmd(&vmf, orig_pmd);
3703                                 if (!(ret & VM_FAULT_FALLBACK))
3704                                         return ret;
3705                         } else {
3706                                 huge_pmd_set_accessed(&vmf, orig_pmd);
3707                                 return 0;
3708                         }
3709                 }
3710         }
3711
3712         return handle_pte_fault(&vmf);
3713 }
3714
3715 /*
3716  * By the time we get here, we already hold the mm semaphore
3717  *
3718  * The mmap_sem may have been released depending on flags and our
3719  * return value.  See filemap_fault() and __lock_page_or_retry().
3720  */
3721 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3722                 unsigned int flags)
3723 {
3724         int ret;
3725
3726         __set_current_state(TASK_RUNNING);
3727
3728         count_vm_event(PGFAULT);
3729         mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3730
3731         /* do counter updates before entering really critical section. */
3732         check_sync_rss_stat(current);
3733
3734         /*
3735          * Enable the memcg OOM handling for faults triggered in user
3736          * space.  Kernel faults are handled more gracefully.
3737          */
3738         if (flags & FAULT_FLAG_USER)
3739                 mem_cgroup_oom_enable();
3740
3741         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3742                                             flags & FAULT_FLAG_INSTRUCTION,
3743                                             flags & FAULT_FLAG_REMOTE))
3744                 return VM_FAULT_SIGSEGV;
3745
3746         if (unlikely(is_vm_hugetlb_page(vma)))
3747                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3748         else
3749                 ret = __handle_mm_fault(vma, address, flags);
3750
3751         if (flags & FAULT_FLAG_USER) {
3752                 mem_cgroup_oom_disable();
3753                 /*
3754                  * The task may have entered a memcg OOM situation but
3755                  * if the allocation error was handled gracefully (no
3756                  * VM_FAULT_OOM), there is no need to kill anything.
3757                  * Just clean up the OOM state peacefully.
3758                  */
3759                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3760                         mem_cgroup_oom_synchronize(false);
3761         }
3762
3763         /*
3764          * This mm has been already reaped by the oom reaper and so the
3765          * refault cannot be trusted in general. Anonymous refaults would
3766          * lose data and give a zero page instead e.g. This is especially
3767          * problem for use_mm() because regular tasks will just die and
3768          * the corrupted data will not be visible anywhere while kthread
3769          * will outlive the oom victim and potentially propagate the date
3770          * further.
3771          */
3772         if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3773                                 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3774                 ret = VM_FAULT_SIGBUS;
3775
3776         return ret;
3777 }
3778 EXPORT_SYMBOL_GPL(handle_mm_fault);
3779
3780 #ifndef __PAGETABLE_PUD_FOLDED
3781 /*
3782  * Allocate page upper directory.
3783  * We've already handled the fast-path in-line.
3784  */
3785 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3786 {
3787         pud_t *new = pud_alloc_one(mm, address);
3788         if (!new)
3789                 return -ENOMEM;
3790
3791         smp_wmb(); /* See comment in __pte_alloc */
3792
3793         spin_lock(&mm->page_table_lock);
3794         if (pgd_present(*pgd))          /* Another has populated it */
3795                 pud_free(mm, new);
3796         else
3797                 pgd_populate(mm, pgd, new);
3798         spin_unlock(&mm->page_table_lock);
3799         return 0;
3800 }
3801 #endif /* __PAGETABLE_PUD_FOLDED */
3802
3803 #ifndef __PAGETABLE_PMD_FOLDED
3804 /*
3805  * Allocate page middle directory.
3806  * We've already handled the fast-path in-line.
3807  */
3808 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3809 {
3810         spinlock_t *ptl;
3811         pmd_t *new = pmd_alloc_one(mm, address);
3812         if (!new)
3813                 return -ENOMEM;
3814
3815         smp_wmb(); /* See comment in __pte_alloc */
3816
3817         ptl = pud_lock(mm, pud);
3818 #ifndef __ARCH_HAS_4LEVEL_HACK
3819         if (!pud_present(*pud)) {
3820                 mm_inc_nr_pmds(mm);
3821                 pud_populate(mm, pud, new);
3822         } else  /* Another has populated it */
3823                 pmd_free(mm, new);
3824 #else
3825         if (!pgd_present(*pud)) {
3826                 mm_inc_nr_pmds(mm);
3827                 pgd_populate(mm, pud, new);
3828         } else /* Another has populated it */
3829                 pmd_free(mm, new);
3830 #endif /* __ARCH_HAS_4LEVEL_HACK */
3831         spin_unlock(ptl);
3832         return 0;
3833 }
3834 #endif /* __PAGETABLE_PMD_FOLDED */
3835
3836 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3837                 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3838 {
3839         pgd_t *pgd;
3840         pud_t *pud;
3841         pmd_t *pmd;
3842         pte_t *ptep;
3843
3844         pgd = pgd_offset(mm, address);
3845         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3846                 goto out;
3847
3848         pud = pud_offset(pgd, address);
3849         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3850                 goto out;
3851
3852         pmd = pmd_offset(pud, address);
3853         VM_BUG_ON(pmd_trans_huge(*pmd));
3854
3855         if (pmd_huge(*pmd)) {
3856                 if (!pmdpp)
3857                         goto out;
3858
3859                 *ptlp = pmd_lock(mm, pmd);
3860                 if (pmd_huge(*pmd)) {
3861                         *pmdpp = pmd;
3862                         return 0;
3863                 }
3864                 spin_unlock(*ptlp);
3865         }
3866
3867         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3868                 goto out;
3869
3870         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3871         if (!ptep)
3872                 goto out;
3873         if (!pte_present(*ptep))
3874                 goto unlock;
3875         *ptepp = ptep;
3876         return 0;
3877 unlock:
3878         pte_unmap_unlock(ptep, *ptlp);
3879 out:
3880         return -EINVAL;
3881 }
3882
3883 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3884                              pte_t **ptepp, spinlock_t **ptlp)
3885 {
3886         int res;
3887
3888         /* (void) is needed to make gcc happy */
3889         (void) __cond_lock(*ptlp,
3890                            !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
3891                                            ptlp)));
3892         return res;
3893 }
3894
3895 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3896                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3897 {
3898         int res;
3899
3900         /* (void) is needed to make gcc happy */
3901         (void) __cond_lock(*ptlp,
3902                            !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
3903                                            ptlp)));
3904         return res;
3905 }
3906 EXPORT_SYMBOL(follow_pte_pmd);
3907
3908 /**
3909  * follow_pfn - look up PFN at a user virtual address
3910  * @vma: memory mapping
3911  * @address: user virtual address
3912  * @pfn: location to store found PFN
3913  *
3914  * Only IO mappings and raw PFN mappings are allowed.
3915  *
3916  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3917  */
3918 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3919         unsigned long *pfn)
3920 {
3921         int ret = -EINVAL;
3922         spinlock_t *ptl;
3923         pte_t *ptep;
3924
3925         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3926                 return ret;
3927
3928         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3929         if (ret)
3930                 return ret;
3931         *pfn = pte_pfn(*ptep);
3932         pte_unmap_unlock(ptep, ptl);
3933         return 0;
3934 }
3935 EXPORT_SYMBOL(follow_pfn);
3936
3937 #ifdef CONFIG_HAVE_IOREMAP_PROT
3938 int follow_phys(struct vm_area_struct *vma,
3939                 unsigned long address, unsigned int flags,
3940                 unsigned long *prot, resource_size_t *phys)
3941 {
3942         int ret = -EINVAL;
3943         pte_t *ptep, pte;
3944         spinlock_t *ptl;
3945
3946         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3947                 goto out;
3948
3949         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3950                 goto out;
3951         pte = *ptep;
3952
3953         if ((flags & FOLL_WRITE) && !pte_write(pte))
3954                 goto unlock;
3955
3956         *prot = pgprot_val(pte_pgprot(pte));
3957         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3958
3959         ret = 0;
3960 unlock:
3961         pte_unmap_unlock(ptep, ptl);
3962 out:
3963         return ret;
3964 }
3965
3966 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3967                         void *buf, int len, int write)
3968 {
3969         resource_size_t phys_addr;
3970         unsigned long prot = 0;
3971         void __iomem *maddr;
3972         int offset = addr & (PAGE_SIZE-1);
3973
3974         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3975                 return -EINVAL;
3976
3977         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3978         if (write)
3979                 memcpy_toio(maddr + offset, buf, len);
3980         else
3981                 memcpy_fromio(buf, maddr + offset, len);
3982         iounmap(maddr);
3983
3984         return len;
3985 }
3986 EXPORT_SYMBOL_GPL(generic_access_phys);
3987 #endif
3988
3989 /*
3990  * Access another process' address space as given in mm.  If non-NULL, use the
3991  * given task for page fault accounting.
3992  */
3993 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3994                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
3995 {
3996         struct vm_area_struct *vma;
3997         void *old_buf = buf;
3998         int write = gup_flags & FOLL_WRITE;
3999
4000         down_read(&mm->mmap_sem);
4001         /* ignore errors, just check how much was successfully transferred */
4002         while (len) {
4003                 int bytes, ret, offset;
4004                 void *maddr;
4005                 struct page *page = NULL;
4006
4007                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4008                                 gup_flags, &page, &vma, NULL);
4009                 if (ret <= 0) {
4010 #ifndef CONFIG_HAVE_IOREMAP_PROT
4011                         break;
4012 #else
4013                         /*
4014                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4015                          * we can access using slightly different code.
4016                          */
4017                         vma = find_vma(mm, addr);
4018                         if (!vma || vma->vm_start > addr)
4019                                 break;
4020                         if (vma->vm_ops && vma->vm_ops->access)
4021                                 ret = vma->vm_ops->access(vma, addr, buf,
4022                                                           len, write);
4023                         if (ret <= 0)
4024                                 break;
4025                         bytes = ret;
4026 #endif
4027                 } else {
4028                         bytes = len;
4029                         offset = addr & (PAGE_SIZE-1);
4030                         if (bytes > PAGE_SIZE-offset)
4031                                 bytes = PAGE_SIZE-offset;
4032
4033                         maddr = kmap(page);
4034                         if (write) {
4035                                 copy_to_user_page(vma, page, addr,
4036                                                   maddr + offset, buf, bytes);
4037                                 set_page_dirty_lock(page);
4038                         } else {
4039                                 copy_from_user_page(vma, page, addr,
4040                                                     buf, maddr + offset, bytes);
4041                         }
4042                         kunmap(page);
4043                         put_page(page);
4044                 }
4045                 len -= bytes;
4046                 buf += bytes;
4047                 addr += bytes;
4048         }
4049         up_read(&mm->mmap_sem);
4050
4051         return buf - old_buf;
4052 }
4053
4054 /**
4055  * access_remote_vm - access another process' address space
4056  * @mm:         the mm_struct of the target address space
4057  * @addr:       start address to access
4058  * @buf:        source or destination buffer
4059  * @len:        number of bytes to transfer
4060  * @gup_flags:  flags modifying lookup behaviour
4061  *
4062  * The caller must hold a reference on @mm.
4063  */
4064 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4065                 void *buf, int len, unsigned int gup_flags)
4066 {
4067         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4068 }
4069
4070 /*
4071  * Access another process' address space.
4072  * Source/target buffer must be kernel space,
4073  * Do not walk the page table directly, use get_user_pages
4074  */
4075 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4076                 void *buf, int len, unsigned int gup_flags)
4077 {
4078         struct mm_struct *mm;
4079         int ret;
4080
4081         mm = get_task_mm(tsk);
4082         if (!mm)
4083                 return 0;
4084
4085         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4086
4087         mmput(mm);
4088
4089         return ret;
4090 }
4091 EXPORT_SYMBOL_GPL(access_process_vm);
4092
4093 /*
4094  * Print the name of a VMA.
4095  */
4096 void print_vma_addr(char *prefix, unsigned long ip)
4097 {
4098         struct mm_struct *mm = current->mm;
4099         struct vm_area_struct *vma;
4100
4101         /*
4102          * Do not print if we are in atomic
4103          * contexts (in exception stacks, etc.):
4104          */
4105         if (preempt_count())
4106                 return;
4107
4108         down_read(&mm->mmap_sem);
4109         vma = find_vma(mm, ip);
4110         if (vma && vma->vm_file) {
4111                 struct file *f = vma->vm_file;
4112                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4113                 if (buf) {
4114                         char *p;
4115
4116                         p = file_path(f, buf, PAGE_SIZE);
4117                         if (IS_ERR(p))
4118                                 p = "?";
4119                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4120                                         vma->vm_start,
4121                                         vma->vm_end - vma->vm_start);
4122                         free_page((unsigned long)buf);
4123                 }
4124         }
4125         up_read(&mm->mmap_sem);
4126 }
4127
4128 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4129 void __might_fault(const char *file, int line)
4130 {
4131         /*
4132          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4133          * holding the mmap_sem, this is safe because kernel memory doesn't
4134          * get paged out, therefore we'll never actually fault, and the
4135          * below annotations will generate false positives.
4136          */
4137         if (segment_eq(get_fs(), KERNEL_DS))
4138                 return;
4139         if (pagefault_disabled())
4140                 return;
4141         __might_sleep(file, line, 0);
4142 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4143         if (current->mm)
4144                 might_lock_read(&current->mm->mmap_sem);
4145 #endif
4146 }
4147 EXPORT_SYMBOL(__might_fault);
4148 #endif
4149
4150 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4151 static void clear_gigantic_page(struct page *page,
4152                                 unsigned long addr,
4153                                 unsigned int pages_per_huge_page)
4154 {
4155         int i;
4156         struct page *p = page;
4157
4158         might_sleep();
4159         for (i = 0; i < pages_per_huge_page;
4160              i++, p = mem_map_next(p, page, i)) {
4161                 cond_resched();
4162                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4163         }
4164 }
4165 void clear_huge_page(struct page *page,
4166                      unsigned long addr, unsigned int pages_per_huge_page)
4167 {
4168         int i;
4169
4170         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4171                 clear_gigantic_page(page, addr, pages_per_huge_page);
4172                 return;
4173         }
4174
4175         might_sleep();
4176         for (i = 0; i < pages_per_huge_page; i++) {
4177                 cond_resched();
4178                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4179         }
4180 }
4181
4182 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4183                                     unsigned long addr,
4184                                     struct vm_area_struct *vma,
4185                                     unsigned int pages_per_huge_page)
4186 {
4187         int i;
4188         struct page *dst_base = dst;
4189         struct page *src_base = src;
4190
4191         for (i = 0; i < pages_per_huge_page; ) {
4192                 cond_resched();
4193                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4194
4195                 i++;
4196                 dst = mem_map_next(dst, dst_base, i);
4197                 src = mem_map_next(src, src_base, i);
4198         }
4199 }
4200
4201 void copy_user_huge_page(struct page *dst, struct page *src,
4202                          unsigned long addr, struct vm_area_struct *vma,
4203                          unsigned int pages_per_huge_page)
4204 {
4205         int i;
4206
4207         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4208                 copy_user_gigantic_page(dst, src, addr, vma,
4209                                         pages_per_huge_page);
4210                 return;
4211         }
4212
4213         might_sleep();
4214         for (i = 0; i < pages_per_huge_page; i++) {
4215                 cond_resched();
4216                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4217         }
4218 }
4219
4220 long copy_huge_page_from_user(struct page *dst_page,
4221                                 const void __user *usr_src,
4222                                 unsigned int pages_per_huge_page,
4223                                 bool allow_pagefault)
4224 {
4225         void *src = (void *)usr_src;
4226         void *page_kaddr;
4227         unsigned long i, rc = 0;
4228         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4229
4230         for (i = 0; i < pages_per_huge_page; i++) {
4231                 if (allow_pagefault)
4232                         page_kaddr = kmap(dst_page + i);
4233                 else
4234                         page_kaddr = kmap_atomic(dst_page + i);
4235                 rc = copy_from_user(page_kaddr,
4236                                 (const void __user *)(src + i * PAGE_SIZE),
4237                                 PAGE_SIZE);
4238                 if (allow_pagefault)
4239                         kunmap(dst_page + i);
4240                 else
4241                         kunmap_atomic(page_kaddr);
4242
4243                 ret_val -= (PAGE_SIZE - rc);
4244                 if (rc)
4245                         break;
4246
4247                 cond_resched();
4248         }
4249         return ret_val;
4250 }
4251 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4252
4253 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4254
4255 static struct kmem_cache *page_ptl_cachep;
4256
4257 void __init ptlock_cache_init(void)
4258 {
4259         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4260                         SLAB_PANIC, NULL);
4261 }
4262
4263 bool ptlock_alloc(struct page *page)
4264 {
4265         spinlock_t *ptl;
4266
4267         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4268         if (!ptl)
4269                 return false;
4270         page->ptl = ptl;
4271         return true;
4272 }
4273
4274 void ptlock_free(struct page *page)
4275 {
4276         kmem_cache_free(page_ptl_cachep, page->ptl);
4277 }
4278 #endif