]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/memory.c
mm/tlb, x86/mm: Support invalidating TLB caches for RCU_TABLE_FREE
[linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121         randomize_va_space = 0;
122         return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136         zero_pfn = page_to_pfn(ZERO_PAGE(0));
137         return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146         int i;
147
148         for (i = 0; i < NR_MM_COUNTERS; i++) {
149                 if (current->rss_stat.count[i]) {
150                         add_mm_counter(mm, i, current->rss_stat.count[i]);
151                         current->rss_stat.count[i] = 0;
152                 }
153         }
154         current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159         struct task_struct *task = current;
160
161         if (likely(task->mm == mm))
162                 task->rss_stat.count[member] += val;
163         else
164                 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH  (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173         if (unlikely(task != current))
174                 return;
175         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176                 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193         struct mmu_gather_batch *batch;
194
195         batch = tlb->active;
196         if (batch->next) {
197                 tlb->active = batch->next;
198                 return true;
199         }
200
201         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202                 return false;
203
204         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205         if (!batch)
206                 return false;
207
208         tlb->batch_count++;
209         batch->next = NULL;
210         batch->nr   = 0;
211         batch->max  = MAX_GATHER_BATCH;
212
213         tlb->active->next = batch;
214         tlb->active = batch;
215
216         return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220                                 unsigned long start, unsigned long end)
221 {
222         tlb->mm = mm;
223
224         /* Is it from 0 to ~0? */
225         tlb->fullmm     = !(start | (end+1));
226         tlb->need_flush_all = 0;
227         tlb->local.next = NULL;
228         tlb->local.nr   = 0;
229         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230         tlb->active     = &tlb->local;
231         tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234         tlb->batch = NULL;
235 #endif
236         tlb->page_size = 0;
237
238         __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243         if (!tlb->end)
244                 return;
245
246         tlb_flush(tlb);
247         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248         __tlb_reset_range(tlb);
249 }
250
251 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
252 {
253         struct mmu_gather_batch *batch;
254
255 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
256         tlb_table_flush(tlb);
257 #endif
258         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259                 free_pages_and_swap_cache(batch->pages, batch->nr);
260                 batch->nr = 0;
261         }
262         tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267         tlb_flush_mmu_tlbonly(tlb);
268         tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276                 unsigned long start, unsigned long end, bool force)
277 {
278         struct mmu_gather_batch *batch, *next;
279
280         if (force)
281                 __tlb_adjust_range(tlb, start, end - start);
282
283         tlb_flush_mmu(tlb);
284
285         /* keep the page table cache within bounds */
286         check_pgt_cache();
287
288         for (batch = tlb->local.next; batch; batch = next) {
289                 next = batch->next;
290                 free_pages((unsigned long)batch, 0);
291         }
292         tlb->local.next = NULL;
293 }
294
295 /* __tlb_remove_page
296  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *      handling the additional races in SMP caused by other CPUs caching valid
298  *      mappings in their TLBs. Returns the number of free page slots left.
299  *      When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304         struct mmu_gather_batch *batch;
305
306         VM_BUG_ON(!tlb->end);
307         VM_WARN_ON(tlb->page_size != page_size);
308
309         batch = tlb->active;
310         /*
311          * Add the page and check if we are full. If so
312          * force a flush.
313          */
314         batch->pages[batch->nr++] = page;
315         if (batch->nr == batch->max) {
316                 if (!tlb_next_batch(tlb))
317                         return true;
318                 batch = tlb->active;
319         }
320         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321
322         return false;
323 }
324
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329 /*
330  * See the comment near struct mmu_table_batch.
331  */
332
333 /*
334  * If we want tlb_remove_table() to imply TLB invalidates.
335  */
336 static inline void tlb_table_invalidate(struct mmu_gather *tlb)
337 {
338 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
339         /*
340          * Invalidate page-table caches used by hardware walkers. Then we still
341          * need to RCU-sched wait while freeing the pages because software
342          * walkers can still be in-flight.
343          */
344         tlb_flush_mmu_tlbonly(tlb);
345 #endif
346 }
347
348 static void tlb_remove_table_smp_sync(void *arg)
349 {
350         /* Simply deliver the interrupt */
351 }
352
353 static void tlb_remove_table_one(void *table)
354 {
355         /*
356          * This isn't an RCU grace period and hence the page-tables cannot be
357          * assumed to be actually RCU-freed.
358          *
359          * It is however sufficient for software page-table walkers that rely on
360          * IRQ disabling. See the comment near struct mmu_table_batch.
361          */
362         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
363         __tlb_remove_table(table);
364 }
365
366 static void tlb_remove_table_rcu(struct rcu_head *head)
367 {
368         struct mmu_table_batch *batch;
369         int i;
370
371         batch = container_of(head, struct mmu_table_batch, rcu);
372
373         for (i = 0; i < batch->nr; i++)
374                 __tlb_remove_table(batch->tables[i]);
375
376         free_page((unsigned long)batch);
377 }
378
379 void tlb_table_flush(struct mmu_gather *tlb)
380 {
381         struct mmu_table_batch **batch = &tlb->batch;
382
383         if (*batch) {
384                 tlb_table_invalidate(tlb);
385                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
386                 *batch = NULL;
387         }
388 }
389
390 void tlb_remove_table(struct mmu_gather *tlb, void *table)
391 {
392         struct mmu_table_batch **batch = &tlb->batch;
393
394         if (*batch == NULL) {
395                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
396                 if (*batch == NULL) {
397                         tlb_table_invalidate(tlb);
398                         tlb_remove_table_one(table);
399                         return;
400                 }
401                 (*batch)->nr = 0;
402         }
403
404         (*batch)->tables[(*batch)->nr++] = table;
405         if ((*batch)->nr == MAX_TABLE_BATCH)
406                 tlb_table_flush(tlb);
407 }
408
409 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
410
411 /**
412  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
413  * @tlb: the mmu_gather structure to initialize
414  * @mm: the mm_struct of the target address space
415  * @start: start of the region that will be removed from the page-table
416  * @end: end of the region that will be removed from the page-table
417  *
418  * Called to initialize an (on-stack) mmu_gather structure for page-table
419  * tear-down from @mm. The @start and @end are set to 0 and -1
420  * respectively when @mm is without users and we're going to destroy
421  * the full address space (exit/execve).
422  */
423 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
424                         unsigned long start, unsigned long end)
425 {
426         arch_tlb_gather_mmu(tlb, mm, start, end);
427         inc_tlb_flush_pending(tlb->mm);
428 }
429
430 void tlb_finish_mmu(struct mmu_gather *tlb,
431                 unsigned long start, unsigned long end)
432 {
433         /*
434          * If there are parallel threads are doing PTE changes on same range
435          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
436          * flush by batching, a thread has stable TLB entry can fail to flush
437          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
438          * forcefully if we detect parallel PTE batching threads.
439          */
440         bool force = mm_tlb_flush_nested(tlb->mm);
441
442         arch_tlb_finish_mmu(tlb, start, end, force);
443         dec_tlb_flush_pending(tlb->mm);
444 }
445
446 /*
447  * Note: this doesn't free the actual pages themselves. That
448  * has been handled earlier when unmapping all the memory regions.
449  */
450 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
451                            unsigned long addr)
452 {
453         pgtable_t token = pmd_pgtable(*pmd);
454         pmd_clear(pmd);
455         pte_free_tlb(tlb, token, addr);
456         mm_dec_nr_ptes(tlb->mm);
457 }
458
459 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
460                                 unsigned long addr, unsigned long end,
461                                 unsigned long floor, unsigned long ceiling)
462 {
463         pmd_t *pmd;
464         unsigned long next;
465         unsigned long start;
466
467         start = addr;
468         pmd = pmd_offset(pud, addr);
469         do {
470                 next = pmd_addr_end(addr, end);
471                 if (pmd_none_or_clear_bad(pmd))
472                         continue;
473                 free_pte_range(tlb, pmd, addr);
474         } while (pmd++, addr = next, addr != end);
475
476         start &= PUD_MASK;
477         if (start < floor)
478                 return;
479         if (ceiling) {
480                 ceiling &= PUD_MASK;
481                 if (!ceiling)
482                         return;
483         }
484         if (end - 1 > ceiling - 1)
485                 return;
486
487         pmd = pmd_offset(pud, start);
488         pud_clear(pud);
489         pmd_free_tlb(tlb, pmd, start);
490         mm_dec_nr_pmds(tlb->mm);
491 }
492
493 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
494                                 unsigned long addr, unsigned long end,
495                                 unsigned long floor, unsigned long ceiling)
496 {
497         pud_t *pud;
498         unsigned long next;
499         unsigned long start;
500
501         start = addr;
502         pud = pud_offset(p4d, addr);
503         do {
504                 next = pud_addr_end(addr, end);
505                 if (pud_none_or_clear_bad(pud))
506                         continue;
507                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
508         } while (pud++, addr = next, addr != end);
509
510         start &= P4D_MASK;
511         if (start < floor)
512                 return;
513         if (ceiling) {
514                 ceiling &= P4D_MASK;
515                 if (!ceiling)
516                         return;
517         }
518         if (end - 1 > ceiling - 1)
519                 return;
520
521         pud = pud_offset(p4d, start);
522         p4d_clear(p4d);
523         pud_free_tlb(tlb, pud, start);
524         mm_dec_nr_puds(tlb->mm);
525 }
526
527 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
528                                 unsigned long addr, unsigned long end,
529                                 unsigned long floor, unsigned long ceiling)
530 {
531         p4d_t *p4d;
532         unsigned long next;
533         unsigned long start;
534
535         start = addr;
536         p4d = p4d_offset(pgd, addr);
537         do {
538                 next = p4d_addr_end(addr, end);
539                 if (p4d_none_or_clear_bad(p4d))
540                         continue;
541                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
542         } while (p4d++, addr = next, addr != end);
543
544         start &= PGDIR_MASK;
545         if (start < floor)
546                 return;
547         if (ceiling) {
548                 ceiling &= PGDIR_MASK;
549                 if (!ceiling)
550                         return;
551         }
552         if (end - 1 > ceiling - 1)
553                 return;
554
555         p4d = p4d_offset(pgd, start);
556         pgd_clear(pgd);
557         p4d_free_tlb(tlb, p4d, start);
558 }
559
560 /*
561  * This function frees user-level page tables of a process.
562  */
563 void free_pgd_range(struct mmu_gather *tlb,
564                         unsigned long addr, unsigned long end,
565                         unsigned long floor, unsigned long ceiling)
566 {
567         pgd_t *pgd;
568         unsigned long next;
569
570         /*
571          * The next few lines have given us lots of grief...
572          *
573          * Why are we testing PMD* at this top level?  Because often
574          * there will be no work to do at all, and we'd prefer not to
575          * go all the way down to the bottom just to discover that.
576          *
577          * Why all these "- 1"s?  Because 0 represents both the bottom
578          * of the address space and the top of it (using -1 for the
579          * top wouldn't help much: the masks would do the wrong thing).
580          * The rule is that addr 0 and floor 0 refer to the bottom of
581          * the address space, but end 0 and ceiling 0 refer to the top
582          * Comparisons need to use "end - 1" and "ceiling - 1" (though
583          * that end 0 case should be mythical).
584          *
585          * Wherever addr is brought up or ceiling brought down, we must
586          * be careful to reject "the opposite 0" before it confuses the
587          * subsequent tests.  But what about where end is brought down
588          * by PMD_SIZE below? no, end can't go down to 0 there.
589          *
590          * Whereas we round start (addr) and ceiling down, by different
591          * masks at different levels, in order to test whether a table
592          * now has no other vmas using it, so can be freed, we don't
593          * bother to round floor or end up - the tests don't need that.
594          */
595
596         addr &= PMD_MASK;
597         if (addr < floor) {
598                 addr += PMD_SIZE;
599                 if (!addr)
600                         return;
601         }
602         if (ceiling) {
603                 ceiling &= PMD_MASK;
604                 if (!ceiling)
605                         return;
606         }
607         if (end - 1 > ceiling - 1)
608                 end -= PMD_SIZE;
609         if (addr > end - 1)
610                 return;
611         /*
612          * We add page table cache pages with PAGE_SIZE,
613          * (see pte_free_tlb()), flush the tlb if we need
614          */
615         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
616         pgd = pgd_offset(tlb->mm, addr);
617         do {
618                 next = pgd_addr_end(addr, end);
619                 if (pgd_none_or_clear_bad(pgd))
620                         continue;
621                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
622         } while (pgd++, addr = next, addr != end);
623 }
624
625 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
626                 unsigned long floor, unsigned long ceiling)
627 {
628         while (vma) {
629                 struct vm_area_struct *next = vma->vm_next;
630                 unsigned long addr = vma->vm_start;
631
632                 /*
633                  * Hide vma from rmap and truncate_pagecache before freeing
634                  * pgtables
635                  */
636                 unlink_anon_vmas(vma);
637                 unlink_file_vma(vma);
638
639                 if (is_vm_hugetlb_page(vma)) {
640                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
641                                 floor, next ? next->vm_start : ceiling);
642                 } else {
643                         /*
644                          * Optimization: gather nearby vmas into one call down
645                          */
646                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
647                                && !is_vm_hugetlb_page(next)) {
648                                 vma = next;
649                                 next = vma->vm_next;
650                                 unlink_anon_vmas(vma);
651                                 unlink_file_vma(vma);
652                         }
653                         free_pgd_range(tlb, addr, vma->vm_end,
654                                 floor, next ? next->vm_start : ceiling);
655                 }
656                 vma = next;
657         }
658 }
659
660 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
661 {
662         spinlock_t *ptl;
663         pgtable_t new = pte_alloc_one(mm, address);
664         if (!new)
665                 return -ENOMEM;
666
667         /*
668          * Ensure all pte setup (eg. pte page lock and page clearing) are
669          * visible before the pte is made visible to other CPUs by being
670          * put into page tables.
671          *
672          * The other side of the story is the pointer chasing in the page
673          * table walking code (when walking the page table without locking;
674          * ie. most of the time). Fortunately, these data accesses consist
675          * of a chain of data-dependent loads, meaning most CPUs (alpha
676          * being the notable exception) will already guarantee loads are
677          * seen in-order. See the alpha page table accessors for the
678          * smp_read_barrier_depends() barriers in page table walking code.
679          */
680         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
681
682         ptl = pmd_lock(mm, pmd);
683         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
684                 mm_inc_nr_ptes(mm);
685                 pmd_populate(mm, pmd, new);
686                 new = NULL;
687         }
688         spin_unlock(ptl);
689         if (new)
690                 pte_free(mm, new);
691         return 0;
692 }
693
694 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
695 {
696         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
697         if (!new)
698                 return -ENOMEM;
699
700         smp_wmb(); /* See comment in __pte_alloc */
701
702         spin_lock(&init_mm.page_table_lock);
703         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
704                 pmd_populate_kernel(&init_mm, pmd, new);
705                 new = NULL;
706         }
707         spin_unlock(&init_mm.page_table_lock);
708         if (new)
709                 pte_free_kernel(&init_mm, new);
710         return 0;
711 }
712
713 static inline void init_rss_vec(int *rss)
714 {
715         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
716 }
717
718 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
719 {
720         int i;
721
722         if (current->mm == mm)
723                 sync_mm_rss(mm);
724         for (i = 0; i < NR_MM_COUNTERS; i++)
725                 if (rss[i])
726                         add_mm_counter(mm, i, rss[i]);
727 }
728
729 /*
730  * This function is called to print an error when a bad pte
731  * is found. For example, we might have a PFN-mapped pte in
732  * a region that doesn't allow it.
733  *
734  * The calling function must still handle the error.
735  */
736 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
737                           pte_t pte, struct page *page)
738 {
739         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
740         p4d_t *p4d = p4d_offset(pgd, addr);
741         pud_t *pud = pud_offset(p4d, addr);
742         pmd_t *pmd = pmd_offset(pud, addr);
743         struct address_space *mapping;
744         pgoff_t index;
745         static unsigned long resume;
746         static unsigned long nr_shown;
747         static unsigned long nr_unshown;
748
749         /*
750          * Allow a burst of 60 reports, then keep quiet for that minute;
751          * or allow a steady drip of one report per second.
752          */
753         if (nr_shown == 60) {
754                 if (time_before(jiffies, resume)) {
755                         nr_unshown++;
756                         return;
757                 }
758                 if (nr_unshown) {
759                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
760                                  nr_unshown);
761                         nr_unshown = 0;
762                 }
763                 nr_shown = 0;
764         }
765         if (nr_shown++ == 0)
766                 resume = jiffies + 60 * HZ;
767
768         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
769         index = linear_page_index(vma, addr);
770
771         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
772                  current->comm,
773                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
774         if (page)
775                 dump_page(page, "bad pte");
776         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
777                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
778         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
779                  vma->vm_file,
780                  vma->vm_ops ? vma->vm_ops->fault : NULL,
781                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
782                  mapping ? mapping->a_ops->readpage : NULL);
783         dump_stack();
784         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
785 }
786
787 /*
788  * vm_normal_page -- This function gets the "struct page" associated with a pte.
789  *
790  * "Special" mappings do not wish to be associated with a "struct page" (either
791  * it doesn't exist, or it exists but they don't want to touch it). In this
792  * case, NULL is returned here. "Normal" mappings do have a struct page.
793  *
794  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
795  * pte bit, in which case this function is trivial. Secondly, an architecture
796  * may not have a spare pte bit, which requires a more complicated scheme,
797  * described below.
798  *
799  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
800  * special mapping (even if there are underlying and valid "struct pages").
801  * COWed pages of a VM_PFNMAP are always normal.
802  *
803  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
804  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
805  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
806  * mapping will always honor the rule
807  *
808  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
809  *
810  * And for normal mappings this is false.
811  *
812  * This restricts such mappings to be a linear translation from virtual address
813  * to pfn. To get around this restriction, we allow arbitrary mappings so long
814  * as the vma is not a COW mapping; in that case, we know that all ptes are
815  * special (because none can have been COWed).
816  *
817  *
818  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
819  *
820  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
821  * page" backing, however the difference is that _all_ pages with a struct
822  * page (that is, those where pfn_valid is true) are refcounted and considered
823  * normal pages by the VM. The disadvantage is that pages are refcounted
824  * (which can be slower and simply not an option for some PFNMAP users). The
825  * advantage is that we don't have to follow the strict linearity rule of
826  * PFNMAP mappings in order to support COWable mappings.
827  *
828  */
829 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
830                              pte_t pte, bool with_public_device)
831 {
832         unsigned long pfn = pte_pfn(pte);
833
834         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
835                 if (likely(!pte_special(pte)))
836                         goto check_pfn;
837                 if (vma->vm_ops && vma->vm_ops->find_special_page)
838                         return vma->vm_ops->find_special_page(vma, addr);
839                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
840                         return NULL;
841                 if (is_zero_pfn(pfn))
842                         return NULL;
843
844                 /*
845                  * Device public pages are special pages (they are ZONE_DEVICE
846                  * pages but different from persistent memory). They behave
847                  * allmost like normal pages. The difference is that they are
848                  * not on the lru and thus should never be involve with any-
849                  * thing that involve lru manipulation (mlock, numa balancing,
850                  * ...).
851                  *
852                  * This is why we still want to return NULL for such page from
853                  * vm_normal_page() so that we do not have to special case all
854                  * call site of vm_normal_page().
855                  */
856                 if (likely(pfn <= highest_memmap_pfn)) {
857                         struct page *page = pfn_to_page(pfn);
858
859                         if (is_device_public_page(page)) {
860                                 if (with_public_device)
861                                         return page;
862                                 return NULL;
863                         }
864                 }
865
866                 if (pte_devmap(pte))
867                         return NULL;
868
869                 print_bad_pte(vma, addr, pte, NULL);
870                 return NULL;
871         }
872
873         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
874
875         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
876                 if (vma->vm_flags & VM_MIXEDMAP) {
877                         if (!pfn_valid(pfn))
878                                 return NULL;
879                         goto out;
880                 } else {
881                         unsigned long off;
882                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
883                         if (pfn == vma->vm_pgoff + off)
884                                 return NULL;
885                         if (!is_cow_mapping(vma->vm_flags))
886                                 return NULL;
887                 }
888         }
889
890         if (is_zero_pfn(pfn))
891                 return NULL;
892
893 check_pfn:
894         if (unlikely(pfn > highest_memmap_pfn)) {
895                 print_bad_pte(vma, addr, pte, NULL);
896                 return NULL;
897         }
898
899         /*
900          * NOTE! We still have PageReserved() pages in the page tables.
901          * eg. VDSO mappings can cause them to exist.
902          */
903 out:
904         return pfn_to_page(pfn);
905 }
906
907 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
908 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
909                                 pmd_t pmd)
910 {
911         unsigned long pfn = pmd_pfn(pmd);
912
913         /*
914          * There is no pmd_special() but there may be special pmds, e.g.
915          * in a direct-access (dax) mapping, so let's just replicate the
916          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
917          */
918         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
919                 if (vma->vm_flags & VM_MIXEDMAP) {
920                         if (!pfn_valid(pfn))
921                                 return NULL;
922                         goto out;
923                 } else {
924                         unsigned long off;
925                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
926                         if (pfn == vma->vm_pgoff + off)
927                                 return NULL;
928                         if (!is_cow_mapping(vma->vm_flags))
929                                 return NULL;
930                 }
931         }
932
933         if (pmd_devmap(pmd))
934                 return NULL;
935         if (is_zero_pfn(pfn))
936                 return NULL;
937         if (unlikely(pfn > highest_memmap_pfn))
938                 return NULL;
939
940         /*
941          * NOTE! We still have PageReserved() pages in the page tables.
942          * eg. VDSO mappings can cause them to exist.
943          */
944 out:
945         return pfn_to_page(pfn);
946 }
947 #endif
948
949 /*
950  * copy one vm_area from one task to the other. Assumes the page tables
951  * already present in the new task to be cleared in the whole range
952  * covered by this vma.
953  */
954
955 static inline unsigned long
956 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
957                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
958                 unsigned long addr, int *rss)
959 {
960         unsigned long vm_flags = vma->vm_flags;
961         pte_t pte = *src_pte;
962         struct page *page;
963
964         /* pte contains position in swap or file, so copy. */
965         if (unlikely(!pte_present(pte))) {
966                 swp_entry_t entry = pte_to_swp_entry(pte);
967
968                 if (likely(!non_swap_entry(entry))) {
969                         if (swap_duplicate(entry) < 0)
970                                 return entry.val;
971
972                         /* make sure dst_mm is on swapoff's mmlist. */
973                         if (unlikely(list_empty(&dst_mm->mmlist))) {
974                                 spin_lock(&mmlist_lock);
975                                 if (list_empty(&dst_mm->mmlist))
976                                         list_add(&dst_mm->mmlist,
977                                                         &src_mm->mmlist);
978                                 spin_unlock(&mmlist_lock);
979                         }
980                         rss[MM_SWAPENTS]++;
981                 } else if (is_migration_entry(entry)) {
982                         page = migration_entry_to_page(entry);
983
984                         rss[mm_counter(page)]++;
985
986                         if (is_write_migration_entry(entry) &&
987                                         is_cow_mapping(vm_flags)) {
988                                 /*
989                                  * COW mappings require pages in both
990                                  * parent and child to be set to read.
991                                  */
992                                 make_migration_entry_read(&entry);
993                                 pte = swp_entry_to_pte(entry);
994                                 if (pte_swp_soft_dirty(*src_pte))
995                                         pte = pte_swp_mksoft_dirty(pte);
996                                 set_pte_at(src_mm, addr, src_pte, pte);
997                         }
998                 } else if (is_device_private_entry(entry)) {
999                         page = device_private_entry_to_page(entry);
1000
1001                         /*
1002                          * Update rss count even for unaddressable pages, as
1003                          * they should treated just like normal pages in this
1004                          * respect.
1005                          *
1006                          * We will likely want to have some new rss counters
1007                          * for unaddressable pages, at some point. But for now
1008                          * keep things as they are.
1009                          */
1010                         get_page(page);
1011                         rss[mm_counter(page)]++;
1012                         page_dup_rmap(page, false);
1013
1014                         /*
1015                          * We do not preserve soft-dirty information, because so
1016                          * far, checkpoint/restore is the only feature that
1017                          * requires that. And checkpoint/restore does not work
1018                          * when a device driver is involved (you cannot easily
1019                          * save and restore device driver state).
1020                          */
1021                         if (is_write_device_private_entry(entry) &&
1022                             is_cow_mapping(vm_flags)) {
1023                                 make_device_private_entry_read(&entry);
1024                                 pte = swp_entry_to_pte(entry);
1025                                 set_pte_at(src_mm, addr, src_pte, pte);
1026                         }
1027                 }
1028                 goto out_set_pte;
1029         }
1030
1031         /*
1032          * If it's a COW mapping, write protect it both
1033          * in the parent and the child
1034          */
1035         if (is_cow_mapping(vm_flags)) {
1036                 ptep_set_wrprotect(src_mm, addr, src_pte);
1037                 pte = pte_wrprotect(pte);
1038         }
1039
1040         /*
1041          * If it's a shared mapping, mark it clean in
1042          * the child
1043          */
1044         if (vm_flags & VM_SHARED)
1045                 pte = pte_mkclean(pte);
1046         pte = pte_mkold(pte);
1047
1048         page = vm_normal_page(vma, addr, pte);
1049         if (page) {
1050                 get_page(page);
1051                 page_dup_rmap(page, false);
1052                 rss[mm_counter(page)]++;
1053         } else if (pte_devmap(pte)) {
1054                 page = pte_page(pte);
1055
1056                 /*
1057                  * Cache coherent device memory behave like regular page and
1058                  * not like persistent memory page. For more informations see
1059                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1060                  */
1061                 if (is_device_public_page(page)) {
1062                         get_page(page);
1063                         page_dup_rmap(page, false);
1064                         rss[mm_counter(page)]++;
1065                 }
1066         }
1067
1068 out_set_pte:
1069         set_pte_at(dst_mm, addr, dst_pte, pte);
1070         return 0;
1071 }
1072
1073 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1074                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1075                    unsigned long addr, unsigned long end)
1076 {
1077         pte_t *orig_src_pte, *orig_dst_pte;
1078         pte_t *src_pte, *dst_pte;
1079         spinlock_t *src_ptl, *dst_ptl;
1080         int progress = 0;
1081         int rss[NR_MM_COUNTERS];
1082         swp_entry_t entry = (swp_entry_t){0};
1083
1084 again:
1085         init_rss_vec(rss);
1086
1087         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1088         if (!dst_pte)
1089                 return -ENOMEM;
1090         src_pte = pte_offset_map(src_pmd, addr);
1091         src_ptl = pte_lockptr(src_mm, src_pmd);
1092         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1093         orig_src_pte = src_pte;
1094         orig_dst_pte = dst_pte;
1095         arch_enter_lazy_mmu_mode();
1096
1097         do {
1098                 /*
1099                  * We are holding two locks at this point - either of them
1100                  * could generate latencies in another task on another CPU.
1101                  */
1102                 if (progress >= 32) {
1103                         progress = 0;
1104                         if (need_resched() ||
1105                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1106                                 break;
1107                 }
1108                 if (pte_none(*src_pte)) {
1109                         progress++;
1110                         continue;
1111                 }
1112                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1113                                                         vma, addr, rss);
1114                 if (entry.val)
1115                         break;
1116                 progress += 8;
1117         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1118
1119         arch_leave_lazy_mmu_mode();
1120         spin_unlock(src_ptl);
1121         pte_unmap(orig_src_pte);
1122         add_mm_rss_vec(dst_mm, rss);
1123         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1124         cond_resched();
1125
1126         if (entry.val) {
1127                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1128                         return -ENOMEM;
1129                 progress = 0;
1130         }
1131         if (addr != end)
1132                 goto again;
1133         return 0;
1134 }
1135
1136 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1137                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1138                 unsigned long addr, unsigned long end)
1139 {
1140         pmd_t *src_pmd, *dst_pmd;
1141         unsigned long next;
1142
1143         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1144         if (!dst_pmd)
1145                 return -ENOMEM;
1146         src_pmd = pmd_offset(src_pud, addr);
1147         do {
1148                 next = pmd_addr_end(addr, end);
1149                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1150                         || pmd_devmap(*src_pmd)) {
1151                         int err;
1152                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1153                         err = copy_huge_pmd(dst_mm, src_mm,
1154                                             dst_pmd, src_pmd, addr, vma);
1155                         if (err == -ENOMEM)
1156                                 return -ENOMEM;
1157                         if (!err)
1158                                 continue;
1159                         /* fall through */
1160                 }
1161                 if (pmd_none_or_clear_bad(src_pmd))
1162                         continue;
1163                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1164                                                 vma, addr, next))
1165                         return -ENOMEM;
1166         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1167         return 0;
1168 }
1169
1170 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1171                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1172                 unsigned long addr, unsigned long end)
1173 {
1174         pud_t *src_pud, *dst_pud;
1175         unsigned long next;
1176
1177         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1178         if (!dst_pud)
1179                 return -ENOMEM;
1180         src_pud = pud_offset(src_p4d, addr);
1181         do {
1182                 next = pud_addr_end(addr, end);
1183                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1184                         int err;
1185
1186                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1187                         err = copy_huge_pud(dst_mm, src_mm,
1188                                             dst_pud, src_pud, addr, vma);
1189                         if (err == -ENOMEM)
1190                                 return -ENOMEM;
1191                         if (!err)
1192                                 continue;
1193                         /* fall through */
1194                 }
1195                 if (pud_none_or_clear_bad(src_pud))
1196                         continue;
1197                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1198                                                 vma, addr, next))
1199                         return -ENOMEM;
1200         } while (dst_pud++, src_pud++, addr = next, addr != end);
1201         return 0;
1202 }
1203
1204 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1205                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1206                 unsigned long addr, unsigned long end)
1207 {
1208         p4d_t *src_p4d, *dst_p4d;
1209         unsigned long next;
1210
1211         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1212         if (!dst_p4d)
1213                 return -ENOMEM;
1214         src_p4d = p4d_offset(src_pgd, addr);
1215         do {
1216                 next = p4d_addr_end(addr, end);
1217                 if (p4d_none_or_clear_bad(src_p4d))
1218                         continue;
1219                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1220                                                 vma, addr, next))
1221                         return -ENOMEM;
1222         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1223         return 0;
1224 }
1225
1226 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1227                 struct vm_area_struct *vma)
1228 {
1229         pgd_t *src_pgd, *dst_pgd;
1230         unsigned long next;
1231         unsigned long addr = vma->vm_start;
1232         unsigned long end = vma->vm_end;
1233         unsigned long mmun_start;       /* For mmu_notifiers */
1234         unsigned long mmun_end;         /* For mmu_notifiers */
1235         bool is_cow;
1236         int ret;
1237
1238         /*
1239          * Don't copy ptes where a page fault will fill them correctly.
1240          * Fork becomes much lighter when there are big shared or private
1241          * readonly mappings. The tradeoff is that copy_page_range is more
1242          * efficient than faulting.
1243          */
1244         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1245                         !vma->anon_vma)
1246                 return 0;
1247
1248         if (is_vm_hugetlb_page(vma))
1249                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1250
1251         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1252                 /*
1253                  * We do not free on error cases below as remove_vma
1254                  * gets called on error from higher level routine
1255                  */
1256                 ret = track_pfn_copy(vma);
1257                 if (ret)
1258                         return ret;
1259         }
1260
1261         /*
1262          * We need to invalidate the secondary MMU mappings only when
1263          * there could be a permission downgrade on the ptes of the
1264          * parent mm. And a permission downgrade will only happen if
1265          * is_cow_mapping() returns true.
1266          */
1267         is_cow = is_cow_mapping(vma->vm_flags);
1268         mmun_start = addr;
1269         mmun_end   = end;
1270         if (is_cow)
1271                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1272                                                     mmun_end);
1273
1274         ret = 0;
1275         dst_pgd = pgd_offset(dst_mm, addr);
1276         src_pgd = pgd_offset(src_mm, addr);
1277         do {
1278                 next = pgd_addr_end(addr, end);
1279                 if (pgd_none_or_clear_bad(src_pgd))
1280                         continue;
1281                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1282                                             vma, addr, next))) {
1283                         ret = -ENOMEM;
1284                         break;
1285                 }
1286         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1287
1288         if (is_cow)
1289                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1290         return ret;
1291 }
1292
1293 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1294                                 struct vm_area_struct *vma, pmd_t *pmd,
1295                                 unsigned long addr, unsigned long end,
1296                                 struct zap_details *details)
1297 {
1298         struct mm_struct *mm = tlb->mm;
1299         int force_flush = 0;
1300         int rss[NR_MM_COUNTERS];
1301         spinlock_t *ptl;
1302         pte_t *start_pte;
1303         pte_t *pte;
1304         swp_entry_t entry;
1305
1306         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1307 again:
1308         init_rss_vec(rss);
1309         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1310         pte = start_pte;
1311         flush_tlb_batched_pending(mm);
1312         arch_enter_lazy_mmu_mode();
1313         do {
1314                 pte_t ptent = *pte;
1315                 if (pte_none(ptent))
1316                         continue;
1317
1318                 if (pte_present(ptent)) {
1319                         struct page *page;
1320
1321                         page = _vm_normal_page(vma, addr, ptent, true);
1322                         if (unlikely(details) && page) {
1323                                 /*
1324                                  * unmap_shared_mapping_pages() wants to
1325                                  * invalidate cache without truncating:
1326                                  * unmap shared but keep private pages.
1327                                  */
1328                                 if (details->check_mapping &&
1329                                     details->check_mapping != page_rmapping(page))
1330                                         continue;
1331                         }
1332                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1333                                                         tlb->fullmm);
1334                         tlb_remove_tlb_entry(tlb, pte, addr);
1335                         if (unlikely(!page))
1336                                 continue;
1337
1338                         if (!PageAnon(page)) {
1339                                 if (pte_dirty(ptent)) {
1340                                         force_flush = 1;
1341                                         set_page_dirty(page);
1342                                 }
1343                                 if (pte_young(ptent) &&
1344                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1345                                         mark_page_accessed(page);
1346                         }
1347                         rss[mm_counter(page)]--;
1348                         page_remove_rmap(page, false);
1349                         if (unlikely(page_mapcount(page) < 0))
1350                                 print_bad_pte(vma, addr, ptent, page);
1351                         if (unlikely(__tlb_remove_page(tlb, page))) {
1352                                 force_flush = 1;
1353                                 addr += PAGE_SIZE;
1354                                 break;
1355                         }
1356                         continue;
1357                 }
1358
1359                 entry = pte_to_swp_entry(ptent);
1360                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1361                         struct page *page = device_private_entry_to_page(entry);
1362
1363                         if (unlikely(details && details->check_mapping)) {
1364                                 /*
1365                                  * unmap_shared_mapping_pages() wants to
1366                                  * invalidate cache without truncating:
1367                                  * unmap shared but keep private pages.
1368                                  */
1369                                 if (details->check_mapping !=
1370                                     page_rmapping(page))
1371                                         continue;
1372                         }
1373
1374                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1375                         rss[mm_counter(page)]--;
1376                         page_remove_rmap(page, false);
1377                         put_page(page);
1378                         continue;
1379                 }
1380
1381                 /* If details->check_mapping, we leave swap entries. */
1382                 if (unlikely(details))
1383                         continue;
1384
1385                 entry = pte_to_swp_entry(ptent);
1386                 if (!non_swap_entry(entry))
1387                         rss[MM_SWAPENTS]--;
1388                 else if (is_migration_entry(entry)) {
1389                         struct page *page;
1390
1391                         page = migration_entry_to_page(entry);
1392                         rss[mm_counter(page)]--;
1393                 }
1394                 if (unlikely(!free_swap_and_cache(entry)))
1395                         print_bad_pte(vma, addr, ptent, NULL);
1396                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1397         } while (pte++, addr += PAGE_SIZE, addr != end);
1398
1399         add_mm_rss_vec(mm, rss);
1400         arch_leave_lazy_mmu_mode();
1401
1402         /* Do the actual TLB flush before dropping ptl */
1403         if (force_flush)
1404                 tlb_flush_mmu_tlbonly(tlb);
1405         pte_unmap_unlock(start_pte, ptl);
1406
1407         /*
1408          * If we forced a TLB flush (either due to running out of
1409          * batch buffers or because we needed to flush dirty TLB
1410          * entries before releasing the ptl), free the batched
1411          * memory too. Restart if we didn't do everything.
1412          */
1413         if (force_flush) {
1414                 force_flush = 0;
1415                 tlb_flush_mmu_free(tlb);
1416                 if (addr != end)
1417                         goto again;
1418         }
1419
1420         return addr;
1421 }
1422
1423 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1424                                 struct vm_area_struct *vma, pud_t *pud,
1425                                 unsigned long addr, unsigned long end,
1426                                 struct zap_details *details)
1427 {
1428         pmd_t *pmd;
1429         unsigned long next;
1430
1431         pmd = pmd_offset(pud, addr);
1432         do {
1433                 next = pmd_addr_end(addr, end);
1434                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1435                         if (next - addr != HPAGE_PMD_SIZE)
1436                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1437                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1438                                 goto next;
1439                         /* fall through */
1440                 }
1441                 /*
1442                  * Here there can be other concurrent MADV_DONTNEED or
1443                  * trans huge page faults running, and if the pmd is
1444                  * none or trans huge it can change under us. This is
1445                  * because MADV_DONTNEED holds the mmap_sem in read
1446                  * mode.
1447                  */
1448                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1449                         goto next;
1450                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1451 next:
1452                 cond_resched();
1453         } while (pmd++, addr = next, addr != end);
1454
1455         return addr;
1456 }
1457
1458 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1459                                 struct vm_area_struct *vma, p4d_t *p4d,
1460                                 unsigned long addr, unsigned long end,
1461                                 struct zap_details *details)
1462 {
1463         pud_t *pud;
1464         unsigned long next;
1465
1466         pud = pud_offset(p4d, addr);
1467         do {
1468                 next = pud_addr_end(addr, end);
1469                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1470                         if (next - addr != HPAGE_PUD_SIZE) {
1471                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1472                                 split_huge_pud(vma, pud, addr);
1473                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1474                                 goto next;
1475                         /* fall through */
1476                 }
1477                 if (pud_none_or_clear_bad(pud))
1478                         continue;
1479                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1480 next:
1481                 cond_resched();
1482         } while (pud++, addr = next, addr != end);
1483
1484         return addr;
1485 }
1486
1487 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1488                                 struct vm_area_struct *vma, pgd_t *pgd,
1489                                 unsigned long addr, unsigned long end,
1490                                 struct zap_details *details)
1491 {
1492         p4d_t *p4d;
1493         unsigned long next;
1494
1495         p4d = p4d_offset(pgd, addr);
1496         do {
1497                 next = p4d_addr_end(addr, end);
1498                 if (p4d_none_or_clear_bad(p4d))
1499                         continue;
1500                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1501         } while (p4d++, addr = next, addr != end);
1502
1503         return addr;
1504 }
1505
1506 void unmap_page_range(struct mmu_gather *tlb,
1507                              struct vm_area_struct *vma,
1508                              unsigned long addr, unsigned long end,
1509                              struct zap_details *details)
1510 {
1511         pgd_t *pgd;
1512         unsigned long next;
1513
1514         BUG_ON(addr >= end);
1515         tlb_start_vma(tlb, vma);
1516         pgd = pgd_offset(vma->vm_mm, addr);
1517         do {
1518                 next = pgd_addr_end(addr, end);
1519                 if (pgd_none_or_clear_bad(pgd))
1520                         continue;
1521                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1522         } while (pgd++, addr = next, addr != end);
1523         tlb_end_vma(tlb, vma);
1524 }
1525
1526
1527 static void unmap_single_vma(struct mmu_gather *tlb,
1528                 struct vm_area_struct *vma, unsigned long start_addr,
1529                 unsigned long end_addr,
1530                 struct zap_details *details)
1531 {
1532         unsigned long start = max(vma->vm_start, start_addr);
1533         unsigned long end;
1534
1535         if (start >= vma->vm_end)
1536                 return;
1537         end = min(vma->vm_end, end_addr);
1538         if (end <= vma->vm_start)
1539                 return;
1540
1541         if (vma->vm_file)
1542                 uprobe_munmap(vma, start, end);
1543
1544         if (unlikely(vma->vm_flags & VM_PFNMAP))
1545                 untrack_pfn(vma, 0, 0);
1546
1547         if (start != end) {
1548                 if (unlikely(is_vm_hugetlb_page(vma))) {
1549                         /*
1550                          * It is undesirable to test vma->vm_file as it
1551                          * should be non-null for valid hugetlb area.
1552                          * However, vm_file will be NULL in the error
1553                          * cleanup path of mmap_region. When
1554                          * hugetlbfs ->mmap method fails,
1555                          * mmap_region() nullifies vma->vm_file
1556                          * before calling this function to clean up.
1557                          * Since no pte has actually been setup, it is
1558                          * safe to do nothing in this case.
1559                          */
1560                         if (vma->vm_file) {
1561                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1562                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1563                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1564                         }
1565                 } else
1566                         unmap_page_range(tlb, vma, start, end, details);
1567         }
1568 }
1569
1570 /**
1571  * unmap_vmas - unmap a range of memory covered by a list of vma's
1572  * @tlb: address of the caller's struct mmu_gather
1573  * @vma: the starting vma
1574  * @start_addr: virtual address at which to start unmapping
1575  * @end_addr: virtual address at which to end unmapping
1576  *
1577  * Unmap all pages in the vma list.
1578  *
1579  * Only addresses between `start' and `end' will be unmapped.
1580  *
1581  * The VMA list must be sorted in ascending virtual address order.
1582  *
1583  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1584  * range after unmap_vmas() returns.  So the only responsibility here is to
1585  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1586  * drops the lock and schedules.
1587  */
1588 void unmap_vmas(struct mmu_gather *tlb,
1589                 struct vm_area_struct *vma, unsigned long start_addr,
1590                 unsigned long end_addr)
1591 {
1592         struct mm_struct *mm = vma->vm_mm;
1593
1594         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1595         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1596                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1597         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1598 }
1599
1600 /**
1601  * zap_page_range - remove user pages in a given range
1602  * @vma: vm_area_struct holding the applicable pages
1603  * @start: starting address of pages to zap
1604  * @size: number of bytes to zap
1605  *
1606  * Caller must protect the VMA list
1607  */
1608 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1609                 unsigned long size)
1610 {
1611         struct mm_struct *mm = vma->vm_mm;
1612         struct mmu_gather tlb;
1613         unsigned long end = start + size;
1614
1615         lru_add_drain();
1616         tlb_gather_mmu(&tlb, mm, start, end);
1617         update_hiwater_rss(mm);
1618         mmu_notifier_invalidate_range_start(mm, start, end);
1619         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1620                 unmap_single_vma(&tlb, vma, start, end, NULL);
1621         mmu_notifier_invalidate_range_end(mm, start, end);
1622         tlb_finish_mmu(&tlb, start, end);
1623 }
1624
1625 /**
1626  * zap_page_range_single - remove user pages in a given range
1627  * @vma: vm_area_struct holding the applicable pages
1628  * @address: starting address of pages to zap
1629  * @size: number of bytes to zap
1630  * @details: details of shared cache invalidation
1631  *
1632  * The range must fit into one VMA.
1633  */
1634 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1635                 unsigned long size, struct zap_details *details)
1636 {
1637         struct mm_struct *mm = vma->vm_mm;
1638         struct mmu_gather tlb;
1639         unsigned long end = address + size;
1640
1641         lru_add_drain();
1642         tlb_gather_mmu(&tlb, mm, address, end);
1643         update_hiwater_rss(mm);
1644         mmu_notifier_invalidate_range_start(mm, address, end);
1645         unmap_single_vma(&tlb, vma, address, end, details);
1646         mmu_notifier_invalidate_range_end(mm, address, end);
1647         tlb_finish_mmu(&tlb, address, end);
1648 }
1649
1650 /**
1651  * zap_vma_ptes - remove ptes mapping the vma
1652  * @vma: vm_area_struct holding ptes to be zapped
1653  * @address: starting address of pages to zap
1654  * @size: number of bytes to zap
1655  *
1656  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1657  *
1658  * The entire address range must be fully contained within the vma.
1659  *
1660  */
1661 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1662                 unsigned long size)
1663 {
1664         if (address < vma->vm_start || address + size > vma->vm_end ||
1665                         !(vma->vm_flags & VM_PFNMAP))
1666                 return;
1667
1668         zap_page_range_single(vma, address, size, NULL);
1669 }
1670 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1671
1672 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1673                         spinlock_t **ptl)
1674 {
1675         pgd_t *pgd;
1676         p4d_t *p4d;
1677         pud_t *pud;
1678         pmd_t *pmd;
1679
1680         pgd = pgd_offset(mm, addr);
1681         p4d = p4d_alloc(mm, pgd, addr);
1682         if (!p4d)
1683                 return NULL;
1684         pud = pud_alloc(mm, p4d, addr);
1685         if (!pud)
1686                 return NULL;
1687         pmd = pmd_alloc(mm, pud, addr);
1688         if (!pmd)
1689                 return NULL;
1690
1691         VM_BUG_ON(pmd_trans_huge(*pmd));
1692         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1693 }
1694
1695 /*
1696  * This is the old fallback for page remapping.
1697  *
1698  * For historical reasons, it only allows reserved pages. Only
1699  * old drivers should use this, and they needed to mark their
1700  * pages reserved for the old functions anyway.
1701  */
1702 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1703                         struct page *page, pgprot_t prot)
1704 {
1705         struct mm_struct *mm = vma->vm_mm;
1706         int retval;
1707         pte_t *pte;
1708         spinlock_t *ptl;
1709
1710         retval = -EINVAL;
1711         if (PageAnon(page))
1712                 goto out;
1713         retval = -ENOMEM;
1714         flush_dcache_page(page);
1715         pte = get_locked_pte(mm, addr, &ptl);
1716         if (!pte)
1717                 goto out;
1718         retval = -EBUSY;
1719         if (!pte_none(*pte))
1720                 goto out_unlock;
1721
1722         /* Ok, finally just insert the thing.. */
1723         get_page(page);
1724         inc_mm_counter_fast(mm, mm_counter_file(page));
1725         page_add_file_rmap(page, false);
1726         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1727
1728         retval = 0;
1729         pte_unmap_unlock(pte, ptl);
1730         return retval;
1731 out_unlock:
1732         pte_unmap_unlock(pte, ptl);
1733 out:
1734         return retval;
1735 }
1736
1737 /**
1738  * vm_insert_page - insert single page into user vma
1739  * @vma: user vma to map to
1740  * @addr: target user address of this page
1741  * @page: source kernel page
1742  *
1743  * This allows drivers to insert individual pages they've allocated
1744  * into a user vma.
1745  *
1746  * The page has to be a nice clean _individual_ kernel allocation.
1747  * If you allocate a compound page, you need to have marked it as
1748  * such (__GFP_COMP), or manually just split the page up yourself
1749  * (see split_page()).
1750  *
1751  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1752  * took an arbitrary page protection parameter. This doesn't allow
1753  * that. Your vma protection will have to be set up correctly, which
1754  * means that if you want a shared writable mapping, you'd better
1755  * ask for a shared writable mapping!
1756  *
1757  * The page does not need to be reserved.
1758  *
1759  * Usually this function is called from f_op->mmap() handler
1760  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1761  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1762  * function from other places, for example from page-fault handler.
1763  */
1764 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1765                         struct page *page)
1766 {
1767         if (addr < vma->vm_start || addr >= vma->vm_end)
1768                 return -EFAULT;
1769         if (!page_count(page))
1770                 return -EINVAL;
1771         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1772                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1773                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1774                 vma->vm_flags |= VM_MIXEDMAP;
1775         }
1776         return insert_page(vma, addr, page, vma->vm_page_prot);
1777 }
1778 EXPORT_SYMBOL(vm_insert_page);
1779
1780 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1781                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1782 {
1783         struct mm_struct *mm = vma->vm_mm;
1784         int retval;
1785         pte_t *pte, entry;
1786         spinlock_t *ptl;
1787
1788         retval = -ENOMEM;
1789         pte = get_locked_pte(mm, addr, &ptl);
1790         if (!pte)
1791                 goto out;
1792         retval = -EBUSY;
1793         if (!pte_none(*pte)) {
1794                 if (mkwrite) {
1795                         /*
1796                          * For read faults on private mappings the PFN passed
1797                          * in may not match the PFN we have mapped if the
1798                          * mapped PFN is a writeable COW page.  In the mkwrite
1799                          * case we are creating a writable PTE for a shared
1800                          * mapping and we expect the PFNs to match.
1801                          */
1802                         if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1803                                 goto out_unlock;
1804                         entry = *pte;
1805                         goto out_mkwrite;
1806                 } else
1807                         goto out_unlock;
1808         }
1809
1810         /* Ok, finally just insert the thing.. */
1811         if (pfn_t_devmap(pfn))
1812                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1813         else
1814                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1815
1816 out_mkwrite:
1817         if (mkwrite) {
1818                 entry = pte_mkyoung(entry);
1819                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1820         }
1821
1822         set_pte_at(mm, addr, pte, entry);
1823         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1824
1825         retval = 0;
1826 out_unlock:
1827         pte_unmap_unlock(pte, ptl);
1828 out:
1829         return retval;
1830 }
1831
1832 /**
1833  * vm_insert_pfn - insert single pfn into user vma
1834  * @vma: user vma to map to
1835  * @addr: target user address of this page
1836  * @pfn: source kernel pfn
1837  *
1838  * Similar to vm_insert_page, this allows drivers to insert individual pages
1839  * they've allocated into a user vma. Same comments apply.
1840  *
1841  * This function should only be called from a vm_ops->fault handler, and
1842  * in that case the handler should return NULL.
1843  *
1844  * vma cannot be a COW mapping.
1845  *
1846  * As this is called only for pages that do not currently exist, we
1847  * do not need to flush old virtual caches or the TLB.
1848  */
1849 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1850                         unsigned long pfn)
1851 {
1852         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1853 }
1854 EXPORT_SYMBOL(vm_insert_pfn);
1855
1856 /**
1857  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1858  * @vma: user vma to map to
1859  * @addr: target user address of this page
1860  * @pfn: source kernel pfn
1861  * @pgprot: pgprot flags for the inserted page
1862  *
1863  * This is exactly like vm_insert_pfn, except that it allows drivers to
1864  * to override pgprot on a per-page basis.
1865  *
1866  * This only makes sense for IO mappings, and it makes no sense for
1867  * cow mappings.  In general, using multiple vmas is preferable;
1868  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1869  * impractical.
1870  */
1871 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1872                         unsigned long pfn, pgprot_t pgprot)
1873 {
1874         int ret;
1875         /*
1876          * Technically, architectures with pte_special can avoid all these
1877          * restrictions (same for remap_pfn_range).  However we would like
1878          * consistency in testing and feature parity among all, so we should
1879          * try to keep these invariants in place for everybody.
1880          */
1881         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1882         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1883                                                 (VM_PFNMAP|VM_MIXEDMAP));
1884         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1885         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1886
1887         if (addr < vma->vm_start || addr >= vma->vm_end)
1888                 return -EFAULT;
1889
1890         if (!pfn_modify_allowed(pfn, pgprot))
1891                 return -EACCES;
1892
1893         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1894
1895         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1896                         false);
1897
1898         return ret;
1899 }
1900 EXPORT_SYMBOL(vm_insert_pfn_prot);
1901
1902 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1903 {
1904         /* these checks mirror the abort conditions in vm_normal_page */
1905         if (vma->vm_flags & VM_MIXEDMAP)
1906                 return true;
1907         if (pfn_t_devmap(pfn))
1908                 return true;
1909         if (pfn_t_special(pfn))
1910                 return true;
1911         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1912                 return true;
1913         return false;
1914 }
1915
1916 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1917                         pfn_t pfn, bool mkwrite)
1918 {
1919         pgprot_t pgprot = vma->vm_page_prot;
1920
1921         BUG_ON(!vm_mixed_ok(vma, pfn));
1922
1923         if (addr < vma->vm_start || addr >= vma->vm_end)
1924                 return -EFAULT;
1925
1926         track_pfn_insert(vma, &pgprot, pfn);
1927
1928         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1929                 return -EACCES;
1930
1931         /*
1932          * If we don't have pte special, then we have to use the pfn_valid()
1933          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1934          * refcount the page if pfn_valid is true (hence insert_page rather
1935          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1936          * without pte special, it would there be refcounted as a normal page.
1937          */
1938         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1939             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1940                 struct page *page;
1941
1942                 /*
1943                  * At this point we are committed to insert_page()
1944                  * regardless of whether the caller specified flags that
1945                  * result in pfn_t_has_page() == false.
1946                  */
1947                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1948                 return insert_page(vma, addr, page, pgprot);
1949         }
1950         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1951 }
1952
1953 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1954                         pfn_t pfn)
1955 {
1956         return __vm_insert_mixed(vma, addr, pfn, false);
1957
1958 }
1959 EXPORT_SYMBOL(vm_insert_mixed);
1960
1961 /*
1962  *  If the insertion of PTE failed because someone else already added a
1963  *  different entry in the mean time, we treat that as success as we assume
1964  *  the same entry was actually inserted.
1965  */
1966
1967 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1968                 unsigned long addr, pfn_t pfn)
1969 {
1970         int err;
1971
1972         err =  __vm_insert_mixed(vma, addr, pfn, true);
1973         if (err == -ENOMEM)
1974                 return VM_FAULT_OOM;
1975         if (err < 0 && err != -EBUSY)
1976                 return VM_FAULT_SIGBUS;
1977         return VM_FAULT_NOPAGE;
1978 }
1979 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1980
1981 /*
1982  * maps a range of physical memory into the requested pages. the old
1983  * mappings are removed. any references to nonexistent pages results
1984  * in null mappings (currently treated as "copy-on-access")
1985  */
1986 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1987                         unsigned long addr, unsigned long end,
1988                         unsigned long pfn, pgprot_t prot)
1989 {
1990         pte_t *pte;
1991         spinlock_t *ptl;
1992         int err = 0;
1993
1994         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1995         if (!pte)
1996                 return -ENOMEM;
1997         arch_enter_lazy_mmu_mode();
1998         do {
1999                 BUG_ON(!pte_none(*pte));
2000                 if (!pfn_modify_allowed(pfn, prot)) {
2001                         err = -EACCES;
2002                         break;
2003                 }
2004                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2005                 pfn++;
2006         } while (pte++, addr += PAGE_SIZE, addr != end);
2007         arch_leave_lazy_mmu_mode();
2008         pte_unmap_unlock(pte - 1, ptl);
2009         return err;
2010 }
2011
2012 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2013                         unsigned long addr, unsigned long end,
2014                         unsigned long pfn, pgprot_t prot)
2015 {
2016         pmd_t *pmd;
2017         unsigned long next;
2018         int err;
2019
2020         pfn -= addr >> PAGE_SHIFT;
2021         pmd = pmd_alloc(mm, pud, addr);
2022         if (!pmd)
2023                 return -ENOMEM;
2024         VM_BUG_ON(pmd_trans_huge(*pmd));
2025         do {
2026                 next = pmd_addr_end(addr, end);
2027                 err = remap_pte_range(mm, pmd, addr, next,
2028                                 pfn + (addr >> PAGE_SHIFT), prot);
2029                 if (err)
2030                         return err;
2031         } while (pmd++, addr = next, addr != end);
2032         return 0;
2033 }
2034
2035 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2036                         unsigned long addr, unsigned long end,
2037                         unsigned long pfn, pgprot_t prot)
2038 {
2039         pud_t *pud;
2040         unsigned long next;
2041         int err;
2042
2043         pfn -= addr >> PAGE_SHIFT;
2044         pud = pud_alloc(mm, p4d, addr);
2045         if (!pud)
2046                 return -ENOMEM;
2047         do {
2048                 next = pud_addr_end(addr, end);
2049                 err = remap_pmd_range(mm, pud, addr, next,
2050                                 pfn + (addr >> PAGE_SHIFT), prot);
2051                 if (err)
2052                         return err;
2053         } while (pud++, addr = next, addr != end);
2054         return 0;
2055 }
2056
2057 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2058                         unsigned long addr, unsigned long end,
2059                         unsigned long pfn, pgprot_t prot)
2060 {
2061         p4d_t *p4d;
2062         unsigned long next;
2063         int err;
2064
2065         pfn -= addr >> PAGE_SHIFT;
2066         p4d = p4d_alloc(mm, pgd, addr);
2067         if (!p4d)
2068                 return -ENOMEM;
2069         do {
2070                 next = p4d_addr_end(addr, end);
2071                 err = remap_pud_range(mm, p4d, addr, next,
2072                                 pfn + (addr >> PAGE_SHIFT), prot);
2073                 if (err)
2074                         return err;
2075         } while (p4d++, addr = next, addr != end);
2076         return 0;
2077 }
2078
2079 /**
2080  * remap_pfn_range - remap kernel memory to userspace
2081  * @vma: user vma to map to
2082  * @addr: target user address to start at
2083  * @pfn: physical address of kernel memory
2084  * @size: size of map area
2085  * @prot: page protection flags for this mapping
2086  *
2087  *  Note: this is only safe if the mm semaphore is held when called.
2088  */
2089 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2090                     unsigned long pfn, unsigned long size, pgprot_t prot)
2091 {
2092         pgd_t *pgd;
2093         unsigned long next;
2094         unsigned long end = addr + PAGE_ALIGN(size);
2095         struct mm_struct *mm = vma->vm_mm;
2096         unsigned long remap_pfn = pfn;
2097         int err;
2098
2099         /*
2100          * Physically remapped pages are special. Tell the
2101          * rest of the world about it:
2102          *   VM_IO tells people not to look at these pages
2103          *      (accesses can have side effects).
2104          *   VM_PFNMAP tells the core MM that the base pages are just
2105          *      raw PFN mappings, and do not have a "struct page" associated
2106          *      with them.
2107          *   VM_DONTEXPAND
2108          *      Disable vma merging and expanding with mremap().
2109          *   VM_DONTDUMP
2110          *      Omit vma from core dump, even when VM_IO turned off.
2111          *
2112          * There's a horrible special case to handle copy-on-write
2113          * behaviour that some programs depend on. We mark the "original"
2114          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2115          * See vm_normal_page() for details.
2116          */
2117         if (is_cow_mapping(vma->vm_flags)) {
2118                 if (addr != vma->vm_start || end != vma->vm_end)
2119                         return -EINVAL;
2120                 vma->vm_pgoff = pfn;
2121         }
2122
2123         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2124         if (err)
2125                 return -EINVAL;
2126
2127         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2128
2129         BUG_ON(addr >= end);
2130         pfn -= addr >> PAGE_SHIFT;
2131         pgd = pgd_offset(mm, addr);
2132         flush_cache_range(vma, addr, end);
2133         do {
2134                 next = pgd_addr_end(addr, end);
2135                 err = remap_p4d_range(mm, pgd, addr, next,
2136                                 pfn + (addr >> PAGE_SHIFT), prot);
2137                 if (err)
2138                         break;
2139         } while (pgd++, addr = next, addr != end);
2140
2141         if (err)
2142                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2143
2144         return err;
2145 }
2146 EXPORT_SYMBOL(remap_pfn_range);
2147
2148 /**
2149  * vm_iomap_memory - remap memory to userspace
2150  * @vma: user vma to map to
2151  * @start: start of area
2152  * @len: size of area
2153  *
2154  * This is a simplified io_remap_pfn_range() for common driver use. The
2155  * driver just needs to give us the physical memory range to be mapped,
2156  * we'll figure out the rest from the vma information.
2157  *
2158  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2159  * whatever write-combining details or similar.
2160  */
2161 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2162 {
2163         unsigned long vm_len, pfn, pages;
2164
2165         /* Check that the physical memory area passed in looks valid */
2166         if (start + len < start)
2167                 return -EINVAL;
2168         /*
2169          * You *really* shouldn't map things that aren't page-aligned,
2170          * but we've historically allowed it because IO memory might
2171          * just have smaller alignment.
2172          */
2173         len += start & ~PAGE_MASK;
2174         pfn = start >> PAGE_SHIFT;
2175         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2176         if (pfn + pages < pfn)
2177                 return -EINVAL;
2178
2179         /* We start the mapping 'vm_pgoff' pages into the area */
2180         if (vma->vm_pgoff > pages)
2181                 return -EINVAL;
2182         pfn += vma->vm_pgoff;
2183         pages -= vma->vm_pgoff;
2184
2185         /* Can we fit all of the mapping? */
2186         vm_len = vma->vm_end - vma->vm_start;
2187         if (vm_len >> PAGE_SHIFT > pages)
2188                 return -EINVAL;
2189
2190         /* Ok, let it rip */
2191         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2192 }
2193 EXPORT_SYMBOL(vm_iomap_memory);
2194
2195 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2196                                      unsigned long addr, unsigned long end,
2197                                      pte_fn_t fn, void *data)
2198 {
2199         pte_t *pte;
2200         int err;
2201         pgtable_t token;
2202         spinlock_t *uninitialized_var(ptl);
2203
2204         pte = (mm == &init_mm) ?
2205                 pte_alloc_kernel(pmd, addr) :
2206                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2207         if (!pte)
2208                 return -ENOMEM;
2209
2210         BUG_ON(pmd_huge(*pmd));
2211
2212         arch_enter_lazy_mmu_mode();
2213
2214         token = pmd_pgtable(*pmd);
2215
2216         do {
2217                 err = fn(pte++, token, addr, data);
2218                 if (err)
2219                         break;
2220         } while (addr += PAGE_SIZE, addr != end);
2221
2222         arch_leave_lazy_mmu_mode();
2223
2224         if (mm != &init_mm)
2225                 pte_unmap_unlock(pte-1, ptl);
2226         return err;
2227 }
2228
2229 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2230                                      unsigned long addr, unsigned long end,
2231                                      pte_fn_t fn, void *data)
2232 {
2233         pmd_t *pmd;
2234         unsigned long next;
2235         int err;
2236
2237         BUG_ON(pud_huge(*pud));
2238
2239         pmd = pmd_alloc(mm, pud, addr);
2240         if (!pmd)
2241                 return -ENOMEM;
2242         do {
2243                 next = pmd_addr_end(addr, end);
2244                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2245                 if (err)
2246                         break;
2247         } while (pmd++, addr = next, addr != end);
2248         return err;
2249 }
2250
2251 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2252                                      unsigned long addr, unsigned long end,
2253                                      pte_fn_t fn, void *data)
2254 {
2255         pud_t *pud;
2256         unsigned long next;
2257         int err;
2258
2259         pud = pud_alloc(mm, p4d, addr);
2260         if (!pud)
2261                 return -ENOMEM;
2262         do {
2263                 next = pud_addr_end(addr, end);
2264                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2265                 if (err)
2266                         break;
2267         } while (pud++, addr = next, addr != end);
2268         return err;
2269 }
2270
2271 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2272                                      unsigned long addr, unsigned long end,
2273                                      pte_fn_t fn, void *data)
2274 {
2275         p4d_t *p4d;
2276         unsigned long next;
2277         int err;
2278
2279         p4d = p4d_alloc(mm, pgd, addr);
2280         if (!p4d)
2281                 return -ENOMEM;
2282         do {
2283                 next = p4d_addr_end(addr, end);
2284                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2285                 if (err)
2286                         break;
2287         } while (p4d++, addr = next, addr != end);
2288         return err;
2289 }
2290
2291 /*
2292  * Scan a region of virtual memory, filling in page tables as necessary
2293  * and calling a provided function on each leaf page table.
2294  */
2295 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2296                         unsigned long size, pte_fn_t fn, void *data)
2297 {
2298         pgd_t *pgd;
2299         unsigned long next;
2300         unsigned long end = addr + size;
2301         int err;
2302
2303         if (WARN_ON(addr >= end))
2304                 return -EINVAL;
2305
2306         pgd = pgd_offset(mm, addr);
2307         do {
2308                 next = pgd_addr_end(addr, end);
2309                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2310                 if (err)
2311                         break;
2312         } while (pgd++, addr = next, addr != end);
2313
2314         return err;
2315 }
2316 EXPORT_SYMBOL_GPL(apply_to_page_range);
2317
2318 /*
2319  * handle_pte_fault chooses page fault handler according to an entry which was
2320  * read non-atomically.  Before making any commitment, on those architectures
2321  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2322  * parts, do_swap_page must check under lock before unmapping the pte and
2323  * proceeding (but do_wp_page is only called after already making such a check;
2324  * and do_anonymous_page can safely check later on).
2325  */
2326 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2327                                 pte_t *page_table, pte_t orig_pte)
2328 {
2329         int same = 1;
2330 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2331         if (sizeof(pte_t) > sizeof(unsigned long)) {
2332                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2333                 spin_lock(ptl);
2334                 same = pte_same(*page_table, orig_pte);
2335                 spin_unlock(ptl);
2336         }
2337 #endif
2338         pte_unmap(page_table);
2339         return same;
2340 }
2341
2342 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2343 {
2344         debug_dma_assert_idle(src);
2345
2346         /*
2347          * If the source page was a PFN mapping, we don't have
2348          * a "struct page" for it. We do a best-effort copy by
2349          * just copying from the original user address. If that
2350          * fails, we just zero-fill it. Live with it.
2351          */
2352         if (unlikely(!src)) {
2353                 void *kaddr = kmap_atomic(dst);
2354                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2355
2356                 /*
2357                  * This really shouldn't fail, because the page is there
2358                  * in the page tables. But it might just be unreadable,
2359                  * in which case we just give up and fill the result with
2360                  * zeroes.
2361                  */
2362                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2363                         clear_page(kaddr);
2364                 kunmap_atomic(kaddr);
2365                 flush_dcache_page(dst);
2366         } else
2367                 copy_user_highpage(dst, src, va, vma);
2368 }
2369
2370 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2371 {
2372         struct file *vm_file = vma->vm_file;
2373
2374         if (vm_file)
2375                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2376
2377         /*
2378          * Special mappings (e.g. VDSO) do not have any file so fake
2379          * a default GFP_KERNEL for them.
2380          */
2381         return GFP_KERNEL;
2382 }
2383
2384 /*
2385  * Notify the address space that the page is about to become writable so that
2386  * it can prohibit this or wait for the page to get into an appropriate state.
2387  *
2388  * We do this without the lock held, so that it can sleep if it needs to.
2389  */
2390 static int do_page_mkwrite(struct vm_fault *vmf)
2391 {
2392         int ret;
2393         struct page *page = vmf->page;
2394         unsigned int old_flags = vmf->flags;
2395
2396         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2397
2398         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2399         /* Restore original flags so that caller is not surprised */
2400         vmf->flags = old_flags;
2401         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2402                 return ret;
2403         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2404                 lock_page(page);
2405                 if (!page->mapping) {
2406                         unlock_page(page);
2407                         return 0; /* retry */
2408                 }
2409                 ret |= VM_FAULT_LOCKED;
2410         } else
2411                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2412         return ret;
2413 }
2414
2415 /*
2416  * Handle dirtying of a page in shared file mapping on a write fault.
2417  *
2418  * The function expects the page to be locked and unlocks it.
2419  */
2420 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2421                                     struct page *page)
2422 {
2423         struct address_space *mapping;
2424         bool dirtied;
2425         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2426
2427         dirtied = set_page_dirty(page);
2428         VM_BUG_ON_PAGE(PageAnon(page), page);
2429         /*
2430          * Take a local copy of the address_space - page.mapping may be zeroed
2431          * by truncate after unlock_page().   The address_space itself remains
2432          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2433          * release semantics to prevent the compiler from undoing this copying.
2434          */
2435         mapping = page_rmapping(page);
2436         unlock_page(page);
2437
2438         if ((dirtied || page_mkwrite) && mapping) {
2439                 /*
2440                  * Some device drivers do not set page.mapping
2441                  * but still dirty their pages
2442                  */
2443                 balance_dirty_pages_ratelimited(mapping);
2444         }
2445
2446         if (!page_mkwrite)
2447                 file_update_time(vma->vm_file);
2448 }
2449
2450 /*
2451  * Handle write page faults for pages that can be reused in the current vma
2452  *
2453  * This can happen either due to the mapping being with the VM_SHARED flag,
2454  * or due to us being the last reference standing to the page. In either
2455  * case, all we need to do here is to mark the page as writable and update
2456  * any related book-keeping.
2457  */
2458 static inline void wp_page_reuse(struct vm_fault *vmf)
2459         __releases(vmf->ptl)
2460 {
2461         struct vm_area_struct *vma = vmf->vma;
2462         struct page *page = vmf->page;
2463         pte_t entry;
2464         /*
2465          * Clear the pages cpupid information as the existing
2466          * information potentially belongs to a now completely
2467          * unrelated process.
2468          */
2469         if (page)
2470                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2471
2472         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2473         entry = pte_mkyoung(vmf->orig_pte);
2474         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2475         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2476                 update_mmu_cache(vma, vmf->address, vmf->pte);
2477         pte_unmap_unlock(vmf->pte, vmf->ptl);
2478 }
2479
2480 /*
2481  * Handle the case of a page which we actually need to copy to a new page.
2482  *
2483  * Called with mmap_sem locked and the old page referenced, but
2484  * without the ptl held.
2485  *
2486  * High level logic flow:
2487  *
2488  * - Allocate a page, copy the content of the old page to the new one.
2489  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2490  * - Take the PTL. If the pte changed, bail out and release the allocated page
2491  * - If the pte is still the way we remember it, update the page table and all
2492  *   relevant references. This includes dropping the reference the page-table
2493  *   held to the old page, as well as updating the rmap.
2494  * - In any case, unlock the PTL and drop the reference we took to the old page.
2495  */
2496 static int wp_page_copy(struct vm_fault *vmf)
2497 {
2498         struct vm_area_struct *vma = vmf->vma;
2499         struct mm_struct *mm = vma->vm_mm;
2500         struct page *old_page = vmf->page;
2501         struct page *new_page = NULL;
2502         pte_t entry;
2503         int page_copied = 0;
2504         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2505         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2506         struct mem_cgroup *memcg;
2507
2508         if (unlikely(anon_vma_prepare(vma)))
2509                 goto oom;
2510
2511         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2512                 new_page = alloc_zeroed_user_highpage_movable(vma,
2513                                                               vmf->address);
2514                 if (!new_page)
2515                         goto oom;
2516         } else {
2517                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2518                                 vmf->address);
2519                 if (!new_page)
2520                         goto oom;
2521                 cow_user_page(new_page, old_page, vmf->address, vma);
2522         }
2523
2524         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2525                 goto oom_free_new;
2526
2527         __SetPageUptodate(new_page);
2528
2529         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2530
2531         /*
2532          * Re-check the pte - we dropped the lock
2533          */
2534         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2535         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2536                 if (old_page) {
2537                         if (!PageAnon(old_page)) {
2538                                 dec_mm_counter_fast(mm,
2539                                                 mm_counter_file(old_page));
2540                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2541                         }
2542                 } else {
2543                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2544                 }
2545                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2546                 entry = mk_pte(new_page, vma->vm_page_prot);
2547                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2548                 /*
2549                  * Clear the pte entry and flush it first, before updating the
2550                  * pte with the new entry. This will avoid a race condition
2551                  * seen in the presence of one thread doing SMC and another
2552                  * thread doing COW.
2553                  */
2554                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2555                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2556                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2557                 lru_cache_add_active_or_unevictable(new_page, vma);
2558                 /*
2559                  * We call the notify macro here because, when using secondary
2560                  * mmu page tables (such as kvm shadow page tables), we want the
2561                  * new page to be mapped directly into the secondary page table.
2562                  */
2563                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2564                 update_mmu_cache(vma, vmf->address, vmf->pte);
2565                 if (old_page) {
2566                         /*
2567                          * Only after switching the pte to the new page may
2568                          * we remove the mapcount here. Otherwise another
2569                          * process may come and find the rmap count decremented
2570                          * before the pte is switched to the new page, and
2571                          * "reuse" the old page writing into it while our pte
2572                          * here still points into it and can be read by other
2573                          * threads.
2574                          *
2575                          * The critical issue is to order this
2576                          * page_remove_rmap with the ptp_clear_flush above.
2577                          * Those stores are ordered by (if nothing else,)
2578                          * the barrier present in the atomic_add_negative
2579                          * in page_remove_rmap.
2580                          *
2581                          * Then the TLB flush in ptep_clear_flush ensures that
2582                          * no process can access the old page before the
2583                          * decremented mapcount is visible. And the old page
2584                          * cannot be reused until after the decremented
2585                          * mapcount is visible. So transitively, TLBs to
2586                          * old page will be flushed before it can be reused.
2587                          */
2588                         page_remove_rmap(old_page, false);
2589                 }
2590
2591                 /* Free the old page.. */
2592                 new_page = old_page;
2593                 page_copied = 1;
2594         } else {
2595                 mem_cgroup_cancel_charge(new_page, memcg, false);
2596         }
2597
2598         if (new_page)
2599                 put_page(new_page);
2600
2601         pte_unmap_unlock(vmf->pte, vmf->ptl);
2602         /*
2603          * No need to double call mmu_notifier->invalidate_range() callback as
2604          * the above ptep_clear_flush_notify() did already call it.
2605          */
2606         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2607         if (old_page) {
2608                 /*
2609                  * Don't let another task, with possibly unlocked vma,
2610                  * keep the mlocked page.
2611                  */
2612                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2613                         lock_page(old_page);    /* LRU manipulation */
2614                         if (PageMlocked(old_page))
2615                                 munlock_vma_page(old_page);
2616                         unlock_page(old_page);
2617                 }
2618                 put_page(old_page);
2619         }
2620         return page_copied ? VM_FAULT_WRITE : 0;
2621 oom_free_new:
2622         put_page(new_page);
2623 oom:
2624         if (old_page)
2625                 put_page(old_page);
2626         return VM_FAULT_OOM;
2627 }
2628
2629 /**
2630  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2631  *                        writeable once the page is prepared
2632  *
2633  * @vmf: structure describing the fault
2634  *
2635  * This function handles all that is needed to finish a write page fault in a
2636  * shared mapping due to PTE being read-only once the mapped page is prepared.
2637  * It handles locking of PTE and modifying it. The function returns
2638  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2639  * lock.
2640  *
2641  * The function expects the page to be locked or other protection against
2642  * concurrent faults / writeback (such as DAX radix tree locks).
2643  */
2644 int finish_mkwrite_fault(struct vm_fault *vmf)
2645 {
2646         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2647         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2648                                        &vmf->ptl);
2649         /*
2650          * We might have raced with another page fault while we released the
2651          * pte_offset_map_lock.
2652          */
2653         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2654                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2655                 return VM_FAULT_NOPAGE;
2656         }
2657         wp_page_reuse(vmf);
2658         return 0;
2659 }
2660
2661 /*
2662  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2663  * mapping
2664  */
2665 static int wp_pfn_shared(struct vm_fault *vmf)
2666 {
2667         struct vm_area_struct *vma = vmf->vma;
2668
2669         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2670                 int ret;
2671
2672                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2673                 vmf->flags |= FAULT_FLAG_MKWRITE;
2674                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2675                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2676                         return ret;
2677                 return finish_mkwrite_fault(vmf);
2678         }
2679         wp_page_reuse(vmf);
2680         return VM_FAULT_WRITE;
2681 }
2682
2683 static int wp_page_shared(struct vm_fault *vmf)
2684         __releases(vmf->ptl)
2685 {
2686         struct vm_area_struct *vma = vmf->vma;
2687
2688         get_page(vmf->page);
2689
2690         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2691                 int tmp;
2692
2693                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2694                 tmp = do_page_mkwrite(vmf);
2695                 if (unlikely(!tmp || (tmp &
2696                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2697                         put_page(vmf->page);
2698                         return tmp;
2699                 }
2700                 tmp = finish_mkwrite_fault(vmf);
2701                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2702                         unlock_page(vmf->page);
2703                         put_page(vmf->page);
2704                         return tmp;
2705                 }
2706         } else {
2707                 wp_page_reuse(vmf);
2708                 lock_page(vmf->page);
2709         }
2710         fault_dirty_shared_page(vma, vmf->page);
2711         put_page(vmf->page);
2712
2713         return VM_FAULT_WRITE;
2714 }
2715
2716 /*
2717  * This routine handles present pages, when users try to write
2718  * to a shared page. It is done by copying the page to a new address
2719  * and decrementing the shared-page counter for the old page.
2720  *
2721  * Note that this routine assumes that the protection checks have been
2722  * done by the caller (the low-level page fault routine in most cases).
2723  * Thus we can safely just mark it writable once we've done any necessary
2724  * COW.
2725  *
2726  * We also mark the page dirty at this point even though the page will
2727  * change only once the write actually happens. This avoids a few races,
2728  * and potentially makes it more efficient.
2729  *
2730  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2731  * but allow concurrent faults), with pte both mapped and locked.
2732  * We return with mmap_sem still held, but pte unmapped and unlocked.
2733  */
2734 static int do_wp_page(struct vm_fault *vmf)
2735         __releases(vmf->ptl)
2736 {
2737         struct vm_area_struct *vma = vmf->vma;
2738
2739         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2740         if (!vmf->page) {
2741                 /*
2742                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2743                  * VM_PFNMAP VMA.
2744                  *
2745                  * We should not cow pages in a shared writeable mapping.
2746                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2747                  */
2748                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2749                                      (VM_WRITE|VM_SHARED))
2750                         return wp_pfn_shared(vmf);
2751
2752                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2753                 return wp_page_copy(vmf);
2754         }
2755
2756         /*
2757          * Take out anonymous pages first, anonymous shared vmas are
2758          * not dirty accountable.
2759          */
2760         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2761                 int total_map_swapcount;
2762                 if (!trylock_page(vmf->page)) {
2763                         get_page(vmf->page);
2764                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2765                         lock_page(vmf->page);
2766                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2767                                         vmf->address, &vmf->ptl);
2768                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2769                                 unlock_page(vmf->page);
2770                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2771                                 put_page(vmf->page);
2772                                 return 0;
2773                         }
2774                         put_page(vmf->page);
2775                 }
2776                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2777                         if (total_map_swapcount == 1) {
2778                                 /*
2779                                  * The page is all ours. Move it to
2780                                  * our anon_vma so the rmap code will
2781                                  * not search our parent or siblings.
2782                                  * Protected against the rmap code by
2783                                  * the page lock.
2784                                  */
2785                                 page_move_anon_rmap(vmf->page, vma);
2786                         }
2787                         unlock_page(vmf->page);
2788                         wp_page_reuse(vmf);
2789                         return VM_FAULT_WRITE;
2790                 }
2791                 unlock_page(vmf->page);
2792         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2793                                         (VM_WRITE|VM_SHARED))) {
2794                 return wp_page_shared(vmf);
2795         }
2796
2797         /*
2798          * Ok, we need to copy. Oh, well..
2799          */
2800         get_page(vmf->page);
2801
2802         pte_unmap_unlock(vmf->pte, vmf->ptl);
2803         return wp_page_copy(vmf);
2804 }
2805
2806 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2807                 unsigned long start_addr, unsigned long end_addr,
2808                 struct zap_details *details)
2809 {
2810         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2811 }
2812
2813 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2814                                             struct zap_details *details)
2815 {
2816         struct vm_area_struct *vma;
2817         pgoff_t vba, vea, zba, zea;
2818
2819         vma_interval_tree_foreach(vma, root,
2820                         details->first_index, details->last_index) {
2821
2822                 vba = vma->vm_pgoff;
2823                 vea = vba + vma_pages(vma) - 1;
2824                 zba = details->first_index;
2825                 if (zba < vba)
2826                         zba = vba;
2827                 zea = details->last_index;
2828                 if (zea > vea)
2829                         zea = vea;
2830
2831                 unmap_mapping_range_vma(vma,
2832                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2833                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2834                                 details);
2835         }
2836 }
2837
2838 /**
2839  * unmap_mapping_pages() - Unmap pages from processes.
2840  * @mapping: The address space containing pages to be unmapped.
2841  * @start: Index of first page to be unmapped.
2842  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2843  * @even_cows: Whether to unmap even private COWed pages.
2844  *
2845  * Unmap the pages in this address space from any userspace process which
2846  * has them mmaped.  Generally, you want to remove COWed pages as well when
2847  * a file is being truncated, but not when invalidating pages from the page
2848  * cache.
2849  */
2850 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2851                 pgoff_t nr, bool even_cows)
2852 {
2853         struct zap_details details = { };
2854
2855         details.check_mapping = even_cows ? NULL : mapping;
2856         details.first_index = start;
2857         details.last_index = start + nr - 1;
2858         if (details.last_index < details.first_index)
2859                 details.last_index = ULONG_MAX;
2860
2861         i_mmap_lock_write(mapping);
2862         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2863                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2864         i_mmap_unlock_write(mapping);
2865 }
2866
2867 /**
2868  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2869  * address_space corresponding to the specified byte range in the underlying
2870  * file.
2871  *
2872  * @mapping: the address space containing mmaps to be unmapped.
2873  * @holebegin: byte in first page to unmap, relative to the start of
2874  * the underlying file.  This will be rounded down to a PAGE_SIZE
2875  * boundary.  Note that this is different from truncate_pagecache(), which
2876  * must keep the partial page.  In contrast, we must get rid of
2877  * partial pages.
2878  * @holelen: size of prospective hole in bytes.  This will be rounded
2879  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2880  * end of the file.
2881  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2882  * but 0 when invalidating pagecache, don't throw away private data.
2883  */
2884 void unmap_mapping_range(struct address_space *mapping,
2885                 loff_t const holebegin, loff_t const holelen, int even_cows)
2886 {
2887         pgoff_t hba = holebegin >> PAGE_SHIFT;
2888         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2889
2890         /* Check for overflow. */
2891         if (sizeof(holelen) > sizeof(hlen)) {
2892                 long long holeend =
2893                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2894                 if (holeend & ~(long long)ULONG_MAX)
2895                         hlen = ULONG_MAX - hba + 1;
2896         }
2897
2898         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2899 }
2900 EXPORT_SYMBOL(unmap_mapping_range);
2901
2902 /*
2903  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2904  * but allow concurrent faults), and pte mapped but not yet locked.
2905  * We return with pte unmapped and unlocked.
2906  *
2907  * We return with the mmap_sem locked or unlocked in the same cases
2908  * as does filemap_fault().
2909  */
2910 int do_swap_page(struct vm_fault *vmf)
2911 {
2912         struct vm_area_struct *vma = vmf->vma;
2913         struct page *page = NULL, *swapcache;
2914         struct mem_cgroup *memcg;
2915         swp_entry_t entry;
2916         pte_t pte;
2917         int locked;
2918         int exclusive = 0;
2919         int ret = 0;
2920
2921         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2922                 goto out;
2923
2924         entry = pte_to_swp_entry(vmf->orig_pte);
2925         if (unlikely(non_swap_entry(entry))) {
2926                 if (is_migration_entry(entry)) {
2927                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2928                                              vmf->address);
2929                 } else if (is_device_private_entry(entry)) {
2930                         /*
2931                          * For un-addressable device memory we call the pgmap
2932                          * fault handler callback. The callback must migrate
2933                          * the page back to some CPU accessible page.
2934                          */
2935                         ret = device_private_entry_fault(vma, vmf->address, entry,
2936                                                  vmf->flags, vmf->pmd);
2937                 } else if (is_hwpoison_entry(entry)) {
2938                         ret = VM_FAULT_HWPOISON;
2939                 } else {
2940                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2941                         ret = VM_FAULT_SIGBUS;
2942                 }
2943                 goto out;
2944         }
2945
2946
2947         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2948         page = lookup_swap_cache(entry, vma, vmf->address);
2949         swapcache = page;
2950
2951         if (!page) {
2952                 struct swap_info_struct *si = swp_swap_info(entry);
2953
2954                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2955                                 __swap_count(si, entry) == 1) {
2956                         /* skip swapcache */
2957                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2958                                                         vmf->address);
2959                         if (page) {
2960                                 __SetPageLocked(page);
2961                                 __SetPageSwapBacked(page);
2962                                 set_page_private(page, entry.val);
2963                                 lru_cache_add_anon(page);
2964                                 swap_readpage(page, true);
2965                         }
2966                 } else {
2967                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2968                                                 vmf);
2969                         swapcache = page;
2970                 }
2971
2972                 if (!page) {
2973                         /*
2974                          * Back out if somebody else faulted in this pte
2975                          * while we released the pte lock.
2976                          */
2977                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2978                                         vmf->address, &vmf->ptl);
2979                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2980                                 ret = VM_FAULT_OOM;
2981                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2982                         goto unlock;
2983                 }
2984
2985                 /* Had to read the page from swap area: Major fault */
2986                 ret = VM_FAULT_MAJOR;
2987                 count_vm_event(PGMAJFAULT);
2988                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2989         } else if (PageHWPoison(page)) {
2990                 /*
2991                  * hwpoisoned dirty swapcache pages are kept for killing
2992                  * owner processes (which may be unknown at hwpoison time)
2993                  */
2994                 ret = VM_FAULT_HWPOISON;
2995                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2996                 goto out_release;
2997         }
2998
2999         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3000
3001         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3002         if (!locked) {
3003                 ret |= VM_FAULT_RETRY;
3004                 goto out_release;
3005         }
3006
3007         /*
3008          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3009          * release the swapcache from under us.  The page pin, and pte_same
3010          * test below, are not enough to exclude that.  Even if it is still
3011          * swapcache, we need to check that the page's swap has not changed.
3012          */
3013         if (unlikely((!PageSwapCache(page) ||
3014                         page_private(page) != entry.val)) && swapcache)
3015                 goto out_page;
3016
3017         page = ksm_might_need_to_copy(page, vma, vmf->address);
3018         if (unlikely(!page)) {
3019                 ret = VM_FAULT_OOM;
3020                 page = swapcache;
3021                 goto out_page;
3022         }
3023
3024         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3025                                         &memcg, false)) {
3026                 ret = VM_FAULT_OOM;
3027                 goto out_page;
3028         }
3029
3030         /*
3031          * Back out if somebody else already faulted in this pte.
3032          */
3033         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3034                         &vmf->ptl);
3035         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3036                 goto out_nomap;
3037
3038         if (unlikely(!PageUptodate(page))) {
3039                 ret = VM_FAULT_SIGBUS;
3040                 goto out_nomap;
3041         }
3042
3043         /*
3044          * The page isn't present yet, go ahead with the fault.
3045          *
3046          * Be careful about the sequence of operations here.
3047          * To get its accounting right, reuse_swap_page() must be called
3048          * while the page is counted on swap but not yet in mapcount i.e.
3049          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3050          * must be called after the swap_free(), or it will never succeed.
3051          */
3052
3053         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3054         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3055         pte = mk_pte(page, vma->vm_page_prot);
3056         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3057                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3058                 vmf->flags &= ~FAULT_FLAG_WRITE;
3059                 ret |= VM_FAULT_WRITE;
3060                 exclusive = RMAP_EXCLUSIVE;
3061         }
3062         flush_icache_page(vma, page);
3063         if (pte_swp_soft_dirty(vmf->orig_pte))
3064                 pte = pte_mksoft_dirty(pte);
3065         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3066         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3067         vmf->orig_pte = pte;
3068
3069         /* ksm created a completely new copy */
3070         if (unlikely(page != swapcache && swapcache)) {
3071                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3072                 mem_cgroup_commit_charge(page, memcg, false, false);
3073                 lru_cache_add_active_or_unevictable(page, vma);
3074         } else {
3075                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3076                 mem_cgroup_commit_charge(page, memcg, true, false);
3077                 activate_page(page);
3078         }
3079
3080         swap_free(entry);
3081         if (mem_cgroup_swap_full(page) ||
3082             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3083                 try_to_free_swap(page);
3084         unlock_page(page);
3085         if (page != swapcache && swapcache) {
3086                 /*
3087                  * Hold the lock to avoid the swap entry to be reused
3088                  * until we take the PT lock for the pte_same() check
3089                  * (to avoid false positives from pte_same). For
3090                  * further safety release the lock after the swap_free
3091                  * so that the swap count won't change under a
3092                  * parallel locked swapcache.
3093                  */
3094                 unlock_page(swapcache);
3095                 put_page(swapcache);
3096         }
3097
3098         if (vmf->flags & FAULT_FLAG_WRITE) {
3099                 ret |= do_wp_page(vmf);
3100                 if (ret & VM_FAULT_ERROR)
3101                         ret &= VM_FAULT_ERROR;
3102                 goto out;
3103         }
3104
3105         /* No need to invalidate - it was non-present before */
3106         update_mmu_cache(vma, vmf->address, vmf->pte);
3107 unlock:
3108         pte_unmap_unlock(vmf->pte, vmf->ptl);
3109 out:
3110         return ret;
3111 out_nomap:
3112         mem_cgroup_cancel_charge(page, memcg, false);
3113         pte_unmap_unlock(vmf->pte, vmf->ptl);
3114 out_page:
3115         unlock_page(page);
3116 out_release:
3117         put_page(page);
3118         if (page != swapcache && swapcache) {
3119                 unlock_page(swapcache);
3120                 put_page(swapcache);
3121         }
3122         return ret;
3123 }
3124
3125 /*
3126  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3127  * but allow concurrent faults), and pte mapped but not yet locked.
3128  * We return with mmap_sem still held, but pte unmapped and unlocked.
3129  */
3130 static int do_anonymous_page(struct vm_fault *vmf)
3131 {
3132         struct vm_area_struct *vma = vmf->vma;
3133         struct mem_cgroup *memcg;
3134         struct page *page;
3135         int ret = 0;
3136         pte_t entry;
3137
3138         /* File mapping without ->vm_ops ? */
3139         if (vma->vm_flags & VM_SHARED)
3140                 return VM_FAULT_SIGBUS;
3141
3142         /*
3143          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3144          * pte_offset_map() on pmds where a huge pmd might be created
3145          * from a different thread.
3146          *
3147          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3148          * parallel threads are excluded by other means.
3149          *
3150          * Here we only have down_read(mmap_sem).
3151          */
3152         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3153                 return VM_FAULT_OOM;
3154
3155         /* See the comment in pte_alloc_one_map() */
3156         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3157                 return 0;
3158
3159         /* Use the zero-page for reads */
3160         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3161                         !mm_forbids_zeropage(vma->vm_mm)) {
3162                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3163                                                 vma->vm_page_prot));
3164                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3165                                 vmf->address, &vmf->ptl);
3166                 if (!pte_none(*vmf->pte))
3167                         goto unlock;
3168                 ret = check_stable_address_space(vma->vm_mm);
3169                 if (ret)
3170                         goto unlock;
3171                 /* Deliver the page fault to userland, check inside PT lock */
3172                 if (userfaultfd_missing(vma)) {
3173                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3174                         return handle_userfault(vmf, VM_UFFD_MISSING);
3175                 }
3176                 goto setpte;
3177         }
3178
3179         /* Allocate our own private page. */
3180         if (unlikely(anon_vma_prepare(vma)))
3181                 goto oom;
3182         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3183         if (!page)
3184                 goto oom;
3185
3186         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3187                                         false))
3188                 goto oom_free_page;
3189
3190         /*
3191          * The memory barrier inside __SetPageUptodate makes sure that
3192          * preceeding stores to the page contents become visible before
3193          * the set_pte_at() write.
3194          */
3195         __SetPageUptodate(page);
3196
3197         entry = mk_pte(page, vma->vm_page_prot);
3198         if (vma->vm_flags & VM_WRITE)
3199                 entry = pte_mkwrite(pte_mkdirty(entry));
3200
3201         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3202                         &vmf->ptl);
3203         if (!pte_none(*vmf->pte))
3204                 goto release;
3205
3206         ret = check_stable_address_space(vma->vm_mm);
3207         if (ret)
3208                 goto release;
3209
3210         /* Deliver the page fault to userland, check inside PT lock */
3211         if (userfaultfd_missing(vma)) {
3212                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3213                 mem_cgroup_cancel_charge(page, memcg, false);
3214                 put_page(page);
3215                 return handle_userfault(vmf, VM_UFFD_MISSING);
3216         }
3217
3218         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3219         page_add_new_anon_rmap(page, vma, vmf->address, false);
3220         mem_cgroup_commit_charge(page, memcg, false, false);
3221         lru_cache_add_active_or_unevictable(page, vma);
3222 setpte:
3223         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3224
3225         /* No need to invalidate - it was non-present before */
3226         update_mmu_cache(vma, vmf->address, vmf->pte);
3227 unlock:
3228         pte_unmap_unlock(vmf->pte, vmf->ptl);
3229         return ret;
3230 release:
3231         mem_cgroup_cancel_charge(page, memcg, false);
3232         put_page(page);
3233         goto unlock;
3234 oom_free_page:
3235         put_page(page);
3236 oom:
3237         return VM_FAULT_OOM;
3238 }
3239
3240 /*
3241  * The mmap_sem must have been held on entry, and may have been
3242  * released depending on flags and vma->vm_ops->fault() return value.
3243  * See filemap_fault() and __lock_page_retry().
3244  */
3245 static int __do_fault(struct vm_fault *vmf)
3246 {
3247         struct vm_area_struct *vma = vmf->vma;
3248         int ret;
3249
3250         ret = vma->vm_ops->fault(vmf);
3251         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3252                             VM_FAULT_DONE_COW)))
3253                 return ret;
3254
3255         if (unlikely(PageHWPoison(vmf->page))) {
3256                 if (ret & VM_FAULT_LOCKED)
3257                         unlock_page(vmf->page);
3258                 put_page(vmf->page);
3259                 vmf->page = NULL;
3260                 return VM_FAULT_HWPOISON;
3261         }
3262
3263         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3264                 lock_page(vmf->page);
3265         else
3266                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3267
3268         return ret;
3269 }
3270
3271 /*
3272  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3273  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3274  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3275  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3276  */
3277 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3278 {
3279         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3280 }
3281
3282 static int pte_alloc_one_map(struct vm_fault *vmf)
3283 {
3284         struct vm_area_struct *vma = vmf->vma;
3285
3286         if (!pmd_none(*vmf->pmd))
3287                 goto map_pte;
3288         if (vmf->prealloc_pte) {
3289                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3290                 if (unlikely(!pmd_none(*vmf->pmd))) {
3291                         spin_unlock(vmf->ptl);
3292                         goto map_pte;
3293                 }
3294
3295                 mm_inc_nr_ptes(vma->vm_mm);
3296                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3297                 spin_unlock(vmf->ptl);
3298                 vmf->prealloc_pte = NULL;
3299         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3300                 return VM_FAULT_OOM;
3301         }
3302 map_pte:
3303         /*
3304          * If a huge pmd materialized under us just retry later.  Use
3305          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3306          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3307          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3308          * running immediately after a huge pmd fault in a different thread of
3309          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3310          * All we have to ensure is that it is a regular pmd that we can walk
3311          * with pte_offset_map() and we can do that through an atomic read in
3312          * C, which is what pmd_trans_unstable() provides.
3313          */
3314         if (pmd_devmap_trans_unstable(vmf->pmd))
3315                 return VM_FAULT_NOPAGE;
3316
3317         /*
3318          * At this point we know that our vmf->pmd points to a page of ptes
3319          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3320          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3321          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3322          * be valid and we will re-check to make sure the vmf->pte isn't
3323          * pte_none() under vmf->ptl protection when we return to
3324          * alloc_set_pte().
3325          */
3326         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3327                         &vmf->ptl);
3328         return 0;
3329 }
3330
3331 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3332
3333 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3334 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3335                 unsigned long haddr)
3336 {
3337         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3338                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3339                 return false;
3340         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3341                 return false;
3342         return true;
3343 }
3344
3345 static void deposit_prealloc_pte(struct vm_fault *vmf)
3346 {
3347         struct vm_area_struct *vma = vmf->vma;
3348
3349         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3350         /*
3351          * We are going to consume the prealloc table,
3352          * count that as nr_ptes.
3353          */
3354         mm_inc_nr_ptes(vma->vm_mm);
3355         vmf->prealloc_pte = NULL;
3356 }
3357
3358 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3359 {
3360         struct vm_area_struct *vma = vmf->vma;
3361         bool write = vmf->flags & FAULT_FLAG_WRITE;
3362         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3363         pmd_t entry;
3364         int i, ret;
3365
3366         if (!transhuge_vma_suitable(vma, haddr))
3367                 return VM_FAULT_FALLBACK;
3368
3369         ret = VM_FAULT_FALLBACK;
3370         page = compound_head(page);
3371
3372         /*
3373          * Archs like ppc64 need additonal space to store information
3374          * related to pte entry. Use the preallocated table for that.
3375          */
3376         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3377                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3378                 if (!vmf->prealloc_pte)
3379                         return VM_FAULT_OOM;
3380                 smp_wmb(); /* See comment in __pte_alloc() */
3381         }
3382
3383         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3384         if (unlikely(!pmd_none(*vmf->pmd)))
3385                 goto out;
3386
3387         for (i = 0; i < HPAGE_PMD_NR; i++)
3388                 flush_icache_page(vma, page + i);
3389
3390         entry = mk_huge_pmd(page, vma->vm_page_prot);
3391         if (write)
3392                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3393
3394         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3395         page_add_file_rmap(page, true);
3396         /*
3397          * deposit and withdraw with pmd lock held
3398          */
3399         if (arch_needs_pgtable_deposit())
3400                 deposit_prealloc_pte(vmf);
3401
3402         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3403
3404         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3405
3406         /* fault is handled */
3407         ret = 0;
3408         count_vm_event(THP_FILE_MAPPED);
3409 out:
3410         spin_unlock(vmf->ptl);
3411         return ret;
3412 }
3413 #else
3414 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3415 {
3416         BUILD_BUG();
3417         return 0;
3418 }
3419 #endif
3420
3421 /**
3422  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3423  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3424  *
3425  * @vmf: fault environment
3426  * @memcg: memcg to charge page (only for private mappings)
3427  * @page: page to map
3428  *
3429  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3430  * return.
3431  *
3432  * Target users are page handler itself and implementations of
3433  * vm_ops->map_pages.
3434  */
3435 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3436                 struct page *page)
3437 {
3438         struct vm_area_struct *vma = vmf->vma;
3439         bool write = vmf->flags & FAULT_FLAG_WRITE;
3440         pte_t entry;
3441         int ret;
3442
3443         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3444                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3445                 /* THP on COW? */
3446                 VM_BUG_ON_PAGE(memcg, page);
3447
3448                 ret = do_set_pmd(vmf, page);
3449                 if (ret != VM_FAULT_FALLBACK)
3450                         return ret;
3451         }
3452
3453         if (!vmf->pte) {
3454                 ret = pte_alloc_one_map(vmf);
3455                 if (ret)
3456                         return ret;
3457         }
3458
3459         /* Re-check under ptl */
3460         if (unlikely(!pte_none(*vmf->pte)))
3461                 return VM_FAULT_NOPAGE;
3462
3463         flush_icache_page(vma, page);
3464         entry = mk_pte(page, vma->vm_page_prot);
3465         if (write)
3466                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3467         /* copy-on-write page */
3468         if (write && !(vma->vm_flags & VM_SHARED)) {
3469                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3470                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3471                 mem_cgroup_commit_charge(page, memcg, false, false);
3472                 lru_cache_add_active_or_unevictable(page, vma);
3473         } else {
3474                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3475                 page_add_file_rmap(page, false);
3476         }
3477         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3478
3479         /* no need to invalidate: a not-present page won't be cached */
3480         update_mmu_cache(vma, vmf->address, vmf->pte);
3481
3482         return 0;
3483 }
3484
3485
3486 /**
3487  * finish_fault - finish page fault once we have prepared the page to fault
3488  *
3489  * @vmf: structure describing the fault
3490  *
3491  * This function handles all that is needed to finish a page fault once the
3492  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3493  * given page, adds reverse page mapping, handles memcg charges and LRU
3494  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3495  * error.
3496  *
3497  * The function expects the page to be locked and on success it consumes a
3498  * reference of a page being mapped (for the PTE which maps it).
3499  */
3500 int finish_fault(struct vm_fault *vmf)
3501 {
3502         struct page *page;
3503         int ret = 0;
3504
3505         /* Did we COW the page? */
3506         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3507             !(vmf->vma->vm_flags & VM_SHARED))
3508                 page = vmf->cow_page;
3509         else
3510                 page = vmf->page;
3511
3512         /*
3513          * check even for read faults because we might have lost our CoWed
3514          * page
3515          */
3516         if (!(vmf->vma->vm_flags & VM_SHARED))
3517                 ret = check_stable_address_space(vmf->vma->vm_mm);
3518         if (!ret)
3519                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3520         if (vmf->pte)
3521                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3522         return ret;
3523 }
3524
3525 static unsigned long fault_around_bytes __read_mostly =
3526         rounddown_pow_of_two(65536);
3527
3528 #ifdef CONFIG_DEBUG_FS
3529 static int fault_around_bytes_get(void *data, u64 *val)
3530 {
3531         *val = fault_around_bytes;
3532         return 0;
3533 }
3534
3535 /*
3536  * fault_around_bytes must be rounded down to the nearest page order as it's
3537  * what do_fault_around() expects to see.
3538  */
3539 static int fault_around_bytes_set(void *data, u64 val)
3540 {
3541         if (val / PAGE_SIZE > PTRS_PER_PTE)
3542                 return -EINVAL;
3543         if (val > PAGE_SIZE)
3544                 fault_around_bytes = rounddown_pow_of_two(val);
3545         else
3546                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3547         return 0;
3548 }
3549 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3550                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3551
3552 static int __init fault_around_debugfs(void)
3553 {
3554         void *ret;
3555
3556         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3557                         &fault_around_bytes_fops);
3558         if (!ret)
3559                 pr_warn("Failed to create fault_around_bytes in debugfs");
3560         return 0;
3561 }
3562 late_initcall(fault_around_debugfs);
3563 #endif
3564
3565 /*
3566  * do_fault_around() tries to map few pages around the fault address. The hope
3567  * is that the pages will be needed soon and this will lower the number of
3568  * faults to handle.
3569  *
3570  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3571  * not ready to be mapped: not up-to-date, locked, etc.
3572  *
3573  * This function is called with the page table lock taken. In the split ptlock
3574  * case the page table lock only protects only those entries which belong to
3575  * the page table corresponding to the fault address.
3576  *
3577  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3578  * only once.
3579  *
3580  * fault_around_bytes defines how many bytes we'll try to map.
3581  * do_fault_around() expects it to be set to a power of two less than or equal
3582  * to PTRS_PER_PTE.
3583  *
3584  * The virtual address of the area that we map is naturally aligned to
3585  * fault_around_bytes rounded down to the machine page size
3586  * (and therefore to page order).  This way it's easier to guarantee
3587  * that we don't cross page table boundaries.
3588  */
3589 static int do_fault_around(struct vm_fault *vmf)
3590 {
3591         unsigned long address = vmf->address, nr_pages, mask;
3592         pgoff_t start_pgoff = vmf->pgoff;
3593         pgoff_t end_pgoff;
3594         int off, ret = 0;
3595
3596         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3597         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3598
3599         vmf->address = max(address & mask, vmf->vma->vm_start);
3600         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3601         start_pgoff -= off;
3602
3603         /*
3604          *  end_pgoff is either the end of the page table, the end of
3605          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3606          */
3607         end_pgoff = start_pgoff -
3608                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3609                 PTRS_PER_PTE - 1;
3610         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3611                         start_pgoff + nr_pages - 1);
3612
3613         if (pmd_none(*vmf->pmd)) {
3614                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3615                                                   vmf->address);
3616                 if (!vmf->prealloc_pte)
3617                         goto out;
3618                 smp_wmb(); /* See comment in __pte_alloc() */
3619         }
3620
3621         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3622
3623         /* Huge page is mapped? Page fault is solved */
3624         if (pmd_trans_huge(*vmf->pmd)) {
3625                 ret = VM_FAULT_NOPAGE;
3626                 goto out;
3627         }
3628
3629         /* ->map_pages() haven't done anything useful. Cold page cache? */
3630         if (!vmf->pte)
3631                 goto out;
3632
3633         /* check if the page fault is solved */
3634         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3635         if (!pte_none(*vmf->pte))
3636                 ret = VM_FAULT_NOPAGE;
3637         pte_unmap_unlock(vmf->pte, vmf->ptl);
3638 out:
3639         vmf->address = address;
3640         vmf->pte = NULL;
3641         return ret;
3642 }
3643
3644 static int do_read_fault(struct vm_fault *vmf)
3645 {
3646         struct vm_area_struct *vma = vmf->vma;
3647         int ret = 0;
3648
3649         /*
3650          * Let's call ->map_pages() first and use ->fault() as fallback
3651          * if page by the offset is not ready to be mapped (cold cache or
3652          * something).
3653          */
3654         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3655                 ret = do_fault_around(vmf);
3656                 if (ret)
3657                         return ret;
3658         }
3659
3660         ret = __do_fault(vmf);
3661         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3662                 return ret;
3663
3664         ret |= finish_fault(vmf);
3665         unlock_page(vmf->page);
3666         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3667                 put_page(vmf->page);
3668         return ret;
3669 }
3670
3671 static int do_cow_fault(struct vm_fault *vmf)
3672 {
3673         struct vm_area_struct *vma = vmf->vma;
3674         int ret;
3675
3676         if (unlikely(anon_vma_prepare(vma)))
3677                 return VM_FAULT_OOM;
3678
3679         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3680         if (!vmf->cow_page)
3681                 return VM_FAULT_OOM;
3682
3683         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3684                                 &vmf->memcg, false)) {
3685                 put_page(vmf->cow_page);
3686                 return VM_FAULT_OOM;
3687         }
3688
3689         ret = __do_fault(vmf);
3690         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3691                 goto uncharge_out;
3692         if (ret & VM_FAULT_DONE_COW)
3693                 return ret;
3694
3695         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3696         __SetPageUptodate(vmf->cow_page);
3697
3698         ret |= finish_fault(vmf);
3699         unlock_page(vmf->page);
3700         put_page(vmf->page);
3701         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3702                 goto uncharge_out;
3703         return ret;
3704 uncharge_out:
3705         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3706         put_page(vmf->cow_page);
3707         return ret;
3708 }
3709
3710 static int do_shared_fault(struct vm_fault *vmf)
3711 {
3712         struct vm_area_struct *vma = vmf->vma;
3713         int ret, tmp;
3714
3715         ret = __do_fault(vmf);
3716         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3717                 return ret;
3718
3719         /*
3720          * Check if the backing address space wants to know that the page is
3721          * about to become writable
3722          */
3723         if (vma->vm_ops->page_mkwrite) {
3724                 unlock_page(vmf->page);
3725                 tmp = do_page_mkwrite(vmf);
3726                 if (unlikely(!tmp ||
3727                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3728                         put_page(vmf->page);
3729                         return tmp;
3730                 }
3731         }
3732
3733         ret |= finish_fault(vmf);
3734         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3735                                         VM_FAULT_RETRY))) {
3736                 unlock_page(vmf->page);
3737                 put_page(vmf->page);
3738                 return ret;
3739         }
3740
3741         fault_dirty_shared_page(vma, vmf->page);
3742         return ret;
3743 }
3744
3745 /*
3746  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3747  * but allow concurrent faults).
3748  * The mmap_sem may have been released depending on flags and our
3749  * return value.  See filemap_fault() and __lock_page_or_retry().
3750  */
3751 static int do_fault(struct vm_fault *vmf)
3752 {
3753         struct vm_area_struct *vma = vmf->vma;
3754         int ret;
3755
3756         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3757         if (!vma->vm_ops->fault)
3758                 ret = VM_FAULT_SIGBUS;
3759         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3760                 ret = do_read_fault(vmf);
3761         else if (!(vma->vm_flags & VM_SHARED))
3762                 ret = do_cow_fault(vmf);
3763         else
3764                 ret = do_shared_fault(vmf);
3765
3766         /* preallocated pagetable is unused: free it */
3767         if (vmf->prealloc_pte) {
3768                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3769                 vmf->prealloc_pte = NULL;
3770         }
3771         return ret;
3772 }
3773
3774 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3775                                 unsigned long addr, int page_nid,
3776                                 int *flags)
3777 {
3778         get_page(page);
3779
3780         count_vm_numa_event(NUMA_HINT_FAULTS);
3781         if (page_nid == numa_node_id()) {
3782                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3783                 *flags |= TNF_FAULT_LOCAL;
3784         }
3785
3786         return mpol_misplaced(page, vma, addr);
3787 }
3788
3789 static int do_numa_page(struct vm_fault *vmf)
3790 {
3791         struct vm_area_struct *vma = vmf->vma;
3792         struct page *page = NULL;
3793         int page_nid = -1;
3794         int last_cpupid;
3795         int target_nid;
3796         bool migrated = false;
3797         pte_t pte;
3798         bool was_writable = pte_savedwrite(vmf->orig_pte);
3799         int flags = 0;
3800
3801         /*
3802          * The "pte" at this point cannot be used safely without
3803          * validation through pte_unmap_same(). It's of NUMA type but
3804          * the pfn may be screwed if the read is non atomic.
3805          */
3806         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3807         spin_lock(vmf->ptl);
3808         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3809                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3810                 goto out;
3811         }
3812
3813         /*
3814          * Make it present again, Depending on how arch implementes non
3815          * accessible ptes, some can allow access by kernel mode.
3816          */
3817         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3818         pte = pte_modify(pte, vma->vm_page_prot);
3819         pte = pte_mkyoung(pte);
3820         if (was_writable)
3821                 pte = pte_mkwrite(pte);
3822         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3823         update_mmu_cache(vma, vmf->address, vmf->pte);
3824
3825         page = vm_normal_page(vma, vmf->address, pte);
3826         if (!page) {
3827                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3828                 return 0;
3829         }
3830
3831         /* TODO: handle PTE-mapped THP */
3832         if (PageCompound(page)) {
3833                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3834                 return 0;
3835         }
3836
3837         /*
3838          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3839          * much anyway since they can be in shared cache state. This misses
3840          * the case where a mapping is writable but the process never writes
3841          * to it but pte_write gets cleared during protection updates and
3842          * pte_dirty has unpredictable behaviour between PTE scan updates,
3843          * background writeback, dirty balancing and application behaviour.
3844          */
3845         if (!pte_write(pte))
3846                 flags |= TNF_NO_GROUP;
3847
3848         /*
3849          * Flag if the page is shared between multiple address spaces. This
3850          * is later used when determining whether to group tasks together
3851          */
3852         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3853                 flags |= TNF_SHARED;
3854
3855         last_cpupid = page_cpupid_last(page);
3856         page_nid = page_to_nid(page);
3857         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3858                         &flags);
3859         pte_unmap_unlock(vmf->pte, vmf->ptl);
3860         if (target_nid == -1) {
3861                 put_page(page);
3862                 goto out;
3863         }
3864
3865         /* Migrate to the requested node */
3866         migrated = migrate_misplaced_page(page, vma, target_nid);
3867         if (migrated) {
3868                 page_nid = target_nid;
3869                 flags |= TNF_MIGRATED;
3870         } else
3871                 flags |= TNF_MIGRATE_FAIL;
3872
3873 out:
3874         if (page_nid != -1)
3875                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3876         return 0;
3877 }
3878
3879 static inline int create_huge_pmd(struct vm_fault *vmf)
3880 {
3881         if (vma_is_anonymous(vmf->vma))
3882                 return do_huge_pmd_anonymous_page(vmf);
3883         if (vmf->vma->vm_ops->huge_fault)
3884                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3885         return VM_FAULT_FALLBACK;
3886 }
3887
3888 /* `inline' is required to avoid gcc 4.1.2 build error */
3889 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3890 {
3891         if (vma_is_anonymous(vmf->vma))
3892                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3893         if (vmf->vma->vm_ops->huge_fault)
3894                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3895
3896         /* COW handled on pte level: split pmd */
3897         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3898         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3899
3900         return VM_FAULT_FALLBACK;
3901 }
3902
3903 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3904 {
3905         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3906 }
3907
3908 static int create_huge_pud(struct vm_fault *vmf)
3909 {
3910 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3911         /* No support for anonymous transparent PUD pages yet */
3912         if (vma_is_anonymous(vmf->vma))
3913                 return VM_FAULT_FALLBACK;
3914         if (vmf->vma->vm_ops->huge_fault)
3915                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3916 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3917         return VM_FAULT_FALLBACK;
3918 }
3919
3920 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3921 {
3922 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3923         /* No support for anonymous transparent PUD pages yet */
3924         if (vma_is_anonymous(vmf->vma))
3925                 return VM_FAULT_FALLBACK;
3926         if (vmf->vma->vm_ops->huge_fault)
3927                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3928 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3929         return VM_FAULT_FALLBACK;
3930 }
3931
3932 /*
3933  * These routines also need to handle stuff like marking pages dirty
3934  * and/or accessed for architectures that don't do it in hardware (most
3935  * RISC architectures).  The early dirtying is also good on the i386.
3936  *
3937  * There is also a hook called "update_mmu_cache()" that architectures
3938  * with external mmu caches can use to update those (ie the Sparc or
3939  * PowerPC hashed page tables that act as extended TLBs).
3940  *
3941  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3942  * concurrent faults).
3943  *
3944  * The mmap_sem may have been released depending on flags and our return value.
3945  * See filemap_fault() and __lock_page_or_retry().
3946  */
3947 static int handle_pte_fault(struct vm_fault *vmf)
3948 {
3949         pte_t entry;
3950
3951         if (unlikely(pmd_none(*vmf->pmd))) {
3952                 /*
3953                  * Leave __pte_alloc() until later: because vm_ops->fault may
3954                  * want to allocate huge page, and if we expose page table
3955                  * for an instant, it will be difficult to retract from
3956                  * concurrent faults and from rmap lookups.
3957                  */
3958                 vmf->pte = NULL;
3959         } else {
3960                 /* See comment in pte_alloc_one_map() */
3961                 if (pmd_devmap_trans_unstable(vmf->pmd))
3962                         return 0;
3963                 /*
3964                  * A regular pmd is established and it can't morph into a huge
3965                  * pmd from under us anymore at this point because we hold the
3966                  * mmap_sem read mode and khugepaged takes it in write mode.
3967                  * So now it's safe to run pte_offset_map().
3968                  */
3969                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3970                 vmf->orig_pte = *vmf->pte;
3971
3972                 /*
3973                  * some architectures can have larger ptes than wordsize,
3974                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3975                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3976                  * accesses.  The code below just needs a consistent view
3977                  * for the ifs and we later double check anyway with the
3978                  * ptl lock held. So here a barrier will do.
3979                  */
3980                 barrier();
3981                 if (pte_none(vmf->orig_pte)) {
3982                         pte_unmap(vmf->pte);
3983                         vmf->pte = NULL;
3984                 }
3985         }
3986
3987         if (!vmf->pte) {
3988                 if (vma_is_anonymous(vmf->vma))
3989                         return do_anonymous_page(vmf);
3990                 else
3991                         return do_fault(vmf);
3992         }
3993
3994         if (!pte_present(vmf->orig_pte))
3995                 return do_swap_page(vmf);
3996
3997         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3998                 return do_numa_page(vmf);
3999
4000         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4001         spin_lock(vmf->ptl);
4002         entry = vmf->orig_pte;
4003         if (unlikely(!pte_same(*vmf->pte, entry)))
4004                 goto unlock;
4005         if (vmf->flags & FAULT_FLAG_WRITE) {
4006                 if (!pte_write(entry))
4007                         return do_wp_page(vmf);
4008                 entry = pte_mkdirty(entry);
4009         }
4010         entry = pte_mkyoung(entry);
4011         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4012                                 vmf->flags & FAULT_FLAG_WRITE)) {
4013                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4014         } else {
4015                 /*
4016                  * This is needed only for protection faults but the arch code
4017                  * is not yet telling us if this is a protection fault or not.
4018                  * This still avoids useless tlb flushes for .text page faults
4019                  * with threads.
4020                  */
4021                 if (vmf->flags & FAULT_FLAG_WRITE)
4022                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4023         }
4024 unlock:
4025         pte_unmap_unlock(vmf->pte, vmf->ptl);
4026         return 0;
4027 }
4028
4029 /*
4030  * By the time we get here, we already hold the mm semaphore
4031  *
4032  * The mmap_sem may have been released depending on flags and our
4033  * return value.  See filemap_fault() and __lock_page_or_retry().
4034  */
4035 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4036                 unsigned int flags)
4037 {
4038         struct vm_fault vmf = {
4039                 .vma = vma,
4040                 .address = address & PAGE_MASK,
4041                 .flags = flags,
4042                 .pgoff = linear_page_index(vma, address),
4043                 .gfp_mask = __get_fault_gfp_mask(vma),
4044         };
4045         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4046         struct mm_struct *mm = vma->vm_mm;
4047         pgd_t *pgd;
4048         p4d_t *p4d;
4049         int ret;
4050
4051         pgd = pgd_offset(mm, address);
4052         p4d = p4d_alloc(mm, pgd, address);
4053         if (!p4d)
4054                 return VM_FAULT_OOM;
4055
4056         vmf.pud = pud_alloc(mm, p4d, address);
4057         if (!vmf.pud)
4058                 return VM_FAULT_OOM;
4059         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4060                 ret = create_huge_pud(&vmf);
4061                 if (!(ret & VM_FAULT_FALLBACK))
4062                         return ret;
4063         } else {
4064                 pud_t orig_pud = *vmf.pud;
4065
4066                 barrier();
4067                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4068
4069                         /* NUMA case for anonymous PUDs would go here */
4070
4071                         if (dirty && !pud_write(orig_pud)) {
4072                                 ret = wp_huge_pud(&vmf, orig_pud);
4073                                 if (!(ret & VM_FAULT_FALLBACK))
4074                                         return ret;
4075                         } else {
4076                                 huge_pud_set_accessed(&vmf, orig_pud);
4077                                 return 0;
4078                         }
4079                 }
4080         }
4081
4082         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4083         if (!vmf.pmd)
4084                 return VM_FAULT_OOM;
4085         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4086                 ret = create_huge_pmd(&vmf);
4087                 if (!(ret & VM_FAULT_FALLBACK))
4088                         return ret;
4089         } else {
4090                 pmd_t orig_pmd = *vmf.pmd;
4091
4092                 barrier();
4093                 if (unlikely(is_swap_pmd(orig_pmd))) {
4094                         VM_BUG_ON(thp_migration_supported() &&
4095                                           !is_pmd_migration_entry(orig_pmd));
4096                         if (is_pmd_migration_entry(orig_pmd))
4097                                 pmd_migration_entry_wait(mm, vmf.pmd);
4098                         return 0;
4099                 }
4100                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4101                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4102                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4103
4104                         if (dirty && !pmd_write(orig_pmd)) {
4105                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4106                                 if (!(ret & VM_FAULT_FALLBACK))
4107                                         return ret;
4108                         } else {
4109                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4110                                 return 0;
4111                         }
4112                 }
4113         }
4114
4115         return handle_pte_fault(&vmf);
4116 }
4117
4118 /*
4119  * By the time we get here, we already hold the mm semaphore
4120  *
4121  * The mmap_sem may have been released depending on flags and our
4122  * return value.  See filemap_fault() and __lock_page_or_retry().
4123  */
4124 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4125                 unsigned int flags)
4126 {
4127         int ret;
4128
4129         __set_current_state(TASK_RUNNING);
4130
4131         count_vm_event(PGFAULT);
4132         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4133
4134         /* do counter updates before entering really critical section. */
4135         check_sync_rss_stat(current);
4136
4137         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4138                                             flags & FAULT_FLAG_INSTRUCTION,
4139                                             flags & FAULT_FLAG_REMOTE))
4140                 return VM_FAULT_SIGSEGV;
4141
4142         /*
4143          * Enable the memcg OOM handling for faults triggered in user
4144          * space.  Kernel faults are handled more gracefully.
4145          */
4146         if (flags & FAULT_FLAG_USER)
4147                 mem_cgroup_enter_user_fault();
4148
4149         if (unlikely(is_vm_hugetlb_page(vma)))
4150                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4151         else
4152                 ret = __handle_mm_fault(vma, address, flags);
4153
4154         if (flags & FAULT_FLAG_USER) {
4155                 mem_cgroup_exit_user_fault();
4156                 /*
4157                  * The task may have entered a memcg OOM situation but
4158                  * if the allocation error was handled gracefully (no
4159                  * VM_FAULT_OOM), there is no need to kill anything.
4160                  * Just clean up the OOM state peacefully.
4161                  */
4162                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4163                         mem_cgroup_oom_synchronize(false);
4164         }
4165
4166         return ret;
4167 }
4168 EXPORT_SYMBOL_GPL(handle_mm_fault);
4169
4170 #ifndef __PAGETABLE_P4D_FOLDED
4171 /*
4172  * Allocate p4d page table.
4173  * We've already handled the fast-path in-line.
4174  */
4175 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4176 {
4177         p4d_t *new = p4d_alloc_one(mm, address);
4178         if (!new)
4179                 return -ENOMEM;
4180
4181         smp_wmb(); /* See comment in __pte_alloc */
4182
4183         spin_lock(&mm->page_table_lock);
4184         if (pgd_present(*pgd))          /* Another has populated it */
4185                 p4d_free(mm, new);
4186         else
4187                 pgd_populate(mm, pgd, new);
4188         spin_unlock(&mm->page_table_lock);
4189         return 0;
4190 }
4191 #endif /* __PAGETABLE_P4D_FOLDED */
4192
4193 #ifndef __PAGETABLE_PUD_FOLDED
4194 /*
4195  * Allocate page upper directory.
4196  * We've already handled the fast-path in-line.
4197  */
4198 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4199 {
4200         pud_t *new = pud_alloc_one(mm, address);
4201         if (!new)
4202                 return -ENOMEM;
4203
4204         smp_wmb(); /* See comment in __pte_alloc */
4205
4206         spin_lock(&mm->page_table_lock);
4207 #ifndef __ARCH_HAS_5LEVEL_HACK
4208         if (!p4d_present(*p4d)) {
4209                 mm_inc_nr_puds(mm);
4210                 p4d_populate(mm, p4d, new);
4211         } else  /* Another has populated it */
4212                 pud_free(mm, new);
4213 #else
4214         if (!pgd_present(*p4d)) {
4215                 mm_inc_nr_puds(mm);
4216                 pgd_populate(mm, p4d, new);
4217         } else  /* Another has populated it */
4218                 pud_free(mm, new);
4219 #endif /* __ARCH_HAS_5LEVEL_HACK */
4220         spin_unlock(&mm->page_table_lock);
4221         return 0;
4222 }
4223 #endif /* __PAGETABLE_PUD_FOLDED */
4224
4225 #ifndef __PAGETABLE_PMD_FOLDED
4226 /*
4227  * Allocate page middle directory.
4228  * We've already handled the fast-path in-line.
4229  */
4230 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4231 {
4232         spinlock_t *ptl;
4233         pmd_t *new = pmd_alloc_one(mm, address);
4234         if (!new)
4235                 return -ENOMEM;
4236
4237         smp_wmb(); /* See comment in __pte_alloc */
4238
4239         ptl = pud_lock(mm, pud);
4240 #ifndef __ARCH_HAS_4LEVEL_HACK
4241         if (!pud_present(*pud)) {
4242                 mm_inc_nr_pmds(mm);
4243                 pud_populate(mm, pud, new);
4244         } else  /* Another has populated it */
4245                 pmd_free(mm, new);
4246 #else
4247         if (!pgd_present(*pud)) {
4248                 mm_inc_nr_pmds(mm);
4249                 pgd_populate(mm, pud, new);
4250         } else /* Another has populated it */
4251                 pmd_free(mm, new);
4252 #endif /* __ARCH_HAS_4LEVEL_HACK */
4253         spin_unlock(ptl);
4254         return 0;
4255 }
4256 #endif /* __PAGETABLE_PMD_FOLDED */
4257
4258 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4259                             unsigned long *start, unsigned long *end,
4260                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4261 {
4262         pgd_t *pgd;
4263         p4d_t *p4d;
4264         pud_t *pud;
4265         pmd_t *pmd;
4266         pte_t *ptep;
4267
4268         pgd = pgd_offset(mm, address);
4269         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4270                 goto out;
4271
4272         p4d = p4d_offset(pgd, address);
4273         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4274                 goto out;
4275
4276         pud = pud_offset(p4d, address);
4277         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4278                 goto out;
4279
4280         pmd = pmd_offset(pud, address);
4281         VM_BUG_ON(pmd_trans_huge(*pmd));
4282
4283         if (pmd_huge(*pmd)) {
4284                 if (!pmdpp)
4285                         goto out;
4286
4287                 if (start && end) {
4288                         *start = address & PMD_MASK;
4289                         *end = *start + PMD_SIZE;
4290                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4291                 }
4292                 *ptlp = pmd_lock(mm, pmd);
4293                 if (pmd_huge(*pmd)) {
4294                         *pmdpp = pmd;
4295                         return 0;
4296                 }
4297                 spin_unlock(*ptlp);
4298                 if (start && end)
4299                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4300         }
4301
4302         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4303                 goto out;
4304
4305         if (start && end) {
4306                 *start = address & PAGE_MASK;
4307                 *end = *start + PAGE_SIZE;
4308                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4309         }
4310         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4311         if (!pte_present(*ptep))
4312                 goto unlock;
4313         *ptepp = ptep;
4314         return 0;
4315 unlock:
4316         pte_unmap_unlock(ptep, *ptlp);
4317         if (start && end)
4318                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4319 out:
4320         return -EINVAL;
4321 }
4322
4323 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4324                              pte_t **ptepp, spinlock_t **ptlp)
4325 {
4326         int res;
4327
4328         /* (void) is needed to make gcc happy */
4329         (void) __cond_lock(*ptlp,
4330                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4331                                                     ptepp, NULL, ptlp)));
4332         return res;
4333 }
4334
4335 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4336                              unsigned long *start, unsigned long *end,
4337                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4338 {
4339         int res;
4340
4341         /* (void) is needed to make gcc happy */
4342         (void) __cond_lock(*ptlp,
4343                            !(res = __follow_pte_pmd(mm, address, start, end,
4344                                                     ptepp, pmdpp, ptlp)));
4345         return res;
4346 }
4347 EXPORT_SYMBOL(follow_pte_pmd);
4348
4349 /**
4350  * follow_pfn - look up PFN at a user virtual address
4351  * @vma: memory mapping
4352  * @address: user virtual address
4353  * @pfn: location to store found PFN
4354  *
4355  * Only IO mappings and raw PFN mappings are allowed.
4356  *
4357  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4358  */
4359 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4360         unsigned long *pfn)
4361 {
4362         int ret = -EINVAL;
4363         spinlock_t *ptl;
4364         pte_t *ptep;
4365
4366         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4367                 return ret;
4368
4369         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4370         if (ret)
4371                 return ret;
4372         *pfn = pte_pfn(*ptep);
4373         pte_unmap_unlock(ptep, ptl);
4374         return 0;
4375 }
4376 EXPORT_SYMBOL(follow_pfn);
4377
4378 #ifdef CONFIG_HAVE_IOREMAP_PROT
4379 int follow_phys(struct vm_area_struct *vma,
4380                 unsigned long address, unsigned int flags,
4381                 unsigned long *prot, resource_size_t *phys)
4382 {
4383         int ret = -EINVAL;
4384         pte_t *ptep, pte;
4385         spinlock_t *ptl;
4386
4387         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4388                 goto out;
4389
4390         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4391                 goto out;
4392         pte = *ptep;
4393
4394         if ((flags & FOLL_WRITE) && !pte_write(pte))
4395                 goto unlock;
4396
4397         *prot = pgprot_val(pte_pgprot(pte));
4398         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4399
4400         ret = 0;
4401 unlock:
4402         pte_unmap_unlock(ptep, ptl);
4403 out:
4404         return ret;
4405 }
4406
4407 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4408                         void *buf, int len, int write)
4409 {
4410         resource_size_t phys_addr;
4411         unsigned long prot = 0;
4412         void __iomem *maddr;
4413         int offset = addr & (PAGE_SIZE-1);
4414
4415         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4416                 return -EINVAL;
4417
4418         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4419         if (!maddr)
4420                 return -ENOMEM;
4421
4422         if (write)
4423                 memcpy_toio(maddr + offset, buf, len);
4424         else
4425                 memcpy_fromio(buf, maddr + offset, len);
4426         iounmap(maddr);
4427
4428         return len;
4429 }
4430 EXPORT_SYMBOL_GPL(generic_access_phys);
4431 #endif
4432
4433 /*
4434  * Access another process' address space as given in mm.  If non-NULL, use the
4435  * given task for page fault accounting.
4436  */
4437 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4438                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4439 {
4440         struct vm_area_struct *vma;
4441         void *old_buf = buf;
4442         int write = gup_flags & FOLL_WRITE;
4443
4444         down_read(&mm->mmap_sem);
4445         /* ignore errors, just check how much was successfully transferred */
4446         while (len) {
4447                 int bytes, ret, offset;
4448                 void *maddr;
4449                 struct page *page = NULL;
4450
4451                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4452                                 gup_flags, &page, &vma, NULL);
4453                 if (ret <= 0) {
4454 #ifndef CONFIG_HAVE_IOREMAP_PROT
4455                         break;
4456 #else
4457                         /*
4458                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4459                          * we can access using slightly different code.
4460                          */
4461                         vma = find_vma(mm, addr);
4462                         if (!vma || vma->vm_start > addr)
4463                                 break;
4464                         if (vma->vm_ops && vma->vm_ops->access)
4465                                 ret = vma->vm_ops->access(vma, addr, buf,
4466                                                           len, write);
4467                         if (ret <= 0)
4468                                 break;
4469                         bytes = ret;
4470 #endif
4471                 } else {
4472                         bytes = len;
4473                         offset = addr & (PAGE_SIZE-1);
4474                         if (bytes > PAGE_SIZE-offset)
4475                                 bytes = PAGE_SIZE-offset;
4476
4477                         maddr = kmap(page);
4478                         if (write) {
4479                                 copy_to_user_page(vma, page, addr,
4480                                                   maddr + offset, buf, bytes);
4481                                 set_page_dirty_lock(page);
4482                         } else {
4483                                 copy_from_user_page(vma, page, addr,
4484                                                     buf, maddr + offset, bytes);
4485                         }
4486                         kunmap(page);
4487                         put_page(page);
4488                 }
4489                 len -= bytes;
4490                 buf += bytes;
4491                 addr += bytes;
4492         }
4493         up_read(&mm->mmap_sem);
4494
4495         return buf - old_buf;
4496 }
4497
4498 /**
4499  * access_remote_vm - access another process' address space
4500  * @mm:         the mm_struct of the target address space
4501  * @addr:       start address to access
4502  * @buf:        source or destination buffer
4503  * @len:        number of bytes to transfer
4504  * @gup_flags:  flags modifying lookup behaviour
4505  *
4506  * The caller must hold a reference on @mm.
4507  */
4508 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4509                 void *buf, int len, unsigned int gup_flags)
4510 {
4511         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4512 }
4513
4514 /*
4515  * Access another process' address space.
4516  * Source/target buffer must be kernel space,
4517  * Do not walk the page table directly, use get_user_pages
4518  */
4519 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4520                 void *buf, int len, unsigned int gup_flags)
4521 {
4522         struct mm_struct *mm;
4523         int ret;
4524
4525         mm = get_task_mm(tsk);
4526         if (!mm)
4527                 return 0;
4528
4529         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4530
4531         mmput(mm);
4532
4533         return ret;
4534 }
4535 EXPORT_SYMBOL_GPL(access_process_vm);
4536
4537 /*
4538  * Print the name of a VMA.
4539  */
4540 void print_vma_addr(char *prefix, unsigned long ip)
4541 {
4542         struct mm_struct *mm = current->mm;
4543         struct vm_area_struct *vma;
4544
4545         /*
4546          * we might be running from an atomic context so we cannot sleep
4547          */
4548         if (!down_read_trylock(&mm->mmap_sem))
4549                 return;
4550
4551         vma = find_vma(mm, ip);
4552         if (vma && vma->vm_file) {
4553                 struct file *f = vma->vm_file;
4554                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4555                 if (buf) {
4556                         char *p;
4557
4558                         p = file_path(f, buf, PAGE_SIZE);
4559                         if (IS_ERR(p))
4560                                 p = "?";
4561                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4562                                         vma->vm_start,
4563                                         vma->vm_end - vma->vm_start);
4564                         free_page((unsigned long)buf);
4565                 }
4566         }
4567         up_read(&mm->mmap_sem);
4568 }
4569
4570 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4571 void __might_fault(const char *file, int line)
4572 {
4573         /*
4574          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4575          * holding the mmap_sem, this is safe because kernel memory doesn't
4576          * get paged out, therefore we'll never actually fault, and the
4577          * below annotations will generate false positives.
4578          */
4579         if (uaccess_kernel())
4580                 return;
4581         if (pagefault_disabled())
4582                 return;
4583         __might_sleep(file, line, 0);
4584 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4585         if (current->mm)
4586                 might_lock_read(&current->mm->mmap_sem);
4587 #endif
4588 }
4589 EXPORT_SYMBOL(__might_fault);
4590 #endif
4591
4592 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4593 /*
4594  * Process all subpages of the specified huge page with the specified
4595  * operation.  The target subpage will be processed last to keep its
4596  * cache lines hot.
4597  */
4598 static inline void process_huge_page(
4599         unsigned long addr_hint, unsigned int pages_per_huge_page,
4600         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4601         void *arg)
4602 {
4603         int i, n, base, l;
4604         unsigned long addr = addr_hint &
4605                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4606
4607         /* Process target subpage last to keep its cache lines hot */
4608         might_sleep();
4609         n = (addr_hint - addr) / PAGE_SIZE;
4610         if (2 * n <= pages_per_huge_page) {
4611                 /* If target subpage in first half of huge page */
4612                 base = 0;
4613                 l = n;
4614                 /* Process subpages at the end of huge page */
4615                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4616                         cond_resched();
4617                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4618                 }
4619         } else {
4620                 /* If target subpage in second half of huge page */
4621                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4622                 l = pages_per_huge_page - n;
4623                 /* Process subpages at the begin of huge page */
4624                 for (i = 0; i < base; i++) {
4625                         cond_resched();
4626                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4627                 }
4628         }
4629         /*
4630          * Process remaining subpages in left-right-left-right pattern
4631          * towards the target subpage
4632          */
4633         for (i = 0; i < l; i++) {
4634                 int left_idx = base + i;
4635                 int right_idx = base + 2 * l - 1 - i;
4636
4637                 cond_resched();
4638                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4639                 cond_resched();
4640                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4641         }
4642 }
4643
4644 static void clear_gigantic_page(struct page *page,
4645                                 unsigned long addr,
4646                                 unsigned int pages_per_huge_page)
4647 {
4648         int i;
4649         struct page *p = page;
4650
4651         might_sleep();
4652         for (i = 0; i < pages_per_huge_page;
4653              i++, p = mem_map_next(p, page, i)) {
4654                 cond_resched();
4655                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4656         }
4657 }
4658
4659 static void clear_subpage(unsigned long addr, int idx, void *arg)
4660 {
4661         struct page *page = arg;
4662
4663         clear_user_highpage(page + idx, addr);
4664 }
4665
4666 void clear_huge_page(struct page *page,
4667                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4668 {
4669         unsigned long addr = addr_hint &
4670                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4671
4672         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4673                 clear_gigantic_page(page, addr, pages_per_huge_page);
4674                 return;
4675         }
4676
4677         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4678 }
4679
4680 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4681                                     unsigned long addr,
4682                                     struct vm_area_struct *vma,
4683                                     unsigned int pages_per_huge_page)
4684 {
4685         int i;
4686         struct page *dst_base = dst;
4687         struct page *src_base = src;
4688
4689         for (i = 0; i < pages_per_huge_page; ) {
4690                 cond_resched();
4691                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4692
4693                 i++;
4694                 dst = mem_map_next(dst, dst_base, i);
4695                 src = mem_map_next(src, src_base, i);
4696         }
4697 }
4698
4699 struct copy_subpage_arg {
4700         struct page *dst;
4701         struct page *src;
4702         struct vm_area_struct *vma;
4703 };
4704
4705 static void copy_subpage(unsigned long addr, int idx, void *arg)
4706 {
4707         struct copy_subpage_arg *copy_arg = arg;
4708
4709         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4710                            addr, copy_arg->vma);
4711 }
4712
4713 void copy_user_huge_page(struct page *dst, struct page *src,
4714                          unsigned long addr_hint, struct vm_area_struct *vma,
4715                          unsigned int pages_per_huge_page)
4716 {
4717         unsigned long addr = addr_hint &
4718                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4719         struct copy_subpage_arg arg = {
4720                 .dst = dst,
4721                 .src = src,
4722                 .vma = vma,
4723         };
4724
4725         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4726                 copy_user_gigantic_page(dst, src, addr, vma,
4727                                         pages_per_huge_page);
4728                 return;
4729         }
4730
4731         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4732 }
4733
4734 long copy_huge_page_from_user(struct page *dst_page,
4735                                 const void __user *usr_src,
4736                                 unsigned int pages_per_huge_page,
4737                                 bool allow_pagefault)
4738 {
4739         void *src = (void *)usr_src;
4740         void *page_kaddr;
4741         unsigned long i, rc = 0;
4742         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4743
4744         for (i = 0; i < pages_per_huge_page; i++) {
4745                 if (allow_pagefault)
4746                         page_kaddr = kmap(dst_page + i);
4747                 else
4748                         page_kaddr = kmap_atomic(dst_page + i);
4749                 rc = copy_from_user(page_kaddr,
4750                                 (const void __user *)(src + i * PAGE_SIZE),
4751                                 PAGE_SIZE);
4752                 if (allow_pagefault)
4753                         kunmap(dst_page + i);
4754                 else
4755                         kunmap_atomic(page_kaddr);
4756
4757                 ret_val -= (PAGE_SIZE - rc);
4758                 if (rc)
4759                         break;
4760
4761                 cond_resched();
4762         }
4763         return ret_val;
4764 }
4765 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4766
4767 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4768
4769 static struct kmem_cache *page_ptl_cachep;
4770
4771 void __init ptlock_cache_init(void)
4772 {
4773         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4774                         SLAB_PANIC, NULL);
4775 }
4776
4777 bool ptlock_alloc(struct page *page)
4778 {
4779         spinlock_t *ptl;
4780
4781         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4782         if (!ptl)
4783                 return false;
4784         page->ptl = ptl;
4785         return true;
4786 }
4787
4788 void ptlock_free(struct page *page)
4789 {
4790         kmem_cache_free(page_ptl_cachep, page->ptl);
4791 }
4792 #endif