]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/memory.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              (Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97
98 /*
99  * A number of key systems in x86 including ioremap() rely on the assumption
100  * that high_memory defines the upper bound on direct map memory, then end
101  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
102  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103  * and ZONE_HIGHMEM.
104  */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107
108 /*
109  * Randomize the address space (stacks, mmaps, brk, etc.).
110  *
111  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112  *   as ancient (libc5 based) binaries can segfault. )
113  */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116                                         1;
117 #else
118                                         2;
119 #endif
120
121 #ifndef arch_faults_on_old_pte
122 static inline bool arch_faults_on_old_pte(void)
123 {
124         /*
125          * Those arches which don't have hw access flag feature need to
126          * implement their own helper. By default, "true" means pagefault
127          * will be hit on old pte.
128          */
129         return true;
130 }
131 #endif
132
133 static int __init disable_randmaps(char *s)
134 {
135         randomize_va_space = 0;
136         return 1;
137 }
138 __setup("norandmaps", disable_randmaps);
139
140 unsigned long zero_pfn __read_mostly;
141 EXPORT_SYMBOL(zero_pfn);
142
143 unsigned long highest_memmap_pfn __read_mostly;
144
145 /*
146  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
147  */
148 static int __init init_zero_pfn(void)
149 {
150         zero_pfn = page_to_pfn(ZERO_PAGE(0));
151         return 0;
152 }
153 core_initcall(init_zero_pfn);
154
155
156 #if defined(SPLIT_RSS_COUNTING)
157
158 void sync_mm_rss(struct mm_struct *mm)
159 {
160         int i;
161
162         for (i = 0; i < NR_MM_COUNTERS; i++) {
163                 if (current->rss_stat.count[i]) {
164                         add_mm_counter(mm, i, current->rss_stat.count[i]);
165                         current->rss_stat.count[i] = 0;
166                 }
167         }
168         current->rss_stat.events = 0;
169 }
170
171 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
172 {
173         struct task_struct *task = current;
174
175         if (likely(task->mm == mm))
176                 task->rss_stat.count[member] += val;
177         else
178                 add_mm_counter(mm, member, val);
179 }
180 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
181 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
182
183 /* sync counter once per 64 page faults */
184 #define TASK_RSS_EVENTS_THRESH  (64)
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187         if (unlikely(task != current))
188                 return;
189         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
190                 sync_mm_rss(task->mm);
191 }
192 #else /* SPLIT_RSS_COUNTING */
193
194 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
195 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
196
197 static void check_sync_rss_stat(struct task_struct *task)
198 {
199 }
200
201 #endif /* SPLIT_RSS_COUNTING */
202
203 /*
204  * Note: this doesn't free the actual pages themselves. That
205  * has been handled earlier when unmapping all the memory regions.
206  */
207 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
208                            unsigned long addr)
209 {
210         pgtable_t token = pmd_pgtable(*pmd);
211         pmd_clear(pmd);
212         pte_free_tlb(tlb, token, addr);
213         mm_dec_nr_ptes(tlb->mm);
214 }
215
216 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
217                                 unsigned long addr, unsigned long end,
218                                 unsigned long floor, unsigned long ceiling)
219 {
220         pmd_t *pmd;
221         unsigned long next;
222         unsigned long start;
223
224         start = addr;
225         pmd = pmd_offset(pud, addr);
226         do {
227                 next = pmd_addr_end(addr, end);
228                 if (pmd_none_or_clear_bad(pmd))
229                         continue;
230                 free_pte_range(tlb, pmd, addr);
231         } while (pmd++, addr = next, addr != end);
232
233         start &= PUD_MASK;
234         if (start < floor)
235                 return;
236         if (ceiling) {
237                 ceiling &= PUD_MASK;
238                 if (!ceiling)
239                         return;
240         }
241         if (end - 1 > ceiling - 1)
242                 return;
243
244         pmd = pmd_offset(pud, start);
245         pud_clear(pud);
246         pmd_free_tlb(tlb, pmd, start);
247         mm_dec_nr_pmds(tlb->mm);
248 }
249
250 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
251                                 unsigned long addr, unsigned long end,
252                                 unsigned long floor, unsigned long ceiling)
253 {
254         pud_t *pud;
255         unsigned long next;
256         unsigned long start;
257
258         start = addr;
259         pud = pud_offset(p4d, addr);
260         do {
261                 next = pud_addr_end(addr, end);
262                 if (pud_none_or_clear_bad(pud))
263                         continue;
264                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
265         } while (pud++, addr = next, addr != end);
266
267         start &= P4D_MASK;
268         if (start < floor)
269                 return;
270         if (ceiling) {
271                 ceiling &= P4D_MASK;
272                 if (!ceiling)
273                         return;
274         }
275         if (end - 1 > ceiling - 1)
276                 return;
277
278         pud = pud_offset(p4d, start);
279         p4d_clear(p4d);
280         pud_free_tlb(tlb, pud, start);
281         mm_dec_nr_puds(tlb->mm);
282 }
283
284 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
285                                 unsigned long addr, unsigned long end,
286                                 unsigned long floor, unsigned long ceiling)
287 {
288         p4d_t *p4d;
289         unsigned long next;
290         unsigned long start;
291
292         start = addr;
293         p4d = p4d_offset(pgd, addr);
294         do {
295                 next = p4d_addr_end(addr, end);
296                 if (p4d_none_or_clear_bad(p4d))
297                         continue;
298                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
299         } while (p4d++, addr = next, addr != end);
300
301         start &= PGDIR_MASK;
302         if (start < floor)
303                 return;
304         if (ceiling) {
305                 ceiling &= PGDIR_MASK;
306                 if (!ceiling)
307                         return;
308         }
309         if (end - 1 > ceiling - 1)
310                 return;
311
312         p4d = p4d_offset(pgd, start);
313         pgd_clear(pgd);
314         p4d_free_tlb(tlb, p4d, start);
315 }
316
317 /*
318  * This function frees user-level page tables of a process.
319  */
320 void free_pgd_range(struct mmu_gather *tlb,
321                         unsigned long addr, unsigned long end,
322                         unsigned long floor, unsigned long ceiling)
323 {
324         pgd_t *pgd;
325         unsigned long next;
326
327         /*
328          * The next few lines have given us lots of grief...
329          *
330          * Why are we testing PMD* at this top level?  Because often
331          * there will be no work to do at all, and we'd prefer not to
332          * go all the way down to the bottom just to discover that.
333          *
334          * Why all these "- 1"s?  Because 0 represents both the bottom
335          * of the address space and the top of it (using -1 for the
336          * top wouldn't help much: the masks would do the wrong thing).
337          * The rule is that addr 0 and floor 0 refer to the bottom of
338          * the address space, but end 0 and ceiling 0 refer to the top
339          * Comparisons need to use "end - 1" and "ceiling - 1" (though
340          * that end 0 case should be mythical).
341          *
342          * Wherever addr is brought up or ceiling brought down, we must
343          * be careful to reject "the opposite 0" before it confuses the
344          * subsequent tests.  But what about where end is brought down
345          * by PMD_SIZE below? no, end can't go down to 0 there.
346          *
347          * Whereas we round start (addr) and ceiling down, by different
348          * masks at different levels, in order to test whether a table
349          * now has no other vmas using it, so can be freed, we don't
350          * bother to round floor or end up - the tests don't need that.
351          */
352
353         addr &= PMD_MASK;
354         if (addr < floor) {
355                 addr += PMD_SIZE;
356                 if (!addr)
357                         return;
358         }
359         if (ceiling) {
360                 ceiling &= PMD_MASK;
361                 if (!ceiling)
362                         return;
363         }
364         if (end - 1 > ceiling - 1)
365                 end -= PMD_SIZE;
366         if (addr > end - 1)
367                 return;
368         /*
369          * We add page table cache pages with PAGE_SIZE,
370          * (see pte_free_tlb()), flush the tlb if we need
371          */
372         tlb_change_page_size(tlb, PAGE_SIZE);
373         pgd = pgd_offset(tlb->mm, addr);
374         do {
375                 next = pgd_addr_end(addr, end);
376                 if (pgd_none_or_clear_bad(pgd))
377                         continue;
378                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
379         } while (pgd++, addr = next, addr != end);
380 }
381
382 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
383                 unsigned long floor, unsigned long ceiling)
384 {
385         while (vma) {
386                 struct vm_area_struct *next = vma->vm_next;
387                 unsigned long addr = vma->vm_start;
388
389                 /*
390                  * Hide vma from rmap and truncate_pagecache before freeing
391                  * pgtables
392                  */
393                 unlink_anon_vmas(vma);
394                 unlink_file_vma(vma);
395
396                 if (is_vm_hugetlb_page(vma)) {
397                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
398                                 floor, next ? next->vm_start : ceiling);
399                 } else {
400                         /*
401                          * Optimization: gather nearby vmas into one call down
402                          */
403                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
404                                && !is_vm_hugetlb_page(next)) {
405                                 vma = next;
406                                 next = vma->vm_next;
407                                 unlink_anon_vmas(vma);
408                                 unlink_file_vma(vma);
409                         }
410                         free_pgd_range(tlb, addr, vma->vm_end,
411                                 floor, next ? next->vm_start : ceiling);
412                 }
413                 vma = next;
414         }
415 }
416
417 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
418 {
419         spinlock_t *ptl;
420         pgtable_t new = pte_alloc_one(mm);
421         if (!new)
422                 return -ENOMEM;
423
424         /*
425          * Ensure all pte setup (eg. pte page lock and page clearing) are
426          * visible before the pte is made visible to other CPUs by being
427          * put into page tables.
428          *
429          * The other side of the story is the pointer chasing in the page
430          * table walking code (when walking the page table without locking;
431          * ie. most of the time). Fortunately, these data accesses consist
432          * of a chain of data-dependent loads, meaning most CPUs (alpha
433          * being the notable exception) will already guarantee loads are
434          * seen in-order. See the alpha page table accessors for the
435          * smp_read_barrier_depends() barriers in page table walking code.
436          */
437         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438
439         ptl = pmd_lock(mm, pmd);
440         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
441                 mm_inc_nr_ptes(mm);
442                 pmd_populate(mm, pmd, new);
443                 new = NULL;
444         }
445         spin_unlock(ptl);
446         if (new)
447                 pte_free(mm, new);
448         return 0;
449 }
450
451 int __pte_alloc_kernel(pmd_t *pmd)
452 {
453         pte_t *new = pte_alloc_one_kernel(&init_mm);
454         if (!new)
455                 return -ENOMEM;
456
457         smp_wmb(); /* See comment in __pte_alloc */
458
459         spin_lock(&init_mm.page_table_lock);
460         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
461                 pmd_populate_kernel(&init_mm, pmd, new);
462                 new = NULL;
463         }
464         spin_unlock(&init_mm.page_table_lock);
465         if (new)
466                 pte_free_kernel(&init_mm, new);
467         return 0;
468 }
469
470 static inline void init_rss_vec(int *rss)
471 {
472         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473 }
474
475 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
476 {
477         int i;
478
479         if (current->mm == mm)
480                 sync_mm_rss(mm);
481         for (i = 0; i < NR_MM_COUNTERS; i++)
482                 if (rss[i])
483                         add_mm_counter(mm, i, rss[i]);
484 }
485
486 /*
487  * This function is called to print an error when a bad pte
488  * is found. For example, we might have a PFN-mapped pte in
489  * a region that doesn't allow it.
490  *
491  * The calling function must still handle the error.
492  */
493 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
494                           pte_t pte, struct page *page)
495 {
496         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
497         p4d_t *p4d = p4d_offset(pgd, addr);
498         pud_t *pud = pud_offset(p4d, addr);
499         pmd_t *pmd = pmd_offset(pud, addr);
500         struct address_space *mapping;
501         pgoff_t index;
502         static unsigned long resume;
503         static unsigned long nr_shown;
504         static unsigned long nr_unshown;
505
506         /*
507          * Allow a burst of 60 reports, then keep quiet for that minute;
508          * or allow a steady drip of one report per second.
509          */
510         if (nr_shown == 60) {
511                 if (time_before(jiffies, resume)) {
512                         nr_unshown++;
513                         return;
514                 }
515                 if (nr_unshown) {
516                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
517                                  nr_unshown);
518                         nr_unshown = 0;
519                 }
520                 nr_shown = 0;
521         }
522         if (nr_shown++ == 0)
523                 resume = jiffies + 60 * HZ;
524
525         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
526         index = linear_page_index(vma, addr);
527
528         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
529                  current->comm,
530                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
531         if (page)
532                 dump_page(page, "bad pte");
533         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
534                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
535         pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
536                  vma->vm_file,
537                  vma->vm_ops ? vma->vm_ops->fault : NULL,
538                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
539                  mapping ? mapping->a_ops->readpage : NULL);
540         dump_stack();
541         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
542 }
543
544 /*
545  * vm_normal_page -- This function gets the "struct page" associated with a pte.
546  *
547  * "Special" mappings do not wish to be associated with a "struct page" (either
548  * it doesn't exist, or it exists but they don't want to touch it). In this
549  * case, NULL is returned here. "Normal" mappings do have a struct page.
550  *
551  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
552  * pte bit, in which case this function is trivial. Secondly, an architecture
553  * may not have a spare pte bit, which requires a more complicated scheme,
554  * described below.
555  *
556  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
557  * special mapping (even if there are underlying and valid "struct pages").
558  * COWed pages of a VM_PFNMAP are always normal.
559  *
560  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
561  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
562  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
563  * mapping will always honor the rule
564  *
565  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
566  *
567  * And for normal mappings this is false.
568  *
569  * This restricts such mappings to be a linear translation from virtual address
570  * to pfn. To get around this restriction, we allow arbitrary mappings so long
571  * as the vma is not a COW mapping; in that case, we know that all ptes are
572  * special (because none can have been COWed).
573  *
574  *
575  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
576  *
577  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
578  * page" backing, however the difference is that _all_ pages with a struct
579  * page (that is, those where pfn_valid is true) are refcounted and considered
580  * normal pages by the VM. The disadvantage is that pages are refcounted
581  * (which can be slower and simply not an option for some PFNMAP users). The
582  * advantage is that we don't have to follow the strict linearity rule of
583  * PFNMAP mappings in order to support COWable mappings.
584  *
585  */
586 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
587                             pte_t pte)
588 {
589         unsigned long pfn = pte_pfn(pte);
590
591         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
592                 if (likely(!pte_special(pte)))
593                         goto check_pfn;
594                 if (vma->vm_ops && vma->vm_ops->find_special_page)
595                         return vma->vm_ops->find_special_page(vma, addr);
596                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
597                         return NULL;
598                 if (is_zero_pfn(pfn))
599                         return NULL;
600                 if (pte_devmap(pte))
601                         return NULL;
602
603                 print_bad_pte(vma, addr, pte, NULL);
604                 return NULL;
605         }
606
607         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
608
609         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
610                 if (vma->vm_flags & VM_MIXEDMAP) {
611                         if (!pfn_valid(pfn))
612                                 return NULL;
613                         goto out;
614                 } else {
615                         unsigned long off;
616                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
617                         if (pfn == vma->vm_pgoff + off)
618                                 return NULL;
619                         if (!is_cow_mapping(vma->vm_flags))
620                                 return NULL;
621                 }
622         }
623
624         if (is_zero_pfn(pfn))
625                 return NULL;
626
627 check_pfn:
628         if (unlikely(pfn > highest_memmap_pfn)) {
629                 print_bad_pte(vma, addr, pte, NULL);
630                 return NULL;
631         }
632
633         /*
634          * NOTE! We still have PageReserved() pages in the page tables.
635          * eg. VDSO mappings can cause them to exist.
636          */
637 out:
638         return pfn_to_page(pfn);
639 }
640
641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
642 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
643                                 pmd_t pmd)
644 {
645         unsigned long pfn = pmd_pfn(pmd);
646
647         /*
648          * There is no pmd_special() but there may be special pmds, e.g.
649          * in a direct-access (dax) mapping, so let's just replicate the
650          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
651          */
652         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
653                 if (vma->vm_flags & VM_MIXEDMAP) {
654                         if (!pfn_valid(pfn))
655                                 return NULL;
656                         goto out;
657                 } else {
658                         unsigned long off;
659                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
660                         if (pfn == vma->vm_pgoff + off)
661                                 return NULL;
662                         if (!is_cow_mapping(vma->vm_flags))
663                                 return NULL;
664                 }
665         }
666
667         if (pmd_devmap(pmd))
668                 return NULL;
669         if (is_zero_pfn(pfn))
670                 return NULL;
671         if (unlikely(pfn > highest_memmap_pfn))
672                 return NULL;
673
674         /*
675          * NOTE! We still have PageReserved() pages in the page tables.
676          * eg. VDSO mappings can cause them to exist.
677          */
678 out:
679         return pfn_to_page(pfn);
680 }
681 #endif
682
683 /*
684  * copy one vm_area from one task to the other. Assumes the page tables
685  * already present in the new task to be cleared in the whole range
686  * covered by this vma.
687  */
688
689 static inline unsigned long
690 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
691                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
692                 unsigned long addr, int *rss)
693 {
694         unsigned long vm_flags = vma->vm_flags;
695         pte_t pte = *src_pte;
696         struct page *page;
697
698         /* pte contains position in swap or file, so copy. */
699         if (unlikely(!pte_present(pte))) {
700                 swp_entry_t entry = pte_to_swp_entry(pte);
701
702                 if (likely(!non_swap_entry(entry))) {
703                         if (swap_duplicate(entry) < 0)
704                                 return entry.val;
705
706                         /* make sure dst_mm is on swapoff's mmlist. */
707                         if (unlikely(list_empty(&dst_mm->mmlist))) {
708                                 spin_lock(&mmlist_lock);
709                                 if (list_empty(&dst_mm->mmlist))
710                                         list_add(&dst_mm->mmlist,
711                                                         &src_mm->mmlist);
712                                 spin_unlock(&mmlist_lock);
713                         }
714                         rss[MM_SWAPENTS]++;
715                 } else if (is_migration_entry(entry)) {
716                         page = migration_entry_to_page(entry);
717
718                         rss[mm_counter(page)]++;
719
720                         if (is_write_migration_entry(entry) &&
721                                         is_cow_mapping(vm_flags)) {
722                                 /*
723                                  * COW mappings require pages in both
724                                  * parent and child to be set to read.
725                                  */
726                                 make_migration_entry_read(&entry);
727                                 pte = swp_entry_to_pte(entry);
728                                 if (pte_swp_soft_dirty(*src_pte))
729                                         pte = pte_swp_mksoft_dirty(pte);
730                                 set_pte_at(src_mm, addr, src_pte, pte);
731                         }
732                 } else if (is_device_private_entry(entry)) {
733                         page = device_private_entry_to_page(entry);
734
735                         /*
736                          * Update rss count even for unaddressable pages, as
737                          * they should treated just like normal pages in this
738                          * respect.
739                          *
740                          * We will likely want to have some new rss counters
741                          * for unaddressable pages, at some point. But for now
742                          * keep things as they are.
743                          */
744                         get_page(page);
745                         rss[mm_counter(page)]++;
746                         page_dup_rmap(page, false);
747
748                         /*
749                          * We do not preserve soft-dirty information, because so
750                          * far, checkpoint/restore is the only feature that
751                          * requires that. And checkpoint/restore does not work
752                          * when a device driver is involved (you cannot easily
753                          * save and restore device driver state).
754                          */
755                         if (is_write_device_private_entry(entry) &&
756                             is_cow_mapping(vm_flags)) {
757                                 make_device_private_entry_read(&entry);
758                                 pte = swp_entry_to_pte(entry);
759                                 set_pte_at(src_mm, addr, src_pte, pte);
760                         }
761                 }
762                 goto out_set_pte;
763         }
764
765         /*
766          * If it's a COW mapping, write protect it both
767          * in the parent and the child
768          */
769         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
770                 ptep_set_wrprotect(src_mm, addr, src_pte);
771                 pte = pte_wrprotect(pte);
772         }
773
774         /*
775          * If it's a shared mapping, mark it clean in
776          * the child
777          */
778         if (vm_flags & VM_SHARED)
779                 pte = pte_mkclean(pte);
780         pte = pte_mkold(pte);
781
782         page = vm_normal_page(vma, addr, pte);
783         if (page) {
784                 get_page(page);
785                 page_dup_rmap(page, false);
786                 rss[mm_counter(page)]++;
787         } else if (pte_devmap(pte)) {
788                 page = pte_page(pte);
789         }
790
791 out_set_pte:
792         set_pte_at(dst_mm, addr, dst_pte, pte);
793         return 0;
794 }
795
796 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
797                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
798                    unsigned long addr, unsigned long end)
799 {
800         pte_t *orig_src_pte, *orig_dst_pte;
801         pte_t *src_pte, *dst_pte;
802         spinlock_t *src_ptl, *dst_ptl;
803         int progress = 0;
804         int rss[NR_MM_COUNTERS];
805         swp_entry_t entry = (swp_entry_t){0};
806
807 again:
808         init_rss_vec(rss);
809
810         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
811         if (!dst_pte)
812                 return -ENOMEM;
813         src_pte = pte_offset_map(src_pmd, addr);
814         src_ptl = pte_lockptr(src_mm, src_pmd);
815         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
816         orig_src_pte = src_pte;
817         orig_dst_pte = dst_pte;
818         arch_enter_lazy_mmu_mode();
819
820         do {
821                 /*
822                  * We are holding two locks at this point - either of them
823                  * could generate latencies in another task on another CPU.
824                  */
825                 if (progress >= 32) {
826                         progress = 0;
827                         if (need_resched() ||
828                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
829                                 break;
830                 }
831                 if (pte_none(*src_pte)) {
832                         progress++;
833                         continue;
834                 }
835                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
836                                                         vma, addr, rss);
837                 if (entry.val)
838                         break;
839                 progress += 8;
840         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
841
842         arch_leave_lazy_mmu_mode();
843         spin_unlock(src_ptl);
844         pte_unmap(orig_src_pte);
845         add_mm_rss_vec(dst_mm, rss);
846         pte_unmap_unlock(orig_dst_pte, dst_ptl);
847         cond_resched();
848
849         if (entry.val) {
850                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
851                         return -ENOMEM;
852                 progress = 0;
853         }
854         if (addr != end)
855                 goto again;
856         return 0;
857 }
858
859 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
860                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
861                 unsigned long addr, unsigned long end)
862 {
863         pmd_t *src_pmd, *dst_pmd;
864         unsigned long next;
865
866         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
867         if (!dst_pmd)
868                 return -ENOMEM;
869         src_pmd = pmd_offset(src_pud, addr);
870         do {
871                 next = pmd_addr_end(addr, end);
872                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
873                         || pmd_devmap(*src_pmd)) {
874                         int err;
875                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
876                         err = copy_huge_pmd(dst_mm, src_mm,
877                                             dst_pmd, src_pmd, addr, vma);
878                         if (err == -ENOMEM)
879                                 return -ENOMEM;
880                         if (!err)
881                                 continue;
882                         /* fall through */
883                 }
884                 if (pmd_none_or_clear_bad(src_pmd))
885                         continue;
886                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
887                                                 vma, addr, next))
888                         return -ENOMEM;
889         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
890         return 0;
891 }
892
893 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
894                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
895                 unsigned long addr, unsigned long end)
896 {
897         pud_t *src_pud, *dst_pud;
898         unsigned long next;
899
900         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
901         if (!dst_pud)
902                 return -ENOMEM;
903         src_pud = pud_offset(src_p4d, addr);
904         do {
905                 next = pud_addr_end(addr, end);
906                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
907                         int err;
908
909                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
910                         err = copy_huge_pud(dst_mm, src_mm,
911                                             dst_pud, src_pud, addr, vma);
912                         if (err == -ENOMEM)
913                                 return -ENOMEM;
914                         if (!err)
915                                 continue;
916                         /* fall through */
917                 }
918                 if (pud_none_or_clear_bad(src_pud))
919                         continue;
920                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
921                                                 vma, addr, next))
922                         return -ENOMEM;
923         } while (dst_pud++, src_pud++, addr = next, addr != end);
924         return 0;
925 }
926
927 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
929                 unsigned long addr, unsigned long end)
930 {
931         p4d_t *src_p4d, *dst_p4d;
932         unsigned long next;
933
934         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
935         if (!dst_p4d)
936                 return -ENOMEM;
937         src_p4d = p4d_offset(src_pgd, addr);
938         do {
939                 next = p4d_addr_end(addr, end);
940                 if (p4d_none_or_clear_bad(src_p4d))
941                         continue;
942                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
943                                                 vma, addr, next))
944                         return -ENOMEM;
945         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
946         return 0;
947 }
948
949 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950                 struct vm_area_struct *vma)
951 {
952         pgd_t *src_pgd, *dst_pgd;
953         unsigned long next;
954         unsigned long addr = vma->vm_start;
955         unsigned long end = vma->vm_end;
956         struct mmu_notifier_range range;
957         bool is_cow;
958         int ret;
959
960         /*
961          * Don't copy ptes where a page fault will fill them correctly.
962          * Fork becomes much lighter when there are big shared or private
963          * readonly mappings. The tradeoff is that copy_page_range is more
964          * efficient than faulting.
965          */
966         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
967                         !vma->anon_vma)
968                 return 0;
969
970         if (is_vm_hugetlb_page(vma))
971                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
972
973         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
974                 /*
975                  * We do not free on error cases below as remove_vma
976                  * gets called on error from higher level routine
977                  */
978                 ret = track_pfn_copy(vma);
979                 if (ret)
980                         return ret;
981         }
982
983         /*
984          * We need to invalidate the secondary MMU mappings only when
985          * there could be a permission downgrade on the ptes of the
986          * parent mm. And a permission downgrade will only happen if
987          * is_cow_mapping() returns true.
988          */
989         is_cow = is_cow_mapping(vma->vm_flags);
990
991         if (is_cow) {
992                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
993                                         0, vma, src_mm, addr, end);
994                 mmu_notifier_invalidate_range_start(&range);
995         }
996
997         ret = 0;
998         dst_pgd = pgd_offset(dst_mm, addr);
999         src_pgd = pgd_offset(src_mm, addr);
1000         do {
1001                 next = pgd_addr_end(addr, end);
1002                 if (pgd_none_or_clear_bad(src_pgd))
1003                         continue;
1004                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1005                                             vma, addr, next))) {
1006                         ret = -ENOMEM;
1007                         break;
1008                 }
1009         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1010
1011         if (is_cow)
1012                 mmu_notifier_invalidate_range_end(&range);
1013         return ret;
1014 }
1015
1016 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1017                                 struct vm_area_struct *vma, pmd_t *pmd,
1018                                 unsigned long addr, unsigned long end,
1019                                 struct zap_details *details)
1020 {
1021         struct mm_struct *mm = tlb->mm;
1022         int force_flush = 0;
1023         int rss[NR_MM_COUNTERS];
1024         spinlock_t *ptl;
1025         pte_t *start_pte;
1026         pte_t *pte;
1027         swp_entry_t entry;
1028
1029         tlb_change_page_size(tlb, PAGE_SIZE);
1030 again:
1031         init_rss_vec(rss);
1032         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1033         pte = start_pte;
1034         flush_tlb_batched_pending(mm);
1035         arch_enter_lazy_mmu_mode();
1036         do {
1037                 pte_t ptent = *pte;
1038                 if (pte_none(ptent))
1039                         continue;
1040
1041                 if (need_resched())
1042                         break;
1043
1044                 if (pte_present(ptent)) {
1045                         struct page *page;
1046
1047                         page = vm_normal_page(vma, addr, ptent);
1048                         if (unlikely(details) && page) {
1049                                 /*
1050                                  * unmap_shared_mapping_pages() wants to
1051                                  * invalidate cache without truncating:
1052                                  * unmap shared but keep private pages.
1053                                  */
1054                                 if (details->check_mapping &&
1055                                     details->check_mapping != page_rmapping(page))
1056                                         continue;
1057                         }
1058                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1059                                                         tlb->fullmm);
1060                         tlb_remove_tlb_entry(tlb, pte, addr);
1061                         if (unlikely(!page))
1062                                 continue;
1063
1064                         if (!PageAnon(page)) {
1065                                 if (pte_dirty(ptent)) {
1066                                         force_flush = 1;
1067                                         set_page_dirty(page);
1068                                 }
1069                                 if (pte_young(ptent) &&
1070                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1071                                         mark_page_accessed(page);
1072                         }
1073                         rss[mm_counter(page)]--;
1074                         page_remove_rmap(page, false);
1075                         if (unlikely(page_mapcount(page) < 0))
1076                                 print_bad_pte(vma, addr, ptent, page);
1077                         if (unlikely(__tlb_remove_page(tlb, page))) {
1078                                 force_flush = 1;
1079                                 addr += PAGE_SIZE;
1080                                 break;
1081                         }
1082                         continue;
1083                 }
1084
1085                 entry = pte_to_swp_entry(ptent);
1086                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1087                         struct page *page = device_private_entry_to_page(entry);
1088
1089                         if (unlikely(details && details->check_mapping)) {
1090                                 /*
1091                                  * unmap_shared_mapping_pages() wants to
1092                                  * invalidate cache without truncating:
1093                                  * unmap shared but keep private pages.
1094                                  */
1095                                 if (details->check_mapping !=
1096                                     page_rmapping(page))
1097                                         continue;
1098                         }
1099
1100                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1101                         rss[mm_counter(page)]--;
1102                         page_remove_rmap(page, false);
1103                         put_page(page);
1104                         continue;
1105                 }
1106
1107                 /* If details->check_mapping, we leave swap entries. */
1108                 if (unlikely(details))
1109                         continue;
1110
1111                 if (!non_swap_entry(entry))
1112                         rss[MM_SWAPENTS]--;
1113                 else if (is_migration_entry(entry)) {
1114                         struct page *page;
1115
1116                         page = migration_entry_to_page(entry);
1117                         rss[mm_counter(page)]--;
1118                 }
1119                 if (unlikely(!free_swap_and_cache(entry)))
1120                         print_bad_pte(vma, addr, ptent, NULL);
1121                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1122         } while (pte++, addr += PAGE_SIZE, addr != end);
1123
1124         add_mm_rss_vec(mm, rss);
1125         arch_leave_lazy_mmu_mode();
1126
1127         /* Do the actual TLB flush before dropping ptl */
1128         if (force_flush)
1129                 tlb_flush_mmu_tlbonly(tlb);
1130         pte_unmap_unlock(start_pte, ptl);
1131
1132         /*
1133          * If we forced a TLB flush (either due to running out of
1134          * batch buffers or because we needed to flush dirty TLB
1135          * entries before releasing the ptl), free the batched
1136          * memory too. Restart if we didn't do everything.
1137          */
1138         if (force_flush) {
1139                 force_flush = 0;
1140                 tlb_flush_mmu(tlb);
1141         }
1142
1143         if (addr != end) {
1144                 cond_resched();
1145                 goto again;
1146         }
1147
1148         return addr;
1149 }
1150
1151 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1152                                 struct vm_area_struct *vma, pud_t *pud,
1153                                 unsigned long addr, unsigned long end,
1154                                 struct zap_details *details)
1155 {
1156         pmd_t *pmd;
1157         unsigned long next;
1158
1159         pmd = pmd_offset(pud, addr);
1160         do {
1161                 next = pmd_addr_end(addr, end);
1162                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1163                         if (next - addr != HPAGE_PMD_SIZE)
1164                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1165                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1166                                 goto next;
1167                         /* fall through */
1168                 }
1169                 /*
1170                  * Here there can be other concurrent MADV_DONTNEED or
1171                  * trans huge page faults running, and if the pmd is
1172                  * none or trans huge it can change under us. This is
1173                  * because MADV_DONTNEED holds the mmap_sem in read
1174                  * mode.
1175                  */
1176                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1177                         goto next;
1178                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1179 next:
1180                 cond_resched();
1181         } while (pmd++, addr = next, addr != end);
1182
1183         return addr;
1184 }
1185
1186 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1187                                 struct vm_area_struct *vma, p4d_t *p4d,
1188                                 unsigned long addr, unsigned long end,
1189                                 struct zap_details *details)
1190 {
1191         pud_t *pud;
1192         unsigned long next;
1193
1194         pud = pud_offset(p4d, addr);
1195         do {
1196                 next = pud_addr_end(addr, end);
1197                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1198                         if (next - addr != HPAGE_PUD_SIZE) {
1199                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1200                                 split_huge_pud(vma, pud, addr);
1201                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1202                                 goto next;
1203                         /* fall through */
1204                 }
1205                 if (pud_none_or_clear_bad(pud))
1206                         continue;
1207                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1208 next:
1209                 cond_resched();
1210         } while (pud++, addr = next, addr != end);
1211
1212         return addr;
1213 }
1214
1215 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1216                                 struct vm_area_struct *vma, pgd_t *pgd,
1217                                 unsigned long addr, unsigned long end,
1218                                 struct zap_details *details)
1219 {
1220         p4d_t *p4d;
1221         unsigned long next;
1222
1223         p4d = p4d_offset(pgd, addr);
1224         do {
1225                 next = p4d_addr_end(addr, end);
1226                 if (p4d_none_or_clear_bad(p4d))
1227                         continue;
1228                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1229         } while (p4d++, addr = next, addr != end);
1230
1231         return addr;
1232 }
1233
1234 void unmap_page_range(struct mmu_gather *tlb,
1235                              struct vm_area_struct *vma,
1236                              unsigned long addr, unsigned long end,
1237                              struct zap_details *details)
1238 {
1239         pgd_t *pgd;
1240         unsigned long next;
1241
1242         BUG_ON(addr >= end);
1243         tlb_start_vma(tlb, vma);
1244         pgd = pgd_offset(vma->vm_mm, addr);
1245         do {
1246                 next = pgd_addr_end(addr, end);
1247                 if (pgd_none_or_clear_bad(pgd))
1248                         continue;
1249                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1250         } while (pgd++, addr = next, addr != end);
1251         tlb_end_vma(tlb, vma);
1252 }
1253
1254
1255 static void unmap_single_vma(struct mmu_gather *tlb,
1256                 struct vm_area_struct *vma, unsigned long start_addr,
1257                 unsigned long end_addr,
1258                 struct zap_details *details)
1259 {
1260         unsigned long start = max(vma->vm_start, start_addr);
1261         unsigned long end;
1262
1263         if (start >= vma->vm_end)
1264                 return;
1265         end = min(vma->vm_end, end_addr);
1266         if (end <= vma->vm_start)
1267                 return;
1268
1269         if (vma->vm_file)
1270                 uprobe_munmap(vma, start, end);
1271
1272         if (unlikely(vma->vm_flags & VM_PFNMAP))
1273                 untrack_pfn(vma, 0, 0);
1274
1275         if (start != end) {
1276                 if (unlikely(is_vm_hugetlb_page(vma))) {
1277                         /*
1278                          * It is undesirable to test vma->vm_file as it
1279                          * should be non-null for valid hugetlb area.
1280                          * However, vm_file will be NULL in the error
1281                          * cleanup path of mmap_region. When
1282                          * hugetlbfs ->mmap method fails,
1283                          * mmap_region() nullifies vma->vm_file
1284                          * before calling this function to clean up.
1285                          * Since no pte has actually been setup, it is
1286                          * safe to do nothing in this case.
1287                          */
1288                         if (vma->vm_file) {
1289                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1290                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1291                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1292                         }
1293                 } else
1294                         unmap_page_range(tlb, vma, start, end, details);
1295         }
1296 }
1297
1298 /**
1299  * unmap_vmas - unmap a range of memory covered by a list of vma's
1300  * @tlb: address of the caller's struct mmu_gather
1301  * @vma: the starting vma
1302  * @start_addr: virtual address at which to start unmapping
1303  * @end_addr: virtual address at which to end unmapping
1304  *
1305  * Unmap all pages in the vma list.
1306  *
1307  * Only addresses between `start' and `end' will be unmapped.
1308  *
1309  * The VMA list must be sorted in ascending virtual address order.
1310  *
1311  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1312  * range after unmap_vmas() returns.  So the only responsibility here is to
1313  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1314  * drops the lock and schedules.
1315  */
1316 void unmap_vmas(struct mmu_gather *tlb,
1317                 struct vm_area_struct *vma, unsigned long start_addr,
1318                 unsigned long end_addr)
1319 {
1320         struct mmu_notifier_range range;
1321
1322         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1323                                 start_addr, end_addr);
1324         mmu_notifier_invalidate_range_start(&range);
1325         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1326                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1327         mmu_notifier_invalidate_range_end(&range);
1328 }
1329
1330 /**
1331  * zap_page_range - remove user pages in a given range
1332  * @vma: vm_area_struct holding the applicable pages
1333  * @start: starting address of pages to zap
1334  * @size: number of bytes to zap
1335  *
1336  * Caller must protect the VMA list
1337  */
1338 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1339                 unsigned long size)
1340 {
1341         struct mmu_notifier_range range;
1342         struct mmu_gather tlb;
1343
1344         lru_add_drain();
1345         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1346                                 start, start + size);
1347         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1348         update_hiwater_rss(vma->vm_mm);
1349         mmu_notifier_invalidate_range_start(&range);
1350         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1351                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1352         mmu_notifier_invalidate_range_end(&range);
1353         tlb_finish_mmu(&tlb, start, range.end);
1354 }
1355
1356 /**
1357  * zap_page_range_single - remove user pages in a given range
1358  * @vma: vm_area_struct holding the applicable pages
1359  * @address: starting address of pages to zap
1360  * @size: number of bytes to zap
1361  * @details: details of shared cache invalidation
1362  *
1363  * The range must fit into one VMA.
1364  */
1365 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1366                 unsigned long size, struct zap_details *details)
1367 {
1368         struct mmu_notifier_range range;
1369         struct mmu_gather tlb;
1370
1371         lru_add_drain();
1372         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1373                                 address, address + size);
1374         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1375         update_hiwater_rss(vma->vm_mm);
1376         mmu_notifier_invalidate_range_start(&range);
1377         unmap_single_vma(&tlb, vma, address, range.end, details);
1378         mmu_notifier_invalidate_range_end(&range);
1379         tlb_finish_mmu(&tlb, address, range.end);
1380 }
1381
1382 /**
1383  * zap_vma_ptes - remove ptes mapping the vma
1384  * @vma: vm_area_struct holding ptes to be zapped
1385  * @address: starting address of pages to zap
1386  * @size: number of bytes to zap
1387  *
1388  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1389  *
1390  * The entire address range must be fully contained within the vma.
1391  *
1392  */
1393 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1394                 unsigned long size)
1395 {
1396         if (address < vma->vm_start || address + size > vma->vm_end ||
1397                         !(vma->vm_flags & VM_PFNMAP))
1398                 return;
1399
1400         zap_page_range_single(vma, address, size, NULL);
1401 }
1402 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1403
1404 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1405                         spinlock_t **ptl)
1406 {
1407         pgd_t *pgd;
1408         p4d_t *p4d;
1409         pud_t *pud;
1410         pmd_t *pmd;
1411
1412         pgd = pgd_offset(mm, addr);
1413         p4d = p4d_alloc(mm, pgd, addr);
1414         if (!p4d)
1415                 return NULL;
1416         pud = pud_alloc(mm, p4d, addr);
1417         if (!pud)
1418                 return NULL;
1419         pmd = pmd_alloc(mm, pud, addr);
1420         if (!pmd)
1421                 return NULL;
1422
1423         VM_BUG_ON(pmd_trans_huge(*pmd));
1424         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1425 }
1426
1427 /*
1428  * This is the old fallback for page remapping.
1429  *
1430  * For historical reasons, it only allows reserved pages. Only
1431  * old drivers should use this, and they needed to mark their
1432  * pages reserved for the old functions anyway.
1433  */
1434 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1435                         struct page *page, pgprot_t prot)
1436 {
1437         struct mm_struct *mm = vma->vm_mm;
1438         int retval;
1439         pte_t *pte;
1440         spinlock_t *ptl;
1441
1442         retval = -EINVAL;
1443         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1444                 goto out;
1445         retval = -ENOMEM;
1446         flush_dcache_page(page);
1447         pte = get_locked_pte(mm, addr, &ptl);
1448         if (!pte)
1449                 goto out;
1450         retval = -EBUSY;
1451         if (!pte_none(*pte))
1452                 goto out_unlock;
1453
1454         /* Ok, finally just insert the thing.. */
1455         get_page(page);
1456         inc_mm_counter_fast(mm, mm_counter_file(page));
1457         page_add_file_rmap(page, false);
1458         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1459
1460         retval = 0;
1461 out_unlock:
1462         pte_unmap_unlock(pte, ptl);
1463 out:
1464         return retval;
1465 }
1466
1467 /**
1468  * vm_insert_page - insert single page into user vma
1469  * @vma: user vma to map to
1470  * @addr: target user address of this page
1471  * @page: source kernel page
1472  *
1473  * This allows drivers to insert individual pages they've allocated
1474  * into a user vma.
1475  *
1476  * The page has to be a nice clean _individual_ kernel allocation.
1477  * If you allocate a compound page, you need to have marked it as
1478  * such (__GFP_COMP), or manually just split the page up yourself
1479  * (see split_page()).
1480  *
1481  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1482  * took an arbitrary page protection parameter. This doesn't allow
1483  * that. Your vma protection will have to be set up correctly, which
1484  * means that if you want a shared writable mapping, you'd better
1485  * ask for a shared writable mapping!
1486  *
1487  * The page does not need to be reserved.
1488  *
1489  * Usually this function is called from f_op->mmap() handler
1490  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1491  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1492  * function from other places, for example from page-fault handler.
1493  *
1494  * Return: %0 on success, negative error code otherwise.
1495  */
1496 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1497                         struct page *page)
1498 {
1499         if (addr < vma->vm_start || addr >= vma->vm_end)
1500                 return -EFAULT;
1501         if (!page_count(page))
1502                 return -EINVAL;
1503         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1504                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1505                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1506                 vma->vm_flags |= VM_MIXEDMAP;
1507         }
1508         return insert_page(vma, addr, page, vma->vm_page_prot);
1509 }
1510 EXPORT_SYMBOL(vm_insert_page);
1511
1512 /*
1513  * __vm_map_pages - maps range of kernel pages into user vma
1514  * @vma: user vma to map to
1515  * @pages: pointer to array of source kernel pages
1516  * @num: number of pages in page array
1517  * @offset: user's requested vm_pgoff
1518  *
1519  * This allows drivers to map range of kernel pages into a user vma.
1520  *
1521  * Return: 0 on success and error code otherwise.
1522  */
1523 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1524                                 unsigned long num, unsigned long offset)
1525 {
1526         unsigned long count = vma_pages(vma);
1527         unsigned long uaddr = vma->vm_start;
1528         int ret, i;
1529
1530         /* Fail if the user requested offset is beyond the end of the object */
1531         if (offset >= num)
1532                 return -ENXIO;
1533
1534         /* Fail if the user requested size exceeds available object size */
1535         if (count > num - offset)
1536                 return -ENXIO;
1537
1538         for (i = 0; i < count; i++) {
1539                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1540                 if (ret < 0)
1541                         return ret;
1542                 uaddr += PAGE_SIZE;
1543         }
1544
1545         return 0;
1546 }
1547
1548 /**
1549  * vm_map_pages - maps range of kernel pages starts with non zero offset
1550  * @vma: user vma to map to
1551  * @pages: pointer to array of source kernel pages
1552  * @num: number of pages in page array
1553  *
1554  * Maps an object consisting of @num pages, catering for the user's
1555  * requested vm_pgoff
1556  *
1557  * If we fail to insert any page into the vma, the function will return
1558  * immediately leaving any previously inserted pages present.  Callers
1559  * from the mmap handler may immediately return the error as their caller
1560  * will destroy the vma, removing any successfully inserted pages. Other
1561  * callers should make their own arrangements for calling unmap_region().
1562  *
1563  * Context: Process context. Called by mmap handlers.
1564  * Return: 0 on success and error code otherwise.
1565  */
1566 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1567                                 unsigned long num)
1568 {
1569         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1570 }
1571 EXPORT_SYMBOL(vm_map_pages);
1572
1573 /**
1574  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1575  * @vma: user vma to map to
1576  * @pages: pointer to array of source kernel pages
1577  * @num: number of pages in page array
1578  *
1579  * Similar to vm_map_pages(), except that it explicitly sets the offset
1580  * to 0. This function is intended for the drivers that did not consider
1581  * vm_pgoff.
1582  *
1583  * Context: Process context. Called by mmap handlers.
1584  * Return: 0 on success and error code otherwise.
1585  */
1586 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1587                                 unsigned long num)
1588 {
1589         return __vm_map_pages(vma, pages, num, 0);
1590 }
1591 EXPORT_SYMBOL(vm_map_pages_zero);
1592
1593 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1594                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1595 {
1596         struct mm_struct *mm = vma->vm_mm;
1597         pte_t *pte, entry;
1598         spinlock_t *ptl;
1599
1600         pte = get_locked_pte(mm, addr, &ptl);
1601         if (!pte)
1602                 return VM_FAULT_OOM;
1603         if (!pte_none(*pte)) {
1604                 if (mkwrite) {
1605                         /*
1606                          * For read faults on private mappings the PFN passed
1607                          * in may not match the PFN we have mapped if the
1608                          * mapped PFN is a writeable COW page.  In the mkwrite
1609                          * case we are creating a writable PTE for a shared
1610                          * mapping and we expect the PFNs to match. If they
1611                          * don't match, we are likely racing with block
1612                          * allocation and mapping invalidation so just skip the
1613                          * update.
1614                          */
1615                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1616                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1617                                 goto out_unlock;
1618                         }
1619                         entry = pte_mkyoung(*pte);
1620                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1621                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1622                                 update_mmu_cache(vma, addr, pte);
1623                 }
1624                 goto out_unlock;
1625         }
1626
1627         /* Ok, finally just insert the thing.. */
1628         if (pfn_t_devmap(pfn))
1629                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1630         else
1631                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1632
1633         if (mkwrite) {
1634                 entry = pte_mkyoung(entry);
1635                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1636         }
1637
1638         set_pte_at(mm, addr, pte, entry);
1639         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1640
1641 out_unlock:
1642         pte_unmap_unlock(pte, ptl);
1643         return VM_FAULT_NOPAGE;
1644 }
1645
1646 /**
1647  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1648  * @vma: user vma to map to
1649  * @addr: target user address of this page
1650  * @pfn: source kernel pfn
1651  * @pgprot: pgprot flags for the inserted page
1652  *
1653  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1654  * to override pgprot on a per-page basis.
1655  *
1656  * This only makes sense for IO mappings, and it makes no sense for
1657  * COW mappings.  In general, using multiple vmas is preferable;
1658  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1659  * impractical.
1660  *
1661  * Context: Process context.  May allocate using %GFP_KERNEL.
1662  * Return: vm_fault_t value.
1663  */
1664 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1665                         unsigned long pfn, pgprot_t pgprot)
1666 {
1667         /*
1668          * Technically, architectures with pte_special can avoid all these
1669          * restrictions (same for remap_pfn_range).  However we would like
1670          * consistency in testing and feature parity among all, so we should
1671          * try to keep these invariants in place for everybody.
1672          */
1673         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1674         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1675                                                 (VM_PFNMAP|VM_MIXEDMAP));
1676         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1677         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1678
1679         if (addr < vma->vm_start || addr >= vma->vm_end)
1680                 return VM_FAULT_SIGBUS;
1681
1682         if (!pfn_modify_allowed(pfn, pgprot))
1683                 return VM_FAULT_SIGBUS;
1684
1685         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1686
1687         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1688                         false);
1689 }
1690 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1691
1692 /**
1693  * vmf_insert_pfn - insert single pfn into user vma
1694  * @vma: user vma to map to
1695  * @addr: target user address of this page
1696  * @pfn: source kernel pfn
1697  *
1698  * Similar to vm_insert_page, this allows drivers to insert individual pages
1699  * they've allocated into a user vma. Same comments apply.
1700  *
1701  * This function should only be called from a vm_ops->fault handler, and
1702  * in that case the handler should return the result of this function.
1703  *
1704  * vma cannot be a COW mapping.
1705  *
1706  * As this is called only for pages that do not currently exist, we
1707  * do not need to flush old virtual caches or the TLB.
1708  *
1709  * Context: Process context.  May allocate using %GFP_KERNEL.
1710  * Return: vm_fault_t value.
1711  */
1712 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1713                         unsigned long pfn)
1714 {
1715         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1716 }
1717 EXPORT_SYMBOL(vmf_insert_pfn);
1718
1719 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1720 {
1721         /* these checks mirror the abort conditions in vm_normal_page */
1722         if (vma->vm_flags & VM_MIXEDMAP)
1723                 return true;
1724         if (pfn_t_devmap(pfn))
1725                 return true;
1726         if (pfn_t_special(pfn))
1727                 return true;
1728         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1729                 return true;
1730         return false;
1731 }
1732
1733 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1734                 unsigned long addr, pfn_t pfn, bool mkwrite)
1735 {
1736         pgprot_t pgprot = vma->vm_page_prot;
1737         int err;
1738
1739         BUG_ON(!vm_mixed_ok(vma, pfn));
1740
1741         if (addr < vma->vm_start || addr >= vma->vm_end)
1742                 return VM_FAULT_SIGBUS;
1743
1744         track_pfn_insert(vma, &pgprot, pfn);
1745
1746         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1747                 return VM_FAULT_SIGBUS;
1748
1749         /*
1750          * If we don't have pte special, then we have to use the pfn_valid()
1751          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1752          * refcount the page if pfn_valid is true (hence insert_page rather
1753          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1754          * without pte special, it would there be refcounted as a normal page.
1755          */
1756         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1757             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1758                 struct page *page;
1759
1760                 /*
1761                  * At this point we are committed to insert_page()
1762                  * regardless of whether the caller specified flags that
1763                  * result in pfn_t_has_page() == false.
1764                  */
1765                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1766                 err = insert_page(vma, addr, page, pgprot);
1767         } else {
1768                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1769         }
1770
1771         if (err == -ENOMEM)
1772                 return VM_FAULT_OOM;
1773         if (err < 0 && err != -EBUSY)
1774                 return VM_FAULT_SIGBUS;
1775
1776         return VM_FAULT_NOPAGE;
1777 }
1778
1779 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1780                 pfn_t pfn)
1781 {
1782         return __vm_insert_mixed(vma, addr, pfn, false);
1783 }
1784 EXPORT_SYMBOL(vmf_insert_mixed);
1785
1786 /*
1787  *  If the insertion of PTE failed because someone else already added a
1788  *  different entry in the mean time, we treat that as success as we assume
1789  *  the same entry was actually inserted.
1790  */
1791 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1792                 unsigned long addr, pfn_t pfn)
1793 {
1794         return __vm_insert_mixed(vma, addr, pfn, true);
1795 }
1796 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1797
1798 /*
1799  * maps a range of physical memory into the requested pages. the old
1800  * mappings are removed. any references to nonexistent pages results
1801  * in null mappings (currently treated as "copy-on-access")
1802  */
1803 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1804                         unsigned long addr, unsigned long end,
1805                         unsigned long pfn, pgprot_t prot)
1806 {
1807         pte_t *pte;
1808         spinlock_t *ptl;
1809         int err = 0;
1810
1811         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1812         if (!pte)
1813                 return -ENOMEM;
1814         arch_enter_lazy_mmu_mode();
1815         do {
1816                 BUG_ON(!pte_none(*pte));
1817                 if (!pfn_modify_allowed(pfn, prot)) {
1818                         err = -EACCES;
1819                         break;
1820                 }
1821                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1822                 pfn++;
1823         } while (pte++, addr += PAGE_SIZE, addr != end);
1824         arch_leave_lazy_mmu_mode();
1825         pte_unmap_unlock(pte - 1, ptl);
1826         return err;
1827 }
1828
1829 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1830                         unsigned long addr, unsigned long end,
1831                         unsigned long pfn, pgprot_t prot)
1832 {
1833         pmd_t *pmd;
1834         unsigned long next;
1835         int err;
1836
1837         pfn -= addr >> PAGE_SHIFT;
1838         pmd = pmd_alloc(mm, pud, addr);
1839         if (!pmd)
1840                 return -ENOMEM;
1841         VM_BUG_ON(pmd_trans_huge(*pmd));
1842         do {
1843                 next = pmd_addr_end(addr, end);
1844                 err = remap_pte_range(mm, pmd, addr, next,
1845                                 pfn + (addr >> PAGE_SHIFT), prot);
1846                 if (err)
1847                         return err;
1848         } while (pmd++, addr = next, addr != end);
1849         return 0;
1850 }
1851
1852 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1853                         unsigned long addr, unsigned long end,
1854                         unsigned long pfn, pgprot_t prot)
1855 {
1856         pud_t *pud;
1857         unsigned long next;
1858         int err;
1859
1860         pfn -= addr >> PAGE_SHIFT;
1861         pud = pud_alloc(mm, p4d, addr);
1862         if (!pud)
1863                 return -ENOMEM;
1864         do {
1865                 next = pud_addr_end(addr, end);
1866                 err = remap_pmd_range(mm, pud, addr, next,
1867                                 pfn + (addr >> PAGE_SHIFT), prot);
1868                 if (err)
1869                         return err;
1870         } while (pud++, addr = next, addr != end);
1871         return 0;
1872 }
1873
1874 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1875                         unsigned long addr, unsigned long end,
1876                         unsigned long pfn, pgprot_t prot)
1877 {
1878         p4d_t *p4d;
1879         unsigned long next;
1880         int err;
1881
1882         pfn -= addr >> PAGE_SHIFT;
1883         p4d = p4d_alloc(mm, pgd, addr);
1884         if (!p4d)
1885                 return -ENOMEM;
1886         do {
1887                 next = p4d_addr_end(addr, end);
1888                 err = remap_pud_range(mm, p4d, addr, next,
1889                                 pfn + (addr >> PAGE_SHIFT), prot);
1890                 if (err)
1891                         return err;
1892         } while (p4d++, addr = next, addr != end);
1893         return 0;
1894 }
1895
1896 /**
1897  * remap_pfn_range - remap kernel memory to userspace
1898  * @vma: user vma to map to
1899  * @addr: target user address to start at
1900  * @pfn: physical address of kernel memory
1901  * @size: size of map area
1902  * @prot: page protection flags for this mapping
1903  *
1904  * Note: this is only safe if the mm semaphore is held when called.
1905  *
1906  * Return: %0 on success, negative error code otherwise.
1907  */
1908 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1909                     unsigned long pfn, unsigned long size, pgprot_t prot)
1910 {
1911         pgd_t *pgd;
1912         unsigned long next;
1913         unsigned long end = addr + PAGE_ALIGN(size);
1914         struct mm_struct *mm = vma->vm_mm;
1915         unsigned long remap_pfn = pfn;
1916         int err;
1917
1918         /*
1919          * Physically remapped pages are special. Tell the
1920          * rest of the world about it:
1921          *   VM_IO tells people not to look at these pages
1922          *      (accesses can have side effects).
1923          *   VM_PFNMAP tells the core MM that the base pages are just
1924          *      raw PFN mappings, and do not have a "struct page" associated
1925          *      with them.
1926          *   VM_DONTEXPAND
1927          *      Disable vma merging and expanding with mremap().
1928          *   VM_DONTDUMP
1929          *      Omit vma from core dump, even when VM_IO turned off.
1930          *
1931          * There's a horrible special case to handle copy-on-write
1932          * behaviour that some programs depend on. We mark the "original"
1933          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1934          * See vm_normal_page() for details.
1935          */
1936         if (is_cow_mapping(vma->vm_flags)) {
1937                 if (addr != vma->vm_start || end != vma->vm_end)
1938                         return -EINVAL;
1939                 vma->vm_pgoff = pfn;
1940         }
1941
1942         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1943         if (err)
1944                 return -EINVAL;
1945
1946         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1947
1948         BUG_ON(addr >= end);
1949         pfn -= addr >> PAGE_SHIFT;
1950         pgd = pgd_offset(mm, addr);
1951         flush_cache_range(vma, addr, end);
1952         do {
1953                 next = pgd_addr_end(addr, end);
1954                 err = remap_p4d_range(mm, pgd, addr, next,
1955                                 pfn + (addr >> PAGE_SHIFT), prot);
1956                 if (err)
1957                         break;
1958         } while (pgd++, addr = next, addr != end);
1959
1960         if (err)
1961                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1962
1963         return err;
1964 }
1965 EXPORT_SYMBOL(remap_pfn_range);
1966
1967 /**
1968  * vm_iomap_memory - remap memory to userspace
1969  * @vma: user vma to map to
1970  * @start: start of area
1971  * @len: size of area
1972  *
1973  * This is a simplified io_remap_pfn_range() for common driver use. The
1974  * driver just needs to give us the physical memory range to be mapped,
1975  * we'll figure out the rest from the vma information.
1976  *
1977  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1978  * whatever write-combining details or similar.
1979  *
1980  * Return: %0 on success, negative error code otherwise.
1981  */
1982 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1983 {
1984         unsigned long vm_len, pfn, pages;
1985
1986         /* Check that the physical memory area passed in looks valid */
1987         if (start + len < start)
1988                 return -EINVAL;
1989         /*
1990          * You *really* shouldn't map things that aren't page-aligned,
1991          * but we've historically allowed it because IO memory might
1992          * just have smaller alignment.
1993          */
1994         len += start & ~PAGE_MASK;
1995         pfn = start >> PAGE_SHIFT;
1996         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1997         if (pfn + pages < pfn)
1998                 return -EINVAL;
1999
2000         /* We start the mapping 'vm_pgoff' pages into the area */
2001         if (vma->vm_pgoff > pages)
2002                 return -EINVAL;
2003         pfn += vma->vm_pgoff;
2004         pages -= vma->vm_pgoff;
2005
2006         /* Can we fit all of the mapping? */
2007         vm_len = vma->vm_end - vma->vm_start;
2008         if (vm_len >> PAGE_SHIFT > pages)
2009                 return -EINVAL;
2010
2011         /* Ok, let it rip */
2012         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2013 }
2014 EXPORT_SYMBOL(vm_iomap_memory);
2015
2016 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2017                                      unsigned long addr, unsigned long end,
2018                                      pte_fn_t fn, void *data)
2019 {
2020         pte_t *pte;
2021         int err;
2022         spinlock_t *uninitialized_var(ptl);
2023
2024         pte = (mm == &init_mm) ?
2025                 pte_alloc_kernel(pmd, addr) :
2026                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2027         if (!pte)
2028                 return -ENOMEM;
2029
2030         BUG_ON(pmd_huge(*pmd));
2031
2032         arch_enter_lazy_mmu_mode();
2033
2034         do {
2035                 err = fn(pte++, addr, data);
2036                 if (err)
2037                         break;
2038         } while (addr += PAGE_SIZE, addr != end);
2039
2040         arch_leave_lazy_mmu_mode();
2041
2042         if (mm != &init_mm)
2043                 pte_unmap_unlock(pte-1, ptl);
2044         return err;
2045 }
2046
2047 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2048                                      unsigned long addr, unsigned long end,
2049                                      pte_fn_t fn, void *data)
2050 {
2051         pmd_t *pmd;
2052         unsigned long next;
2053         int err;
2054
2055         BUG_ON(pud_huge(*pud));
2056
2057         pmd = pmd_alloc(mm, pud, addr);
2058         if (!pmd)
2059                 return -ENOMEM;
2060         do {
2061                 next = pmd_addr_end(addr, end);
2062                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2063                 if (err)
2064                         break;
2065         } while (pmd++, addr = next, addr != end);
2066         return err;
2067 }
2068
2069 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2070                                      unsigned long addr, unsigned long end,
2071                                      pte_fn_t fn, void *data)
2072 {
2073         pud_t *pud;
2074         unsigned long next;
2075         int err;
2076
2077         pud = pud_alloc(mm, p4d, addr);
2078         if (!pud)
2079                 return -ENOMEM;
2080         do {
2081                 next = pud_addr_end(addr, end);
2082                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2083                 if (err)
2084                         break;
2085         } while (pud++, addr = next, addr != end);
2086         return err;
2087 }
2088
2089 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2090                                      unsigned long addr, unsigned long end,
2091                                      pte_fn_t fn, void *data)
2092 {
2093         p4d_t *p4d;
2094         unsigned long next;
2095         int err;
2096
2097         p4d = p4d_alloc(mm, pgd, addr);
2098         if (!p4d)
2099                 return -ENOMEM;
2100         do {
2101                 next = p4d_addr_end(addr, end);
2102                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2103                 if (err)
2104                         break;
2105         } while (p4d++, addr = next, addr != end);
2106         return err;
2107 }
2108
2109 /*
2110  * Scan a region of virtual memory, filling in page tables as necessary
2111  * and calling a provided function on each leaf page table.
2112  */
2113 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2114                         unsigned long size, pte_fn_t fn, void *data)
2115 {
2116         pgd_t *pgd;
2117         unsigned long next;
2118         unsigned long end = addr + size;
2119         int err;
2120
2121         if (WARN_ON(addr >= end))
2122                 return -EINVAL;
2123
2124         pgd = pgd_offset(mm, addr);
2125         do {
2126                 next = pgd_addr_end(addr, end);
2127                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2128                 if (err)
2129                         break;
2130         } while (pgd++, addr = next, addr != end);
2131
2132         return err;
2133 }
2134 EXPORT_SYMBOL_GPL(apply_to_page_range);
2135
2136 /*
2137  * handle_pte_fault chooses page fault handler according to an entry which was
2138  * read non-atomically.  Before making any commitment, on those architectures
2139  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2140  * parts, do_swap_page must check under lock before unmapping the pte and
2141  * proceeding (but do_wp_page is only called after already making such a check;
2142  * and do_anonymous_page can safely check later on).
2143  */
2144 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2145                                 pte_t *page_table, pte_t orig_pte)
2146 {
2147         int same = 1;
2148 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2149         if (sizeof(pte_t) > sizeof(unsigned long)) {
2150                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2151                 spin_lock(ptl);
2152                 same = pte_same(*page_table, orig_pte);
2153                 spin_unlock(ptl);
2154         }
2155 #endif
2156         pte_unmap(page_table);
2157         return same;
2158 }
2159
2160 static inline bool cow_user_page(struct page *dst, struct page *src,
2161                                  struct vm_fault *vmf)
2162 {
2163         bool ret;
2164         void *kaddr;
2165         void __user *uaddr;
2166         bool force_mkyoung;
2167         struct vm_area_struct *vma = vmf->vma;
2168         struct mm_struct *mm = vma->vm_mm;
2169         unsigned long addr = vmf->address;
2170
2171         debug_dma_assert_idle(src);
2172
2173         if (likely(src)) {
2174                 copy_user_highpage(dst, src, addr, vma);
2175                 return true;
2176         }
2177
2178         /*
2179          * If the source page was a PFN mapping, we don't have
2180          * a "struct page" for it. We do a best-effort copy by
2181          * just copying from the original user address. If that
2182          * fails, we just zero-fill it. Live with it.
2183          */
2184         kaddr = kmap_atomic(dst);
2185         uaddr = (void __user *)(addr & PAGE_MASK);
2186
2187         /*
2188          * On architectures with software "accessed" bits, we would
2189          * take a double page fault, so mark it accessed here.
2190          */
2191         force_mkyoung = arch_faults_on_old_pte() && !pte_young(vmf->orig_pte);
2192         if (force_mkyoung) {
2193                 pte_t entry;
2194
2195                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2196                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2197                         /*
2198                          * Other thread has already handled the fault
2199                          * and we don't need to do anything. If it's
2200                          * not the case, the fault will be triggered
2201                          * again on the same address.
2202                          */
2203                         ret = false;
2204                         goto pte_unlock;
2205                 }
2206
2207                 entry = pte_mkyoung(vmf->orig_pte);
2208                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2209                         update_mmu_cache(vma, addr, vmf->pte);
2210         }
2211
2212         /*
2213          * This really shouldn't fail, because the page is there
2214          * in the page tables. But it might just be unreadable,
2215          * in which case we just give up and fill the result with
2216          * zeroes.
2217          */
2218         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2219                 /*
2220                  * Give a warn in case there can be some obscure
2221                  * use-case
2222                  */
2223                 WARN_ON_ONCE(1);
2224                 clear_page(kaddr);
2225         }
2226
2227         ret = true;
2228
2229 pte_unlock:
2230         if (force_mkyoung)
2231                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2232         kunmap_atomic(kaddr);
2233         flush_dcache_page(dst);
2234
2235         return ret;
2236 }
2237
2238 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2239 {
2240         struct file *vm_file = vma->vm_file;
2241
2242         if (vm_file)
2243                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2244
2245         /*
2246          * Special mappings (e.g. VDSO) do not have any file so fake
2247          * a default GFP_KERNEL for them.
2248          */
2249         return GFP_KERNEL;
2250 }
2251
2252 /*
2253  * Notify the address space that the page is about to become writable so that
2254  * it can prohibit this or wait for the page to get into an appropriate state.
2255  *
2256  * We do this without the lock held, so that it can sleep if it needs to.
2257  */
2258 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2259 {
2260         vm_fault_t ret;
2261         struct page *page = vmf->page;
2262         unsigned int old_flags = vmf->flags;
2263
2264         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2265
2266         if (vmf->vma->vm_file &&
2267             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2268                 return VM_FAULT_SIGBUS;
2269
2270         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2271         /* Restore original flags so that caller is not surprised */
2272         vmf->flags = old_flags;
2273         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2274                 return ret;
2275         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2276                 lock_page(page);
2277                 if (!page->mapping) {
2278                         unlock_page(page);
2279                         return 0; /* retry */
2280                 }
2281                 ret |= VM_FAULT_LOCKED;
2282         } else
2283                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2284         return ret;
2285 }
2286
2287 /*
2288  * Handle dirtying of a page in shared file mapping on a write fault.
2289  *
2290  * The function expects the page to be locked and unlocks it.
2291  */
2292 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2293                                     struct page *page)
2294 {
2295         struct address_space *mapping;
2296         bool dirtied;
2297         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2298
2299         dirtied = set_page_dirty(page);
2300         VM_BUG_ON_PAGE(PageAnon(page), page);
2301         /*
2302          * Take a local copy of the address_space - page.mapping may be zeroed
2303          * by truncate after unlock_page().   The address_space itself remains
2304          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2305          * release semantics to prevent the compiler from undoing this copying.
2306          */
2307         mapping = page_rmapping(page);
2308         unlock_page(page);
2309
2310         if ((dirtied || page_mkwrite) && mapping) {
2311                 /*
2312                  * Some device drivers do not set page.mapping
2313                  * but still dirty their pages
2314                  */
2315                 balance_dirty_pages_ratelimited(mapping);
2316         }
2317
2318         if (!page_mkwrite)
2319                 file_update_time(vma->vm_file);
2320 }
2321
2322 /*
2323  * Handle write page faults for pages that can be reused in the current vma
2324  *
2325  * This can happen either due to the mapping being with the VM_SHARED flag,
2326  * or due to us being the last reference standing to the page. In either
2327  * case, all we need to do here is to mark the page as writable and update
2328  * any related book-keeping.
2329  */
2330 static inline void wp_page_reuse(struct vm_fault *vmf)
2331         __releases(vmf->ptl)
2332 {
2333         struct vm_area_struct *vma = vmf->vma;
2334         struct page *page = vmf->page;
2335         pte_t entry;
2336         /*
2337          * Clear the pages cpupid information as the existing
2338          * information potentially belongs to a now completely
2339          * unrelated process.
2340          */
2341         if (page)
2342                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2343
2344         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2345         entry = pte_mkyoung(vmf->orig_pte);
2346         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2347         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2348                 update_mmu_cache(vma, vmf->address, vmf->pte);
2349         pte_unmap_unlock(vmf->pte, vmf->ptl);
2350 }
2351
2352 /*
2353  * Handle the case of a page which we actually need to copy to a new page.
2354  *
2355  * Called with mmap_sem locked and the old page referenced, but
2356  * without the ptl held.
2357  *
2358  * High level logic flow:
2359  *
2360  * - Allocate a page, copy the content of the old page to the new one.
2361  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2362  * - Take the PTL. If the pte changed, bail out and release the allocated page
2363  * - If the pte is still the way we remember it, update the page table and all
2364  *   relevant references. This includes dropping the reference the page-table
2365  *   held to the old page, as well as updating the rmap.
2366  * - In any case, unlock the PTL and drop the reference we took to the old page.
2367  */
2368 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2369 {
2370         struct vm_area_struct *vma = vmf->vma;
2371         struct mm_struct *mm = vma->vm_mm;
2372         struct page *old_page = vmf->page;
2373         struct page *new_page = NULL;
2374         pte_t entry;
2375         int page_copied = 0;
2376         struct mem_cgroup *memcg;
2377         struct mmu_notifier_range range;
2378
2379         if (unlikely(anon_vma_prepare(vma)))
2380                 goto oom;
2381
2382         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2383                 new_page = alloc_zeroed_user_highpage_movable(vma,
2384                                                               vmf->address);
2385                 if (!new_page)
2386                         goto oom;
2387         } else {
2388                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2389                                 vmf->address);
2390                 if (!new_page)
2391                         goto oom;
2392
2393                 if (!cow_user_page(new_page, old_page, vmf)) {
2394                         /*
2395                          * COW failed, if the fault was solved by other,
2396                          * it's fine. If not, userspace would re-fault on
2397                          * the same address and we will handle the fault
2398                          * from the second attempt.
2399                          */
2400                         put_page(new_page);
2401                         if (old_page)
2402                                 put_page(old_page);
2403                         return 0;
2404                 }
2405         }
2406
2407         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2408                 goto oom_free_new;
2409
2410         __SetPageUptodate(new_page);
2411
2412         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2413                                 vmf->address & PAGE_MASK,
2414                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2415         mmu_notifier_invalidate_range_start(&range);
2416
2417         /*
2418          * Re-check the pte - we dropped the lock
2419          */
2420         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2421         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2422                 if (old_page) {
2423                         if (!PageAnon(old_page)) {
2424                                 dec_mm_counter_fast(mm,
2425                                                 mm_counter_file(old_page));
2426                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2427                         }
2428                 } else {
2429                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2430                 }
2431                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2432                 entry = mk_pte(new_page, vma->vm_page_prot);
2433                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2434                 /*
2435                  * Clear the pte entry and flush it first, before updating the
2436                  * pte with the new entry. This will avoid a race condition
2437                  * seen in the presence of one thread doing SMC and another
2438                  * thread doing COW.
2439                  */
2440                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2441                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2442                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2443                 lru_cache_add_active_or_unevictable(new_page, vma);
2444                 /*
2445                  * We call the notify macro here because, when using secondary
2446                  * mmu page tables (such as kvm shadow page tables), we want the
2447                  * new page to be mapped directly into the secondary page table.
2448                  */
2449                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2450                 update_mmu_cache(vma, vmf->address, vmf->pte);
2451                 if (old_page) {
2452                         /*
2453                          * Only after switching the pte to the new page may
2454                          * we remove the mapcount here. Otherwise another
2455                          * process may come and find the rmap count decremented
2456                          * before the pte is switched to the new page, and
2457                          * "reuse" the old page writing into it while our pte
2458                          * here still points into it and can be read by other
2459                          * threads.
2460                          *
2461                          * The critical issue is to order this
2462                          * page_remove_rmap with the ptp_clear_flush above.
2463                          * Those stores are ordered by (if nothing else,)
2464                          * the barrier present in the atomic_add_negative
2465                          * in page_remove_rmap.
2466                          *
2467                          * Then the TLB flush in ptep_clear_flush ensures that
2468                          * no process can access the old page before the
2469                          * decremented mapcount is visible. And the old page
2470                          * cannot be reused until after the decremented
2471                          * mapcount is visible. So transitively, TLBs to
2472                          * old page will be flushed before it can be reused.
2473                          */
2474                         page_remove_rmap(old_page, false);
2475                 }
2476
2477                 /* Free the old page.. */
2478                 new_page = old_page;
2479                 page_copied = 1;
2480         } else {
2481                 mem_cgroup_cancel_charge(new_page, memcg, false);
2482         }
2483
2484         if (new_page)
2485                 put_page(new_page);
2486
2487         pte_unmap_unlock(vmf->pte, vmf->ptl);
2488         /*
2489          * No need to double call mmu_notifier->invalidate_range() callback as
2490          * the above ptep_clear_flush_notify() did already call it.
2491          */
2492         mmu_notifier_invalidate_range_only_end(&range);
2493         if (old_page) {
2494                 /*
2495                  * Don't let another task, with possibly unlocked vma,
2496                  * keep the mlocked page.
2497                  */
2498                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2499                         lock_page(old_page);    /* LRU manipulation */
2500                         if (PageMlocked(old_page))
2501                                 munlock_vma_page(old_page);
2502                         unlock_page(old_page);
2503                 }
2504                 put_page(old_page);
2505         }
2506         return page_copied ? VM_FAULT_WRITE : 0;
2507 oom_free_new:
2508         put_page(new_page);
2509 oom:
2510         if (old_page)
2511                 put_page(old_page);
2512         return VM_FAULT_OOM;
2513 }
2514
2515 /**
2516  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2517  *                        writeable once the page is prepared
2518  *
2519  * @vmf: structure describing the fault
2520  *
2521  * This function handles all that is needed to finish a write page fault in a
2522  * shared mapping due to PTE being read-only once the mapped page is prepared.
2523  * It handles locking of PTE and modifying it.
2524  *
2525  * The function expects the page to be locked or other protection against
2526  * concurrent faults / writeback (such as DAX radix tree locks).
2527  *
2528  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2529  * we acquired PTE lock.
2530  */
2531 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2532 {
2533         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2534         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2535                                        &vmf->ptl);
2536         /*
2537          * We might have raced with another page fault while we released the
2538          * pte_offset_map_lock.
2539          */
2540         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2541                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2542                 return VM_FAULT_NOPAGE;
2543         }
2544         wp_page_reuse(vmf);
2545         return 0;
2546 }
2547
2548 /*
2549  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2550  * mapping
2551  */
2552 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2553 {
2554         struct vm_area_struct *vma = vmf->vma;
2555
2556         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2557                 vm_fault_t ret;
2558
2559                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2560                 vmf->flags |= FAULT_FLAG_MKWRITE;
2561                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2562                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2563                         return ret;
2564                 return finish_mkwrite_fault(vmf);
2565         }
2566         wp_page_reuse(vmf);
2567         return VM_FAULT_WRITE;
2568 }
2569
2570 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2571         __releases(vmf->ptl)
2572 {
2573         struct vm_area_struct *vma = vmf->vma;
2574
2575         get_page(vmf->page);
2576
2577         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2578                 vm_fault_t tmp;
2579
2580                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2581                 tmp = do_page_mkwrite(vmf);
2582                 if (unlikely(!tmp || (tmp &
2583                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2584                         put_page(vmf->page);
2585                         return tmp;
2586                 }
2587                 tmp = finish_mkwrite_fault(vmf);
2588                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2589                         unlock_page(vmf->page);
2590                         put_page(vmf->page);
2591                         return tmp;
2592                 }
2593         } else {
2594                 wp_page_reuse(vmf);
2595                 lock_page(vmf->page);
2596         }
2597         fault_dirty_shared_page(vma, vmf->page);
2598         put_page(vmf->page);
2599
2600         return VM_FAULT_WRITE;
2601 }
2602
2603 /*
2604  * This routine handles present pages, when users try to write
2605  * to a shared page. It is done by copying the page to a new address
2606  * and decrementing the shared-page counter for the old page.
2607  *
2608  * Note that this routine assumes that the protection checks have been
2609  * done by the caller (the low-level page fault routine in most cases).
2610  * Thus we can safely just mark it writable once we've done any necessary
2611  * COW.
2612  *
2613  * We also mark the page dirty at this point even though the page will
2614  * change only once the write actually happens. This avoids a few races,
2615  * and potentially makes it more efficient.
2616  *
2617  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2618  * but allow concurrent faults), with pte both mapped and locked.
2619  * We return with mmap_sem still held, but pte unmapped and unlocked.
2620  */
2621 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2622         __releases(vmf->ptl)
2623 {
2624         struct vm_area_struct *vma = vmf->vma;
2625
2626         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2627         if (!vmf->page) {
2628                 /*
2629                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2630                  * VM_PFNMAP VMA.
2631                  *
2632                  * We should not cow pages in a shared writeable mapping.
2633                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2634                  */
2635                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2636                                      (VM_WRITE|VM_SHARED))
2637                         return wp_pfn_shared(vmf);
2638
2639                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2640                 return wp_page_copy(vmf);
2641         }
2642
2643         /*
2644          * Take out anonymous pages first, anonymous shared vmas are
2645          * not dirty accountable.
2646          */
2647         if (PageAnon(vmf->page)) {
2648                 int total_map_swapcount;
2649                 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2650                                            page_count(vmf->page) != 1))
2651                         goto copy;
2652                 if (!trylock_page(vmf->page)) {
2653                         get_page(vmf->page);
2654                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2655                         lock_page(vmf->page);
2656                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2657                                         vmf->address, &vmf->ptl);
2658                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2659                                 unlock_page(vmf->page);
2660                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2661                                 put_page(vmf->page);
2662                                 return 0;
2663                         }
2664                         put_page(vmf->page);
2665                 }
2666                 if (PageKsm(vmf->page)) {
2667                         bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2668                                                      vmf->address);
2669                         unlock_page(vmf->page);
2670                         if (!reused)
2671                                 goto copy;
2672                         wp_page_reuse(vmf);
2673                         return VM_FAULT_WRITE;
2674                 }
2675                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2676                         if (total_map_swapcount == 1) {
2677                                 /*
2678                                  * The page is all ours. Move it to
2679                                  * our anon_vma so the rmap code will
2680                                  * not search our parent or siblings.
2681                                  * Protected against the rmap code by
2682                                  * the page lock.
2683                                  */
2684                                 page_move_anon_rmap(vmf->page, vma);
2685                         }
2686                         unlock_page(vmf->page);
2687                         wp_page_reuse(vmf);
2688                         return VM_FAULT_WRITE;
2689                 }
2690                 unlock_page(vmf->page);
2691         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2692                                         (VM_WRITE|VM_SHARED))) {
2693                 return wp_page_shared(vmf);
2694         }
2695 copy:
2696         /*
2697          * Ok, we need to copy. Oh, well..
2698          */
2699         get_page(vmf->page);
2700
2701         pte_unmap_unlock(vmf->pte, vmf->ptl);
2702         return wp_page_copy(vmf);
2703 }
2704
2705 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2706                 unsigned long start_addr, unsigned long end_addr,
2707                 struct zap_details *details)
2708 {
2709         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2710 }
2711
2712 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2713                                             struct zap_details *details)
2714 {
2715         struct vm_area_struct *vma;
2716         pgoff_t vba, vea, zba, zea;
2717
2718         vma_interval_tree_foreach(vma, root,
2719                         details->first_index, details->last_index) {
2720
2721                 vba = vma->vm_pgoff;
2722                 vea = vba + vma_pages(vma) - 1;
2723                 zba = details->first_index;
2724                 if (zba < vba)
2725                         zba = vba;
2726                 zea = details->last_index;
2727                 if (zea > vea)
2728                         zea = vea;
2729
2730                 unmap_mapping_range_vma(vma,
2731                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2732                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2733                                 details);
2734         }
2735 }
2736
2737 /**
2738  * unmap_mapping_pages() - Unmap pages from processes.
2739  * @mapping: The address space containing pages to be unmapped.
2740  * @start: Index of first page to be unmapped.
2741  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2742  * @even_cows: Whether to unmap even private COWed pages.
2743  *
2744  * Unmap the pages in this address space from any userspace process which
2745  * has them mmaped.  Generally, you want to remove COWed pages as well when
2746  * a file is being truncated, but not when invalidating pages from the page
2747  * cache.
2748  */
2749 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2750                 pgoff_t nr, bool even_cows)
2751 {
2752         struct zap_details details = { };
2753
2754         details.check_mapping = even_cows ? NULL : mapping;
2755         details.first_index = start;
2756         details.last_index = start + nr - 1;
2757         if (details.last_index < details.first_index)
2758                 details.last_index = ULONG_MAX;
2759
2760         i_mmap_lock_write(mapping);
2761         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2762                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2763         i_mmap_unlock_write(mapping);
2764 }
2765
2766 /**
2767  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2768  * address_space corresponding to the specified byte range in the underlying
2769  * file.
2770  *
2771  * @mapping: the address space containing mmaps to be unmapped.
2772  * @holebegin: byte in first page to unmap, relative to the start of
2773  * the underlying file.  This will be rounded down to a PAGE_SIZE
2774  * boundary.  Note that this is different from truncate_pagecache(), which
2775  * must keep the partial page.  In contrast, we must get rid of
2776  * partial pages.
2777  * @holelen: size of prospective hole in bytes.  This will be rounded
2778  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2779  * end of the file.
2780  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2781  * but 0 when invalidating pagecache, don't throw away private data.
2782  */
2783 void unmap_mapping_range(struct address_space *mapping,
2784                 loff_t const holebegin, loff_t const holelen, int even_cows)
2785 {
2786         pgoff_t hba = holebegin >> PAGE_SHIFT;
2787         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2788
2789         /* Check for overflow. */
2790         if (sizeof(holelen) > sizeof(hlen)) {
2791                 long long holeend =
2792                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2793                 if (holeend & ~(long long)ULONG_MAX)
2794                         hlen = ULONG_MAX - hba + 1;
2795         }
2796
2797         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2798 }
2799 EXPORT_SYMBOL(unmap_mapping_range);
2800
2801 /*
2802  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2803  * but allow concurrent faults), and pte mapped but not yet locked.
2804  * We return with pte unmapped and unlocked.
2805  *
2806  * We return with the mmap_sem locked or unlocked in the same cases
2807  * as does filemap_fault().
2808  */
2809 vm_fault_t do_swap_page(struct vm_fault *vmf)
2810 {
2811         struct vm_area_struct *vma = vmf->vma;
2812         struct page *page = NULL, *swapcache;
2813         struct mem_cgroup *memcg;
2814         swp_entry_t entry;
2815         pte_t pte;
2816         int locked;
2817         int exclusive = 0;
2818         vm_fault_t ret = 0;
2819
2820         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2821                 goto out;
2822
2823         entry = pte_to_swp_entry(vmf->orig_pte);
2824         if (unlikely(non_swap_entry(entry))) {
2825                 if (is_migration_entry(entry)) {
2826                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2827                                              vmf->address);
2828                 } else if (is_device_private_entry(entry)) {
2829                         vmf->page = device_private_entry_to_page(entry);
2830                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2831                 } else if (is_hwpoison_entry(entry)) {
2832                         ret = VM_FAULT_HWPOISON;
2833                 } else {
2834                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2835                         ret = VM_FAULT_SIGBUS;
2836                 }
2837                 goto out;
2838         }
2839
2840
2841         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2842         page = lookup_swap_cache(entry, vma, vmf->address);
2843         swapcache = page;
2844
2845         if (!page) {
2846                 struct swap_info_struct *si = swp_swap_info(entry);
2847
2848                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2849                                 __swap_count(entry) == 1) {
2850                         /* skip swapcache */
2851                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2852                                                         vmf->address);
2853                         if (page) {
2854                                 __SetPageLocked(page);
2855                                 __SetPageSwapBacked(page);
2856                                 set_page_private(page, entry.val);
2857                                 lru_cache_add_anon(page);
2858                                 swap_readpage(page, true);
2859                         }
2860                 } else {
2861                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2862                                                 vmf);
2863                         swapcache = page;
2864                 }
2865
2866                 if (!page) {
2867                         /*
2868                          * Back out if somebody else faulted in this pte
2869                          * while we released the pte lock.
2870                          */
2871                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2872                                         vmf->address, &vmf->ptl);
2873                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2874                                 ret = VM_FAULT_OOM;
2875                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2876                         goto unlock;
2877                 }
2878
2879                 /* Had to read the page from swap area: Major fault */
2880                 ret = VM_FAULT_MAJOR;
2881                 count_vm_event(PGMAJFAULT);
2882                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2883         } else if (PageHWPoison(page)) {
2884                 /*
2885                  * hwpoisoned dirty swapcache pages are kept for killing
2886                  * owner processes (which may be unknown at hwpoison time)
2887                  */
2888                 ret = VM_FAULT_HWPOISON;
2889                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2890                 goto out_release;
2891         }
2892
2893         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2894
2895         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2896         if (!locked) {
2897                 ret |= VM_FAULT_RETRY;
2898                 goto out_release;
2899         }
2900
2901         /*
2902          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2903          * release the swapcache from under us.  The page pin, and pte_same
2904          * test below, are not enough to exclude that.  Even if it is still
2905          * swapcache, we need to check that the page's swap has not changed.
2906          */
2907         if (unlikely((!PageSwapCache(page) ||
2908                         page_private(page) != entry.val)) && swapcache)
2909                 goto out_page;
2910
2911         page = ksm_might_need_to_copy(page, vma, vmf->address);
2912         if (unlikely(!page)) {
2913                 ret = VM_FAULT_OOM;
2914                 page = swapcache;
2915                 goto out_page;
2916         }
2917
2918         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2919                                         &memcg, false)) {
2920                 ret = VM_FAULT_OOM;
2921                 goto out_page;
2922         }
2923
2924         /*
2925          * Back out if somebody else already faulted in this pte.
2926          */
2927         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2928                         &vmf->ptl);
2929         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2930                 goto out_nomap;
2931
2932         if (unlikely(!PageUptodate(page))) {
2933                 ret = VM_FAULT_SIGBUS;
2934                 goto out_nomap;
2935         }
2936
2937         /*
2938          * The page isn't present yet, go ahead with the fault.
2939          *
2940          * Be careful about the sequence of operations here.
2941          * To get its accounting right, reuse_swap_page() must be called
2942          * while the page is counted on swap but not yet in mapcount i.e.
2943          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2944          * must be called after the swap_free(), or it will never succeed.
2945          */
2946
2947         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2948         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2949         pte = mk_pte(page, vma->vm_page_prot);
2950         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2951                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2952                 vmf->flags &= ~FAULT_FLAG_WRITE;
2953                 ret |= VM_FAULT_WRITE;
2954                 exclusive = RMAP_EXCLUSIVE;
2955         }
2956         flush_icache_page(vma, page);
2957         if (pte_swp_soft_dirty(vmf->orig_pte))
2958                 pte = pte_mksoft_dirty(pte);
2959         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2960         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2961         vmf->orig_pte = pte;
2962
2963         /* ksm created a completely new copy */
2964         if (unlikely(page != swapcache && swapcache)) {
2965                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2966                 mem_cgroup_commit_charge(page, memcg, false, false);
2967                 lru_cache_add_active_or_unevictable(page, vma);
2968         } else {
2969                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2970                 mem_cgroup_commit_charge(page, memcg, true, false);
2971                 activate_page(page);
2972         }
2973
2974         swap_free(entry);
2975         if (mem_cgroup_swap_full(page) ||
2976             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2977                 try_to_free_swap(page);
2978         unlock_page(page);
2979         if (page != swapcache && swapcache) {
2980                 /*
2981                  * Hold the lock to avoid the swap entry to be reused
2982                  * until we take the PT lock for the pte_same() check
2983                  * (to avoid false positives from pte_same). For
2984                  * further safety release the lock after the swap_free
2985                  * so that the swap count won't change under a
2986                  * parallel locked swapcache.
2987                  */
2988                 unlock_page(swapcache);
2989                 put_page(swapcache);
2990         }
2991
2992         if (vmf->flags & FAULT_FLAG_WRITE) {
2993                 ret |= do_wp_page(vmf);
2994                 if (ret & VM_FAULT_ERROR)
2995                         ret &= VM_FAULT_ERROR;
2996                 goto out;
2997         }
2998
2999         /* No need to invalidate - it was non-present before */
3000         update_mmu_cache(vma, vmf->address, vmf->pte);
3001 unlock:
3002         pte_unmap_unlock(vmf->pte, vmf->ptl);
3003 out:
3004         return ret;
3005 out_nomap:
3006         mem_cgroup_cancel_charge(page, memcg, false);
3007         pte_unmap_unlock(vmf->pte, vmf->ptl);
3008 out_page:
3009         unlock_page(page);
3010 out_release:
3011         put_page(page);
3012         if (page != swapcache && swapcache) {
3013                 unlock_page(swapcache);
3014                 put_page(swapcache);
3015         }
3016         return ret;
3017 }
3018
3019 /*
3020  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3021  * but allow concurrent faults), and pte mapped but not yet locked.
3022  * We return with mmap_sem still held, but pte unmapped and unlocked.
3023  */
3024 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3025 {
3026         struct vm_area_struct *vma = vmf->vma;
3027         struct mem_cgroup *memcg;
3028         struct page *page;
3029         vm_fault_t ret = 0;
3030         pte_t entry;
3031
3032         /* File mapping without ->vm_ops ? */
3033         if (vma->vm_flags & VM_SHARED)
3034                 return VM_FAULT_SIGBUS;
3035
3036         /*
3037          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3038          * pte_offset_map() on pmds where a huge pmd might be created
3039          * from a different thread.
3040          *
3041          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3042          * parallel threads are excluded by other means.
3043          *
3044          * Here we only have down_read(mmap_sem).
3045          */
3046         if (pte_alloc(vma->vm_mm, vmf->pmd))
3047                 return VM_FAULT_OOM;
3048
3049         /* See the comment in pte_alloc_one_map() */
3050         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3051                 return 0;
3052
3053         /* Use the zero-page for reads */
3054         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3055                         !mm_forbids_zeropage(vma->vm_mm)) {
3056                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3057                                                 vma->vm_page_prot));
3058                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3059                                 vmf->address, &vmf->ptl);
3060                 if (!pte_none(*vmf->pte))
3061                         goto unlock;
3062                 ret = check_stable_address_space(vma->vm_mm);
3063                 if (ret)
3064                         goto unlock;
3065                 /* Deliver the page fault to userland, check inside PT lock */
3066                 if (userfaultfd_missing(vma)) {
3067                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3068                         return handle_userfault(vmf, VM_UFFD_MISSING);
3069                 }
3070                 goto setpte;
3071         }
3072
3073         /* Allocate our own private page. */
3074         if (unlikely(anon_vma_prepare(vma)))
3075                 goto oom;
3076         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3077         if (!page)
3078                 goto oom;
3079
3080         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3081                                         false))
3082                 goto oom_free_page;
3083
3084         /*
3085          * The memory barrier inside __SetPageUptodate makes sure that
3086          * preceeding stores to the page contents become visible before
3087          * the set_pte_at() write.
3088          */
3089         __SetPageUptodate(page);
3090
3091         entry = mk_pte(page, vma->vm_page_prot);
3092         if (vma->vm_flags & VM_WRITE)
3093                 entry = pte_mkwrite(pte_mkdirty(entry));
3094
3095         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3096                         &vmf->ptl);
3097         if (!pte_none(*vmf->pte))
3098                 goto release;
3099
3100         ret = check_stable_address_space(vma->vm_mm);
3101         if (ret)
3102                 goto release;
3103
3104         /* Deliver the page fault to userland, check inside PT lock */
3105         if (userfaultfd_missing(vma)) {
3106                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3107                 mem_cgroup_cancel_charge(page, memcg, false);
3108                 put_page(page);
3109                 return handle_userfault(vmf, VM_UFFD_MISSING);
3110         }
3111
3112         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3113         page_add_new_anon_rmap(page, vma, vmf->address, false);
3114         mem_cgroup_commit_charge(page, memcg, false, false);
3115         lru_cache_add_active_or_unevictable(page, vma);
3116 setpte:
3117         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3118
3119         /* No need to invalidate - it was non-present before */
3120         update_mmu_cache(vma, vmf->address, vmf->pte);
3121 unlock:
3122         pte_unmap_unlock(vmf->pte, vmf->ptl);
3123         return ret;
3124 release:
3125         mem_cgroup_cancel_charge(page, memcg, false);
3126         put_page(page);
3127         goto unlock;
3128 oom_free_page:
3129         put_page(page);
3130 oom:
3131         return VM_FAULT_OOM;
3132 }
3133
3134 /*
3135  * The mmap_sem must have been held on entry, and may have been
3136  * released depending on flags and vma->vm_ops->fault() return value.
3137  * See filemap_fault() and __lock_page_retry().
3138  */
3139 static vm_fault_t __do_fault(struct vm_fault *vmf)
3140 {
3141         struct vm_area_struct *vma = vmf->vma;
3142         vm_fault_t ret;
3143
3144         /*
3145          * Preallocate pte before we take page_lock because this might lead to
3146          * deadlocks for memcg reclaim which waits for pages under writeback:
3147          *                              lock_page(A)
3148          *                              SetPageWriteback(A)
3149          *                              unlock_page(A)
3150          * lock_page(B)
3151          *                              lock_page(B)
3152          * pte_alloc_pne
3153          *   shrink_page_list
3154          *     wait_on_page_writeback(A)
3155          *                              SetPageWriteback(B)
3156          *                              unlock_page(B)
3157          *                              # flush A, B to clear the writeback
3158          */
3159         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3160                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3161                 if (!vmf->prealloc_pte)
3162                         return VM_FAULT_OOM;
3163                 smp_wmb(); /* See comment in __pte_alloc() */
3164         }
3165
3166         ret = vma->vm_ops->fault(vmf);
3167         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3168                             VM_FAULT_DONE_COW)))
3169                 return ret;
3170
3171         if (unlikely(PageHWPoison(vmf->page))) {
3172                 if (ret & VM_FAULT_LOCKED)
3173                         unlock_page(vmf->page);
3174                 put_page(vmf->page);
3175                 vmf->page = NULL;
3176                 return VM_FAULT_HWPOISON;
3177         }
3178
3179         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3180                 lock_page(vmf->page);
3181         else
3182                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3183
3184         return ret;
3185 }
3186
3187 /*
3188  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3189  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3190  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3191  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3192  */
3193 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3194 {
3195         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3196 }
3197
3198 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3199 {
3200         struct vm_area_struct *vma = vmf->vma;
3201
3202         if (!pmd_none(*vmf->pmd))
3203                 goto map_pte;
3204         if (vmf->prealloc_pte) {
3205                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3206                 if (unlikely(!pmd_none(*vmf->pmd))) {
3207                         spin_unlock(vmf->ptl);
3208                         goto map_pte;
3209                 }
3210
3211                 mm_inc_nr_ptes(vma->vm_mm);
3212                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3213                 spin_unlock(vmf->ptl);
3214                 vmf->prealloc_pte = NULL;
3215         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3216                 return VM_FAULT_OOM;
3217         }
3218 map_pte:
3219         /*
3220          * If a huge pmd materialized under us just retry later.  Use
3221          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3222          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3223          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3224          * running immediately after a huge pmd fault in a different thread of
3225          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3226          * All we have to ensure is that it is a regular pmd that we can walk
3227          * with pte_offset_map() and we can do that through an atomic read in
3228          * C, which is what pmd_trans_unstable() provides.
3229          */
3230         if (pmd_devmap_trans_unstable(vmf->pmd))
3231                 return VM_FAULT_NOPAGE;
3232
3233         /*
3234          * At this point we know that our vmf->pmd points to a page of ptes
3235          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3236          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3237          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3238          * be valid and we will re-check to make sure the vmf->pte isn't
3239          * pte_none() under vmf->ptl protection when we return to
3240          * alloc_set_pte().
3241          */
3242         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3243                         &vmf->ptl);
3244         return 0;
3245 }
3246
3247 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3248 static void deposit_prealloc_pte(struct vm_fault *vmf)
3249 {
3250         struct vm_area_struct *vma = vmf->vma;
3251
3252         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3253         /*
3254          * We are going to consume the prealloc table,
3255          * count that as nr_ptes.
3256          */
3257         mm_inc_nr_ptes(vma->vm_mm);
3258         vmf->prealloc_pte = NULL;
3259 }
3260
3261 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3262 {
3263         struct vm_area_struct *vma = vmf->vma;
3264         bool write = vmf->flags & FAULT_FLAG_WRITE;
3265         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3266         pmd_t entry;
3267         int i;
3268         vm_fault_t ret;
3269
3270         if (!transhuge_vma_suitable(vma, haddr))
3271                 return VM_FAULT_FALLBACK;
3272
3273         ret = VM_FAULT_FALLBACK;
3274         page = compound_head(page);
3275
3276         /*
3277          * Archs like ppc64 need additonal space to store information
3278          * related to pte entry. Use the preallocated table for that.
3279          */
3280         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3281                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3282                 if (!vmf->prealloc_pte)
3283                         return VM_FAULT_OOM;
3284                 smp_wmb(); /* See comment in __pte_alloc() */
3285         }
3286
3287         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3288         if (unlikely(!pmd_none(*vmf->pmd)))
3289                 goto out;
3290
3291         for (i = 0; i < HPAGE_PMD_NR; i++)
3292                 flush_icache_page(vma, page + i);
3293
3294         entry = mk_huge_pmd(page, vma->vm_page_prot);
3295         if (write)
3296                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3297
3298         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3299         page_add_file_rmap(page, true);
3300         /*
3301          * deposit and withdraw with pmd lock held
3302          */
3303         if (arch_needs_pgtable_deposit())
3304                 deposit_prealloc_pte(vmf);
3305
3306         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3307
3308         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3309
3310         /* fault is handled */
3311         ret = 0;
3312         count_vm_event(THP_FILE_MAPPED);
3313 out:
3314         spin_unlock(vmf->ptl);
3315         return ret;
3316 }
3317 #else
3318 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3319 {
3320         BUILD_BUG();
3321         return 0;
3322 }
3323 #endif
3324
3325 /**
3326  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3327  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3328  *
3329  * @vmf: fault environment
3330  * @memcg: memcg to charge page (only for private mappings)
3331  * @page: page to map
3332  *
3333  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3334  * return.
3335  *
3336  * Target users are page handler itself and implementations of
3337  * vm_ops->map_pages.
3338  *
3339  * Return: %0 on success, %VM_FAULT_ code in case of error.
3340  */
3341 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3342                 struct page *page)
3343 {
3344         struct vm_area_struct *vma = vmf->vma;
3345         bool write = vmf->flags & FAULT_FLAG_WRITE;
3346         pte_t entry;
3347         vm_fault_t ret;
3348
3349         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3350                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3351                 /* THP on COW? */
3352                 VM_BUG_ON_PAGE(memcg, page);
3353
3354                 ret = do_set_pmd(vmf, page);
3355                 if (ret != VM_FAULT_FALLBACK)
3356                         return ret;
3357         }
3358
3359         if (!vmf->pte) {
3360                 ret = pte_alloc_one_map(vmf);
3361                 if (ret)
3362                         return ret;
3363         }
3364
3365         /* Re-check under ptl */
3366         if (unlikely(!pte_none(*vmf->pte)))
3367                 return VM_FAULT_NOPAGE;
3368
3369         flush_icache_page(vma, page);
3370         entry = mk_pte(page, vma->vm_page_prot);
3371         if (write)
3372                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3373         /* copy-on-write page */
3374         if (write && !(vma->vm_flags & VM_SHARED)) {
3375                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3376                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3377                 mem_cgroup_commit_charge(page, memcg, false, false);
3378                 lru_cache_add_active_or_unevictable(page, vma);
3379         } else {
3380                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3381                 page_add_file_rmap(page, false);
3382         }
3383         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3384
3385         /* no need to invalidate: a not-present page won't be cached */
3386         update_mmu_cache(vma, vmf->address, vmf->pte);
3387
3388         return 0;
3389 }
3390
3391
3392 /**
3393  * finish_fault - finish page fault once we have prepared the page to fault
3394  *
3395  * @vmf: structure describing the fault
3396  *
3397  * This function handles all that is needed to finish a page fault once the
3398  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3399  * given page, adds reverse page mapping, handles memcg charges and LRU
3400  * addition.
3401  *
3402  * The function expects the page to be locked and on success it consumes a
3403  * reference of a page being mapped (for the PTE which maps it).
3404  *
3405  * Return: %0 on success, %VM_FAULT_ code in case of error.
3406  */
3407 vm_fault_t finish_fault(struct vm_fault *vmf)
3408 {
3409         struct page *page;
3410         vm_fault_t ret = 0;
3411
3412         /* Did we COW the page? */
3413         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3414             !(vmf->vma->vm_flags & VM_SHARED))
3415                 page = vmf->cow_page;
3416         else
3417                 page = vmf->page;
3418
3419         /*
3420          * check even for read faults because we might have lost our CoWed
3421          * page
3422          */
3423         if (!(vmf->vma->vm_flags & VM_SHARED))
3424                 ret = check_stable_address_space(vmf->vma->vm_mm);
3425         if (!ret)
3426                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3427         if (vmf->pte)
3428                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3429         return ret;
3430 }
3431
3432 static unsigned long fault_around_bytes __read_mostly =
3433         rounddown_pow_of_two(65536);
3434
3435 #ifdef CONFIG_DEBUG_FS
3436 static int fault_around_bytes_get(void *data, u64 *val)
3437 {
3438         *val = fault_around_bytes;
3439         return 0;
3440 }
3441
3442 /*
3443  * fault_around_bytes must be rounded down to the nearest page order as it's
3444  * what do_fault_around() expects to see.
3445  */
3446 static int fault_around_bytes_set(void *data, u64 val)
3447 {
3448         if (val / PAGE_SIZE > PTRS_PER_PTE)
3449                 return -EINVAL;
3450         if (val > PAGE_SIZE)
3451                 fault_around_bytes = rounddown_pow_of_two(val);
3452         else
3453                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3454         return 0;
3455 }
3456 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3457                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3458
3459 static int __init fault_around_debugfs(void)
3460 {
3461         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3462                                    &fault_around_bytes_fops);
3463         return 0;
3464 }
3465 late_initcall(fault_around_debugfs);
3466 #endif
3467
3468 /*
3469  * do_fault_around() tries to map few pages around the fault address. The hope
3470  * is that the pages will be needed soon and this will lower the number of
3471  * faults to handle.
3472  *
3473  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3474  * not ready to be mapped: not up-to-date, locked, etc.
3475  *
3476  * This function is called with the page table lock taken. In the split ptlock
3477  * case the page table lock only protects only those entries which belong to
3478  * the page table corresponding to the fault address.
3479  *
3480  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3481  * only once.
3482  *
3483  * fault_around_bytes defines how many bytes we'll try to map.
3484  * do_fault_around() expects it to be set to a power of two less than or equal
3485  * to PTRS_PER_PTE.
3486  *
3487  * The virtual address of the area that we map is naturally aligned to
3488  * fault_around_bytes rounded down to the machine page size
3489  * (and therefore to page order).  This way it's easier to guarantee
3490  * that we don't cross page table boundaries.
3491  */
3492 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3493 {
3494         unsigned long address = vmf->address, nr_pages, mask;
3495         pgoff_t start_pgoff = vmf->pgoff;
3496         pgoff_t end_pgoff;
3497         int off;
3498         vm_fault_t ret = 0;
3499
3500         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3501         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3502
3503         vmf->address = max(address & mask, vmf->vma->vm_start);
3504         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3505         start_pgoff -= off;
3506
3507         /*
3508          *  end_pgoff is either the end of the page table, the end of
3509          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3510          */
3511         end_pgoff = start_pgoff -
3512                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3513                 PTRS_PER_PTE - 1;
3514         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3515                         start_pgoff + nr_pages - 1);
3516
3517         if (pmd_none(*vmf->pmd)) {
3518                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3519                 if (!vmf->prealloc_pte)
3520                         goto out;
3521                 smp_wmb(); /* See comment in __pte_alloc() */
3522         }
3523
3524         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3525
3526         /* Huge page is mapped? Page fault is solved */
3527         if (pmd_trans_huge(*vmf->pmd)) {
3528                 ret = VM_FAULT_NOPAGE;
3529                 goto out;
3530         }
3531
3532         /* ->map_pages() haven't done anything useful. Cold page cache? */
3533         if (!vmf->pte)
3534                 goto out;
3535
3536         /* check if the page fault is solved */
3537         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3538         if (!pte_none(*vmf->pte))
3539                 ret = VM_FAULT_NOPAGE;
3540         pte_unmap_unlock(vmf->pte, vmf->ptl);
3541 out:
3542         vmf->address = address;
3543         vmf->pte = NULL;
3544         return ret;
3545 }
3546
3547 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3548 {
3549         struct vm_area_struct *vma = vmf->vma;
3550         vm_fault_t ret = 0;
3551
3552         /*
3553          * Let's call ->map_pages() first and use ->fault() as fallback
3554          * if page by the offset is not ready to be mapped (cold cache or
3555          * something).
3556          */
3557         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3558                 ret = do_fault_around(vmf);
3559                 if (ret)
3560                         return ret;
3561         }
3562
3563         ret = __do_fault(vmf);
3564         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3565                 return ret;
3566
3567         ret |= finish_fault(vmf);
3568         unlock_page(vmf->page);
3569         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3570                 put_page(vmf->page);
3571         return ret;
3572 }
3573
3574 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3575 {
3576         struct vm_area_struct *vma = vmf->vma;
3577         vm_fault_t ret;
3578
3579         if (unlikely(anon_vma_prepare(vma)))
3580                 return VM_FAULT_OOM;
3581
3582         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3583         if (!vmf->cow_page)
3584                 return VM_FAULT_OOM;
3585
3586         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3587                                 &vmf->memcg, false)) {
3588                 put_page(vmf->cow_page);
3589                 return VM_FAULT_OOM;
3590         }
3591
3592         ret = __do_fault(vmf);
3593         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3594                 goto uncharge_out;
3595         if (ret & VM_FAULT_DONE_COW)
3596                 return ret;
3597
3598         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3599         __SetPageUptodate(vmf->cow_page);
3600
3601         ret |= finish_fault(vmf);
3602         unlock_page(vmf->page);
3603         put_page(vmf->page);
3604         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3605                 goto uncharge_out;
3606         return ret;
3607 uncharge_out:
3608         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3609         put_page(vmf->cow_page);
3610         return ret;
3611 }
3612
3613 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3614 {
3615         struct vm_area_struct *vma = vmf->vma;
3616         vm_fault_t ret, tmp;
3617
3618         ret = __do_fault(vmf);
3619         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3620                 return ret;
3621
3622         /*
3623          * Check if the backing address space wants to know that the page is
3624          * about to become writable
3625          */
3626         if (vma->vm_ops->page_mkwrite) {
3627                 unlock_page(vmf->page);
3628                 tmp = do_page_mkwrite(vmf);
3629                 if (unlikely(!tmp ||
3630                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3631                         put_page(vmf->page);
3632                         return tmp;
3633                 }
3634         }
3635
3636         ret |= finish_fault(vmf);
3637         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3638                                         VM_FAULT_RETRY))) {
3639                 unlock_page(vmf->page);
3640                 put_page(vmf->page);
3641                 return ret;
3642         }
3643
3644         fault_dirty_shared_page(vma, vmf->page);
3645         return ret;
3646 }
3647
3648 /*
3649  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3650  * but allow concurrent faults).
3651  * The mmap_sem may have been released depending on flags and our
3652  * return value.  See filemap_fault() and __lock_page_or_retry().
3653  * If mmap_sem is released, vma may become invalid (for example
3654  * by other thread calling munmap()).
3655  */
3656 static vm_fault_t do_fault(struct vm_fault *vmf)
3657 {
3658         struct vm_area_struct *vma = vmf->vma;
3659         struct mm_struct *vm_mm = vma->vm_mm;
3660         vm_fault_t ret;
3661
3662         /*
3663          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3664          */
3665         if (!vma->vm_ops->fault) {
3666                 /*
3667                  * If we find a migration pmd entry or a none pmd entry, which
3668                  * should never happen, return SIGBUS
3669                  */
3670                 if (unlikely(!pmd_present(*vmf->pmd)))
3671                         ret = VM_FAULT_SIGBUS;
3672                 else {
3673                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3674                                                        vmf->pmd,
3675                                                        vmf->address,
3676                                                        &vmf->ptl);
3677                         /*
3678                          * Make sure this is not a temporary clearing of pte
3679                          * by holding ptl and checking again. A R/M/W update
3680                          * of pte involves: take ptl, clearing the pte so that
3681                          * we don't have concurrent modification by hardware
3682                          * followed by an update.
3683                          */
3684                         if (unlikely(pte_none(*vmf->pte)))
3685                                 ret = VM_FAULT_SIGBUS;
3686                         else
3687                                 ret = VM_FAULT_NOPAGE;
3688
3689                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3690                 }
3691         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3692                 ret = do_read_fault(vmf);
3693         else if (!(vma->vm_flags & VM_SHARED))
3694                 ret = do_cow_fault(vmf);
3695         else
3696                 ret = do_shared_fault(vmf);
3697
3698         /* preallocated pagetable is unused: free it */
3699         if (vmf->prealloc_pte) {
3700                 pte_free(vm_mm, vmf->prealloc_pte);
3701                 vmf->prealloc_pte = NULL;
3702         }
3703         return ret;
3704 }
3705
3706 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3707                                 unsigned long addr, int page_nid,
3708                                 int *flags)
3709 {
3710         get_page(page);
3711
3712         count_vm_numa_event(NUMA_HINT_FAULTS);
3713         if (page_nid == numa_node_id()) {
3714                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3715                 *flags |= TNF_FAULT_LOCAL;
3716         }
3717
3718         return mpol_misplaced(page, vma, addr);
3719 }
3720
3721 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3722 {
3723         struct vm_area_struct *vma = vmf->vma;
3724         struct page *page = NULL;
3725         int page_nid = NUMA_NO_NODE;
3726         int last_cpupid;
3727         int target_nid;
3728         bool migrated = false;
3729         pte_t pte, old_pte;
3730         bool was_writable = pte_savedwrite(vmf->orig_pte);
3731         int flags = 0;
3732
3733         /*
3734          * The "pte" at this point cannot be used safely without
3735          * validation through pte_unmap_same(). It's of NUMA type but
3736          * the pfn may be screwed if the read is non atomic.
3737          */
3738         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3739         spin_lock(vmf->ptl);
3740         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3741                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3742                 goto out;
3743         }
3744
3745         /*
3746          * Make it present again, Depending on how arch implementes non
3747          * accessible ptes, some can allow access by kernel mode.
3748          */
3749         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3750         pte = pte_modify(old_pte, vma->vm_page_prot);
3751         pte = pte_mkyoung(pte);
3752         if (was_writable)
3753                 pte = pte_mkwrite(pte);
3754         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3755         update_mmu_cache(vma, vmf->address, vmf->pte);
3756
3757         page = vm_normal_page(vma, vmf->address, pte);
3758         if (!page) {
3759                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3760                 return 0;
3761         }
3762
3763         /* TODO: handle PTE-mapped THP */
3764         if (PageCompound(page)) {
3765                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3766                 return 0;
3767         }
3768
3769         /*
3770          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3771          * much anyway since they can be in shared cache state. This misses
3772          * the case where a mapping is writable but the process never writes
3773          * to it but pte_write gets cleared during protection updates and
3774          * pte_dirty has unpredictable behaviour between PTE scan updates,
3775          * background writeback, dirty balancing and application behaviour.
3776          */
3777         if (!pte_write(pte))
3778                 flags |= TNF_NO_GROUP;
3779
3780         /*
3781          * Flag if the page is shared between multiple address spaces. This
3782          * is later used when determining whether to group tasks together
3783          */
3784         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3785                 flags |= TNF_SHARED;
3786
3787         last_cpupid = page_cpupid_last(page);
3788         page_nid = page_to_nid(page);
3789         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3790                         &flags);
3791         pte_unmap_unlock(vmf->pte, vmf->ptl);
3792         if (target_nid == NUMA_NO_NODE) {
3793                 put_page(page);
3794                 goto out;
3795         }
3796
3797         /* Migrate to the requested node */
3798         migrated = migrate_misplaced_page(page, vma, target_nid);
3799         if (migrated) {
3800                 page_nid = target_nid;
3801                 flags |= TNF_MIGRATED;
3802         } else
3803                 flags |= TNF_MIGRATE_FAIL;
3804
3805 out:
3806         if (page_nid != NUMA_NO_NODE)
3807                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3808         return 0;
3809 }
3810
3811 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3812 {
3813         if (vma_is_anonymous(vmf->vma))
3814                 return do_huge_pmd_anonymous_page(vmf);
3815         if (vmf->vma->vm_ops->huge_fault)
3816                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3817         return VM_FAULT_FALLBACK;
3818 }
3819
3820 /* `inline' is required to avoid gcc 4.1.2 build error */
3821 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3822 {
3823         if (vma_is_anonymous(vmf->vma))
3824                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3825         if (vmf->vma->vm_ops->huge_fault)
3826                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3827
3828         /* COW handled on pte level: split pmd */
3829         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3830         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3831
3832         return VM_FAULT_FALLBACK;
3833 }
3834
3835 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3836 {
3837         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3838 }
3839
3840 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3841 {
3842 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3843         /* No support for anonymous transparent PUD pages yet */
3844         if (vma_is_anonymous(vmf->vma))
3845                 return VM_FAULT_FALLBACK;
3846         if (vmf->vma->vm_ops->huge_fault)
3847                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3848 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3849         return VM_FAULT_FALLBACK;
3850 }
3851
3852 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3853 {
3854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3855         /* No support for anonymous transparent PUD pages yet */
3856         if (vma_is_anonymous(vmf->vma))
3857                 return VM_FAULT_FALLBACK;
3858         if (vmf->vma->vm_ops->huge_fault)
3859                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3860 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3861         return VM_FAULT_FALLBACK;
3862 }
3863
3864 /*
3865  * These routines also need to handle stuff like marking pages dirty
3866  * and/or accessed for architectures that don't do it in hardware (most
3867  * RISC architectures).  The early dirtying is also good on the i386.
3868  *
3869  * There is also a hook called "update_mmu_cache()" that architectures
3870  * with external mmu caches can use to update those (ie the Sparc or
3871  * PowerPC hashed page tables that act as extended TLBs).
3872  *
3873  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3874  * concurrent faults).
3875  *
3876  * The mmap_sem may have been released depending on flags and our return value.
3877  * See filemap_fault() and __lock_page_or_retry().
3878  */
3879 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3880 {
3881         pte_t entry;
3882
3883         if (unlikely(pmd_none(*vmf->pmd))) {
3884                 /*
3885                  * Leave __pte_alloc() until later: because vm_ops->fault may
3886                  * want to allocate huge page, and if we expose page table
3887                  * for an instant, it will be difficult to retract from
3888                  * concurrent faults and from rmap lookups.
3889                  */
3890                 vmf->pte = NULL;
3891         } else {
3892                 /* See comment in pte_alloc_one_map() */
3893                 if (pmd_devmap_trans_unstable(vmf->pmd))
3894                         return 0;
3895                 /*
3896                  * A regular pmd is established and it can't morph into a huge
3897                  * pmd from under us anymore at this point because we hold the
3898                  * mmap_sem read mode and khugepaged takes it in write mode.
3899                  * So now it's safe to run pte_offset_map().
3900                  */
3901                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3902                 vmf->orig_pte = *vmf->pte;
3903
3904                 /*
3905                  * some architectures can have larger ptes than wordsize,
3906                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3907                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3908                  * accesses.  The code below just needs a consistent view
3909                  * for the ifs and we later double check anyway with the
3910                  * ptl lock held. So here a barrier will do.
3911                  */
3912                 barrier();
3913                 if (pte_none(vmf->orig_pte)) {
3914                         pte_unmap(vmf->pte);
3915                         vmf->pte = NULL;
3916                 }
3917         }
3918
3919         if (!vmf->pte) {
3920                 if (vma_is_anonymous(vmf->vma))
3921                         return do_anonymous_page(vmf);
3922                 else
3923                         return do_fault(vmf);
3924         }
3925
3926         if (!pte_present(vmf->orig_pte))
3927                 return do_swap_page(vmf);
3928
3929         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3930                 return do_numa_page(vmf);
3931
3932         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3933         spin_lock(vmf->ptl);
3934         entry = vmf->orig_pte;
3935         if (unlikely(!pte_same(*vmf->pte, entry)))
3936                 goto unlock;
3937         if (vmf->flags & FAULT_FLAG_WRITE) {
3938                 if (!pte_write(entry))
3939                         return do_wp_page(vmf);
3940                 entry = pte_mkdirty(entry);
3941         }
3942         entry = pte_mkyoung(entry);
3943         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3944                                 vmf->flags & FAULT_FLAG_WRITE)) {
3945                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3946         } else {
3947                 /*
3948                  * This is needed only for protection faults but the arch code
3949                  * is not yet telling us if this is a protection fault or not.
3950                  * This still avoids useless tlb flushes for .text page faults
3951                  * with threads.
3952                  */
3953                 if (vmf->flags & FAULT_FLAG_WRITE)
3954                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3955         }
3956 unlock:
3957         pte_unmap_unlock(vmf->pte, vmf->ptl);
3958         return 0;
3959 }
3960
3961 /*
3962  * By the time we get here, we already hold the mm semaphore
3963  *
3964  * The mmap_sem may have been released depending on flags and our
3965  * return value.  See filemap_fault() and __lock_page_or_retry().
3966  */
3967 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3968                 unsigned long address, unsigned int flags)
3969 {
3970         struct vm_fault vmf = {
3971                 .vma = vma,
3972                 .address = address & PAGE_MASK,
3973                 .flags = flags,
3974                 .pgoff = linear_page_index(vma, address),
3975                 .gfp_mask = __get_fault_gfp_mask(vma),
3976         };
3977         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3978         struct mm_struct *mm = vma->vm_mm;
3979         pgd_t *pgd;
3980         p4d_t *p4d;
3981         vm_fault_t ret;
3982
3983         pgd = pgd_offset(mm, address);
3984         p4d = p4d_alloc(mm, pgd, address);
3985         if (!p4d)
3986                 return VM_FAULT_OOM;
3987
3988         vmf.pud = pud_alloc(mm, p4d, address);
3989         if (!vmf.pud)
3990                 return VM_FAULT_OOM;
3991         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3992                 ret = create_huge_pud(&vmf);
3993                 if (!(ret & VM_FAULT_FALLBACK))
3994                         return ret;
3995         } else {
3996                 pud_t orig_pud = *vmf.pud;
3997
3998                 barrier();
3999                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4000
4001                         /* NUMA case for anonymous PUDs would go here */
4002
4003                         if (dirty && !pud_write(orig_pud)) {
4004                                 ret = wp_huge_pud(&vmf, orig_pud);
4005                                 if (!(ret & VM_FAULT_FALLBACK))
4006                                         return ret;
4007                         } else {
4008                                 huge_pud_set_accessed(&vmf, orig_pud);
4009                                 return 0;
4010                         }
4011                 }
4012         }
4013
4014         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4015         if (!vmf.pmd)
4016                 return VM_FAULT_OOM;
4017         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4018                 ret = create_huge_pmd(&vmf);
4019                 if (!(ret & VM_FAULT_FALLBACK))
4020                         return ret;
4021         } else {
4022                 pmd_t orig_pmd = *vmf.pmd;
4023
4024                 barrier();
4025                 if (unlikely(is_swap_pmd(orig_pmd))) {
4026                         VM_BUG_ON(thp_migration_supported() &&
4027                                           !is_pmd_migration_entry(orig_pmd));
4028                         if (is_pmd_migration_entry(orig_pmd))
4029                                 pmd_migration_entry_wait(mm, vmf.pmd);
4030                         return 0;
4031                 }
4032                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4033                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4034                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4035
4036                         if (dirty && !pmd_write(orig_pmd)) {
4037                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4038                                 if (!(ret & VM_FAULT_FALLBACK))
4039                                         return ret;
4040                         } else {
4041                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4042                                 return 0;
4043                         }
4044                 }
4045         }
4046
4047         return handle_pte_fault(&vmf);
4048 }
4049
4050 /*
4051  * By the time we get here, we already hold the mm semaphore
4052  *
4053  * The mmap_sem may have been released depending on flags and our
4054  * return value.  See filemap_fault() and __lock_page_or_retry().
4055  */
4056 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4057                 unsigned int flags)
4058 {
4059         vm_fault_t ret;
4060
4061         __set_current_state(TASK_RUNNING);
4062
4063         count_vm_event(PGFAULT);
4064         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4065
4066         /* do counter updates before entering really critical section. */
4067         check_sync_rss_stat(current);
4068
4069         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4070                                             flags & FAULT_FLAG_INSTRUCTION,
4071                                             flags & FAULT_FLAG_REMOTE))
4072                 return VM_FAULT_SIGSEGV;
4073
4074         /*
4075          * Enable the memcg OOM handling for faults triggered in user
4076          * space.  Kernel faults are handled more gracefully.
4077          */
4078         if (flags & FAULT_FLAG_USER)
4079                 mem_cgroup_enter_user_fault();
4080
4081         if (unlikely(is_vm_hugetlb_page(vma)))
4082                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4083         else
4084                 ret = __handle_mm_fault(vma, address, flags);
4085
4086         if (flags & FAULT_FLAG_USER) {
4087                 mem_cgroup_exit_user_fault();
4088                 /*
4089                  * The task may have entered a memcg OOM situation but
4090                  * if the allocation error was handled gracefully (no
4091                  * VM_FAULT_OOM), there is no need to kill anything.
4092                  * Just clean up the OOM state peacefully.
4093                  */
4094                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4095                         mem_cgroup_oom_synchronize(false);
4096         }
4097
4098         return ret;
4099 }
4100 EXPORT_SYMBOL_GPL(handle_mm_fault);
4101
4102 #ifndef __PAGETABLE_P4D_FOLDED
4103 /*
4104  * Allocate p4d page table.
4105  * We've already handled the fast-path in-line.
4106  */
4107 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4108 {
4109         p4d_t *new = p4d_alloc_one(mm, address);
4110         if (!new)
4111                 return -ENOMEM;
4112
4113         smp_wmb(); /* See comment in __pte_alloc */
4114
4115         spin_lock(&mm->page_table_lock);
4116         if (pgd_present(*pgd))          /* Another has populated it */
4117                 p4d_free(mm, new);
4118         else
4119                 pgd_populate(mm, pgd, new);
4120         spin_unlock(&mm->page_table_lock);
4121         return 0;
4122 }
4123 #endif /* __PAGETABLE_P4D_FOLDED */
4124
4125 #ifndef __PAGETABLE_PUD_FOLDED
4126 /*
4127  * Allocate page upper directory.
4128  * We've already handled the fast-path in-line.
4129  */
4130 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4131 {
4132         pud_t *new = pud_alloc_one(mm, address);
4133         if (!new)
4134                 return -ENOMEM;
4135
4136         smp_wmb(); /* See comment in __pte_alloc */
4137
4138         spin_lock(&mm->page_table_lock);
4139 #ifndef __ARCH_HAS_5LEVEL_HACK
4140         if (!p4d_present(*p4d)) {
4141                 mm_inc_nr_puds(mm);
4142                 p4d_populate(mm, p4d, new);
4143         } else  /* Another has populated it */
4144                 pud_free(mm, new);
4145 #else
4146         if (!pgd_present(*p4d)) {
4147                 mm_inc_nr_puds(mm);
4148                 pgd_populate(mm, p4d, new);
4149         } else  /* Another has populated it */
4150                 pud_free(mm, new);
4151 #endif /* __ARCH_HAS_5LEVEL_HACK */
4152         spin_unlock(&mm->page_table_lock);
4153         return 0;
4154 }
4155 #endif /* __PAGETABLE_PUD_FOLDED */
4156
4157 #ifndef __PAGETABLE_PMD_FOLDED
4158 /*
4159  * Allocate page middle directory.
4160  * We've already handled the fast-path in-line.
4161  */
4162 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4163 {
4164         spinlock_t *ptl;
4165         pmd_t *new = pmd_alloc_one(mm, address);
4166         if (!new)
4167                 return -ENOMEM;
4168
4169         smp_wmb(); /* See comment in __pte_alloc */
4170
4171         ptl = pud_lock(mm, pud);
4172 #ifndef __ARCH_HAS_4LEVEL_HACK
4173         if (!pud_present(*pud)) {
4174                 mm_inc_nr_pmds(mm);
4175                 pud_populate(mm, pud, new);
4176         } else  /* Another has populated it */
4177                 pmd_free(mm, new);
4178 #else
4179         if (!pgd_present(*pud)) {
4180                 mm_inc_nr_pmds(mm);
4181                 pgd_populate(mm, pud, new);
4182         } else /* Another has populated it */
4183                 pmd_free(mm, new);
4184 #endif /* __ARCH_HAS_4LEVEL_HACK */
4185         spin_unlock(ptl);
4186         return 0;
4187 }
4188 #endif /* __PAGETABLE_PMD_FOLDED */
4189
4190 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4191                             struct mmu_notifier_range *range,
4192                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4193 {
4194         pgd_t *pgd;
4195         p4d_t *p4d;
4196         pud_t *pud;
4197         pmd_t *pmd;
4198         pte_t *ptep;
4199
4200         pgd = pgd_offset(mm, address);
4201         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4202                 goto out;
4203
4204         p4d = p4d_offset(pgd, address);
4205         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4206                 goto out;
4207
4208         pud = pud_offset(p4d, address);
4209         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4210                 goto out;
4211
4212         pmd = pmd_offset(pud, address);
4213         VM_BUG_ON(pmd_trans_huge(*pmd));
4214
4215         if (pmd_huge(*pmd)) {
4216                 if (!pmdpp)
4217                         goto out;
4218
4219                 if (range) {
4220                         mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4221                                                 NULL, mm, address & PMD_MASK,
4222                                                 (address & PMD_MASK) + PMD_SIZE);
4223                         mmu_notifier_invalidate_range_start(range);
4224                 }
4225                 *ptlp = pmd_lock(mm, pmd);
4226                 if (pmd_huge(*pmd)) {
4227                         *pmdpp = pmd;
4228                         return 0;
4229                 }
4230                 spin_unlock(*ptlp);
4231                 if (range)
4232                         mmu_notifier_invalidate_range_end(range);
4233         }
4234
4235         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4236                 goto out;
4237
4238         if (range) {
4239                 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4240                                         address & PAGE_MASK,
4241                                         (address & PAGE_MASK) + PAGE_SIZE);
4242                 mmu_notifier_invalidate_range_start(range);
4243         }
4244         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4245         if (!pte_present(*ptep))
4246                 goto unlock;
4247         *ptepp = ptep;
4248         return 0;
4249 unlock:
4250         pte_unmap_unlock(ptep, *ptlp);
4251         if (range)
4252                 mmu_notifier_invalidate_range_end(range);
4253 out:
4254         return -EINVAL;
4255 }
4256
4257 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4258                              pte_t **ptepp, spinlock_t **ptlp)
4259 {
4260         int res;
4261
4262         /* (void) is needed to make gcc happy */
4263         (void) __cond_lock(*ptlp,
4264                            !(res = __follow_pte_pmd(mm, address, NULL,
4265                                                     ptepp, NULL, ptlp)));
4266         return res;
4267 }
4268
4269 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4270                    struct mmu_notifier_range *range,
4271                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4272 {
4273         int res;
4274
4275         /* (void) is needed to make gcc happy */
4276         (void) __cond_lock(*ptlp,
4277                            !(res = __follow_pte_pmd(mm, address, range,
4278                                                     ptepp, pmdpp, ptlp)));
4279         return res;
4280 }
4281 EXPORT_SYMBOL(follow_pte_pmd);
4282
4283 /**
4284  * follow_pfn - look up PFN at a user virtual address
4285  * @vma: memory mapping
4286  * @address: user virtual address
4287  * @pfn: location to store found PFN
4288  *
4289  * Only IO mappings and raw PFN mappings are allowed.
4290  *
4291  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4292  */
4293 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4294         unsigned long *pfn)
4295 {
4296         int ret = -EINVAL;
4297         spinlock_t *ptl;
4298         pte_t *ptep;
4299
4300         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4301                 return ret;
4302
4303         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4304         if (ret)
4305                 return ret;
4306         *pfn = pte_pfn(*ptep);
4307         pte_unmap_unlock(ptep, ptl);
4308         return 0;
4309 }
4310 EXPORT_SYMBOL(follow_pfn);
4311
4312 #ifdef CONFIG_HAVE_IOREMAP_PROT
4313 int follow_phys(struct vm_area_struct *vma,
4314                 unsigned long address, unsigned int flags,
4315                 unsigned long *prot, resource_size_t *phys)
4316 {
4317         int ret = -EINVAL;
4318         pte_t *ptep, pte;
4319         spinlock_t *ptl;
4320
4321         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4322                 goto out;
4323
4324         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4325                 goto out;
4326         pte = *ptep;
4327
4328         if ((flags & FOLL_WRITE) && !pte_write(pte))
4329                 goto unlock;
4330
4331         *prot = pgprot_val(pte_pgprot(pte));
4332         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4333
4334         ret = 0;
4335 unlock:
4336         pte_unmap_unlock(ptep, ptl);
4337 out:
4338         return ret;
4339 }
4340
4341 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4342                         void *buf, int len, int write)
4343 {
4344         resource_size_t phys_addr;
4345         unsigned long prot = 0;
4346         void __iomem *maddr;
4347         int offset = addr & (PAGE_SIZE-1);
4348
4349         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4350                 return -EINVAL;
4351
4352         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4353         if (!maddr)
4354                 return -ENOMEM;
4355
4356         if (write)
4357                 memcpy_toio(maddr + offset, buf, len);
4358         else
4359                 memcpy_fromio(buf, maddr + offset, len);
4360         iounmap(maddr);
4361
4362         return len;
4363 }
4364 EXPORT_SYMBOL_GPL(generic_access_phys);
4365 #endif
4366
4367 /*
4368  * Access another process' address space as given in mm.  If non-NULL, use the
4369  * given task for page fault accounting.
4370  */
4371 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4372                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4373 {
4374         struct vm_area_struct *vma;
4375         void *old_buf = buf;
4376         int write = gup_flags & FOLL_WRITE;
4377
4378         if (down_read_killable(&mm->mmap_sem))
4379                 return 0;
4380
4381         /* ignore errors, just check how much was successfully transferred */
4382         while (len) {
4383                 int bytes, ret, offset;
4384                 void *maddr;
4385                 struct page *page = NULL;
4386
4387                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4388                                 gup_flags, &page, &vma, NULL);
4389                 if (ret <= 0) {
4390 #ifndef CONFIG_HAVE_IOREMAP_PROT
4391                         break;
4392 #else
4393                         /*
4394                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4395                          * we can access using slightly different code.
4396                          */
4397                         vma = find_vma(mm, addr);
4398                         if (!vma || vma->vm_start > addr)
4399                                 break;
4400                         if (vma->vm_ops && vma->vm_ops->access)
4401                                 ret = vma->vm_ops->access(vma, addr, buf,
4402                                                           len, write);
4403                         if (ret <= 0)
4404                                 break;
4405                         bytes = ret;
4406 #endif
4407                 } else {
4408                         bytes = len;
4409                         offset = addr & (PAGE_SIZE-1);
4410                         if (bytes > PAGE_SIZE-offset)
4411                                 bytes = PAGE_SIZE-offset;
4412
4413                         maddr = kmap(page);
4414                         if (write) {
4415                                 copy_to_user_page(vma, page, addr,
4416                                                   maddr + offset, buf, bytes);
4417                                 set_page_dirty_lock(page);
4418                         } else {
4419                                 copy_from_user_page(vma, page, addr,
4420                                                     buf, maddr + offset, bytes);
4421                         }
4422                         kunmap(page);
4423                         put_page(page);
4424                 }
4425                 len -= bytes;
4426                 buf += bytes;
4427                 addr += bytes;
4428         }
4429         up_read(&mm->mmap_sem);
4430
4431         return buf - old_buf;
4432 }
4433
4434 /**
4435  * access_remote_vm - access another process' address space
4436  * @mm:         the mm_struct of the target address space
4437  * @addr:       start address to access
4438  * @buf:        source or destination buffer
4439  * @len:        number of bytes to transfer
4440  * @gup_flags:  flags modifying lookup behaviour
4441  *
4442  * The caller must hold a reference on @mm.
4443  *
4444  * Return: number of bytes copied from source to destination.
4445  */
4446 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4447                 void *buf, int len, unsigned int gup_flags)
4448 {
4449         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4450 }
4451
4452 /*
4453  * Access another process' address space.
4454  * Source/target buffer must be kernel space,
4455  * Do not walk the page table directly, use get_user_pages
4456  */
4457 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4458                 void *buf, int len, unsigned int gup_flags)
4459 {
4460         struct mm_struct *mm;
4461         int ret;
4462
4463         mm = get_task_mm(tsk);
4464         if (!mm)
4465                 return 0;
4466
4467         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4468
4469         mmput(mm);
4470
4471         return ret;
4472 }
4473 EXPORT_SYMBOL_GPL(access_process_vm);
4474
4475 /*
4476  * Print the name of a VMA.
4477  */
4478 void print_vma_addr(char *prefix, unsigned long ip)
4479 {
4480         struct mm_struct *mm = current->mm;
4481         struct vm_area_struct *vma;
4482
4483         /*
4484          * we might be running from an atomic context so we cannot sleep
4485          */
4486         if (!down_read_trylock(&mm->mmap_sem))
4487                 return;
4488
4489         vma = find_vma(mm, ip);
4490         if (vma && vma->vm_file) {
4491                 struct file *f = vma->vm_file;
4492                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4493                 if (buf) {
4494                         char *p;
4495
4496                         p = file_path(f, buf, PAGE_SIZE);
4497                         if (IS_ERR(p))
4498                                 p = "?";
4499                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4500                                         vma->vm_start,
4501                                         vma->vm_end - vma->vm_start);
4502                         free_page((unsigned long)buf);
4503                 }
4504         }
4505         up_read(&mm->mmap_sem);
4506 }
4507
4508 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4509 void __might_fault(const char *file, int line)
4510 {
4511         /*
4512          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4513          * holding the mmap_sem, this is safe because kernel memory doesn't
4514          * get paged out, therefore we'll never actually fault, and the
4515          * below annotations will generate false positives.
4516          */
4517         if (uaccess_kernel())
4518                 return;
4519         if (pagefault_disabled())
4520                 return;
4521         __might_sleep(file, line, 0);
4522 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4523         if (current->mm)
4524                 might_lock_read(&current->mm->mmap_sem);
4525 #endif
4526 }
4527 EXPORT_SYMBOL(__might_fault);
4528 #endif
4529
4530 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4531 /*
4532  * Process all subpages of the specified huge page with the specified
4533  * operation.  The target subpage will be processed last to keep its
4534  * cache lines hot.
4535  */
4536 static inline void process_huge_page(
4537         unsigned long addr_hint, unsigned int pages_per_huge_page,
4538         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4539         void *arg)
4540 {
4541         int i, n, base, l;
4542         unsigned long addr = addr_hint &
4543                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4544
4545         /* Process target subpage last to keep its cache lines hot */
4546         might_sleep();
4547         n = (addr_hint - addr) / PAGE_SIZE;
4548         if (2 * n <= pages_per_huge_page) {
4549                 /* If target subpage in first half of huge page */
4550                 base = 0;
4551                 l = n;
4552                 /* Process subpages at the end of huge page */
4553                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4554                         cond_resched();
4555                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4556                 }
4557         } else {
4558                 /* If target subpage in second half of huge page */
4559                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4560                 l = pages_per_huge_page - n;
4561                 /* Process subpages at the begin of huge page */
4562                 for (i = 0; i < base; i++) {
4563                         cond_resched();
4564                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4565                 }
4566         }
4567         /*
4568          * Process remaining subpages in left-right-left-right pattern
4569          * towards the target subpage
4570          */
4571         for (i = 0; i < l; i++) {
4572                 int left_idx = base + i;
4573                 int right_idx = base + 2 * l - 1 - i;
4574
4575                 cond_resched();
4576                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4577                 cond_resched();
4578                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4579         }
4580 }
4581
4582 static void clear_gigantic_page(struct page *page,
4583                                 unsigned long addr,
4584                                 unsigned int pages_per_huge_page)
4585 {
4586         int i;
4587         struct page *p = page;
4588
4589         might_sleep();
4590         for (i = 0; i < pages_per_huge_page;
4591              i++, p = mem_map_next(p, page, i)) {
4592                 cond_resched();
4593                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4594         }
4595 }
4596
4597 static void clear_subpage(unsigned long addr, int idx, void *arg)
4598 {
4599         struct page *page = arg;
4600
4601         clear_user_highpage(page + idx, addr);
4602 }
4603
4604 void clear_huge_page(struct page *page,
4605                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4606 {
4607         unsigned long addr = addr_hint &
4608                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4609
4610         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4611                 clear_gigantic_page(page, addr, pages_per_huge_page);
4612                 return;
4613         }
4614
4615         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4616 }
4617
4618 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4619                                     unsigned long addr,
4620                                     struct vm_area_struct *vma,
4621                                     unsigned int pages_per_huge_page)
4622 {
4623         int i;
4624         struct page *dst_base = dst;
4625         struct page *src_base = src;
4626
4627         for (i = 0; i < pages_per_huge_page; ) {
4628                 cond_resched();
4629                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4630
4631                 i++;
4632                 dst = mem_map_next(dst, dst_base, i);
4633                 src = mem_map_next(src, src_base, i);
4634         }
4635 }
4636
4637 struct copy_subpage_arg {
4638         struct page *dst;
4639         struct page *src;
4640         struct vm_area_struct *vma;
4641 };
4642
4643 static void copy_subpage(unsigned long addr, int idx, void *arg)
4644 {
4645         struct copy_subpage_arg *copy_arg = arg;
4646
4647         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4648                            addr, copy_arg->vma);
4649 }
4650
4651 void copy_user_huge_page(struct page *dst, struct page *src,
4652                          unsigned long addr_hint, struct vm_area_struct *vma,
4653                          unsigned int pages_per_huge_page)
4654 {
4655         unsigned long addr = addr_hint &
4656                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4657         struct copy_subpage_arg arg = {
4658                 .dst = dst,
4659                 .src = src,
4660                 .vma = vma,
4661         };
4662
4663         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4664                 copy_user_gigantic_page(dst, src, addr, vma,
4665                                         pages_per_huge_page);
4666                 return;
4667         }
4668
4669         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4670 }
4671
4672 long copy_huge_page_from_user(struct page *dst_page,
4673                                 const void __user *usr_src,
4674                                 unsigned int pages_per_huge_page,
4675                                 bool allow_pagefault)
4676 {
4677         void *src = (void *)usr_src;
4678         void *page_kaddr;
4679         unsigned long i, rc = 0;
4680         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4681
4682         for (i = 0; i < pages_per_huge_page; i++) {
4683                 if (allow_pagefault)
4684                         page_kaddr = kmap(dst_page + i);
4685                 else
4686                         page_kaddr = kmap_atomic(dst_page + i);
4687                 rc = copy_from_user(page_kaddr,
4688                                 (const void __user *)(src + i * PAGE_SIZE),
4689                                 PAGE_SIZE);
4690                 if (allow_pagefault)
4691                         kunmap(dst_page + i);
4692                 else
4693                         kunmap_atomic(page_kaddr);
4694
4695                 ret_val -= (PAGE_SIZE - rc);
4696                 if (rc)
4697                         break;
4698
4699                 cond_resched();
4700         }
4701         return ret_val;
4702 }
4703 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4704
4705 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4706
4707 static struct kmem_cache *page_ptl_cachep;
4708
4709 void __init ptlock_cache_init(void)
4710 {
4711         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4712                         SLAB_PANIC, NULL);
4713 }
4714
4715 bool ptlock_alloc(struct page *page)
4716 {
4717         spinlock_t *ptl;
4718
4719         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4720         if (!ptl)
4721                 return false;
4722         page->ptl = ptl;
4723         return true;
4724 }
4725
4726 void ptlock_free(struct page *page)
4727 {
4728         kmem_cache_free(page_ptl_cachep, page->ptl);
4729 }
4730 #endif