]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/memory.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/hugetlb.h>
47 #include <linux/mman.h>
48 #include <linux/swap.h>
49 #include <linux/highmem.h>
50 #include <linux/pagemap.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/export.h>
54 #include <linux/delayacct.h>
55 #include <linux/init.h>
56 #include <linux/pfn_t.h>
57 #include <linux/writeback.h>
58 #include <linux/memcontrol.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/kallsyms.h>
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
63 #include <linux/gfp.h>
64 #include <linux/migrate.h>
65 #include <linux/string.h>
66 #include <linux/dma-debug.h>
67 #include <linux/debugfs.h>
68 #include <linux/userfaultfd_k.h>
69 #include <linux/dax.h>
70
71 #include <asm/io.h>
72 #include <asm/mmu_context.h>
73 #include <asm/pgalloc.h>
74 #include <linux/uaccess.h>
75 #include <asm/tlb.h>
76 #include <asm/tlbflush.h>
77 #include <asm/pgtable.h>
78
79 #include "internal.h"
80
81 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
82 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
83 #endif
84
85 #ifndef CONFIG_NEED_MULTIPLE_NODES
86 /* use the per-pgdat data instead for discontigmem - mbligh */
87 unsigned long max_mapnr;
88 EXPORT_SYMBOL(max_mapnr);
89
90 struct page *mem_map;
91 EXPORT_SYMBOL(mem_map);
92 #endif
93
94 /*
95  * A number of key systems in x86 including ioremap() rely on the assumption
96  * that high_memory defines the upper bound on direct map memory, then end
97  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
98  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
99  * and ZONE_HIGHMEM.
100  */
101 void *high_memory;
102 EXPORT_SYMBOL(high_memory);
103
104 /*
105  * Randomize the address space (stacks, mmaps, brk, etc.).
106  *
107  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
108  *   as ancient (libc5 based) binaries can segfault. )
109  */
110 int randomize_va_space __read_mostly =
111 #ifdef CONFIG_COMPAT_BRK
112                                         1;
113 #else
114                                         2;
115 #endif
116
117 static int __init disable_randmaps(char *s)
118 {
119         randomize_va_space = 0;
120         return 1;
121 }
122 __setup("norandmaps", disable_randmaps);
123
124 unsigned long zero_pfn __read_mostly;
125 EXPORT_SYMBOL(zero_pfn);
126
127 unsigned long highest_memmap_pfn __read_mostly;
128
129 /*
130  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
131  */
132 static int __init init_zero_pfn(void)
133 {
134         zero_pfn = page_to_pfn(ZERO_PAGE(0));
135         return 0;
136 }
137 core_initcall(init_zero_pfn);
138
139
140 #if defined(SPLIT_RSS_COUNTING)
141
142 void sync_mm_rss(struct mm_struct *mm)
143 {
144         int i;
145
146         for (i = 0; i < NR_MM_COUNTERS; i++) {
147                 if (current->rss_stat.count[i]) {
148                         add_mm_counter(mm, i, current->rss_stat.count[i]);
149                         current->rss_stat.count[i] = 0;
150                 }
151         }
152         current->rss_stat.events = 0;
153 }
154
155 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
156 {
157         struct task_struct *task = current;
158
159         if (likely(task->mm == mm))
160                 task->rss_stat.count[member] += val;
161         else
162                 add_mm_counter(mm, member, val);
163 }
164 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
165 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
166
167 /* sync counter once per 64 page faults */
168 #define TASK_RSS_EVENTS_THRESH  (64)
169 static void check_sync_rss_stat(struct task_struct *task)
170 {
171         if (unlikely(task != current))
172                 return;
173         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
174                 sync_mm_rss(task->mm);
175 }
176 #else /* SPLIT_RSS_COUNTING */
177
178 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
179 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
180
181 static void check_sync_rss_stat(struct task_struct *task)
182 {
183 }
184
185 #endif /* SPLIT_RSS_COUNTING */
186
187 #ifdef HAVE_GENERIC_MMU_GATHER
188
189 static bool tlb_next_batch(struct mmu_gather *tlb)
190 {
191         struct mmu_gather_batch *batch;
192
193         batch = tlb->active;
194         if (batch->next) {
195                 tlb->active = batch->next;
196                 return true;
197         }
198
199         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
200                 return false;
201
202         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
203         if (!batch)
204                 return false;
205
206         tlb->batch_count++;
207         batch->next = NULL;
208         batch->nr   = 0;
209         batch->max  = MAX_GATHER_BATCH;
210
211         tlb->active->next = batch;
212         tlb->active = batch;
213
214         return true;
215 }
216
217 /* tlb_gather_mmu
218  *      Called to initialize an (on-stack) mmu_gather structure for page-table
219  *      tear-down from @mm. The @fullmm argument is used when @mm is without
220  *      users and we're going to destroy the full address space (exit/execve).
221  */
222 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
223 {
224         tlb->mm = mm;
225
226         /* Is it from 0 to ~0? */
227         tlb->fullmm     = !(start | (end+1));
228         tlb->need_flush_all = 0;
229         tlb->local.next = NULL;
230         tlb->local.nr   = 0;
231         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
232         tlb->active     = &tlb->local;
233         tlb->batch_count = 0;
234
235 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
236         tlb->batch = NULL;
237 #endif
238         tlb->page_size = 0;
239
240         __tlb_reset_range(tlb);
241 }
242
243 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
244 {
245         if (!tlb->end)
246                 return;
247
248         tlb_flush(tlb);
249         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
250 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
251         tlb_table_flush(tlb);
252 #endif
253         __tlb_reset_range(tlb);
254 }
255
256 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
257 {
258         struct mmu_gather_batch *batch;
259
260         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
261                 free_pages_and_swap_cache(batch->pages, batch->nr);
262                 batch->nr = 0;
263         }
264         tlb->active = &tlb->local;
265 }
266
267 void tlb_flush_mmu(struct mmu_gather *tlb)
268 {
269         tlb_flush_mmu_tlbonly(tlb);
270         tlb_flush_mmu_free(tlb);
271 }
272
273 /* tlb_finish_mmu
274  *      Called at the end of the shootdown operation to free up any resources
275  *      that were required.
276  */
277 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
278 {
279         struct mmu_gather_batch *batch, *next;
280
281         tlb_flush_mmu(tlb);
282
283         /* keep the page table cache within bounds */
284         check_pgt_cache();
285
286         for (batch = tlb->local.next; batch; batch = next) {
287                 next = batch->next;
288                 free_pages((unsigned long)batch, 0);
289         }
290         tlb->local.next = NULL;
291 }
292
293 /* __tlb_remove_page
294  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
295  *      handling the additional races in SMP caused by other CPUs caching valid
296  *      mappings in their TLBs. Returns the number of free page slots left.
297  *      When out of page slots we must call tlb_flush_mmu().
298  *returns true if the caller should flush.
299  */
300 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
301 {
302         struct mmu_gather_batch *batch;
303
304         VM_BUG_ON(!tlb->end);
305         VM_WARN_ON(tlb->page_size != page_size);
306
307         batch = tlb->active;
308         /*
309          * Add the page and check if we are full. If so
310          * force a flush.
311          */
312         batch->pages[batch->nr++] = page;
313         if (batch->nr == batch->max) {
314                 if (!tlb_next_batch(tlb))
315                         return true;
316                 batch = tlb->active;
317         }
318         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
319
320         return false;
321 }
322
323 #endif /* HAVE_GENERIC_MMU_GATHER */
324
325 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
326
327 /*
328  * See the comment near struct mmu_table_batch.
329  */
330
331 static void tlb_remove_table_smp_sync(void *arg)
332 {
333         /* Simply deliver the interrupt */
334 }
335
336 static void tlb_remove_table_one(void *table)
337 {
338         /*
339          * This isn't an RCU grace period and hence the page-tables cannot be
340          * assumed to be actually RCU-freed.
341          *
342          * It is however sufficient for software page-table walkers that rely on
343          * IRQ disabling. See the comment near struct mmu_table_batch.
344          */
345         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
346         __tlb_remove_table(table);
347 }
348
349 static void tlb_remove_table_rcu(struct rcu_head *head)
350 {
351         struct mmu_table_batch *batch;
352         int i;
353
354         batch = container_of(head, struct mmu_table_batch, rcu);
355
356         for (i = 0; i < batch->nr; i++)
357                 __tlb_remove_table(batch->tables[i]);
358
359         free_page((unsigned long)batch);
360 }
361
362 void tlb_table_flush(struct mmu_gather *tlb)
363 {
364         struct mmu_table_batch **batch = &tlb->batch;
365
366         if (*batch) {
367                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
368                 *batch = NULL;
369         }
370 }
371
372 void tlb_remove_table(struct mmu_gather *tlb, void *table)
373 {
374         struct mmu_table_batch **batch = &tlb->batch;
375
376         /*
377          * When there's less then two users of this mm there cannot be a
378          * concurrent page-table walk.
379          */
380         if (atomic_read(&tlb->mm->mm_users) < 2) {
381                 __tlb_remove_table(table);
382                 return;
383         }
384
385         if (*batch == NULL) {
386                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
387                 if (*batch == NULL) {
388                         tlb_remove_table_one(table);
389                         return;
390                 }
391                 (*batch)->nr = 0;
392         }
393         (*batch)->tables[(*batch)->nr++] = table;
394         if ((*batch)->nr == MAX_TABLE_BATCH)
395                 tlb_table_flush(tlb);
396 }
397
398 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
399
400 /*
401  * Note: this doesn't free the actual pages themselves. That
402  * has been handled earlier when unmapping all the memory regions.
403  */
404 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
405                            unsigned long addr)
406 {
407         pgtable_t token = pmd_pgtable(*pmd);
408         pmd_clear(pmd);
409         pte_free_tlb(tlb, token, addr);
410         atomic_long_dec(&tlb->mm->nr_ptes);
411 }
412
413 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
414                                 unsigned long addr, unsigned long end,
415                                 unsigned long floor, unsigned long ceiling)
416 {
417         pmd_t *pmd;
418         unsigned long next;
419         unsigned long start;
420
421         start = addr;
422         pmd = pmd_offset(pud, addr);
423         do {
424                 next = pmd_addr_end(addr, end);
425                 if (pmd_none_or_clear_bad(pmd))
426                         continue;
427                 free_pte_range(tlb, pmd, addr);
428         } while (pmd++, addr = next, addr != end);
429
430         start &= PUD_MASK;
431         if (start < floor)
432                 return;
433         if (ceiling) {
434                 ceiling &= PUD_MASK;
435                 if (!ceiling)
436                         return;
437         }
438         if (end - 1 > ceiling - 1)
439                 return;
440
441         pmd = pmd_offset(pud, start);
442         pud_clear(pud);
443         pmd_free_tlb(tlb, pmd, start);
444         mm_dec_nr_pmds(tlb->mm);
445 }
446
447 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
448                                 unsigned long addr, unsigned long end,
449                                 unsigned long floor, unsigned long ceiling)
450 {
451         pud_t *pud;
452         unsigned long next;
453         unsigned long start;
454
455         start = addr;
456         pud = pud_offset(pgd, addr);
457         do {
458                 next = pud_addr_end(addr, end);
459                 if (pud_none_or_clear_bad(pud))
460                         continue;
461                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
462         } while (pud++, addr = next, addr != end);
463
464         start &= PGDIR_MASK;
465         if (start < floor)
466                 return;
467         if (ceiling) {
468                 ceiling &= PGDIR_MASK;
469                 if (!ceiling)
470                         return;
471         }
472         if (end - 1 > ceiling - 1)
473                 return;
474
475         pud = pud_offset(pgd, start);
476         pgd_clear(pgd);
477         pud_free_tlb(tlb, pud, start);
478 }
479
480 /*
481  * This function frees user-level page tables of a process.
482  */
483 void free_pgd_range(struct mmu_gather *tlb,
484                         unsigned long addr, unsigned long end,
485                         unsigned long floor, unsigned long ceiling)
486 {
487         pgd_t *pgd;
488         unsigned long next;
489
490         /*
491          * The next few lines have given us lots of grief...
492          *
493          * Why are we testing PMD* at this top level?  Because often
494          * there will be no work to do at all, and we'd prefer not to
495          * go all the way down to the bottom just to discover that.
496          *
497          * Why all these "- 1"s?  Because 0 represents both the bottom
498          * of the address space and the top of it (using -1 for the
499          * top wouldn't help much: the masks would do the wrong thing).
500          * The rule is that addr 0 and floor 0 refer to the bottom of
501          * the address space, but end 0 and ceiling 0 refer to the top
502          * Comparisons need to use "end - 1" and "ceiling - 1" (though
503          * that end 0 case should be mythical).
504          *
505          * Wherever addr is brought up or ceiling brought down, we must
506          * be careful to reject "the opposite 0" before it confuses the
507          * subsequent tests.  But what about where end is brought down
508          * by PMD_SIZE below? no, end can't go down to 0 there.
509          *
510          * Whereas we round start (addr) and ceiling down, by different
511          * masks at different levels, in order to test whether a table
512          * now has no other vmas using it, so can be freed, we don't
513          * bother to round floor or end up - the tests don't need that.
514          */
515
516         addr &= PMD_MASK;
517         if (addr < floor) {
518                 addr += PMD_SIZE;
519                 if (!addr)
520                         return;
521         }
522         if (ceiling) {
523                 ceiling &= PMD_MASK;
524                 if (!ceiling)
525                         return;
526         }
527         if (end - 1 > ceiling - 1)
528                 end -= PMD_SIZE;
529         if (addr > end - 1)
530                 return;
531         /*
532          * We add page table cache pages with PAGE_SIZE,
533          * (see pte_free_tlb()), flush the tlb if we need
534          */
535         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
536         pgd = pgd_offset(tlb->mm, addr);
537         do {
538                 next = pgd_addr_end(addr, end);
539                 if (pgd_none_or_clear_bad(pgd))
540                         continue;
541                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
542         } while (pgd++, addr = next, addr != end);
543 }
544
545 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
546                 unsigned long floor, unsigned long ceiling)
547 {
548         while (vma) {
549                 struct vm_area_struct *next = vma->vm_next;
550                 unsigned long addr = vma->vm_start;
551
552                 /*
553                  * Hide vma from rmap and truncate_pagecache before freeing
554                  * pgtables
555                  */
556                 unlink_anon_vmas(vma);
557                 unlink_file_vma(vma);
558
559                 if (is_vm_hugetlb_page(vma)) {
560                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
561                                 floor, next ? next->vm_start : ceiling);
562                 } else {
563                         /*
564                          * Optimization: gather nearby vmas into one call down
565                          */
566                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
567                                && !is_vm_hugetlb_page(next)) {
568                                 vma = next;
569                                 next = vma->vm_next;
570                                 unlink_anon_vmas(vma);
571                                 unlink_file_vma(vma);
572                         }
573                         free_pgd_range(tlb, addr, vma->vm_end,
574                                 floor, next ? next->vm_start : ceiling);
575                 }
576                 vma = next;
577         }
578 }
579
580 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
581 {
582         spinlock_t *ptl;
583         pgtable_t new = pte_alloc_one(mm, address);
584         if (!new)
585                 return -ENOMEM;
586
587         /*
588          * Ensure all pte setup (eg. pte page lock and page clearing) are
589          * visible before the pte is made visible to other CPUs by being
590          * put into page tables.
591          *
592          * The other side of the story is the pointer chasing in the page
593          * table walking code (when walking the page table without locking;
594          * ie. most of the time). Fortunately, these data accesses consist
595          * of a chain of data-dependent loads, meaning most CPUs (alpha
596          * being the notable exception) will already guarantee loads are
597          * seen in-order. See the alpha page table accessors for the
598          * smp_read_barrier_depends() barriers in page table walking code.
599          */
600         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
601
602         ptl = pmd_lock(mm, pmd);
603         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
604                 atomic_long_inc(&mm->nr_ptes);
605                 pmd_populate(mm, pmd, new);
606                 new = NULL;
607         }
608         spin_unlock(ptl);
609         if (new)
610                 pte_free(mm, new);
611         return 0;
612 }
613
614 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
615 {
616         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
617         if (!new)
618                 return -ENOMEM;
619
620         smp_wmb(); /* See comment in __pte_alloc */
621
622         spin_lock(&init_mm.page_table_lock);
623         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
624                 pmd_populate_kernel(&init_mm, pmd, new);
625                 new = NULL;
626         }
627         spin_unlock(&init_mm.page_table_lock);
628         if (new)
629                 pte_free_kernel(&init_mm, new);
630         return 0;
631 }
632
633 static inline void init_rss_vec(int *rss)
634 {
635         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
636 }
637
638 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
639 {
640         int i;
641
642         if (current->mm == mm)
643                 sync_mm_rss(mm);
644         for (i = 0; i < NR_MM_COUNTERS; i++)
645                 if (rss[i])
646                         add_mm_counter(mm, i, rss[i]);
647 }
648
649 /*
650  * This function is called to print an error when a bad pte
651  * is found. For example, we might have a PFN-mapped pte in
652  * a region that doesn't allow it.
653  *
654  * The calling function must still handle the error.
655  */
656 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
657                           pte_t pte, struct page *page)
658 {
659         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
660         pud_t *pud = pud_offset(pgd, addr);
661         pmd_t *pmd = pmd_offset(pud, addr);
662         struct address_space *mapping;
663         pgoff_t index;
664         static unsigned long resume;
665         static unsigned long nr_shown;
666         static unsigned long nr_unshown;
667
668         /*
669          * Allow a burst of 60 reports, then keep quiet for that minute;
670          * or allow a steady drip of one report per second.
671          */
672         if (nr_shown == 60) {
673                 if (time_before(jiffies, resume)) {
674                         nr_unshown++;
675                         return;
676                 }
677                 if (nr_unshown) {
678                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
679                                  nr_unshown);
680                         nr_unshown = 0;
681                 }
682                 nr_shown = 0;
683         }
684         if (nr_shown++ == 0)
685                 resume = jiffies + 60 * HZ;
686
687         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
688         index = linear_page_index(vma, addr);
689
690         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
691                  current->comm,
692                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
693         if (page)
694                 dump_page(page, "bad pte");
695         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
696                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
697         /*
698          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
699          */
700         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
701                  vma->vm_file,
702                  vma->vm_ops ? vma->vm_ops->fault : NULL,
703                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
704                  mapping ? mapping->a_ops->readpage : NULL);
705         dump_stack();
706         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
707 }
708
709 /*
710  * vm_normal_page -- This function gets the "struct page" associated with a pte.
711  *
712  * "Special" mappings do not wish to be associated with a "struct page" (either
713  * it doesn't exist, or it exists but they don't want to touch it). In this
714  * case, NULL is returned here. "Normal" mappings do have a struct page.
715  *
716  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
717  * pte bit, in which case this function is trivial. Secondly, an architecture
718  * may not have a spare pte bit, which requires a more complicated scheme,
719  * described below.
720  *
721  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
722  * special mapping (even if there are underlying and valid "struct pages").
723  * COWed pages of a VM_PFNMAP are always normal.
724  *
725  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
726  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
727  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
728  * mapping will always honor the rule
729  *
730  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
731  *
732  * And for normal mappings this is false.
733  *
734  * This restricts such mappings to be a linear translation from virtual address
735  * to pfn. To get around this restriction, we allow arbitrary mappings so long
736  * as the vma is not a COW mapping; in that case, we know that all ptes are
737  * special (because none can have been COWed).
738  *
739  *
740  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
741  *
742  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
743  * page" backing, however the difference is that _all_ pages with a struct
744  * page (that is, those where pfn_valid is true) are refcounted and considered
745  * normal pages by the VM. The disadvantage is that pages are refcounted
746  * (which can be slower and simply not an option for some PFNMAP users). The
747  * advantage is that we don't have to follow the strict linearity rule of
748  * PFNMAP mappings in order to support COWable mappings.
749  *
750  */
751 #ifdef __HAVE_ARCH_PTE_SPECIAL
752 # define HAVE_PTE_SPECIAL 1
753 #else
754 # define HAVE_PTE_SPECIAL 0
755 #endif
756 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
757                                 pte_t pte)
758 {
759         unsigned long pfn = pte_pfn(pte);
760
761         if (HAVE_PTE_SPECIAL) {
762                 if (likely(!pte_special(pte)))
763                         goto check_pfn;
764                 if (vma->vm_ops && vma->vm_ops->find_special_page)
765                         return vma->vm_ops->find_special_page(vma, addr);
766                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
767                         return NULL;
768                 if (!is_zero_pfn(pfn))
769                         print_bad_pte(vma, addr, pte, NULL);
770                 return NULL;
771         }
772
773         /* !HAVE_PTE_SPECIAL case follows: */
774
775         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
776                 if (vma->vm_flags & VM_MIXEDMAP) {
777                         if (!pfn_valid(pfn))
778                                 return NULL;
779                         goto out;
780                 } else {
781                         unsigned long off;
782                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
783                         if (pfn == vma->vm_pgoff + off)
784                                 return NULL;
785                         if (!is_cow_mapping(vma->vm_flags))
786                                 return NULL;
787                 }
788         }
789
790         if (is_zero_pfn(pfn))
791                 return NULL;
792 check_pfn:
793         if (unlikely(pfn > highest_memmap_pfn)) {
794                 print_bad_pte(vma, addr, pte, NULL);
795                 return NULL;
796         }
797
798         /*
799          * NOTE! We still have PageReserved() pages in the page tables.
800          * eg. VDSO mappings can cause them to exist.
801          */
802 out:
803         return pfn_to_page(pfn);
804 }
805
806 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
807 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
808                                 pmd_t pmd)
809 {
810         unsigned long pfn = pmd_pfn(pmd);
811
812         /*
813          * There is no pmd_special() but there may be special pmds, e.g.
814          * in a direct-access (dax) mapping, so let's just replicate the
815          * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
816          */
817         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
818                 if (vma->vm_flags & VM_MIXEDMAP) {
819                         if (!pfn_valid(pfn))
820                                 return NULL;
821                         goto out;
822                 } else {
823                         unsigned long off;
824                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
825                         if (pfn == vma->vm_pgoff + off)
826                                 return NULL;
827                         if (!is_cow_mapping(vma->vm_flags))
828                                 return NULL;
829                 }
830         }
831
832         if (is_zero_pfn(pfn))
833                 return NULL;
834         if (unlikely(pfn > highest_memmap_pfn))
835                 return NULL;
836
837         /*
838          * NOTE! We still have PageReserved() pages in the page tables.
839          * eg. VDSO mappings can cause them to exist.
840          */
841 out:
842         return pfn_to_page(pfn);
843 }
844 #endif
845
846 /*
847  * copy one vm_area from one task to the other. Assumes the page tables
848  * already present in the new task to be cleared in the whole range
849  * covered by this vma.
850  */
851
852 static inline unsigned long
853 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
854                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
855                 unsigned long addr, int *rss)
856 {
857         unsigned long vm_flags = vma->vm_flags;
858         pte_t pte = *src_pte;
859         struct page *page;
860
861         /* pte contains position in swap or file, so copy. */
862         if (unlikely(!pte_present(pte))) {
863                 swp_entry_t entry = pte_to_swp_entry(pte);
864
865                 if (likely(!non_swap_entry(entry))) {
866                         if (swap_duplicate(entry) < 0)
867                                 return entry.val;
868
869                         /* make sure dst_mm is on swapoff's mmlist. */
870                         if (unlikely(list_empty(&dst_mm->mmlist))) {
871                                 spin_lock(&mmlist_lock);
872                                 if (list_empty(&dst_mm->mmlist))
873                                         list_add(&dst_mm->mmlist,
874                                                         &src_mm->mmlist);
875                                 spin_unlock(&mmlist_lock);
876                         }
877                         rss[MM_SWAPENTS]++;
878                 } else if (is_migration_entry(entry)) {
879                         page = migration_entry_to_page(entry);
880
881                         rss[mm_counter(page)]++;
882
883                         if (is_write_migration_entry(entry) &&
884                                         is_cow_mapping(vm_flags)) {
885                                 /*
886                                  * COW mappings require pages in both
887                                  * parent and child to be set to read.
888                                  */
889                                 make_migration_entry_read(&entry);
890                                 pte = swp_entry_to_pte(entry);
891                                 if (pte_swp_soft_dirty(*src_pte))
892                                         pte = pte_swp_mksoft_dirty(pte);
893                                 set_pte_at(src_mm, addr, src_pte, pte);
894                         }
895                 }
896                 goto out_set_pte;
897         }
898
899         /*
900          * If it's a COW mapping, write protect it both
901          * in the parent and the child
902          */
903         if (is_cow_mapping(vm_flags)) {
904                 ptep_set_wrprotect(src_mm, addr, src_pte);
905                 pte = pte_wrprotect(pte);
906         }
907
908         /*
909          * If it's a shared mapping, mark it clean in
910          * the child
911          */
912         if (vm_flags & VM_SHARED)
913                 pte = pte_mkclean(pte);
914         pte = pte_mkold(pte);
915
916         page = vm_normal_page(vma, addr, pte);
917         if (page) {
918                 get_page(page);
919                 page_dup_rmap(page, false);
920                 rss[mm_counter(page)]++;
921         }
922
923 out_set_pte:
924         set_pte_at(dst_mm, addr, dst_pte, pte);
925         return 0;
926 }
927
928 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
929                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
930                    unsigned long addr, unsigned long end)
931 {
932         pte_t *orig_src_pte, *orig_dst_pte;
933         pte_t *src_pte, *dst_pte;
934         spinlock_t *src_ptl, *dst_ptl;
935         int progress = 0;
936         int rss[NR_MM_COUNTERS];
937         swp_entry_t entry = (swp_entry_t){0};
938
939 again:
940         init_rss_vec(rss);
941
942         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
943         if (!dst_pte)
944                 return -ENOMEM;
945         src_pte = pte_offset_map(src_pmd, addr);
946         src_ptl = pte_lockptr(src_mm, src_pmd);
947         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
948         orig_src_pte = src_pte;
949         orig_dst_pte = dst_pte;
950         arch_enter_lazy_mmu_mode();
951
952         do {
953                 /*
954                  * We are holding two locks at this point - either of them
955                  * could generate latencies in another task on another CPU.
956                  */
957                 if (progress >= 32) {
958                         progress = 0;
959                         if (need_resched() ||
960                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
961                                 break;
962                 }
963                 if (pte_none(*src_pte)) {
964                         progress++;
965                         continue;
966                 }
967                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
968                                                         vma, addr, rss);
969                 if (entry.val)
970                         break;
971                 progress += 8;
972         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
973
974         arch_leave_lazy_mmu_mode();
975         spin_unlock(src_ptl);
976         pte_unmap(orig_src_pte);
977         add_mm_rss_vec(dst_mm, rss);
978         pte_unmap_unlock(orig_dst_pte, dst_ptl);
979         cond_resched();
980
981         if (entry.val) {
982                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
983                         return -ENOMEM;
984                 progress = 0;
985         }
986         if (addr != end)
987                 goto again;
988         return 0;
989 }
990
991 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
992                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
993                 unsigned long addr, unsigned long end)
994 {
995         pmd_t *src_pmd, *dst_pmd;
996         unsigned long next;
997
998         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
999         if (!dst_pmd)
1000                 return -ENOMEM;
1001         src_pmd = pmd_offset(src_pud, addr);
1002         do {
1003                 next = pmd_addr_end(addr, end);
1004                 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1005                         int err;
1006                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1007                         err = copy_huge_pmd(dst_mm, src_mm,
1008                                             dst_pmd, src_pmd, addr, vma);
1009                         if (err == -ENOMEM)
1010                                 return -ENOMEM;
1011                         if (!err)
1012                                 continue;
1013                         /* fall through */
1014                 }
1015                 if (pmd_none_or_clear_bad(src_pmd))
1016                         continue;
1017                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1018                                                 vma, addr, next))
1019                         return -ENOMEM;
1020         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1021         return 0;
1022 }
1023
1024 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1025                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1026                 unsigned long addr, unsigned long end)
1027 {
1028         pud_t *src_pud, *dst_pud;
1029         unsigned long next;
1030
1031         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1032         if (!dst_pud)
1033                 return -ENOMEM;
1034         src_pud = pud_offset(src_pgd, addr);
1035         do {
1036                 next = pud_addr_end(addr, end);
1037                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1038                         int err;
1039
1040                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1041                         err = copy_huge_pud(dst_mm, src_mm,
1042                                             dst_pud, src_pud, addr, vma);
1043                         if (err == -ENOMEM)
1044                                 return -ENOMEM;
1045                         if (!err)
1046                                 continue;
1047                         /* fall through */
1048                 }
1049                 if (pud_none_or_clear_bad(src_pud))
1050                         continue;
1051                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1052                                                 vma, addr, next))
1053                         return -ENOMEM;
1054         } while (dst_pud++, src_pud++, addr = next, addr != end);
1055         return 0;
1056 }
1057
1058 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1059                 struct vm_area_struct *vma)
1060 {
1061         pgd_t *src_pgd, *dst_pgd;
1062         unsigned long next;
1063         unsigned long addr = vma->vm_start;
1064         unsigned long end = vma->vm_end;
1065         unsigned long mmun_start;       /* For mmu_notifiers */
1066         unsigned long mmun_end;         /* For mmu_notifiers */
1067         bool is_cow;
1068         int ret;
1069
1070         /*
1071          * Don't copy ptes where a page fault will fill them correctly.
1072          * Fork becomes much lighter when there are big shared or private
1073          * readonly mappings. The tradeoff is that copy_page_range is more
1074          * efficient than faulting.
1075          */
1076         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1077                         !vma->anon_vma)
1078                 return 0;
1079
1080         if (is_vm_hugetlb_page(vma))
1081                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1082
1083         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1084                 /*
1085                  * We do not free on error cases below as remove_vma
1086                  * gets called on error from higher level routine
1087                  */
1088                 ret = track_pfn_copy(vma);
1089                 if (ret)
1090                         return ret;
1091         }
1092
1093         /*
1094          * We need to invalidate the secondary MMU mappings only when
1095          * there could be a permission downgrade on the ptes of the
1096          * parent mm. And a permission downgrade will only happen if
1097          * is_cow_mapping() returns true.
1098          */
1099         is_cow = is_cow_mapping(vma->vm_flags);
1100         mmun_start = addr;
1101         mmun_end   = end;
1102         if (is_cow)
1103                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1104                                                     mmun_end);
1105
1106         ret = 0;
1107         dst_pgd = pgd_offset(dst_mm, addr);
1108         src_pgd = pgd_offset(src_mm, addr);
1109         do {
1110                 next = pgd_addr_end(addr, end);
1111                 if (pgd_none_or_clear_bad(src_pgd))
1112                         continue;
1113                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1114                                             vma, addr, next))) {
1115                         ret = -ENOMEM;
1116                         break;
1117                 }
1118         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1119
1120         if (is_cow)
1121                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1122         return ret;
1123 }
1124
1125 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1126                                 struct vm_area_struct *vma, pmd_t *pmd,
1127                                 unsigned long addr, unsigned long end,
1128                                 struct zap_details *details)
1129 {
1130         struct mm_struct *mm = tlb->mm;
1131         int force_flush = 0;
1132         int rss[NR_MM_COUNTERS];
1133         spinlock_t *ptl;
1134         pte_t *start_pte;
1135         pte_t *pte;
1136         swp_entry_t entry;
1137
1138         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1139 again:
1140         init_rss_vec(rss);
1141         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1142         pte = start_pte;
1143         arch_enter_lazy_mmu_mode();
1144         do {
1145                 pte_t ptent = *pte;
1146                 if (pte_none(ptent))
1147                         continue;
1148
1149                 if (pte_present(ptent)) {
1150                         struct page *page;
1151
1152                         page = vm_normal_page(vma, addr, ptent);
1153                         if (unlikely(details) && page) {
1154                                 /*
1155                                  * unmap_shared_mapping_pages() wants to
1156                                  * invalidate cache without truncating:
1157                                  * unmap shared but keep private pages.
1158                                  */
1159                                 if (details->check_mapping &&
1160                                     details->check_mapping != page_rmapping(page))
1161                                         continue;
1162                         }
1163                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1164                                                         tlb->fullmm);
1165                         tlb_remove_tlb_entry(tlb, pte, addr);
1166                         if (unlikely(!page))
1167                                 continue;
1168
1169                         if (!PageAnon(page)) {
1170                                 if (pte_dirty(ptent)) {
1171                                         force_flush = 1;
1172                                         set_page_dirty(page);
1173                                 }
1174                                 if (pte_young(ptent) &&
1175                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1176                                         mark_page_accessed(page);
1177                         }
1178                         rss[mm_counter(page)]--;
1179                         page_remove_rmap(page, false);
1180                         if (unlikely(page_mapcount(page) < 0))
1181                                 print_bad_pte(vma, addr, ptent, page);
1182                         if (unlikely(__tlb_remove_page(tlb, page))) {
1183                                 force_flush = 1;
1184                                 addr += PAGE_SIZE;
1185                                 break;
1186                         }
1187                         continue;
1188                 }
1189                 /* If details->check_mapping, we leave swap entries. */
1190                 if (unlikely(details))
1191                         continue;
1192
1193                 entry = pte_to_swp_entry(ptent);
1194                 if (!non_swap_entry(entry))
1195                         rss[MM_SWAPENTS]--;
1196                 else if (is_migration_entry(entry)) {
1197                         struct page *page;
1198
1199                         page = migration_entry_to_page(entry);
1200                         rss[mm_counter(page)]--;
1201                 }
1202                 if (unlikely(!free_swap_and_cache(entry)))
1203                         print_bad_pte(vma, addr, ptent, NULL);
1204                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1205         } while (pte++, addr += PAGE_SIZE, addr != end);
1206
1207         add_mm_rss_vec(mm, rss);
1208         arch_leave_lazy_mmu_mode();
1209
1210         /* Do the actual TLB flush before dropping ptl */
1211         if (force_flush)
1212                 tlb_flush_mmu_tlbonly(tlb);
1213         pte_unmap_unlock(start_pte, ptl);
1214
1215         /*
1216          * If we forced a TLB flush (either due to running out of
1217          * batch buffers or because we needed to flush dirty TLB
1218          * entries before releasing the ptl), free the batched
1219          * memory too. Restart if we didn't do everything.
1220          */
1221         if (force_flush) {
1222                 force_flush = 0;
1223                 tlb_flush_mmu_free(tlb);
1224                 if (addr != end)
1225                         goto again;
1226         }
1227
1228         return addr;
1229 }
1230
1231 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1232                                 struct vm_area_struct *vma, pud_t *pud,
1233                                 unsigned long addr, unsigned long end,
1234                                 struct zap_details *details)
1235 {
1236         pmd_t *pmd;
1237         unsigned long next;
1238
1239         pmd = pmd_offset(pud, addr);
1240         do {
1241                 next = pmd_addr_end(addr, end);
1242                 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1243                         if (next - addr != HPAGE_PMD_SIZE) {
1244                                 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1245                                     !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1246                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1247                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1248                                 goto next;
1249                         /* fall through */
1250                 }
1251                 /*
1252                  * Here there can be other concurrent MADV_DONTNEED or
1253                  * trans huge page faults running, and if the pmd is
1254                  * none or trans huge it can change under us. This is
1255                  * because MADV_DONTNEED holds the mmap_sem in read
1256                  * mode.
1257                  */
1258                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259                         goto next;
1260                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1261 next:
1262                 cond_resched();
1263         } while (pmd++, addr = next, addr != end);
1264
1265         return addr;
1266 }
1267
1268 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1269                                 struct vm_area_struct *vma, pgd_t *pgd,
1270                                 unsigned long addr, unsigned long end,
1271                                 struct zap_details *details)
1272 {
1273         pud_t *pud;
1274         unsigned long next;
1275
1276         pud = pud_offset(pgd, addr);
1277         do {
1278                 next = pud_addr_end(addr, end);
1279                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1280                         if (next - addr != HPAGE_PUD_SIZE) {
1281                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1282                                 split_huge_pud(vma, pud, addr);
1283                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1284                                 goto next;
1285                         /* fall through */
1286                 }
1287                 if (pud_none_or_clear_bad(pud))
1288                         continue;
1289                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1290 next:
1291                 cond_resched();
1292         } while (pud++, addr = next, addr != end);
1293
1294         return addr;
1295 }
1296
1297 void unmap_page_range(struct mmu_gather *tlb,
1298                              struct vm_area_struct *vma,
1299                              unsigned long addr, unsigned long end,
1300                              struct zap_details *details)
1301 {
1302         pgd_t *pgd;
1303         unsigned long next;
1304
1305         BUG_ON(addr >= end);
1306         tlb_start_vma(tlb, vma);
1307         pgd = pgd_offset(vma->vm_mm, addr);
1308         do {
1309                 next = pgd_addr_end(addr, end);
1310                 if (pgd_none_or_clear_bad(pgd))
1311                         continue;
1312                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1313         } while (pgd++, addr = next, addr != end);
1314         tlb_end_vma(tlb, vma);
1315 }
1316
1317
1318 static void unmap_single_vma(struct mmu_gather *tlb,
1319                 struct vm_area_struct *vma, unsigned long start_addr,
1320                 unsigned long end_addr,
1321                 struct zap_details *details)
1322 {
1323         unsigned long start = max(vma->vm_start, start_addr);
1324         unsigned long end;
1325
1326         if (start >= vma->vm_end)
1327                 return;
1328         end = min(vma->vm_end, end_addr);
1329         if (end <= vma->vm_start)
1330                 return;
1331
1332         if (vma->vm_file)
1333                 uprobe_munmap(vma, start, end);
1334
1335         if (unlikely(vma->vm_flags & VM_PFNMAP))
1336                 untrack_pfn(vma, 0, 0);
1337
1338         if (start != end) {
1339                 if (unlikely(is_vm_hugetlb_page(vma))) {
1340                         /*
1341                          * It is undesirable to test vma->vm_file as it
1342                          * should be non-null for valid hugetlb area.
1343                          * However, vm_file will be NULL in the error
1344                          * cleanup path of mmap_region. When
1345                          * hugetlbfs ->mmap method fails,
1346                          * mmap_region() nullifies vma->vm_file
1347                          * before calling this function to clean up.
1348                          * Since no pte has actually been setup, it is
1349                          * safe to do nothing in this case.
1350                          */
1351                         if (vma->vm_file) {
1352                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1353                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1354                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1355                         }
1356                 } else
1357                         unmap_page_range(tlb, vma, start, end, details);
1358         }
1359 }
1360
1361 /**
1362  * unmap_vmas - unmap a range of memory covered by a list of vma's
1363  * @tlb: address of the caller's struct mmu_gather
1364  * @vma: the starting vma
1365  * @start_addr: virtual address at which to start unmapping
1366  * @end_addr: virtual address at which to end unmapping
1367  *
1368  * Unmap all pages in the vma list.
1369  *
1370  * Only addresses between `start' and `end' will be unmapped.
1371  *
1372  * The VMA list must be sorted in ascending virtual address order.
1373  *
1374  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1375  * range after unmap_vmas() returns.  So the only responsibility here is to
1376  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1377  * drops the lock and schedules.
1378  */
1379 void unmap_vmas(struct mmu_gather *tlb,
1380                 struct vm_area_struct *vma, unsigned long start_addr,
1381                 unsigned long end_addr)
1382 {
1383         struct mm_struct *mm = vma->vm_mm;
1384
1385         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1386         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1387                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1388         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1389 }
1390
1391 /**
1392  * zap_page_range - remove user pages in a given range
1393  * @vma: vm_area_struct holding the applicable pages
1394  * @start: starting address of pages to zap
1395  * @size: number of bytes to zap
1396  *
1397  * Caller must protect the VMA list
1398  */
1399 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1400                 unsigned long size)
1401 {
1402         struct mm_struct *mm = vma->vm_mm;
1403         struct mmu_gather tlb;
1404         unsigned long end = start + size;
1405
1406         lru_add_drain();
1407         tlb_gather_mmu(&tlb, mm, start, end);
1408         update_hiwater_rss(mm);
1409         mmu_notifier_invalidate_range_start(mm, start, end);
1410         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1411                 unmap_single_vma(&tlb, vma, start, end, NULL);
1412         mmu_notifier_invalidate_range_end(mm, start, end);
1413         tlb_finish_mmu(&tlb, start, end);
1414 }
1415
1416 /**
1417  * zap_page_range_single - remove user pages in a given range
1418  * @vma: vm_area_struct holding the applicable pages
1419  * @address: starting address of pages to zap
1420  * @size: number of bytes to zap
1421  * @details: details of shared cache invalidation
1422  *
1423  * The range must fit into one VMA.
1424  */
1425 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1426                 unsigned long size, struct zap_details *details)
1427 {
1428         struct mm_struct *mm = vma->vm_mm;
1429         struct mmu_gather tlb;
1430         unsigned long end = address + size;
1431
1432         lru_add_drain();
1433         tlb_gather_mmu(&tlb, mm, address, end);
1434         update_hiwater_rss(mm);
1435         mmu_notifier_invalidate_range_start(mm, address, end);
1436         unmap_single_vma(&tlb, vma, address, end, details);
1437         mmu_notifier_invalidate_range_end(mm, address, end);
1438         tlb_finish_mmu(&tlb, address, end);
1439 }
1440
1441 /**
1442  * zap_vma_ptes - remove ptes mapping the vma
1443  * @vma: vm_area_struct holding ptes to be zapped
1444  * @address: starting address of pages to zap
1445  * @size: number of bytes to zap
1446  *
1447  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1448  *
1449  * The entire address range must be fully contained within the vma.
1450  *
1451  * Returns 0 if successful.
1452  */
1453 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1454                 unsigned long size)
1455 {
1456         if (address < vma->vm_start || address + size > vma->vm_end ||
1457                         !(vma->vm_flags & VM_PFNMAP))
1458                 return -1;
1459         zap_page_range_single(vma, address, size, NULL);
1460         return 0;
1461 }
1462 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1463
1464 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1465                         spinlock_t **ptl)
1466 {
1467         pgd_t *pgd = pgd_offset(mm, addr);
1468         pud_t *pud = pud_alloc(mm, pgd, addr);
1469         if (pud) {
1470                 pmd_t *pmd = pmd_alloc(mm, pud, addr);
1471                 if (pmd) {
1472                         VM_BUG_ON(pmd_trans_huge(*pmd));
1473                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1474                 }
1475         }
1476         return NULL;
1477 }
1478
1479 /*
1480  * This is the old fallback for page remapping.
1481  *
1482  * For historical reasons, it only allows reserved pages. Only
1483  * old drivers should use this, and they needed to mark their
1484  * pages reserved for the old functions anyway.
1485  */
1486 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1487                         struct page *page, pgprot_t prot)
1488 {
1489         struct mm_struct *mm = vma->vm_mm;
1490         int retval;
1491         pte_t *pte;
1492         spinlock_t *ptl;
1493
1494         retval = -EINVAL;
1495         if (PageAnon(page))
1496                 goto out;
1497         retval = -ENOMEM;
1498         flush_dcache_page(page);
1499         pte = get_locked_pte(mm, addr, &ptl);
1500         if (!pte)
1501                 goto out;
1502         retval = -EBUSY;
1503         if (!pte_none(*pte))
1504                 goto out_unlock;
1505
1506         /* Ok, finally just insert the thing.. */
1507         get_page(page);
1508         inc_mm_counter_fast(mm, mm_counter_file(page));
1509         page_add_file_rmap(page, false);
1510         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1511
1512         retval = 0;
1513         pte_unmap_unlock(pte, ptl);
1514         return retval;
1515 out_unlock:
1516         pte_unmap_unlock(pte, ptl);
1517 out:
1518         return retval;
1519 }
1520
1521 /**
1522  * vm_insert_page - insert single page into user vma
1523  * @vma: user vma to map to
1524  * @addr: target user address of this page
1525  * @page: source kernel page
1526  *
1527  * This allows drivers to insert individual pages they've allocated
1528  * into a user vma.
1529  *
1530  * The page has to be a nice clean _individual_ kernel allocation.
1531  * If you allocate a compound page, you need to have marked it as
1532  * such (__GFP_COMP), or manually just split the page up yourself
1533  * (see split_page()).
1534  *
1535  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1536  * took an arbitrary page protection parameter. This doesn't allow
1537  * that. Your vma protection will have to be set up correctly, which
1538  * means that if you want a shared writable mapping, you'd better
1539  * ask for a shared writable mapping!
1540  *
1541  * The page does not need to be reserved.
1542  *
1543  * Usually this function is called from f_op->mmap() handler
1544  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1545  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1546  * function from other places, for example from page-fault handler.
1547  */
1548 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1549                         struct page *page)
1550 {
1551         if (addr < vma->vm_start || addr >= vma->vm_end)
1552                 return -EFAULT;
1553         if (!page_count(page))
1554                 return -EINVAL;
1555         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1556                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1557                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1558                 vma->vm_flags |= VM_MIXEDMAP;
1559         }
1560         return insert_page(vma, addr, page, vma->vm_page_prot);
1561 }
1562 EXPORT_SYMBOL(vm_insert_page);
1563
1564 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1565                         pfn_t pfn, pgprot_t prot)
1566 {
1567         struct mm_struct *mm = vma->vm_mm;
1568         int retval;
1569         pte_t *pte, entry;
1570         spinlock_t *ptl;
1571
1572         retval = -ENOMEM;
1573         pte = get_locked_pte(mm, addr, &ptl);
1574         if (!pte)
1575                 goto out;
1576         retval = -EBUSY;
1577         if (!pte_none(*pte))
1578                 goto out_unlock;
1579
1580         /* Ok, finally just insert the thing.. */
1581         if (pfn_t_devmap(pfn))
1582                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1583         else
1584                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1585         set_pte_at(mm, addr, pte, entry);
1586         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1587
1588         retval = 0;
1589 out_unlock:
1590         pte_unmap_unlock(pte, ptl);
1591 out:
1592         return retval;
1593 }
1594
1595 /**
1596  * vm_insert_pfn - insert single pfn into user vma
1597  * @vma: user vma to map to
1598  * @addr: target user address of this page
1599  * @pfn: source kernel pfn
1600  *
1601  * Similar to vm_insert_page, this allows drivers to insert individual pages
1602  * they've allocated into a user vma. Same comments apply.
1603  *
1604  * This function should only be called from a vm_ops->fault handler, and
1605  * in that case the handler should return NULL.
1606  *
1607  * vma cannot be a COW mapping.
1608  *
1609  * As this is called only for pages that do not currently exist, we
1610  * do not need to flush old virtual caches or the TLB.
1611  */
1612 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1613                         unsigned long pfn)
1614 {
1615         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1616 }
1617 EXPORT_SYMBOL(vm_insert_pfn);
1618
1619 /**
1620  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1621  * @vma: user vma to map to
1622  * @addr: target user address of this page
1623  * @pfn: source kernel pfn
1624  * @pgprot: pgprot flags for the inserted page
1625  *
1626  * This is exactly like vm_insert_pfn, except that it allows drivers to
1627  * to override pgprot on a per-page basis.
1628  *
1629  * This only makes sense for IO mappings, and it makes no sense for
1630  * cow mappings.  In general, using multiple vmas is preferable;
1631  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1632  * impractical.
1633  */
1634 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1635                         unsigned long pfn, pgprot_t pgprot)
1636 {
1637         int ret;
1638         /*
1639          * Technically, architectures with pte_special can avoid all these
1640          * restrictions (same for remap_pfn_range).  However we would like
1641          * consistency in testing and feature parity among all, so we should
1642          * try to keep these invariants in place for everybody.
1643          */
1644         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1645         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1646                                                 (VM_PFNMAP|VM_MIXEDMAP));
1647         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1648         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1649
1650         if (addr < vma->vm_start || addr >= vma->vm_end)
1651                 return -EFAULT;
1652
1653         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1654
1655         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1656
1657         return ret;
1658 }
1659 EXPORT_SYMBOL(vm_insert_pfn_prot);
1660
1661 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1662                         pfn_t pfn)
1663 {
1664         pgprot_t pgprot = vma->vm_page_prot;
1665
1666         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1667
1668         if (addr < vma->vm_start || addr >= vma->vm_end)
1669                 return -EFAULT;
1670
1671         track_pfn_insert(vma, &pgprot, pfn);
1672
1673         /*
1674          * If we don't have pte special, then we have to use the pfn_valid()
1675          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1676          * refcount the page if pfn_valid is true (hence insert_page rather
1677          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1678          * without pte special, it would there be refcounted as a normal page.
1679          */
1680         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1681                 struct page *page;
1682
1683                 /*
1684                  * At this point we are committed to insert_page()
1685                  * regardless of whether the caller specified flags that
1686                  * result in pfn_t_has_page() == false.
1687                  */
1688                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1689                 return insert_page(vma, addr, page, pgprot);
1690         }
1691         return insert_pfn(vma, addr, pfn, pgprot);
1692 }
1693 EXPORT_SYMBOL(vm_insert_mixed);
1694
1695 /*
1696  * maps a range of physical memory into the requested pages. the old
1697  * mappings are removed. any references to nonexistent pages results
1698  * in null mappings (currently treated as "copy-on-access")
1699  */
1700 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1701                         unsigned long addr, unsigned long end,
1702                         unsigned long pfn, pgprot_t prot)
1703 {
1704         pte_t *pte;
1705         spinlock_t *ptl;
1706
1707         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1708         if (!pte)
1709                 return -ENOMEM;
1710         arch_enter_lazy_mmu_mode();
1711         do {
1712                 BUG_ON(!pte_none(*pte));
1713                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1714                 pfn++;
1715         } while (pte++, addr += PAGE_SIZE, addr != end);
1716         arch_leave_lazy_mmu_mode();
1717         pte_unmap_unlock(pte - 1, ptl);
1718         return 0;
1719 }
1720
1721 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1722                         unsigned long addr, unsigned long end,
1723                         unsigned long pfn, pgprot_t prot)
1724 {
1725         pmd_t *pmd;
1726         unsigned long next;
1727
1728         pfn -= addr >> PAGE_SHIFT;
1729         pmd = pmd_alloc(mm, pud, addr);
1730         if (!pmd)
1731                 return -ENOMEM;
1732         VM_BUG_ON(pmd_trans_huge(*pmd));
1733         do {
1734                 next = pmd_addr_end(addr, end);
1735                 if (remap_pte_range(mm, pmd, addr, next,
1736                                 pfn + (addr >> PAGE_SHIFT), prot))
1737                         return -ENOMEM;
1738         } while (pmd++, addr = next, addr != end);
1739         return 0;
1740 }
1741
1742 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1743                         unsigned long addr, unsigned long end,
1744                         unsigned long pfn, pgprot_t prot)
1745 {
1746         pud_t *pud;
1747         unsigned long next;
1748
1749         pfn -= addr >> PAGE_SHIFT;
1750         pud = pud_alloc(mm, pgd, addr);
1751         if (!pud)
1752                 return -ENOMEM;
1753         do {
1754                 next = pud_addr_end(addr, end);
1755                 if (remap_pmd_range(mm, pud, addr, next,
1756                                 pfn + (addr >> PAGE_SHIFT), prot))
1757                         return -ENOMEM;
1758         } while (pud++, addr = next, addr != end);
1759         return 0;
1760 }
1761
1762 /**
1763  * remap_pfn_range - remap kernel memory to userspace
1764  * @vma: user vma to map to
1765  * @addr: target user address to start at
1766  * @pfn: physical address of kernel memory
1767  * @size: size of map area
1768  * @prot: page protection flags for this mapping
1769  *
1770  *  Note: this is only safe if the mm semaphore is held when called.
1771  */
1772 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1773                     unsigned long pfn, unsigned long size, pgprot_t prot)
1774 {
1775         pgd_t *pgd;
1776         unsigned long next;
1777         unsigned long end = addr + PAGE_ALIGN(size);
1778         struct mm_struct *mm = vma->vm_mm;
1779         unsigned long remap_pfn = pfn;
1780         int err;
1781
1782         /*
1783          * Physically remapped pages are special. Tell the
1784          * rest of the world about it:
1785          *   VM_IO tells people not to look at these pages
1786          *      (accesses can have side effects).
1787          *   VM_PFNMAP tells the core MM that the base pages are just
1788          *      raw PFN mappings, and do not have a "struct page" associated
1789          *      with them.
1790          *   VM_DONTEXPAND
1791          *      Disable vma merging and expanding with mremap().
1792          *   VM_DONTDUMP
1793          *      Omit vma from core dump, even when VM_IO turned off.
1794          *
1795          * There's a horrible special case to handle copy-on-write
1796          * behaviour that some programs depend on. We mark the "original"
1797          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1798          * See vm_normal_page() for details.
1799          */
1800         if (is_cow_mapping(vma->vm_flags)) {
1801                 if (addr != vma->vm_start || end != vma->vm_end)
1802                         return -EINVAL;
1803                 vma->vm_pgoff = pfn;
1804         }
1805
1806         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1807         if (err)
1808                 return -EINVAL;
1809
1810         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1811
1812         BUG_ON(addr >= end);
1813         pfn -= addr >> PAGE_SHIFT;
1814         pgd = pgd_offset(mm, addr);
1815         flush_cache_range(vma, addr, end);
1816         do {
1817                 next = pgd_addr_end(addr, end);
1818                 err = remap_pud_range(mm, pgd, addr, next,
1819                                 pfn + (addr >> PAGE_SHIFT), prot);
1820                 if (err)
1821                         break;
1822         } while (pgd++, addr = next, addr != end);
1823
1824         if (err)
1825                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1826
1827         return err;
1828 }
1829 EXPORT_SYMBOL(remap_pfn_range);
1830
1831 /**
1832  * vm_iomap_memory - remap memory to userspace
1833  * @vma: user vma to map to
1834  * @start: start of area
1835  * @len: size of area
1836  *
1837  * This is a simplified io_remap_pfn_range() for common driver use. The
1838  * driver just needs to give us the physical memory range to be mapped,
1839  * we'll figure out the rest from the vma information.
1840  *
1841  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1842  * whatever write-combining details or similar.
1843  */
1844 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1845 {
1846         unsigned long vm_len, pfn, pages;
1847
1848         /* Check that the physical memory area passed in looks valid */
1849         if (start + len < start)
1850                 return -EINVAL;
1851         /*
1852          * You *really* shouldn't map things that aren't page-aligned,
1853          * but we've historically allowed it because IO memory might
1854          * just have smaller alignment.
1855          */
1856         len += start & ~PAGE_MASK;
1857         pfn = start >> PAGE_SHIFT;
1858         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1859         if (pfn + pages < pfn)
1860                 return -EINVAL;
1861
1862         /* We start the mapping 'vm_pgoff' pages into the area */
1863         if (vma->vm_pgoff > pages)
1864                 return -EINVAL;
1865         pfn += vma->vm_pgoff;
1866         pages -= vma->vm_pgoff;
1867
1868         /* Can we fit all of the mapping? */
1869         vm_len = vma->vm_end - vma->vm_start;
1870         if (vm_len >> PAGE_SHIFT > pages)
1871                 return -EINVAL;
1872
1873         /* Ok, let it rip */
1874         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1875 }
1876 EXPORT_SYMBOL(vm_iomap_memory);
1877
1878 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1879                                      unsigned long addr, unsigned long end,
1880                                      pte_fn_t fn, void *data)
1881 {
1882         pte_t *pte;
1883         int err;
1884         pgtable_t token;
1885         spinlock_t *uninitialized_var(ptl);
1886
1887         pte = (mm == &init_mm) ?
1888                 pte_alloc_kernel(pmd, addr) :
1889                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1890         if (!pte)
1891                 return -ENOMEM;
1892
1893         BUG_ON(pmd_huge(*pmd));
1894
1895         arch_enter_lazy_mmu_mode();
1896
1897         token = pmd_pgtable(*pmd);
1898
1899         do {
1900                 err = fn(pte++, token, addr, data);
1901                 if (err)
1902                         break;
1903         } while (addr += PAGE_SIZE, addr != end);
1904
1905         arch_leave_lazy_mmu_mode();
1906
1907         if (mm != &init_mm)
1908                 pte_unmap_unlock(pte-1, ptl);
1909         return err;
1910 }
1911
1912 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1913                                      unsigned long addr, unsigned long end,
1914                                      pte_fn_t fn, void *data)
1915 {
1916         pmd_t *pmd;
1917         unsigned long next;
1918         int err;
1919
1920         BUG_ON(pud_huge(*pud));
1921
1922         pmd = pmd_alloc(mm, pud, addr);
1923         if (!pmd)
1924                 return -ENOMEM;
1925         do {
1926                 next = pmd_addr_end(addr, end);
1927                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1928                 if (err)
1929                         break;
1930         } while (pmd++, addr = next, addr != end);
1931         return err;
1932 }
1933
1934 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1935                                      unsigned long addr, unsigned long end,
1936                                      pte_fn_t fn, void *data)
1937 {
1938         pud_t *pud;
1939         unsigned long next;
1940         int err;
1941
1942         pud = pud_alloc(mm, pgd, addr);
1943         if (!pud)
1944                 return -ENOMEM;
1945         do {
1946                 next = pud_addr_end(addr, end);
1947                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1948                 if (err)
1949                         break;
1950         } while (pud++, addr = next, addr != end);
1951         return err;
1952 }
1953
1954 /*
1955  * Scan a region of virtual memory, filling in page tables as necessary
1956  * and calling a provided function on each leaf page table.
1957  */
1958 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1959                         unsigned long size, pte_fn_t fn, void *data)
1960 {
1961         pgd_t *pgd;
1962         unsigned long next;
1963         unsigned long end = addr + size;
1964         int err;
1965
1966         if (WARN_ON(addr >= end))
1967                 return -EINVAL;
1968
1969         pgd = pgd_offset(mm, addr);
1970         do {
1971                 next = pgd_addr_end(addr, end);
1972                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1973                 if (err)
1974                         break;
1975         } while (pgd++, addr = next, addr != end);
1976
1977         return err;
1978 }
1979 EXPORT_SYMBOL_GPL(apply_to_page_range);
1980
1981 /*
1982  * handle_pte_fault chooses page fault handler according to an entry which was
1983  * read non-atomically.  Before making any commitment, on those architectures
1984  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1985  * parts, do_swap_page must check under lock before unmapping the pte and
1986  * proceeding (but do_wp_page is only called after already making such a check;
1987  * and do_anonymous_page can safely check later on).
1988  */
1989 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1990                                 pte_t *page_table, pte_t orig_pte)
1991 {
1992         int same = 1;
1993 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1994         if (sizeof(pte_t) > sizeof(unsigned long)) {
1995                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1996                 spin_lock(ptl);
1997                 same = pte_same(*page_table, orig_pte);
1998                 spin_unlock(ptl);
1999         }
2000 #endif
2001         pte_unmap(page_table);
2002         return same;
2003 }
2004
2005 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2006 {
2007         debug_dma_assert_idle(src);
2008
2009         /*
2010          * If the source page was a PFN mapping, we don't have
2011          * a "struct page" for it. We do a best-effort copy by
2012          * just copying from the original user address. If that
2013          * fails, we just zero-fill it. Live with it.
2014          */
2015         if (unlikely(!src)) {
2016                 void *kaddr = kmap_atomic(dst);
2017                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2018
2019                 /*
2020                  * This really shouldn't fail, because the page is there
2021                  * in the page tables. But it might just be unreadable,
2022                  * in which case we just give up and fill the result with
2023                  * zeroes.
2024                  */
2025                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2026                         clear_page(kaddr);
2027                 kunmap_atomic(kaddr);
2028                 flush_dcache_page(dst);
2029         } else
2030                 copy_user_highpage(dst, src, va, vma);
2031 }
2032
2033 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2034 {
2035         struct file *vm_file = vma->vm_file;
2036
2037         if (vm_file)
2038                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2039
2040         /*
2041          * Special mappings (e.g. VDSO) do not have any file so fake
2042          * a default GFP_KERNEL for them.
2043          */
2044         return GFP_KERNEL;
2045 }
2046
2047 /*
2048  * Notify the address space that the page is about to become writable so that
2049  * it can prohibit this or wait for the page to get into an appropriate state.
2050  *
2051  * We do this without the lock held, so that it can sleep if it needs to.
2052  */
2053 static int do_page_mkwrite(struct vm_fault *vmf)
2054 {
2055         int ret;
2056         struct page *page = vmf->page;
2057         unsigned int old_flags = vmf->flags;
2058
2059         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2060
2061         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2062         /* Restore original flags so that caller is not surprised */
2063         vmf->flags = old_flags;
2064         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2065                 return ret;
2066         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2067                 lock_page(page);
2068                 if (!page->mapping) {
2069                         unlock_page(page);
2070                         return 0; /* retry */
2071                 }
2072                 ret |= VM_FAULT_LOCKED;
2073         } else
2074                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2075         return ret;
2076 }
2077
2078 /*
2079  * Handle dirtying of a page in shared file mapping on a write fault.
2080  *
2081  * The function expects the page to be locked and unlocks it.
2082  */
2083 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2084                                     struct page *page)
2085 {
2086         struct address_space *mapping;
2087         bool dirtied;
2088         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2089
2090         dirtied = set_page_dirty(page);
2091         VM_BUG_ON_PAGE(PageAnon(page), page);
2092         /*
2093          * Take a local copy of the address_space - page.mapping may be zeroed
2094          * by truncate after unlock_page().   The address_space itself remains
2095          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2096          * release semantics to prevent the compiler from undoing this copying.
2097          */
2098         mapping = page_rmapping(page);
2099         unlock_page(page);
2100
2101         if ((dirtied || page_mkwrite) && mapping) {
2102                 /*
2103                  * Some device drivers do not set page.mapping
2104                  * but still dirty their pages
2105                  */
2106                 balance_dirty_pages_ratelimited(mapping);
2107         }
2108
2109         if (!page_mkwrite)
2110                 file_update_time(vma->vm_file);
2111 }
2112
2113 /*
2114  * Handle write page faults for pages that can be reused in the current vma
2115  *
2116  * This can happen either due to the mapping being with the VM_SHARED flag,
2117  * or due to us being the last reference standing to the page. In either
2118  * case, all we need to do here is to mark the page as writable and update
2119  * any related book-keeping.
2120  */
2121 static inline void wp_page_reuse(struct vm_fault *vmf)
2122         __releases(vmf->ptl)
2123 {
2124         struct vm_area_struct *vma = vmf->vma;
2125         struct page *page = vmf->page;
2126         pte_t entry;
2127         /*
2128          * Clear the pages cpupid information as the existing
2129          * information potentially belongs to a now completely
2130          * unrelated process.
2131          */
2132         if (page)
2133                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2134
2135         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2136         entry = pte_mkyoung(vmf->orig_pte);
2137         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2138         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2139                 update_mmu_cache(vma, vmf->address, vmf->pte);
2140         pte_unmap_unlock(vmf->pte, vmf->ptl);
2141 }
2142
2143 /*
2144  * Handle the case of a page which we actually need to copy to a new page.
2145  *
2146  * Called with mmap_sem locked and the old page referenced, but
2147  * without the ptl held.
2148  *
2149  * High level logic flow:
2150  *
2151  * - Allocate a page, copy the content of the old page to the new one.
2152  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2153  * - Take the PTL. If the pte changed, bail out and release the allocated page
2154  * - If the pte is still the way we remember it, update the page table and all
2155  *   relevant references. This includes dropping the reference the page-table
2156  *   held to the old page, as well as updating the rmap.
2157  * - In any case, unlock the PTL and drop the reference we took to the old page.
2158  */
2159 static int wp_page_copy(struct vm_fault *vmf)
2160 {
2161         struct vm_area_struct *vma = vmf->vma;
2162         struct mm_struct *mm = vma->vm_mm;
2163         struct page *old_page = vmf->page;
2164         struct page *new_page = NULL;
2165         pte_t entry;
2166         int page_copied = 0;
2167         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2168         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2169         struct mem_cgroup *memcg;
2170
2171         if (unlikely(anon_vma_prepare(vma)))
2172                 goto oom;
2173
2174         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2175                 new_page = alloc_zeroed_user_highpage_movable(vma,
2176                                                               vmf->address);
2177                 if (!new_page)
2178                         goto oom;
2179         } else {
2180                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2181                                 vmf->address);
2182                 if (!new_page)
2183                         goto oom;
2184                 cow_user_page(new_page, old_page, vmf->address, vma);
2185         }
2186
2187         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2188                 goto oom_free_new;
2189
2190         __SetPageUptodate(new_page);
2191
2192         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2193
2194         /*
2195          * Re-check the pte - we dropped the lock
2196          */
2197         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2198         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2199                 if (old_page) {
2200                         if (!PageAnon(old_page)) {
2201                                 dec_mm_counter_fast(mm,
2202                                                 mm_counter_file(old_page));
2203                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2204                         }
2205                 } else {
2206                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2207                 }
2208                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2209                 entry = mk_pte(new_page, vma->vm_page_prot);
2210                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2211                 /*
2212                  * Clear the pte entry and flush it first, before updating the
2213                  * pte with the new entry. This will avoid a race condition
2214                  * seen in the presence of one thread doing SMC and another
2215                  * thread doing COW.
2216                  */
2217                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2218                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2219                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2220                 lru_cache_add_active_or_unevictable(new_page, vma);
2221                 /*
2222                  * We call the notify macro here because, when using secondary
2223                  * mmu page tables (such as kvm shadow page tables), we want the
2224                  * new page to be mapped directly into the secondary page table.
2225                  */
2226                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2227                 update_mmu_cache(vma, vmf->address, vmf->pte);
2228                 if (old_page) {
2229                         /*
2230                          * Only after switching the pte to the new page may
2231                          * we remove the mapcount here. Otherwise another
2232                          * process may come and find the rmap count decremented
2233                          * before the pte is switched to the new page, and
2234                          * "reuse" the old page writing into it while our pte
2235                          * here still points into it and can be read by other
2236                          * threads.
2237                          *
2238                          * The critical issue is to order this
2239                          * page_remove_rmap with the ptp_clear_flush above.
2240                          * Those stores are ordered by (if nothing else,)
2241                          * the barrier present in the atomic_add_negative
2242                          * in page_remove_rmap.
2243                          *
2244                          * Then the TLB flush in ptep_clear_flush ensures that
2245                          * no process can access the old page before the
2246                          * decremented mapcount is visible. And the old page
2247                          * cannot be reused until after the decremented
2248                          * mapcount is visible. So transitively, TLBs to
2249                          * old page will be flushed before it can be reused.
2250                          */
2251                         page_remove_rmap(old_page, false);
2252                 }
2253
2254                 /* Free the old page.. */
2255                 new_page = old_page;
2256                 page_copied = 1;
2257         } else {
2258                 mem_cgroup_cancel_charge(new_page, memcg, false);
2259         }
2260
2261         if (new_page)
2262                 put_page(new_page);
2263
2264         pte_unmap_unlock(vmf->pte, vmf->ptl);
2265         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2266         if (old_page) {
2267                 /*
2268                  * Don't let another task, with possibly unlocked vma,
2269                  * keep the mlocked page.
2270                  */
2271                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2272                         lock_page(old_page);    /* LRU manipulation */
2273                         if (PageMlocked(old_page))
2274                                 munlock_vma_page(old_page);
2275                         unlock_page(old_page);
2276                 }
2277                 put_page(old_page);
2278         }
2279         return page_copied ? VM_FAULT_WRITE : 0;
2280 oom_free_new:
2281         put_page(new_page);
2282 oom:
2283         if (old_page)
2284                 put_page(old_page);
2285         return VM_FAULT_OOM;
2286 }
2287
2288 /**
2289  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2290  *                        writeable once the page is prepared
2291  *
2292  * @vmf: structure describing the fault
2293  *
2294  * This function handles all that is needed to finish a write page fault in a
2295  * shared mapping due to PTE being read-only once the mapped page is prepared.
2296  * It handles locking of PTE and modifying it. The function returns
2297  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2298  * lock.
2299  *
2300  * The function expects the page to be locked or other protection against
2301  * concurrent faults / writeback (such as DAX radix tree locks).
2302  */
2303 int finish_mkwrite_fault(struct vm_fault *vmf)
2304 {
2305         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2306         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2307                                        &vmf->ptl);
2308         /*
2309          * We might have raced with another page fault while we released the
2310          * pte_offset_map_lock.
2311          */
2312         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2313                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2314                 return VM_FAULT_NOPAGE;
2315         }
2316         wp_page_reuse(vmf);
2317         return 0;
2318 }
2319
2320 /*
2321  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2322  * mapping
2323  */
2324 static int wp_pfn_shared(struct vm_fault *vmf)
2325 {
2326         struct vm_area_struct *vma = vmf->vma;
2327
2328         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2329                 int ret;
2330
2331                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2332                 vmf->flags |= FAULT_FLAG_MKWRITE;
2333                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2334                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2335                         return ret;
2336                 return finish_mkwrite_fault(vmf);
2337         }
2338         wp_page_reuse(vmf);
2339         return VM_FAULT_WRITE;
2340 }
2341
2342 static int wp_page_shared(struct vm_fault *vmf)
2343         __releases(vmf->ptl)
2344 {
2345         struct vm_area_struct *vma = vmf->vma;
2346
2347         get_page(vmf->page);
2348
2349         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2350                 int tmp;
2351
2352                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2353                 tmp = do_page_mkwrite(vmf);
2354                 if (unlikely(!tmp || (tmp &
2355                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2356                         put_page(vmf->page);
2357                         return tmp;
2358                 }
2359                 tmp = finish_mkwrite_fault(vmf);
2360                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2361                         unlock_page(vmf->page);
2362                         put_page(vmf->page);
2363                         return tmp;
2364                 }
2365         } else {
2366                 wp_page_reuse(vmf);
2367                 lock_page(vmf->page);
2368         }
2369         fault_dirty_shared_page(vma, vmf->page);
2370         put_page(vmf->page);
2371
2372         return VM_FAULT_WRITE;
2373 }
2374
2375 /*
2376  * This routine handles present pages, when users try to write
2377  * to a shared page. It is done by copying the page to a new address
2378  * and decrementing the shared-page counter for the old page.
2379  *
2380  * Note that this routine assumes that the protection checks have been
2381  * done by the caller (the low-level page fault routine in most cases).
2382  * Thus we can safely just mark it writable once we've done any necessary
2383  * COW.
2384  *
2385  * We also mark the page dirty at this point even though the page will
2386  * change only once the write actually happens. This avoids a few races,
2387  * and potentially makes it more efficient.
2388  *
2389  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2390  * but allow concurrent faults), with pte both mapped and locked.
2391  * We return with mmap_sem still held, but pte unmapped and unlocked.
2392  */
2393 static int do_wp_page(struct vm_fault *vmf)
2394         __releases(vmf->ptl)
2395 {
2396         struct vm_area_struct *vma = vmf->vma;
2397
2398         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2399         if (!vmf->page) {
2400                 /*
2401                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2402                  * VM_PFNMAP VMA.
2403                  *
2404                  * We should not cow pages in a shared writeable mapping.
2405                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2406                  */
2407                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2408                                      (VM_WRITE|VM_SHARED))
2409                         return wp_pfn_shared(vmf);
2410
2411                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2412                 return wp_page_copy(vmf);
2413         }
2414
2415         /*
2416          * Take out anonymous pages first, anonymous shared vmas are
2417          * not dirty accountable.
2418          */
2419         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2420                 int total_mapcount;
2421                 if (!trylock_page(vmf->page)) {
2422                         get_page(vmf->page);
2423                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2424                         lock_page(vmf->page);
2425                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2426                                         vmf->address, &vmf->ptl);
2427                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2428                                 unlock_page(vmf->page);
2429                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2430                                 put_page(vmf->page);
2431                                 return 0;
2432                         }
2433                         put_page(vmf->page);
2434                 }
2435                 if (reuse_swap_page(vmf->page, &total_mapcount)) {
2436                         if (total_mapcount == 1) {
2437                                 /*
2438                                  * The page is all ours. Move it to
2439                                  * our anon_vma so the rmap code will
2440                                  * not search our parent or siblings.
2441                                  * Protected against the rmap code by
2442                                  * the page lock.
2443                                  */
2444                                 page_move_anon_rmap(vmf->page, vma);
2445                         }
2446                         unlock_page(vmf->page);
2447                         wp_page_reuse(vmf);
2448                         return VM_FAULT_WRITE;
2449                 }
2450                 unlock_page(vmf->page);
2451         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2452                                         (VM_WRITE|VM_SHARED))) {
2453                 return wp_page_shared(vmf);
2454         }
2455
2456         /*
2457          * Ok, we need to copy. Oh, well..
2458          */
2459         get_page(vmf->page);
2460
2461         pte_unmap_unlock(vmf->pte, vmf->ptl);
2462         return wp_page_copy(vmf);
2463 }
2464
2465 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2466                 unsigned long start_addr, unsigned long end_addr,
2467                 struct zap_details *details)
2468 {
2469         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2470 }
2471
2472 static inline void unmap_mapping_range_tree(struct rb_root *root,
2473                                             struct zap_details *details)
2474 {
2475         struct vm_area_struct *vma;
2476         pgoff_t vba, vea, zba, zea;
2477
2478         vma_interval_tree_foreach(vma, root,
2479                         details->first_index, details->last_index) {
2480
2481                 vba = vma->vm_pgoff;
2482                 vea = vba + vma_pages(vma) - 1;
2483                 zba = details->first_index;
2484                 if (zba < vba)
2485                         zba = vba;
2486                 zea = details->last_index;
2487                 if (zea > vea)
2488                         zea = vea;
2489
2490                 unmap_mapping_range_vma(vma,
2491                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2492                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2493                                 details);
2494         }
2495 }
2496
2497 /**
2498  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2499  * address_space corresponding to the specified page range in the underlying
2500  * file.
2501  *
2502  * @mapping: the address space containing mmaps to be unmapped.
2503  * @holebegin: byte in first page to unmap, relative to the start of
2504  * the underlying file.  This will be rounded down to a PAGE_SIZE
2505  * boundary.  Note that this is different from truncate_pagecache(), which
2506  * must keep the partial page.  In contrast, we must get rid of
2507  * partial pages.
2508  * @holelen: size of prospective hole in bytes.  This will be rounded
2509  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2510  * end of the file.
2511  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2512  * but 0 when invalidating pagecache, don't throw away private data.
2513  */
2514 void unmap_mapping_range(struct address_space *mapping,
2515                 loff_t const holebegin, loff_t const holelen, int even_cows)
2516 {
2517         struct zap_details details = { };
2518         pgoff_t hba = holebegin >> PAGE_SHIFT;
2519         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2520
2521         /* Check for overflow. */
2522         if (sizeof(holelen) > sizeof(hlen)) {
2523                 long long holeend =
2524                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2525                 if (holeend & ~(long long)ULONG_MAX)
2526                         hlen = ULONG_MAX - hba + 1;
2527         }
2528
2529         details.check_mapping = even_cows ? NULL : mapping;
2530         details.first_index = hba;
2531         details.last_index = hba + hlen - 1;
2532         if (details.last_index < details.first_index)
2533                 details.last_index = ULONG_MAX;
2534
2535         i_mmap_lock_write(mapping);
2536         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2537                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2538         i_mmap_unlock_write(mapping);
2539 }
2540 EXPORT_SYMBOL(unmap_mapping_range);
2541
2542 /*
2543  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544  * but allow concurrent faults), and pte mapped but not yet locked.
2545  * We return with pte unmapped and unlocked.
2546  *
2547  * We return with the mmap_sem locked or unlocked in the same cases
2548  * as does filemap_fault().
2549  */
2550 int do_swap_page(struct vm_fault *vmf)
2551 {
2552         struct vm_area_struct *vma = vmf->vma;
2553         struct page *page, *swapcache;
2554         struct mem_cgroup *memcg;
2555         swp_entry_t entry;
2556         pte_t pte;
2557         int locked;
2558         int exclusive = 0;
2559         int ret = 0;
2560
2561         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2562                 goto out;
2563
2564         entry = pte_to_swp_entry(vmf->orig_pte);
2565         if (unlikely(non_swap_entry(entry))) {
2566                 if (is_migration_entry(entry)) {
2567                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2568                                              vmf->address);
2569                 } else if (is_hwpoison_entry(entry)) {
2570                         ret = VM_FAULT_HWPOISON;
2571                 } else {
2572                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2573                         ret = VM_FAULT_SIGBUS;
2574                 }
2575                 goto out;
2576         }
2577         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2578         page = lookup_swap_cache(entry);
2579         if (!page) {
2580                 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2581                                         vmf->address);
2582                 if (!page) {
2583                         /*
2584                          * Back out if somebody else faulted in this pte
2585                          * while we released the pte lock.
2586                          */
2587                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2588                                         vmf->address, &vmf->ptl);
2589                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2590                                 ret = VM_FAULT_OOM;
2591                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2592                         goto unlock;
2593                 }
2594
2595                 /* Had to read the page from swap area: Major fault */
2596                 ret = VM_FAULT_MAJOR;
2597                 count_vm_event(PGMAJFAULT);
2598                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2599         } else if (PageHWPoison(page)) {
2600                 /*
2601                  * hwpoisoned dirty swapcache pages are kept for killing
2602                  * owner processes (which may be unknown at hwpoison time)
2603                  */
2604                 ret = VM_FAULT_HWPOISON;
2605                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2606                 swapcache = page;
2607                 goto out_release;
2608         }
2609
2610         swapcache = page;
2611         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2612
2613         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2614         if (!locked) {
2615                 ret |= VM_FAULT_RETRY;
2616                 goto out_release;
2617         }
2618
2619         /*
2620          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2621          * release the swapcache from under us.  The page pin, and pte_same
2622          * test below, are not enough to exclude that.  Even if it is still
2623          * swapcache, we need to check that the page's swap has not changed.
2624          */
2625         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2626                 goto out_page;
2627
2628         page = ksm_might_need_to_copy(page, vma, vmf->address);
2629         if (unlikely(!page)) {
2630                 ret = VM_FAULT_OOM;
2631                 page = swapcache;
2632                 goto out_page;
2633         }
2634
2635         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2636                                 &memcg, false)) {
2637                 ret = VM_FAULT_OOM;
2638                 goto out_page;
2639         }
2640
2641         /*
2642          * Back out if somebody else already faulted in this pte.
2643          */
2644         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2645                         &vmf->ptl);
2646         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2647                 goto out_nomap;
2648
2649         if (unlikely(!PageUptodate(page))) {
2650                 ret = VM_FAULT_SIGBUS;
2651                 goto out_nomap;
2652         }
2653
2654         /*
2655          * The page isn't present yet, go ahead with the fault.
2656          *
2657          * Be careful about the sequence of operations here.
2658          * To get its accounting right, reuse_swap_page() must be called
2659          * while the page is counted on swap but not yet in mapcount i.e.
2660          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2661          * must be called after the swap_free(), or it will never succeed.
2662          */
2663
2664         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2665         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2666         pte = mk_pte(page, vma->vm_page_prot);
2667         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2668                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2669                 vmf->flags &= ~FAULT_FLAG_WRITE;
2670                 ret |= VM_FAULT_WRITE;
2671                 exclusive = RMAP_EXCLUSIVE;
2672         }
2673         flush_icache_page(vma, page);
2674         if (pte_swp_soft_dirty(vmf->orig_pte))
2675                 pte = pte_mksoft_dirty(pte);
2676         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2677         vmf->orig_pte = pte;
2678         if (page == swapcache) {
2679                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2680                 mem_cgroup_commit_charge(page, memcg, true, false);
2681                 activate_page(page);
2682         } else { /* ksm created a completely new copy */
2683                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2684                 mem_cgroup_commit_charge(page, memcg, false, false);
2685                 lru_cache_add_active_or_unevictable(page, vma);
2686         }
2687
2688         swap_free(entry);
2689         if (mem_cgroup_swap_full(page) ||
2690             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2691                 try_to_free_swap(page);
2692         unlock_page(page);
2693         if (page != swapcache) {
2694                 /*
2695                  * Hold the lock to avoid the swap entry to be reused
2696                  * until we take the PT lock for the pte_same() check
2697                  * (to avoid false positives from pte_same). For
2698                  * further safety release the lock after the swap_free
2699                  * so that the swap count won't change under a
2700                  * parallel locked swapcache.
2701                  */
2702                 unlock_page(swapcache);
2703                 put_page(swapcache);
2704         }
2705
2706         if (vmf->flags & FAULT_FLAG_WRITE) {
2707                 ret |= do_wp_page(vmf);
2708                 if (ret & VM_FAULT_ERROR)
2709                         ret &= VM_FAULT_ERROR;
2710                 goto out;
2711         }
2712
2713         /* No need to invalidate - it was non-present before */
2714         update_mmu_cache(vma, vmf->address, vmf->pte);
2715 unlock:
2716         pte_unmap_unlock(vmf->pte, vmf->ptl);
2717 out:
2718         return ret;
2719 out_nomap:
2720         mem_cgroup_cancel_charge(page, memcg, false);
2721         pte_unmap_unlock(vmf->pte, vmf->ptl);
2722 out_page:
2723         unlock_page(page);
2724 out_release:
2725         put_page(page);
2726         if (page != swapcache) {
2727                 unlock_page(swapcache);
2728                 put_page(swapcache);
2729         }
2730         return ret;
2731 }
2732
2733 /*
2734  * This is like a special single-page "expand_{down|up}wards()",
2735  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2736  * doesn't hit another vma.
2737  */
2738 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2739 {
2740         address &= PAGE_MASK;
2741         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2742                 struct vm_area_struct *prev = vma->vm_prev;
2743
2744                 /*
2745                  * Is there a mapping abutting this one below?
2746                  *
2747                  * That's only ok if it's the same stack mapping
2748                  * that has gotten split..
2749                  */
2750                 if (prev && prev->vm_end == address)
2751                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2752
2753                 return expand_downwards(vma, address - PAGE_SIZE);
2754         }
2755         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2756                 struct vm_area_struct *next = vma->vm_next;
2757
2758                 /* As VM_GROWSDOWN but s/below/above/ */
2759                 if (next && next->vm_start == address + PAGE_SIZE)
2760                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2761
2762                 return expand_upwards(vma, address + PAGE_SIZE);
2763         }
2764         return 0;
2765 }
2766
2767 /*
2768  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2769  * but allow concurrent faults), and pte mapped but not yet locked.
2770  * We return with mmap_sem still held, but pte unmapped and unlocked.
2771  */
2772 static int do_anonymous_page(struct vm_fault *vmf)
2773 {
2774         struct vm_area_struct *vma = vmf->vma;
2775         struct mem_cgroup *memcg;
2776         struct page *page;
2777         pte_t entry;
2778
2779         /* File mapping without ->vm_ops ? */
2780         if (vma->vm_flags & VM_SHARED)
2781                 return VM_FAULT_SIGBUS;
2782
2783         /* Check if we need to add a guard page to the stack */
2784         if (check_stack_guard_page(vma, vmf->address) < 0)
2785                 return VM_FAULT_SIGSEGV;
2786
2787         /*
2788          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2789          * pte_offset_map() on pmds where a huge pmd might be created
2790          * from a different thread.
2791          *
2792          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2793          * parallel threads are excluded by other means.
2794          *
2795          * Here we only have down_read(mmap_sem).
2796          */
2797         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2798                 return VM_FAULT_OOM;
2799
2800         /* See the comment in pte_alloc_one_map() */
2801         if (unlikely(pmd_trans_unstable(vmf->pmd)))
2802                 return 0;
2803
2804         /* Use the zero-page for reads */
2805         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2806                         !mm_forbids_zeropage(vma->vm_mm)) {
2807                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2808                                                 vma->vm_page_prot));
2809                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2810                                 vmf->address, &vmf->ptl);
2811                 if (!pte_none(*vmf->pte))
2812                         goto unlock;
2813                 /* Deliver the page fault to userland, check inside PT lock */
2814                 if (userfaultfd_missing(vma)) {
2815                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2816                         return handle_userfault(vmf, VM_UFFD_MISSING);
2817                 }
2818                 goto setpte;
2819         }
2820
2821         /* Allocate our own private page. */
2822         if (unlikely(anon_vma_prepare(vma)))
2823                 goto oom;
2824         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2825         if (!page)
2826                 goto oom;
2827
2828         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2829                 goto oom_free_page;
2830
2831         /*
2832          * The memory barrier inside __SetPageUptodate makes sure that
2833          * preceeding stores to the page contents become visible before
2834          * the set_pte_at() write.
2835          */
2836         __SetPageUptodate(page);
2837
2838         entry = mk_pte(page, vma->vm_page_prot);
2839         if (vma->vm_flags & VM_WRITE)
2840                 entry = pte_mkwrite(pte_mkdirty(entry));
2841
2842         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2843                         &vmf->ptl);
2844         if (!pte_none(*vmf->pte))
2845                 goto release;
2846
2847         /* Deliver the page fault to userland, check inside PT lock */
2848         if (userfaultfd_missing(vma)) {
2849                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2850                 mem_cgroup_cancel_charge(page, memcg, false);
2851                 put_page(page);
2852                 return handle_userfault(vmf, VM_UFFD_MISSING);
2853         }
2854
2855         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2856         page_add_new_anon_rmap(page, vma, vmf->address, false);
2857         mem_cgroup_commit_charge(page, memcg, false, false);
2858         lru_cache_add_active_or_unevictable(page, vma);
2859 setpte:
2860         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2861
2862         /* No need to invalidate - it was non-present before */
2863         update_mmu_cache(vma, vmf->address, vmf->pte);
2864 unlock:
2865         pte_unmap_unlock(vmf->pte, vmf->ptl);
2866         return 0;
2867 release:
2868         mem_cgroup_cancel_charge(page, memcg, false);
2869         put_page(page);
2870         goto unlock;
2871 oom_free_page:
2872         put_page(page);
2873 oom:
2874         return VM_FAULT_OOM;
2875 }
2876
2877 /*
2878  * The mmap_sem must have been held on entry, and may have been
2879  * released depending on flags and vma->vm_ops->fault() return value.
2880  * See filemap_fault() and __lock_page_retry().
2881  */
2882 static int __do_fault(struct vm_fault *vmf)
2883 {
2884         struct vm_area_struct *vma = vmf->vma;
2885         int ret;
2886
2887         ret = vma->vm_ops->fault(vmf);
2888         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2889                             VM_FAULT_DONE_COW)))
2890                 return ret;
2891
2892         if (unlikely(PageHWPoison(vmf->page))) {
2893                 if (ret & VM_FAULT_LOCKED)
2894                         unlock_page(vmf->page);
2895                 put_page(vmf->page);
2896                 vmf->page = NULL;
2897                 return VM_FAULT_HWPOISON;
2898         }
2899
2900         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2901                 lock_page(vmf->page);
2902         else
2903                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
2904
2905         return ret;
2906 }
2907
2908 static int pte_alloc_one_map(struct vm_fault *vmf)
2909 {
2910         struct vm_area_struct *vma = vmf->vma;
2911
2912         if (!pmd_none(*vmf->pmd))
2913                 goto map_pte;
2914         if (vmf->prealloc_pte) {
2915                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2916                 if (unlikely(!pmd_none(*vmf->pmd))) {
2917                         spin_unlock(vmf->ptl);
2918                         goto map_pte;
2919                 }
2920
2921                 atomic_long_inc(&vma->vm_mm->nr_ptes);
2922                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2923                 spin_unlock(vmf->ptl);
2924                 vmf->prealloc_pte = NULL;
2925         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
2926                 return VM_FAULT_OOM;
2927         }
2928 map_pte:
2929         /*
2930          * If a huge pmd materialized under us just retry later.  Use
2931          * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2932          * didn't become pmd_trans_huge under us and then back to pmd_none, as
2933          * a result of MADV_DONTNEED running immediately after a huge pmd fault
2934          * in a different thread of this mm, in turn leading to a misleading
2935          * pmd_trans_huge() retval.  All we have to ensure is that it is a
2936          * regular pmd that we can walk with pte_offset_map() and we can do that
2937          * through an atomic read in C, which is what pmd_trans_unstable()
2938          * provides.
2939          */
2940         if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
2941                 return VM_FAULT_NOPAGE;
2942
2943         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2944                         &vmf->ptl);
2945         return 0;
2946 }
2947
2948 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2949
2950 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2951 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2952                 unsigned long haddr)
2953 {
2954         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2955                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2956                 return false;
2957         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2958                 return false;
2959         return true;
2960 }
2961
2962 static void deposit_prealloc_pte(struct vm_fault *vmf)
2963 {
2964         struct vm_area_struct *vma = vmf->vma;
2965
2966         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2967         /*
2968          * We are going to consume the prealloc table,
2969          * count that as nr_ptes.
2970          */
2971         atomic_long_inc(&vma->vm_mm->nr_ptes);
2972         vmf->prealloc_pte = NULL;
2973 }
2974
2975 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
2976 {
2977         struct vm_area_struct *vma = vmf->vma;
2978         bool write = vmf->flags & FAULT_FLAG_WRITE;
2979         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2980         pmd_t entry;
2981         int i, ret;
2982
2983         if (!transhuge_vma_suitable(vma, haddr))
2984                 return VM_FAULT_FALLBACK;
2985
2986         ret = VM_FAULT_FALLBACK;
2987         page = compound_head(page);
2988
2989         /*
2990          * Archs like ppc64 need additonal space to store information
2991          * related to pte entry. Use the preallocated table for that.
2992          */
2993         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
2994                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
2995                 if (!vmf->prealloc_pte)
2996                         return VM_FAULT_OOM;
2997                 smp_wmb(); /* See comment in __pte_alloc() */
2998         }
2999
3000         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3001         if (unlikely(!pmd_none(*vmf->pmd)))
3002                 goto out;
3003
3004         for (i = 0; i < HPAGE_PMD_NR; i++)
3005                 flush_icache_page(vma, page + i);
3006
3007         entry = mk_huge_pmd(page, vma->vm_page_prot);
3008         if (write)
3009                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3010
3011         add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3012         page_add_file_rmap(page, true);
3013         /*
3014          * deposit and withdraw with pmd lock held
3015          */
3016         if (arch_needs_pgtable_deposit())
3017                 deposit_prealloc_pte(vmf);
3018
3019         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3020
3021         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3022
3023         /* fault is handled */
3024         ret = 0;
3025         count_vm_event(THP_FILE_MAPPED);
3026 out:
3027         spin_unlock(vmf->ptl);
3028         return ret;
3029 }
3030 #else
3031 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3032 {
3033         BUILD_BUG();
3034         return 0;
3035 }
3036 #endif
3037
3038 /**
3039  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3040  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3041  *
3042  * @vmf: fault environment
3043  * @memcg: memcg to charge page (only for private mappings)
3044  * @page: page to map
3045  *
3046  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3047  * return.
3048  *
3049  * Target users are page handler itself and implementations of
3050  * vm_ops->map_pages.
3051  */
3052 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3053                 struct page *page)
3054 {
3055         struct vm_area_struct *vma = vmf->vma;
3056         bool write = vmf->flags & FAULT_FLAG_WRITE;
3057         pte_t entry;
3058         int ret;
3059
3060         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3061                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3062                 /* THP on COW? */
3063                 VM_BUG_ON_PAGE(memcg, page);
3064
3065                 ret = do_set_pmd(vmf, page);
3066                 if (ret != VM_FAULT_FALLBACK)
3067                         return ret;
3068         }
3069
3070         if (!vmf->pte) {
3071                 ret = pte_alloc_one_map(vmf);
3072                 if (ret)
3073                         return ret;
3074         }
3075
3076         /* Re-check under ptl */
3077         if (unlikely(!pte_none(*vmf->pte)))
3078                 return VM_FAULT_NOPAGE;
3079
3080         flush_icache_page(vma, page);
3081         entry = mk_pte(page, vma->vm_page_prot);
3082         if (write)
3083                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3084         /* copy-on-write page */
3085         if (write && !(vma->vm_flags & VM_SHARED)) {
3086                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3087                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3088                 mem_cgroup_commit_charge(page, memcg, false, false);
3089                 lru_cache_add_active_or_unevictable(page, vma);
3090         } else {
3091                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3092                 page_add_file_rmap(page, false);
3093         }
3094         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3095
3096         /* no need to invalidate: a not-present page won't be cached */
3097         update_mmu_cache(vma, vmf->address, vmf->pte);
3098
3099         return 0;
3100 }
3101
3102
3103 /**
3104  * finish_fault - finish page fault once we have prepared the page to fault
3105  *
3106  * @vmf: structure describing the fault
3107  *
3108  * This function handles all that is needed to finish a page fault once the
3109  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3110  * given page, adds reverse page mapping, handles memcg charges and LRU
3111  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3112  * error.
3113  *
3114  * The function expects the page to be locked and on success it consumes a
3115  * reference of a page being mapped (for the PTE which maps it).
3116  */
3117 int finish_fault(struct vm_fault *vmf)
3118 {
3119         struct page *page;
3120         int ret;
3121
3122         /* Did we COW the page? */
3123         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3124             !(vmf->vma->vm_flags & VM_SHARED))
3125                 page = vmf->cow_page;
3126         else
3127                 page = vmf->page;
3128         ret = alloc_set_pte(vmf, vmf->memcg, page);
3129         if (vmf->pte)
3130                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3131         return ret;
3132 }
3133
3134 static unsigned long fault_around_bytes __read_mostly =
3135         rounddown_pow_of_two(65536);
3136
3137 #ifdef CONFIG_DEBUG_FS
3138 static int fault_around_bytes_get(void *data, u64 *val)
3139 {
3140         *val = fault_around_bytes;
3141         return 0;
3142 }
3143
3144 /*
3145  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3146  * rounded down to nearest page order. It's what do_fault_around() expects to
3147  * see.
3148  */
3149 static int fault_around_bytes_set(void *data, u64 val)
3150 {
3151         if (val / PAGE_SIZE > PTRS_PER_PTE)
3152                 return -EINVAL;
3153         if (val > PAGE_SIZE)
3154                 fault_around_bytes = rounddown_pow_of_two(val);
3155         else
3156                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3157         return 0;
3158 }
3159 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3160                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3161
3162 static int __init fault_around_debugfs(void)
3163 {
3164         void *ret;
3165
3166         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3167                         &fault_around_bytes_fops);
3168         if (!ret)
3169                 pr_warn("Failed to create fault_around_bytes in debugfs");
3170         return 0;
3171 }
3172 late_initcall(fault_around_debugfs);
3173 #endif
3174
3175 /*
3176  * do_fault_around() tries to map few pages around the fault address. The hope
3177  * is that the pages will be needed soon and this will lower the number of
3178  * faults to handle.
3179  *
3180  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3181  * not ready to be mapped: not up-to-date, locked, etc.
3182  *
3183  * This function is called with the page table lock taken. In the split ptlock
3184  * case the page table lock only protects only those entries which belong to
3185  * the page table corresponding to the fault address.
3186  *
3187  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3188  * only once.
3189  *
3190  * fault_around_pages() defines how many pages we'll try to map.
3191  * do_fault_around() expects it to return a power of two less than or equal to
3192  * PTRS_PER_PTE.
3193  *
3194  * The virtual address of the area that we map is naturally aligned to the
3195  * fault_around_pages() value (and therefore to page order).  This way it's
3196  * easier to guarantee that we don't cross page table boundaries.
3197  */
3198 static int do_fault_around(struct vm_fault *vmf)
3199 {
3200         unsigned long address = vmf->address, nr_pages, mask;
3201         pgoff_t start_pgoff = vmf->pgoff;
3202         pgoff_t end_pgoff;
3203         int off, ret = 0;
3204
3205         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3206         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3207
3208         vmf->address = max(address & mask, vmf->vma->vm_start);
3209         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3210         start_pgoff -= off;
3211
3212         /*
3213          *  end_pgoff is either end of page table or end of vma
3214          *  or fault_around_pages() from start_pgoff, depending what is nearest.
3215          */
3216         end_pgoff = start_pgoff -
3217                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3218                 PTRS_PER_PTE - 1;
3219         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3220                         start_pgoff + nr_pages - 1);
3221
3222         if (pmd_none(*vmf->pmd)) {
3223                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3224                                                   vmf->address);
3225                 if (!vmf->prealloc_pte)
3226                         goto out;
3227                 smp_wmb(); /* See comment in __pte_alloc() */
3228         }
3229
3230         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3231
3232         /* Huge page is mapped? Page fault is solved */
3233         if (pmd_trans_huge(*vmf->pmd)) {
3234                 ret = VM_FAULT_NOPAGE;
3235                 goto out;
3236         }
3237
3238         /* ->map_pages() haven't done anything useful. Cold page cache? */
3239         if (!vmf->pte)
3240                 goto out;
3241
3242         /* check if the page fault is solved */
3243         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3244         if (!pte_none(*vmf->pte))
3245                 ret = VM_FAULT_NOPAGE;
3246         pte_unmap_unlock(vmf->pte, vmf->ptl);
3247 out:
3248         vmf->address = address;
3249         vmf->pte = NULL;
3250         return ret;
3251 }
3252
3253 static int do_read_fault(struct vm_fault *vmf)
3254 {
3255         struct vm_area_struct *vma = vmf->vma;
3256         int ret = 0;
3257
3258         /*
3259          * Let's call ->map_pages() first and use ->fault() as fallback
3260          * if page by the offset is not ready to be mapped (cold cache or
3261          * something).
3262          */
3263         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3264                 ret = do_fault_around(vmf);
3265                 if (ret)
3266                         return ret;
3267         }
3268
3269         ret = __do_fault(vmf);
3270         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3271                 return ret;
3272
3273         ret |= finish_fault(vmf);
3274         unlock_page(vmf->page);
3275         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3276                 put_page(vmf->page);
3277         return ret;
3278 }
3279
3280 static int do_cow_fault(struct vm_fault *vmf)
3281 {
3282         struct vm_area_struct *vma = vmf->vma;
3283         int ret;
3284
3285         if (unlikely(anon_vma_prepare(vma)))
3286                 return VM_FAULT_OOM;
3287
3288         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3289         if (!vmf->cow_page)
3290                 return VM_FAULT_OOM;
3291
3292         if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3293                                 &vmf->memcg, false)) {
3294                 put_page(vmf->cow_page);
3295                 return VM_FAULT_OOM;
3296         }
3297
3298         ret = __do_fault(vmf);
3299         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3300                 goto uncharge_out;
3301         if (ret & VM_FAULT_DONE_COW)
3302                 return ret;
3303
3304         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3305         __SetPageUptodate(vmf->cow_page);
3306
3307         ret |= finish_fault(vmf);
3308         unlock_page(vmf->page);
3309         put_page(vmf->page);
3310         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3311                 goto uncharge_out;
3312         return ret;
3313 uncharge_out:
3314         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3315         put_page(vmf->cow_page);
3316         return ret;
3317 }
3318
3319 static int do_shared_fault(struct vm_fault *vmf)
3320 {
3321         struct vm_area_struct *vma = vmf->vma;
3322         int ret, tmp;
3323
3324         ret = __do_fault(vmf);
3325         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3326                 return ret;
3327
3328         /*
3329          * Check if the backing address space wants to know that the page is
3330          * about to become writable
3331          */
3332         if (vma->vm_ops->page_mkwrite) {
3333                 unlock_page(vmf->page);
3334                 tmp = do_page_mkwrite(vmf);
3335                 if (unlikely(!tmp ||
3336                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3337                         put_page(vmf->page);
3338                         return tmp;
3339                 }
3340         }
3341
3342         ret |= finish_fault(vmf);
3343         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3344                                         VM_FAULT_RETRY))) {
3345                 unlock_page(vmf->page);
3346                 put_page(vmf->page);
3347                 return ret;
3348         }
3349
3350         fault_dirty_shared_page(vma, vmf->page);
3351         return ret;
3352 }
3353
3354 /*
3355  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3356  * but allow concurrent faults).
3357  * The mmap_sem may have been released depending on flags and our
3358  * return value.  See filemap_fault() and __lock_page_or_retry().
3359  */
3360 static int do_fault(struct vm_fault *vmf)
3361 {
3362         struct vm_area_struct *vma = vmf->vma;
3363         int ret;
3364
3365         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3366         if (!vma->vm_ops->fault)
3367                 ret = VM_FAULT_SIGBUS;
3368         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3369                 ret = do_read_fault(vmf);
3370         else if (!(vma->vm_flags & VM_SHARED))
3371                 ret = do_cow_fault(vmf);
3372         else
3373                 ret = do_shared_fault(vmf);
3374
3375         /* preallocated pagetable is unused: free it */
3376         if (vmf->prealloc_pte) {
3377                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3378                 vmf->prealloc_pte = NULL;
3379         }
3380         return ret;
3381 }
3382
3383 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3384                                 unsigned long addr, int page_nid,
3385                                 int *flags)
3386 {
3387         get_page(page);
3388
3389         count_vm_numa_event(NUMA_HINT_FAULTS);
3390         if (page_nid == numa_node_id()) {
3391                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3392                 *flags |= TNF_FAULT_LOCAL;
3393         }
3394
3395         return mpol_misplaced(page, vma, addr);
3396 }
3397
3398 static int do_numa_page(struct vm_fault *vmf)
3399 {
3400         struct vm_area_struct *vma = vmf->vma;
3401         struct page *page = NULL;
3402         int page_nid = -1;
3403         int last_cpupid;
3404         int target_nid;
3405         bool migrated = false;
3406         pte_t pte;
3407         bool was_writable = pte_savedwrite(vmf->orig_pte);
3408         int flags = 0;
3409
3410         /*
3411          * The "pte" at this point cannot be used safely without
3412          * validation through pte_unmap_same(). It's of NUMA type but
3413          * the pfn may be screwed if the read is non atomic.
3414          */
3415         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3416         spin_lock(vmf->ptl);
3417         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3418                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3419                 goto out;
3420         }
3421
3422         /*
3423          * Make it present again, Depending on how arch implementes non
3424          * accessible ptes, some can allow access by kernel mode.
3425          */
3426         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3427         pte = pte_modify(pte, vma->vm_page_prot);
3428         pte = pte_mkyoung(pte);
3429         if (was_writable)
3430                 pte = pte_mkwrite(pte);
3431         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3432         update_mmu_cache(vma, vmf->address, vmf->pte);
3433
3434         page = vm_normal_page(vma, vmf->address, pte);
3435         if (!page) {
3436                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3437                 return 0;
3438         }
3439
3440         /* TODO: handle PTE-mapped THP */
3441         if (PageCompound(page)) {
3442                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3443                 return 0;
3444         }
3445
3446         /*
3447          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3448          * much anyway since they can be in shared cache state. This misses
3449          * the case where a mapping is writable but the process never writes
3450          * to it but pte_write gets cleared during protection updates and
3451          * pte_dirty has unpredictable behaviour between PTE scan updates,
3452          * background writeback, dirty balancing and application behaviour.
3453          */
3454         if (!pte_write(pte))
3455                 flags |= TNF_NO_GROUP;
3456
3457         /*
3458          * Flag if the page is shared between multiple address spaces. This
3459          * is later used when determining whether to group tasks together
3460          */
3461         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3462                 flags |= TNF_SHARED;
3463
3464         last_cpupid = page_cpupid_last(page);
3465         page_nid = page_to_nid(page);
3466         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3467                         &flags);
3468         pte_unmap_unlock(vmf->pte, vmf->ptl);
3469         if (target_nid == -1) {
3470                 put_page(page);
3471                 goto out;
3472         }
3473
3474         /* Migrate to the requested node */
3475         migrated = migrate_misplaced_page(page, vma, target_nid);
3476         if (migrated) {
3477                 page_nid = target_nid;
3478                 flags |= TNF_MIGRATED;
3479         } else
3480                 flags |= TNF_MIGRATE_FAIL;
3481
3482 out:
3483         if (page_nid != -1)
3484                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3485         return 0;
3486 }
3487
3488 static int create_huge_pmd(struct vm_fault *vmf)
3489 {
3490         if (vma_is_anonymous(vmf->vma))
3491                 return do_huge_pmd_anonymous_page(vmf);
3492         if (vmf->vma->vm_ops->huge_fault)
3493                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3494         return VM_FAULT_FALLBACK;
3495 }
3496
3497 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3498 {
3499         if (vma_is_anonymous(vmf->vma))
3500                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3501         if (vmf->vma->vm_ops->huge_fault)
3502                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3503
3504         /* COW handled on pte level: split pmd */
3505         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3506         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3507
3508         return VM_FAULT_FALLBACK;
3509 }
3510
3511 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3512 {
3513         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3514 }
3515
3516 static int create_huge_pud(struct vm_fault *vmf)
3517 {
3518 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3519         /* No support for anonymous transparent PUD pages yet */
3520         if (vma_is_anonymous(vmf->vma))
3521                 return VM_FAULT_FALLBACK;
3522         if (vmf->vma->vm_ops->huge_fault)
3523                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3524 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3525         return VM_FAULT_FALLBACK;
3526 }
3527
3528 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3529 {
3530 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3531         /* No support for anonymous transparent PUD pages yet */
3532         if (vma_is_anonymous(vmf->vma))
3533                 return VM_FAULT_FALLBACK;
3534         if (vmf->vma->vm_ops->huge_fault)
3535                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3536 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3537         return VM_FAULT_FALLBACK;
3538 }
3539
3540 /*
3541  * These routines also need to handle stuff like marking pages dirty
3542  * and/or accessed for architectures that don't do it in hardware (most
3543  * RISC architectures).  The early dirtying is also good on the i386.
3544  *
3545  * There is also a hook called "update_mmu_cache()" that architectures
3546  * with external mmu caches can use to update those (ie the Sparc or
3547  * PowerPC hashed page tables that act as extended TLBs).
3548  *
3549  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3550  * concurrent faults).
3551  *
3552  * The mmap_sem may have been released depending on flags and our return value.
3553  * See filemap_fault() and __lock_page_or_retry().
3554  */
3555 static int handle_pte_fault(struct vm_fault *vmf)
3556 {
3557         pte_t entry;
3558
3559         if (unlikely(pmd_none(*vmf->pmd))) {
3560                 /*
3561                  * Leave __pte_alloc() until later: because vm_ops->fault may
3562                  * want to allocate huge page, and if we expose page table
3563                  * for an instant, it will be difficult to retract from
3564                  * concurrent faults and from rmap lookups.
3565                  */
3566                 vmf->pte = NULL;
3567         } else {
3568                 /* See comment in pte_alloc_one_map() */
3569                 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
3570                         return 0;
3571                 /*
3572                  * A regular pmd is established and it can't morph into a huge
3573                  * pmd from under us anymore at this point because we hold the
3574                  * mmap_sem read mode and khugepaged takes it in write mode.
3575                  * So now it's safe to run pte_offset_map().
3576                  */
3577                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3578                 vmf->orig_pte = *vmf->pte;
3579
3580                 /*
3581                  * some architectures can have larger ptes than wordsize,
3582                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3583                  * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3584                  * atomic accesses.  The code below just needs a consistent
3585                  * view for the ifs and we later double check anyway with the
3586                  * ptl lock held. So here a barrier will do.
3587                  */
3588                 barrier();
3589                 if (pte_none(vmf->orig_pte)) {
3590                         pte_unmap(vmf->pte);
3591                         vmf->pte = NULL;
3592                 }
3593         }
3594
3595         if (!vmf->pte) {
3596                 if (vma_is_anonymous(vmf->vma))
3597                         return do_anonymous_page(vmf);
3598                 else
3599                         return do_fault(vmf);
3600         }
3601
3602         if (!pte_present(vmf->orig_pte))
3603                 return do_swap_page(vmf);
3604
3605         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3606                 return do_numa_page(vmf);
3607
3608         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3609         spin_lock(vmf->ptl);
3610         entry = vmf->orig_pte;
3611         if (unlikely(!pte_same(*vmf->pte, entry)))
3612                 goto unlock;
3613         if (vmf->flags & FAULT_FLAG_WRITE) {
3614                 if (!pte_write(entry))
3615                         return do_wp_page(vmf);
3616                 entry = pte_mkdirty(entry);
3617         }
3618         entry = pte_mkyoung(entry);
3619         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3620                                 vmf->flags & FAULT_FLAG_WRITE)) {
3621                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3622         } else {
3623                 /*
3624                  * This is needed only for protection faults but the arch code
3625                  * is not yet telling us if this is a protection fault or not.
3626                  * This still avoids useless tlb flushes for .text page faults
3627                  * with threads.
3628                  */
3629                 if (vmf->flags & FAULT_FLAG_WRITE)
3630                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3631         }
3632 unlock:
3633         pte_unmap_unlock(vmf->pte, vmf->ptl);
3634         return 0;
3635 }
3636
3637 /*
3638  * By the time we get here, we already hold the mm semaphore
3639  *
3640  * The mmap_sem may have been released depending on flags and our
3641  * return value.  See filemap_fault() and __lock_page_or_retry().
3642  */
3643 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3644                 unsigned int flags)
3645 {
3646         struct vm_fault vmf = {
3647                 .vma = vma,
3648                 .address = address & PAGE_MASK,
3649                 .flags = flags,
3650                 .pgoff = linear_page_index(vma, address),
3651                 .gfp_mask = __get_fault_gfp_mask(vma),
3652         };
3653         struct mm_struct *mm = vma->vm_mm;
3654         pgd_t *pgd;
3655         int ret;
3656
3657         pgd = pgd_offset(mm, address);
3658
3659         vmf.pud = pud_alloc(mm, pgd, address);
3660         if (!vmf.pud)
3661                 return VM_FAULT_OOM;
3662         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3663                 ret = create_huge_pud(&vmf);
3664                 if (!(ret & VM_FAULT_FALLBACK))
3665                         return ret;
3666         } else {
3667                 pud_t orig_pud = *vmf.pud;
3668
3669                 barrier();
3670                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3671                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3672
3673                         /* NUMA case for anonymous PUDs would go here */
3674
3675                         if (dirty && !pud_write(orig_pud)) {
3676                                 ret = wp_huge_pud(&vmf, orig_pud);
3677                                 if (!(ret & VM_FAULT_FALLBACK))
3678                                         return ret;
3679                         } else {
3680                                 huge_pud_set_accessed(&vmf, orig_pud);
3681                                 return 0;
3682                         }
3683                 }
3684         }
3685
3686         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3687         if (!vmf.pmd)
3688                 return VM_FAULT_OOM;
3689         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3690                 ret = create_huge_pmd(&vmf);
3691                 if (!(ret & VM_FAULT_FALLBACK))
3692                         return ret;
3693         } else {
3694                 pmd_t orig_pmd = *vmf.pmd;
3695
3696                 barrier();
3697                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3698                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3699                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3700
3701                         if ((vmf.flags & FAULT_FLAG_WRITE) &&
3702                                         !pmd_write(orig_pmd)) {
3703                                 ret = wp_huge_pmd(&vmf, orig_pmd);
3704                                 if (!(ret & VM_FAULT_FALLBACK))
3705                                         return ret;
3706                         } else {
3707                                 huge_pmd_set_accessed(&vmf, orig_pmd);
3708                                 return 0;
3709                         }
3710                 }
3711         }
3712
3713         return handle_pte_fault(&vmf);
3714 }
3715
3716 /*
3717  * By the time we get here, we already hold the mm semaphore
3718  *
3719  * The mmap_sem may have been released depending on flags and our
3720  * return value.  See filemap_fault() and __lock_page_or_retry().
3721  */
3722 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3723                 unsigned int flags)
3724 {
3725         int ret;
3726
3727         __set_current_state(TASK_RUNNING);
3728
3729         count_vm_event(PGFAULT);
3730         mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3731
3732         /* do counter updates before entering really critical section. */
3733         check_sync_rss_stat(current);
3734
3735         /*
3736          * Enable the memcg OOM handling for faults triggered in user
3737          * space.  Kernel faults are handled more gracefully.
3738          */
3739         if (flags & FAULT_FLAG_USER)
3740                 mem_cgroup_oom_enable();
3741
3742         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3743                                             flags & FAULT_FLAG_INSTRUCTION,
3744                                             flags & FAULT_FLAG_REMOTE))
3745                 return VM_FAULT_SIGSEGV;
3746
3747         if (unlikely(is_vm_hugetlb_page(vma)))
3748                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3749         else
3750                 ret = __handle_mm_fault(vma, address, flags);
3751
3752         if (flags & FAULT_FLAG_USER) {
3753                 mem_cgroup_oom_disable();
3754                 /*
3755                  * The task may have entered a memcg OOM situation but
3756                  * if the allocation error was handled gracefully (no
3757                  * VM_FAULT_OOM), there is no need to kill anything.
3758                  * Just clean up the OOM state peacefully.
3759                  */
3760                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3761                         mem_cgroup_oom_synchronize(false);
3762         }
3763
3764         /*
3765          * This mm has been already reaped by the oom reaper and so the
3766          * refault cannot be trusted in general. Anonymous refaults would
3767          * lose data and give a zero page instead e.g. This is especially
3768          * problem for use_mm() because regular tasks will just die and
3769          * the corrupted data will not be visible anywhere while kthread
3770          * will outlive the oom victim and potentially propagate the date
3771          * further.
3772          */
3773         if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3774                                 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3775                 ret = VM_FAULT_SIGBUS;
3776
3777         return ret;
3778 }
3779 EXPORT_SYMBOL_GPL(handle_mm_fault);
3780
3781 #ifndef __PAGETABLE_PUD_FOLDED
3782 /*
3783  * Allocate page upper directory.
3784  * We've already handled the fast-path in-line.
3785  */
3786 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3787 {
3788         pud_t *new = pud_alloc_one(mm, address);
3789         if (!new)
3790                 return -ENOMEM;
3791
3792         smp_wmb(); /* See comment in __pte_alloc */
3793
3794         spin_lock(&mm->page_table_lock);
3795         if (pgd_present(*pgd))          /* Another has populated it */
3796                 pud_free(mm, new);
3797         else
3798                 pgd_populate(mm, pgd, new);
3799         spin_unlock(&mm->page_table_lock);
3800         return 0;
3801 }
3802 #endif /* __PAGETABLE_PUD_FOLDED */
3803
3804 #ifndef __PAGETABLE_PMD_FOLDED
3805 /*
3806  * Allocate page middle directory.
3807  * We've already handled the fast-path in-line.
3808  */
3809 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3810 {
3811         spinlock_t *ptl;
3812         pmd_t *new = pmd_alloc_one(mm, address);
3813         if (!new)
3814                 return -ENOMEM;
3815
3816         smp_wmb(); /* See comment in __pte_alloc */
3817
3818         ptl = pud_lock(mm, pud);
3819 #ifndef __ARCH_HAS_4LEVEL_HACK
3820         if (!pud_present(*pud)) {
3821                 mm_inc_nr_pmds(mm);
3822                 pud_populate(mm, pud, new);
3823         } else  /* Another has populated it */
3824                 pmd_free(mm, new);
3825 #else
3826         if (!pgd_present(*pud)) {
3827                 mm_inc_nr_pmds(mm);
3828                 pgd_populate(mm, pud, new);
3829         } else /* Another has populated it */
3830                 pmd_free(mm, new);
3831 #endif /* __ARCH_HAS_4LEVEL_HACK */
3832         spin_unlock(ptl);
3833         return 0;
3834 }
3835 #endif /* __PAGETABLE_PMD_FOLDED */
3836
3837 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3838                 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3839 {
3840         pgd_t *pgd;
3841         pud_t *pud;
3842         pmd_t *pmd;
3843         pte_t *ptep;
3844
3845         pgd = pgd_offset(mm, address);
3846         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3847                 goto out;
3848
3849         pud = pud_offset(pgd, address);
3850         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3851                 goto out;
3852
3853         pmd = pmd_offset(pud, address);
3854         VM_BUG_ON(pmd_trans_huge(*pmd));
3855
3856         if (pmd_huge(*pmd)) {
3857                 if (!pmdpp)
3858                         goto out;
3859
3860                 *ptlp = pmd_lock(mm, pmd);
3861                 if (pmd_huge(*pmd)) {
3862                         *pmdpp = pmd;
3863                         return 0;
3864                 }
3865                 spin_unlock(*ptlp);
3866         }
3867
3868         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3869                 goto out;
3870
3871         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3872         if (!ptep)
3873                 goto out;
3874         if (!pte_present(*ptep))
3875                 goto unlock;
3876         *ptepp = ptep;
3877         return 0;
3878 unlock:
3879         pte_unmap_unlock(ptep, *ptlp);
3880 out:
3881         return -EINVAL;
3882 }
3883
3884 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3885                              pte_t **ptepp, spinlock_t **ptlp)
3886 {
3887         int res;
3888
3889         /* (void) is needed to make gcc happy */
3890         (void) __cond_lock(*ptlp,
3891                            !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
3892                                            ptlp)));
3893         return res;
3894 }
3895
3896 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3897                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3898 {
3899         int res;
3900
3901         /* (void) is needed to make gcc happy */
3902         (void) __cond_lock(*ptlp,
3903                            !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
3904                                            ptlp)));
3905         return res;
3906 }
3907 EXPORT_SYMBOL(follow_pte_pmd);
3908
3909 /**
3910  * follow_pfn - look up PFN at a user virtual address
3911  * @vma: memory mapping
3912  * @address: user virtual address
3913  * @pfn: location to store found PFN
3914  *
3915  * Only IO mappings and raw PFN mappings are allowed.
3916  *
3917  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3918  */
3919 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3920         unsigned long *pfn)
3921 {
3922         int ret = -EINVAL;
3923         spinlock_t *ptl;
3924         pte_t *ptep;
3925
3926         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3927                 return ret;
3928
3929         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3930         if (ret)
3931                 return ret;
3932         *pfn = pte_pfn(*ptep);
3933         pte_unmap_unlock(ptep, ptl);
3934         return 0;
3935 }
3936 EXPORT_SYMBOL(follow_pfn);
3937
3938 #ifdef CONFIG_HAVE_IOREMAP_PROT
3939 int follow_phys(struct vm_area_struct *vma,
3940                 unsigned long address, unsigned int flags,
3941                 unsigned long *prot, resource_size_t *phys)
3942 {
3943         int ret = -EINVAL;
3944         pte_t *ptep, pte;
3945         spinlock_t *ptl;
3946
3947         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3948                 goto out;
3949
3950         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3951                 goto out;
3952         pte = *ptep;
3953
3954         if ((flags & FOLL_WRITE) && !pte_write(pte))
3955                 goto unlock;
3956
3957         *prot = pgprot_val(pte_pgprot(pte));
3958         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3959
3960         ret = 0;
3961 unlock:
3962         pte_unmap_unlock(ptep, ptl);
3963 out:
3964         return ret;
3965 }
3966
3967 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3968                         void *buf, int len, int write)
3969 {
3970         resource_size_t phys_addr;
3971         unsigned long prot = 0;
3972         void __iomem *maddr;
3973         int offset = addr & (PAGE_SIZE-1);
3974
3975         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3976                 return -EINVAL;
3977
3978         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3979         if (write)
3980                 memcpy_toio(maddr + offset, buf, len);
3981         else
3982                 memcpy_fromio(buf, maddr + offset, len);
3983         iounmap(maddr);
3984
3985         return len;
3986 }
3987 EXPORT_SYMBOL_GPL(generic_access_phys);
3988 #endif
3989
3990 /*
3991  * Access another process' address space as given in mm.  If non-NULL, use the
3992  * given task for page fault accounting.
3993  */
3994 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3995                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
3996 {
3997         struct vm_area_struct *vma;
3998         void *old_buf = buf;
3999         int write = gup_flags & FOLL_WRITE;
4000
4001         down_read(&mm->mmap_sem);
4002         /* ignore errors, just check how much was successfully transferred */
4003         while (len) {
4004                 int bytes, ret, offset;
4005                 void *maddr;
4006                 struct page *page = NULL;
4007
4008                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4009                                 gup_flags, &page, &vma, NULL);
4010                 if (ret <= 0) {
4011 #ifndef CONFIG_HAVE_IOREMAP_PROT
4012                         break;
4013 #else
4014                         /*
4015                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4016                          * we can access using slightly different code.
4017                          */
4018                         vma = find_vma(mm, addr);
4019                         if (!vma || vma->vm_start > addr)
4020                                 break;
4021                         if (vma->vm_ops && vma->vm_ops->access)
4022                                 ret = vma->vm_ops->access(vma, addr, buf,
4023                                                           len, write);
4024                         if (ret <= 0)
4025                                 break;
4026                         bytes = ret;
4027 #endif
4028                 } else {
4029                         bytes = len;
4030                         offset = addr & (PAGE_SIZE-1);
4031                         if (bytes > PAGE_SIZE-offset)
4032                                 bytes = PAGE_SIZE-offset;
4033
4034                         maddr = kmap(page);
4035                         if (write) {
4036                                 copy_to_user_page(vma, page, addr,
4037                                                   maddr + offset, buf, bytes);
4038                                 set_page_dirty_lock(page);
4039                         } else {
4040                                 copy_from_user_page(vma, page, addr,
4041                                                     buf, maddr + offset, bytes);
4042                         }
4043                         kunmap(page);
4044                         put_page(page);
4045                 }
4046                 len -= bytes;
4047                 buf += bytes;
4048                 addr += bytes;
4049         }
4050         up_read(&mm->mmap_sem);
4051
4052         return buf - old_buf;
4053 }
4054
4055 /**
4056  * access_remote_vm - access another process' address space
4057  * @mm:         the mm_struct of the target address space
4058  * @addr:       start address to access
4059  * @buf:        source or destination buffer
4060  * @len:        number of bytes to transfer
4061  * @gup_flags:  flags modifying lookup behaviour
4062  *
4063  * The caller must hold a reference on @mm.
4064  */
4065 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4066                 void *buf, int len, unsigned int gup_flags)
4067 {
4068         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4069 }
4070
4071 /*
4072  * Access another process' address space.
4073  * Source/target buffer must be kernel space,
4074  * Do not walk the page table directly, use get_user_pages
4075  */
4076 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4077                 void *buf, int len, unsigned int gup_flags)
4078 {
4079         struct mm_struct *mm;
4080         int ret;
4081
4082         mm = get_task_mm(tsk);
4083         if (!mm)
4084                 return 0;
4085
4086         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4087
4088         mmput(mm);
4089
4090         return ret;
4091 }
4092 EXPORT_SYMBOL_GPL(access_process_vm);
4093
4094 /*
4095  * Print the name of a VMA.
4096  */
4097 void print_vma_addr(char *prefix, unsigned long ip)
4098 {
4099         struct mm_struct *mm = current->mm;
4100         struct vm_area_struct *vma;
4101
4102         /*
4103          * Do not print if we are in atomic
4104          * contexts (in exception stacks, etc.):
4105          */
4106         if (preempt_count())
4107                 return;
4108
4109         down_read(&mm->mmap_sem);
4110         vma = find_vma(mm, ip);
4111         if (vma && vma->vm_file) {
4112                 struct file *f = vma->vm_file;
4113                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4114                 if (buf) {
4115                         char *p;
4116
4117                         p = file_path(f, buf, PAGE_SIZE);
4118                         if (IS_ERR(p))
4119                                 p = "?";
4120                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4121                                         vma->vm_start,
4122                                         vma->vm_end - vma->vm_start);
4123                         free_page((unsigned long)buf);
4124                 }
4125         }
4126         up_read(&mm->mmap_sem);
4127 }
4128
4129 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4130 void __might_fault(const char *file, int line)
4131 {
4132         /*
4133          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4134          * holding the mmap_sem, this is safe because kernel memory doesn't
4135          * get paged out, therefore we'll never actually fault, and the
4136          * below annotations will generate false positives.
4137          */
4138         if (segment_eq(get_fs(), KERNEL_DS))
4139                 return;
4140         if (pagefault_disabled())
4141                 return;
4142         __might_sleep(file, line, 0);
4143 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4144         if (current->mm)
4145                 might_lock_read(&current->mm->mmap_sem);
4146 #endif
4147 }
4148 EXPORT_SYMBOL(__might_fault);
4149 #endif
4150
4151 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4152 static void clear_gigantic_page(struct page *page,
4153                                 unsigned long addr,
4154                                 unsigned int pages_per_huge_page)
4155 {
4156         int i;
4157         struct page *p = page;
4158
4159         might_sleep();
4160         for (i = 0; i < pages_per_huge_page;
4161              i++, p = mem_map_next(p, page, i)) {
4162                 cond_resched();
4163                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4164         }
4165 }
4166 void clear_huge_page(struct page *page,
4167                      unsigned long addr, unsigned int pages_per_huge_page)
4168 {
4169         int i;
4170
4171         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4172                 clear_gigantic_page(page, addr, pages_per_huge_page);
4173                 return;
4174         }
4175
4176         might_sleep();
4177         for (i = 0; i < pages_per_huge_page; i++) {
4178                 cond_resched();
4179                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4180         }
4181 }
4182
4183 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4184                                     unsigned long addr,
4185                                     struct vm_area_struct *vma,
4186                                     unsigned int pages_per_huge_page)
4187 {
4188         int i;
4189         struct page *dst_base = dst;
4190         struct page *src_base = src;
4191
4192         for (i = 0; i < pages_per_huge_page; ) {
4193                 cond_resched();
4194                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4195
4196                 i++;
4197                 dst = mem_map_next(dst, dst_base, i);
4198                 src = mem_map_next(src, src_base, i);
4199         }
4200 }
4201
4202 void copy_user_huge_page(struct page *dst, struct page *src,
4203                          unsigned long addr, struct vm_area_struct *vma,
4204                          unsigned int pages_per_huge_page)
4205 {
4206         int i;
4207
4208         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4209                 copy_user_gigantic_page(dst, src, addr, vma,
4210                                         pages_per_huge_page);
4211                 return;
4212         }
4213
4214         might_sleep();
4215         for (i = 0; i < pages_per_huge_page; i++) {
4216                 cond_resched();
4217                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4218         }
4219 }
4220
4221 long copy_huge_page_from_user(struct page *dst_page,
4222                                 const void __user *usr_src,
4223                                 unsigned int pages_per_huge_page,
4224                                 bool allow_pagefault)
4225 {
4226         void *src = (void *)usr_src;
4227         void *page_kaddr;
4228         unsigned long i, rc = 0;
4229         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4230
4231         for (i = 0; i < pages_per_huge_page; i++) {
4232                 if (allow_pagefault)
4233                         page_kaddr = kmap(dst_page + i);
4234                 else
4235                         page_kaddr = kmap_atomic(dst_page + i);
4236                 rc = copy_from_user(page_kaddr,
4237                                 (const void __user *)(src + i * PAGE_SIZE),
4238                                 PAGE_SIZE);
4239                 if (allow_pagefault)
4240                         kunmap(dst_page + i);
4241                 else
4242                         kunmap_atomic(page_kaddr);
4243
4244                 ret_val -= (PAGE_SIZE - rc);
4245                 if (rc)
4246                         break;
4247
4248                 cond_resched();
4249         }
4250         return ret_val;
4251 }
4252 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4253
4254 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4255
4256 static struct kmem_cache *page_ptl_cachep;
4257
4258 void __init ptlock_cache_init(void)
4259 {
4260         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4261                         SLAB_PANIC, NULL);
4262 }
4263
4264 bool ptlock_alloc(struct page *page)
4265 {
4266         spinlock_t *ptl;
4267
4268         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4269         if (!ptl)
4270                 return false;
4271         page->ptl = ptl;
4272         return true;
4273 }
4274
4275 void ptlock_free(struct page *page)
4276 {
4277         kmem_cache_free(page_ptl_cachep, page->ptl);
4278 }
4279 #endif