]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/memory.c
dab1511294add14ba1290ded1dcd65408e274a4c
[linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121         randomize_va_space = 0;
122         return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136         zero_pfn = page_to_pfn(ZERO_PAGE(0));
137         return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146         int i;
147
148         for (i = 0; i < NR_MM_COUNTERS; i++) {
149                 if (current->rss_stat.count[i]) {
150                         add_mm_counter(mm, i, current->rss_stat.count[i]);
151                         current->rss_stat.count[i] = 0;
152                 }
153         }
154         current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159         struct task_struct *task = current;
160
161         if (likely(task->mm == mm))
162                 task->rss_stat.count[member] += val;
163         else
164                 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH  (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173         if (unlikely(task != current))
174                 return;
175         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176                 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193         struct mmu_gather_batch *batch;
194
195         batch = tlb->active;
196         if (batch->next) {
197                 tlb->active = batch->next;
198                 return true;
199         }
200
201         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202                 return false;
203
204         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205         if (!batch)
206                 return false;
207
208         tlb->batch_count++;
209         batch->next = NULL;
210         batch->nr   = 0;
211         batch->max  = MAX_GATHER_BATCH;
212
213         tlb->active->next = batch;
214         tlb->active = batch;
215
216         return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220                                 unsigned long start, unsigned long end)
221 {
222         tlb->mm = mm;
223
224         /* Is it from 0 to ~0? */
225         tlb->fullmm     = !(start | (end+1));
226         tlb->need_flush_all = 0;
227         tlb->local.next = NULL;
228         tlb->local.nr   = 0;
229         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230         tlb->active     = &tlb->local;
231         tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234         tlb->batch = NULL;
235 #endif
236         tlb->page_size = 0;
237
238         __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243         if (!tlb->end)
244                 return;
245
246         tlb_flush(tlb);
247         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249         tlb_table_flush(tlb);
250 #endif
251         __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256         struct mmu_gather_batch *batch;
257
258         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259                 free_pages_and_swap_cache(batch->pages, batch->nr);
260                 batch->nr = 0;
261         }
262         tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267         tlb_flush_mmu_tlbonly(tlb);
268         tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276                 unsigned long start, unsigned long end, bool force)
277 {
278         struct mmu_gather_batch *batch, *next;
279
280         if (force)
281                 __tlb_adjust_range(tlb, start, end - start);
282
283         tlb_flush_mmu(tlb);
284
285         /* keep the page table cache within bounds */
286         check_pgt_cache();
287
288         for (batch = tlb->local.next; batch; batch = next) {
289                 next = batch->next;
290                 free_pages((unsigned long)batch, 0);
291         }
292         tlb->local.next = NULL;
293 }
294
295 /* __tlb_remove_page
296  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *      handling the additional races in SMP caused by other CPUs caching valid
298  *      mappings in their TLBs. Returns the number of free page slots left.
299  *      When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304         struct mmu_gather_batch *batch;
305
306         VM_BUG_ON(!tlb->end);
307         VM_WARN_ON(tlb->page_size != page_size);
308
309         batch = tlb->active;
310         /*
311          * Add the page and check if we are full. If so
312          * force a flush.
313          */
314         batch->pages[batch->nr++] = page;
315         if (batch->nr == batch->max) {
316                 if (!tlb_next_batch(tlb))
317                         return true;
318                 batch = tlb->active;
319         }
320         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321
322         return false;
323 }
324
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329 /*
330  * See the comment near struct mmu_table_batch.
331  */
332
333 static void tlb_remove_table_smp_sync(void *arg)
334 {
335         /* Simply deliver the interrupt */
336 }
337
338 static void tlb_remove_table_one(void *table)
339 {
340         /*
341          * This isn't an RCU grace period and hence the page-tables cannot be
342          * assumed to be actually RCU-freed.
343          *
344          * It is however sufficient for software page-table walkers that rely on
345          * IRQ disabling. See the comment near struct mmu_table_batch.
346          */
347         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348         __tlb_remove_table(table);
349 }
350
351 static void tlb_remove_table_rcu(struct rcu_head *head)
352 {
353         struct mmu_table_batch *batch;
354         int i;
355
356         batch = container_of(head, struct mmu_table_batch, rcu);
357
358         for (i = 0; i < batch->nr; i++)
359                 __tlb_remove_table(batch->tables[i]);
360
361         free_page((unsigned long)batch);
362 }
363
364 void tlb_table_flush(struct mmu_gather *tlb)
365 {
366         struct mmu_table_batch **batch = &tlb->batch;
367
368         if (*batch) {
369                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370                 *batch = NULL;
371         }
372 }
373
374 void tlb_remove_table(struct mmu_gather *tlb, void *table)
375 {
376         struct mmu_table_batch **batch = &tlb->batch;
377
378         /*
379          * When there's less then two users of this mm there cannot be a
380          * concurrent page-table walk.
381          */
382         if (atomic_read(&tlb->mm->mm_users) < 2) {
383                 __tlb_remove_table(table);
384                 return;
385         }
386
387         if (*batch == NULL) {
388                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389                 if (*batch == NULL) {
390                         tlb_remove_table_one(table);
391                         return;
392                 }
393                 (*batch)->nr = 0;
394         }
395         (*batch)->tables[(*batch)->nr++] = table;
396         if ((*batch)->nr == MAX_TABLE_BATCH)
397                 tlb_table_flush(tlb);
398 }
399
400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
401
402 /**
403  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
404  * @tlb: the mmu_gather structure to initialize
405  * @mm: the mm_struct of the target address space
406  * @start: start of the region that will be removed from the page-table
407  * @end: end of the region that will be removed from the page-table
408  *
409  * Called to initialize an (on-stack) mmu_gather structure for page-table
410  * tear-down from @mm. The @start and @end are set to 0 and -1
411  * respectively when @mm is without users and we're going to destroy
412  * the full address space (exit/execve).
413  */
414 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
415                         unsigned long start, unsigned long end)
416 {
417         arch_tlb_gather_mmu(tlb, mm, start, end);
418         inc_tlb_flush_pending(tlb->mm);
419 }
420
421 void tlb_finish_mmu(struct mmu_gather *tlb,
422                 unsigned long start, unsigned long end)
423 {
424         /*
425          * If there are parallel threads are doing PTE changes on same range
426          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
427          * flush by batching, a thread has stable TLB entry can fail to flush
428          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
429          * forcefully if we detect parallel PTE batching threads.
430          */
431         bool force = mm_tlb_flush_nested(tlb->mm);
432
433         arch_tlb_finish_mmu(tlb, start, end, force);
434         dec_tlb_flush_pending(tlb->mm);
435 }
436
437 /*
438  * Note: this doesn't free the actual pages themselves. That
439  * has been handled earlier when unmapping all the memory regions.
440  */
441 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
442                            unsigned long addr)
443 {
444         pgtable_t token = pmd_pgtable(*pmd);
445         pmd_clear(pmd);
446         pte_free_tlb(tlb, token, addr);
447         mm_dec_nr_ptes(tlb->mm);
448 }
449
450 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
451                                 unsigned long addr, unsigned long end,
452                                 unsigned long floor, unsigned long ceiling)
453 {
454         pmd_t *pmd;
455         unsigned long next;
456         unsigned long start;
457
458         start = addr;
459         pmd = pmd_offset(pud, addr);
460         do {
461                 next = pmd_addr_end(addr, end);
462                 if (pmd_none_or_clear_bad(pmd))
463                         continue;
464                 free_pte_range(tlb, pmd, addr);
465         } while (pmd++, addr = next, addr != end);
466
467         start &= PUD_MASK;
468         if (start < floor)
469                 return;
470         if (ceiling) {
471                 ceiling &= PUD_MASK;
472                 if (!ceiling)
473                         return;
474         }
475         if (end - 1 > ceiling - 1)
476                 return;
477
478         pmd = pmd_offset(pud, start);
479         pud_clear(pud);
480         pmd_free_tlb(tlb, pmd, start);
481         mm_dec_nr_pmds(tlb->mm);
482 }
483
484 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
485                                 unsigned long addr, unsigned long end,
486                                 unsigned long floor, unsigned long ceiling)
487 {
488         pud_t *pud;
489         unsigned long next;
490         unsigned long start;
491
492         start = addr;
493         pud = pud_offset(p4d, addr);
494         do {
495                 next = pud_addr_end(addr, end);
496                 if (pud_none_or_clear_bad(pud))
497                         continue;
498                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
499         } while (pud++, addr = next, addr != end);
500
501         start &= P4D_MASK;
502         if (start < floor)
503                 return;
504         if (ceiling) {
505                 ceiling &= P4D_MASK;
506                 if (!ceiling)
507                         return;
508         }
509         if (end - 1 > ceiling - 1)
510                 return;
511
512         pud = pud_offset(p4d, start);
513         p4d_clear(p4d);
514         pud_free_tlb(tlb, pud, start);
515         mm_dec_nr_puds(tlb->mm);
516 }
517
518 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
519                                 unsigned long addr, unsigned long end,
520                                 unsigned long floor, unsigned long ceiling)
521 {
522         p4d_t *p4d;
523         unsigned long next;
524         unsigned long start;
525
526         start = addr;
527         p4d = p4d_offset(pgd, addr);
528         do {
529                 next = p4d_addr_end(addr, end);
530                 if (p4d_none_or_clear_bad(p4d))
531                         continue;
532                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
533         } while (p4d++, addr = next, addr != end);
534
535         start &= PGDIR_MASK;
536         if (start < floor)
537                 return;
538         if (ceiling) {
539                 ceiling &= PGDIR_MASK;
540                 if (!ceiling)
541                         return;
542         }
543         if (end - 1 > ceiling - 1)
544                 return;
545
546         p4d = p4d_offset(pgd, start);
547         pgd_clear(pgd);
548         p4d_free_tlb(tlb, p4d, start);
549 }
550
551 /*
552  * This function frees user-level page tables of a process.
553  */
554 void free_pgd_range(struct mmu_gather *tlb,
555                         unsigned long addr, unsigned long end,
556                         unsigned long floor, unsigned long ceiling)
557 {
558         pgd_t *pgd;
559         unsigned long next;
560
561         /*
562          * The next few lines have given us lots of grief...
563          *
564          * Why are we testing PMD* at this top level?  Because often
565          * there will be no work to do at all, and we'd prefer not to
566          * go all the way down to the bottom just to discover that.
567          *
568          * Why all these "- 1"s?  Because 0 represents both the bottom
569          * of the address space and the top of it (using -1 for the
570          * top wouldn't help much: the masks would do the wrong thing).
571          * The rule is that addr 0 and floor 0 refer to the bottom of
572          * the address space, but end 0 and ceiling 0 refer to the top
573          * Comparisons need to use "end - 1" and "ceiling - 1" (though
574          * that end 0 case should be mythical).
575          *
576          * Wherever addr is brought up or ceiling brought down, we must
577          * be careful to reject "the opposite 0" before it confuses the
578          * subsequent tests.  But what about where end is brought down
579          * by PMD_SIZE below? no, end can't go down to 0 there.
580          *
581          * Whereas we round start (addr) and ceiling down, by different
582          * masks at different levels, in order to test whether a table
583          * now has no other vmas using it, so can be freed, we don't
584          * bother to round floor or end up - the tests don't need that.
585          */
586
587         addr &= PMD_MASK;
588         if (addr < floor) {
589                 addr += PMD_SIZE;
590                 if (!addr)
591                         return;
592         }
593         if (ceiling) {
594                 ceiling &= PMD_MASK;
595                 if (!ceiling)
596                         return;
597         }
598         if (end - 1 > ceiling - 1)
599                 end -= PMD_SIZE;
600         if (addr > end - 1)
601                 return;
602         /*
603          * We add page table cache pages with PAGE_SIZE,
604          * (see pte_free_tlb()), flush the tlb if we need
605          */
606         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
607         pgd = pgd_offset(tlb->mm, addr);
608         do {
609                 next = pgd_addr_end(addr, end);
610                 if (pgd_none_or_clear_bad(pgd))
611                         continue;
612                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
613         } while (pgd++, addr = next, addr != end);
614 }
615
616 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
617                 unsigned long floor, unsigned long ceiling)
618 {
619         while (vma) {
620                 struct vm_area_struct *next = vma->vm_next;
621                 unsigned long addr = vma->vm_start;
622
623                 /*
624                  * Hide vma from rmap and truncate_pagecache before freeing
625                  * pgtables
626                  */
627                 unlink_anon_vmas(vma);
628                 unlink_file_vma(vma);
629
630                 if (is_vm_hugetlb_page(vma)) {
631                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
632                                 floor, next ? next->vm_start : ceiling);
633                 } else {
634                         /*
635                          * Optimization: gather nearby vmas into one call down
636                          */
637                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
638                                && !is_vm_hugetlb_page(next)) {
639                                 vma = next;
640                                 next = vma->vm_next;
641                                 unlink_anon_vmas(vma);
642                                 unlink_file_vma(vma);
643                         }
644                         free_pgd_range(tlb, addr, vma->vm_end,
645                                 floor, next ? next->vm_start : ceiling);
646                 }
647                 vma = next;
648         }
649 }
650
651 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
652 {
653         spinlock_t *ptl;
654         pgtable_t new = pte_alloc_one(mm, address);
655         if (!new)
656                 return -ENOMEM;
657
658         /*
659          * Ensure all pte setup (eg. pte page lock and page clearing) are
660          * visible before the pte is made visible to other CPUs by being
661          * put into page tables.
662          *
663          * The other side of the story is the pointer chasing in the page
664          * table walking code (when walking the page table without locking;
665          * ie. most of the time). Fortunately, these data accesses consist
666          * of a chain of data-dependent loads, meaning most CPUs (alpha
667          * being the notable exception) will already guarantee loads are
668          * seen in-order. See the alpha page table accessors for the
669          * smp_read_barrier_depends() barriers in page table walking code.
670          */
671         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
672
673         ptl = pmd_lock(mm, pmd);
674         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
675                 mm_inc_nr_ptes(mm);
676                 pmd_populate(mm, pmd, new);
677                 new = NULL;
678         }
679         spin_unlock(ptl);
680         if (new)
681                 pte_free(mm, new);
682         return 0;
683 }
684
685 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
686 {
687         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
688         if (!new)
689                 return -ENOMEM;
690
691         smp_wmb(); /* See comment in __pte_alloc */
692
693         spin_lock(&init_mm.page_table_lock);
694         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
695                 pmd_populate_kernel(&init_mm, pmd, new);
696                 new = NULL;
697         }
698         spin_unlock(&init_mm.page_table_lock);
699         if (new)
700                 pte_free_kernel(&init_mm, new);
701         return 0;
702 }
703
704 static inline void init_rss_vec(int *rss)
705 {
706         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
707 }
708
709 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
710 {
711         int i;
712
713         if (current->mm == mm)
714                 sync_mm_rss(mm);
715         for (i = 0; i < NR_MM_COUNTERS; i++)
716                 if (rss[i])
717                         add_mm_counter(mm, i, rss[i]);
718 }
719
720 /*
721  * This function is called to print an error when a bad pte
722  * is found. For example, we might have a PFN-mapped pte in
723  * a region that doesn't allow it.
724  *
725  * The calling function must still handle the error.
726  */
727 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
728                           pte_t pte, struct page *page)
729 {
730         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
731         p4d_t *p4d = p4d_offset(pgd, addr);
732         pud_t *pud = pud_offset(p4d, addr);
733         pmd_t *pmd = pmd_offset(pud, addr);
734         struct address_space *mapping;
735         pgoff_t index;
736         static unsigned long resume;
737         static unsigned long nr_shown;
738         static unsigned long nr_unshown;
739
740         /*
741          * Allow a burst of 60 reports, then keep quiet for that minute;
742          * or allow a steady drip of one report per second.
743          */
744         if (nr_shown == 60) {
745                 if (time_before(jiffies, resume)) {
746                         nr_unshown++;
747                         return;
748                 }
749                 if (nr_unshown) {
750                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
751                                  nr_unshown);
752                         nr_unshown = 0;
753                 }
754                 nr_shown = 0;
755         }
756         if (nr_shown++ == 0)
757                 resume = jiffies + 60 * HZ;
758
759         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
760         index = linear_page_index(vma, addr);
761
762         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
763                  current->comm,
764                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
765         if (page)
766                 dump_page(page, "bad pte");
767         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
768                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
769         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
770                  vma->vm_file,
771                  vma->vm_ops ? vma->vm_ops->fault : NULL,
772                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
773                  mapping ? mapping->a_ops->readpage : NULL);
774         dump_stack();
775         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
776 }
777
778 /*
779  * vm_normal_page -- This function gets the "struct page" associated with a pte.
780  *
781  * "Special" mappings do not wish to be associated with a "struct page" (either
782  * it doesn't exist, or it exists but they don't want to touch it). In this
783  * case, NULL is returned here. "Normal" mappings do have a struct page.
784  *
785  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
786  * pte bit, in which case this function is trivial. Secondly, an architecture
787  * may not have a spare pte bit, which requires a more complicated scheme,
788  * described below.
789  *
790  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
791  * special mapping (even if there are underlying and valid "struct pages").
792  * COWed pages of a VM_PFNMAP are always normal.
793  *
794  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
795  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
796  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
797  * mapping will always honor the rule
798  *
799  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
800  *
801  * And for normal mappings this is false.
802  *
803  * This restricts such mappings to be a linear translation from virtual address
804  * to pfn. To get around this restriction, we allow arbitrary mappings so long
805  * as the vma is not a COW mapping; in that case, we know that all ptes are
806  * special (because none can have been COWed).
807  *
808  *
809  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
810  *
811  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
812  * page" backing, however the difference is that _all_ pages with a struct
813  * page (that is, those where pfn_valid is true) are refcounted and considered
814  * normal pages by the VM. The disadvantage is that pages are refcounted
815  * (which can be slower and simply not an option for some PFNMAP users). The
816  * advantage is that we don't have to follow the strict linearity rule of
817  * PFNMAP mappings in order to support COWable mappings.
818  *
819  */
820 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
821                              pte_t pte, bool with_public_device)
822 {
823         unsigned long pfn = pte_pfn(pte);
824
825         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
826                 if (likely(!pte_special(pte)))
827                         goto check_pfn;
828                 if (vma->vm_ops && vma->vm_ops->find_special_page)
829                         return vma->vm_ops->find_special_page(vma, addr);
830                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
831                         return NULL;
832                 if (is_zero_pfn(pfn))
833                         return NULL;
834
835                 /*
836                  * Device public pages are special pages (they are ZONE_DEVICE
837                  * pages but different from persistent memory). They behave
838                  * allmost like normal pages. The difference is that they are
839                  * not on the lru and thus should never be involve with any-
840                  * thing that involve lru manipulation (mlock, numa balancing,
841                  * ...).
842                  *
843                  * This is why we still want to return NULL for such page from
844                  * vm_normal_page() so that we do not have to special case all
845                  * call site of vm_normal_page().
846                  */
847                 if (likely(pfn <= highest_memmap_pfn)) {
848                         struct page *page = pfn_to_page(pfn);
849
850                         if (is_device_public_page(page)) {
851                                 if (with_public_device)
852                                         return page;
853                                 return NULL;
854                         }
855                 }
856                 print_bad_pte(vma, addr, pte, NULL);
857                 return NULL;
858         }
859
860         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
861
862         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
863                 if (vma->vm_flags & VM_MIXEDMAP) {
864                         if (!pfn_valid(pfn))
865                                 return NULL;
866                         goto out;
867                 } else {
868                         unsigned long off;
869                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
870                         if (pfn == vma->vm_pgoff + off)
871                                 return NULL;
872                         if (!is_cow_mapping(vma->vm_flags))
873                                 return NULL;
874                 }
875         }
876
877         if (is_zero_pfn(pfn))
878                 return NULL;
879
880 check_pfn:
881         if (unlikely(pfn > highest_memmap_pfn)) {
882                 print_bad_pte(vma, addr, pte, NULL);
883                 return NULL;
884         }
885
886         /*
887          * NOTE! We still have PageReserved() pages in the page tables.
888          * eg. VDSO mappings can cause them to exist.
889          */
890 out:
891         return pfn_to_page(pfn);
892 }
893
894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
895 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
896                                 pmd_t pmd)
897 {
898         unsigned long pfn = pmd_pfn(pmd);
899
900         /*
901          * There is no pmd_special() but there may be special pmds, e.g.
902          * in a direct-access (dax) mapping, so let's just replicate the
903          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
904          */
905         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
906                 if (vma->vm_flags & VM_MIXEDMAP) {
907                         if (!pfn_valid(pfn))
908                                 return NULL;
909                         goto out;
910                 } else {
911                         unsigned long off;
912                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
913                         if (pfn == vma->vm_pgoff + off)
914                                 return NULL;
915                         if (!is_cow_mapping(vma->vm_flags))
916                                 return NULL;
917                 }
918         }
919
920         if (is_zero_pfn(pfn))
921                 return NULL;
922         if (unlikely(pfn > highest_memmap_pfn))
923                 return NULL;
924
925         /*
926          * NOTE! We still have PageReserved() pages in the page tables.
927          * eg. VDSO mappings can cause them to exist.
928          */
929 out:
930         return pfn_to_page(pfn);
931 }
932 #endif
933
934 /*
935  * copy one vm_area from one task to the other. Assumes the page tables
936  * already present in the new task to be cleared in the whole range
937  * covered by this vma.
938  */
939
940 static inline unsigned long
941 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
942                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
943                 unsigned long addr, int *rss)
944 {
945         unsigned long vm_flags = vma->vm_flags;
946         pte_t pte = *src_pte;
947         struct page *page;
948
949         /* pte contains position in swap or file, so copy. */
950         if (unlikely(!pte_present(pte))) {
951                 swp_entry_t entry = pte_to_swp_entry(pte);
952
953                 if (likely(!non_swap_entry(entry))) {
954                         if (swap_duplicate(entry) < 0)
955                                 return entry.val;
956
957                         /* make sure dst_mm is on swapoff's mmlist. */
958                         if (unlikely(list_empty(&dst_mm->mmlist))) {
959                                 spin_lock(&mmlist_lock);
960                                 if (list_empty(&dst_mm->mmlist))
961                                         list_add(&dst_mm->mmlist,
962                                                         &src_mm->mmlist);
963                                 spin_unlock(&mmlist_lock);
964                         }
965                         rss[MM_SWAPENTS]++;
966                 } else if (is_migration_entry(entry)) {
967                         page = migration_entry_to_page(entry);
968
969                         rss[mm_counter(page)]++;
970
971                         if (is_write_migration_entry(entry) &&
972                                         is_cow_mapping(vm_flags)) {
973                                 /*
974                                  * COW mappings require pages in both
975                                  * parent and child to be set to read.
976                                  */
977                                 make_migration_entry_read(&entry);
978                                 pte = swp_entry_to_pte(entry);
979                                 if (pte_swp_soft_dirty(*src_pte))
980                                         pte = pte_swp_mksoft_dirty(pte);
981                                 set_pte_at(src_mm, addr, src_pte, pte);
982                         }
983                 } else if (is_device_private_entry(entry)) {
984                         page = device_private_entry_to_page(entry);
985
986                         /*
987                          * Update rss count even for unaddressable pages, as
988                          * they should treated just like normal pages in this
989                          * respect.
990                          *
991                          * We will likely want to have some new rss counters
992                          * for unaddressable pages, at some point. But for now
993                          * keep things as they are.
994                          */
995                         get_page(page);
996                         rss[mm_counter(page)]++;
997                         page_dup_rmap(page, false);
998
999                         /*
1000                          * We do not preserve soft-dirty information, because so
1001                          * far, checkpoint/restore is the only feature that
1002                          * requires that. And checkpoint/restore does not work
1003                          * when a device driver is involved (you cannot easily
1004                          * save and restore device driver state).
1005                          */
1006                         if (is_write_device_private_entry(entry) &&
1007                             is_cow_mapping(vm_flags)) {
1008                                 make_device_private_entry_read(&entry);
1009                                 pte = swp_entry_to_pte(entry);
1010                                 set_pte_at(src_mm, addr, src_pte, pte);
1011                         }
1012                 }
1013                 goto out_set_pte;
1014         }
1015
1016         /*
1017          * If it's a COW mapping, write protect it both
1018          * in the parent and the child
1019          */
1020         if (is_cow_mapping(vm_flags)) {
1021                 ptep_set_wrprotect(src_mm, addr, src_pte);
1022                 pte = pte_wrprotect(pte);
1023         }
1024
1025         /*
1026          * If it's a shared mapping, mark it clean in
1027          * the child
1028          */
1029         if (vm_flags & VM_SHARED)
1030                 pte = pte_mkclean(pte);
1031         pte = pte_mkold(pte);
1032
1033         page = vm_normal_page(vma, addr, pte);
1034         if (page) {
1035                 get_page(page);
1036                 page_dup_rmap(page, false);
1037                 rss[mm_counter(page)]++;
1038         } else if (pte_devmap(pte)) {
1039                 page = pte_page(pte);
1040
1041                 /*
1042                  * Cache coherent device memory behave like regular page and
1043                  * not like persistent memory page. For more informations see
1044                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1045                  */
1046                 if (is_device_public_page(page)) {
1047                         get_page(page);
1048                         page_dup_rmap(page, false);
1049                         rss[mm_counter(page)]++;
1050                 }
1051         }
1052
1053 out_set_pte:
1054         set_pte_at(dst_mm, addr, dst_pte, pte);
1055         return 0;
1056 }
1057
1058 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1059                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1060                    unsigned long addr, unsigned long end)
1061 {
1062         pte_t *orig_src_pte, *orig_dst_pte;
1063         pte_t *src_pte, *dst_pte;
1064         spinlock_t *src_ptl, *dst_ptl;
1065         int progress = 0;
1066         int rss[NR_MM_COUNTERS];
1067         swp_entry_t entry = (swp_entry_t){0};
1068
1069 again:
1070         init_rss_vec(rss);
1071
1072         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1073         if (!dst_pte)
1074                 return -ENOMEM;
1075         src_pte = pte_offset_map(src_pmd, addr);
1076         src_ptl = pte_lockptr(src_mm, src_pmd);
1077         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1078         orig_src_pte = src_pte;
1079         orig_dst_pte = dst_pte;
1080         arch_enter_lazy_mmu_mode();
1081
1082         do {
1083                 /*
1084                  * We are holding two locks at this point - either of them
1085                  * could generate latencies in another task on another CPU.
1086                  */
1087                 if (progress >= 32) {
1088                         progress = 0;
1089                         if (need_resched() ||
1090                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1091                                 break;
1092                 }
1093                 if (pte_none(*src_pte)) {
1094                         progress++;
1095                         continue;
1096                 }
1097                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1098                                                         vma, addr, rss);
1099                 if (entry.val)
1100                         break;
1101                 progress += 8;
1102         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1103
1104         arch_leave_lazy_mmu_mode();
1105         spin_unlock(src_ptl);
1106         pte_unmap(orig_src_pte);
1107         add_mm_rss_vec(dst_mm, rss);
1108         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1109         cond_resched();
1110
1111         if (entry.val) {
1112                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1113                         return -ENOMEM;
1114                 progress = 0;
1115         }
1116         if (addr != end)
1117                 goto again;
1118         return 0;
1119 }
1120
1121 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1122                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1123                 unsigned long addr, unsigned long end)
1124 {
1125         pmd_t *src_pmd, *dst_pmd;
1126         unsigned long next;
1127
1128         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1129         if (!dst_pmd)
1130                 return -ENOMEM;
1131         src_pmd = pmd_offset(src_pud, addr);
1132         do {
1133                 next = pmd_addr_end(addr, end);
1134                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1135                         || pmd_devmap(*src_pmd)) {
1136                         int err;
1137                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1138                         err = copy_huge_pmd(dst_mm, src_mm,
1139                                             dst_pmd, src_pmd, addr, vma);
1140                         if (err == -ENOMEM)
1141                                 return -ENOMEM;
1142                         if (!err)
1143                                 continue;
1144                         /* fall through */
1145                 }
1146                 if (pmd_none_or_clear_bad(src_pmd))
1147                         continue;
1148                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1149                                                 vma, addr, next))
1150                         return -ENOMEM;
1151         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1152         return 0;
1153 }
1154
1155 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1156                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1157                 unsigned long addr, unsigned long end)
1158 {
1159         pud_t *src_pud, *dst_pud;
1160         unsigned long next;
1161
1162         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1163         if (!dst_pud)
1164                 return -ENOMEM;
1165         src_pud = pud_offset(src_p4d, addr);
1166         do {
1167                 next = pud_addr_end(addr, end);
1168                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1169                         int err;
1170
1171                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1172                         err = copy_huge_pud(dst_mm, src_mm,
1173                                             dst_pud, src_pud, addr, vma);
1174                         if (err == -ENOMEM)
1175                                 return -ENOMEM;
1176                         if (!err)
1177                                 continue;
1178                         /* fall through */
1179                 }
1180                 if (pud_none_or_clear_bad(src_pud))
1181                         continue;
1182                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1183                                                 vma, addr, next))
1184                         return -ENOMEM;
1185         } while (dst_pud++, src_pud++, addr = next, addr != end);
1186         return 0;
1187 }
1188
1189 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1190                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1191                 unsigned long addr, unsigned long end)
1192 {
1193         p4d_t *src_p4d, *dst_p4d;
1194         unsigned long next;
1195
1196         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1197         if (!dst_p4d)
1198                 return -ENOMEM;
1199         src_p4d = p4d_offset(src_pgd, addr);
1200         do {
1201                 next = p4d_addr_end(addr, end);
1202                 if (p4d_none_or_clear_bad(src_p4d))
1203                         continue;
1204                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1205                                                 vma, addr, next))
1206                         return -ENOMEM;
1207         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1208         return 0;
1209 }
1210
1211 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1212                 struct vm_area_struct *vma)
1213 {
1214         pgd_t *src_pgd, *dst_pgd;
1215         unsigned long next;
1216         unsigned long addr = vma->vm_start;
1217         unsigned long end = vma->vm_end;
1218         unsigned long mmun_start;       /* For mmu_notifiers */
1219         unsigned long mmun_end;         /* For mmu_notifiers */
1220         bool is_cow;
1221         int ret;
1222
1223         /*
1224          * Don't copy ptes where a page fault will fill them correctly.
1225          * Fork becomes much lighter when there are big shared or private
1226          * readonly mappings. The tradeoff is that copy_page_range is more
1227          * efficient than faulting.
1228          */
1229         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1230                         !vma->anon_vma)
1231                 return 0;
1232
1233         if (is_vm_hugetlb_page(vma))
1234                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1235
1236         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1237                 /*
1238                  * We do not free on error cases below as remove_vma
1239                  * gets called on error from higher level routine
1240                  */
1241                 ret = track_pfn_copy(vma);
1242                 if (ret)
1243                         return ret;
1244         }
1245
1246         /*
1247          * We need to invalidate the secondary MMU mappings only when
1248          * there could be a permission downgrade on the ptes of the
1249          * parent mm. And a permission downgrade will only happen if
1250          * is_cow_mapping() returns true.
1251          */
1252         is_cow = is_cow_mapping(vma->vm_flags);
1253         mmun_start = addr;
1254         mmun_end   = end;
1255         if (is_cow)
1256                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1257                                                     mmun_end);
1258
1259         ret = 0;
1260         dst_pgd = pgd_offset(dst_mm, addr);
1261         src_pgd = pgd_offset(src_mm, addr);
1262         do {
1263                 next = pgd_addr_end(addr, end);
1264                 if (pgd_none_or_clear_bad(src_pgd))
1265                         continue;
1266                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1267                                             vma, addr, next))) {
1268                         ret = -ENOMEM;
1269                         break;
1270                 }
1271         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1272
1273         if (is_cow)
1274                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1275         return ret;
1276 }
1277
1278 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1279                                 struct vm_area_struct *vma, pmd_t *pmd,
1280                                 unsigned long addr, unsigned long end,
1281                                 struct zap_details *details)
1282 {
1283         struct mm_struct *mm = tlb->mm;
1284         int force_flush = 0;
1285         int rss[NR_MM_COUNTERS];
1286         spinlock_t *ptl;
1287         pte_t *start_pte;
1288         pte_t *pte;
1289         swp_entry_t entry;
1290
1291         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1292 again:
1293         init_rss_vec(rss);
1294         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1295         pte = start_pte;
1296         flush_tlb_batched_pending(mm);
1297         arch_enter_lazy_mmu_mode();
1298         do {
1299                 pte_t ptent = *pte;
1300                 if (pte_none(ptent))
1301                         continue;
1302
1303                 if (pte_present(ptent)) {
1304                         struct page *page;
1305
1306                         page = _vm_normal_page(vma, addr, ptent, true);
1307                         if (unlikely(details) && page) {
1308                                 /*
1309                                  * unmap_shared_mapping_pages() wants to
1310                                  * invalidate cache without truncating:
1311                                  * unmap shared but keep private pages.
1312                                  */
1313                                 if (details->check_mapping &&
1314                                     details->check_mapping != page_rmapping(page))
1315                                         continue;
1316                         }
1317                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1318                                                         tlb->fullmm);
1319                         tlb_remove_tlb_entry(tlb, pte, addr);
1320                         if (unlikely(!page))
1321                                 continue;
1322
1323                         if (!PageAnon(page)) {
1324                                 if (pte_dirty(ptent)) {
1325                                         force_flush = 1;
1326                                         set_page_dirty(page);
1327                                 }
1328                                 if (pte_young(ptent) &&
1329                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1330                                         mark_page_accessed(page);
1331                         }
1332                         rss[mm_counter(page)]--;
1333                         page_remove_rmap(page, false);
1334                         if (unlikely(page_mapcount(page) < 0))
1335                                 print_bad_pte(vma, addr, ptent, page);
1336                         if (unlikely(__tlb_remove_page(tlb, page))) {
1337                                 force_flush = 1;
1338                                 addr += PAGE_SIZE;
1339                                 break;
1340                         }
1341                         continue;
1342                 }
1343
1344                 entry = pte_to_swp_entry(ptent);
1345                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1346                         struct page *page = device_private_entry_to_page(entry);
1347
1348                         if (unlikely(details && details->check_mapping)) {
1349                                 /*
1350                                  * unmap_shared_mapping_pages() wants to
1351                                  * invalidate cache without truncating:
1352                                  * unmap shared but keep private pages.
1353                                  */
1354                                 if (details->check_mapping !=
1355                                     page_rmapping(page))
1356                                         continue;
1357                         }
1358
1359                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1360                         rss[mm_counter(page)]--;
1361                         page_remove_rmap(page, false);
1362                         put_page(page);
1363                         continue;
1364                 }
1365
1366                 /* If details->check_mapping, we leave swap entries. */
1367                 if (unlikely(details))
1368                         continue;
1369
1370                 entry = pte_to_swp_entry(ptent);
1371                 if (!non_swap_entry(entry))
1372                         rss[MM_SWAPENTS]--;
1373                 else if (is_migration_entry(entry)) {
1374                         struct page *page;
1375
1376                         page = migration_entry_to_page(entry);
1377                         rss[mm_counter(page)]--;
1378                 }
1379                 if (unlikely(!free_swap_and_cache(entry)))
1380                         print_bad_pte(vma, addr, ptent, NULL);
1381                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1382         } while (pte++, addr += PAGE_SIZE, addr != end);
1383
1384         add_mm_rss_vec(mm, rss);
1385         arch_leave_lazy_mmu_mode();
1386
1387         /* Do the actual TLB flush before dropping ptl */
1388         if (force_flush)
1389                 tlb_flush_mmu_tlbonly(tlb);
1390         pte_unmap_unlock(start_pte, ptl);
1391
1392         /*
1393          * If we forced a TLB flush (either due to running out of
1394          * batch buffers or because we needed to flush dirty TLB
1395          * entries before releasing the ptl), free the batched
1396          * memory too. Restart if we didn't do everything.
1397          */
1398         if (force_flush) {
1399                 force_flush = 0;
1400                 tlb_flush_mmu_free(tlb);
1401                 if (addr != end)
1402                         goto again;
1403         }
1404
1405         return addr;
1406 }
1407
1408 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1409                                 struct vm_area_struct *vma, pud_t *pud,
1410                                 unsigned long addr, unsigned long end,
1411                                 struct zap_details *details)
1412 {
1413         pmd_t *pmd;
1414         unsigned long next;
1415
1416         pmd = pmd_offset(pud, addr);
1417         do {
1418                 next = pmd_addr_end(addr, end);
1419                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1420                         if (next - addr != HPAGE_PMD_SIZE)
1421                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1422                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1423                                 goto next;
1424                         /* fall through */
1425                 }
1426                 /*
1427                  * Here there can be other concurrent MADV_DONTNEED or
1428                  * trans huge page faults running, and if the pmd is
1429                  * none or trans huge it can change under us. This is
1430                  * because MADV_DONTNEED holds the mmap_sem in read
1431                  * mode.
1432                  */
1433                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1434                         goto next;
1435                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1436 next:
1437                 cond_resched();
1438         } while (pmd++, addr = next, addr != end);
1439
1440         return addr;
1441 }
1442
1443 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1444                                 struct vm_area_struct *vma, p4d_t *p4d,
1445                                 unsigned long addr, unsigned long end,
1446                                 struct zap_details *details)
1447 {
1448         pud_t *pud;
1449         unsigned long next;
1450
1451         pud = pud_offset(p4d, addr);
1452         do {
1453                 next = pud_addr_end(addr, end);
1454                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1455                         if (next - addr != HPAGE_PUD_SIZE) {
1456                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1457                                 split_huge_pud(vma, pud, addr);
1458                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1459                                 goto next;
1460                         /* fall through */
1461                 }
1462                 if (pud_none_or_clear_bad(pud))
1463                         continue;
1464                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1465 next:
1466                 cond_resched();
1467         } while (pud++, addr = next, addr != end);
1468
1469         return addr;
1470 }
1471
1472 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1473                                 struct vm_area_struct *vma, pgd_t *pgd,
1474                                 unsigned long addr, unsigned long end,
1475                                 struct zap_details *details)
1476 {
1477         p4d_t *p4d;
1478         unsigned long next;
1479
1480         p4d = p4d_offset(pgd, addr);
1481         do {
1482                 next = p4d_addr_end(addr, end);
1483                 if (p4d_none_or_clear_bad(p4d))
1484                         continue;
1485                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1486         } while (p4d++, addr = next, addr != end);
1487
1488         return addr;
1489 }
1490
1491 void unmap_page_range(struct mmu_gather *tlb,
1492                              struct vm_area_struct *vma,
1493                              unsigned long addr, unsigned long end,
1494                              struct zap_details *details)
1495 {
1496         pgd_t *pgd;
1497         unsigned long next;
1498
1499         BUG_ON(addr >= end);
1500         tlb_start_vma(tlb, vma);
1501         pgd = pgd_offset(vma->vm_mm, addr);
1502         do {
1503                 next = pgd_addr_end(addr, end);
1504                 if (pgd_none_or_clear_bad(pgd))
1505                         continue;
1506                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1507         } while (pgd++, addr = next, addr != end);
1508         tlb_end_vma(tlb, vma);
1509 }
1510
1511
1512 static void unmap_single_vma(struct mmu_gather *tlb,
1513                 struct vm_area_struct *vma, unsigned long start_addr,
1514                 unsigned long end_addr,
1515                 struct zap_details *details)
1516 {
1517         unsigned long start = max(vma->vm_start, start_addr);
1518         unsigned long end;
1519
1520         if (start >= vma->vm_end)
1521                 return;
1522         end = min(vma->vm_end, end_addr);
1523         if (end <= vma->vm_start)
1524                 return;
1525
1526         if (vma->vm_file)
1527                 uprobe_munmap(vma, start, end);
1528
1529         if (unlikely(vma->vm_flags & VM_PFNMAP))
1530                 untrack_pfn(vma, 0, 0);
1531
1532         if (start != end) {
1533                 if (unlikely(is_vm_hugetlb_page(vma))) {
1534                         /*
1535                          * It is undesirable to test vma->vm_file as it
1536                          * should be non-null for valid hugetlb area.
1537                          * However, vm_file will be NULL in the error
1538                          * cleanup path of mmap_region. When
1539                          * hugetlbfs ->mmap method fails,
1540                          * mmap_region() nullifies vma->vm_file
1541                          * before calling this function to clean up.
1542                          * Since no pte has actually been setup, it is
1543                          * safe to do nothing in this case.
1544                          */
1545                         if (vma->vm_file) {
1546                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1547                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1548                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1549                         }
1550                 } else
1551                         unmap_page_range(tlb, vma, start, end, details);
1552         }
1553 }
1554
1555 /**
1556  * unmap_vmas - unmap a range of memory covered by a list of vma's
1557  * @tlb: address of the caller's struct mmu_gather
1558  * @vma: the starting vma
1559  * @start_addr: virtual address at which to start unmapping
1560  * @end_addr: virtual address at which to end unmapping
1561  *
1562  * Unmap all pages in the vma list.
1563  *
1564  * Only addresses between `start' and `end' will be unmapped.
1565  *
1566  * The VMA list must be sorted in ascending virtual address order.
1567  *
1568  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1569  * range after unmap_vmas() returns.  So the only responsibility here is to
1570  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1571  * drops the lock and schedules.
1572  */
1573 void unmap_vmas(struct mmu_gather *tlb,
1574                 struct vm_area_struct *vma, unsigned long start_addr,
1575                 unsigned long end_addr)
1576 {
1577         struct mm_struct *mm = vma->vm_mm;
1578
1579         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1580         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1581                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1582         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1583 }
1584
1585 /**
1586  * zap_page_range - remove user pages in a given range
1587  * @vma: vm_area_struct holding the applicable pages
1588  * @start: starting address of pages to zap
1589  * @size: number of bytes to zap
1590  *
1591  * Caller must protect the VMA list
1592  */
1593 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1594                 unsigned long size)
1595 {
1596         struct mm_struct *mm = vma->vm_mm;
1597         struct mmu_gather tlb;
1598         unsigned long end = start + size;
1599
1600         lru_add_drain();
1601         tlb_gather_mmu(&tlb, mm, start, end);
1602         update_hiwater_rss(mm);
1603         mmu_notifier_invalidate_range_start(mm, start, end);
1604         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1605                 unmap_single_vma(&tlb, vma, start, end, NULL);
1606
1607                 /*
1608                  * zap_page_range does not specify whether mmap_sem should be
1609                  * held for read or write. That allows parallel zap_page_range
1610                  * operations to unmap a PTE and defer a flush meaning that
1611                  * this call observes pte_none and fails to flush the TLB.
1612                  * Rather than adding a complex API, ensure that no stale
1613                  * TLB entries exist when this call returns.
1614                  */
1615                 flush_tlb_range(vma, start, end);
1616         }
1617
1618         mmu_notifier_invalidate_range_end(mm, start, end);
1619         tlb_finish_mmu(&tlb, start, end);
1620 }
1621
1622 /**
1623  * zap_page_range_single - remove user pages in a given range
1624  * @vma: vm_area_struct holding the applicable pages
1625  * @address: starting address of pages to zap
1626  * @size: number of bytes to zap
1627  * @details: details of shared cache invalidation
1628  *
1629  * The range must fit into one VMA.
1630  */
1631 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1632                 unsigned long size, struct zap_details *details)
1633 {
1634         struct mm_struct *mm = vma->vm_mm;
1635         struct mmu_gather tlb;
1636         unsigned long end = address + size;
1637
1638         lru_add_drain();
1639         tlb_gather_mmu(&tlb, mm, address, end);
1640         update_hiwater_rss(mm);
1641         mmu_notifier_invalidate_range_start(mm, address, end);
1642         unmap_single_vma(&tlb, vma, address, end, details);
1643         mmu_notifier_invalidate_range_end(mm, address, end);
1644         tlb_finish_mmu(&tlb, address, end);
1645 }
1646
1647 /**
1648  * zap_vma_ptes - remove ptes mapping the vma
1649  * @vma: vm_area_struct holding ptes to be zapped
1650  * @address: starting address of pages to zap
1651  * @size: number of bytes to zap
1652  *
1653  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1654  *
1655  * The entire address range must be fully contained within the vma.
1656  *
1657  */
1658 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1659                 unsigned long size)
1660 {
1661         if (address < vma->vm_start || address + size > vma->vm_end ||
1662                         !(vma->vm_flags & VM_PFNMAP))
1663                 return;
1664
1665         zap_page_range_single(vma, address, size, NULL);
1666 }
1667 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1668
1669 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1670                         spinlock_t **ptl)
1671 {
1672         pgd_t *pgd;
1673         p4d_t *p4d;
1674         pud_t *pud;
1675         pmd_t *pmd;
1676
1677         pgd = pgd_offset(mm, addr);
1678         p4d = p4d_alloc(mm, pgd, addr);
1679         if (!p4d)
1680                 return NULL;
1681         pud = pud_alloc(mm, p4d, addr);
1682         if (!pud)
1683                 return NULL;
1684         pmd = pmd_alloc(mm, pud, addr);
1685         if (!pmd)
1686                 return NULL;
1687
1688         VM_BUG_ON(pmd_trans_huge(*pmd));
1689         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1690 }
1691
1692 /*
1693  * This is the old fallback for page remapping.
1694  *
1695  * For historical reasons, it only allows reserved pages. Only
1696  * old drivers should use this, and they needed to mark their
1697  * pages reserved for the old functions anyway.
1698  */
1699 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1700                         struct page *page, pgprot_t prot)
1701 {
1702         struct mm_struct *mm = vma->vm_mm;
1703         int retval;
1704         pte_t *pte;
1705         spinlock_t *ptl;
1706
1707         retval = -EINVAL;
1708         if (PageAnon(page))
1709                 goto out;
1710         retval = -ENOMEM;
1711         flush_dcache_page(page);
1712         pte = get_locked_pte(mm, addr, &ptl);
1713         if (!pte)
1714                 goto out;
1715         retval = -EBUSY;
1716         if (!pte_none(*pte))
1717                 goto out_unlock;
1718
1719         /* Ok, finally just insert the thing.. */
1720         get_page(page);
1721         inc_mm_counter_fast(mm, mm_counter_file(page));
1722         page_add_file_rmap(page, false);
1723         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1724
1725         retval = 0;
1726         pte_unmap_unlock(pte, ptl);
1727         return retval;
1728 out_unlock:
1729         pte_unmap_unlock(pte, ptl);
1730 out:
1731         return retval;
1732 }
1733
1734 /**
1735  * vm_insert_page - insert single page into user vma
1736  * @vma: user vma to map to
1737  * @addr: target user address of this page
1738  * @page: source kernel page
1739  *
1740  * This allows drivers to insert individual pages they've allocated
1741  * into a user vma.
1742  *
1743  * The page has to be a nice clean _individual_ kernel allocation.
1744  * If you allocate a compound page, you need to have marked it as
1745  * such (__GFP_COMP), or manually just split the page up yourself
1746  * (see split_page()).
1747  *
1748  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1749  * took an arbitrary page protection parameter. This doesn't allow
1750  * that. Your vma protection will have to be set up correctly, which
1751  * means that if you want a shared writable mapping, you'd better
1752  * ask for a shared writable mapping!
1753  *
1754  * The page does not need to be reserved.
1755  *
1756  * Usually this function is called from f_op->mmap() handler
1757  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1758  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1759  * function from other places, for example from page-fault handler.
1760  */
1761 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1762                         struct page *page)
1763 {
1764         if (addr < vma->vm_start || addr >= vma->vm_end)
1765                 return -EFAULT;
1766         if (!page_count(page))
1767                 return -EINVAL;
1768         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1769                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1770                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1771                 vma->vm_flags |= VM_MIXEDMAP;
1772         }
1773         return insert_page(vma, addr, page, vma->vm_page_prot);
1774 }
1775 EXPORT_SYMBOL(vm_insert_page);
1776
1777 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1778                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1779 {
1780         struct mm_struct *mm = vma->vm_mm;
1781         int retval;
1782         pte_t *pte, entry;
1783         spinlock_t *ptl;
1784
1785         retval = -ENOMEM;
1786         pte = get_locked_pte(mm, addr, &ptl);
1787         if (!pte)
1788                 goto out;
1789         retval = -EBUSY;
1790         if (!pte_none(*pte)) {
1791                 if (mkwrite) {
1792                         /*
1793                          * For read faults on private mappings the PFN passed
1794                          * in may not match the PFN we have mapped if the
1795                          * mapped PFN is a writeable COW page.  In the mkwrite
1796                          * case we are creating a writable PTE for a shared
1797                          * mapping and we expect the PFNs to match.
1798                          */
1799                         if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1800                                 goto out_unlock;
1801                         entry = *pte;
1802                         goto out_mkwrite;
1803                 } else
1804                         goto out_unlock;
1805         }
1806
1807         /* Ok, finally just insert the thing.. */
1808         if (pfn_t_devmap(pfn))
1809                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1810         else
1811                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1812
1813 out_mkwrite:
1814         if (mkwrite) {
1815                 entry = pte_mkyoung(entry);
1816                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1817         }
1818
1819         set_pte_at(mm, addr, pte, entry);
1820         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1821
1822         retval = 0;
1823 out_unlock:
1824         pte_unmap_unlock(pte, ptl);
1825 out:
1826         return retval;
1827 }
1828
1829 /**
1830  * vm_insert_pfn - insert single pfn into user vma
1831  * @vma: user vma to map to
1832  * @addr: target user address of this page
1833  * @pfn: source kernel pfn
1834  *
1835  * Similar to vm_insert_page, this allows drivers to insert individual pages
1836  * they've allocated into a user vma. Same comments apply.
1837  *
1838  * This function should only be called from a vm_ops->fault handler, and
1839  * in that case the handler should return NULL.
1840  *
1841  * vma cannot be a COW mapping.
1842  *
1843  * As this is called only for pages that do not currently exist, we
1844  * do not need to flush old virtual caches or the TLB.
1845  */
1846 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1847                         unsigned long pfn)
1848 {
1849         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1850 }
1851 EXPORT_SYMBOL(vm_insert_pfn);
1852
1853 /**
1854  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1855  * @vma: user vma to map to
1856  * @addr: target user address of this page
1857  * @pfn: source kernel pfn
1858  * @pgprot: pgprot flags for the inserted page
1859  *
1860  * This is exactly like vm_insert_pfn, except that it allows drivers to
1861  * to override pgprot on a per-page basis.
1862  *
1863  * This only makes sense for IO mappings, and it makes no sense for
1864  * cow mappings.  In general, using multiple vmas is preferable;
1865  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1866  * impractical.
1867  */
1868 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1869                         unsigned long pfn, pgprot_t pgprot)
1870 {
1871         int ret;
1872         /*
1873          * Technically, architectures with pte_special can avoid all these
1874          * restrictions (same for remap_pfn_range).  However we would like
1875          * consistency in testing and feature parity among all, so we should
1876          * try to keep these invariants in place for everybody.
1877          */
1878         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1879         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1880                                                 (VM_PFNMAP|VM_MIXEDMAP));
1881         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1882         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1883
1884         if (addr < vma->vm_start || addr >= vma->vm_end)
1885                 return -EFAULT;
1886
1887         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1888
1889         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1890                         false);
1891
1892         return ret;
1893 }
1894 EXPORT_SYMBOL(vm_insert_pfn_prot);
1895
1896 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1897 {
1898         /* these checks mirror the abort conditions in vm_normal_page */
1899         if (vma->vm_flags & VM_MIXEDMAP)
1900                 return true;
1901         if (pfn_t_devmap(pfn))
1902                 return true;
1903         if (pfn_t_special(pfn))
1904                 return true;
1905         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1906                 return true;
1907         return false;
1908 }
1909
1910 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1911                         pfn_t pfn, bool mkwrite)
1912 {
1913         pgprot_t pgprot = vma->vm_page_prot;
1914
1915         BUG_ON(!vm_mixed_ok(vma, pfn));
1916
1917         if (addr < vma->vm_start || addr >= vma->vm_end)
1918                 return -EFAULT;
1919
1920         track_pfn_insert(vma, &pgprot, pfn);
1921
1922         /*
1923          * If we don't have pte special, then we have to use the pfn_valid()
1924          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1925          * refcount the page if pfn_valid is true (hence insert_page rather
1926          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1927          * without pte special, it would there be refcounted as a normal page.
1928          */
1929         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1930             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1931                 struct page *page;
1932
1933                 /*
1934                  * At this point we are committed to insert_page()
1935                  * regardless of whether the caller specified flags that
1936                  * result in pfn_t_has_page() == false.
1937                  */
1938                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1939                 return insert_page(vma, addr, page, pgprot);
1940         }
1941         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1942 }
1943
1944 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1945                         pfn_t pfn)
1946 {
1947         return __vm_insert_mixed(vma, addr, pfn, false);
1948
1949 }
1950 EXPORT_SYMBOL(vm_insert_mixed);
1951
1952 /*
1953  *  If the insertion of PTE failed because someone else already added a
1954  *  different entry in the mean time, we treat that as success as we assume
1955  *  the same entry was actually inserted.
1956  */
1957
1958 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1959                 unsigned long addr, pfn_t pfn)
1960 {
1961         int err;
1962
1963         err =  __vm_insert_mixed(vma, addr, pfn, true);
1964         if (err == -ENOMEM)
1965                 return VM_FAULT_OOM;
1966         if (err < 0 && err != -EBUSY)
1967                 return VM_FAULT_SIGBUS;
1968         return VM_FAULT_NOPAGE;
1969 }
1970 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1971
1972 /*
1973  * maps a range of physical memory into the requested pages. the old
1974  * mappings are removed. any references to nonexistent pages results
1975  * in null mappings (currently treated as "copy-on-access")
1976  */
1977 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1978                         unsigned long addr, unsigned long end,
1979                         unsigned long pfn, pgprot_t prot)
1980 {
1981         pte_t *pte;
1982         spinlock_t *ptl;
1983
1984         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1985         if (!pte)
1986                 return -ENOMEM;
1987         arch_enter_lazy_mmu_mode();
1988         do {
1989                 BUG_ON(!pte_none(*pte));
1990                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1991                 pfn++;
1992         } while (pte++, addr += PAGE_SIZE, addr != end);
1993         arch_leave_lazy_mmu_mode();
1994         pte_unmap_unlock(pte - 1, ptl);
1995         return 0;
1996 }
1997
1998 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1999                         unsigned long addr, unsigned long end,
2000                         unsigned long pfn, pgprot_t prot)
2001 {
2002         pmd_t *pmd;
2003         unsigned long next;
2004
2005         pfn -= addr >> PAGE_SHIFT;
2006         pmd = pmd_alloc(mm, pud, addr);
2007         if (!pmd)
2008                 return -ENOMEM;
2009         VM_BUG_ON(pmd_trans_huge(*pmd));
2010         do {
2011                 next = pmd_addr_end(addr, end);
2012                 if (remap_pte_range(mm, pmd, addr, next,
2013                                 pfn + (addr >> PAGE_SHIFT), prot))
2014                         return -ENOMEM;
2015         } while (pmd++, addr = next, addr != end);
2016         return 0;
2017 }
2018
2019 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2020                         unsigned long addr, unsigned long end,
2021                         unsigned long pfn, pgprot_t prot)
2022 {
2023         pud_t *pud;
2024         unsigned long next;
2025
2026         pfn -= addr >> PAGE_SHIFT;
2027         pud = pud_alloc(mm, p4d, addr);
2028         if (!pud)
2029                 return -ENOMEM;
2030         do {
2031                 next = pud_addr_end(addr, end);
2032                 if (remap_pmd_range(mm, pud, addr, next,
2033                                 pfn + (addr >> PAGE_SHIFT), prot))
2034                         return -ENOMEM;
2035         } while (pud++, addr = next, addr != end);
2036         return 0;
2037 }
2038
2039 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2040                         unsigned long addr, unsigned long end,
2041                         unsigned long pfn, pgprot_t prot)
2042 {
2043         p4d_t *p4d;
2044         unsigned long next;
2045
2046         pfn -= addr >> PAGE_SHIFT;
2047         p4d = p4d_alloc(mm, pgd, addr);
2048         if (!p4d)
2049                 return -ENOMEM;
2050         do {
2051                 next = p4d_addr_end(addr, end);
2052                 if (remap_pud_range(mm, p4d, addr, next,
2053                                 pfn + (addr >> PAGE_SHIFT), prot))
2054                         return -ENOMEM;
2055         } while (p4d++, addr = next, addr != end);
2056         return 0;
2057 }
2058
2059 /**
2060  * remap_pfn_range - remap kernel memory to userspace
2061  * @vma: user vma to map to
2062  * @addr: target user address to start at
2063  * @pfn: physical address of kernel memory
2064  * @size: size of map area
2065  * @prot: page protection flags for this mapping
2066  *
2067  *  Note: this is only safe if the mm semaphore is held when called.
2068  */
2069 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2070                     unsigned long pfn, unsigned long size, pgprot_t prot)
2071 {
2072         pgd_t *pgd;
2073         unsigned long next;
2074         unsigned long end = addr + PAGE_ALIGN(size);
2075         struct mm_struct *mm = vma->vm_mm;
2076         unsigned long remap_pfn = pfn;
2077         int err;
2078
2079         /*
2080          * Physically remapped pages are special. Tell the
2081          * rest of the world about it:
2082          *   VM_IO tells people not to look at these pages
2083          *      (accesses can have side effects).
2084          *   VM_PFNMAP tells the core MM that the base pages are just
2085          *      raw PFN mappings, and do not have a "struct page" associated
2086          *      with them.
2087          *   VM_DONTEXPAND
2088          *      Disable vma merging and expanding with mremap().
2089          *   VM_DONTDUMP
2090          *      Omit vma from core dump, even when VM_IO turned off.
2091          *
2092          * There's a horrible special case to handle copy-on-write
2093          * behaviour that some programs depend on. We mark the "original"
2094          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2095          * See vm_normal_page() for details.
2096          */
2097         if (is_cow_mapping(vma->vm_flags)) {
2098                 if (addr != vma->vm_start || end != vma->vm_end)
2099                         return -EINVAL;
2100                 vma->vm_pgoff = pfn;
2101         }
2102
2103         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2104         if (err)
2105                 return -EINVAL;
2106
2107         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2108
2109         BUG_ON(addr >= end);
2110         pfn -= addr >> PAGE_SHIFT;
2111         pgd = pgd_offset(mm, addr);
2112         flush_cache_range(vma, addr, end);
2113         do {
2114                 next = pgd_addr_end(addr, end);
2115                 err = remap_p4d_range(mm, pgd, addr, next,
2116                                 pfn + (addr >> PAGE_SHIFT), prot);
2117                 if (err)
2118                         break;
2119         } while (pgd++, addr = next, addr != end);
2120
2121         if (err)
2122                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2123
2124         return err;
2125 }
2126 EXPORT_SYMBOL(remap_pfn_range);
2127
2128 /**
2129  * vm_iomap_memory - remap memory to userspace
2130  * @vma: user vma to map to
2131  * @start: start of area
2132  * @len: size of area
2133  *
2134  * This is a simplified io_remap_pfn_range() for common driver use. The
2135  * driver just needs to give us the physical memory range to be mapped,
2136  * we'll figure out the rest from the vma information.
2137  *
2138  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2139  * whatever write-combining details or similar.
2140  */
2141 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2142 {
2143         unsigned long vm_len, pfn, pages;
2144
2145         /* Check that the physical memory area passed in looks valid */
2146         if (start + len < start)
2147                 return -EINVAL;
2148         /*
2149          * You *really* shouldn't map things that aren't page-aligned,
2150          * but we've historically allowed it because IO memory might
2151          * just have smaller alignment.
2152          */
2153         len += start & ~PAGE_MASK;
2154         pfn = start >> PAGE_SHIFT;
2155         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2156         if (pfn + pages < pfn)
2157                 return -EINVAL;
2158
2159         /* We start the mapping 'vm_pgoff' pages into the area */
2160         if (vma->vm_pgoff > pages)
2161                 return -EINVAL;
2162         pfn += vma->vm_pgoff;
2163         pages -= vma->vm_pgoff;
2164
2165         /* Can we fit all of the mapping? */
2166         vm_len = vma->vm_end - vma->vm_start;
2167         if (vm_len >> PAGE_SHIFT > pages)
2168                 return -EINVAL;
2169
2170         /* Ok, let it rip */
2171         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2172 }
2173 EXPORT_SYMBOL(vm_iomap_memory);
2174
2175 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2176                                      unsigned long addr, unsigned long end,
2177                                      pte_fn_t fn, void *data)
2178 {
2179         pte_t *pte;
2180         int err;
2181         pgtable_t token;
2182         spinlock_t *uninitialized_var(ptl);
2183
2184         pte = (mm == &init_mm) ?
2185                 pte_alloc_kernel(pmd, addr) :
2186                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2187         if (!pte)
2188                 return -ENOMEM;
2189
2190         BUG_ON(pmd_huge(*pmd));
2191
2192         arch_enter_lazy_mmu_mode();
2193
2194         token = pmd_pgtable(*pmd);
2195
2196         do {
2197                 err = fn(pte++, token, addr, data);
2198                 if (err)
2199                         break;
2200         } while (addr += PAGE_SIZE, addr != end);
2201
2202         arch_leave_lazy_mmu_mode();
2203
2204         if (mm != &init_mm)
2205                 pte_unmap_unlock(pte-1, ptl);
2206         return err;
2207 }
2208
2209 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2210                                      unsigned long addr, unsigned long end,
2211                                      pte_fn_t fn, void *data)
2212 {
2213         pmd_t *pmd;
2214         unsigned long next;
2215         int err;
2216
2217         BUG_ON(pud_huge(*pud));
2218
2219         pmd = pmd_alloc(mm, pud, addr);
2220         if (!pmd)
2221                 return -ENOMEM;
2222         do {
2223                 next = pmd_addr_end(addr, end);
2224                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2225                 if (err)
2226                         break;
2227         } while (pmd++, addr = next, addr != end);
2228         return err;
2229 }
2230
2231 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2232                                      unsigned long addr, unsigned long end,
2233                                      pte_fn_t fn, void *data)
2234 {
2235         pud_t *pud;
2236         unsigned long next;
2237         int err;
2238
2239         pud = pud_alloc(mm, p4d, addr);
2240         if (!pud)
2241                 return -ENOMEM;
2242         do {
2243                 next = pud_addr_end(addr, end);
2244                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2245                 if (err)
2246                         break;
2247         } while (pud++, addr = next, addr != end);
2248         return err;
2249 }
2250
2251 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2252                                      unsigned long addr, unsigned long end,
2253                                      pte_fn_t fn, void *data)
2254 {
2255         p4d_t *p4d;
2256         unsigned long next;
2257         int err;
2258
2259         p4d = p4d_alloc(mm, pgd, addr);
2260         if (!p4d)
2261                 return -ENOMEM;
2262         do {
2263                 next = p4d_addr_end(addr, end);
2264                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2265                 if (err)
2266                         break;
2267         } while (p4d++, addr = next, addr != end);
2268         return err;
2269 }
2270
2271 /*
2272  * Scan a region of virtual memory, filling in page tables as necessary
2273  * and calling a provided function on each leaf page table.
2274  */
2275 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2276                         unsigned long size, pte_fn_t fn, void *data)
2277 {
2278         pgd_t *pgd;
2279         unsigned long next;
2280         unsigned long end = addr + size;
2281         int err;
2282
2283         if (WARN_ON(addr >= end))
2284                 return -EINVAL;
2285
2286         pgd = pgd_offset(mm, addr);
2287         do {
2288                 next = pgd_addr_end(addr, end);
2289                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2290                 if (err)
2291                         break;
2292         } while (pgd++, addr = next, addr != end);
2293
2294         return err;
2295 }
2296 EXPORT_SYMBOL_GPL(apply_to_page_range);
2297
2298 /*
2299  * handle_pte_fault chooses page fault handler according to an entry which was
2300  * read non-atomically.  Before making any commitment, on those architectures
2301  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2302  * parts, do_swap_page must check under lock before unmapping the pte and
2303  * proceeding (but do_wp_page is only called after already making such a check;
2304  * and do_anonymous_page can safely check later on).
2305  */
2306 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2307                                 pte_t *page_table, pte_t orig_pte)
2308 {
2309         int same = 1;
2310 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2311         if (sizeof(pte_t) > sizeof(unsigned long)) {
2312                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2313                 spin_lock(ptl);
2314                 same = pte_same(*page_table, orig_pte);
2315                 spin_unlock(ptl);
2316         }
2317 #endif
2318         pte_unmap(page_table);
2319         return same;
2320 }
2321
2322 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2323 {
2324         debug_dma_assert_idle(src);
2325
2326         /*
2327          * If the source page was a PFN mapping, we don't have
2328          * a "struct page" for it. We do a best-effort copy by
2329          * just copying from the original user address. If that
2330          * fails, we just zero-fill it. Live with it.
2331          */
2332         if (unlikely(!src)) {
2333                 void *kaddr = kmap_atomic(dst);
2334                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2335
2336                 /*
2337                  * This really shouldn't fail, because the page is there
2338                  * in the page tables. But it might just be unreadable,
2339                  * in which case we just give up and fill the result with
2340                  * zeroes.
2341                  */
2342                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2343                         clear_page(kaddr);
2344                 kunmap_atomic(kaddr);
2345                 flush_dcache_page(dst);
2346         } else
2347                 copy_user_highpage(dst, src, va, vma);
2348 }
2349
2350 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2351 {
2352         struct file *vm_file = vma->vm_file;
2353
2354         if (vm_file)
2355                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2356
2357         /*
2358          * Special mappings (e.g. VDSO) do not have any file so fake
2359          * a default GFP_KERNEL for them.
2360          */
2361         return GFP_KERNEL;
2362 }
2363
2364 /*
2365  * Notify the address space that the page is about to become writable so that
2366  * it can prohibit this or wait for the page to get into an appropriate state.
2367  *
2368  * We do this without the lock held, so that it can sleep if it needs to.
2369  */
2370 static int do_page_mkwrite(struct vm_fault *vmf)
2371 {
2372         int ret;
2373         struct page *page = vmf->page;
2374         unsigned int old_flags = vmf->flags;
2375
2376         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2377
2378         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2379         /* Restore original flags so that caller is not surprised */
2380         vmf->flags = old_flags;
2381         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2382                 return ret;
2383         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2384                 lock_page(page);
2385                 if (!page->mapping) {
2386                         unlock_page(page);
2387                         return 0; /* retry */
2388                 }
2389                 ret |= VM_FAULT_LOCKED;
2390         } else
2391                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2392         return ret;
2393 }
2394
2395 /*
2396  * Handle dirtying of a page in shared file mapping on a write fault.
2397  *
2398  * The function expects the page to be locked and unlocks it.
2399  */
2400 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2401                                     struct page *page)
2402 {
2403         struct address_space *mapping;
2404         bool dirtied;
2405         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2406
2407         dirtied = set_page_dirty(page);
2408         VM_BUG_ON_PAGE(PageAnon(page), page);
2409         /*
2410          * Take a local copy of the address_space - page.mapping may be zeroed
2411          * by truncate after unlock_page().   The address_space itself remains
2412          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2413          * release semantics to prevent the compiler from undoing this copying.
2414          */
2415         mapping = page_rmapping(page);
2416         unlock_page(page);
2417
2418         if ((dirtied || page_mkwrite) && mapping) {
2419                 /*
2420                  * Some device drivers do not set page.mapping
2421                  * but still dirty their pages
2422                  */
2423                 balance_dirty_pages_ratelimited(mapping);
2424         }
2425
2426         if (!page_mkwrite)
2427                 file_update_time(vma->vm_file);
2428 }
2429
2430 /*
2431  * Handle write page faults for pages that can be reused in the current vma
2432  *
2433  * This can happen either due to the mapping being with the VM_SHARED flag,
2434  * or due to us being the last reference standing to the page. In either
2435  * case, all we need to do here is to mark the page as writable and update
2436  * any related book-keeping.
2437  */
2438 static inline void wp_page_reuse(struct vm_fault *vmf)
2439         __releases(vmf->ptl)
2440 {
2441         struct vm_area_struct *vma = vmf->vma;
2442         struct page *page = vmf->page;
2443         pte_t entry;
2444         /*
2445          * Clear the pages cpupid information as the existing
2446          * information potentially belongs to a now completely
2447          * unrelated process.
2448          */
2449         if (page)
2450                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2451
2452         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2453         entry = pte_mkyoung(vmf->orig_pte);
2454         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2455         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2456                 update_mmu_cache(vma, vmf->address, vmf->pte);
2457         pte_unmap_unlock(vmf->pte, vmf->ptl);
2458 }
2459
2460 /*
2461  * Handle the case of a page which we actually need to copy to a new page.
2462  *
2463  * Called with mmap_sem locked and the old page referenced, but
2464  * without the ptl held.
2465  *
2466  * High level logic flow:
2467  *
2468  * - Allocate a page, copy the content of the old page to the new one.
2469  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2470  * - Take the PTL. If the pte changed, bail out and release the allocated page
2471  * - If the pte is still the way we remember it, update the page table and all
2472  *   relevant references. This includes dropping the reference the page-table
2473  *   held to the old page, as well as updating the rmap.
2474  * - In any case, unlock the PTL and drop the reference we took to the old page.
2475  */
2476 static int wp_page_copy(struct vm_fault *vmf)
2477 {
2478         struct vm_area_struct *vma = vmf->vma;
2479         struct mm_struct *mm = vma->vm_mm;
2480         struct page *old_page = vmf->page;
2481         struct page *new_page = NULL;
2482         pte_t entry;
2483         int page_copied = 0;
2484         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2485         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2486         struct mem_cgroup *memcg;
2487
2488         if (unlikely(anon_vma_prepare(vma)))
2489                 goto oom;
2490
2491         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2492                 new_page = alloc_zeroed_user_highpage_movable(vma,
2493                                                               vmf->address);
2494                 if (!new_page)
2495                         goto oom;
2496         } else {
2497                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2498                                 vmf->address);
2499                 if (!new_page)
2500                         goto oom;
2501                 cow_user_page(new_page, old_page, vmf->address, vma);
2502         }
2503
2504         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2505                 goto oom_free_new;
2506
2507         __SetPageUptodate(new_page);
2508
2509         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2510
2511         /*
2512          * Re-check the pte - we dropped the lock
2513          */
2514         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2515         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2516                 if (old_page) {
2517                         if (!PageAnon(old_page)) {
2518                                 dec_mm_counter_fast(mm,
2519                                                 mm_counter_file(old_page));
2520                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2521                         }
2522                 } else {
2523                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2524                 }
2525                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2526                 entry = mk_pte(new_page, vma->vm_page_prot);
2527                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2528                 /*
2529                  * Clear the pte entry and flush it first, before updating the
2530                  * pte with the new entry. This will avoid a race condition
2531                  * seen in the presence of one thread doing SMC and another
2532                  * thread doing COW.
2533                  */
2534                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2535                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2536                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2537                 lru_cache_add_active_or_unevictable(new_page, vma);
2538                 /*
2539                  * We call the notify macro here because, when using secondary
2540                  * mmu page tables (such as kvm shadow page tables), we want the
2541                  * new page to be mapped directly into the secondary page table.
2542                  */
2543                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2544                 update_mmu_cache(vma, vmf->address, vmf->pte);
2545                 if (old_page) {
2546                         /*
2547                          * Only after switching the pte to the new page may
2548                          * we remove the mapcount here. Otherwise another
2549                          * process may come and find the rmap count decremented
2550                          * before the pte is switched to the new page, and
2551                          * "reuse" the old page writing into it while our pte
2552                          * here still points into it and can be read by other
2553                          * threads.
2554                          *
2555                          * The critical issue is to order this
2556                          * page_remove_rmap with the ptp_clear_flush above.
2557                          * Those stores are ordered by (if nothing else,)
2558                          * the barrier present in the atomic_add_negative
2559                          * in page_remove_rmap.
2560                          *
2561                          * Then the TLB flush in ptep_clear_flush ensures that
2562                          * no process can access the old page before the
2563                          * decremented mapcount is visible. And the old page
2564                          * cannot be reused until after the decremented
2565                          * mapcount is visible. So transitively, TLBs to
2566                          * old page will be flushed before it can be reused.
2567                          */
2568                         page_remove_rmap(old_page, false);
2569                 }
2570
2571                 /* Free the old page.. */
2572                 new_page = old_page;
2573                 page_copied = 1;
2574         } else {
2575                 mem_cgroup_cancel_charge(new_page, memcg, false);
2576         }
2577
2578         if (new_page)
2579                 put_page(new_page);
2580
2581         pte_unmap_unlock(vmf->pte, vmf->ptl);
2582         /*
2583          * No need to double call mmu_notifier->invalidate_range() callback as
2584          * the above ptep_clear_flush_notify() did already call it.
2585          */
2586         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2587         if (old_page) {
2588                 /*
2589                  * Don't let another task, with possibly unlocked vma,
2590                  * keep the mlocked page.
2591                  */
2592                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2593                         lock_page(old_page);    /* LRU manipulation */
2594                         if (PageMlocked(old_page))
2595                                 munlock_vma_page(old_page);
2596                         unlock_page(old_page);
2597                 }
2598                 put_page(old_page);
2599         }
2600         return page_copied ? VM_FAULT_WRITE : 0;
2601 oom_free_new:
2602         put_page(new_page);
2603 oom:
2604         if (old_page)
2605                 put_page(old_page);
2606         return VM_FAULT_OOM;
2607 }
2608
2609 /**
2610  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2611  *                        writeable once the page is prepared
2612  *
2613  * @vmf: structure describing the fault
2614  *
2615  * This function handles all that is needed to finish a write page fault in a
2616  * shared mapping due to PTE being read-only once the mapped page is prepared.
2617  * It handles locking of PTE and modifying it. The function returns
2618  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2619  * lock.
2620  *
2621  * The function expects the page to be locked or other protection against
2622  * concurrent faults / writeback (such as DAX radix tree locks).
2623  */
2624 int finish_mkwrite_fault(struct vm_fault *vmf)
2625 {
2626         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2627         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2628                                        &vmf->ptl);
2629         /*
2630          * We might have raced with another page fault while we released the
2631          * pte_offset_map_lock.
2632          */
2633         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2634                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2635                 return VM_FAULT_NOPAGE;
2636         }
2637         wp_page_reuse(vmf);
2638         return 0;
2639 }
2640
2641 /*
2642  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2643  * mapping
2644  */
2645 static int wp_pfn_shared(struct vm_fault *vmf)
2646 {
2647         struct vm_area_struct *vma = vmf->vma;
2648
2649         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2650                 int ret;
2651
2652                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2653                 vmf->flags |= FAULT_FLAG_MKWRITE;
2654                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2655                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2656                         return ret;
2657                 return finish_mkwrite_fault(vmf);
2658         }
2659         wp_page_reuse(vmf);
2660         return VM_FAULT_WRITE;
2661 }
2662
2663 static int wp_page_shared(struct vm_fault *vmf)
2664         __releases(vmf->ptl)
2665 {
2666         struct vm_area_struct *vma = vmf->vma;
2667
2668         get_page(vmf->page);
2669
2670         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2671                 int tmp;
2672
2673                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2674                 tmp = do_page_mkwrite(vmf);
2675                 if (unlikely(!tmp || (tmp &
2676                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2677                         put_page(vmf->page);
2678                         return tmp;
2679                 }
2680                 tmp = finish_mkwrite_fault(vmf);
2681                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2682                         unlock_page(vmf->page);
2683                         put_page(vmf->page);
2684                         return tmp;
2685                 }
2686         } else {
2687                 wp_page_reuse(vmf);
2688                 lock_page(vmf->page);
2689         }
2690         fault_dirty_shared_page(vma, vmf->page);
2691         put_page(vmf->page);
2692
2693         return VM_FAULT_WRITE;
2694 }
2695
2696 /*
2697  * This routine handles present pages, when users try to write
2698  * to a shared page. It is done by copying the page to a new address
2699  * and decrementing the shared-page counter for the old page.
2700  *
2701  * Note that this routine assumes that the protection checks have been
2702  * done by the caller (the low-level page fault routine in most cases).
2703  * Thus we can safely just mark it writable once we've done any necessary
2704  * COW.
2705  *
2706  * We also mark the page dirty at this point even though the page will
2707  * change only once the write actually happens. This avoids a few races,
2708  * and potentially makes it more efficient.
2709  *
2710  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2711  * but allow concurrent faults), with pte both mapped and locked.
2712  * We return with mmap_sem still held, but pte unmapped and unlocked.
2713  */
2714 static int do_wp_page(struct vm_fault *vmf)
2715         __releases(vmf->ptl)
2716 {
2717         struct vm_area_struct *vma = vmf->vma;
2718
2719         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2720         if (!vmf->page) {
2721                 /*
2722                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2723                  * VM_PFNMAP VMA.
2724                  *
2725                  * We should not cow pages in a shared writeable mapping.
2726                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2727                  */
2728                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2729                                      (VM_WRITE|VM_SHARED))
2730                         return wp_pfn_shared(vmf);
2731
2732                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2733                 return wp_page_copy(vmf);
2734         }
2735
2736         /*
2737          * Take out anonymous pages first, anonymous shared vmas are
2738          * not dirty accountable.
2739          */
2740         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2741                 int total_map_swapcount;
2742                 if (!trylock_page(vmf->page)) {
2743                         get_page(vmf->page);
2744                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2745                         lock_page(vmf->page);
2746                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2747                                         vmf->address, &vmf->ptl);
2748                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2749                                 unlock_page(vmf->page);
2750                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2751                                 put_page(vmf->page);
2752                                 return 0;
2753                         }
2754                         put_page(vmf->page);
2755                 }
2756                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2757                         if (total_map_swapcount == 1) {
2758                                 /*
2759                                  * The page is all ours. Move it to
2760                                  * our anon_vma so the rmap code will
2761                                  * not search our parent or siblings.
2762                                  * Protected against the rmap code by
2763                                  * the page lock.
2764                                  */
2765                                 page_move_anon_rmap(vmf->page, vma);
2766                         }
2767                         unlock_page(vmf->page);
2768                         wp_page_reuse(vmf);
2769                         return VM_FAULT_WRITE;
2770                 }
2771                 unlock_page(vmf->page);
2772         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2773                                         (VM_WRITE|VM_SHARED))) {
2774                 return wp_page_shared(vmf);
2775         }
2776
2777         /*
2778          * Ok, we need to copy. Oh, well..
2779          */
2780         get_page(vmf->page);
2781
2782         pte_unmap_unlock(vmf->pte, vmf->ptl);
2783         return wp_page_copy(vmf);
2784 }
2785
2786 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2787                 unsigned long start_addr, unsigned long end_addr,
2788                 struct zap_details *details)
2789 {
2790         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2791 }
2792
2793 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2794                                             struct zap_details *details)
2795 {
2796         struct vm_area_struct *vma;
2797         pgoff_t vba, vea, zba, zea;
2798
2799         vma_interval_tree_foreach(vma, root,
2800                         details->first_index, details->last_index) {
2801
2802                 vba = vma->vm_pgoff;
2803                 vea = vba + vma_pages(vma) - 1;
2804                 zba = details->first_index;
2805                 if (zba < vba)
2806                         zba = vba;
2807                 zea = details->last_index;
2808                 if (zea > vea)
2809                         zea = vea;
2810
2811                 unmap_mapping_range_vma(vma,
2812                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2813                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2814                                 details);
2815         }
2816 }
2817
2818 /**
2819  * unmap_mapping_pages() - Unmap pages from processes.
2820  * @mapping: The address space containing pages to be unmapped.
2821  * @start: Index of first page to be unmapped.
2822  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2823  * @even_cows: Whether to unmap even private COWed pages.
2824  *
2825  * Unmap the pages in this address space from any userspace process which
2826  * has them mmaped.  Generally, you want to remove COWed pages as well when
2827  * a file is being truncated, but not when invalidating pages from the page
2828  * cache.
2829  */
2830 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2831                 pgoff_t nr, bool even_cows)
2832 {
2833         struct zap_details details = { };
2834
2835         details.check_mapping = even_cows ? NULL : mapping;
2836         details.first_index = start;
2837         details.last_index = start + nr - 1;
2838         if (details.last_index < details.first_index)
2839                 details.last_index = ULONG_MAX;
2840
2841         i_mmap_lock_write(mapping);
2842         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2843                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2844         i_mmap_unlock_write(mapping);
2845 }
2846
2847 /**
2848  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2849  * address_space corresponding to the specified byte range in the underlying
2850  * file.
2851  *
2852  * @mapping: the address space containing mmaps to be unmapped.
2853  * @holebegin: byte in first page to unmap, relative to the start of
2854  * the underlying file.  This will be rounded down to a PAGE_SIZE
2855  * boundary.  Note that this is different from truncate_pagecache(), which
2856  * must keep the partial page.  In contrast, we must get rid of
2857  * partial pages.
2858  * @holelen: size of prospective hole in bytes.  This will be rounded
2859  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2860  * end of the file.
2861  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2862  * but 0 when invalidating pagecache, don't throw away private data.
2863  */
2864 void unmap_mapping_range(struct address_space *mapping,
2865                 loff_t const holebegin, loff_t const holelen, int even_cows)
2866 {
2867         pgoff_t hba = holebegin >> PAGE_SHIFT;
2868         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2869
2870         /* Check for overflow. */
2871         if (sizeof(holelen) > sizeof(hlen)) {
2872                 long long holeend =
2873                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2874                 if (holeend & ~(long long)ULONG_MAX)
2875                         hlen = ULONG_MAX - hba + 1;
2876         }
2877
2878         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2879 }
2880 EXPORT_SYMBOL(unmap_mapping_range);
2881
2882 /*
2883  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2884  * but allow concurrent faults), and pte mapped but not yet locked.
2885  * We return with pte unmapped and unlocked.
2886  *
2887  * We return with the mmap_sem locked or unlocked in the same cases
2888  * as does filemap_fault().
2889  */
2890 int do_swap_page(struct vm_fault *vmf)
2891 {
2892         struct vm_area_struct *vma = vmf->vma;
2893         struct page *page = NULL, *swapcache;
2894         struct mem_cgroup *memcg;
2895         swp_entry_t entry;
2896         pte_t pte;
2897         int locked;
2898         int exclusive = 0;
2899         int ret = 0;
2900
2901         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2902                 goto out;
2903
2904         entry = pte_to_swp_entry(vmf->orig_pte);
2905         if (unlikely(non_swap_entry(entry))) {
2906                 if (is_migration_entry(entry)) {
2907                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2908                                              vmf->address);
2909                 } else if (is_device_private_entry(entry)) {
2910                         /*
2911                          * For un-addressable device memory we call the pgmap
2912                          * fault handler callback. The callback must migrate
2913                          * the page back to some CPU accessible page.
2914                          */
2915                         ret = device_private_entry_fault(vma, vmf->address, entry,
2916                                                  vmf->flags, vmf->pmd);
2917                 } else if (is_hwpoison_entry(entry)) {
2918                         ret = VM_FAULT_HWPOISON;
2919                 } else {
2920                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2921                         ret = VM_FAULT_SIGBUS;
2922                 }
2923                 goto out;
2924         }
2925
2926
2927         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2928         page = lookup_swap_cache(entry, vma, vmf->address);
2929         swapcache = page;
2930
2931         if (!page) {
2932                 struct swap_info_struct *si = swp_swap_info(entry);
2933
2934                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2935                                 __swap_count(si, entry) == 1) {
2936                         /* skip swapcache */
2937                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2938                                                         vmf->address);
2939                         if (page) {
2940                                 __SetPageLocked(page);
2941                                 __SetPageSwapBacked(page);
2942                                 set_page_private(page, entry.val);
2943                                 lru_cache_add_anon(page);
2944                                 swap_readpage(page, true);
2945                         }
2946                 } else {
2947                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2948                                                 vmf);
2949                         swapcache = page;
2950                 }
2951
2952                 if (!page) {
2953                         /*
2954                          * Back out if somebody else faulted in this pte
2955                          * while we released the pte lock.
2956                          */
2957                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2958                                         vmf->address, &vmf->ptl);
2959                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2960                                 ret = VM_FAULT_OOM;
2961                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2962                         goto unlock;
2963                 }
2964
2965                 /* Had to read the page from swap area: Major fault */
2966                 ret = VM_FAULT_MAJOR;
2967                 count_vm_event(PGMAJFAULT);
2968                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2969         } else if (PageHWPoison(page)) {
2970                 /*
2971                  * hwpoisoned dirty swapcache pages are kept for killing
2972                  * owner processes (which may be unknown at hwpoison time)
2973                  */
2974                 ret = VM_FAULT_HWPOISON;
2975                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2976                 goto out_release;
2977         }
2978
2979         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2980
2981         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2982         if (!locked) {
2983                 ret |= VM_FAULT_RETRY;
2984                 goto out_release;
2985         }
2986
2987         /*
2988          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2989          * release the swapcache from under us.  The page pin, and pte_same
2990          * test below, are not enough to exclude that.  Even if it is still
2991          * swapcache, we need to check that the page's swap has not changed.
2992          */
2993         if (unlikely((!PageSwapCache(page) ||
2994                         page_private(page) != entry.val)) && swapcache)
2995                 goto out_page;
2996
2997         page = ksm_might_need_to_copy(page, vma, vmf->address);
2998         if (unlikely(!page)) {
2999                 ret = VM_FAULT_OOM;
3000                 page = swapcache;
3001                 goto out_page;
3002         }
3003
3004         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3005                                 &memcg, false)) {
3006                 ret = VM_FAULT_OOM;
3007                 goto out_page;
3008         }
3009
3010         /*
3011          * Back out if somebody else already faulted in this pte.
3012          */
3013         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3014                         &vmf->ptl);
3015         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3016                 goto out_nomap;
3017
3018         if (unlikely(!PageUptodate(page))) {
3019                 ret = VM_FAULT_SIGBUS;
3020                 goto out_nomap;
3021         }
3022
3023         /*
3024          * The page isn't present yet, go ahead with the fault.
3025          *
3026          * Be careful about the sequence of operations here.
3027          * To get its accounting right, reuse_swap_page() must be called
3028          * while the page is counted on swap but not yet in mapcount i.e.
3029          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3030          * must be called after the swap_free(), or it will never succeed.
3031          */
3032
3033         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3034         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3035         pte = mk_pte(page, vma->vm_page_prot);
3036         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3037                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3038                 vmf->flags &= ~FAULT_FLAG_WRITE;
3039                 ret |= VM_FAULT_WRITE;
3040                 exclusive = RMAP_EXCLUSIVE;
3041         }
3042         flush_icache_page(vma, page);
3043         if (pte_swp_soft_dirty(vmf->orig_pte))
3044                 pte = pte_mksoft_dirty(pte);
3045         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3046         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3047         vmf->orig_pte = pte;
3048
3049         /* ksm created a completely new copy */
3050         if (unlikely(page != swapcache && swapcache)) {
3051                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3052                 mem_cgroup_commit_charge(page, memcg, false, false);
3053                 lru_cache_add_active_or_unevictable(page, vma);
3054         } else {
3055                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3056                 mem_cgroup_commit_charge(page, memcg, true, false);
3057                 activate_page(page);
3058         }
3059
3060         swap_free(entry);
3061         if (mem_cgroup_swap_full(page) ||
3062             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3063                 try_to_free_swap(page);
3064         unlock_page(page);
3065         if (page != swapcache && swapcache) {
3066                 /*
3067                  * Hold the lock to avoid the swap entry to be reused
3068                  * until we take the PT lock for the pte_same() check
3069                  * (to avoid false positives from pte_same). For
3070                  * further safety release the lock after the swap_free
3071                  * so that the swap count won't change under a
3072                  * parallel locked swapcache.
3073                  */
3074                 unlock_page(swapcache);
3075                 put_page(swapcache);
3076         }
3077
3078         if (vmf->flags & FAULT_FLAG_WRITE) {
3079                 ret |= do_wp_page(vmf);
3080                 if (ret & VM_FAULT_ERROR)
3081                         ret &= VM_FAULT_ERROR;
3082                 goto out;
3083         }
3084
3085         /* No need to invalidate - it was non-present before */
3086         update_mmu_cache(vma, vmf->address, vmf->pte);
3087 unlock:
3088         pte_unmap_unlock(vmf->pte, vmf->ptl);
3089 out:
3090         return ret;
3091 out_nomap:
3092         mem_cgroup_cancel_charge(page, memcg, false);
3093         pte_unmap_unlock(vmf->pte, vmf->ptl);
3094 out_page:
3095         unlock_page(page);
3096 out_release:
3097         put_page(page);
3098         if (page != swapcache && swapcache) {
3099                 unlock_page(swapcache);
3100                 put_page(swapcache);
3101         }
3102         return ret;
3103 }
3104
3105 /*
3106  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3107  * but allow concurrent faults), and pte mapped but not yet locked.
3108  * We return with mmap_sem still held, but pte unmapped and unlocked.
3109  */
3110 static int do_anonymous_page(struct vm_fault *vmf)
3111 {
3112         struct vm_area_struct *vma = vmf->vma;
3113         struct mem_cgroup *memcg;
3114         struct page *page;
3115         int ret = 0;
3116         pte_t entry;
3117
3118         /* File mapping without ->vm_ops ? */
3119         if (vma->vm_flags & VM_SHARED)
3120                 return VM_FAULT_SIGBUS;
3121
3122         /*
3123          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3124          * pte_offset_map() on pmds where a huge pmd might be created
3125          * from a different thread.
3126          *
3127          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3128          * parallel threads are excluded by other means.
3129          *
3130          * Here we only have down_read(mmap_sem).
3131          */
3132         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3133                 return VM_FAULT_OOM;
3134
3135         /* See the comment in pte_alloc_one_map() */
3136         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3137                 return 0;
3138
3139         /* Use the zero-page for reads */
3140         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3141                         !mm_forbids_zeropage(vma->vm_mm)) {
3142                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3143                                                 vma->vm_page_prot));
3144                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3145                                 vmf->address, &vmf->ptl);
3146                 if (!pte_none(*vmf->pte))
3147                         goto unlock;
3148                 ret = check_stable_address_space(vma->vm_mm);
3149                 if (ret)
3150                         goto unlock;
3151                 /* Deliver the page fault to userland, check inside PT lock */
3152                 if (userfaultfd_missing(vma)) {
3153                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3154                         return handle_userfault(vmf, VM_UFFD_MISSING);
3155                 }
3156                 goto setpte;
3157         }
3158
3159         /* Allocate our own private page. */
3160         if (unlikely(anon_vma_prepare(vma)))
3161                 goto oom;
3162         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3163         if (!page)
3164                 goto oom;
3165
3166         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3167                 goto oom_free_page;
3168
3169         /*
3170          * The memory barrier inside __SetPageUptodate makes sure that
3171          * preceeding stores to the page contents become visible before
3172          * the set_pte_at() write.
3173          */
3174         __SetPageUptodate(page);
3175
3176         entry = mk_pte(page, vma->vm_page_prot);
3177         if (vma->vm_flags & VM_WRITE)
3178                 entry = pte_mkwrite(pte_mkdirty(entry));
3179
3180         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3181                         &vmf->ptl);
3182         if (!pte_none(*vmf->pte))
3183                 goto release;
3184
3185         ret = check_stable_address_space(vma->vm_mm);
3186         if (ret)
3187                 goto release;
3188
3189         /* Deliver the page fault to userland, check inside PT lock */
3190         if (userfaultfd_missing(vma)) {
3191                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3192                 mem_cgroup_cancel_charge(page, memcg, false);
3193                 put_page(page);
3194                 return handle_userfault(vmf, VM_UFFD_MISSING);
3195         }
3196
3197         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3198         page_add_new_anon_rmap(page, vma, vmf->address, false);
3199         mem_cgroup_commit_charge(page, memcg, false, false);
3200         lru_cache_add_active_or_unevictable(page, vma);
3201 setpte:
3202         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3203
3204         /* No need to invalidate - it was non-present before */
3205         update_mmu_cache(vma, vmf->address, vmf->pte);
3206 unlock:
3207         pte_unmap_unlock(vmf->pte, vmf->ptl);
3208         return ret;
3209 release:
3210         mem_cgroup_cancel_charge(page, memcg, false);
3211         put_page(page);
3212         goto unlock;
3213 oom_free_page:
3214         put_page(page);
3215 oom:
3216         return VM_FAULT_OOM;
3217 }
3218
3219 /*
3220  * The mmap_sem must have been held on entry, and may have been
3221  * released depending on flags and vma->vm_ops->fault() return value.
3222  * See filemap_fault() and __lock_page_retry().
3223  */
3224 static int __do_fault(struct vm_fault *vmf)
3225 {
3226         struct vm_area_struct *vma = vmf->vma;
3227         int ret;
3228
3229         ret = vma->vm_ops->fault(vmf);
3230         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3231                             VM_FAULT_DONE_COW)))
3232                 return ret;
3233
3234         if (unlikely(PageHWPoison(vmf->page))) {
3235                 if (ret & VM_FAULT_LOCKED)
3236                         unlock_page(vmf->page);
3237                 put_page(vmf->page);
3238                 vmf->page = NULL;
3239                 return VM_FAULT_HWPOISON;
3240         }
3241
3242         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3243                 lock_page(vmf->page);
3244         else
3245                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3246
3247         return ret;
3248 }
3249
3250 /*
3251  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3252  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3253  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3254  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3255  */
3256 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3257 {
3258         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3259 }
3260
3261 static int pte_alloc_one_map(struct vm_fault *vmf)
3262 {
3263         struct vm_area_struct *vma = vmf->vma;
3264
3265         if (!pmd_none(*vmf->pmd))
3266                 goto map_pte;
3267         if (vmf->prealloc_pte) {
3268                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3269                 if (unlikely(!pmd_none(*vmf->pmd))) {
3270                         spin_unlock(vmf->ptl);
3271                         goto map_pte;
3272                 }
3273
3274                 mm_inc_nr_ptes(vma->vm_mm);
3275                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3276                 spin_unlock(vmf->ptl);
3277                 vmf->prealloc_pte = NULL;
3278         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3279                 return VM_FAULT_OOM;
3280         }
3281 map_pte:
3282         /*
3283          * If a huge pmd materialized under us just retry later.  Use
3284          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3285          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3286          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3287          * running immediately after a huge pmd fault in a different thread of
3288          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3289          * All we have to ensure is that it is a regular pmd that we can walk
3290          * with pte_offset_map() and we can do that through an atomic read in
3291          * C, which is what pmd_trans_unstable() provides.
3292          */
3293         if (pmd_devmap_trans_unstable(vmf->pmd))
3294                 return VM_FAULT_NOPAGE;
3295
3296         /*
3297          * At this point we know that our vmf->pmd points to a page of ptes
3298          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3299          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3300          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3301          * be valid and we will re-check to make sure the vmf->pte isn't
3302          * pte_none() under vmf->ptl protection when we return to
3303          * alloc_set_pte().
3304          */
3305         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3306                         &vmf->ptl);
3307         return 0;
3308 }
3309
3310 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3311
3312 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3313 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3314                 unsigned long haddr)
3315 {
3316         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3317                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3318                 return false;
3319         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3320                 return false;
3321         return true;
3322 }
3323
3324 static void deposit_prealloc_pte(struct vm_fault *vmf)
3325 {
3326         struct vm_area_struct *vma = vmf->vma;
3327
3328         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3329         /*
3330          * We are going to consume the prealloc table,
3331          * count that as nr_ptes.
3332          */
3333         mm_inc_nr_ptes(vma->vm_mm);
3334         vmf->prealloc_pte = NULL;
3335 }
3336
3337 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3338 {
3339         struct vm_area_struct *vma = vmf->vma;
3340         bool write = vmf->flags & FAULT_FLAG_WRITE;
3341         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3342         pmd_t entry;
3343         int i, ret;
3344
3345         if (!transhuge_vma_suitable(vma, haddr))
3346                 return VM_FAULT_FALLBACK;
3347
3348         ret = VM_FAULT_FALLBACK;
3349         page = compound_head(page);
3350
3351         /*
3352          * Archs like ppc64 need additonal space to store information
3353          * related to pte entry. Use the preallocated table for that.
3354          */
3355         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3356                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3357                 if (!vmf->prealloc_pte)
3358                         return VM_FAULT_OOM;
3359                 smp_wmb(); /* See comment in __pte_alloc() */
3360         }
3361
3362         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3363         if (unlikely(!pmd_none(*vmf->pmd)))
3364                 goto out;
3365
3366         for (i = 0; i < HPAGE_PMD_NR; i++)
3367                 flush_icache_page(vma, page + i);
3368
3369         entry = mk_huge_pmd(page, vma->vm_page_prot);
3370         if (write)
3371                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3372
3373         add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3374         page_add_file_rmap(page, true);
3375         /*
3376          * deposit and withdraw with pmd lock held
3377          */
3378         if (arch_needs_pgtable_deposit())
3379                 deposit_prealloc_pte(vmf);
3380
3381         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3382
3383         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3384
3385         /* fault is handled */
3386         ret = 0;
3387         count_vm_event(THP_FILE_MAPPED);
3388 out:
3389         spin_unlock(vmf->ptl);
3390         return ret;
3391 }
3392 #else
3393 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3394 {
3395         BUILD_BUG();
3396         return 0;
3397 }
3398 #endif
3399
3400 /**
3401  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3402  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3403  *
3404  * @vmf: fault environment
3405  * @memcg: memcg to charge page (only for private mappings)
3406  * @page: page to map
3407  *
3408  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3409  * return.
3410  *
3411  * Target users are page handler itself and implementations of
3412  * vm_ops->map_pages.
3413  */
3414 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3415                 struct page *page)
3416 {
3417         struct vm_area_struct *vma = vmf->vma;
3418         bool write = vmf->flags & FAULT_FLAG_WRITE;
3419         pte_t entry;
3420         int ret;
3421
3422         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3423                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3424                 /* THP on COW? */
3425                 VM_BUG_ON_PAGE(memcg, page);
3426
3427                 ret = do_set_pmd(vmf, page);
3428                 if (ret != VM_FAULT_FALLBACK)
3429                         return ret;
3430         }
3431
3432         if (!vmf->pte) {
3433                 ret = pte_alloc_one_map(vmf);
3434                 if (ret)
3435                         return ret;
3436         }
3437
3438         /* Re-check under ptl */
3439         if (unlikely(!pte_none(*vmf->pte)))
3440                 return VM_FAULT_NOPAGE;
3441
3442         flush_icache_page(vma, page);
3443         entry = mk_pte(page, vma->vm_page_prot);
3444         if (write)
3445                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3446         /* copy-on-write page */
3447         if (write && !(vma->vm_flags & VM_SHARED)) {
3448                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3449                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3450                 mem_cgroup_commit_charge(page, memcg, false, false);
3451                 lru_cache_add_active_or_unevictable(page, vma);
3452         } else {
3453                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3454                 page_add_file_rmap(page, false);
3455         }
3456         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3457
3458         /* no need to invalidate: a not-present page won't be cached */
3459         update_mmu_cache(vma, vmf->address, vmf->pte);
3460
3461         return 0;
3462 }
3463
3464
3465 /**
3466  * finish_fault - finish page fault once we have prepared the page to fault
3467  *
3468  * @vmf: structure describing the fault
3469  *
3470  * This function handles all that is needed to finish a page fault once the
3471  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3472  * given page, adds reverse page mapping, handles memcg charges and LRU
3473  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3474  * error.
3475  *
3476  * The function expects the page to be locked and on success it consumes a
3477  * reference of a page being mapped (for the PTE which maps it).
3478  */
3479 int finish_fault(struct vm_fault *vmf)
3480 {
3481         struct page *page;
3482         int ret = 0;
3483
3484         /* Did we COW the page? */
3485         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3486             !(vmf->vma->vm_flags & VM_SHARED))
3487                 page = vmf->cow_page;
3488         else
3489                 page = vmf->page;
3490
3491         /*
3492          * check even for read faults because we might have lost our CoWed
3493          * page
3494          */
3495         if (!(vmf->vma->vm_flags & VM_SHARED))
3496                 ret = check_stable_address_space(vmf->vma->vm_mm);
3497         if (!ret)
3498                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3499         if (vmf->pte)
3500                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3501         return ret;
3502 }
3503
3504 static unsigned long fault_around_bytes __read_mostly =
3505         rounddown_pow_of_two(65536);
3506
3507 #ifdef CONFIG_DEBUG_FS
3508 static int fault_around_bytes_get(void *data, u64 *val)
3509 {
3510         *val = fault_around_bytes;
3511         return 0;
3512 }
3513
3514 /*
3515  * fault_around_bytes must be rounded down to the nearest page order as it's
3516  * what do_fault_around() expects to see.
3517  */
3518 static int fault_around_bytes_set(void *data, u64 val)
3519 {
3520         if (val / PAGE_SIZE > PTRS_PER_PTE)
3521                 return -EINVAL;
3522         if (val > PAGE_SIZE)
3523                 fault_around_bytes = rounddown_pow_of_two(val);
3524         else
3525                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3526         return 0;
3527 }
3528 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3529                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3530
3531 static int __init fault_around_debugfs(void)
3532 {
3533         void *ret;
3534
3535         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3536                         &fault_around_bytes_fops);
3537         if (!ret)
3538                 pr_warn("Failed to create fault_around_bytes in debugfs");
3539         return 0;
3540 }
3541 late_initcall(fault_around_debugfs);
3542 #endif
3543
3544 /*
3545  * do_fault_around() tries to map few pages around the fault address. The hope
3546  * is that the pages will be needed soon and this will lower the number of
3547  * faults to handle.
3548  *
3549  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3550  * not ready to be mapped: not up-to-date, locked, etc.
3551  *
3552  * This function is called with the page table lock taken. In the split ptlock
3553  * case the page table lock only protects only those entries which belong to
3554  * the page table corresponding to the fault address.
3555  *
3556  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3557  * only once.
3558  *
3559  * fault_around_bytes defines how many bytes we'll try to map.
3560  * do_fault_around() expects it to be set to a power of two less than or equal
3561  * to PTRS_PER_PTE.
3562  *
3563  * The virtual address of the area that we map is naturally aligned to
3564  * fault_around_bytes rounded down to the machine page size
3565  * (and therefore to page order).  This way it's easier to guarantee
3566  * that we don't cross page table boundaries.
3567  */
3568 static int do_fault_around(struct vm_fault *vmf)
3569 {
3570         unsigned long address = vmf->address, nr_pages, mask;
3571         pgoff_t start_pgoff = vmf->pgoff;
3572         pgoff_t end_pgoff;
3573         int off, ret = 0;
3574
3575         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3576         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3577
3578         vmf->address = max(address & mask, vmf->vma->vm_start);
3579         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3580         start_pgoff -= off;
3581
3582         /*
3583          *  end_pgoff is either the end of the page table, the end of
3584          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3585          */
3586         end_pgoff = start_pgoff -
3587                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3588                 PTRS_PER_PTE - 1;
3589         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3590                         start_pgoff + nr_pages - 1);
3591
3592         if (pmd_none(*vmf->pmd)) {
3593                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3594                                                   vmf->address);
3595                 if (!vmf->prealloc_pte)
3596                         goto out;
3597                 smp_wmb(); /* See comment in __pte_alloc() */
3598         }
3599
3600         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3601
3602         /* Huge page is mapped? Page fault is solved */
3603         if (pmd_trans_huge(*vmf->pmd)) {
3604                 ret = VM_FAULT_NOPAGE;
3605                 goto out;
3606         }
3607
3608         /* ->map_pages() haven't done anything useful. Cold page cache? */
3609         if (!vmf->pte)
3610                 goto out;
3611
3612         /* check if the page fault is solved */
3613         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3614         if (!pte_none(*vmf->pte))
3615                 ret = VM_FAULT_NOPAGE;
3616         pte_unmap_unlock(vmf->pte, vmf->ptl);
3617 out:
3618         vmf->address = address;
3619         vmf->pte = NULL;
3620         return ret;
3621 }
3622
3623 static int do_read_fault(struct vm_fault *vmf)
3624 {
3625         struct vm_area_struct *vma = vmf->vma;
3626         int ret = 0;
3627
3628         /*
3629          * Let's call ->map_pages() first and use ->fault() as fallback
3630          * if page by the offset is not ready to be mapped (cold cache or
3631          * something).
3632          */
3633         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3634                 ret = do_fault_around(vmf);
3635                 if (ret)
3636                         return ret;
3637         }
3638
3639         ret = __do_fault(vmf);
3640         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3641                 return ret;
3642
3643         ret |= finish_fault(vmf);
3644         unlock_page(vmf->page);
3645         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3646                 put_page(vmf->page);
3647         return ret;
3648 }
3649
3650 static int do_cow_fault(struct vm_fault *vmf)
3651 {
3652         struct vm_area_struct *vma = vmf->vma;
3653         int ret;
3654
3655         if (unlikely(anon_vma_prepare(vma)))
3656                 return VM_FAULT_OOM;
3657
3658         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3659         if (!vmf->cow_page)
3660                 return VM_FAULT_OOM;
3661
3662         if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3663                                 &vmf->memcg, false)) {
3664                 put_page(vmf->cow_page);
3665                 return VM_FAULT_OOM;
3666         }
3667
3668         ret = __do_fault(vmf);
3669         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3670                 goto uncharge_out;
3671         if (ret & VM_FAULT_DONE_COW)
3672                 return ret;
3673
3674         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3675         __SetPageUptodate(vmf->cow_page);
3676
3677         ret |= finish_fault(vmf);
3678         unlock_page(vmf->page);
3679         put_page(vmf->page);
3680         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3681                 goto uncharge_out;
3682         return ret;
3683 uncharge_out:
3684         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3685         put_page(vmf->cow_page);
3686         return ret;
3687 }
3688
3689 static int do_shared_fault(struct vm_fault *vmf)
3690 {
3691         struct vm_area_struct *vma = vmf->vma;
3692         int ret, tmp;
3693
3694         ret = __do_fault(vmf);
3695         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3696                 return ret;
3697
3698         /*
3699          * Check if the backing address space wants to know that the page is
3700          * about to become writable
3701          */
3702         if (vma->vm_ops->page_mkwrite) {
3703                 unlock_page(vmf->page);
3704                 tmp = do_page_mkwrite(vmf);
3705                 if (unlikely(!tmp ||
3706                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3707                         put_page(vmf->page);
3708                         return tmp;
3709                 }
3710         }
3711
3712         ret |= finish_fault(vmf);
3713         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3714                                         VM_FAULT_RETRY))) {
3715                 unlock_page(vmf->page);
3716                 put_page(vmf->page);
3717                 return ret;
3718         }
3719
3720         fault_dirty_shared_page(vma, vmf->page);
3721         return ret;
3722 }
3723
3724 /*
3725  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3726  * but allow concurrent faults).
3727  * The mmap_sem may have been released depending on flags and our
3728  * return value.  See filemap_fault() and __lock_page_or_retry().
3729  */
3730 static int do_fault(struct vm_fault *vmf)
3731 {
3732         struct vm_area_struct *vma = vmf->vma;
3733         int ret;
3734
3735         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3736         if (!vma->vm_ops->fault)
3737                 ret = VM_FAULT_SIGBUS;
3738         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3739                 ret = do_read_fault(vmf);
3740         else if (!(vma->vm_flags & VM_SHARED))
3741                 ret = do_cow_fault(vmf);
3742         else
3743                 ret = do_shared_fault(vmf);
3744
3745         /* preallocated pagetable is unused: free it */
3746         if (vmf->prealloc_pte) {
3747                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3748                 vmf->prealloc_pte = NULL;
3749         }
3750         return ret;
3751 }
3752
3753 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3754                                 unsigned long addr, int page_nid,
3755                                 int *flags)
3756 {
3757         get_page(page);
3758
3759         count_vm_numa_event(NUMA_HINT_FAULTS);
3760         if (page_nid == numa_node_id()) {
3761                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3762                 *flags |= TNF_FAULT_LOCAL;
3763         }
3764
3765         return mpol_misplaced(page, vma, addr);
3766 }
3767
3768 static int do_numa_page(struct vm_fault *vmf)
3769 {
3770         struct vm_area_struct *vma = vmf->vma;
3771         struct page *page = NULL;
3772         int page_nid = -1;
3773         int last_cpupid;
3774         int target_nid;
3775         bool migrated = false;
3776         pte_t pte;
3777         bool was_writable = pte_savedwrite(vmf->orig_pte);
3778         int flags = 0;
3779
3780         /*
3781          * The "pte" at this point cannot be used safely without
3782          * validation through pte_unmap_same(). It's of NUMA type but
3783          * the pfn may be screwed if the read is non atomic.
3784          */
3785         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3786         spin_lock(vmf->ptl);
3787         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3788                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3789                 goto out;
3790         }
3791
3792         /*
3793          * Make it present again, Depending on how arch implementes non
3794          * accessible ptes, some can allow access by kernel mode.
3795          */
3796         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3797         pte = pte_modify(pte, vma->vm_page_prot);
3798         pte = pte_mkyoung(pte);
3799         if (was_writable)
3800                 pte = pte_mkwrite(pte);
3801         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3802         update_mmu_cache(vma, vmf->address, vmf->pte);
3803
3804         page = vm_normal_page(vma, vmf->address, pte);
3805         if (!page) {
3806                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3807                 return 0;
3808         }
3809
3810         /* TODO: handle PTE-mapped THP */
3811         if (PageCompound(page)) {
3812                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3813                 return 0;
3814         }
3815
3816         /*
3817          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3818          * much anyway since they can be in shared cache state. This misses
3819          * the case where a mapping is writable but the process never writes
3820          * to it but pte_write gets cleared during protection updates and
3821          * pte_dirty has unpredictable behaviour between PTE scan updates,
3822          * background writeback, dirty balancing and application behaviour.
3823          */
3824         if (!pte_write(pte))
3825                 flags |= TNF_NO_GROUP;
3826
3827         /*
3828          * Flag if the page is shared between multiple address spaces. This
3829          * is later used when determining whether to group tasks together
3830          */
3831         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3832                 flags |= TNF_SHARED;
3833
3834         last_cpupid = page_cpupid_last(page);
3835         page_nid = page_to_nid(page);
3836         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3837                         &flags);
3838         pte_unmap_unlock(vmf->pte, vmf->ptl);
3839         if (target_nid == -1) {
3840                 put_page(page);
3841                 goto out;
3842         }
3843
3844         /* Migrate to the requested node */
3845         migrated = migrate_misplaced_page(page, vma, target_nid);
3846         if (migrated) {
3847                 page_nid = target_nid;
3848                 flags |= TNF_MIGRATED;
3849         } else
3850                 flags |= TNF_MIGRATE_FAIL;
3851
3852 out:
3853         if (page_nid != -1)
3854                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3855         return 0;
3856 }
3857
3858 static inline int create_huge_pmd(struct vm_fault *vmf)
3859 {
3860         if (vma_is_anonymous(vmf->vma))
3861                 return do_huge_pmd_anonymous_page(vmf);
3862         if (vmf->vma->vm_ops->huge_fault)
3863                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3864         return VM_FAULT_FALLBACK;
3865 }
3866
3867 /* `inline' is required to avoid gcc 4.1.2 build error */
3868 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3869 {
3870         if (vma_is_anonymous(vmf->vma))
3871                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3872         if (vmf->vma->vm_ops->huge_fault)
3873                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3874
3875         /* COW handled on pte level: split pmd */
3876         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3877         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3878
3879         return VM_FAULT_FALLBACK;
3880 }
3881
3882 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3883 {
3884         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3885 }
3886
3887 static int create_huge_pud(struct vm_fault *vmf)
3888 {
3889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3890         /* No support for anonymous transparent PUD pages yet */
3891         if (vma_is_anonymous(vmf->vma))
3892                 return VM_FAULT_FALLBACK;
3893         if (vmf->vma->vm_ops->huge_fault)
3894                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3895 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3896         return VM_FAULT_FALLBACK;
3897 }
3898
3899 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3900 {
3901 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3902         /* No support for anonymous transparent PUD pages yet */
3903         if (vma_is_anonymous(vmf->vma))
3904                 return VM_FAULT_FALLBACK;
3905         if (vmf->vma->vm_ops->huge_fault)
3906                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3908         return VM_FAULT_FALLBACK;
3909 }
3910
3911 /*
3912  * These routines also need to handle stuff like marking pages dirty
3913  * and/or accessed for architectures that don't do it in hardware (most
3914  * RISC architectures).  The early dirtying is also good on the i386.
3915  *
3916  * There is also a hook called "update_mmu_cache()" that architectures
3917  * with external mmu caches can use to update those (ie the Sparc or
3918  * PowerPC hashed page tables that act as extended TLBs).
3919  *
3920  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3921  * concurrent faults).
3922  *
3923  * The mmap_sem may have been released depending on flags and our return value.
3924  * See filemap_fault() and __lock_page_or_retry().
3925  */
3926 static int handle_pte_fault(struct vm_fault *vmf)
3927 {
3928         pte_t entry;
3929
3930         if (unlikely(pmd_none(*vmf->pmd))) {
3931                 /*
3932                  * Leave __pte_alloc() until later: because vm_ops->fault may
3933                  * want to allocate huge page, and if we expose page table
3934                  * for an instant, it will be difficult to retract from
3935                  * concurrent faults and from rmap lookups.
3936                  */
3937                 vmf->pte = NULL;
3938         } else {
3939                 /* See comment in pte_alloc_one_map() */
3940                 if (pmd_devmap_trans_unstable(vmf->pmd))
3941                         return 0;
3942                 /*
3943                  * A regular pmd is established and it can't morph into a huge
3944                  * pmd from under us anymore at this point because we hold the
3945                  * mmap_sem read mode and khugepaged takes it in write mode.
3946                  * So now it's safe to run pte_offset_map().
3947                  */
3948                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3949                 vmf->orig_pte = *vmf->pte;
3950
3951                 /*
3952                  * some architectures can have larger ptes than wordsize,
3953                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3954                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3955                  * accesses.  The code below just needs a consistent view
3956                  * for the ifs and we later double check anyway with the
3957                  * ptl lock held. So here a barrier will do.
3958                  */
3959                 barrier();
3960                 if (pte_none(vmf->orig_pte)) {
3961                         pte_unmap(vmf->pte);
3962                         vmf->pte = NULL;
3963                 }
3964         }
3965
3966         if (!vmf->pte) {
3967                 if (vma_is_anonymous(vmf->vma))
3968                         return do_anonymous_page(vmf);
3969                 else
3970                         return do_fault(vmf);
3971         }
3972
3973         if (!pte_present(vmf->orig_pte))
3974                 return do_swap_page(vmf);
3975
3976         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3977                 return do_numa_page(vmf);
3978
3979         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3980         spin_lock(vmf->ptl);
3981         entry = vmf->orig_pte;
3982         if (unlikely(!pte_same(*vmf->pte, entry)))
3983                 goto unlock;
3984         if (vmf->flags & FAULT_FLAG_WRITE) {
3985                 if (!pte_write(entry))
3986                         return do_wp_page(vmf);
3987                 entry = pte_mkdirty(entry);
3988         }
3989         entry = pte_mkyoung(entry);
3990         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3991                                 vmf->flags & FAULT_FLAG_WRITE)) {
3992                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3993         } else {
3994                 /*
3995                  * This is needed only for protection faults but the arch code
3996                  * is not yet telling us if this is a protection fault or not.
3997                  * This still avoids useless tlb flushes for .text page faults
3998                  * with threads.
3999                  */
4000                 if (vmf->flags & FAULT_FLAG_WRITE)
4001                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4002         }
4003 unlock:
4004         pte_unmap_unlock(vmf->pte, vmf->ptl);
4005         return 0;
4006 }
4007
4008 /*
4009  * By the time we get here, we already hold the mm semaphore
4010  *
4011  * The mmap_sem may have been released depending on flags and our
4012  * return value.  See filemap_fault() and __lock_page_or_retry().
4013  */
4014 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4015                 unsigned int flags)
4016 {
4017         struct vm_fault vmf = {
4018                 .vma = vma,
4019                 .address = address & PAGE_MASK,
4020                 .flags = flags,
4021                 .pgoff = linear_page_index(vma, address),
4022                 .gfp_mask = __get_fault_gfp_mask(vma),
4023         };
4024         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4025         struct mm_struct *mm = vma->vm_mm;
4026         pgd_t *pgd;
4027         p4d_t *p4d;
4028         int ret;
4029
4030         pgd = pgd_offset(mm, address);
4031         p4d = p4d_alloc(mm, pgd, address);
4032         if (!p4d)
4033                 return VM_FAULT_OOM;
4034
4035         vmf.pud = pud_alloc(mm, p4d, address);
4036         if (!vmf.pud)
4037                 return VM_FAULT_OOM;
4038         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4039                 ret = create_huge_pud(&vmf);
4040                 if (!(ret & VM_FAULT_FALLBACK))
4041                         return ret;
4042         } else {
4043                 pud_t orig_pud = *vmf.pud;
4044
4045                 barrier();
4046                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4047
4048                         /* NUMA case for anonymous PUDs would go here */
4049
4050                         if (dirty && !pud_write(orig_pud)) {
4051                                 ret = wp_huge_pud(&vmf, orig_pud);
4052                                 if (!(ret & VM_FAULT_FALLBACK))
4053                                         return ret;
4054                         } else {
4055                                 huge_pud_set_accessed(&vmf, orig_pud);
4056                                 return 0;
4057                         }
4058                 }
4059         }
4060
4061         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4062         if (!vmf.pmd)
4063                 return VM_FAULT_OOM;
4064         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4065                 ret = create_huge_pmd(&vmf);
4066                 if (!(ret & VM_FAULT_FALLBACK))
4067                         return ret;
4068         } else {
4069                 pmd_t orig_pmd = *vmf.pmd;
4070
4071                 barrier();
4072                 if (unlikely(is_swap_pmd(orig_pmd))) {
4073                         VM_BUG_ON(thp_migration_supported() &&
4074                                           !is_pmd_migration_entry(orig_pmd));
4075                         if (is_pmd_migration_entry(orig_pmd))
4076                                 pmd_migration_entry_wait(mm, vmf.pmd);
4077                         return 0;
4078                 }
4079                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4080                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4081                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4082
4083                         if (dirty && !pmd_write(orig_pmd)) {
4084                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4085                                 if (!(ret & VM_FAULT_FALLBACK))
4086                                         return ret;
4087                         } else {
4088                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4089                                 return 0;
4090                         }
4091                 }
4092         }
4093
4094         return handle_pte_fault(&vmf);
4095 }
4096
4097 /*
4098  * By the time we get here, we already hold the mm semaphore
4099  *
4100  * The mmap_sem may have been released depending on flags and our
4101  * return value.  See filemap_fault() and __lock_page_or_retry().
4102  */
4103 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4104                 unsigned int flags)
4105 {
4106         int ret;
4107
4108         __set_current_state(TASK_RUNNING);
4109
4110         count_vm_event(PGFAULT);
4111         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4112
4113         /* do counter updates before entering really critical section. */
4114         check_sync_rss_stat(current);
4115
4116         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4117                                             flags & FAULT_FLAG_INSTRUCTION,
4118                                             flags & FAULT_FLAG_REMOTE))
4119                 return VM_FAULT_SIGSEGV;
4120
4121         /*
4122          * Enable the memcg OOM handling for faults triggered in user
4123          * space.  Kernel faults are handled more gracefully.
4124          */
4125         if (flags & FAULT_FLAG_USER)
4126                 mem_cgroup_oom_enable();
4127
4128         if (unlikely(is_vm_hugetlb_page(vma)))
4129                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4130         else
4131                 ret = __handle_mm_fault(vma, address, flags);
4132
4133         if (flags & FAULT_FLAG_USER) {
4134                 mem_cgroup_oom_disable();
4135                 /*
4136                  * The task may have entered a memcg OOM situation but
4137                  * if the allocation error was handled gracefully (no
4138                  * VM_FAULT_OOM), there is no need to kill anything.
4139                  * Just clean up the OOM state peacefully.
4140                  */
4141                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4142                         mem_cgroup_oom_synchronize(false);
4143         }
4144
4145         return ret;
4146 }
4147 EXPORT_SYMBOL_GPL(handle_mm_fault);
4148
4149 #ifndef __PAGETABLE_P4D_FOLDED
4150 /*
4151  * Allocate p4d page table.
4152  * We've already handled the fast-path in-line.
4153  */
4154 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4155 {
4156         p4d_t *new = p4d_alloc_one(mm, address);
4157         if (!new)
4158                 return -ENOMEM;
4159
4160         smp_wmb(); /* See comment in __pte_alloc */
4161
4162         spin_lock(&mm->page_table_lock);
4163         if (pgd_present(*pgd))          /* Another has populated it */
4164                 p4d_free(mm, new);
4165         else
4166                 pgd_populate(mm, pgd, new);
4167         spin_unlock(&mm->page_table_lock);
4168         return 0;
4169 }
4170 #endif /* __PAGETABLE_P4D_FOLDED */
4171
4172 #ifndef __PAGETABLE_PUD_FOLDED
4173 /*
4174  * Allocate page upper directory.
4175  * We've already handled the fast-path in-line.
4176  */
4177 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4178 {
4179         pud_t *new = pud_alloc_one(mm, address);
4180         if (!new)
4181                 return -ENOMEM;
4182
4183         smp_wmb(); /* See comment in __pte_alloc */
4184
4185         spin_lock(&mm->page_table_lock);
4186 #ifndef __ARCH_HAS_5LEVEL_HACK
4187         if (!p4d_present(*p4d)) {
4188                 mm_inc_nr_puds(mm);
4189                 p4d_populate(mm, p4d, new);
4190         } else  /* Another has populated it */
4191                 pud_free(mm, new);
4192 #else
4193         if (!pgd_present(*p4d)) {
4194                 mm_inc_nr_puds(mm);
4195                 pgd_populate(mm, p4d, new);
4196         } else  /* Another has populated it */
4197                 pud_free(mm, new);
4198 #endif /* __ARCH_HAS_5LEVEL_HACK */
4199         spin_unlock(&mm->page_table_lock);
4200         return 0;
4201 }
4202 #endif /* __PAGETABLE_PUD_FOLDED */
4203
4204 #ifndef __PAGETABLE_PMD_FOLDED
4205 /*
4206  * Allocate page middle directory.
4207  * We've already handled the fast-path in-line.
4208  */
4209 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4210 {
4211         spinlock_t *ptl;
4212         pmd_t *new = pmd_alloc_one(mm, address);
4213         if (!new)
4214                 return -ENOMEM;
4215
4216         smp_wmb(); /* See comment in __pte_alloc */
4217
4218         ptl = pud_lock(mm, pud);
4219 #ifndef __ARCH_HAS_4LEVEL_HACK
4220         if (!pud_present(*pud)) {
4221                 mm_inc_nr_pmds(mm);
4222                 pud_populate(mm, pud, new);
4223         } else  /* Another has populated it */
4224                 pmd_free(mm, new);
4225 #else
4226         if (!pgd_present(*pud)) {
4227                 mm_inc_nr_pmds(mm);
4228                 pgd_populate(mm, pud, new);
4229         } else /* Another has populated it */
4230                 pmd_free(mm, new);
4231 #endif /* __ARCH_HAS_4LEVEL_HACK */
4232         spin_unlock(ptl);
4233         return 0;
4234 }
4235 #endif /* __PAGETABLE_PMD_FOLDED */
4236
4237 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4238                             unsigned long *start, unsigned long *end,
4239                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4240 {
4241         pgd_t *pgd;
4242         p4d_t *p4d;
4243         pud_t *pud;
4244         pmd_t *pmd;
4245         pte_t *ptep;
4246
4247         pgd = pgd_offset(mm, address);
4248         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4249                 goto out;
4250
4251         p4d = p4d_offset(pgd, address);
4252         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4253                 goto out;
4254
4255         pud = pud_offset(p4d, address);
4256         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4257                 goto out;
4258
4259         pmd = pmd_offset(pud, address);
4260         VM_BUG_ON(pmd_trans_huge(*pmd));
4261
4262         if (pmd_huge(*pmd)) {
4263                 if (!pmdpp)
4264                         goto out;
4265
4266                 if (start && end) {
4267                         *start = address & PMD_MASK;
4268                         *end = *start + PMD_SIZE;
4269                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4270                 }
4271                 *ptlp = pmd_lock(mm, pmd);
4272                 if (pmd_huge(*pmd)) {
4273                         *pmdpp = pmd;
4274                         return 0;
4275                 }
4276                 spin_unlock(*ptlp);
4277                 if (start && end)
4278                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4279         }
4280
4281         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4282                 goto out;
4283
4284         if (start && end) {
4285                 *start = address & PAGE_MASK;
4286                 *end = *start + PAGE_SIZE;
4287                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4288         }
4289         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4290         if (!pte_present(*ptep))
4291                 goto unlock;
4292         *ptepp = ptep;
4293         return 0;
4294 unlock:
4295         pte_unmap_unlock(ptep, *ptlp);
4296         if (start && end)
4297                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4298 out:
4299         return -EINVAL;
4300 }
4301
4302 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4303                              pte_t **ptepp, spinlock_t **ptlp)
4304 {
4305         int res;
4306
4307         /* (void) is needed to make gcc happy */
4308         (void) __cond_lock(*ptlp,
4309                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4310                                                     ptepp, NULL, ptlp)));
4311         return res;
4312 }
4313
4314 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4315                              unsigned long *start, unsigned long *end,
4316                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4317 {
4318         int res;
4319
4320         /* (void) is needed to make gcc happy */
4321         (void) __cond_lock(*ptlp,
4322                            !(res = __follow_pte_pmd(mm, address, start, end,
4323                                                     ptepp, pmdpp, ptlp)));
4324         return res;
4325 }
4326 EXPORT_SYMBOL(follow_pte_pmd);
4327
4328 /**
4329  * follow_pfn - look up PFN at a user virtual address
4330  * @vma: memory mapping
4331  * @address: user virtual address
4332  * @pfn: location to store found PFN
4333  *
4334  * Only IO mappings and raw PFN mappings are allowed.
4335  *
4336  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4337  */
4338 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4339         unsigned long *pfn)
4340 {
4341         int ret = -EINVAL;
4342         spinlock_t *ptl;
4343         pte_t *ptep;
4344
4345         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4346                 return ret;
4347
4348         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4349         if (ret)
4350                 return ret;
4351         *pfn = pte_pfn(*ptep);
4352         pte_unmap_unlock(ptep, ptl);
4353         return 0;
4354 }
4355 EXPORT_SYMBOL(follow_pfn);
4356
4357 #ifdef CONFIG_HAVE_IOREMAP_PROT
4358 int follow_phys(struct vm_area_struct *vma,
4359                 unsigned long address, unsigned int flags,
4360                 unsigned long *prot, resource_size_t *phys)
4361 {
4362         int ret = -EINVAL;
4363         pte_t *ptep, pte;
4364         spinlock_t *ptl;
4365
4366         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4367                 goto out;
4368
4369         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4370                 goto out;
4371         pte = *ptep;
4372
4373         if ((flags & FOLL_WRITE) && !pte_write(pte))
4374                 goto unlock;
4375
4376         *prot = pgprot_val(pte_pgprot(pte));
4377         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4378
4379         ret = 0;
4380 unlock:
4381         pte_unmap_unlock(ptep, ptl);
4382 out:
4383         return ret;
4384 }
4385
4386 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4387                         void *buf, int len, int write)
4388 {
4389         resource_size_t phys_addr;
4390         unsigned long prot = 0;
4391         void __iomem *maddr;
4392         int offset = addr & (PAGE_SIZE-1);
4393
4394         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4395                 return -EINVAL;
4396
4397         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4398         if (write)
4399                 memcpy_toio(maddr + offset, buf, len);
4400         else
4401                 memcpy_fromio(buf, maddr + offset, len);
4402         iounmap(maddr);
4403
4404         return len;
4405 }
4406 EXPORT_SYMBOL_GPL(generic_access_phys);
4407 #endif
4408
4409 /*
4410  * Access another process' address space as given in mm.  If non-NULL, use the
4411  * given task for page fault accounting.
4412  */
4413 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4414                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4415 {
4416         struct vm_area_struct *vma;
4417         void *old_buf = buf;
4418         int write = gup_flags & FOLL_WRITE;
4419
4420         down_read(&mm->mmap_sem);
4421         /* ignore errors, just check how much was successfully transferred */
4422         while (len) {
4423                 int bytes, ret, offset;
4424                 void *maddr;
4425                 struct page *page = NULL;
4426
4427                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4428                                 gup_flags, &page, &vma, NULL);
4429                 if (ret <= 0) {
4430 #ifndef CONFIG_HAVE_IOREMAP_PROT
4431                         break;
4432 #else
4433                         /*
4434                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4435                          * we can access using slightly different code.
4436                          */
4437                         vma = find_vma(mm, addr);
4438                         if (!vma || vma->vm_start > addr)
4439                                 break;
4440                         if (vma->vm_ops && vma->vm_ops->access)
4441                                 ret = vma->vm_ops->access(vma, addr, buf,
4442                                                           len, write);
4443                         if (ret <= 0)
4444                                 break;
4445                         bytes = ret;
4446 #endif
4447                 } else {
4448                         bytes = len;
4449                         offset = addr & (PAGE_SIZE-1);
4450                         if (bytes > PAGE_SIZE-offset)
4451                                 bytes = PAGE_SIZE-offset;
4452
4453                         maddr = kmap(page);
4454                         if (write) {
4455                                 copy_to_user_page(vma, page, addr,
4456                                                   maddr + offset, buf, bytes);
4457                                 set_page_dirty_lock(page);
4458                         } else {
4459                                 copy_from_user_page(vma, page, addr,
4460                                                     buf, maddr + offset, bytes);
4461                         }
4462                         kunmap(page);
4463                         put_page(page);
4464                 }
4465                 len -= bytes;
4466                 buf += bytes;
4467                 addr += bytes;
4468         }
4469         up_read(&mm->mmap_sem);
4470
4471         return buf - old_buf;
4472 }
4473
4474 /**
4475  * access_remote_vm - access another process' address space
4476  * @mm:         the mm_struct of the target address space
4477  * @addr:       start address to access
4478  * @buf:        source or destination buffer
4479  * @len:        number of bytes to transfer
4480  * @gup_flags:  flags modifying lookup behaviour
4481  *
4482  * The caller must hold a reference on @mm.
4483  */
4484 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4485                 void *buf, int len, unsigned int gup_flags)
4486 {
4487         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4488 }
4489
4490 /*
4491  * Access another process' address space.
4492  * Source/target buffer must be kernel space,
4493  * Do not walk the page table directly, use get_user_pages
4494  */
4495 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4496                 void *buf, int len, unsigned int gup_flags)
4497 {
4498         struct mm_struct *mm;
4499         int ret;
4500
4501         mm = get_task_mm(tsk);
4502         if (!mm)
4503                 return 0;
4504
4505         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4506
4507         mmput(mm);
4508
4509         return ret;
4510 }
4511 EXPORT_SYMBOL_GPL(access_process_vm);
4512
4513 /*
4514  * Print the name of a VMA.
4515  */
4516 void print_vma_addr(char *prefix, unsigned long ip)
4517 {
4518         struct mm_struct *mm = current->mm;
4519         struct vm_area_struct *vma;
4520
4521         /*
4522          * we might be running from an atomic context so we cannot sleep
4523          */
4524         if (!down_read_trylock(&mm->mmap_sem))
4525                 return;
4526
4527         vma = find_vma(mm, ip);
4528         if (vma && vma->vm_file) {
4529                 struct file *f = vma->vm_file;
4530                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4531                 if (buf) {
4532                         char *p;
4533
4534                         p = file_path(f, buf, PAGE_SIZE);
4535                         if (IS_ERR(p))
4536                                 p = "?";
4537                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4538                                         vma->vm_start,
4539                                         vma->vm_end - vma->vm_start);
4540                         free_page((unsigned long)buf);
4541                 }
4542         }
4543         up_read(&mm->mmap_sem);
4544 }
4545
4546 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4547 void __might_fault(const char *file, int line)
4548 {
4549         /*
4550          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4551          * holding the mmap_sem, this is safe because kernel memory doesn't
4552          * get paged out, therefore we'll never actually fault, and the
4553          * below annotations will generate false positives.
4554          */
4555         if (uaccess_kernel())
4556                 return;
4557         if (pagefault_disabled())
4558                 return;
4559         __might_sleep(file, line, 0);
4560 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4561         if (current->mm)
4562                 might_lock_read(&current->mm->mmap_sem);
4563 #endif
4564 }
4565 EXPORT_SYMBOL(__might_fault);
4566 #endif
4567
4568 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4569 static void clear_gigantic_page(struct page *page,
4570                                 unsigned long addr,
4571                                 unsigned int pages_per_huge_page)
4572 {
4573         int i;
4574         struct page *p = page;
4575
4576         might_sleep();
4577         for (i = 0; i < pages_per_huge_page;
4578              i++, p = mem_map_next(p, page, i)) {
4579                 cond_resched();
4580                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4581         }
4582 }
4583 void clear_huge_page(struct page *page,
4584                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4585 {
4586         int i, n, base, l;
4587         unsigned long addr = addr_hint &
4588                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4589
4590         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4591                 clear_gigantic_page(page, addr, pages_per_huge_page);
4592                 return;
4593         }
4594
4595         /* Clear sub-page to access last to keep its cache lines hot */
4596         might_sleep();
4597         n = (addr_hint - addr) / PAGE_SIZE;
4598         if (2 * n <= pages_per_huge_page) {
4599                 /* If sub-page to access in first half of huge page */
4600                 base = 0;
4601                 l = n;
4602                 /* Clear sub-pages at the end of huge page */
4603                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4604                         cond_resched();
4605                         clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4606                 }
4607         } else {
4608                 /* If sub-page to access in second half of huge page */
4609                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4610                 l = pages_per_huge_page - n;
4611                 /* Clear sub-pages at the begin of huge page */
4612                 for (i = 0; i < base; i++) {
4613                         cond_resched();
4614                         clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4615                 }
4616         }
4617         /*
4618          * Clear remaining sub-pages in left-right-left-right pattern
4619          * towards the sub-page to access
4620          */
4621         for (i = 0; i < l; i++) {
4622                 int left_idx = base + i;
4623                 int right_idx = base + 2 * l - 1 - i;
4624
4625                 cond_resched();
4626                 clear_user_highpage(page + left_idx,
4627                                     addr + left_idx * PAGE_SIZE);
4628                 cond_resched();
4629                 clear_user_highpage(page + right_idx,
4630                                     addr + right_idx * PAGE_SIZE);
4631         }
4632 }
4633
4634 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4635                                     unsigned long addr,
4636                                     struct vm_area_struct *vma,
4637                                     unsigned int pages_per_huge_page)
4638 {
4639         int i;
4640         struct page *dst_base = dst;
4641         struct page *src_base = src;
4642
4643         for (i = 0; i < pages_per_huge_page; ) {
4644                 cond_resched();
4645                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4646
4647                 i++;
4648                 dst = mem_map_next(dst, dst_base, i);
4649                 src = mem_map_next(src, src_base, i);
4650         }
4651 }
4652
4653 void copy_user_huge_page(struct page *dst, struct page *src,
4654                          unsigned long addr, struct vm_area_struct *vma,
4655                          unsigned int pages_per_huge_page)
4656 {
4657         int i;
4658
4659         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4660                 copy_user_gigantic_page(dst, src, addr, vma,
4661                                         pages_per_huge_page);
4662                 return;
4663         }
4664
4665         might_sleep();
4666         for (i = 0; i < pages_per_huge_page; i++) {
4667                 cond_resched();
4668                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4669         }
4670 }
4671
4672 long copy_huge_page_from_user(struct page *dst_page,
4673                                 const void __user *usr_src,
4674                                 unsigned int pages_per_huge_page,
4675                                 bool allow_pagefault)
4676 {
4677         void *src = (void *)usr_src;
4678         void *page_kaddr;
4679         unsigned long i, rc = 0;
4680         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4681
4682         for (i = 0; i < pages_per_huge_page; i++) {
4683                 if (allow_pagefault)
4684                         page_kaddr = kmap(dst_page + i);
4685                 else
4686                         page_kaddr = kmap_atomic(dst_page + i);
4687                 rc = copy_from_user(page_kaddr,
4688                                 (const void __user *)(src + i * PAGE_SIZE),
4689                                 PAGE_SIZE);
4690                 if (allow_pagefault)
4691                         kunmap(dst_page + i);
4692                 else
4693                         kunmap_atomic(page_kaddr);
4694
4695                 ret_val -= (PAGE_SIZE - rc);
4696                 if (rc)
4697                         break;
4698
4699                 cond_resched();
4700         }
4701         return ret_val;
4702 }
4703 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4704
4705 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4706
4707 static struct kmem_cache *page_ptl_cachep;
4708
4709 void __init ptlock_cache_init(void)
4710 {
4711         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4712                         SLAB_PANIC, NULL);
4713 }
4714
4715 bool ptlock_alloc(struct page *page)
4716 {
4717         spinlock_t *ptl;
4718
4719         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4720         if (!ptl)
4721                 return false;
4722         page->ptl = ptl;
4723         return true;
4724 }
4725
4726 void ptlock_free(struct page *page)
4727 {
4728         kmem_cache_free(page_ptl_cachep, page->ptl);
4729 }
4730 #endif