]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/memory.c
mm: remove vm_insert_mixed()
[linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121         randomize_va_space = 0;
122         return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136         zero_pfn = page_to_pfn(ZERO_PAGE(0));
137         return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146         int i;
147
148         for (i = 0; i < NR_MM_COUNTERS; i++) {
149                 if (current->rss_stat.count[i]) {
150                         add_mm_counter(mm, i, current->rss_stat.count[i]);
151                         current->rss_stat.count[i] = 0;
152                 }
153         }
154         current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159         struct task_struct *task = current;
160
161         if (likely(task->mm == mm))
162                 task->rss_stat.count[member] += val;
163         else
164                 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH  (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173         if (unlikely(task != current))
174                 return;
175         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176                 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 /*
190  * Note: this doesn't free the actual pages themselves. That
191  * has been handled earlier when unmapping all the memory regions.
192  */
193 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
194                            unsigned long addr)
195 {
196         pgtable_t token = pmd_pgtable(*pmd);
197         pmd_clear(pmd);
198         pte_free_tlb(tlb, token, addr);
199         mm_dec_nr_ptes(tlb->mm);
200 }
201
202 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
203                                 unsigned long addr, unsigned long end,
204                                 unsigned long floor, unsigned long ceiling)
205 {
206         pmd_t *pmd;
207         unsigned long next;
208         unsigned long start;
209
210         start = addr;
211         pmd = pmd_offset(pud, addr);
212         do {
213                 next = pmd_addr_end(addr, end);
214                 if (pmd_none_or_clear_bad(pmd))
215                         continue;
216                 free_pte_range(tlb, pmd, addr);
217         } while (pmd++, addr = next, addr != end);
218
219         start &= PUD_MASK;
220         if (start < floor)
221                 return;
222         if (ceiling) {
223                 ceiling &= PUD_MASK;
224                 if (!ceiling)
225                         return;
226         }
227         if (end - 1 > ceiling - 1)
228                 return;
229
230         pmd = pmd_offset(pud, start);
231         pud_clear(pud);
232         pmd_free_tlb(tlb, pmd, start);
233         mm_dec_nr_pmds(tlb->mm);
234 }
235
236 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
237                                 unsigned long addr, unsigned long end,
238                                 unsigned long floor, unsigned long ceiling)
239 {
240         pud_t *pud;
241         unsigned long next;
242         unsigned long start;
243
244         start = addr;
245         pud = pud_offset(p4d, addr);
246         do {
247                 next = pud_addr_end(addr, end);
248                 if (pud_none_or_clear_bad(pud))
249                         continue;
250                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
251         } while (pud++, addr = next, addr != end);
252
253         start &= P4D_MASK;
254         if (start < floor)
255                 return;
256         if (ceiling) {
257                 ceiling &= P4D_MASK;
258                 if (!ceiling)
259                         return;
260         }
261         if (end - 1 > ceiling - 1)
262                 return;
263
264         pud = pud_offset(p4d, start);
265         p4d_clear(p4d);
266         pud_free_tlb(tlb, pud, start);
267         mm_dec_nr_puds(tlb->mm);
268 }
269
270 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
271                                 unsigned long addr, unsigned long end,
272                                 unsigned long floor, unsigned long ceiling)
273 {
274         p4d_t *p4d;
275         unsigned long next;
276         unsigned long start;
277
278         start = addr;
279         p4d = p4d_offset(pgd, addr);
280         do {
281                 next = p4d_addr_end(addr, end);
282                 if (p4d_none_or_clear_bad(p4d))
283                         continue;
284                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
285         } while (p4d++, addr = next, addr != end);
286
287         start &= PGDIR_MASK;
288         if (start < floor)
289                 return;
290         if (ceiling) {
291                 ceiling &= PGDIR_MASK;
292                 if (!ceiling)
293                         return;
294         }
295         if (end - 1 > ceiling - 1)
296                 return;
297
298         p4d = p4d_offset(pgd, start);
299         pgd_clear(pgd);
300         p4d_free_tlb(tlb, p4d, start);
301 }
302
303 /*
304  * This function frees user-level page tables of a process.
305  */
306 void free_pgd_range(struct mmu_gather *tlb,
307                         unsigned long addr, unsigned long end,
308                         unsigned long floor, unsigned long ceiling)
309 {
310         pgd_t *pgd;
311         unsigned long next;
312
313         /*
314          * The next few lines have given us lots of grief...
315          *
316          * Why are we testing PMD* at this top level?  Because often
317          * there will be no work to do at all, and we'd prefer not to
318          * go all the way down to the bottom just to discover that.
319          *
320          * Why all these "- 1"s?  Because 0 represents both the bottom
321          * of the address space and the top of it (using -1 for the
322          * top wouldn't help much: the masks would do the wrong thing).
323          * The rule is that addr 0 and floor 0 refer to the bottom of
324          * the address space, but end 0 and ceiling 0 refer to the top
325          * Comparisons need to use "end - 1" and "ceiling - 1" (though
326          * that end 0 case should be mythical).
327          *
328          * Wherever addr is brought up or ceiling brought down, we must
329          * be careful to reject "the opposite 0" before it confuses the
330          * subsequent tests.  But what about where end is brought down
331          * by PMD_SIZE below? no, end can't go down to 0 there.
332          *
333          * Whereas we round start (addr) and ceiling down, by different
334          * masks at different levels, in order to test whether a table
335          * now has no other vmas using it, so can be freed, we don't
336          * bother to round floor or end up - the tests don't need that.
337          */
338
339         addr &= PMD_MASK;
340         if (addr < floor) {
341                 addr += PMD_SIZE;
342                 if (!addr)
343                         return;
344         }
345         if (ceiling) {
346                 ceiling &= PMD_MASK;
347                 if (!ceiling)
348                         return;
349         }
350         if (end - 1 > ceiling - 1)
351                 end -= PMD_SIZE;
352         if (addr > end - 1)
353                 return;
354         /*
355          * We add page table cache pages with PAGE_SIZE,
356          * (see pte_free_tlb()), flush the tlb if we need
357          */
358         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
359         pgd = pgd_offset(tlb->mm, addr);
360         do {
361                 next = pgd_addr_end(addr, end);
362                 if (pgd_none_or_clear_bad(pgd))
363                         continue;
364                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
365         } while (pgd++, addr = next, addr != end);
366 }
367
368 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
369                 unsigned long floor, unsigned long ceiling)
370 {
371         while (vma) {
372                 struct vm_area_struct *next = vma->vm_next;
373                 unsigned long addr = vma->vm_start;
374
375                 /*
376                  * Hide vma from rmap and truncate_pagecache before freeing
377                  * pgtables
378                  */
379                 unlink_anon_vmas(vma);
380                 unlink_file_vma(vma);
381
382                 if (is_vm_hugetlb_page(vma)) {
383                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
384                                 floor, next ? next->vm_start : ceiling);
385                 } else {
386                         /*
387                          * Optimization: gather nearby vmas into one call down
388                          */
389                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
390                                && !is_vm_hugetlb_page(next)) {
391                                 vma = next;
392                                 next = vma->vm_next;
393                                 unlink_anon_vmas(vma);
394                                 unlink_file_vma(vma);
395                         }
396                         free_pgd_range(tlb, addr, vma->vm_end,
397                                 floor, next ? next->vm_start : ceiling);
398                 }
399                 vma = next;
400         }
401 }
402
403 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
404 {
405         spinlock_t *ptl;
406         pgtable_t new = pte_alloc_one(mm, address);
407         if (!new)
408                 return -ENOMEM;
409
410         /*
411          * Ensure all pte setup (eg. pte page lock and page clearing) are
412          * visible before the pte is made visible to other CPUs by being
413          * put into page tables.
414          *
415          * The other side of the story is the pointer chasing in the page
416          * table walking code (when walking the page table without locking;
417          * ie. most of the time). Fortunately, these data accesses consist
418          * of a chain of data-dependent loads, meaning most CPUs (alpha
419          * being the notable exception) will already guarantee loads are
420          * seen in-order. See the alpha page table accessors for the
421          * smp_read_barrier_depends() barriers in page table walking code.
422          */
423         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
424
425         ptl = pmd_lock(mm, pmd);
426         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
427                 mm_inc_nr_ptes(mm);
428                 pmd_populate(mm, pmd, new);
429                 new = NULL;
430         }
431         spin_unlock(ptl);
432         if (new)
433                 pte_free(mm, new);
434         return 0;
435 }
436
437 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
438 {
439         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
440         if (!new)
441                 return -ENOMEM;
442
443         smp_wmb(); /* See comment in __pte_alloc */
444
445         spin_lock(&init_mm.page_table_lock);
446         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
447                 pmd_populate_kernel(&init_mm, pmd, new);
448                 new = NULL;
449         }
450         spin_unlock(&init_mm.page_table_lock);
451         if (new)
452                 pte_free_kernel(&init_mm, new);
453         return 0;
454 }
455
456 static inline void init_rss_vec(int *rss)
457 {
458         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
459 }
460
461 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
462 {
463         int i;
464
465         if (current->mm == mm)
466                 sync_mm_rss(mm);
467         for (i = 0; i < NR_MM_COUNTERS; i++)
468                 if (rss[i])
469                         add_mm_counter(mm, i, rss[i]);
470 }
471
472 /*
473  * This function is called to print an error when a bad pte
474  * is found. For example, we might have a PFN-mapped pte in
475  * a region that doesn't allow it.
476  *
477  * The calling function must still handle the error.
478  */
479 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480                           pte_t pte, struct page *page)
481 {
482         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
483         p4d_t *p4d = p4d_offset(pgd, addr);
484         pud_t *pud = pud_offset(p4d, addr);
485         pmd_t *pmd = pmd_offset(pud, addr);
486         struct address_space *mapping;
487         pgoff_t index;
488         static unsigned long resume;
489         static unsigned long nr_shown;
490         static unsigned long nr_unshown;
491
492         /*
493          * Allow a burst of 60 reports, then keep quiet for that minute;
494          * or allow a steady drip of one report per second.
495          */
496         if (nr_shown == 60) {
497                 if (time_before(jiffies, resume)) {
498                         nr_unshown++;
499                         return;
500                 }
501                 if (nr_unshown) {
502                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
503                                  nr_unshown);
504                         nr_unshown = 0;
505                 }
506                 nr_shown = 0;
507         }
508         if (nr_shown++ == 0)
509                 resume = jiffies + 60 * HZ;
510
511         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512         index = linear_page_index(vma, addr);
513
514         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
515                  current->comm,
516                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
517         if (page)
518                 dump_page(page, "bad pte");
519         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
520                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
521         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
522                  vma->vm_file,
523                  vma->vm_ops ? vma->vm_ops->fault : NULL,
524                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
525                  mapping ? mapping->a_ops->readpage : NULL);
526         dump_stack();
527         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
528 }
529
530 /*
531  * vm_normal_page -- This function gets the "struct page" associated with a pte.
532  *
533  * "Special" mappings do not wish to be associated with a "struct page" (either
534  * it doesn't exist, or it exists but they don't want to touch it). In this
535  * case, NULL is returned here. "Normal" mappings do have a struct page.
536  *
537  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
538  * pte bit, in which case this function is trivial. Secondly, an architecture
539  * may not have a spare pte bit, which requires a more complicated scheme,
540  * described below.
541  *
542  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
543  * special mapping (even if there are underlying and valid "struct pages").
544  * COWed pages of a VM_PFNMAP are always normal.
545  *
546  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
547  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
548  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
549  * mapping will always honor the rule
550  *
551  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
552  *
553  * And for normal mappings this is false.
554  *
555  * This restricts such mappings to be a linear translation from virtual address
556  * to pfn. To get around this restriction, we allow arbitrary mappings so long
557  * as the vma is not a COW mapping; in that case, we know that all ptes are
558  * special (because none can have been COWed).
559  *
560  *
561  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
562  *
563  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
564  * page" backing, however the difference is that _all_ pages with a struct
565  * page (that is, those where pfn_valid is true) are refcounted and considered
566  * normal pages by the VM. The disadvantage is that pages are refcounted
567  * (which can be slower and simply not an option for some PFNMAP users). The
568  * advantage is that we don't have to follow the strict linearity rule of
569  * PFNMAP mappings in order to support COWable mappings.
570  *
571  */
572 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
573                              pte_t pte, bool with_public_device)
574 {
575         unsigned long pfn = pte_pfn(pte);
576
577         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
578                 if (likely(!pte_special(pte)))
579                         goto check_pfn;
580                 if (vma->vm_ops && vma->vm_ops->find_special_page)
581                         return vma->vm_ops->find_special_page(vma, addr);
582                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
583                         return NULL;
584                 if (is_zero_pfn(pfn))
585                         return NULL;
586
587                 /*
588                  * Device public pages are special pages (they are ZONE_DEVICE
589                  * pages but different from persistent memory). They behave
590                  * allmost like normal pages. The difference is that they are
591                  * not on the lru and thus should never be involve with any-
592                  * thing that involve lru manipulation (mlock, numa balancing,
593                  * ...).
594                  *
595                  * This is why we still want to return NULL for such page from
596                  * vm_normal_page() so that we do not have to special case all
597                  * call site of vm_normal_page().
598                  */
599                 if (likely(pfn <= highest_memmap_pfn)) {
600                         struct page *page = pfn_to_page(pfn);
601
602                         if (is_device_public_page(page)) {
603                                 if (with_public_device)
604                                         return page;
605                                 return NULL;
606                         }
607                 }
608
609                 if (pte_devmap(pte))
610                         return NULL;
611
612                 print_bad_pte(vma, addr, pte, NULL);
613                 return NULL;
614         }
615
616         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617
618         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619                 if (vma->vm_flags & VM_MIXEDMAP) {
620                         if (!pfn_valid(pfn))
621                                 return NULL;
622                         goto out;
623                 } else {
624                         unsigned long off;
625                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
626                         if (pfn == vma->vm_pgoff + off)
627                                 return NULL;
628                         if (!is_cow_mapping(vma->vm_flags))
629                                 return NULL;
630                 }
631         }
632
633         if (is_zero_pfn(pfn))
634                 return NULL;
635
636 check_pfn:
637         if (unlikely(pfn > highest_memmap_pfn)) {
638                 print_bad_pte(vma, addr, pte, NULL);
639                 return NULL;
640         }
641
642         /*
643          * NOTE! We still have PageReserved() pages in the page tables.
644          * eg. VDSO mappings can cause them to exist.
645          */
646 out:
647         return pfn_to_page(pfn);
648 }
649
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652                                 pmd_t pmd)
653 {
654         unsigned long pfn = pmd_pfn(pmd);
655
656         /*
657          * There is no pmd_special() but there may be special pmds, e.g.
658          * in a direct-access (dax) mapping, so let's just replicate the
659          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
660          */
661         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662                 if (vma->vm_flags & VM_MIXEDMAP) {
663                         if (!pfn_valid(pfn))
664                                 return NULL;
665                         goto out;
666                 } else {
667                         unsigned long off;
668                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
669                         if (pfn == vma->vm_pgoff + off)
670                                 return NULL;
671                         if (!is_cow_mapping(vma->vm_flags))
672                                 return NULL;
673                 }
674         }
675
676         if (pmd_devmap(pmd))
677                 return NULL;
678         if (is_zero_pfn(pfn))
679                 return NULL;
680         if (unlikely(pfn > highest_memmap_pfn))
681                 return NULL;
682
683         /*
684          * NOTE! We still have PageReserved() pages in the page tables.
685          * eg. VDSO mappings can cause them to exist.
686          */
687 out:
688         return pfn_to_page(pfn);
689 }
690 #endif
691
692 /*
693  * copy one vm_area from one task to the other. Assumes the page tables
694  * already present in the new task to be cleared in the whole range
695  * covered by this vma.
696  */
697
698 static inline unsigned long
699 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701                 unsigned long addr, int *rss)
702 {
703         unsigned long vm_flags = vma->vm_flags;
704         pte_t pte = *src_pte;
705         struct page *page;
706
707         /* pte contains position in swap or file, so copy. */
708         if (unlikely(!pte_present(pte))) {
709                 swp_entry_t entry = pte_to_swp_entry(pte);
710
711                 if (likely(!non_swap_entry(entry))) {
712                         if (swap_duplicate(entry) < 0)
713                                 return entry.val;
714
715                         /* make sure dst_mm is on swapoff's mmlist. */
716                         if (unlikely(list_empty(&dst_mm->mmlist))) {
717                                 spin_lock(&mmlist_lock);
718                                 if (list_empty(&dst_mm->mmlist))
719                                         list_add(&dst_mm->mmlist,
720                                                         &src_mm->mmlist);
721                                 spin_unlock(&mmlist_lock);
722                         }
723                         rss[MM_SWAPENTS]++;
724                 } else if (is_migration_entry(entry)) {
725                         page = migration_entry_to_page(entry);
726
727                         rss[mm_counter(page)]++;
728
729                         if (is_write_migration_entry(entry) &&
730                                         is_cow_mapping(vm_flags)) {
731                                 /*
732                                  * COW mappings require pages in both
733                                  * parent and child to be set to read.
734                                  */
735                                 make_migration_entry_read(&entry);
736                                 pte = swp_entry_to_pte(entry);
737                                 if (pte_swp_soft_dirty(*src_pte))
738                                         pte = pte_swp_mksoft_dirty(pte);
739                                 set_pte_at(src_mm, addr, src_pte, pte);
740                         }
741                 } else if (is_device_private_entry(entry)) {
742                         page = device_private_entry_to_page(entry);
743
744                         /*
745                          * Update rss count even for unaddressable pages, as
746                          * they should treated just like normal pages in this
747                          * respect.
748                          *
749                          * We will likely want to have some new rss counters
750                          * for unaddressable pages, at some point. But for now
751                          * keep things as they are.
752                          */
753                         get_page(page);
754                         rss[mm_counter(page)]++;
755                         page_dup_rmap(page, false);
756
757                         /*
758                          * We do not preserve soft-dirty information, because so
759                          * far, checkpoint/restore is the only feature that
760                          * requires that. And checkpoint/restore does not work
761                          * when a device driver is involved (you cannot easily
762                          * save and restore device driver state).
763                          */
764                         if (is_write_device_private_entry(entry) &&
765                             is_cow_mapping(vm_flags)) {
766                                 make_device_private_entry_read(&entry);
767                                 pte = swp_entry_to_pte(entry);
768                                 set_pte_at(src_mm, addr, src_pte, pte);
769                         }
770                 }
771                 goto out_set_pte;
772         }
773
774         /*
775          * If it's a COW mapping, write protect it both
776          * in the parent and the child
777          */
778         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
779                 ptep_set_wrprotect(src_mm, addr, src_pte);
780                 pte = pte_wrprotect(pte);
781         }
782
783         /*
784          * If it's a shared mapping, mark it clean in
785          * the child
786          */
787         if (vm_flags & VM_SHARED)
788                 pte = pte_mkclean(pte);
789         pte = pte_mkold(pte);
790
791         page = vm_normal_page(vma, addr, pte);
792         if (page) {
793                 get_page(page);
794                 page_dup_rmap(page, false);
795                 rss[mm_counter(page)]++;
796         } else if (pte_devmap(pte)) {
797                 page = pte_page(pte);
798
799                 /*
800                  * Cache coherent device memory behave like regular page and
801                  * not like persistent memory page. For more informations see
802                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
803                  */
804                 if (is_device_public_page(page)) {
805                         get_page(page);
806                         page_dup_rmap(page, false);
807                         rss[mm_counter(page)]++;
808                 }
809         }
810
811 out_set_pte:
812         set_pte_at(dst_mm, addr, dst_pte, pte);
813         return 0;
814 }
815
816 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
817                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
818                    unsigned long addr, unsigned long end)
819 {
820         pte_t *orig_src_pte, *orig_dst_pte;
821         pte_t *src_pte, *dst_pte;
822         spinlock_t *src_ptl, *dst_ptl;
823         int progress = 0;
824         int rss[NR_MM_COUNTERS];
825         swp_entry_t entry = (swp_entry_t){0};
826
827 again:
828         init_rss_vec(rss);
829
830         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
831         if (!dst_pte)
832                 return -ENOMEM;
833         src_pte = pte_offset_map(src_pmd, addr);
834         src_ptl = pte_lockptr(src_mm, src_pmd);
835         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
836         orig_src_pte = src_pte;
837         orig_dst_pte = dst_pte;
838         arch_enter_lazy_mmu_mode();
839
840         do {
841                 /*
842                  * We are holding two locks at this point - either of them
843                  * could generate latencies in another task on another CPU.
844                  */
845                 if (progress >= 32) {
846                         progress = 0;
847                         if (need_resched() ||
848                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
849                                 break;
850                 }
851                 if (pte_none(*src_pte)) {
852                         progress++;
853                         continue;
854                 }
855                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
856                                                         vma, addr, rss);
857                 if (entry.val)
858                         break;
859                 progress += 8;
860         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
861
862         arch_leave_lazy_mmu_mode();
863         spin_unlock(src_ptl);
864         pte_unmap(orig_src_pte);
865         add_mm_rss_vec(dst_mm, rss);
866         pte_unmap_unlock(orig_dst_pte, dst_ptl);
867         cond_resched();
868
869         if (entry.val) {
870                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
871                         return -ENOMEM;
872                 progress = 0;
873         }
874         if (addr != end)
875                 goto again;
876         return 0;
877 }
878
879 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
880                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
881                 unsigned long addr, unsigned long end)
882 {
883         pmd_t *src_pmd, *dst_pmd;
884         unsigned long next;
885
886         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
887         if (!dst_pmd)
888                 return -ENOMEM;
889         src_pmd = pmd_offset(src_pud, addr);
890         do {
891                 next = pmd_addr_end(addr, end);
892                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
893                         || pmd_devmap(*src_pmd)) {
894                         int err;
895                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
896                         err = copy_huge_pmd(dst_mm, src_mm,
897                                             dst_pmd, src_pmd, addr, vma);
898                         if (err == -ENOMEM)
899                                 return -ENOMEM;
900                         if (!err)
901                                 continue;
902                         /* fall through */
903                 }
904                 if (pmd_none_or_clear_bad(src_pmd))
905                         continue;
906                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
907                                                 vma, addr, next))
908                         return -ENOMEM;
909         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
910         return 0;
911 }
912
913 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
914                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
915                 unsigned long addr, unsigned long end)
916 {
917         pud_t *src_pud, *dst_pud;
918         unsigned long next;
919
920         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
921         if (!dst_pud)
922                 return -ENOMEM;
923         src_pud = pud_offset(src_p4d, addr);
924         do {
925                 next = pud_addr_end(addr, end);
926                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
927                         int err;
928
929                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
930                         err = copy_huge_pud(dst_mm, src_mm,
931                                             dst_pud, src_pud, addr, vma);
932                         if (err == -ENOMEM)
933                                 return -ENOMEM;
934                         if (!err)
935                                 continue;
936                         /* fall through */
937                 }
938                 if (pud_none_or_clear_bad(src_pud))
939                         continue;
940                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
941                                                 vma, addr, next))
942                         return -ENOMEM;
943         } while (dst_pud++, src_pud++, addr = next, addr != end);
944         return 0;
945 }
946
947 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
948                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
949                 unsigned long addr, unsigned long end)
950 {
951         p4d_t *src_p4d, *dst_p4d;
952         unsigned long next;
953
954         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
955         if (!dst_p4d)
956                 return -ENOMEM;
957         src_p4d = p4d_offset(src_pgd, addr);
958         do {
959                 next = p4d_addr_end(addr, end);
960                 if (p4d_none_or_clear_bad(src_p4d))
961                         continue;
962                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
963                                                 vma, addr, next))
964                         return -ENOMEM;
965         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
966         return 0;
967 }
968
969 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970                 struct vm_area_struct *vma)
971 {
972         pgd_t *src_pgd, *dst_pgd;
973         unsigned long next;
974         unsigned long addr = vma->vm_start;
975         unsigned long end = vma->vm_end;
976         unsigned long mmun_start;       /* For mmu_notifiers */
977         unsigned long mmun_end;         /* For mmu_notifiers */
978         bool is_cow;
979         int ret;
980
981         /*
982          * Don't copy ptes where a page fault will fill them correctly.
983          * Fork becomes much lighter when there are big shared or private
984          * readonly mappings. The tradeoff is that copy_page_range is more
985          * efficient than faulting.
986          */
987         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988                         !vma->anon_vma)
989                 return 0;
990
991         if (is_vm_hugetlb_page(vma))
992                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993
994         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
995                 /*
996                  * We do not free on error cases below as remove_vma
997                  * gets called on error from higher level routine
998                  */
999                 ret = track_pfn_copy(vma);
1000                 if (ret)
1001                         return ret;
1002         }
1003
1004         /*
1005          * We need to invalidate the secondary MMU mappings only when
1006          * there could be a permission downgrade on the ptes of the
1007          * parent mm. And a permission downgrade will only happen if
1008          * is_cow_mapping() returns true.
1009          */
1010         is_cow = is_cow_mapping(vma->vm_flags);
1011         mmun_start = addr;
1012         mmun_end   = end;
1013         if (is_cow)
1014                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1015                                                     mmun_end);
1016
1017         ret = 0;
1018         dst_pgd = pgd_offset(dst_mm, addr);
1019         src_pgd = pgd_offset(src_mm, addr);
1020         do {
1021                 next = pgd_addr_end(addr, end);
1022                 if (pgd_none_or_clear_bad(src_pgd))
1023                         continue;
1024                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1025                                             vma, addr, next))) {
1026                         ret = -ENOMEM;
1027                         break;
1028                 }
1029         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1030
1031         if (is_cow)
1032                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1033         return ret;
1034 }
1035
1036 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1037                                 struct vm_area_struct *vma, pmd_t *pmd,
1038                                 unsigned long addr, unsigned long end,
1039                                 struct zap_details *details)
1040 {
1041         struct mm_struct *mm = tlb->mm;
1042         int force_flush = 0;
1043         int rss[NR_MM_COUNTERS];
1044         spinlock_t *ptl;
1045         pte_t *start_pte;
1046         pte_t *pte;
1047         swp_entry_t entry;
1048
1049         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1050 again:
1051         init_rss_vec(rss);
1052         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1053         pte = start_pte;
1054         flush_tlb_batched_pending(mm);
1055         arch_enter_lazy_mmu_mode();
1056         do {
1057                 pte_t ptent = *pte;
1058                 if (pte_none(ptent))
1059                         continue;
1060
1061                 if (pte_present(ptent)) {
1062                         struct page *page;
1063
1064                         page = _vm_normal_page(vma, addr, ptent, true);
1065                         if (unlikely(details) && page) {
1066                                 /*
1067                                  * unmap_shared_mapping_pages() wants to
1068                                  * invalidate cache without truncating:
1069                                  * unmap shared but keep private pages.
1070                                  */
1071                                 if (details->check_mapping &&
1072                                     details->check_mapping != page_rmapping(page))
1073                                         continue;
1074                         }
1075                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1076                                                         tlb->fullmm);
1077                         tlb_remove_tlb_entry(tlb, pte, addr);
1078                         if (unlikely(!page))
1079                                 continue;
1080
1081                         if (!PageAnon(page)) {
1082                                 if (pte_dirty(ptent)) {
1083                                         force_flush = 1;
1084                                         set_page_dirty(page);
1085                                 }
1086                                 if (pte_young(ptent) &&
1087                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1088                                         mark_page_accessed(page);
1089                         }
1090                         rss[mm_counter(page)]--;
1091                         page_remove_rmap(page, false);
1092                         if (unlikely(page_mapcount(page) < 0))
1093                                 print_bad_pte(vma, addr, ptent, page);
1094                         if (unlikely(__tlb_remove_page(tlb, page))) {
1095                                 force_flush = 1;
1096                                 addr += PAGE_SIZE;
1097                                 break;
1098                         }
1099                         continue;
1100                 }
1101
1102                 entry = pte_to_swp_entry(ptent);
1103                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1104                         struct page *page = device_private_entry_to_page(entry);
1105
1106                         if (unlikely(details && details->check_mapping)) {
1107                                 /*
1108                                  * unmap_shared_mapping_pages() wants to
1109                                  * invalidate cache without truncating:
1110                                  * unmap shared but keep private pages.
1111                                  */
1112                                 if (details->check_mapping !=
1113                                     page_rmapping(page))
1114                                         continue;
1115                         }
1116
1117                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118                         rss[mm_counter(page)]--;
1119                         page_remove_rmap(page, false);
1120                         put_page(page);
1121                         continue;
1122                 }
1123
1124                 /* If details->check_mapping, we leave swap entries. */
1125                 if (unlikely(details))
1126                         continue;
1127
1128                 entry = pte_to_swp_entry(ptent);
1129                 if (!non_swap_entry(entry))
1130                         rss[MM_SWAPENTS]--;
1131                 else if (is_migration_entry(entry)) {
1132                         struct page *page;
1133
1134                         page = migration_entry_to_page(entry);
1135                         rss[mm_counter(page)]--;
1136                 }
1137                 if (unlikely(!free_swap_and_cache(entry)))
1138                         print_bad_pte(vma, addr, ptent, NULL);
1139                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1140         } while (pte++, addr += PAGE_SIZE, addr != end);
1141
1142         add_mm_rss_vec(mm, rss);
1143         arch_leave_lazy_mmu_mode();
1144
1145         /* Do the actual TLB flush before dropping ptl */
1146         if (force_flush)
1147                 tlb_flush_mmu_tlbonly(tlb);
1148         pte_unmap_unlock(start_pte, ptl);
1149
1150         /*
1151          * If we forced a TLB flush (either due to running out of
1152          * batch buffers or because we needed to flush dirty TLB
1153          * entries before releasing the ptl), free the batched
1154          * memory too. Restart if we didn't do everything.
1155          */
1156         if (force_flush) {
1157                 force_flush = 0;
1158                 tlb_flush_mmu_free(tlb);
1159                 if (addr != end)
1160                         goto again;
1161         }
1162
1163         return addr;
1164 }
1165
1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167                                 struct vm_area_struct *vma, pud_t *pud,
1168                                 unsigned long addr, unsigned long end,
1169                                 struct zap_details *details)
1170 {
1171         pmd_t *pmd;
1172         unsigned long next;
1173
1174         pmd = pmd_offset(pud, addr);
1175         do {
1176                 next = pmd_addr_end(addr, end);
1177                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178                         if (next - addr != HPAGE_PMD_SIZE)
1179                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1180                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1181                                 goto next;
1182                         /* fall through */
1183                 }
1184                 /*
1185                  * Here there can be other concurrent MADV_DONTNEED or
1186                  * trans huge page faults running, and if the pmd is
1187                  * none or trans huge it can change under us. This is
1188                  * because MADV_DONTNEED holds the mmap_sem in read
1189                  * mode.
1190                  */
1191                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192                         goto next;
1193                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1194 next:
1195                 cond_resched();
1196         } while (pmd++, addr = next, addr != end);
1197
1198         return addr;
1199 }
1200
1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1202                                 struct vm_area_struct *vma, p4d_t *p4d,
1203                                 unsigned long addr, unsigned long end,
1204                                 struct zap_details *details)
1205 {
1206         pud_t *pud;
1207         unsigned long next;
1208
1209         pud = pud_offset(p4d, addr);
1210         do {
1211                 next = pud_addr_end(addr, end);
1212                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213                         if (next - addr != HPAGE_PUD_SIZE) {
1214                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1215                                 split_huge_pud(vma, pud, addr);
1216                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1217                                 goto next;
1218                         /* fall through */
1219                 }
1220                 if (pud_none_or_clear_bad(pud))
1221                         continue;
1222                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223 next:
1224                 cond_resched();
1225         } while (pud++, addr = next, addr != end);
1226
1227         return addr;
1228 }
1229
1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231                                 struct vm_area_struct *vma, pgd_t *pgd,
1232                                 unsigned long addr, unsigned long end,
1233                                 struct zap_details *details)
1234 {
1235         p4d_t *p4d;
1236         unsigned long next;
1237
1238         p4d = p4d_offset(pgd, addr);
1239         do {
1240                 next = p4d_addr_end(addr, end);
1241                 if (p4d_none_or_clear_bad(p4d))
1242                         continue;
1243                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244         } while (p4d++, addr = next, addr != end);
1245
1246         return addr;
1247 }
1248
1249 void unmap_page_range(struct mmu_gather *tlb,
1250                              struct vm_area_struct *vma,
1251                              unsigned long addr, unsigned long end,
1252                              struct zap_details *details)
1253 {
1254         pgd_t *pgd;
1255         unsigned long next;
1256
1257         BUG_ON(addr >= end);
1258         tlb_start_vma(tlb, vma);
1259         pgd = pgd_offset(vma->vm_mm, addr);
1260         do {
1261                 next = pgd_addr_end(addr, end);
1262                 if (pgd_none_or_clear_bad(pgd))
1263                         continue;
1264                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1265         } while (pgd++, addr = next, addr != end);
1266         tlb_end_vma(tlb, vma);
1267 }
1268
1269
1270 static void unmap_single_vma(struct mmu_gather *tlb,
1271                 struct vm_area_struct *vma, unsigned long start_addr,
1272                 unsigned long end_addr,
1273                 struct zap_details *details)
1274 {
1275         unsigned long start = max(vma->vm_start, start_addr);
1276         unsigned long end;
1277
1278         if (start >= vma->vm_end)
1279                 return;
1280         end = min(vma->vm_end, end_addr);
1281         if (end <= vma->vm_start)
1282                 return;
1283
1284         if (vma->vm_file)
1285                 uprobe_munmap(vma, start, end);
1286
1287         if (unlikely(vma->vm_flags & VM_PFNMAP))
1288                 untrack_pfn(vma, 0, 0);
1289
1290         if (start != end) {
1291                 if (unlikely(is_vm_hugetlb_page(vma))) {
1292                         /*
1293                          * It is undesirable to test vma->vm_file as it
1294                          * should be non-null for valid hugetlb area.
1295                          * However, vm_file will be NULL in the error
1296                          * cleanup path of mmap_region. When
1297                          * hugetlbfs ->mmap method fails,
1298                          * mmap_region() nullifies vma->vm_file
1299                          * before calling this function to clean up.
1300                          * Since no pte has actually been setup, it is
1301                          * safe to do nothing in this case.
1302                          */
1303                         if (vma->vm_file) {
1304                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1305                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1306                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1307                         }
1308                 } else
1309                         unmap_page_range(tlb, vma, start, end, details);
1310         }
1311 }
1312
1313 /**
1314  * unmap_vmas - unmap a range of memory covered by a list of vma's
1315  * @tlb: address of the caller's struct mmu_gather
1316  * @vma: the starting vma
1317  * @start_addr: virtual address at which to start unmapping
1318  * @end_addr: virtual address at which to end unmapping
1319  *
1320  * Unmap all pages in the vma list.
1321  *
1322  * Only addresses between `start' and `end' will be unmapped.
1323  *
1324  * The VMA list must be sorted in ascending virtual address order.
1325  *
1326  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327  * range after unmap_vmas() returns.  So the only responsibility here is to
1328  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329  * drops the lock and schedules.
1330  */
1331 void unmap_vmas(struct mmu_gather *tlb,
1332                 struct vm_area_struct *vma, unsigned long start_addr,
1333                 unsigned long end_addr)
1334 {
1335         struct mm_struct *mm = vma->vm_mm;
1336
1337         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1338         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1339                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1340         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1341 }
1342
1343 /**
1344  * zap_page_range - remove user pages in a given range
1345  * @vma: vm_area_struct holding the applicable pages
1346  * @start: starting address of pages to zap
1347  * @size: number of bytes to zap
1348  *
1349  * Caller must protect the VMA list
1350  */
1351 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1352                 unsigned long size)
1353 {
1354         struct mm_struct *mm = vma->vm_mm;
1355         struct mmu_gather tlb;
1356         unsigned long end = start + size;
1357
1358         lru_add_drain();
1359         tlb_gather_mmu(&tlb, mm, start, end);
1360         update_hiwater_rss(mm);
1361         mmu_notifier_invalidate_range_start(mm, start, end);
1362         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1363                 unmap_single_vma(&tlb, vma, start, end, NULL);
1364         mmu_notifier_invalidate_range_end(mm, start, end);
1365         tlb_finish_mmu(&tlb, start, end);
1366 }
1367
1368 /**
1369  * zap_page_range_single - remove user pages in a given range
1370  * @vma: vm_area_struct holding the applicable pages
1371  * @address: starting address of pages to zap
1372  * @size: number of bytes to zap
1373  * @details: details of shared cache invalidation
1374  *
1375  * The range must fit into one VMA.
1376  */
1377 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1378                 unsigned long size, struct zap_details *details)
1379 {
1380         struct mm_struct *mm = vma->vm_mm;
1381         struct mmu_gather tlb;
1382         unsigned long end = address + size;
1383
1384         lru_add_drain();
1385         tlb_gather_mmu(&tlb, mm, address, end);
1386         update_hiwater_rss(mm);
1387         mmu_notifier_invalidate_range_start(mm, address, end);
1388         unmap_single_vma(&tlb, vma, address, end, details);
1389         mmu_notifier_invalidate_range_end(mm, address, end);
1390         tlb_finish_mmu(&tlb, address, end);
1391 }
1392
1393 /**
1394  * zap_vma_ptes - remove ptes mapping the vma
1395  * @vma: vm_area_struct holding ptes to be zapped
1396  * @address: starting address of pages to zap
1397  * @size: number of bytes to zap
1398  *
1399  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1400  *
1401  * The entire address range must be fully contained within the vma.
1402  *
1403  */
1404 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1405                 unsigned long size)
1406 {
1407         if (address < vma->vm_start || address + size > vma->vm_end ||
1408                         !(vma->vm_flags & VM_PFNMAP))
1409                 return;
1410
1411         zap_page_range_single(vma, address, size, NULL);
1412 }
1413 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1414
1415 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1416                         spinlock_t **ptl)
1417 {
1418         pgd_t *pgd;
1419         p4d_t *p4d;
1420         pud_t *pud;
1421         pmd_t *pmd;
1422
1423         pgd = pgd_offset(mm, addr);
1424         p4d = p4d_alloc(mm, pgd, addr);
1425         if (!p4d)
1426                 return NULL;
1427         pud = pud_alloc(mm, p4d, addr);
1428         if (!pud)
1429                 return NULL;
1430         pmd = pmd_alloc(mm, pud, addr);
1431         if (!pmd)
1432                 return NULL;
1433
1434         VM_BUG_ON(pmd_trans_huge(*pmd));
1435         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1436 }
1437
1438 /*
1439  * This is the old fallback for page remapping.
1440  *
1441  * For historical reasons, it only allows reserved pages. Only
1442  * old drivers should use this, and they needed to mark their
1443  * pages reserved for the old functions anyway.
1444  */
1445 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1446                         struct page *page, pgprot_t prot)
1447 {
1448         struct mm_struct *mm = vma->vm_mm;
1449         int retval;
1450         pte_t *pte;
1451         spinlock_t *ptl;
1452
1453         retval = -EINVAL;
1454         if (PageAnon(page))
1455                 goto out;
1456         retval = -ENOMEM;
1457         flush_dcache_page(page);
1458         pte = get_locked_pte(mm, addr, &ptl);
1459         if (!pte)
1460                 goto out;
1461         retval = -EBUSY;
1462         if (!pte_none(*pte))
1463                 goto out_unlock;
1464
1465         /* Ok, finally just insert the thing.. */
1466         get_page(page);
1467         inc_mm_counter_fast(mm, mm_counter_file(page));
1468         page_add_file_rmap(page, false);
1469         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1470
1471         retval = 0;
1472         pte_unmap_unlock(pte, ptl);
1473         return retval;
1474 out_unlock:
1475         pte_unmap_unlock(pte, ptl);
1476 out:
1477         return retval;
1478 }
1479
1480 /**
1481  * vm_insert_page - insert single page into user vma
1482  * @vma: user vma to map to
1483  * @addr: target user address of this page
1484  * @page: source kernel page
1485  *
1486  * This allows drivers to insert individual pages they've allocated
1487  * into a user vma.
1488  *
1489  * The page has to be a nice clean _individual_ kernel allocation.
1490  * If you allocate a compound page, you need to have marked it as
1491  * such (__GFP_COMP), or manually just split the page up yourself
1492  * (see split_page()).
1493  *
1494  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1495  * took an arbitrary page protection parameter. This doesn't allow
1496  * that. Your vma protection will have to be set up correctly, which
1497  * means that if you want a shared writable mapping, you'd better
1498  * ask for a shared writable mapping!
1499  *
1500  * The page does not need to be reserved.
1501  *
1502  * Usually this function is called from f_op->mmap() handler
1503  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1504  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1505  * function from other places, for example from page-fault handler.
1506  */
1507 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1508                         struct page *page)
1509 {
1510         if (addr < vma->vm_start || addr >= vma->vm_end)
1511                 return -EFAULT;
1512         if (!page_count(page))
1513                 return -EINVAL;
1514         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1515                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1516                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1517                 vma->vm_flags |= VM_MIXEDMAP;
1518         }
1519         return insert_page(vma, addr, page, vma->vm_page_prot);
1520 }
1521 EXPORT_SYMBOL(vm_insert_page);
1522
1523 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1524                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1525 {
1526         struct mm_struct *mm = vma->vm_mm;
1527         int retval;
1528         pte_t *pte, entry;
1529         spinlock_t *ptl;
1530
1531         retval = -ENOMEM;
1532         pte = get_locked_pte(mm, addr, &ptl);
1533         if (!pte)
1534                 goto out;
1535         retval = -EBUSY;
1536         if (!pte_none(*pte)) {
1537                 if (mkwrite) {
1538                         /*
1539                          * For read faults on private mappings the PFN passed
1540                          * in may not match the PFN we have mapped if the
1541                          * mapped PFN is a writeable COW page.  In the mkwrite
1542                          * case we are creating a writable PTE for a shared
1543                          * mapping and we expect the PFNs to match.
1544                          */
1545                         if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1546                                 goto out_unlock;
1547                         entry = *pte;
1548                         goto out_mkwrite;
1549                 } else
1550                         goto out_unlock;
1551         }
1552
1553         /* Ok, finally just insert the thing.. */
1554         if (pfn_t_devmap(pfn))
1555                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1556         else
1557                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1558
1559 out_mkwrite:
1560         if (mkwrite) {
1561                 entry = pte_mkyoung(entry);
1562                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1563         }
1564
1565         set_pte_at(mm, addr, pte, entry);
1566         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1567
1568         retval = 0;
1569 out_unlock:
1570         pte_unmap_unlock(pte, ptl);
1571 out:
1572         return retval;
1573 }
1574
1575 /**
1576  * vm_insert_pfn - insert single pfn into user vma
1577  * @vma: user vma to map to
1578  * @addr: target user address of this page
1579  * @pfn: source kernel pfn
1580  *
1581  * Similar to vm_insert_page, this allows drivers to insert individual pages
1582  * they've allocated into a user vma. Same comments apply.
1583  *
1584  * This function should only be called from a vm_ops->fault handler, and
1585  * in that case the handler should return NULL.
1586  *
1587  * vma cannot be a COW mapping.
1588  *
1589  * As this is called only for pages that do not currently exist, we
1590  * do not need to flush old virtual caches or the TLB.
1591  */
1592 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1593                         unsigned long pfn)
1594 {
1595         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1596 }
1597 EXPORT_SYMBOL(vm_insert_pfn);
1598
1599 /**
1600  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1601  * @vma: user vma to map to
1602  * @addr: target user address of this page
1603  * @pfn: source kernel pfn
1604  * @pgprot: pgprot flags for the inserted page
1605  *
1606  * This is exactly like vm_insert_pfn, except that it allows drivers to
1607  * to override pgprot on a per-page basis.
1608  *
1609  * This only makes sense for IO mappings, and it makes no sense for
1610  * cow mappings.  In general, using multiple vmas is preferable;
1611  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1612  * impractical.
1613  */
1614 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1615                         unsigned long pfn, pgprot_t pgprot)
1616 {
1617         int ret;
1618         /*
1619          * Technically, architectures with pte_special can avoid all these
1620          * restrictions (same for remap_pfn_range).  However we would like
1621          * consistency in testing and feature parity among all, so we should
1622          * try to keep these invariants in place for everybody.
1623          */
1624         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1625         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1626                                                 (VM_PFNMAP|VM_MIXEDMAP));
1627         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1628         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1629
1630         if (addr < vma->vm_start || addr >= vma->vm_end)
1631                 return -EFAULT;
1632
1633         if (!pfn_modify_allowed(pfn, pgprot))
1634                 return -EACCES;
1635
1636         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1637
1638         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1639                         false);
1640
1641         return ret;
1642 }
1643 EXPORT_SYMBOL(vm_insert_pfn_prot);
1644
1645 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1646 {
1647         /* these checks mirror the abort conditions in vm_normal_page */
1648         if (vma->vm_flags & VM_MIXEDMAP)
1649                 return true;
1650         if (pfn_t_devmap(pfn))
1651                 return true;
1652         if (pfn_t_special(pfn))
1653                 return true;
1654         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1655                 return true;
1656         return false;
1657 }
1658
1659 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1660                         pfn_t pfn, bool mkwrite)
1661 {
1662         pgprot_t pgprot = vma->vm_page_prot;
1663
1664         BUG_ON(!vm_mixed_ok(vma, pfn));
1665
1666         if (addr < vma->vm_start || addr >= vma->vm_end)
1667                 return -EFAULT;
1668
1669         track_pfn_insert(vma, &pgprot, pfn);
1670
1671         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1672                 return -EACCES;
1673
1674         /*
1675          * If we don't have pte special, then we have to use the pfn_valid()
1676          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1677          * refcount the page if pfn_valid is true (hence insert_page rather
1678          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1679          * without pte special, it would there be refcounted as a normal page.
1680          */
1681         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1682             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1683                 struct page *page;
1684
1685                 /*
1686                  * At this point we are committed to insert_page()
1687                  * regardless of whether the caller specified flags that
1688                  * result in pfn_t_has_page() == false.
1689                  */
1690                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1691                 return insert_page(vma, addr, page, pgprot);
1692         }
1693         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1694 }
1695
1696 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1697                 pfn_t pfn)
1698 {
1699         int err = __vm_insert_mixed(vma, addr, pfn, false);
1700
1701         if (err == -ENOMEM)
1702                 return VM_FAULT_OOM;
1703         if (err < 0 && err != -EBUSY)
1704                 return VM_FAULT_SIGBUS;
1705
1706         return VM_FAULT_NOPAGE;
1707 }
1708 EXPORT_SYMBOL(vmf_insert_mixed);
1709
1710 /*
1711  *  If the insertion of PTE failed because someone else already added a
1712  *  different entry in the mean time, we treat that as success as we assume
1713  *  the same entry was actually inserted.
1714  */
1715
1716 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1717                 unsigned long addr, pfn_t pfn)
1718 {
1719         int err;
1720
1721         err =  __vm_insert_mixed(vma, addr, pfn, true);
1722         if (err == -ENOMEM)
1723                 return VM_FAULT_OOM;
1724         if (err < 0 && err != -EBUSY)
1725                 return VM_FAULT_SIGBUS;
1726         return VM_FAULT_NOPAGE;
1727 }
1728 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1729
1730 /*
1731  * maps a range of physical memory into the requested pages. the old
1732  * mappings are removed. any references to nonexistent pages results
1733  * in null mappings (currently treated as "copy-on-access")
1734  */
1735 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1736                         unsigned long addr, unsigned long end,
1737                         unsigned long pfn, pgprot_t prot)
1738 {
1739         pte_t *pte;
1740         spinlock_t *ptl;
1741         int err = 0;
1742
1743         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1744         if (!pte)
1745                 return -ENOMEM;
1746         arch_enter_lazy_mmu_mode();
1747         do {
1748                 BUG_ON(!pte_none(*pte));
1749                 if (!pfn_modify_allowed(pfn, prot)) {
1750                         err = -EACCES;
1751                         break;
1752                 }
1753                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1754                 pfn++;
1755         } while (pte++, addr += PAGE_SIZE, addr != end);
1756         arch_leave_lazy_mmu_mode();
1757         pte_unmap_unlock(pte - 1, ptl);
1758         return err;
1759 }
1760
1761 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1762                         unsigned long addr, unsigned long end,
1763                         unsigned long pfn, pgprot_t prot)
1764 {
1765         pmd_t *pmd;
1766         unsigned long next;
1767         int err;
1768
1769         pfn -= addr >> PAGE_SHIFT;
1770         pmd = pmd_alloc(mm, pud, addr);
1771         if (!pmd)
1772                 return -ENOMEM;
1773         VM_BUG_ON(pmd_trans_huge(*pmd));
1774         do {
1775                 next = pmd_addr_end(addr, end);
1776                 err = remap_pte_range(mm, pmd, addr, next,
1777                                 pfn + (addr >> PAGE_SHIFT), prot);
1778                 if (err)
1779                         return err;
1780         } while (pmd++, addr = next, addr != end);
1781         return 0;
1782 }
1783
1784 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1785                         unsigned long addr, unsigned long end,
1786                         unsigned long pfn, pgprot_t prot)
1787 {
1788         pud_t *pud;
1789         unsigned long next;
1790         int err;
1791
1792         pfn -= addr >> PAGE_SHIFT;
1793         pud = pud_alloc(mm, p4d, addr);
1794         if (!pud)
1795                 return -ENOMEM;
1796         do {
1797                 next = pud_addr_end(addr, end);
1798                 err = remap_pmd_range(mm, pud, addr, next,
1799                                 pfn + (addr >> PAGE_SHIFT), prot);
1800                 if (err)
1801                         return err;
1802         } while (pud++, addr = next, addr != end);
1803         return 0;
1804 }
1805
1806 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1807                         unsigned long addr, unsigned long end,
1808                         unsigned long pfn, pgprot_t prot)
1809 {
1810         p4d_t *p4d;
1811         unsigned long next;
1812         int err;
1813
1814         pfn -= addr >> PAGE_SHIFT;
1815         p4d = p4d_alloc(mm, pgd, addr);
1816         if (!p4d)
1817                 return -ENOMEM;
1818         do {
1819                 next = p4d_addr_end(addr, end);
1820                 err = remap_pud_range(mm, p4d, addr, next,
1821                                 pfn + (addr >> PAGE_SHIFT), prot);
1822                 if (err)
1823                         return err;
1824         } while (p4d++, addr = next, addr != end);
1825         return 0;
1826 }
1827
1828 /**
1829  * remap_pfn_range - remap kernel memory to userspace
1830  * @vma: user vma to map to
1831  * @addr: target user address to start at
1832  * @pfn: physical address of kernel memory
1833  * @size: size of map area
1834  * @prot: page protection flags for this mapping
1835  *
1836  *  Note: this is only safe if the mm semaphore is held when called.
1837  */
1838 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1839                     unsigned long pfn, unsigned long size, pgprot_t prot)
1840 {
1841         pgd_t *pgd;
1842         unsigned long next;
1843         unsigned long end = addr + PAGE_ALIGN(size);
1844         struct mm_struct *mm = vma->vm_mm;
1845         unsigned long remap_pfn = pfn;
1846         int err;
1847
1848         /*
1849          * Physically remapped pages are special. Tell the
1850          * rest of the world about it:
1851          *   VM_IO tells people not to look at these pages
1852          *      (accesses can have side effects).
1853          *   VM_PFNMAP tells the core MM that the base pages are just
1854          *      raw PFN mappings, and do not have a "struct page" associated
1855          *      with them.
1856          *   VM_DONTEXPAND
1857          *      Disable vma merging and expanding with mremap().
1858          *   VM_DONTDUMP
1859          *      Omit vma from core dump, even when VM_IO turned off.
1860          *
1861          * There's a horrible special case to handle copy-on-write
1862          * behaviour that some programs depend on. We mark the "original"
1863          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1864          * See vm_normal_page() for details.
1865          */
1866         if (is_cow_mapping(vma->vm_flags)) {
1867                 if (addr != vma->vm_start || end != vma->vm_end)
1868                         return -EINVAL;
1869                 vma->vm_pgoff = pfn;
1870         }
1871
1872         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1873         if (err)
1874                 return -EINVAL;
1875
1876         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1877
1878         BUG_ON(addr >= end);
1879         pfn -= addr >> PAGE_SHIFT;
1880         pgd = pgd_offset(mm, addr);
1881         flush_cache_range(vma, addr, end);
1882         do {
1883                 next = pgd_addr_end(addr, end);
1884                 err = remap_p4d_range(mm, pgd, addr, next,
1885                                 pfn + (addr >> PAGE_SHIFT), prot);
1886                 if (err)
1887                         break;
1888         } while (pgd++, addr = next, addr != end);
1889
1890         if (err)
1891                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1892
1893         return err;
1894 }
1895 EXPORT_SYMBOL(remap_pfn_range);
1896
1897 /**
1898  * vm_iomap_memory - remap memory to userspace
1899  * @vma: user vma to map to
1900  * @start: start of area
1901  * @len: size of area
1902  *
1903  * This is a simplified io_remap_pfn_range() for common driver use. The
1904  * driver just needs to give us the physical memory range to be mapped,
1905  * we'll figure out the rest from the vma information.
1906  *
1907  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1908  * whatever write-combining details or similar.
1909  */
1910 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1911 {
1912         unsigned long vm_len, pfn, pages;
1913
1914         /* Check that the physical memory area passed in looks valid */
1915         if (start + len < start)
1916                 return -EINVAL;
1917         /*
1918          * You *really* shouldn't map things that aren't page-aligned,
1919          * but we've historically allowed it because IO memory might
1920          * just have smaller alignment.
1921          */
1922         len += start & ~PAGE_MASK;
1923         pfn = start >> PAGE_SHIFT;
1924         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1925         if (pfn + pages < pfn)
1926                 return -EINVAL;
1927
1928         /* We start the mapping 'vm_pgoff' pages into the area */
1929         if (vma->vm_pgoff > pages)
1930                 return -EINVAL;
1931         pfn += vma->vm_pgoff;
1932         pages -= vma->vm_pgoff;
1933
1934         /* Can we fit all of the mapping? */
1935         vm_len = vma->vm_end - vma->vm_start;
1936         if (vm_len >> PAGE_SHIFT > pages)
1937                 return -EINVAL;
1938
1939         /* Ok, let it rip */
1940         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1941 }
1942 EXPORT_SYMBOL(vm_iomap_memory);
1943
1944 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1945                                      unsigned long addr, unsigned long end,
1946                                      pte_fn_t fn, void *data)
1947 {
1948         pte_t *pte;
1949         int err;
1950         pgtable_t token;
1951         spinlock_t *uninitialized_var(ptl);
1952
1953         pte = (mm == &init_mm) ?
1954                 pte_alloc_kernel(pmd, addr) :
1955                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1956         if (!pte)
1957                 return -ENOMEM;
1958
1959         BUG_ON(pmd_huge(*pmd));
1960
1961         arch_enter_lazy_mmu_mode();
1962
1963         token = pmd_pgtable(*pmd);
1964
1965         do {
1966                 err = fn(pte++, token, addr, data);
1967                 if (err)
1968                         break;
1969         } while (addr += PAGE_SIZE, addr != end);
1970
1971         arch_leave_lazy_mmu_mode();
1972
1973         if (mm != &init_mm)
1974                 pte_unmap_unlock(pte-1, ptl);
1975         return err;
1976 }
1977
1978 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1979                                      unsigned long addr, unsigned long end,
1980                                      pte_fn_t fn, void *data)
1981 {
1982         pmd_t *pmd;
1983         unsigned long next;
1984         int err;
1985
1986         BUG_ON(pud_huge(*pud));
1987
1988         pmd = pmd_alloc(mm, pud, addr);
1989         if (!pmd)
1990                 return -ENOMEM;
1991         do {
1992                 next = pmd_addr_end(addr, end);
1993                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1994                 if (err)
1995                         break;
1996         } while (pmd++, addr = next, addr != end);
1997         return err;
1998 }
1999
2000 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2001                                      unsigned long addr, unsigned long end,
2002                                      pte_fn_t fn, void *data)
2003 {
2004         pud_t *pud;
2005         unsigned long next;
2006         int err;
2007
2008         pud = pud_alloc(mm, p4d, addr);
2009         if (!pud)
2010                 return -ENOMEM;
2011         do {
2012                 next = pud_addr_end(addr, end);
2013                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2014                 if (err)
2015                         break;
2016         } while (pud++, addr = next, addr != end);
2017         return err;
2018 }
2019
2020 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2021                                      unsigned long addr, unsigned long end,
2022                                      pte_fn_t fn, void *data)
2023 {
2024         p4d_t *p4d;
2025         unsigned long next;
2026         int err;
2027
2028         p4d = p4d_alloc(mm, pgd, addr);
2029         if (!p4d)
2030                 return -ENOMEM;
2031         do {
2032                 next = p4d_addr_end(addr, end);
2033                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2034                 if (err)
2035                         break;
2036         } while (p4d++, addr = next, addr != end);
2037         return err;
2038 }
2039
2040 /*
2041  * Scan a region of virtual memory, filling in page tables as necessary
2042  * and calling a provided function on each leaf page table.
2043  */
2044 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2045                         unsigned long size, pte_fn_t fn, void *data)
2046 {
2047         pgd_t *pgd;
2048         unsigned long next;
2049         unsigned long end = addr + size;
2050         int err;
2051
2052         if (WARN_ON(addr >= end))
2053                 return -EINVAL;
2054
2055         pgd = pgd_offset(mm, addr);
2056         do {
2057                 next = pgd_addr_end(addr, end);
2058                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2059                 if (err)
2060                         break;
2061         } while (pgd++, addr = next, addr != end);
2062
2063         return err;
2064 }
2065 EXPORT_SYMBOL_GPL(apply_to_page_range);
2066
2067 /*
2068  * handle_pte_fault chooses page fault handler according to an entry which was
2069  * read non-atomically.  Before making any commitment, on those architectures
2070  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2071  * parts, do_swap_page must check under lock before unmapping the pte and
2072  * proceeding (but do_wp_page is only called after already making such a check;
2073  * and do_anonymous_page can safely check later on).
2074  */
2075 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2076                                 pte_t *page_table, pte_t orig_pte)
2077 {
2078         int same = 1;
2079 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2080         if (sizeof(pte_t) > sizeof(unsigned long)) {
2081                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2082                 spin_lock(ptl);
2083                 same = pte_same(*page_table, orig_pte);
2084                 spin_unlock(ptl);
2085         }
2086 #endif
2087         pte_unmap(page_table);
2088         return same;
2089 }
2090
2091 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2092 {
2093         debug_dma_assert_idle(src);
2094
2095         /*
2096          * If the source page was a PFN mapping, we don't have
2097          * a "struct page" for it. We do a best-effort copy by
2098          * just copying from the original user address. If that
2099          * fails, we just zero-fill it. Live with it.
2100          */
2101         if (unlikely(!src)) {
2102                 void *kaddr = kmap_atomic(dst);
2103                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2104
2105                 /*
2106                  * This really shouldn't fail, because the page is there
2107                  * in the page tables. But it might just be unreadable,
2108                  * in which case we just give up and fill the result with
2109                  * zeroes.
2110                  */
2111                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2112                         clear_page(kaddr);
2113                 kunmap_atomic(kaddr);
2114                 flush_dcache_page(dst);
2115         } else
2116                 copy_user_highpage(dst, src, va, vma);
2117 }
2118
2119 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2120 {
2121         struct file *vm_file = vma->vm_file;
2122
2123         if (vm_file)
2124                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2125
2126         /*
2127          * Special mappings (e.g. VDSO) do not have any file so fake
2128          * a default GFP_KERNEL for them.
2129          */
2130         return GFP_KERNEL;
2131 }
2132
2133 /*
2134  * Notify the address space that the page is about to become writable so that
2135  * it can prohibit this or wait for the page to get into an appropriate state.
2136  *
2137  * We do this without the lock held, so that it can sleep if it needs to.
2138  */
2139 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2140 {
2141         vm_fault_t ret;
2142         struct page *page = vmf->page;
2143         unsigned int old_flags = vmf->flags;
2144
2145         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2146
2147         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2148         /* Restore original flags so that caller is not surprised */
2149         vmf->flags = old_flags;
2150         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2151                 return ret;
2152         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2153                 lock_page(page);
2154                 if (!page->mapping) {
2155                         unlock_page(page);
2156                         return 0; /* retry */
2157                 }
2158                 ret |= VM_FAULT_LOCKED;
2159         } else
2160                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2161         return ret;
2162 }
2163
2164 /*
2165  * Handle dirtying of a page in shared file mapping on a write fault.
2166  *
2167  * The function expects the page to be locked and unlocks it.
2168  */
2169 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2170                                     struct page *page)
2171 {
2172         struct address_space *mapping;
2173         bool dirtied;
2174         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2175
2176         dirtied = set_page_dirty(page);
2177         VM_BUG_ON_PAGE(PageAnon(page), page);
2178         /*
2179          * Take a local copy of the address_space - page.mapping may be zeroed
2180          * by truncate after unlock_page().   The address_space itself remains
2181          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2182          * release semantics to prevent the compiler from undoing this copying.
2183          */
2184         mapping = page_rmapping(page);
2185         unlock_page(page);
2186
2187         if ((dirtied || page_mkwrite) && mapping) {
2188                 /*
2189                  * Some device drivers do not set page.mapping
2190                  * but still dirty their pages
2191                  */
2192                 balance_dirty_pages_ratelimited(mapping);
2193         }
2194
2195         if (!page_mkwrite)
2196                 file_update_time(vma->vm_file);
2197 }
2198
2199 /*
2200  * Handle write page faults for pages that can be reused in the current vma
2201  *
2202  * This can happen either due to the mapping being with the VM_SHARED flag,
2203  * or due to us being the last reference standing to the page. In either
2204  * case, all we need to do here is to mark the page as writable and update
2205  * any related book-keeping.
2206  */
2207 static inline void wp_page_reuse(struct vm_fault *vmf)
2208         __releases(vmf->ptl)
2209 {
2210         struct vm_area_struct *vma = vmf->vma;
2211         struct page *page = vmf->page;
2212         pte_t entry;
2213         /*
2214          * Clear the pages cpupid information as the existing
2215          * information potentially belongs to a now completely
2216          * unrelated process.
2217          */
2218         if (page)
2219                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2220
2221         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2222         entry = pte_mkyoung(vmf->orig_pte);
2223         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2224         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2225                 update_mmu_cache(vma, vmf->address, vmf->pte);
2226         pte_unmap_unlock(vmf->pte, vmf->ptl);
2227 }
2228
2229 /*
2230  * Handle the case of a page which we actually need to copy to a new page.
2231  *
2232  * Called with mmap_sem locked and the old page referenced, but
2233  * without the ptl held.
2234  *
2235  * High level logic flow:
2236  *
2237  * - Allocate a page, copy the content of the old page to the new one.
2238  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2239  * - Take the PTL. If the pte changed, bail out and release the allocated page
2240  * - If the pte is still the way we remember it, update the page table and all
2241  *   relevant references. This includes dropping the reference the page-table
2242  *   held to the old page, as well as updating the rmap.
2243  * - In any case, unlock the PTL and drop the reference we took to the old page.
2244  */
2245 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2246 {
2247         struct vm_area_struct *vma = vmf->vma;
2248         struct mm_struct *mm = vma->vm_mm;
2249         struct page *old_page = vmf->page;
2250         struct page *new_page = NULL;
2251         pte_t entry;
2252         int page_copied = 0;
2253         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2254         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2255         struct mem_cgroup *memcg;
2256
2257         if (unlikely(anon_vma_prepare(vma)))
2258                 goto oom;
2259
2260         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2261                 new_page = alloc_zeroed_user_highpage_movable(vma,
2262                                                               vmf->address);
2263                 if (!new_page)
2264                         goto oom;
2265         } else {
2266                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2267                                 vmf->address);
2268                 if (!new_page)
2269                         goto oom;
2270                 cow_user_page(new_page, old_page, vmf->address, vma);
2271         }
2272
2273         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2274                 goto oom_free_new;
2275
2276         __SetPageUptodate(new_page);
2277
2278         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2279
2280         /*
2281          * Re-check the pte - we dropped the lock
2282          */
2283         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2284         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2285                 if (old_page) {
2286                         if (!PageAnon(old_page)) {
2287                                 dec_mm_counter_fast(mm,
2288                                                 mm_counter_file(old_page));
2289                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2290                         }
2291                 } else {
2292                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2293                 }
2294                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2295                 entry = mk_pte(new_page, vma->vm_page_prot);
2296                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2297                 /*
2298                  * Clear the pte entry and flush it first, before updating the
2299                  * pte with the new entry. This will avoid a race condition
2300                  * seen in the presence of one thread doing SMC and another
2301                  * thread doing COW.
2302                  */
2303                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2304                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2305                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2306                 lru_cache_add_active_or_unevictable(new_page, vma);
2307                 /*
2308                  * We call the notify macro here because, when using secondary
2309                  * mmu page tables (such as kvm shadow page tables), we want the
2310                  * new page to be mapped directly into the secondary page table.
2311                  */
2312                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2313                 update_mmu_cache(vma, vmf->address, vmf->pte);
2314                 if (old_page) {
2315                         /*
2316                          * Only after switching the pte to the new page may
2317                          * we remove the mapcount here. Otherwise another
2318                          * process may come and find the rmap count decremented
2319                          * before the pte is switched to the new page, and
2320                          * "reuse" the old page writing into it while our pte
2321                          * here still points into it and can be read by other
2322                          * threads.
2323                          *
2324                          * The critical issue is to order this
2325                          * page_remove_rmap with the ptp_clear_flush above.
2326                          * Those stores are ordered by (if nothing else,)
2327                          * the barrier present in the atomic_add_negative
2328                          * in page_remove_rmap.
2329                          *
2330                          * Then the TLB flush in ptep_clear_flush ensures that
2331                          * no process can access the old page before the
2332                          * decremented mapcount is visible. And the old page
2333                          * cannot be reused until after the decremented
2334                          * mapcount is visible. So transitively, TLBs to
2335                          * old page will be flushed before it can be reused.
2336                          */
2337                         page_remove_rmap(old_page, false);
2338                 }
2339
2340                 /* Free the old page.. */
2341                 new_page = old_page;
2342                 page_copied = 1;
2343         } else {
2344                 mem_cgroup_cancel_charge(new_page, memcg, false);
2345         }
2346
2347         if (new_page)
2348                 put_page(new_page);
2349
2350         pte_unmap_unlock(vmf->pte, vmf->ptl);
2351         /*
2352          * No need to double call mmu_notifier->invalidate_range() callback as
2353          * the above ptep_clear_flush_notify() did already call it.
2354          */
2355         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2356         if (old_page) {
2357                 /*
2358                  * Don't let another task, with possibly unlocked vma,
2359                  * keep the mlocked page.
2360                  */
2361                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2362                         lock_page(old_page);    /* LRU manipulation */
2363                         if (PageMlocked(old_page))
2364                                 munlock_vma_page(old_page);
2365                         unlock_page(old_page);
2366                 }
2367                 put_page(old_page);
2368         }
2369         return page_copied ? VM_FAULT_WRITE : 0;
2370 oom_free_new:
2371         put_page(new_page);
2372 oom:
2373         if (old_page)
2374                 put_page(old_page);
2375         return VM_FAULT_OOM;
2376 }
2377
2378 /**
2379  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2380  *                        writeable once the page is prepared
2381  *
2382  * @vmf: structure describing the fault
2383  *
2384  * This function handles all that is needed to finish a write page fault in a
2385  * shared mapping due to PTE being read-only once the mapped page is prepared.
2386  * It handles locking of PTE and modifying it. The function returns
2387  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2388  * lock.
2389  *
2390  * The function expects the page to be locked or other protection against
2391  * concurrent faults / writeback (such as DAX radix tree locks).
2392  */
2393 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2394 {
2395         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2396         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2397                                        &vmf->ptl);
2398         /*
2399          * We might have raced with another page fault while we released the
2400          * pte_offset_map_lock.
2401          */
2402         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2403                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2404                 return VM_FAULT_NOPAGE;
2405         }
2406         wp_page_reuse(vmf);
2407         return 0;
2408 }
2409
2410 /*
2411  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2412  * mapping
2413  */
2414 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2415 {
2416         struct vm_area_struct *vma = vmf->vma;
2417
2418         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2419                 vm_fault_t ret;
2420
2421                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2422                 vmf->flags |= FAULT_FLAG_MKWRITE;
2423                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2424                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2425                         return ret;
2426                 return finish_mkwrite_fault(vmf);
2427         }
2428         wp_page_reuse(vmf);
2429         return VM_FAULT_WRITE;
2430 }
2431
2432 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2433         __releases(vmf->ptl)
2434 {
2435         struct vm_area_struct *vma = vmf->vma;
2436
2437         get_page(vmf->page);
2438
2439         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2440                 vm_fault_t tmp;
2441
2442                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2443                 tmp = do_page_mkwrite(vmf);
2444                 if (unlikely(!tmp || (tmp &
2445                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2446                         put_page(vmf->page);
2447                         return tmp;
2448                 }
2449                 tmp = finish_mkwrite_fault(vmf);
2450                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2451                         unlock_page(vmf->page);
2452                         put_page(vmf->page);
2453                         return tmp;
2454                 }
2455         } else {
2456                 wp_page_reuse(vmf);
2457                 lock_page(vmf->page);
2458         }
2459         fault_dirty_shared_page(vma, vmf->page);
2460         put_page(vmf->page);
2461
2462         return VM_FAULT_WRITE;
2463 }
2464
2465 /*
2466  * This routine handles present pages, when users try to write
2467  * to a shared page. It is done by copying the page to a new address
2468  * and decrementing the shared-page counter for the old page.
2469  *
2470  * Note that this routine assumes that the protection checks have been
2471  * done by the caller (the low-level page fault routine in most cases).
2472  * Thus we can safely just mark it writable once we've done any necessary
2473  * COW.
2474  *
2475  * We also mark the page dirty at this point even though the page will
2476  * change only once the write actually happens. This avoids a few races,
2477  * and potentially makes it more efficient.
2478  *
2479  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2480  * but allow concurrent faults), with pte both mapped and locked.
2481  * We return with mmap_sem still held, but pte unmapped and unlocked.
2482  */
2483 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2484         __releases(vmf->ptl)
2485 {
2486         struct vm_area_struct *vma = vmf->vma;
2487
2488         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2489         if (!vmf->page) {
2490                 /*
2491                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2492                  * VM_PFNMAP VMA.
2493                  *
2494                  * We should not cow pages in a shared writeable mapping.
2495                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2496                  */
2497                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2498                                      (VM_WRITE|VM_SHARED))
2499                         return wp_pfn_shared(vmf);
2500
2501                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2502                 return wp_page_copy(vmf);
2503         }
2504
2505         /*
2506          * Take out anonymous pages first, anonymous shared vmas are
2507          * not dirty accountable.
2508          */
2509         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2510                 int total_map_swapcount;
2511                 if (!trylock_page(vmf->page)) {
2512                         get_page(vmf->page);
2513                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2514                         lock_page(vmf->page);
2515                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2516                                         vmf->address, &vmf->ptl);
2517                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2518                                 unlock_page(vmf->page);
2519                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2520                                 put_page(vmf->page);
2521                                 return 0;
2522                         }
2523                         put_page(vmf->page);
2524                 }
2525                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2526                         if (total_map_swapcount == 1) {
2527                                 /*
2528                                  * The page is all ours. Move it to
2529                                  * our anon_vma so the rmap code will
2530                                  * not search our parent or siblings.
2531                                  * Protected against the rmap code by
2532                                  * the page lock.
2533                                  */
2534                                 page_move_anon_rmap(vmf->page, vma);
2535                         }
2536                         unlock_page(vmf->page);
2537                         wp_page_reuse(vmf);
2538                         return VM_FAULT_WRITE;
2539                 }
2540                 unlock_page(vmf->page);
2541         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2542                                         (VM_WRITE|VM_SHARED))) {
2543                 return wp_page_shared(vmf);
2544         }
2545
2546         /*
2547          * Ok, we need to copy. Oh, well..
2548          */
2549         get_page(vmf->page);
2550
2551         pte_unmap_unlock(vmf->pte, vmf->ptl);
2552         return wp_page_copy(vmf);
2553 }
2554
2555 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2556                 unsigned long start_addr, unsigned long end_addr,
2557                 struct zap_details *details)
2558 {
2559         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2560 }
2561
2562 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2563                                             struct zap_details *details)
2564 {
2565         struct vm_area_struct *vma;
2566         pgoff_t vba, vea, zba, zea;
2567
2568         vma_interval_tree_foreach(vma, root,
2569                         details->first_index, details->last_index) {
2570
2571                 vba = vma->vm_pgoff;
2572                 vea = vba + vma_pages(vma) - 1;
2573                 zba = details->first_index;
2574                 if (zba < vba)
2575                         zba = vba;
2576                 zea = details->last_index;
2577                 if (zea > vea)
2578                         zea = vea;
2579
2580                 unmap_mapping_range_vma(vma,
2581                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2582                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2583                                 details);
2584         }
2585 }
2586
2587 /**
2588  * unmap_mapping_pages() - Unmap pages from processes.
2589  * @mapping: The address space containing pages to be unmapped.
2590  * @start: Index of first page to be unmapped.
2591  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2592  * @even_cows: Whether to unmap even private COWed pages.
2593  *
2594  * Unmap the pages in this address space from any userspace process which
2595  * has them mmaped.  Generally, you want to remove COWed pages as well when
2596  * a file is being truncated, but not when invalidating pages from the page
2597  * cache.
2598  */
2599 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2600                 pgoff_t nr, bool even_cows)
2601 {
2602         struct zap_details details = { };
2603
2604         details.check_mapping = even_cows ? NULL : mapping;
2605         details.first_index = start;
2606         details.last_index = start + nr - 1;
2607         if (details.last_index < details.first_index)
2608                 details.last_index = ULONG_MAX;
2609
2610         i_mmap_lock_write(mapping);
2611         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2612                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2613         i_mmap_unlock_write(mapping);
2614 }
2615
2616 /**
2617  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2618  * address_space corresponding to the specified byte range in the underlying
2619  * file.
2620  *
2621  * @mapping: the address space containing mmaps to be unmapped.
2622  * @holebegin: byte in first page to unmap, relative to the start of
2623  * the underlying file.  This will be rounded down to a PAGE_SIZE
2624  * boundary.  Note that this is different from truncate_pagecache(), which
2625  * must keep the partial page.  In contrast, we must get rid of
2626  * partial pages.
2627  * @holelen: size of prospective hole in bytes.  This will be rounded
2628  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2629  * end of the file.
2630  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2631  * but 0 when invalidating pagecache, don't throw away private data.
2632  */
2633 void unmap_mapping_range(struct address_space *mapping,
2634                 loff_t const holebegin, loff_t const holelen, int even_cows)
2635 {
2636         pgoff_t hba = holebegin >> PAGE_SHIFT;
2637         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2638
2639         /* Check for overflow. */
2640         if (sizeof(holelen) > sizeof(hlen)) {
2641                 long long holeend =
2642                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2643                 if (holeend & ~(long long)ULONG_MAX)
2644                         hlen = ULONG_MAX - hba + 1;
2645         }
2646
2647         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2648 }
2649 EXPORT_SYMBOL(unmap_mapping_range);
2650
2651 /*
2652  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2653  * but allow concurrent faults), and pte mapped but not yet locked.
2654  * We return with pte unmapped and unlocked.
2655  *
2656  * We return with the mmap_sem locked or unlocked in the same cases
2657  * as does filemap_fault().
2658  */
2659 vm_fault_t do_swap_page(struct vm_fault *vmf)
2660 {
2661         struct vm_area_struct *vma = vmf->vma;
2662         struct page *page = NULL, *swapcache;
2663         struct mem_cgroup *memcg;
2664         swp_entry_t entry;
2665         pte_t pte;
2666         int locked;
2667         int exclusive = 0;
2668         vm_fault_t ret = 0;
2669
2670         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2671                 goto out;
2672
2673         entry = pte_to_swp_entry(vmf->orig_pte);
2674         if (unlikely(non_swap_entry(entry))) {
2675                 if (is_migration_entry(entry)) {
2676                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2677                                              vmf->address);
2678                 } else if (is_device_private_entry(entry)) {
2679                         /*
2680                          * For un-addressable device memory we call the pgmap
2681                          * fault handler callback. The callback must migrate
2682                          * the page back to some CPU accessible page.
2683                          */
2684                         ret = device_private_entry_fault(vma, vmf->address, entry,
2685                                                  vmf->flags, vmf->pmd);
2686                 } else if (is_hwpoison_entry(entry)) {
2687                         ret = VM_FAULT_HWPOISON;
2688                 } else {
2689                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2690                         ret = VM_FAULT_SIGBUS;
2691                 }
2692                 goto out;
2693         }
2694
2695
2696         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2697         page = lookup_swap_cache(entry, vma, vmf->address);
2698         swapcache = page;
2699
2700         if (!page) {
2701                 struct swap_info_struct *si = swp_swap_info(entry);
2702
2703                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2704                                 __swap_count(si, entry) == 1) {
2705                         /* skip swapcache */
2706                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2707                                                         vmf->address);
2708                         if (page) {
2709                                 __SetPageLocked(page);
2710                                 __SetPageSwapBacked(page);
2711                                 set_page_private(page, entry.val);
2712                                 lru_cache_add_anon(page);
2713                                 swap_readpage(page, true);
2714                         }
2715                 } else {
2716                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2717                                                 vmf);
2718                         swapcache = page;
2719                 }
2720
2721                 if (!page) {
2722                         /*
2723                          * Back out if somebody else faulted in this pte
2724                          * while we released the pte lock.
2725                          */
2726                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2727                                         vmf->address, &vmf->ptl);
2728                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2729                                 ret = VM_FAULT_OOM;
2730                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2731                         goto unlock;
2732                 }
2733
2734                 /* Had to read the page from swap area: Major fault */
2735                 ret = VM_FAULT_MAJOR;
2736                 count_vm_event(PGMAJFAULT);
2737                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2738         } else if (PageHWPoison(page)) {
2739                 /*
2740                  * hwpoisoned dirty swapcache pages are kept for killing
2741                  * owner processes (which may be unknown at hwpoison time)
2742                  */
2743                 ret = VM_FAULT_HWPOISON;
2744                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2745                 goto out_release;
2746         }
2747
2748         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2749
2750         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2751         if (!locked) {
2752                 ret |= VM_FAULT_RETRY;
2753                 goto out_release;
2754         }
2755
2756         /*
2757          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2758          * release the swapcache from under us.  The page pin, and pte_same
2759          * test below, are not enough to exclude that.  Even if it is still
2760          * swapcache, we need to check that the page's swap has not changed.
2761          */
2762         if (unlikely((!PageSwapCache(page) ||
2763                         page_private(page) != entry.val)) && swapcache)
2764                 goto out_page;
2765
2766         page = ksm_might_need_to_copy(page, vma, vmf->address);
2767         if (unlikely(!page)) {
2768                 ret = VM_FAULT_OOM;
2769                 page = swapcache;
2770                 goto out_page;
2771         }
2772
2773         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2774                                         &memcg, false)) {
2775                 ret = VM_FAULT_OOM;
2776                 goto out_page;
2777         }
2778
2779         /*
2780          * Back out if somebody else already faulted in this pte.
2781          */
2782         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2783                         &vmf->ptl);
2784         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2785                 goto out_nomap;
2786
2787         if (unlikely(!PageUptodate(page))) {
2788                 ret = VM_FAULT_SIGBUS;
2789                 goto out_nomap;
2790         }
2791
2792         /*
2793          * The page isn't present yet, go ahead with the fault.
2794          *
2795          * Be careful about the sequence of operations here.
2796          * To get its accounting right, reuse_swap_page() must be called
2797          * while the page is counted on swap but not yet in mapcount i.e.
2798          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2799          * must be called after the swap_free(), or it will never succeed.
2800          */
2801
2802         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2803         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2804         pte = mk_pte(page, vma->vm_page_prot);
2805         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2806                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2807                 vmf->flags &= ~FAULT_FLAG_WRITE;
2808                 ret |= VM_FAULT_WRITE;
2809                 exclusive = RMAP_EXCLUSIVE;
2810         }
2811         flush_icache_page(vma, page);
2812         if (pte_swp_soft_dirty(vmf->orig_pte))
2813                 pte = pte_mksoft_dirty(pte);
2814         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2815         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2816         vmf->orig_pte = pte;
2817
2818         /* ksm created a completely new copy */
2819         if (unlikely(page != swapcache && swapcache)) {
2820                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2821                 mem_cgroup_commit_charge(page, memcg, false, false);
2822                 lru_cache_add_active_or_unevictable(page, vma);
2823         } else {
2824                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2825                 mem_cgroup_commit_charge(page, memcg, true, false);
2826                 activate_page(page);
2827         }
2828
2829         swap_free(entry);
2830         if (mem_cgroup_swap_full(page) ||
2831             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2832                 try_to_free_swap(page);
2833         unlock_page(page);
2834         if (page != swapcache && swapcache) {
2835                 /*
2836                  * Hold the lock to avoid the swap entry to be reused
2837                  * until we take the PT lock for the pte_same() check
2838                  * (to avoid false positives from pte_same). For
2839                  * further safety release the lock after the swap_free
2840                  * so that the swap count won't change under a
2841                  * parallel locked swapcache.
2842                  */
2843                 unlock_page(swapcache);
2844                 put_page(swapcache);
2845         }
2846
2847         if (vmf->flags & FAULT_FLAG_WRITE) {
2848                 ret |= do_wp_page(vmf);
2849                 if (ret & VM_FAULT_ERROR)
2850                         ret &= VM_FAULT_ERROR;
2851                 goto out;
2852         }
2853
2854         /* No need to invalidate - it was non-present before */
2855         update_mmu_cache(vma, vmf->address, vmf->pte);
2856 unlock:
2857         pte_unmap_unlock(vmf->pte, vmf->ptl);
2858 out:
2859         return ret;
2860 out_nomap:
2861         mem_cgroup_cancel_charge(page, memcg, false);
2862         pte_unmap_unlock(vmf->pte, vmf->ptl);
2863 out_page:
2864         unlock_page(page);
2865 out_release:
2866         put_page(page);
2867         if (page != swapcache && swapcache) {
2868                 unlock_page(swapcache);
2869                 put_page(swapcache);
2870         }
2871         return ret;
2872 }
2873
2874 /*
2875  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2876  * but allow concurrent faults), and pte mapped but not yet locked.
2877  * We return with mmap_sem still held, but pte unmapped and unlocked.
2878  */
2879 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2880 {
2881         struct vm_area_struct *vma = vmf->vma;
2882         struct mem_cgroup *memcg;
2883         struct page *page;
2884         vm_fault_t ret = 0;
2885         pte_t entry;
2886
2887         /* File mapping without ->vm_ops ? */
2888         if (vma->vm_flags & VM_SHARED)
2889                 return VM_FAULT_SIGBUS;
2890
2891         /*
2892          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2893          * pte_offset_map() on pmds where a huge pmd might be created
2894          * from a different thread.
2895          *
2896          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2897          * parallel threads are excluded by other means.
2898          *
2899          * Here we only have down_read(mmap_sem).
2900          */
2901         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2902                 return VM_FAULT_OOM;
2903
2904         /* See the comment in pte_alloc_one_map() */
2905         if (unlikely(pmd_trans_unstable(vmf->pmd)))
2906                 return 0;
2907
2908         /* Use the zero-page for reads */
2909         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2910                         !mm_forbids_zeropage(vma->vm_mm)) {
2911                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2912                                                 vma->vm_page_prot));
2913                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2914                                 vmf->address, &vmf->ptl);
2915                 if (!pte_none(*vmf->pte))
2916                         goto unlock;
2917                 ret = check_stable_address_space(vma->vm_mm);
2918                 if (ret)
2919                         goto unlock;
2920                 /* Deliver the page fault to userland, check inside PT lock */
2921                 if (userfaultfd_missing(vma)) {
2922                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2923                         return handle_userfault(vmf, VM_UFFD_MISSING);
2924                 }
2925                 goto setpte;
2926         }
2927
2928         /* Allocate our own private page. */
2929         if (unlikely(anon_vma_prepare(vma)))
2930                 goto oom;
2931         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2932         if (!page)
2933                 goto oom;
2934
2935         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2936                                         false))
2937                 goto oom_free_page;
2938
2939         /*
2940          * The memory barrier inside __SetPageUptodate makes sure that
2941          * preceeding stores to the page contents become visible before
2942          * the set_pte_at() write.
2943          */
2944         __SetPageUptodate(page);
2945
2946         entry = mk_pte(page, vma->vm_page_prot);
2947         if (vma->vm_flags & VM_WRITE)
2948                 entry = pte_mkwrite(pte_mkdirty(entry));
2949
2950         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2951                         &vmf->ptl);
2952         if (!pte_none(*vmf->pte))
2953                 goto release;
2954
2955         ret = check_stable_address_space(vma->vm_mm);
2956         if (ret)
2957                 goto release;
2958
2959         /* Deliver the page fault to userland, check inside PT lock */
2960         if (userfaultfd_missing(vma)) {
2961                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2962                 mem_cgroup_cancel_charge(page, memcg, false);
2963                 put_page(page);
2964                 return handle_userfault(vmf, VM_UFFD_MISSING);
2965         }
2966
2967         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2968         page_add_new_anon_rmap(page, vma, vmf->address, false);
2969         mem_cgroup_commit_charge(page, memcg, false, false);
2970         lru_cache_add_active_or_unevictable(page, vma);
2971 setpte:
2972         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2973
2974         /* No need to invalidate - it was non-present before */
2975         update_mmu_cache(vma, vmf->address, vmf->pte);
2976 unlock:
2977         pte_unmap_unlock(vmf->pte, vmf->ptl);
2978         return ret;
2979 release:
2980         mem_cgroup_cancel_charge(page, memcg, false);
2981         put_page(page);
2982         goto unlock;
2983 oom_free_page:
2984         put_page(page);
2985 oom:
2986         return VM_FAULT_OOM;
2987 }
2988
2989 /*
2990  * The mmap_sem must have been held on entry, and may have been
2991  * released depending on flags and vma->vm_ops->fault() return value.
2992  * See filemap_fault() and __lock_page_retry().
2993  */
2994 static vm_fault_t __do_fault(struct vm_fault *vmf)
2995 {
2996         struct vm_area_struct *vma = vmf->vma;
2997         vm_fault_t ret;
2998
2999         ret = vma->vm_ops->fault(vmf);
3000         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3001                             VM_FAULT_DONE_COW)))
3002                 return ret;
3003
3004         if (unlikely(PageHWPoison(vmf->page))) {
3005                 if (ret & VM_FAULT_LOCKED)
3006                         unlock_page(vmf->page);
3007                 put_page(vmf->page);
3008                 vmf->page = NULL;
3009                 return VM_FAULT_HWPOISON;
3010         }
3011
3012         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3013                 lock_page(vmf->page);
3014         else
3015                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3016
3017         return ret;
3018 }
3019
3020 /*
3021  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3022  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3023  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3024  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3025  */
3026 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3027 {
3028         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3029 }
3030
3031 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3032 {
3033         struct vm_area_struct *vma = vmf->vma;
3034
3035         if (!pmd_none(*vmf->pmd))
3036                 goto map_pte;
3037         if (vmf->prealloc_pte) {
3038                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3039                 if (unlikely(!pmd_none(*vmf->pmd))) {
3040                         spin_unlock(vmf->ptl);
3041                         goto map_pte;
3042                 }
3043
3044                 mm_inc_nr_ptes(vma->vm_mm);
3045                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3046                 spin_unlock(vmf->ptl);
3047                 vmf->prealloc_pte = NULL;
3048         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3049                 return VM_FAULT_OOM;
3050         }
3051 map_pte:
3052         /*
3053          * If a huge pmd materialized under us just retry later.  Use
3054          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3055          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3056          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3057          * running immediately after a huge pmd fault in a different thread of
3058          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3059          * All we have to ensure is that it is a regular pmd that we can walk
3060          * with pte_offset_map() and we can do that through an atomic read in
3061          * C, which is what pmd_trans_unstable() provides.
3062          */
3063         if (pmd_devmap_trans_unstable(vmf->pmd))
3064                 return VM_FAULT_NOPAGE;
3065
3066         /*
3067          * At this point we know that our vmf->pmd points to a page of ptes
3068          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3069          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3070          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3071          * be valid and we will re-check to make sure the vmf->pte isn't
3072          * pte_none() under vmf->ptl protection when we return to
3073          * alloc_set_pte().
3074          */
3075         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3076                         &vmf->ptl);
3077         return 0;
3078 }
3079
3080 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3081
3082 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3083 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3084                 unsigned long haddr)
3085 {
3086         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3087                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3088                 return false;
3089         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3090                 return false;
3091         return true;
3092 }
3093
3094 static void deposit_prealloc_pte(struct vm_fault *vmf)
3095 {
3096         struct vm_area_struct *vma = vmf->vma;
3097
3098         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3099         /*
3100          * We are going to consume the prealloc table,
3101          * count that as nr_ptes.
3102          */
3103         mm_inc_nr_ptes(vma->vm_mm);
3104         vmf->prealloc_pte = NULL;
3105 }
3106
3107 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3108 {
3109         struct vm_area_struct *vma = vmf->vma;
3110         bool write = vmf->flags & FAULT_FLAG_WRITE;
3111         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3112         pmd_t entry;
3113         int i;
3114         vm_fault_t ret;
3115
3116         if (!transhuge_vma_suitable(vma, haddr))
3117                 return VM_FAULT_FALLBACK;
3118
3119         ret = VM_FAULT_FALLBACK;
3120         page = compound_head(page);
3121
3122         /*
3123          * Archs like ppc64 need additonal space to store information
3124          * related to pte entry. Use the preallocated table for that.
3125          */
3126         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3127                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3128                 if (!vmf->prealloc_pte)
3129                         return VM_FAULT_OOM;
3130                 smp_wmb(); /* See comment in __pte_alloc() */
3131         }
3132
3133         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3134         if (unlikely(!pmd_none(*vmf->pmd)))
3135                 goto out;
3136
3137         for (i = 0; i < HPAGE_PMD_NR; i++)
3138                 flush_icache_page(vma, page + i);
3139
3140         entry = mk_huge_pmd(page, vma->vm_page_prot);
3141         if (write)
3142                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3143
3144         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3145         page_add_file_rmap(page, true);
3146         /*
3147          * deposit and withdraw with pmd lock held
3148          */
3149         if (arch_needs_pgtable_deposit())
3150                 deposit_prealloc_pte(vmf);
3151
3152         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3153
3154         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3155
3156         /* fault is handled */
3157         ret = 0;
3158         count_vm_event(THP_FILE_MAPPED);
3159 out:
3160         spin_unlock(vmf->ptl);
3161         return ret;
3162 }
3163 #else
3164 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3165 {
3166         BUILD_BUG();
3167         return 0;
3168 }
3169 #endif
3170
3171 /**
3172  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3173  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3174  *
3175  * @vmf: fault environment
3176  * @memcg: memcg to charge page (only for private mappings)
3177  * @page: page to map
3178  *
3179  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3180  * return.
3181  *
3182  * Target users are page handler itself and implementations of
3183  * vm_ops->map_pages.
3184  */
3185 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3186                 struct page *page)
3187 {
3188         struct vm_area_struct *vma = vmf->vma;
3189         bool write = vmf->flags & FAULT_FLAG_WRITE;
3190         pte_t entry;
3191         vm_fault_t ret;
3192
3193         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3194                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3195                 /* THP on COW? */
3196                 VM_BUG_ON_PAGE(memcg, page);
3197
3198                 ret = do_set_pmd(vmf, page);
3199                 if (ret != VM_FAULT_FALLBACK)
3200                         return ret;
3201         }
3202
3203         if (!vmf->pte) {
3204                 ret = pte_alloc_one_map(vmf);
3205                 if (ret)
3206                         return ret;
3207         }
3208
3209         /* Re-check under ptl */
3210         if (unlikely(!pte_none(*vmf->pte)))
3211                 return VM_FAULT_NOPAGE;
3212
3213         flush_icache_page(vma, page);
3214         entry = mk_pte(page, vma->vm_page_prot);
3215         if (write)
3216                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3217         /* copy-on-write page */
3218         if (write && !(vma->vm_flags & VM_SHARED)) {
3219                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3220                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3221                 mem_cgroup_commit_charge(page, memcg, false, false);
3222                 lru_cache_add_active_or_unevictable(page, vma);
3223         } else {
3224                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3225                 page_add_file_rmap(page, false);
3226         }
3227         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3228
3229         /* no need to invalidate: a not-present page won't be cached */
3230         update_mmu_cache(vma, vmf->address, vmf->pte);
3231
3232         return 0;
3233 }
3234
3235
3236 /**
3237  * finish_fault - finish page fault once we have prepared the page to fault
3238  *
3239  * @vmf: structure describing the fault
3240  *
3241  * This function handles all that is needed to finish a page fault once the
3242  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3243  * given page, adds reverse page mapping, handles memcg charges and LRU
3244  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3245  * error.
3246  *
3247  * The function expects the page to be locked and on success it consumes a
3248  * reference of a page being mapped (for the PTE which maps it).
3249  */
3250 vm_fault_t finish_fault(struct vm_fault *vmf)
3251 {
3252         struct page *page;
3253         vm_fault_t ret = 0;
3254
3255         /* Did we COW the page? */
3256         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3257             !(vmf->vma->vm_flags & VM_SHARED))
3258                 page = vmf->cow_page;
3259         else
3260                 page = vmf->page;
3261
3262         /*
3263          * check even for read faults because we might have lost our CoWed
3264          * page
3265          */
3266         if (!(vmf->vma->vm_flags & VM_SHARED))
3267                 ret = check_stable_address_space(vmf->vma->vm_mm);
3268         if (!ret)
3269                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3270         if (vmf->pte)
3271                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3272         return ret;
3273 }
3274
3275 static unsigned long fault_around_bytes __read_mostly =
3276         rounddown_pow_of_two(65536);
3277
3278 #ifdef CONFIG_DEBUG_FS
3279 static int fault_around_bytes_get(void *data, u64 *val)
3280 {
3281         *val = fault_around_bytes;
3282         return 0;
3283 }
3284
3285 /*
3286  * fault_around_bytes must be rounded down to the nearest page order as it's
3287  * what do_fault_around() expects to see.
3288  */
3289 static int fault_around_bytes_set(void *data, u64 val)
3290 {
3291         if (val / PAGE_SIZE > PTRS_PER_PTE)
3292                 return -EINVAL;
3293         if (val > PAGE_SIZE)
3294                 fault_around_bytes = rounddown_pow_of_two(val);
3295         else
3296                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3297         return 0;
3298 }
3299 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3300                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3301
3302 static int __init fault_around_debugfs(void)
3303 {
3304         void *ret;
3305
3306         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3307                         &fault_around_bytes_fops);
3308         if (!ret)
3309                 pr_warn("Failed to create fault_around_bytes in debugfs");
3310         return 0;
3311 }
3312 late_initcall(fault_around_debugfs);
3313 #endif
3314
3315 /*
3316  * do_fault_around() tries to map few pages around the fault address. The hope
3317  * is that the pages will be needed soon and this will lower the number of
3318  * faults to handle.
3319  *
3320  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3321  * not ready to be mapped: not up-to-date, locked, etc.
3322  *
3323  * This function is called with the page table lock taken. In the split ptlock
3324  * case the page table lock only protects only those entries which belong to
3325  * the page table corresponding to the fault address.
3326  *
3327  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3328  * only once.
3329  *
3330  * fault_around_bytes defines how many bytes we'll try to map.
3331  * do_fault_around() expects it to be set to a power of two less than or equal
3332  * to PTRS_PER_PTE.
3333  *
3334  * The virtual address of the area that we map is naturally aligned to
3335  * fault_around_bytes rounded down to the machine page size
3336  * (and therefore to page order).  This way it's easier to guarantee
3337  * that we don't cross page table boundaries.
3338  */
3339 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3340 {
3341         unsigned long address = vmf->address, nr_pages, mask;
3342         pgoff_t start_pgoff = vmf->pgoff;
3343         pgoff_t end_pgoff;
3344         int off;
3345         vm_fault_t ret = 0;
3346
3347         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3348         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3349
3350         vmf->address = max(address & mask, vmf->vma->vm_start);
3351         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3352         start_pgoff -= off;
3353
3354         /*
3355          *  end_pgoff is either the end of the page table, the end of
3356          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3357          */
3358         end_pgoff = start_pgoff -
3359                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3360                 PTRS_PER_PTE - 1;
3361         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3362                         start_pgoff + nr_pages - 1);
3363
3364         if (pmd_none(*vmf->pmd)) {
3365                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3366                                                   vmf->address);
3367                 if (!vmf->prealloc_pte)
3368                         goto out;
3369                 smp_wmb(); /* See comment in __pte_alloc() */
3370         }
3371
3372         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3373
3374         /* Huge page is mapped? Page fault is solved */
3375         if (pmd_trans_huge(*vmf->pmd)) {
3376                 ret = VM_FAULT_NOPAGE;
3377                 goto out;
3378         }
3379
3380         /* ->map_pages() haven't done anything useful. Cold page cache? */
3381         if (!vmf->pte)
3382                 goto out;
3383
3384         /* check if the page fault is solved */
3385         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3386         if (!pte_none(*vmf->pte))
3387                 ret = VM_FAULT_NOPAGE;
3388         pte_unmap_unlock(vmf->pte, vmf->ptl);
3389 out:
3390         vmf->address = address;
3391         vmf->pte = NULL;
3392         return ret;
3393 }
3394
3395 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3396 {
3397         struct vm_area_struct *vma = vmf->vma;
3398         vm_fault_t ret = 0;
3399
3400         /*
3401          * Let's call ->map_pages() first and use ->fault() as fallback
3402          * if page by the offset is not ready to be mapped (cold cache or
3403          * something).
3404          */
3405         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3406                 ret = do_fault_around(vmf);
3407                 if (ret)
3408                         return ret;
3409         }
3410
3411         ret = __do_fault(vmf);
3412         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3413                 return ret;
3414
3415         ret |= finish_fault(vmf);
3416         unlock_page(vmf->page);
3417         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3418                 put_page(vmf->page);
3419         return ret;
3420 }
3421
3422 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3423 {
3424         struct vm_area_struct *vma = vmf->vma;
3425         vm_fault_t ret;
3426
3427         if (unlikely(anon_vma_prepare(vma)))
3428                 return VM_FAULT_OOM;
3429
3430         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3431         if (!vmf->cow_page)
3432                 return VM_FAULT_OOM;
3433
3434         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3435                                 &vmf->memcg, false)) {
3436                 put_page(vmf->cow_page);
3437                 return VM_FAULT_OOM;
3438         }
3439
3440         ret = __do_fault(vmf);
3441         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3442                 goto uncharge_out;
3443         if (ret & VM_FAULT_DONE_COW)
3444                 return ret;
3445
3446         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3447         __SetPageUptodate(vmf->cow_page);
3448
3449         ret |= finish_fault(vmf);
3450         unlock_page(vmf->page);
3451         put_page(vmf->page);
3452         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3453                 goto uncharge_out;
3454         return ret;
3455 uncharge_out:
3456         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3457         put_page(vmf->cow_page);
3458         return ret;
3459 }
3460
3461 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3462 {
3463         struct vm_area_struct *vma = vmf->vma;
3464         vm_fault_t ret, tmp;
3465
3466         ret = __do_fault(vmf);
3467         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3468                 return ret;
3469
3470         /*
3471          * Check if the backing address space wants to know that the page is
3472          * about to become writable
3473          */
3474         if (vma->vm_ops->page_mkwrite) {
3475                 unlock_page(vmf->page);
3476                 tmp = do_page_mkwrite(vmf);
3477                 if (unlikely(!tmp ||
3478                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3479                         put_page(vmf->page);
3480                         return tmp;
3481                 }
3482         }
3483
3484         ret |= finish_fault(vmf);
3485         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3486                                         VM_FAULT_RETRY))) {
3487                 unlock_page(vmf->page);
3488                 put_page(vmf->page);
3489                 return ret;
3490         }
3491
3492         fault_dirty_shared_page(vma, vmf->page);
3493         return ret;
3494 }
3495
3496 /*
3497  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3498  * but allow concurrent faults).
3499  * The mmap_sem may have been released depending on flags and our
3500  * return value.  See filemap_fault() and __lock_page_or_retry().
3501  */
3502 static vm_fault_t do_fault(struct vm_fault *vmf)
3503 {
3504         struct vm_area_struct *vma = vmf->vma;
3505         vm_fault_t ret;
3506
3507         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3508         if (!vma->vm_ops->fault)
3509                 ret = VM_FAULT_SIGBUS;
3510         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3511                 ret = do_read_fault(vmf);
3512         else if (!(vma->vm_flags & VM_SHARED))
3513                 ret = do_cow_fault(vmf);
3514         else
3515                 ret = do_shared_fault(vmf);
3516
3517         /* preallocated pagetable is unused: free it */
3518         if (vmf->prealloc_pte) {
3519                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3520                 vmf->prealloc_pte = NULL;
3521         }
3522         return ret;
3523 }
3524
3525 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3526                                 unsigned long addr, int page_nid,
3527                                 int *flags)
3528 {
3529         get_page(page);
3530
3531         count_vm_numa_event(NUMA_HINT_FAULTS);
3532         if (page_nid == numa_node_id()) {
3533                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3534                 *flags |= TNF_FAULT_LOCAL;
3535         }
3536
3537         return mpol_misplaced(page, vma, addr);
3538 }
3539
3540 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3541 {
3542         struct vm_area_struct *vma = vmf->vma;
3543         struct page *page = NULL;
3544         int page_nid = -1;
3545         int last_cpupid;
3546         int target_nid;
3547         bool migrated = false;
3548         pte_t pte;
3549         bool was_writable = pte_savedwrite(vmf->orig_pte);
3550         int flags = 0;
3551
3552         /*
3553          * The "pte" at this point cannot be used safely without
3554          * validation through pte_unmap_same(). It's of NUMA type but
3555          * the pfn may be screwed if the read is non atomic.
3556          */
3557         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3558         spin_lock(vmf->ptl);
3559         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3560                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3561                 goto out;
3562         }
3563
3564         /*
3565          * Make it present again, Depending on how arch implementes non
3566          * accessible ptes, some can allow access by kernel mode.
3567          */
3568         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3569         pte = pte_modify(pte, vma->vm_page_prot);
3570         pte = pte_mkyoung(pte);
3571         if (was_writable)
3572                 pte = pte_mkwrite(pte);
3573         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3574         update_mmu_cache(vma, vmf->address, vmf->pte);
3575
3576         page = vm_normal_page(vma, vmf->address, pte);
3577         if (!page) {
3578                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3579                 return 0;
3580         }
3581
3582         /* TODO: handle PTE-mapped THP */
3583         if (PageCompound(page)) {
3584                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3585                 return 0;
3586         }
3587
3588         /*
3589          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3590          * much anyway since they can be in shared cache state. This misses
3591          * the case where a mapping is writable but the process never writes
3592          * to it but pte_write gets cleared during protection updates and
3593          * pte_dirty has unpredictable behaviour between PTE scan updates,
3594          * background writeback, dirty balancing and application behaviour.
3595          */
3596         if (!pte_write(pte))
3597                 flags |= TNF_NO_GROUP;
3598
3599         /*
3600          * Flag if the page is shared between multiple address spaces. This
3601          * is later used when determining whether to group tasks together
3602          */
3603         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3604                 flags |= TNF_SHARED;
3605
3606         last_cpupid = page_cpupid_last(page);
3607         page_nid = page_to_nid(page);
3608         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3609                         &flags);
3610         pte_unmap_unlock(vmf->pte, vmf->ptl);
3611         if (target_nid == -1) {
3612                 put_page(page);
3613                 goto out;
3614         }
3615
3616         /* Migrate to the requested node */
3617         migrated = migrate_misplaced_page(page, vma, target_nid);
3618         if (migrated) {
3619                 page_nid = target_nid;
3620                 flags |= TNF_MIGRATED;
3621         } else
3622                 flags |= TNF_MIGRATE_FAIL;
3623
3624 out:
3625         if (page_nid != -1)
3626                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3627         return 0;
3628 }
3629
3630 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3631 {
3632         if (vma_is_anonymous(vmf->vma))
3633                 return do_huge_pmd_anonymous_page(vmf);
3634         if (vmf->vma->vm_ops->huge_fault)
3635                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3636         return VM_FAULT_FALLBACK;
3637 }
3638
3639 /* `inline' is required to avoid gcc 4.1.2 build error */
3640 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3641 {
3642         if (vma_is_anonymous(vmf->vma))
3643                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3644         if (vmf->vma->vm_ops->huge_fault)
3645                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3646
3647         /* COW handled on pte level: split pmd */
3648         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3649         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3650
3651         return VM_FAULT_FALLBACK;
3652 }
3653
3654 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3655 {
3656         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3657 }
3658
3659 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3660 {
3661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3662         /* No support for anonymous transparent PUD pages yet */
3663         if (vma_is_anonymous(vmf->vma))
3664                 return VM_FAULT_FALLBACK;
3665         if (vmf->vma->vm_ops->huge_fault)
3666                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3667 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3668         return VM_FAULT_FALLBACK;
3669 }
3670
3671 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3672 {
3673 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3674         /* No support for anonymous transparent PUD pages yet */
3675         if (vma_is_anonymous(vmf->vma))
3676                 return VM_FAULT_FALLBACK;
3677         if (vmf->vma->vm_ops->huge_fault)
3678                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3679 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3680         return VM_FAULT_FALLBACK;
3681 }
3682
3683 /*
3684  * These routines also need to handle stuff like marking pages dirty
3685  * and/or accessed for architectures that don't do it in hardware (most
3686  * RISC architectures).  The early dirtying is also good on the i386.
3687  *
3688  * There is also a hook called "update_mmu_cache()" that architectures
3689  * with external mmu caches can use to update those (ie the Sparc or
3690  * PowerPC hashed page tables that act as extended TLBs).
3691  *
3692  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3693  * concurrent faults).
3694  *
3695  * The mmap_sem may have been released depending on flags and our return value.
3696  * See filemap_fault() and __lock_page_or_retry().
3697  */
3698 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3699 {
3700         pte_t entry;
3701
3702         if (unlikely(pmd_none(*vmf->pmd))) {
3703                 /*
3704                  * Leave __pte_alloc() until later: because vm_ops->fault may
3705                  * want to allocate huge page, and if we expose page table
3706                  * for an instant, it will be difficult to retract from
3707                  * concurrent faults and from rmap lookups.
3708                  */
3709                 vmf->pte = NULL;
3710         } else {
3711                 /* See comment in pte_alloc_one_map() */
3712                 if (pmd_devmap_trans_unstable(vmf->pmd))
3713                         return 0;
3714                 /*
3715                  * A regular pmd is established and it can't morph into a huge
3716                  * pmd from under us anymore at this point because we hold the
3717                  * mmap_sem read mode and khugepaged takes it in write mode.
3718                  * So now it's safe to run pte_offset_map().
3719                  */
3720                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3721                 vmf->orig_pte = *vmf->pte;
3722
3723                 /*
3724                  * some architectures can have larger ptes than wordsize,
3725                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3726                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3727                  * accesses.  The code below just needs a consistent view
3728                  * for the ifs and we later double check anyway with the
3729                  * ptl lock held. So here a barrier will do.
3730                  */
3731                 barrier();
3732                 if (pte_none(vmf->orig_pte)) {
3733                         pte_unmap(vmf->pte);
3734                         vmf->pte = NULL;
3735                 }
3736         }
3737
3738         if (!vmf->pte) {
3739                 if (vma_is_anonymous(vmf->vma))
3740                         return do_anonymous_page(vmf);
3741                 else
3742                         return do_fault(vmf);
3743         }
3744
3745         if (!pte_present(vmf->orig_pte))
3746                 return do_swap_page(vmf);
3747
3748         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3749                 return do_numa_page(vmf);
3750
3751         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3752         spin_lock(vmf->ptl);
3753         entry = vmf->orig_pte;
3754         if (unlikely(!pte_same(*vmf->pte, entry)))
3755                 goto unlock;
3756         if (vmf->flags & FAULT_FLAG_WRITE) {
3757                 if (!pte_write(entry))
3758                         return do_wp_page(vmf);
3759                 entry = pte_mkdirty(entry);
3760         }
3761         entry = pte_mkyoung(entry);
3762         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3763                                 vmf->flags & FAULT_FLAG_WRITE)) {
3764                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3765         } else {
3766                 /*
3767                  * This is needed only for protection faults but the arch code
3768                  * is not yet telling us if this is a protection fault or not.
3769                  * This still avoids useless tlb flushes for .text page faults
3770                  * with threads.
3771                  */
3772                 if (vmf->flags & FAULT_FLAG_WRITE)
3773                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3774         }
3775 unlock:
3776         pte_unmap_unlock(vmf->pte, vmf->ptl);
3777         return 0;
3778 }
3779
3780 /*
3781  * By the time we get here, we already hold the mm semaphore
3782  *
3783  * The mmap_sem may have been released depending on flags and our
3784  * return value.  See filemap_fault() and __lock_page_or_retry().
3785  */
3786 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3787                 unsigned long address, unsigned int flags)
3788 {
3789         struct vm_fault vmf = {
3790                 .vma = vma,
3791                 .address = address & PAGE_MASK,
3792                 .flags = flags,
3793                 .pgoff = linear_page_index(vma, address),
3794                 .gfp_mask = __get_fault_gfp_mask(vma),
3795         };
3796         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3797         struct mm_struct *mm = vma->vm_mm;
3798         pgd_t *pgd;
3799         p4d_t *p4d;
3800         vm_fault_t ret;
3801
3802         pgd = pgd_offset(mm, address);
3803         p4d = p4d_alloc(mm, pgd, address);
3804         if (!p4d)
3805                 return VM_FAULT_OOM;
3806
3807         vmf.pud = pud_alloc(mm, p4d, address);
3808         if (!vmf.pud)
3809                 return VM_FAULT_OOM;
3810         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3811                 ret = create_huge_pud(&vmf);
3812                 if (!(ret & VM_FAULT_FALLBACK))
3813                         return ret;
3814         } else {
3815                 pud_t orig_pud = *vmf.pud;
3816
3817                 barrier();
3818                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3819
3820                         /* NUMA case for anonymous PUDs would go here */
3821
3822                         if (dirty && !pud_write(orig_pud)) {
3823                                 ret = wp_huge_pud(&vmf, orig_pud);
3824                                 if (!(ret & VM_FAULT_FALLBACK))
3825                                         return ret;
3826                         } else {
3827                                 huge_pud_set_accessed(&vmf, orig_pud);
3828                                 return 0;
3829                         }
3830                 }
3831         }
3832
3833         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3834         if (!vmf.pmd)
3835                 return VM_FAULT_OOM;
3836         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3837                 ret = create_huge_pmd(&vmf);
3838                 if (!(ret & VM_FAULT_FALLBACK))
3839                         return ret;
3840         } else {
3841                 pmd_t orig_pmd = *vmf.pmd;
3842
3843                 barrier();
3844                 if (unlikely(is_swap_pmd(orig_pmd))) {
3845                         VM_BUG_ON(thp_migration_supported() &&
3846                                           !is_pmd_migration_entry(orig_pmd));
3847                         if (is_pmd_migration_entry(orig_pmd))
3848                                 pmd_migration_entry_wait(mm, vmf.pmd);
3849                         return 0;
3850                 }
3851                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3852                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3853                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3854
3855                         if (dirty && !pmd_write(orig_pmd)) {
3856                                 ret = wp_huge_pmd(&vmf, orig_pmd);
3857                                 if (!(ret & VM_FAULT_FALLBACK))
3858                                         return ret;
3859                         } else {
3860                                 huge_pmd_set_accessed(&vmf, orig_pmd);
3861                                 return 0;
3862                         }
3863                 }
3864         }
3865
3866         return handle_pte_fault(&vmf);
3867 }
3868
3869 /*
3870  * By the time we get here, we already hold the mm semaphore
3871  *
3872  * The mmap_sem may have been released depending on flags and our
3873  * return value.  See filemap_fault() and __lock_page_or_retry().
3874  */
3875 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3876                 unsigned int flags)
3877 {
3878         vm_fault_t ret;
3879
3880         __set_current_state(TASK_RUNNING);
3881
3882         count_vm_event(PGFAULT);
3883         count_memcg_event_mm(vma->vm_mm, PGFAULT);
3884
3885         /* do counter updates before entering really critical section. */
3886         check_sync_rss_stat(current);
3887
3888         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3889                                             flags & FAULT_FLAG_INSTRUCTION,
3890                                             flags & FAULT_FLAG_REMOTE))
3891                 return VM_FAULT_SIGSEGV;
3892
3893         /*
3894          * Enable the memcg OOM handling for faults triggered in user
3895          * space.  Kernel faults are handled more gracefully.
3896          */
3897         if (flags & FAULT_FLAG_USER)
3898                 mem_cgroup_enter_user_fault();
3899
3900         if (unlikely(is_vm_hugetlb_page(vma)))
3901                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3902         else
3903                 ret = __handle_mm_fault(vma, address, flags);
3904
3905         if (flags & FAULT_FLAG_USER) {
3906                 mem_cgroup_exit_user_fault();
3907                 /*
3908                  * The task may have entered a memcg OOM situation but
3909                  * if the allocation error was handled gracefully (no
3910                  * VM_FAULT_OOM), there is no need to kill anything.
3911                  * Just clean up the OOM state peacefully.
3912                  */
3913                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3914                         mem_cgroup_oom_synchronize(false);
3915         }
3916
3917         return ret;
3918 }
3919 EXPORT_SYMBOL_GPL(handle_mm_fault);
3920
3921 #ifndef __PAGETABLE_P4D_FOLDED
3922 /*
3923  * Allocate p4d page table.
3924  * We've already handled the fast-path in-line.
3925  */
3926 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3927 {
3928         p4d_t *new = p4d_alloc_one(mm, address);
3929         if (!new)
3930                 return -ENOMEM;
3931
3932         smp_wmb(); /* See comment in __pte_alloc */
3933
3934         spin_lock(&mm->page_table_lock);
3935         if (pgd_present(*pgd))          /* Another has populated it */
3936                 p4d_free(mm, new);
3937         else
3938                 pgd_populate(mm, pgd, new);
3939         spin_unlock(&mm->page_table_lock);
3940         return 0;
3941 }
3942 #endif /* __PAGETABLE_P4D_FOLDED */
3943
3944 #ifndef __PAGETABLE_PUD_FOLDED
3945 /*
3946  * Allocate page upper directory.
3947  * We've already handled the fast-path in-line.
3948  */
3949 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3950 {
3951         pud_t *new = pud_alloc_one(mm, address);
3952         if (!new)
3953                 return -ENOMEM;
3954
3955         smp_wmb(); /* See comment in __pte_alloc */
3956
3957         spin_lock(&mm->page_table_lock);
3958 #ifndef __ARCH_HAS_5LEVEL_HACK
3959         if (!p4d_present(*p4d)) {
3960                 mm_inc_nr_puds(mm);
3961                 p4d_populate(mm, p4d, new);
3962         } else  /* Another has populated it */
3963                 pud_free(mm, new);
3964 #else
3965         if (!pgd_present(*p4d)) {
3966                 mm_inc_nr_puds(mm);
3967                 pgd_populate(mm, p4d, new);
3968         } else  /* Another has populated it */
3969                 pud_free(mm, new);
3970 #endif /* __ARCH_HAS_5LEVEL_HACK */
3971         spin_unlock(&mm->page_table_lock);
3972         return 0;
3973 }
3974 #endif /* __PAGETABLE_PUD_FOLDED */
3975
3976 #ifndef __PAGETABLE_PMD_FOLDED
3977 /*
3978  * Allocate page middle directory.
3979  * We've already handled the fast-path in-line.
3980  */
3981 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3982 {
3983         spinlock_t *ptl;
3984         pmd_t *new = pmd_alloc_one(mm, address);
3985         if (!new)
3986                 return -ENOMEM;
3987
3988         smp_wmb(); /* See comment in __pte_alloc */
3989
3990         ptl = pud_lock(mm, pud);
3991 #ifndef __ARCH_HAS_4LEVEL_HACK
3992         if (!pud_present(*pud)) {
3993                 mm_inc_nr_pmds(mm);
3994                 pud_populate(mm, pud, new);
3995         } else  /* Another has populated it */
3996                 pmd_free(mm, new);
3997 #else
3998         if (!pgd_present(*pud)) {
3999                 mm_inc_nr_pmds(mm);
4000                 pgd_populate(mm, pud, new);
4001         } else /* Another has populated it */
4002                 pmd_free(mm, new);
4003 #endif /* __ARCH_HAS_4LEVEL_HACK */
4004         spin_unlock(ptl);
4005         return 0;
4006 }
4007 #endif /* __PAGETABLE_PMD_FOLDED */
4008
4009 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4010                             unsigned long *start, unsigned long *end,
4011                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4012 {
4013         pgd_t *pgd;
4014         p4d_t *p4d;
4015         pud_t *pud;
4016         pmd_t *pmd;
4017         pte_t *ptep;
4018
4019         pgd = pgd_offset(mm, address);
4020         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4021                 goto out;
4022
4023         p4d = p4d_offset(pgd, address);
4024         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4025                 goto out;
4026
4027         pud = pud_offset(p4d, address);
4028         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4029                 goto out;
4030
4031         pmd = pmd_offset(pud, address);
4032         VM_BUG_ON(pmd_trans_huge(*pmd));
4033
4034         if (pmd_huge(*pmd)) {
4035                 if (!pmdpp)
4036                         goto out;
4037
4038                 if (start && end) {
4039                         *start = address & PMD_MASK;
4040                         *end = *start + PMD_SIZE;
4041                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4042                 }
4043                 *ptlp = pmd_lock(mm, pmd);
4044                 if (pmd_huge(*pmd)) {
4045                         *pmdpp = pmd;
4046                         return 0;
4047                 }
4048                 spin_unlock(*ptlp);
4049                 if (start && end)
4050                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4051         }
4052
4053         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4054                 goto out;
4055
4056         if (start && end) {
4057                 *start = address & PAGE_MASK;
4058                 *end = *start + PAGE_SIZE;
4059                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4060         }
4061         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4062         if (!pte_present(*ptep))
4063                 goto unlock;
4064         *ptepp = ptep;
4065         return 0;
4066 unlock:
4067         pte_unmap_unlock(ptep, *ptlp);
4068         if (start && end)
4069                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4070 out:
4071         return -EINVAL;
4072 }
4073
4074 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4075                              pte_t **ptepp, spinlock_t **ptlp)
4076 {
4077         int res;
4078
4079         /* (void) is needed to make gcc happy */
4080         (void) __cond_lock(*ptlp,
4081                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4082                                                     ptepp, NULL, ptlp)));
4083         return res;
4084 }
4085
4086 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4087                              unsigned long *start, unsigned long *end,
4088                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4089 {
4090         int res;
4091
4092         /* (void) is needed to make gcc happy */
4093         (void) __cond_lock(*ptlp,
4094                            !(res = __follow_pte_pmd(mm, address, start, end,
4095                                                     ptepp, pmdpp, ptlp)));
4096         return res;
4097 }
4098 EXPORT_SYMBOL(follow_pte_pmd);
4099
4100 /**
4101  * follow_pfn - look up PFN at a user virtual address
4102  * @vma: memory mapping
4103  * @address: user virtual address
4104  * @pfn: location to store found PFN
4105  *
4106  * Only IO mappings and raw PFN mappings are allowed.
4107  *
4108  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4109  */
4110 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4111         unsigned long *pfn)
4112 {
4113         int ret = -EINVAL;
4114         spinlock_t *ptl;
4115         pte_t *ptep;
4116
4117         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4118                 return ret;
4119
4120         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4121         if (ret)
4122                 return ret;
4123         *pfn = pte_pfn(*ptep);
4124         pte_unmap_unlock(ptep, ptl);
4125         return 0;
4126 }
4127 EXPORT_SYMBOL(follow_pfn);
4128
4129 #ifdef CONFIG_HAVE_IOREMAP_PROT
4130 int follow_phys(struct vm_area_struct *vma,
4131                 unsigned long address, unsigned int flags,
4132                 unsigned long *prot, resource_size_t *phys)
4133 {
4134         int ret = -EINVAL;
4135         pte_t *ptep, pte;
4136         spinlock_t *ptl;
4137
4138         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4139                 goto out;
4140
4141         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4142                 goto out;
4143         pte = *ptep;
4144
4145         if ((flags & FOLL_WRITE) && !pte_write(pte))
4146                 goto unlock;
4147
4148         *prot = pgprot_val(pte_pgprot(pte));
4149         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4150
4151         ret = 0;
4152 unlock:
4153         pte_unmap_unlock(ptep, ptl);
4154 out:
4155         return ret;
4156 }
4157
4158 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4159                         void *buf, int len, int write)
4160 {
4161         resource_size_t phys_addr;
4162         unsigned long prot = 0;
4163         void __iomem *maddr;
4164         int offset = addr & (PAGE_SIZE-1);
4165
4166         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4167                 return -EINVAL;
4168
4169         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4170         if (!maddr)
4171                 return -ENOMEM;
4172
4173         if (write)
4174                 memcpy_toio(maddr + offset, buf, len);
4175         else
4176                 memcpy_fromio(buf, maddr + offset, len);
4177         iounmap(maddr);
4178
4179         return len;
4180 }
4181 EXPORT_SYMBOL_GPL(generic_access_phys);
4182 #endif
4183
4184 /*
4185  * Access another process' address space as given in mm.  If non-NULL, use the
4186  * given task for page fault accounting.
4187  */
4188 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4189                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4190 {
4191         struct vm_area_struct *vma;
4192         void *old_buf = buf;
4193         int write = gup_flags & FOLL_WRITE;
4194
4195         down_read(&mm->mmap_sem);
4196         /* ignore errors, just check how much was successfully transferred */
4197         while (len) {
4198                 int bytes, ret, offset;
4199                 void *maddr;
4200                 struct page *page = NULL;
4201
4202                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4203                                 gup_flags, &page, &vma, NULL);
4204                 if (ret <= 0) {
4205 #ifndef CONFIG_HAVE_IOREMAP_PROT
4206                         break;
4207 #else
4208                         /*
4209                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4210                          * we can access using slightly different code.
4211                          */
4212                         vma = find_vma(mm, addr);
4213                         if (!vma || vma->vm_start > addr)
4214                                 break;
4215                         if (vma->vm_ops && vma->vm_ops->access)
4216                                 ret = vma->vm_ops->access(vma, addr, buf,
4217                                                           len, write);
4218                         if (ret <= 0)
4219                                 break;
4220                         bytes = ret;
4221 #endif
4222                 } else {
4223                         bytes = len;
4224                         offset = addr & (PAGE_SIZE-1);
4225                         if (bytes > PAGE_SIZE-offset)
4226                                 bytes = PAGE_SIZE-offset;
4227
4228                         maddr = kmap(page);
4229                         if (write) {
4230                                 copy_to_user_page(vma, page, addr,
4231                                                   maddr + offset, buf, bytes);
4232                                 set_page_dirty_lock(page);
4233                         } else {
4234                                 copy_from_user_page(vma, page, addr,
4235                                                     buf, maddr + offset, bytes);
4236                         }
4237                         kunmap(page);
4238                         put_page(page);
4239                 }
4240                 len -= bytes;
4241                 buf += bytes;
4242                 addr += bytes;
4243         }
4244         up_read(&mm->mmap_sem);
4245
4246         return buf - old_buf;
4247 }
4248
4249 /**
4250  * access_remote_vm - access another process' address space
4251  * @mm:         the mm_struct of the target address space
4252  * @addr:       start address to access
4253  * @buf:        source or destination buffer
4254  * @len:        number of bytes to transfer
4255  * @gup_flags:  flags modifying lookup behaviour
4256  *
4257  * The caller must hold a reference on @mm.
4258  */
4259 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4260                 void *buf, int len, unsigned int gup_flags)
4261 {
4262         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4263 }
4264
4265 /*
4266  * Access another process' address space.
4267  * Source/target buffer must be kernel space,
4268  * Do not walk the page table directly, use get_user_pages
4269  */
4270 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4271                 void *buf, int len, unsigned int gup_flags)
4272 {
4273         struct mm_struct *mm;
4274         int ret;
4275
4276         mm = get_task_mm(tsk);
4277         if (!mm)
4278                 return 0;
4279
4280         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4281
4282         mmput(mm);
4283
4284         return ret;
4285 }
4286 EXPORT_SYMBOL_GPL(access_process_vm);
4287
4288 /*
4289  * Print the name of a VMA.
4290  */
4291 void print_vma_addr(char *prefix, unsigned long ip)
4292 {
4293         struct mm_struct *mm = current->mm;
4294         struct vm_area_struct *vma;
4295
4296         /*
4297          * we might be running from an atomic context so we cannot sleep
4298          */
4299         if (!down_read_trylock(&mm->mmap_sem))
4300                 return;
4301
4302         vma = find_vma(mm, ip);
4303         if (vma && vma->vm_file) {
4304                 struct file *f = vma->vm_file;
4305                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4306                 if (buf) {
4307                         char *p;
4308
4309                         p = file_path(f, buf, PAGE_SIZE);
4310                         if (IS_ERR(p))
4311                                 p = "?";
4312                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4313                                         vma->vm_start,
4314                                         vma->vm_end - vma->vm_start);
4315                         free_page((unsigned long)buf);
4316                 }
4317         }
4318         up_read(&mm->mmap_sem);
4319 }
4320
4321 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4322 void __might_fault(const char *file, int line)
4323 {
4324         /*
4325          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4326          * holding the mmap_sem, this is safe because kernel memory doesn't
4327          * get paged out, therefore we'll never actually fault, and the
4328          * below annotations will generate false positives.
4329          */
4330         if (uaccess_kernel())
4331                 return;
4332         if (pagefault_disabled())
4333                 return;
4334         __might_sleep(file, line, 0);
4335 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4336         if (current->mm)
4337                 might_lock_read(&current->mm->mmap_sem);
4338 #endif
4339 }
4340 EXPORT_SYMBOL(__might_fault);
4341 #endif
4342
4343 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4344 /*
4345  * Process all subpages of the specified huge page with the specified
4346  * operation.  The target subpage will be processed last to keep its
4347  * cache lines hot.
4348  */
4349 static inline void process_huge_page(
4350         unsigned long addr_hint, unsigned int pages_per_huge_page,
4351         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4352         void *arg)
4353 {
4354         int i, n, base, l;
4355         unsigned long addr = addr_hint &
4356                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4357
4358         /* Process target subpage last to keep its cache lines hot */
4359         might_sleep();
4360         n = (addr_hint - addr) / PAGE_SIZE;
4361         if (2 * n <= pages_per_huge_page) {
4362                 /* If target subpage in first half of huge page */
4363                 base = 0;
4364                 l = n;
4365                 /* Process subpages at the end of huge page */
4366                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4367                         cond_resched();
4368                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4369                 }
4370         } else {
4371                 /* If target subpage in second half of huge page */
4372                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4373                 l = pages_per_huge_page - n;
4374                 /* Process subpages at the begin of huge page */
4375                 for (i = 0; i < base; i++) {
4376                         cond_resched();
4377                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4378                 }
4379         }
4380         /*
4381          * Process remaining subpages in left-right-left-right pattern
4382          * towards the target subpage
4383          */
4384         for (i = 0; i < l; i++) {
4385                 int left_idx = base + i;
4386                 int right_idx = base + 2 * l - 1 - i;
4387
4388                 cond_resched();
4389                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4390                 cond_resched();
4391                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4392         }
4393 }
4394
4395 static void clear_gigantic_page(struct page *page,
4396                                 unsigned long addr,
4397                                 unsigned int pages_per_huge_page)
4398 {
4399         int i;
4400         struct page *p = page;
4401
4402         might_sleep();
4403         for (i = 0; i < pages_per_huge_page;
4404              i++, p = mem_map_next(p, page, i)) {
4405                 cond_resched();
4406                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4407         }
4408 }
4409
4410 static void clear_subpage(unsigned long addr, int idx, void *arg)
4411 {
4412         struct page *page = arg;
4413
4414         clear_user_highpage(page + idx, addr);
4415 }
4416
4417 void clear_huge_page(struct page *page,
4418                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4419 {
4420         unsigned long addr = addr_hint &
4421                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4422
4423         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4424                 clear_gigantic_page(page, addr, pages_per_huge_page);
4425                 return;
4426         }
4427
4428         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4429 }
4430
4431 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4432                                     unsigned long addr,
4433                                     struct vm_area_struct *vma,
4434                                     unsigned int pages_per_huge_page)
4435 {
4436         int i;
4437         struct page *dst_base = dst;
4438         struct page *src_base = src;
4439
4440         for (i = 0; i < pages_per_huge_page; ) {
4441                 cond_resched();
4442                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4443
4444                 i++;
4445                 dst = mem_map_next(dst, dst_base, i);
4446                 src = mem_map_next(src, src_base, i);
4447         }
4448 }
4449
4450 struct copy_subpage_arg {
4451         struct page *dst;
4452         struct page *src;
4453         struct vm_area_struct *vma;
4454 };
4455
4456 static void copy_subpage(unsigned long addr, int idx, void *arg)
4457 {
4458         struct copy_subpage_arg *copy_arg = arg;
4459
4460         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4461                            addr, copy_arg->vma);
4462 }
4463
4464 void copy_user_huge_page(struct page *dst, struct page *src,
4465                          unsigned long addr_hint, struct vm_area_struct *vma,
4466                          unsigned int pages_per_huge_page)
4467 {
4468         unsigned long addr = addr_hint &
4469                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4470         struct copy_subpage_arg arg = {
4471                 .dst = dst,
4472                 .src = src,
4473                 .vma = vma,
4474         };
4475
4476         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4477                 copy_user_gigantic_page(dst, src, addr, vma,
4478                                         pages_per_huge_page);
4479                 return;
4480         }
4481
4482         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4483 }
4484
4485 long copy_huge_page_from_user(struct page *dst_page,
4486                                 const void __user *usr_src,
4487                                 unsigned int pages_per_huge_page,
4488                                 bool allow_pagefault)
4489 {
4490         void *src = (void *)usr_src;
4491         void *page_kaddr;
4492         unsigned long i, rc = 0;
4493         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4494
4495         for (i = 0; i < pages_per_huge_page; i++) {
4496                 if (allow_pagefault)
4497                         page_kaddr = kmap(dst_page + i);
4498                 else
4499                         page_kaddr = kmap_atomic(dst_page + i);
4500                 rc = copy_from_user(page_kaddr,
4501                                 (const void __user *)(src + i * PAGE_SIZE),
4502                                 PAGE_SIZE);
4503                 if (allow_pagefault)
4504                         kunmap(dst_page + i);
4505                 else
4506                         kunmap_atomic(page_kaddr);
4507
4508                 ret_val -= (PAGE_SIZE - rc);
4509                 if (rc)
4510                         break;
4511
4512                 cond_resched();
4513         }
4514         return ret_val;
4515 }
4516 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4517
4518 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4519
4520 static struct kmem_cache *page_ptl_cachep;
4521
4522 void __init ptlock_cache_init(void)
4523 {
4524         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4525                         SLAB_PANIC, NULL);
4526 }
4527
4528 bool ptlock_alloc(struct page *page)
4529 {
4530         spinlock_t *ptl;
4531
4532         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4533         if (!ptl)
4534                 return false;
4535         page->ptl = ptl;
4536         return true;
4537 }
4538
4539 void ptlock_free(struct page *page)
4540 {
4541         kmem_cache_free(page_ptl_cachep, page->ptl);
4542 }
4543 #endif