]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/page-writeback.c
f7c0fb993fb992c2f04bc6e80fa75be0c6043ed2
[linux.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120
121 EXPORT_SYMBOL(laptop_mode);
122
123 /* End of sysctl-exported parameters */
124
125 struct wb_domain global_wb_domain;
126
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130         struct wb_domain        *dom;
131         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
132 #endif
133         struct bdi_writeback    *wb;
134         struct fprop_local_percpu *wb_completions;
135
136         unsigned long           avail;          /* dirtyable */
137         unsigned long           dirty;          /* file_dirty + write + nfs */
138         unsigned long           thresh;         /* dirty threshold */
139         unsigned long           bg_thresh;      /* dirty background threshold */
140
141         unsigned long           wb_dirty;       /* per-wb counterparts */
142         unsigned long           wb_thresh;
143         unsigned long           wb_bg_thresh;
144
145         unsigned long           pos_ratio;
146 };
147
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154
155 #ifdef CONFIG_CGROUP_WRITEBACK
156
157 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
158                                 .dom = &global_wb_domain,               \
159                                 .wb_completions = &(__wb)->completions
160
161 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
162
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
164                                 .dom = mem_cgroup_wb_domain(__wb),      \
165                                 .wb_completions = &(__wb)->memcg_completions, \
166                                 .gdtc = __gdtc
167
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170         return dtc->dom;
171 }
172
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175         return dtc->dom;
176 }
177
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180         return mdtc->gdtc;
181 }
182
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185         return &wb->memcg_completions;
186 }
187
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189                              unsigned long *minp, unsigned long *maxp)
190 {
191         unsigned long this_bw = wb->avg_write_bandwidth;
192         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193         unsigned long long min = wb->bdi->min_ratio;
194         unsigned long long max = wb->bdi->max_ratio;
195
196         /*
197          * @wb may already be clean by the time control reaches here and
198          * the total may not include its bw.
199          */
200         if (this_bw < tot_bw) {
201                 if (min) {
202                         min *= this_bw;
203                         do_div(min, tot_bw);
204                 }
205                 if (max < 100) {
206                         max *= this_bw;
207                         do_div(max, tot_bw);
208                 }
209         }
210
211         *minp = min;
212         *maxp = max;
213 }
214
215 #else   /* CONFIG_CGROUP_WRITEBACK */
216
217 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
218                                 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224         return false;
225 }
226
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229         return &global_wb_domain;
230 }
231
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234         return NULL;
235 }
236
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239         return NULL;
240 }
241
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243                              unsigned long *minp, unsigned long *maxp)
244 {
245         *minp = wb->bdi->min_ratio;
246         *maxp = wb->bdi->max_ratio;
247 }
248
249 #endif  /* CONFIG_CGROUP_WRITEBACK */
250
251 /*
252  * In a memory zone, there is a certain amount of pages we consider
253  * available for the page cache, which is essentially the number of
254  * free and reclaimable pages, minus some zone reserves to protect
255  * lowmem and the ability to uphold the zone's watermarks without
256  * requiring writeback.
257  *
258  * This number of dirtyable pages is the base value of which the
259  * user-configurable dirty ratio is the effictive number of pages that
260  * are allowed to be actually dirtied.  Per individual zone, or
261  * globally by using the sum of dirtyable pages over all zones.
262  *
263  * Because the user is allowed to specify the dirty limit globally as
264  * absolute number of bytes, calculating the per-zone dirty limit can
265  * require translating the configured limit into a percentage of
266  * global dirtyable memory first.
267  */
268
269 /**
270  * node_dirtyable_memory - number of dirtyable pages in a node
271  * @pgdat: the node
272  *
273  * Returns the node's number of pages potentially available for dirty
274  * page cache.  This is the base value for the per-node dirty limits.
275  */
276 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
277 {
278         unsigned long nr_pages = 0;
279         int z;
280
281         for (z = 0; z < MAX_NR_ZONES; z++) {
282                 struct zone *zone = pgdat->node_zones + z;
283
284                 if (!populated_zone(zone))
285                         continue;
286
287                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
288         }
289
290         /*
291          * Pages reserved for the kernel should not be considered
292          * dirtyable, to prevent a situation where reclaim has to
293          * clean pages in order to balance the zones.
294          */
295         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
296
297         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
298         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
299
300         return nr_pages;
301 }
302
303 static unsigned long highmem_dirtyable_memory(unsigned long total)
304 {
305 #ifdef CONFIG_HIGHMEM
306         int node;
307         unsigned long x = 0;
308         int i;
309
310         for_each_node_state(node, N_HIGH_MEMORY) {
311                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
312                         struct zone *z;
313                         unsigned long dirtyable;
314
315                         if (!is_highmem_idx(i))
316                                 continue;
317
318                         z = &NODE_DATA(node)->node_zones[i];
319                         dirtyable = zone_page_state(z, NR_FREE_PAGES) +
320                                 zone_page_state(z, NR_ZONE_LRU_FILE);
321
322                         /* watch for underflows */
323                         dirtyable -= min(dirtyable, high_wmark_pages(z));
324
325                         x += dirtyable;
326                 }
327         }
328
329         /*
330          * Unreclaimable memory (kernel memory or anonymous memory
331          * without swap) can bring down the dirtyable pages below
332          * the zone's dirty balance reserve and the above calculation
333          * will underflow.  However we still want to add in nodes
334          * which are below threshold (negative values) to get a more
335          * accurate calculation but make sure that the total never
336          * underflows.
337          */
338         if ((long)x < 0)
339                 x = 0;
340
341         /*
342          * Make sure that the number of highmem pages is never larger
343          * than the number of the total dirtyable memory. This can only
344          * occur in very strange VM situations but we want to make sure
345          * that this does not occur.
346          */
347         return min(x, total);
348 #else
349         return 0;
350 #endif
351 }
352
353 /**
354  * global_dirtyable_memory - number of globally dirtyable pages
355  *
356  * Returns the global number of pages potentially available for dirty
357  * page cache.  This is the base value for the global dirty limits.
358  */
359 static unsigned long global_dirtyable_memory(void)
360 {
361         unsigned long x;
362
363         x = global_page_state(NR_FREE_PAGES);
364         /*
365          * Pages reserved for the kernel should not be considered
366          * dirtyable, to prevent a situation where reclaim has to
367          * clean pages in order to balance the zones.
368          */
369         x -= min(x, totalreserve_pages);
370
371         x += global_node_page_state(NR_INACTIVE_FILE);
372         x += global_node_page_state(NR_ACTIVE_FILE);
373
374         if (!vm_highmem_is_dirtyable)
375                 x -= highmem_dirtyable_memory(x);
376
377         return x + 1;   /* Ensure that we never return 0 */
378 }
379
380 /**
381  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
382  * @dtc: dirty_throttle_control of interest
383  *
384  * Calculate @dtc->thresh and ->bg_thresh considering
385  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
386  * must ensure that @dtc->avail is set before calling this function.  The
387  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
388  * real-time tasks.
389  */
390 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
391 {
392         const unsigned long available_memory = dtc->avail;
393         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
394         unsigned long bytes = vm_dirty_bytes;
395         unsigned long bg_bytes = dirty_background_bytes;
396         /* convert ratios to per-PAGE_SIZE for higher precision */
397         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
398         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
399         unsigned long thresh;
400         unsigned long bg_thresh;
401         struct task_struct *tsk;
402
403         /* gdtc is !NULL iff @dtc is for memcg domain */
404         if (gdtc) {
405                 unsigned long global_avail = gdtc->avail;
406
407                 /*
408                  * The byte settings can't be applied directly to memcg
409                  * domains.  Convert them to ratios by scaling against
410                  * globally available memory.  As the ratios are in
411                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
412                  * number of pages.
413                  */
414                 if (bytes)
415                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
416                                     PAGE_SIZE);
417                 if (bg_bytes)
418                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
419                                        PAGE_SIZE);
420                 bytes = bg_bytes = 0;
421         }
422
423         if (bytes)
424                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
425         else
426                 thresh = (ratio * available_memory) / PAGE_SIZE;
427
428         if (bg_bytes)
429                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
430         else
431                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
432
433         if (bg_thresh >= thresh)
434                 bg_thresh = thresh / 2;
435         tsk = current;
436         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
437                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
438                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
439         }
440         dtc->thresh = thresh;
441         dtc->bg_thresh = bg_thresh;
442
443         /* we should eventually report the domain in the TP */
444         if (!gdtc)
445                 trace_global_dirty_state(bg_thresh, thresh);
446 }
447
448 /**
449  * global_dirty_limits - background-writeback and dirty-throttling thresholds
450  * @pbackground: out parameter for bg_thresh
451  * @pdirty: out parameter for thresh
452  *
453  * Calculate bg_thresh and thresh for global_wb_domain.  See
454  * domain_dirty_limits() for details.
455  */
456 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
457 {
458         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
459
460         gdtc.avail = global_dirtyable_memory();
461         domain_dirty_limits(&gdtc);
462
463         *pbackground = gdtc.bg_thresh;
464         *pdirty = gdtc.thresh;
465 }
466
467 /**
468  * node_dirty_limit - maximum number of dirty pages allowed in a node
469  * @pgdat: the node
470  *
471  * Returns the maximum number of dirty pages allowed in a node, based
472  * on the node's dirtyable memory.
473  */
474 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
475 {
476         unsigned long node_memory = node_dirtyable_memory(pgdat);
477         struct task_struct *tsk = current;
478         unsigned long dirty;
479
480         if (vm_dirty_bytes)
481                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
482                         node_memory / global_dirtyable_memory();
483         else
484                 dirty = vm_dirty_ratio * node_memory / 100;
485
486         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
487                 dirty += dirty / 4;
488
489         return dirty;
490 }
491
492 /**
493  * node_dirty_ok - tells whether a node is within its dirty limits
494  * @pgdat: the node to check
495  *
496  * Returns %true when the dirty pages in @pgdat are within the node's
497  * dirty limit, %false if the limit is exceeded.
498  */
499 bool node_dirty_ok(struct pglist_data *pgdat)
500 {
501         int z;
502         unsigned long limit = node_dirty_limit(pgdat);
503         unsigned long nr_pages = 0;
504
505         for (z = 0; z < MAX_NR_ZONES; z++) {
506                 struct zone *zone = pgdat->node_zones + z;
507
508                 if (!populated_zone(zone))
509                         continue;
510
511                 nr_pages += zone_page_state(zone, NR_FILE_DIRTY);
512                 nr_pages += zone_page_state(zone, NR_UNSTABLE_NFS);
513                 nr_pages += zone_page_state(zone, NR_WRITEBACK);
514         }
515
516         return nr_pages <= limit;
517 }
518
519 int dirty_background_ratio_handler(struct ctl_table *table, int write,
520                 void __user *buffer, size_t *lenp,
521                 loff_t *ppos)
522 {
523         int ret;
524
525         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
526         if (ret == 0 && write)
527                 dirty_background_bytes = 0;
528         return ret;
529 }
530
531 int dirty_background_bytes_handler(struct ctl_table *table, int write,
532                 void __user *buffer, size_t *lenp,
533                 loff_t *ppos)
534 {
535         int ret;
536
537         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
538         if (ret == 0 && write)
539                 dirty_background_ratio = 0;
540         return ret;
541 }
542
543 int dirty_ratio_handler(struct ctl_table *table, int write,
544                 void __user *buffer, size_t *lenp,
545                 loff_t *ppos)
546 {
547         int old_ratio = vm_dirty_ratio;
548         int ret;
549
550         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
551         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
552                 writeback_set_ratelimit();
553                 vm_dirty_bytes = 0;
554         }
555         return ret;
556 }
557
558 int dirty_bytes_handler(struct ctl_table *table, int write,
559                 void __user *buffer, size_t *lenp,
560                 loff_t *ppos)
561 {
562         unsigned long old_bytes = vm_dirty_bytes;
563         int ret;
564
565         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
566         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
567                 writeback_set_ratelimit();
568                 vm_dirty_ratio = 0;
569         }
570         return ret;
571 }
572
573 static unsigned long wp_next_time(unsigned long cur_time)
574 {
575         cur_time += VM_COMPLETIONS_PERIOD_LEN;
576         /* 0 has a special meaning... */
577         if (!cur_time)
578                 return 1;
579         return cur_time;
580 }
581
582 static void wb_domain_writeout_inc(struct wb_domain *dom,
583                                    struct fprop_local_percpu *completions,
584                                    unsigned int max_prop_frac)
585 {
586         __fprop_inc_percpu_max(&dom->completions, completions,
587                                max_prop_frac);
588         /* First event after period switching was turned off? */
589         if (!unlikely(dom->period_time)) {
590                 /*
591                  * We can race with other __bdi_writeout_inc calls here but
592                  * it does not cause any harm since the resulting time when
593                  * timer will fire and what is in writeout_period_time will be
594                  * roughly the same.
595                  */
596                 dom->period_time = wp_next_time(jiffies);
597                 mod_timer(&dom->period_timer, dom->period_time);
598         }
599 }
600
601 /*
602  * Increment @wb's writeout completion count and the global writeout
603  * completion count. Called from test_clear_page_writeback().
604  */
605 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
606 {
607         struct wb_domain *cgdom;
608
609         __inc_wb_stat(wb, WB_WRITTEN);
610         wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
611                                wb->bdi->max_prop_frac);
612
613         cgdom = mem_cgroup_wb_domain(wb);
614         if (cgdom)
615                 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
616                                        wb->bdi->max_prop_frac);
617 }
618
619 void wb_writeout_inc(struct bdi_writeback *wb)
620 {
621         unsigned long flags;
622
623         local_irq_save(flags);
624         __wb_writeout_inc(wb);
625         local_irq_restore(flags);
626 }
627 EXPORT_SYMBOL_GPL(wb_writeout_inc);
628
629 /*
630  * On idle system, we can be called long after we scheduled because we use
631  * deferred timers so count with missed periods.
632  */
633 static void writeout_period(unsigned long t)
634 {
635         struct wb_domain *dom = (void *)t;
636         int miss_periods = (jiffies - dom->period_time) /
637                                                  VM_COMPLETIONS_PERIOD_LEN;
638
639         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
640                 dom->period_time = wp_next_time(dom->period_time +
641                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
642                 mod_timer(&dom->period_timer, dom->period_time);
643         } else {
644                 /*
645                  * Aging has zeroed all fractions. Stop wasting CPU on period
646                  * updates.
647                  */
648                 dom->period_time = 0;
649         }
650 }
651
652 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
653 {
654         memset(dom, 0, sizeof(*dom));
655
656         spin_lock_init(&dom->lock);
657
658         init_timer_deferrable(&dom->period_timer);
659         dom->period_timer.function = writeout_period;
660         dom->period_timer.data = (unsigned long)dom;
661
662         dom->dirty_limit_tstamp = jiffies;
663
664         return fprop_global_init(&dom->completions, gfp);
665 }
666
667 #ifdef CONFIG_CGROUP_WRITEBACK
668 void wb_domain_exit(struct wb_domain *dom)
669 {
670         del_timer_sync(&dom->period_timer);
671         fprop_global_destroy(&dom->completions);
672 }
673 #endif
674
675 /*
676  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
677  * registered backing devices, which, for obvious reasons, can not
678  * exceed 100%.
679  */
680 static unsigned int bdi_min_ratio;
681
682 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
683 {
684         int ret = 0;
685
686         spin_lock_bh(&bdi_lock);
687         if (min_ratio > bdi->max_ratio) {
688                 ret = -EINVAL;
689         } else {
690                 min_ratio -= bdi->min_ratio;
691                 if (bdi_min_ratio + min_ratio < 100) {
692                         bdi_min_ratio += min_ratio;
693                         bdi->min_ratio += min_ratio;
694                 } else {
695                         ret = -EINVAL;
696                 }
697         }
698         spin_unlock_bh(&bdi_lock);
699
700         return ret;
701 }
702
703 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
704 {
705         int ret = 0;
706
707         if (max_ratio > 100)
708                 return -EINVAL;
709
710         spin_lock_bh(&bdi_lock);
711         if (bdi->min_ratio > max_ratio) {
712                 ret = -EINVAL;
713         } else {
714                 bdi->max_ratio = max_ratio;
715                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
716         }
717         spin_unlock_bh(&bdi_lock);
718
719         return ret;
720 }
721 EXPORT_SYMBOL(bdi_set_max_ratio);
722
723 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
724                                            unsigned long bg_thresh)
725 {
726         return (thresh + bg_thresh) / 2;
727 }
728
729 static unsigned long hard_dirty_limit(struct wb_domain *dom,
730                                       unsigned long thresh)
731 {
732         return max(thresh, dom->dirty_limit);
733 }
734
735 /*
736  * Memory which can be further allocated to a memcg domain is capped by
737  * system-wide clean memory excluding the amount being used in the domain.
738  */
739 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
740                             unsigned long filepages, unsigned long headroom)
741 {
742         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
743         unsigned long clean = filepages - min(filepages, mdtc->dirty);
744         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
745         unsigned long other_clean = global_clean - min(global_clean, clean);
746
747         mdtc->avail = filepages + min(headroom, other_clean);
748 }
749
750 /**
751  * __wb_calc_thresh - @wb's share of dirty throttling threshold
752  * @dtc: dirty_throttle_context of interest
753  *
754  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
755  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
756  *
757  * Note that balance_dirty_pages() will only seriously take it as a hard limit
758  * when sleeping max_pause per page is not enough to keep the dirty pages under
759  * control. For example, when the device is completely stalled due to some error
760  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
761  * In the other normal situations, it acts more gently by throttling the tasks
762  * more (rather than completely block them) when the wb dirty pages go high.
763  *
764  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
765  * - starving fast devices
766  * - piling up dirty pages (that will take long time to sync) on slow devices
767  *
768  * The wb's share of dirty limit will be adapting to its throughput and
769  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
770  */
771 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
772 {
773         struct wb_domain *dom = dtc_dom(dtc);
774         unsigned long thresh = dtc->thresh;
775         u64 wb_thresh;
776         long numerator, denominator;
777         unsigned long wb_min_ratio, wb_max_ratio;
778
779         /*
780          * Calculate this BDI's share of the thresh ratio.
781          */
782         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
783                               &numerator, &denominator);
784
785         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
786         wb_thresh *= numerator;
787         do_div(wb_thresh, denominator);
788
789         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
790
791         wb_thresh += (thresh * wb_min_ratio) / 100;
792         if (wb_thresh > (thresh * wb_max_ratio) / 100)
793                 wb_thresh = thresh * wb_max_ratio / 100;
794
795         return wb_thresh;
796 }
797
798 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
799 {
800         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
801                                                .thresh = thresh };
802         return __wb_calc_thresh(&gdtc);
803 }
804
805 /*
806  *                           setpoint - dirty 3
807  *        f(dirty) := 1.0 + (----------------)
808  *                           limit - setpoint
809  *
810  * it's a 3rd order polynomial that subjects to
811  *
812  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
813  * (2) f(setpoint) = 1.0 => the balance point
814  * (3) f(limit)    = 0   => the hard limit
815  * (4) df/dx      <= 0   => negative feedback control
816  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
817  *     => fast response on large errors; small oscillation near setpoint
818  */
819 static long long pos_ratio_polynom(unsigned long setpoint,
820                                           unsigned long dirty,
821                                           unsigned long limit)
822 {
823         long long pos_ratio;
824         long x;
825
826         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
827                       (limit - setpoint) | 1);
828         pos_ratio = x;
829         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
830         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
831         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
832
833         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
834 }
835
836 /*
837  * Dirty position control.
838  *
839  * (o) global/bdi setpoints
840  *
841  * We want the dirty pages be balanced around the global/wb setpoints.
842  * When the number of dirty pages is higher/lower than the setpoint, the
843  * dirty position control ratio (and hence task dirty ratelimit) will be
844  * decreased/increased to bring the dirty pages back to the setpoint.
845  *
846  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
847  *
848  *     if (dirty < setpoint) scale up   pos_ratio
849  *     if (dirty > setpoint) scale down pos_ratio
850  *
851  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
852  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
853  *
854  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
855  *
856  * (o) global control line
857  *
858  *     ^ pos_ratio
859  *     |
860  *     |            |<===== global dirty control scope ======>|
861  * 2.0 .............*
862  *     |            .*
863  *     |            . *
864  *     |            .   *
865  *     |            .     *
866  *     |            .        *
867  *     |            .            *
868  * 1.0 ................................*
869  *     |            .                  .     *
870  *     |            .                  .          *
871  *     |            .                  .              *
872  *     |            .                  .                 *
873  *     |            .                  .                    *
874  *   0 +------------.------------------.----------------------*------------->
875  *           freerun^          setpoint^                 limit^   dirty pages
876  *
877  * (o) wb control line
878  *
879  *     ^ pos_ratio
880  *     |
881  *     |            *
882  *     |              *
883  *     |                *
884  *     |                  *
885  *     |                    * |<=========== span ============>|
886  * 1.0 .......................*
887  *     |                      . *
888  *     |                      .   *
889  *     |                      .     *
890  *     |                      .       *
891  *     |                      .         *
892  *     |                      .           *
893  *     |                      .             *
894  *     |                      .               *
895  *     |                      .                 *
896  *     |                      .                   *
897  *     |                      .                     *
898  * 1/4 ...............................................* * * * * * * * * * * *
899  *     |                      .                         .
900  *     |                      .                           .
901  *     |                      .                             .
902  *   0 +----------------------.-------------------------------.------------->
903  *                wb_setpoint^                    x_intercept^
904  *
905  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
906  * be smoothly throttled down to normal if it starts high in situations like
907  * - start writing to a slow SD card and a fast disk at the same time. The SD
908  *   card's wb_dirty may rush to many times higher than wb_setpoint.
909  * - the wb dirty thresh drops quickly due to change of JBOD workload
910  */
911 static void wb_position_ratio(struct dirty_throttle_control *dtc)
912 {
913         struct bdi_writeback *wb = dtc->wb;
914         unsigned long write_bw = wb->avg_write_bandwidth;
915         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
916         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
917         unsigned long wb_thresh = dtc->wb_thresh;
918         unsigned long x_intercept;
919         unsigned long setpoint;         /* dirty pages' target balance point */
920         unsigned long wb_setpoint;
921         unsigned long span;
922         long long pos_ratio;            /* for scaling up/down the rate limit */
923         long x;
924
925         dtc->pos_ratio = 0;
926
927         if (unlikely(dtc->dirty >= limit))
928                 return;
929
930         /*
931          * global setpoint
932          *
933          * See comment for pos_ratio_polynom().
934          */
935         setpoint = (freerun + limit) / 2;
936         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
937
938         /*
939          * The strictlimit feature is a tool preventing mistrusted filesystems
940          * from growing a large number of dirty pages before throttling. For
941          * such filesystems balance_dirty_pages always checks wb counters
942          * against wb limits. Even if global "nr_dirty" is under "freerun".
943          * This is especially important for fuse which sets bdi->max_ratio to
944          * 1% by default. Without strictlimit feature, fuse writeback may
945          * consume arbitrary amount of RAM because it is accounted in
946          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
947          *
948          * Here, in wb_position_ratio(), we calculate pos_ratio based on
949          * two values: wb_dirty and wb_thresh. Let's consider an example:
950          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
951          * limits are set by default to 10% and 20% (background and throttle).
952          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
953          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
954          * about ~6K pages (as the average of background and throttle wb
955          * limits). The 3rd order polynomial will provide positive feedback if
956          * wb_dirty is under wb_setpoint and vice versa.
957          *
958          * Note, that we cannot use global counters in these calculations
959          * because we want to throttle process writing to a strictlimit wb
960          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
961          * in the example above).
962          */
963         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
964                 long long wb_pos_ratio;
965
966                 if (dtc->wb_dirty < 8) {
967                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
968                                            2 << RATELIMIT_CALC_SHIFT);
969                         return;
970                 }
971
972                 if (dtc->wb_dirty >= wb_thresh)
973                         return;
974
975                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
976                                                     dtc->wb_bg_thresh);
977
978                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
979                         return;
980
981                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
982                                                  wb_thresh);
983
984                 /*
985                  * Typically, for strictlimit case, wb_setpoint << setpoint
986                  * and pos_ratio >> wb_pos_ratio. In the other words global
987                  * state ("dirty") is not limiting factor and we have to
988                  * make decision based on wb counters. But there is an
989                  * important case when global pos_ratio should get precedence:
990                  * global limits are exceeded (e.g. due to activities on other
991                  * wb's) while given strictlimit wb is below limit.
992                  *
993                  * "pos_ratio * wb_pos_ratio" would work for the case above,
994                  * but it would look too non-natural for the case of all
995                  * activity in the system coming from a single strictlimit wb
996                  * with bdi->max_ratio == 100%.
997                  *
998                  * Note that min() below somewhat changes the dynamics of the
999                  * control system. Normally, pos_ratio value can be well over 3
1000                  * (when globally we are at freerun and wb is well below wb
1001                  * setpoint). Now the maximum pos_ratio in the same situation
1002                  * is 2. We might want to tweak this if we observe the control
1003                  * system is too slow to adapt.
1004                  */
1005                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1006                 return;
1007         }
1008
1009         /*
1010          * We have computed basic pos_ratio above based on global situation. If
1011          * the wb is over/under its share of dirty pages, we want to scale
1012          * pos_ratio further down/up. That is done by the following mechanism.
1013          */
1014
1015         /*
1016          * wb setpoint
1017          *
1018          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1019          *
1020          *                        x_intercept - wb_dirty
1021          *                     := --------------------------
1022          *                        x_intercept - wb_setpoint
1023          *
1024          * The main wb control line is a linear function that subjects to
1025          *
1026          * (1) f(wb_setpoint) = 1.0
1027          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1028          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1029          *
1030          * For single wb case, the dirty pages are observed to fluctuate
1031          * regularly within range
1032          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1033          * for various filesystems, where (2) can yield in a reasonable 12.5%
1034          * fluctuation range for pos_ratio.
1035          *
1036          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1037          * own size, so move the slope over accordingly and choose a slope that
1038          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1039          */
1040         if (unlikely(wb_thresh > dtc->thresh))
1041                 wb_thresh = dtc->thresh;
1042         /*
1043          * It's very possible that wb_thresh is close to 0 not because the
1044          * device is slow, but that it has remained inactive for long time.
1045          * Honour such devices a reasonable good (hopefully IO efficient)
1046          * threshold, so that the occasional writes won't be blocked and active
1047          * writes can rampup the threshold quickly.
1048          */
1049         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1050         /*
1051          * scale global setpoint to wb's:
1052          *      wb_setpoint = setpoint * wb_thresh / thresh
1053          */
1054         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1055         wb_setpoint = setpoint * (u64)x >> 16;
1056         /*
1057          * Use span=(8*write_bw) in single wb case as indicated by
1058          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1059          *
1060          *        wb_thresh                    thresh - wb_thresh
1061          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1062          *         thresh                           thresh
1063          */
1064         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1065         x_intercept = wb_setpoint + span;
1066
1067         if (dtc->wb_dirty < x_intercept - span / 4) {
1068                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1069                                       (x_intercept - wb_setpoint) | 1);
1070         } else
1071                 pos_ratio /= 4;
1072
1073         /*
1074          * wb reserve area, safeguard against dirty pool underrun and disk idle
1075          * It may push the desired control point of global dirty pages higher
1076          * than setpoint.
1077          */
1078         x_intercept = wb_thresh / 2;
1079         if (dtc->wb_dirty < x_intercept) {
1080                 if (dtc->wb_dirty > x_intercept / 8)
1081                         pos_ratio = div_u64(pos_ratio * x_intercept,
1082                                             dtc->wb_dirty);
1083                 else
1084                         pos_ratio *= 8;
1085         }
1086
1087         dtc->pos_ratio = pos_ratio;
1088 }
1089
1090 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1091                                       unsigned long elapsed,
1092                                       unsigned long written)
1093 {
1094         const unsigned long period = roundup_pow_of_two(3 * HZ);
1095         unsigned long avg = wb->avg_write_bandwidth;
1096         unsigned long old = wb->write_bandwidth;
1097         u64 bw;
1098
1099         /*
1100          * bw = written * HZ / elapsed
1101          *
1102          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1103          * write_bandwidth = ---------------------------------------------------
1104          *                                          period
1105          *
1106          * @written may have decreased due to account_page_redirty().
1107          * Avoid underflowing @bw calculation.
1108          */
1109         bw = written - min(written, wb->written_stamp);
1110         bw *= HZ;
1111         if (unlikely(elapsed > period)) {
1112                 do_div(bw, elapsed);
1113                 avg = bw;
1114                 goto out;
1115         }
1116         bw += (u64)wb->write_bandwidth * (period - elapsed);
1117         bw >>= ilog2(period);
1118
1119         /*
1120          * one more level of smoothing, for filtering out sudden spikes
1121          */
1122         if (avg > old && old >= (unsigned long)bw)
1123                 avg -= (avg - old) >> 3;
1124
1125         if (avg < old && old <= (unsigned long)bw)
1126                 avg += (old - avg) >> 3;
1127
1128 out:
1129         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1130         avg = max(avg, 1LU);
1131         if (wb_has_dirty_io(wb)) {
1132                 long delta = avg - wb->avg_write_bandwidth;
1133                 WARN_ON_ONCE(atomic_long_add_return(delta,
1134                                         &wb->bdi->tot_write_bandwidth) <= 0);
1135         }
1136         wb->write_bandwidth = bw;
1137         wb->avg_write_bandwidth = avg;
1138 }
1139
1140 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1141 {
1142         struct wb_domain *dom = dtc_dom(dtc);
1143         unsigned long thresh = dtc->thresh;
1144         unsigned long limit = dom->dirty_limit;
1145
1146         /*
1147          * Follow up in one step.
1148          */
1149         if (limit < thresh) {
1150                 limit = thresh;
1151                 goto update;
1152         }
1153
1154         /*
1155          * Follow down slowly. Use the higher one as the target, because thresh
1156          * may drop below dirty. This is exactly the reason to introduce
1157          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1158          */
1159         thresh = max(thresh, dtc->dirty);
1160         if (limit > thresh) {
1161                 limit -= (limit - thresh) >> 5;
1162                 goto update;
1163         }
1164         return;
1165 update:
1166         dom->dirty_limit = limit;
1167 }
1168
1169 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1170                                     unsigned long now)
1171 {
1172         struct wb_domain *dom = dtc_dom(dtc);
1173
1174         /*
1175          * check locklessly first to optimize away locking for the most time
1176          */
1177         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1178                 return;
1179
1180         spin_lock(&dom->lock);
1181         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1182                 update_dirty_limit(dtc);
1183                 dom->dirty_limit_tstamp = now;
1184         }
1185         spin_unlock(&dom->lock);
1186 }
1187
1188 /*
1189  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1190  *
1191  * Normal wb tasks will be curbed at or below it in long term.
1192  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1193  */
1194 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1195                                       unsigned long dirtied,
1196                                       unsigned long elapsed)
1197 {
1198         struct bdi_writeback *wb = dtc->wb;
1199         unsigned long dirty = dtc->dirty;
1200         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1201         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1202         unsigned long setpoint = (freerun + limit) / 2;
1203         unsigned long write_bw = wb->avg_write_bandwidth;
1204         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1205         unsigned long dirty_rate;
1206         unsigned long task_ratelimit;
1207         unsigned long balanced_dirty_ratelimit;
1208         unsigned long step;
1209         unsigned long x;
1210         unsigned long shift;
1211
1212         /*
1213          * The dirty rate will match the writeout rate in long term, except
1214          * when dirty pages are truncated by userspace or re-dirtied by FS.
1215          */
1216         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1217
1218         /*
1219          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1220          */
1221         task_ratelimit = (u64)dirty_ratelimit *
1222                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1223         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1224
1225         /*
1226          * A linear estimation of the "balanced" throttle rate. The theory is,
1227          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1228          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1229          * formula will yield the balanced rate limit (write_bw / N).
1230          *
1231          * Note that the expanded form is not a pure rate feedback:
1232          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1233          * but also takes pos_ratio into account:
1234          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1235          *
1236          * (1) is not realistic because pos_ratio also takes part in balancing
1237          * the dirty rate.  Consider the state
1238          *      pos_ratio = 0.5                                              (3)
1239          *      rate = 2 * (write_bw / N)                                    (4)
1240          * If (1) is used, it will stuck in that state! Because each dd will
1241          * be throttled at
1242          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1243          * yielding
1244          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1245          * put (6) into (1) we get
1246          *      rate_(i+1) = rate_(i)                                        (7)
1247          *
1248          * So we end up using (2) to always keep
1249          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1250          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1251          * pos_ratio is able to drive itself to 1.0, which is not only where
1252          * the dirty count meet the setpoint, but also where the slope of
1253          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1254          */
1255         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1256                                            dirty_rate | 1);
1257         /*
1258          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1259          */
1260         if (unlikely(balanced_dirty_ratelimit > write_bw))
1261                 balanced_dirty_ratelimit = write_bw;
1262
1263         /*
1264          * We could safely do this and return immediately:
1265          *
1266          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1267          *
1268          * However to get a more stable dirty_ratelimit, the below elaborated
1269          * code makes use of task_ratelimit to filter out singular points and
1270          * limit the step size.
1271          *
1272          * The below code essentially only uses the relative value of
1273          *
1274          *      task_ratelimit - dirty_ratelimit
1275          *      = (pos_ratio - 1) * dirty_ratelimit
1276          *
1277          * which reflects the direction and size of dirty position error.
1278          */
1279
1280         /*
1281          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1282          * task_ratelimit is on the same side of dirty_ratelimit, too.
1283          * For example, when
1284          * - dirty_ratelimit > balanced_dirty_ratelimit
1285          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1286          * lowering dirty_ratelimit will help meet both the position and rate
1287          * control targets. Otherwise, don't update dirty_ratelimit if it will
1288          * only help meet the rate target. After all, what the users ultimately
1289          * feel and care are stable dirty rate and small position error.
1290          *
1291          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1292          * and filter out the singular points of balanced_dirty_ratelimit. Which
1293          * keeps jumping around randomly and can even leap far away at times
1294          * due to the small 200ms estimation period of dirty_rate (we want to
1295          * keep that period small to reduce time lags).
1296          */
1297         step = 0;
1298
1299         /*
1300          * For strictlimit case, calculations above were based on wb counters
1301          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1302          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1303          * Hence, to calculate "step" properly, we have to use wb_dirty as
1304          * "dirty" and wb_setpoint as "setpoint".
1305          *
1306          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1307          * it's possible that wb_thresh is close to zero due to inactivity
1308          * of backing device.
1309          */
1310         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1311                 dirty = dtc->wb_dirty;
1312                 if (dtc->wb_dirty < 8)
1313                         setpoint = dtc->wb_dirty + 1;
1314                 else
1315                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1316         }
1317
1318         if (dirty < setpoint) {
1319                 x = min3(wb->balanced_dirty_ratelimit,
1320                          balanced_dirty_ratelimit, task_ratelimit);
1321                 if (dirty_ratelimit < x)
1322                         step = x - dirty_ratelimit;
1323         } else {
1324                 x = max3(wb->balanced_dirty_ratelimit,
1325                          balanced_dirty_ratelimit, task_ratelimit);
1326                 if (dirty_ratelimit > x)
1327                         step = dirty_ratelimit - x;
1328         }
1329
1330         /*
1331          * Don't pursue 100% rate matching. It's impossible since the balanced
1332          * rate itself is constantly fluctuating. So decrease the track speed
1333          * when it gets close to the target. Helps eliminate pointless tremors.
1334          */
1335         shift = dirty_ratelimit / (2 * step + 1);
1336         if (shift < BITS_PER_LONG)
1337                 step = DIV_ROUND_UP(step >> shift, 8);
1338         else
1339                 step = 0;
1340
1341         if (dirty_ratelimit < balanced_dirty_ratelimit)
1342                 dirty_ratelimit += step;
1343         else
1344                 dirty_ratelimit -= step;
1345
1346         wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1347         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1348
1349         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1350 }
1351
1352 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1353                                   struct dirty_throttle_control *mdtc,
1354                                   unsigned long start_time,
1355                                   bool update_ratelimit)
1356 {
1357         struct bdi_writeback *wb = gdtc->wb;
1358         unsigned long now = jiffies;
1359         unsigned long elapsed = now - wb->bw_time_stamp;
1360         unsigned long dirtied;
1361         unsigned long written;
1362
1363         lockdep_assert_held(&wb->list_lock);
1364
1365         /*
1366          * rate-limit, only update once every 200ms.
1367          */
1368         if (elapsed < BANDWIDTH_INTERVAL)
1369                 return;
1370
1371         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1372         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1373
1374         /*
1375          * Skip quiet periods when disk bandwidth is under-utilized.
1376          * (at least 1s idle time between two flusher runs)
1377          */
1378         if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1379                 goto snapshot;
1380
1381         if (update_ratelimit) {
1382                 domain_update_bandwidth(gdtc, now);
1383                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1384
1385                 /*
1386                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1387                  * compiler has no way to figure that out.  Help it.
1388                  */
1389                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1390                         domain_update_bandwidth(mdtc, now);
1391                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1392                 }
1393         }
1394         wb_update_write_bandwidth(wb, elapsed, written);
1395
1396 snapshot:
1397         wb->dirtied_stamp = dirtied;
1398         wb->written_stamp = written;
1399         wb->bw_time_stamp = now;
1400 }
1401
1402 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1403 {
1404         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1405
1406         __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1407 }
1408
1409 /*
1410  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1411  * will look to see if it needs to start dirty throttling.
1412  *
1413  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1414  * global_page_state() too often. So scale it near-sqrt to the safety margin
1415  * (the number of pages we may dirty without exceeding the dirty limits).
1416  */
1417 static unsigned long dirty_poll_interval(unsigned long dirty,
1418                                          unsigned long thresh)
1419 {
1420         if (thresh > dirty)
1421                 return 1UL << (ilog2(thresh - dirty) >> 1);
1422
1423         return 1;
1424 }
1425
1426 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1427                                   unsigned long wb_dirty)
1428 {
1429         unsigned long bw = wb->avg_write_bandwidth;
1430         unsigned long t;
1431
1432         /*
1433          * Limit pause time for small memory systems. If sleeping for too long
1434          * time, a small pool of dirty/writeback pages may go empty and disk go
1435          * idle.
1436          *
1437          * 8 serves as the safety ratio.
1438          */
1439         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1440         t++;
1441
1442         return min_t(unsigned long, t, MAX_PAUSE);
1443 }
1444
1445 static long wb_min_pause(struct bdi_writeback *wb,
1446                          long max_pause,
1447                          unsigned long task_ratelimit,
1448                          unsigned long dirty_ratelimit,
1449                          int *nr_dirtied_pause)
1450 {
1451         long hi = ilog2(wb->avg_write_bandwidth);
1452         long lo = ilog2(wb->dirty_ratelimit);
1453         long t;         /* target pause */
1454         long pause;     /* estimated next pause */
1455         int pages;      /* target nr_dirtied_pause */
1456
1457         /* target for 10ms pause on 1-dd case */
1458         t = max(1, HZ / 100);
1459
1460         /*
1461          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1462          * overheads.
1463          *
1464          * (N * 10ms) on 2^N concurrent tasks.
1465          */
1466         if (hi > lo)
1467                 t += (hi - lo) * (10 * HZ) / 1024;
1468
1469         /*
1470          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1471          * on the much more stable dirty_ratelimit. However the next pause time
1472          * will be computed based on task_ratelimit and the two rate limits may
1473          * depart considerably at some time. Especially if task_ratelimit goes
1474          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1475          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1476          * result task_ratelimit won't be executed faithfully, which could
1477          * eventually bring down dirty_ratelimit.
1478          *
1479          * We apply two rules to fix it up:
1480          * 1) try to estimate the next pause time and if necessary, use a lower
1481          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1482          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1483          * 2) limit the target pause time to max_pause/2, so that the normal
1484          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1485          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1486          */
1487         t = min(t, 1 + max_pause / 2);
1488         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1489
1490         /*
1491          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1492          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1493          * When the 16 consecutive reads are often interrupted by some dirty
1494          * throttling pause during the async writes, cfq will go into idles
1495          * (deadline is fine). So push nr_dirtied_pause as high as possible
1496          * until reaches DIRTY_POLL_THRESH=32 pages.
1497          */
1498         if (pages < DIRTY_POLL_THRESH) {
1499                 t = max_pause;
1500                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1501                 if (pages > DIRTY_POLL_THRESH) {
1502                         pages = DIRTY_POLL_THRESH;
1503                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1504                 }
1505         }
1506
1507         pause = HZ * pages / (task_ratelimit + 1);
1508         if (pause > max_pause) {
1509                 t = max_pause;
1510                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1511         }
1512
1513         *nr_dirtied_pause = pages;
1514         /*
1515          * The minimal pause time will normally be half the target pause time.
1516          */
1517         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1518 }
1519
1520 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1521 {
1522         struct bdi_writeback *wb = dtc->wb;
1523         unsigned long wb_reclaimable;
1524
1525         /*
1526          * wb_thresh is not treated as some limiting factor as
1527          * dirty_thresh, due to reasons
1528          * - in JBOD setup, wb_thresh can fluctuate a lot
1529          * - in a system with HDD and USB key, the USB key may somehow
1530          *   go into state (wb_dirty >> wb_thresh) either because
1531          *   wb_dirty starts high, or because wb_thresh drops low.
1532          *   In this case we don't want to hard throttle the USB key
1533          *   dirtiers for 100 seconds until wb_dirty drops under
1534          *   wb_thresh. Instead the auxiliary wb control line in
1535          *   wb_position_ratio() will let the dirtier task progress
1536          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1537          */
1538         dtc->wb_thresh = __wb_calc_thresh(dtc);
1539         dtc->wb_bg_thresh = dtc->thresh ?
1540                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1541
1542         /*
1543          * In order to avoid the stacked BDI deadlock we need
1544          * to ensure we accurately count the 'dirty' pages when
1545          * the threshold is low.
1546          *
1547          * Otherwise it would be possible to get thresh+n pages
1548          * reported dirty, even though there are thresh-m pages
1549          * actually dirty; with m+n sitting in the percpu
1550          * deltas.
1551          */
1552         if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1553                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1554                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1555         } else {
1556                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1557                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1558         }
1559 }
1560
1561 /*
1562  * balance_dirty_pages() must be called by processes which are generating dirty
1563  * data.  It looks at the number of dirty pages in the machine and will force
1564  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1565  * If we're over `background_thresh' then the writeback threads are woken to
1566  * perform some writeout.
1567  */
1568 static void balance_dirty_pages(struct address_space *mapping,
1569                                 struct bdi_writeback *wb,
1570                                 unsigned long pages_dirtied)
1571 {
1572         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1573         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1574         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1575         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1576                                                      &mdtc_stor : NULL;
1577         struct dirty_throttle_control *sdtc;
1578         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1579         long period;
1580         long pause;
1581         long max_pause;
1582         long min_pause;
1583         int nr_dirtied_pause;
1584         bool dirty_exceeded = false;
1585         unsigned long task_ratelimit;
1586         unsigned long dirty_ratelimit;
1587         struct backing_dev_info *bdi = wb->bdi;
1588         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1589         unsigned long start_time = jiffies;
1590
1591         for (;;) {
1592                 unsigned long now = jiffies;
1593                 unsigned long dirty, thresh, bg_thresh;
1594                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1595                 unsigned long m_thresh = 0;
1596                 unsigned long m_bg_thresh = 0;
1597
1598                 /*
1599                  * Unstable writes are a feature of certain networked
1600                  * filesystems (i.e. NFS) in which data may have been
1601                  * written to the server's write cache, but has not yet
1602                  * been flushed to permanent storage.
1603                  */
1604                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1605                                         global_page_state(NR_UNSTABLE_NFS);
1606                 gdtc->avail = global_dirtyable_memory();
1607                 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1608
1609                 domain_dirty_limits(gdtc);
1610
1611                 if (unlikely(strictlimit)) {
1612                         wb_dirty_limits(gdtc);
1613
1614                         dirty = gdtc->wb_dirty;
1615                         thresh = gdtc->wb_thresh;
1616                         bg_thresh = gdtc->wb_bg_thresh;
1617                 } else {
1618                         dirty = gdtc->dirty;
1619                         thresh = gdtc->thresh;
1620                         bg_thresh = gdtc->bg_thresh;
1621                 }
1622
1623                 if (mdtc) {
1624                         unsigned long filepages, headroom, writeback;
1625
1626                         /*
1627                          * If @wb belongs to !root memcg, repeat the same
1628                          * basic calculations for the memcg domain.
1629                          */
1630                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1631                                             &mdtc->dirty, &writeback);
1632                         mdtc->dirty += writeback;
1633                         mdtc_calc_avail(mdtc, filepages, headroom);
1634
1635                         domain_dirty_limits(mdtc);
1636
1637                         if (unlikely(strictlimit)) {
1638                                 wb_dirty_limits(mdtc);
1639                                 m_dirty = mdtc->wb_dirty;
1640                                 m_thresh = mdtc->wb_thresh;
1641                                 m_bg_thresh = mdtc->wb_bg_thresh;
1642                         } else {
1643                                 m_dirty = mdtc->dirty;
1644                                 m_thresh = mdtc->thresh;
1645                                 m_bg_thresh = mdtc->bg_thresh;
1646                         }
1647                 }
1648
1649                 /*
1650                  * Throttle it only when the background writeback cannot
1651                  * catch-up. This avoids (excessively) small writeouts
1652                  * when the wb limits are ramping up in case of !strictlimit.
1653                  *
1654                  * In strictlimit case make decision based on the wb counters
1655                  * and limits. Small writeouts when the wb limits are ramping
1656                  * up are the price we consciously pay for strictlimit-ing.
1657                  *
1658                  * If memcg domain is in effect, @dirty should be under
1659                  * both global and memcg freerun ceilings.
1660                  */
1661                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1662                     (!mdtc ||
1663                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1664                         unsigned long intv = dirty_poll_interval(dirty, thresh);
1665                         unsigned long m_intv = ULONG_MAX;
1666
1667                         current->dirty_paused_when = now;
1668                         current->nr_dirtied = 0;
1669                         if (mdtc)
1670                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1671                         current->nr_dirtied_pause = min(intv, m_intv);
1672                         break;
1673                 }
1674
1675                 if (unlikely(!writeback_in_progress(wb)))
1676                         wb_start_background_writeback(wb);
1677
1678                 /*
1679                  * Calculate global domain's pos_ratio and select the
1680                  * global dtc by default.
1681                  */
1682                 if (!strictlimit)
1683                         wb_dirty_limits(gdtc);
1684
1685                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1686                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1687
1688                 wb_position_ratio(gdtc);
1689                 sdtc = gdtc;
1690
1691                 if (mdtc) {
1692                         /*
1693                          * If memcg domain is in effect, calculate its
1694                          * pos_ratio.  @wb should satisfy constraints from
1695                          * both global and memcg domains.  Choose the one
1696                          * w/ lower pos_ratio.
1697                          */
1698                         if (!strictlimit)
1699                                 wb_dirty_limits(mdtc);
1700
1701                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1702                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1703
1704                         wb_position_ratio(mdtc);
1705                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1706                                 sdtc = mdtc;
1707                 }
1708
1709                 if (dirty_exceeded && !wb->dirty_exceeded)
1710                         wb->dirty_exceeded = 1;
1711
1712                 if (time_is_before_jiffies(wb->bw_time_stamp +
1713                                            BANDWIDTH_INTERVAL)) {
1714                         spin_lock(&wb->list_lock);
1715                         __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1716                         spin_unlock(&wb->list_lock);
1717                 }
1718
1719                 /* throttle according to the chosen dtc */
1720                 dirty_ratelimit = wb->dirty_ratelimit;
1721                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1722                                                         RATELIMIT_CALC_SHIFT;
1723                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1724                 min_pause = wb_min_pause(wb, max_pause,
1725                                          task_ratelimit, dirty_ratelimit,
1726                                          &nr_dirtied_pause);
1727
1728                 if (unlikely(task_ratelimit == 0)) {
1729                         period = max_pause;
1730                         pause = max_pause;
1731                         goto pause;
1732                 }
1733                 period = HZ * pages_dirtied / task_ratelimit;
1734                 pause = period;
1735                 if (current->dirty_paused_when)
1736                         pause -= now - current->dirty_paused_when;
1737                 /*
1738                  * For less than 1s think time (ext3/4 may block the dirtier
1739                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1740                  * however at much less frequency), try to compensate it in
1741                  * future periods by updating the virtual time; otherwise just
1742                  * do a reset, as it may be a light dirtier.
1743                  */
1744                 if (pause < min_pause) {
1745                         trace_balance_dirty_pages(wb,
1746                                                   sdtc->thresh,
1747                                                   sdtc->bg_thresh,
1748                                                   sdtc->dirty,
1749                                                   sdtc->wb_thresh,
1750                                                   sdtc->wb_dirty,
1751                                                   dirty_ratelimit,
1752                                                   task_ratelimit,
1753                                                   pages_dirtied,
1754                                                   period,
1755                                                   min(pause, 0L),
1756                                                   start_time);
1757                         if (pause < -HZ) {
1758                                 current->dirty_paused_when = now;
1759                                 current->nr_dirtied = 0;
1760                         } else if (period) {
1761                                 current->dirty_paused_when += period;
1762                                 current->nr_dirtied = 0;
1763                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1764                                 current->nr_dirtied_pause += pages_dirtied;
1765                         break;
1766                 }
1767                 if (unlikely(pause > max_pause)) {
1768                         /* for occasional dropped task_ratelimit */
1769                         now += min(pause - max_pause, max_pause);
1770                         pause = max_pause;
1771                 }
1772
1773 pause:
1774                 trace_balance_dirty_pages(wb,
1775                                           sdtc->thresh,
1776                                           sdtc->bg_thresh,
1777                                           sdtc->dirty,
1778                                           sdtc->wb_thresh,
1779                                           sdtc->wb_dirty,
1780                                           dirty_ratelimit,
1781                                           task_ratelimit,
1782                                           pages_dirtied,
1783                                           period,
1784                                           pause,
1785                                           start_time);
1786                 __set_current_state(TASK_KILLABLE);
1787                 io_schedule_timeout(pause);
1788
1789                 current->dirty_paused_when = now + pause;
1790                 current->nr_dirtied = 0;
1791                 current->nr_dirtied_pause = nr_dirtied_pause;
1792
1793                 /*
1794                  * This is typically equal to (dirty < thresh) and can also
1795                  * keep "1000+ dd on a slow USB stick" under control.
1796                  */
1797                 if (task_ratelimit)
1798                         break;
1799
1800                 /*
1801                  * In the case of an unresponding NFS server and the NFS dirty
1802                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1803                  * to go through, so that tasks on them still remain responsive.
1804                  *
1805                  * In theory 1 page is enough to keep the comsumer-producer
1806                  * pipe going: the flusher cleans 1 page => the task dirties 1
1807                  * more page. However wb_dirty has accounting errors.  So use
1808                  * the larger and more IO friendly wb_stat_error.
1809                  */
1810                 if (sdtc->wb_dirty <= wb_stat_error(wb))
1811                         break;
1812
1813                 if (fatal_signal_pending(current))
1814                         break;
1815         }
1816
1817         if (!dirty_exceeded && wb->dirty_exceeded)
1818                 wb->dirty_exceeded = 0;
1819
1820         if (writeback_in_progress(wb))
1821                 return;
1822
1823         /*
1824          * In laptop mode, we wait until hitting the higher threshold before
1825          * starting background writeout, and then write out all the way down
1826          * to the lower threshold.  So slow writers cause minimal disk activity.
1827          *
1828          * In normal mode, we start background writeout at the lower
1829          * background_thresh, to keep the amount of dirty memory low.
1830          */
1831         if (laptop_mode)
1832                 return;
1833
1834         if (nr_reclaimable > gdtc->bg_thresh)
1835                 wb_start_background_writeback(wb);
1836 }
1837
1838 static DEFINE_PER_CPU(int, bdp_ratelimits);
1839
1840 /*
1841  * Normal tasks are throttled by
1842  *      loop {
1843  *              dirty tsk->nr_dirtied_pause pages;
1844  *              take a snap in balance_dirty_pages();
1845  *      }
1846  * However there is a worst case. If every task exit immediately when dirtied
1847  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1848  * called to throttle the page dirties. The solution is to save the not yet
1849  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1850  * randomly into the running tasks. This works well for the above worst case,
1851  * as the new task will pick up and accumulate the old task's leaked dirty
1852  * count and eventually get throttled.
1853  */
1854 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1855
1856 /**
1857  * balance_dirty_pages_ratelimited - balance dirty memory state
1858  * @mapping: address_space which was dirtied
1859  *
1860  * Processes which are dirtying memory should call in here once for each page
1861  * which was newly dirtied.  The function will periodically check the system's
1862  * dirty state and will initiate writeback if needed.
1863  *
1864  * On really big machines, get_writeback_state is expensive, so try to avoid
1865  * calling it too often (ratelimiting).  But once we're over the dirty memory
1866  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1867  * from overshooting the limit by (ratelimit_pages) each.
1868  */
1869 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1870 {
1871         struct inode *inode = mapping->host;
1872         struct backing_dev_info *bdi = inode_to_bdi(inode);
1873         struct bdi_writeback *wb = NULL;
1874         int ratelimit;
1875         int *p;
1876
1877         if (!bdi_cap_account_dirty(bdi))
1878                 return;
1879
1880         if (inode_cgwb_enabled(inode))
1881                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1882         if (!wb)
1883                 wb = &bdi->wb;
1884
1885         ratelimit = current->nr_dirtied_pause;
1886         if (wb->dirty_exceeded)
1887                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1888
1889         preempt_disable();
1890         /*
1891          * This prevents one CPU to accumulate too many dirtied pages without
1892          * calling into balance_dirty_pages(), which can happen when there are
1893          * 1000+ tasks, all of them start dirtying pages at exactly the same
1894          * time, hence all honoured too large initial task->nr_dirtied_pause.
1895          */
1896         p =  this_cpu_ptr(&bdp_ratelimits);
1897         if (unlikely(current->nr_dirtied >= ratelimit))
1898                 *p = 0;
1899         else if (unlikely(*p >= ratelimit_pages)) {
1900                 *p = 0;
1901                 ratelimit = 0;
1902         }
1903         /*
1904          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1905          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1906          * the dirty throttling and livelock other long-run dirtiers.
1907          */
1908         p = this_cpu_ptr(&dirty_throttle_leaks);
1909         if (*p > 0 && current->nr_dirtied < ratelimit) {
1910                 unsigned long nr_pages_dirtied;
1911                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1912                 *p -= nr_pages_dirtied;
1913                 current->nr_dirtied += nr_pages_dirtied;
1914         }
1915         preempt_enable();
1916
1917         if (unlikely(current->nr_dirtied >= ratelimit))
1918                 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1919
1920         wb_put(wb);
1921 }
1922 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1923
1924 /**
1925  * wb_over_bg_thresh - does @wb need to be written back?
1926  * @wb: bdi_writeback of interest
1927  *
1928  * Determines whether background writeback should keep writing @wb or it's
1929  * clean enough.  Returns %true if writeback should continue.
1930  */
1931 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1932 {
1933         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1934         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1935         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1936         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1937                                                      &mdtc_stor : NULL;
1938
1939         /*
1940          * Similar to balance_dirty_pages() but ignores pages being written
1941          * as we're trying to decide whether to put more under writeback.
1942          */
1943         gdtc->avail = global_dirtyable_memory();
1944         gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1945                       global_page_state(NR_UNSTABLE_NFS);
1946         domain_dirty_limits(gdtc);
1947
1948         if (gdtc->dirty > gdtc->bg_thresh)
1949                 return true;
1950
1951         if (wb_stat(wb, WB_RECLAIMABLE) >
1952             wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1953                 return true;
1954
1955         if (mdtc) {
1956                 unsigned long filepages, headroom, writeback;
1957
1958                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1959                                     &writeback);
1960                 mdtc_calc_avail(mdtc, filepages, headroom);
1961                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1962
1963                 if (mdtc->dirty > mdtc->bg_thresh)
1964                         return true;
1965
1966                 if (wb_stat(wb, WB_RECLAIMABLE) >
1967                     wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1968                         return true;
1969         }
1970
1971         return false;
1972 }
1973
1974 void throttle_vm_writeout(gfp_t gfp_mask)
1975 {
1976         unsigned long background_thresh;
1977         unsigned long dirty_thresh;
1978
1979         for ( ; ; ) {
1980                 global_dirty_limits(&background_thresh, &dirty_thresh);
1981                 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1982
1983                 /*
1984                  * Boost the allowable dirty threshold a bit for page
1985                  * allocators so they don't get DoS'ed by heavy writers
1986                  */
1987                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1988
1989                 if (global_page_state(NR_UNSTABLE_NFS) +
1990                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1991                                 break;
1992                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1993
1994                 /*
1995                  * The caller might hold locks which can prevent IO completion
1996                  * or progress in the filesystem.  So we cannot just sit here
1997                  * waiting for IO to complete.
1998                  */
1999                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
2000                         break;
2001         }
2002 }
2003
2004 /*
2005  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2006  */
2007 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2008         void __user *buffer, size_t *length, loff_t *ppos)
2009 {
2010         proc_dointvec(table, write, buffer, length, ppos);
2011         return 0;
2012 }
2013
2014 #ifdef CONFIG_BLOCK
2015 void laptop_mode_timer_fn(unsigned long data)
2016 {
2017         struct request_queue *q = (struct request_queue *)data;
2018         int nr_pages = global_page_state(NR_FILE_DIRTY) +
2019                 global_page_state(NR_UNSTABLE_NFS);
2020         struct bdi_writeback *wb;
2021
2022         /*
2023          * We want to write everything out, not just down to the dirty
2024          * threshold
2025          */
2026         if (!bdi_has_dirty_io(&q->backing_dev_info))
2027                 return;
2028
2029         rcu_read_lock();
2030         list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
2031                 if (wb_has_dirty_io(wb))
2032                         wb_start_writeback(wb, nr_pages, true,
2033                                            WB_REASON_LAPTOP_TIMER);
2034         rcu_read_unlock();
2035 }
2036
2037 /*
2038  * We've spun up the disk and we're in laptop mode: schedule writeback
2039  * of all dirty data a few seconds from now.  If the flush is already scheduled
2040  * then push it back - the user is still using the disk.
2041  */
2042 void laptop_io_completion(struct backing_dev_info *info)
2043 {
2044         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2045 }
2046
2047 /*
2048  * We're in laptop mode and we've just synced. The sync's writes will have
2049  * caused another writeback to be scheduled by laptop_io_completion.
2050  * Nothing needs to be written back anymore, so we unschedule the writeback.
2051  */
2052 void laptop_sync_completion(void)
2053 {
2054         struct backing_dev_info *bdi;
2055
2056         rcu_read_lock();
2057
2058         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2059                 del_timer(&bdi->laptop_mode_wb_timer);
2060
2061         rcu_read_unlock();
2062 }
2063 #endif
2064
2065 /*
2066  * If ratelimit_pages is too high then we can get into dirty-data overload
2067  * if a large number of processes all perform writes at the same time.
2068  * If it is too low then SMP machines will call the (expensive)
2069  * get_writeback_state too often.
2070  *
2071  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2072  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2073  * thresholds.
2074  */
2075
2076 void writeback_set_ratelimit(void)
2077 {
2078         struct wb_domain *dom = &global_wb_domain;
2079         unsigned long background_thresh;
2080         unsigned long dirty_thresh;
2081
2082         global_dirty_limits(&background_thresh, &dirty_thresh);
2083         dom->dirty_limit = dirty_thresh;
2084         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2085         if (ratelimit_pages < 16)
2086                 ratelimit_pages = 16;
2087 }
2088
2089 static int
2090 ratelimit_handler(struct notifier_block *self, unsigned long action,
2091                   void *hcpu)
2092 {
2093
2094         switch (action & ~CPU_TASKS_FROZEN) {
2095         case CPU_ONLINE:
2096         case CPU_DEAD:
2097                 writeback_set_ratelimit();
2098                 return NOTIFY_OK;
2099         default:
2100                 return NOTIFY_DONE;
2101         }
2102 }
2103
2104 static struct notifier_block ratelimit_nb = {
2105         .notifier_call  = ratelimit_handler,
2106         .next           = NULL,
2107 };
2108
2109 /*
2110  * Called early on to tune the page writeback dirty limits.
2111  *
2112  * We used to scale dirty pages according to how total memory
2113  * related to pages that could be allocated for buffers (by
2114  * comparing nr_free_buffer_pages() to vm_total_pages.
2115  *
2116  * However, that was when we used "dirty_ratio" to scale with
2117  * all memory, and we don't do that any more. "dirty_ratio"
2118  * is now applied to total non-HIGHPAGE memory (by subtracting
2119  * totalhigh_pages from vm_total_pages), and as such we can't
2120  * get into the old insane situation any more where we had
2121  * large amounts of dirty pages compared to a small amount of
2122  * non-HIGHMEM memory.
2123  *
2124  * But we might still want to scale the dirty_ratio by how
2125  * much memory the box has..
2126  */
2127 void __init page_writeback_init(void)
2128 {
2129         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2130
2131         writeback_set_ratelimit();
2132         register_cpu_notifier(&ratelimit_nb);
2133 }
2134
2135 /**
2136  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2137  * @mapping: address space structure to write
2138  * @start: starting page index
2139  * @end: ending page index (inclusive)
2140  *
2141  * This function scans the page range from @start to @end (inclusive) and tags
2142  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2143  * that write_cache_pages (or whoever calls this function) will then use
2144  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2145  * used to avoid livelocking of writeback by a process steadily creating new
2146  * dirty pages in the file (thus it is important for this function to be quick
2147  * so that it can tag pages faster than a dirtying process can create them).
2148  */
2149 /*
2150  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2151  */
2152 void tag_pages_for_writeback(struct address_space *mapping,
2153                              pgoff_t start, pgoff_t end)
2154 {
2155 #define WRITEBACK_TAG_BATCH 4096
2156         unsigned long tagged;
2157
2158         do {
2159                 spin_lock_irq(&mapping->tree_lock);
2160                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2161                                 &start, end, WRITEBACK_TAG_BATCH,
2162                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2163                 spin_unlock_irq(&mapping->tree_lock);
2164                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2165                 cond_resched();
2166                 /* We check 'start' to handle wrapping when end == ~0UL */
2167         } while (tagged >= WRITEBACK_TAG_BATCH && start);
2168 }
2169 EXPORT_SYMBOL(tag_pages_for_writeback);
2170
2171 /**
2172  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2173  * @mapping: address space structure to write
2174  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2175  * @writepage: function called for each page
2176  * @data: data passed to writepage function
2177  *
2178  * If a page is already under I/O, write_cache_pages() skips it, even
2179  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2180  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2181  * and msync() need to guarantee that all the data which was dirty at the time
2182  * the call was made get new I/O started against them.  If wbc->sync_mode is
2183  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2184  * existing IO to complete.
2185  *
2186  * To avoid livelocks (when other process dirties new pages), we first tag
2187  * pages which should be written back with TOWRITE tag and only then start
2188  * writing them. For data-integrity sync we have to be careful so that we do
2189  * not miss some pages (e.g., because some other process has cleared TOWRITE
2190  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2191  * by the process clearing the DIRTY tag (and submitting the page for IO).
2192  */
2193 int write_cache_pages(struct address_space *mapping,
2194                       struct writeback_control *wbc, writepage_t writepage,
2195                       void *data)
2196 {
2197         int ret = 0;
2198         int done = 0;
2199         struct pagevec pvec;
2200         int nr_pages;
2201         pgoff_t uninitialized_var(writeback_index);
2202         pgoff_t index;
2203         pgoff_t end;            /* Inclusive */
2204         pgoff_t done_index;
2205         int cycled;
2206         int range_whole = 0;
2207         int tag;
2208
2209         pagevec_init(&pvec, 0);
2210         if (wbc->range_cyclic) {
2211                 writeback_index = mapping->writeback_index; /* prev offset */
2212                 index = writeback_index;
2213                 if (index == 0)
2214                         cycled = 1;
2215                 else
2216                         cycled = 0;
2217                 end = -1;
2218         } else {
2219                 index = wbc->range_start >> PAGE_SHIFT;
2220                 end = wbc->range_end >> PAGE_SHIFT;
2221                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2222                         range_whole = 1;
2223                 cycled = 1; /* ignore range_cyclic tests */
2224         }
2225         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2226                 tag = PAGECACHE_TAG_TOWRITE;
2227         else
2228                 tag = PAGECACHE_TAG_DIRTY;
2229 retry:
2230         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2231                 tag_pages_for_writeback(mapping, index, end);
2232         done_index = index;
2233         while (!done && (index <= end)) {
2234                 int i;
2235
2236                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2237                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2238                 if (nr_pages == 0)
2239                         break;
2240
2241                 for (i = 0; i < nr_pages; i++) {
2242                         struct page *page = pvec.pages[i];
2243
2244                         /*
2245                          * At this point, the page may be truncated or
2246                          * invalidated (changing page->mapping to NULL), or
2247                          * even swizzled back from swapper_space to tmpfs file
2248                          * mapping. However, page->index will not change
2249                          * because we have a reference on the page.
2250                          */
2251                         if (page->index > end) {
2252                                 /*
2253                                  * can't be range_cyclic (1st pass) because
2254                                  * end == -1 in that case.
2255                                  */
2256                                 done = 1;
2257                                 break;
2258                         }
2259
2260                         done_index = page->index;
2261
2262                         lock_page(page);
2263
2264                         /*
2265                          * Page truncated or invalidated. We can freely skip it
2266                          * then, even for data integrity operations: the page
2267                          * has disappeared concurrently, so there could be no
2268                          * real expectation of this data interity operation
2269                          * even if there is now a new, dirty page at the same
2270                          * pagecache address.
2271                          */
2272                         if (unlikely(page->mapping != mapping)) {
2273 continue_unlock:
2274                                 unlock_page(page);
2275                                 continue;
2276                         }
2277
2278                         if (!PageDirty(page)) {
2279                                 /* someone wrote it for us */
2280                                 goto continue_unlock;
2281                         }
2282
2283                         if (PageWriteback(page)) {
2284                                 if (wbc->sync_mode != WB_SYNC_NONE)
2285                                         wait_on_page_writeback(page);
2286                                 else
2287                                         goto continue_unlock;
2288                         }
2289
2290                         BUG_ON(PageWriteback(page));
2291                         if (!clear_page_dirty_for_io(page))
2292                                 goto continue_unlock;
2293
2294                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2295                         ret = (*writepage)(page, wbc, data);
2296                         if (unlikely(ret)) {
2297                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2298                                         unlock_page(page);
2299                                         ret = 0;
2300                                 } else {
2301                                         /*
2302                                          * done_index is set past this page,
2303                                          * so media errors will not choke
2304                                          * background writeout for the entire
2305                                          * file. This has consequences for
2306                                          * range_cyclic semantics (ie. it may
2307                                          * not be suitable for data integrity
2308                                          * writeout).
2309                                          */
2310                                         done_index = page->index + 1;
2311                                         done = 1;
2312                                         break;
2313                                 }
2314                         }
2315
2316                         /*
2317                          * We stop writing back only if we are not doing
2318                          * integrity sync. In case of integrity sync we have to
2319                          * keep going until we have written all the pages
2320                          * we tagged for writeback prior to entering this loop.
2321                          */
2322                         if (--wbc->nr_to_write <= 0 &&
2323                             wbc->sync_mode == WB_SYNC_NONE) {
2324                                 done = 1;
2325                                 break;
2326                         }
2327                 }
2328                 pagevec_release(&pvec);
2329                 cond_resched();
2330         }
2331         if (!cycled && !done) {
2332                 /*
2333                  * range_cyclic:
2334                  * We hit the last page and there is more work to be done: wrap
2335                  * back to the start of the file
2336                  */
2337                 cycled = 1;
2338                 index = 0;
2339                 end = writeback_index - 1;
2340                 goto retry;
2341         }
2342         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2343                 mapping->writeback_index = done_index;
2344
2345         return ret;
2346 }
2347 EXPORT_SYMBOL(write_cache_pages);
2348
2349 /*
2350  * Function used by generic_writepages to call the real writepage
2351  * function and set the mapping flags on error
2352  */
2353 static int __writepage(struct page *page, struct writeback_control *wbc,
2354                        void *data)
2355 {
2356         struct address_space *mapping = data;
2357         int ret = mapping->a_ops->writepage(page, wbc);
2358         mapping_set_error(mapping, ret);
2359         return ret;
2360 }
2361
2362 /**
2363  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2364  * @mapping: address space structure to write
2365  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2366  *
2367  * This is a library function, which implements the writepages()
2368  * address_space_operation.
2369  */
2370 int generic_writepages(struct address_space *mapping,
2371                        struct writeback_control *wbc)
2372 {
2373         struct blk_plug plug;
2374         int ret;
2375
2376         /* deal with chardevs and other special file */
2377         if (!mapping->a_ops->writepage)
2378                 return 0;
2379
2380         blk_start_plug(&plug);
2381         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2382         blk_finish_plug(&plug);
2383         return ret;
2384 }
2385
2386 EXPORT_SYMBOL(generic_writepages);
2387
2388 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2389 {
2390         int ret;
2391
2392         if (wbc->nr_to_write <= 0)
2393                 return 0;
2394         if (mapping->a_ops->writepages)
2395                 ret = mapping->a_ops->writepages(mapping, wbc);
2396         else
2397                 ret = generic_writepages(mapping, wbc);
2398         return ret;
2399 }
2400
2401 /**
2402  * write_one_page - write out a single page and optionally wait on I/O
2403  * @page: the page to write
2404  * @wait: if true, wait on writeout
2405  *
2406  * The page must be locked by the caller and will be unlocked upon return.
2407  *
2408  * write_one_page() returns a negative error code if I/O failed.
2409  */
2410 int write_one_page(struct page *page, int wait)
2411 {
2412         struct address_space *mapping = page->mapping;
2413         int ret = 0;
2414         struct writeback_control wbc = {
2415                 .sync_mode = WB_SYNC_ALL,
2416                 .nr_to_write = 1,
2417         };
2418
2419         BUG_ON(!PageLocked(page));
2420
2421         if (wait)
2422                 wait_on_page_writeback(page);
2423
2424         if (clear_page_dirty_for_io(page)) {
2425                 get_page(page);
2426                 ret = mapping->a_ops->writepage(page, &wbc);
2427                 if (ret == 0 && wait) {
2428                         wait_on_page_writeback(page);
2429                         if (PageError(page))
2430                                 ret = -EIO;
2431                 }
2432                 put_page(page);
2433         } else {
2434                 unlock_page(page);
2435         }
2436         return ret;
2437 }
2438 EXPORT_SYMBOL(write_one_page);
2439
2440 /*
2441  * For address_spaces which do not use buffers nor write back.
2442  */
2443 int __set_page_dirty_no_writeback(struct page *page)
2444 {
2445         if (!PageDirty(page))
2446                 return !TestSetPageDirty(page);
2447         return 0;
2448 }
2449
2450 /*
2451  * Helper function for set_page_dirty family.
2452  *
2453  * Caller must hold lock_page_memcg().
2454  *
2455  * NOTE: This relies on being atomic wrt interrupts.
2456  */
2457 void account_page_dirtied(struct page *page, struct address_space *mapping)
2458 {
2459         struct inode *inode = mapping->host;
2460
2461         trace_writeback_dirty_page(page, mapping);
2462
2463         if (mapping_cap_account_dirty(mapping)) {
2464                 struct bdi_writeback *wb;
2465
2466                 inode_attach_wb(inode, page);
2467                 wb = inode_to_wb(inode);
2468
2469                 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2470                 __inc_zone_page_state(page, NR_FILE_DIRTY);
2471                 __inc_zone_page_state(page, NR_DIRTIED);
2472                 __inc_wb_stat(wb, WB_RECLAIMABLE);
2473                 __inc_wb_stat(wb, WB_DIRTIED);
2474                 task_io_account_write(PAGE_SIZE);
2475                 current->nr_dirtied++;
2476                 this_cpu_inc(bdp_ratelimits);
2477         }
2478 }
2479 EXPORT_SYMBOL(account_page_dirtied);
2480
2481 /*
2482  * Helper function for deaccounting dirty page without writeback.
2483  *
2484  * Caller must hold lock_page_memcg().
2485  */
2486 void account_page_cleaned(struct page *page, struct address_space *mapping,
2487                           struct bdi_writeback *wb)
2488 {
2489         if (mapping_cap_account_dirty(mapping)) {
2490                 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2491                 dec_zone_page_state(page, NR_FILE_DIRTY);
2492                 dec_wb_stat(wb, WB_RECLAIMABLE);
2493                 task_io_account_cancelled_write(PAGE_SIZE);
2494         }
2495 }
2496
2497 /*
2498  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2499  * its radix tree.
2500  *
2501  * This is also used when a single buffer is being dirtied: we want to set the
2502  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2503  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2504  *
2505  * The caller must ensure this doesn't race with truncation.  Most will simply
2506  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2507  * the pte lock held, which also locks out truncation.
2508  */
2509 int __set_page_dirty_nobuffers(struct page *page)
2510 {
2511         lock_page_memcg(page);
2512         if (!TestSetPageDirty(page)) {
2513                 struct address_space *mapping = page_mapping(page);
2514                 unsigned long flags;
2515
2516                 if (!mapping) {
2517                         unlock_page_memcg(page);
2518                         return 1;
2519                 }
2520
2521                 spin_lock_irqsave(&mapping->tree_lock, flags);
2522                 BUG_ON(page_mapping(page) != mapping);
2523                 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2524                 account_page_dirtied(page, mapping);
2525                 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2526                                    PAGECACHE_TAG_DIRTY);
2527                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2528                 unlock_page_memcg(page);
2529
2530                 if (mapping->host) {
2531                         /* !PageAnon && !swapper_space */
2532                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2533                 }
2534                 return 1;
2535         }
2536         unlock_page_memcg(page);
2537         return 0;
2538 }
2539 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2540
2541 /*
2542  * Call this whenever redirtying a page, to de-account the dirty counters
2543  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2544  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2545  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2546  * control.
2547  */
2548 void account_page_redirty(struct page *page)
2549 {
2550         struct address_space *mapping = page->mapping;
2551
2552         if (mapping && mapping_cap_account_dirty(mapping)) {
2553                 struct inode *inode = mapping->host;
2554                 struct bdi_writeback *wb;
2555                 bool locked;
2556
2557                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2558                 current->nr_dirtied--;
2559                 dec_zone_page_state(page, NR_DIRTIED);
2560                 dec_wb_stat(wb, WB_DIRTIED);
2561                 unlocked_inode_to_wb_end(inode, locked);
2562         }
2563 }
2564 EXPORT_SYMBOL(account_page_redirty);
2565
2566 /*
2567  * When a writepage implementation decides that it doesn't want to write this
2568  * page for some reason, it should redirty the locked page via
2569  * redirty_page_for_writepage() and it should then unlock the page and return 0
2570  */
2571 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2572 {
2573         int ret;
2574
2575         wbc->pages_skipped++;
2576         ret = __set_page_dirty_nobuffers(page);
2577         account_page_redirty(page);
2578         return ret;
2579 }
2580 EXPORT_SYMBOL(redirty_page_for_writepage);
2581
2582 /*
2583  * Dirty a page.
2584  *
2585  * For pages with a mapping this should be done under the page lock
2586  * for the benefit of asynchronous memory errors who prefer a consistent
2587  * dirty state. This rule can be broken in some special cases,
2588  * but should be better not to.
2589  *
2590  * If the mapping doesn't provide a set_page_dirty a_op, then
2591  * just fall through and assume that it wants buffer_heads.
2592  */
2593 int set_page_dirty(struct page *page)
2594 {
2595         struct address_space *mapping = page_mapping(page);
2596
2597         page = compound_head(page);
2598         if (likely(mapping)) {
2599                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2600                 /*
2601                  * readahead/lru_deactivate_page could remain
2602                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2603                  * About readahead, if the page is written, the flags would be
2604                  * reset. So no problem.
2605                  * About lru_deactivate_page, if the page is redirty, the flag
2606                  * will be reset. So no problem. but if the page is used by readahead
2607                  * it will confuse readahead and make it restart the size rampup
2608                  * process. But it's a trivial problem.
2609                  */
2610                 if (PageReclaim(page))
2611                         ClearPageReclaim(page);
2612 #ifdef CONFIG_BLOCK
2613                 if (!spd)
2614                         spd = __set_page_dirty_buffers;
2615 #endif
2616                 return (*spd)(page);
2617         }
2618         if (!PageDirty(page)) {
2619                 if (!TestSetPageDirty(page))
2620                         return 1;
2621         }
2622         return 0;
2623 }
2624 EXPORT_SYMBOL(set_page_dirty);
2625
2626 /*
2627  * set_page_dirty() is racy if the caller has no reference against
2628  * page->mapping->host, and if the page is unlocked.  This is because another
2629  * CPU could truncate the page off the mapping and then free the mapping.
2630  *
2631  * Usually, the page _is_ locked, or the caller is a user-space process which
2632  * holds a reference on the inode by having an open file.
2633  *
2634  * In other cases, the page should be locked before running set_page_dirty().
2635  */
2636 int set_page_dirty_lock(struct page *page)
2637 {
2638         int ret;
2639
2640         lock_page(page);
2641         ret = set_page_dirty(page);
2642         unlock_page(page);
2643         return ret;
2644 }
2645 EXPORT_SYMBOL(set_page_dirty_lock);
2646
2647 /*
2648  * This cancels just the dirty bit on the kernel page itself, it does NOT
2649  * actually remove dirty bits on any mmap's that may be around. It also
2650  * leaves the page tagged dirty, so any sync activity will still find it on
2651  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2652  * look at the dirty bits in the VM.
2653  *
2654  * Doing this should *normally* only ever be done when a page is truncated,
2655  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2656  * this when it notices that somebody has cleaned out all the buffers on a
2657  * page without actually doing it through the VM. Can you say "ext3 is
2658  * horribly ugly"? Thought you could.
2659  */
2660 void cancel_dirty_page(struct page *page)
2661 {
2662         struct address_space *mapping = page_mapping(page);
2663
2664         if (mapping_cap_account_dirty(mapping)) {
2665                 struct inode *inode = mapping->host;
2666                 struct bdi_writeback *wb;
2667                 bool locked;
2668
2669                 lock_page_memcg(page);
2670                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2671
2672                 if (TestClearPageDirty(page))
2673                         account_page_cleaned(page, mapping, wb);
2674
2675                 unlocked_inode_to_wb_end(inode, locked);
2676                 unlock_page_memcg(page);
2677         } else {
2678                 ClearPageDirty(page);
2679         }
2680 }
2681 EXPORT_SYMBOL(cancel_dirty_page);
2682
2683 /*
2684  * Clear a page's dirty flag, while caring for dirty memory accounting.
2685  * Returns true if the page was previously dirty.
2686  *
2687  * This is for preparing to put the page under writeout.  We leave the page
2688  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2689  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2690  * implementation will run either set_page_writeback() or set_page_dirty(),
2691  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2692  * back into sync.
2693  *
2694  * This incoherency between the page's dirty flag and radix-tree tag is
2695  * unfortunate, but it only exists while the page is locked.
2696  */
2697 int clear_page_dirty_for_io(struct page *page)
2698 {
2699         struct address_space *mapping = page_mapping(page);
2700         int ret = 0;
2701
2702         BUG_ON(!PageLocked(page));
2703
2704         if (mapping && mapping_cap_account_dirty(mapping)) {
2705                 struct inode *inode = mapping->host;
2706                 struct bdi_writeback *wb;
2707                 bool locked;
2708
2709                 /*
2710                  * Yes, Virginia, this is indeed insane.
2711                  *
2712                  * We use this sequence to make sure that
2713                  *  (a) we account for dirty stats properly
2714                  *  (b) we tell the low-level filesystem to
2715                  *      mark the whole page dirty if it was
2716                  *      dirty in a pagetable. Only to then
2717                  *  (c) clean the page again and return 1 to
2718                  *      cause the writeback.
2719                  *
2720                  * This way we avoid all nasty races with the
2721                  * dirty bit in multiple places and clearing
2722                  * them concurrently from different threads.
2723                  *
2724                  * Note! Normally the "set_page_dirty(page)"
2725                  * has no effect on the actual dirty bit - since
2726                  * that will already usually be set. But we
2727                  * need the side effects, and it can help us
2728                  * avoid races.
2729                  *
2730                  * We basically use the page "master dirty bit"
2731                  * as a serialization point for all the different
2732                  * threads doing their things.
2733                  */
2734                 if (page_mkclean(page))
2735                         set_page_dirty(page);
2736                 /*
2737                  * We carefully synchronise fault handlers against
2738                  * installing a dirty pte and marking the page dirty
2739                  * at this point.  We do this by having them hold the
2740                  * page lock while dirtying the page, and pages are
2741                  * always locked coming in here, so we get the desired
2742                  * exclusion.
2743                  */
2744                 wb = unlocked_inode_to_wb_begin(inode, &locked);
2745                 if (TestClearPageDirty(page)) {
2746                         mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2747                         dec_zone_page_state(page, NR_FILE_DIRTY);
2748                         dec_wb_stat(wb, WB_RECLAIMABLE);
2749                         ret = 1;
2750                 }
2751                 unlocked_inode_to_wb_end(inode, locked);
2752                 return ret;
2753         }
2754         return TestClearPageDirty(page);
2755 }
2756 EXPORT_SYMBOL(clear_page_dirty_for_io);
2757
2758 int test_clear_page_writeback(struct page *page)
2759 {
2760         struct address_space *mapping = page_mapping(page);
2761         int ret;
2762
2763         lock_page_memcg(page);
2764         if (mapping) {
2765                 struct inode *inode = mapping->host;
2766                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2767                 unsigned long flags;
2768
2769                 spin_lock_irqsave(&mapping->tree_lock, flags);
2770                 ret = TestClearPageWriteback(page);
2771                 if (ret) {
2772                         radix_tree_tag_clear(&mapping->page_tree,
2773                                                 page_index(page),
2774                                                 PAGECACHE_TAG_WRITEBACK);
2775                         if (bdi_cap_account_writeback(bdi)) {
2776                                 struct bdi_writeback *wb = inode_to_wb(inode);
2777
2778                                 __dec_wb_stat(wb, WB_WRITEBACK);
2779                                 __wb_writeout_inc(wb);
2780                         }
2781                 }
2782
2783                 if (mapping->host && !mapping_tagged(mapping,
2784                                                      PAGECACHE_TAG_WRITEBACK))
2785                         sb_clear_inode_writeback(mapping->host);
2786
2787                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2788         } else {
2789                 ret = TestClearPageWriteback(page);
2790         }
2791         if (ret) {
2792                 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2793                 dec_zone_page_state(page, NR_WRITEBACK);
2794                 inc_zone_page_state(page, NR_WRITTEN);
2795         }
2796         unlock_page_memcg(page);
2797         return ret;
2798 }
2799
2800 int __test_set_page_writeback(struct page *page, bool keep_write)
2801 {
2802         struct address_space *mapping = page_mapping(page);
2803         int ret;
2804
2805         lock_page_memcg(page);
2806         if (mapping) {
2807                 struct inode *inode = mapping->host;
2808                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2809                 unsigned long flags;
2810
2811                 spin_lock_irqsave(&mapping->tree_lock, flags);
2812                 ret = TestSetPageWriteback(page);
2813                 if (!ret) {
2814                         bool on_wblist;
2815
2816                         on_wblist = mapping_tagged(mapping,
2817                                                    PAGECACHE_TAG_WRITEBACK);
2818
2819                         radix_tree_tag_set(&mapping->page_tree,
2820                                                 page_index(page),
2821                                                 PAGECACHE_TAG_WRITEBACK);
2822                         if (bdi_cap_account_writeback(bdi))
2823                                 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2824
2825                         /*
2826                          * We can come through here when swapping anonymous
2827                          * pages, so we don't necessarily have an inode to track
2828                          * for sync.
2829                          */
2830                         if (mapping->host && !on_wblist)
2831                                 sb_mark_inode_writeback(mapping->host);
2832                 }
2833                 if (!PageDirty(page))
2834                         radix_tree_tag_clear(&mapping->page_tree,
2835                                                 page_index(page),
2836                                                 PAGECACHE_TAG_DIRTY);
2837                 if (!keep_write)
2838                         radix_tree_tag_clear(&mapping->page_tree,
2839                                                 page_index(page),
2840                                                 PAGECACHE_TAG_TOWRITE);
2841                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2842         } else {
2843                 ret = TestSetPageWriteback(page);
2844         }
2845         if (!ret) {
2846                 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2847                 inc_zone_page_state(page, NR_WRITEBACK);
2848         }
2849         unlock_page_memcg(page);
2850         return ret;
2851
2852 }
2853 EXPORT_SYMBOL(__test_set_page_writeback);
2854
2855 /*
2856  * Return true if any of the pages in the mapping are marked with the
2857  * passed tag.
2858  */
2859 int mapping_tagged(struct address_space *mapping, int tag)
2860 {
2861         return radix_tree_tagged(&mapping->page_tree, tag);
2862 }
2863 EXPORT_SYMBOL(mapping_tagged);
2864
2865 /**
2866  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2867  * @page:       The page to wait on.
2868  *
2869  * This function determines if the given page is related to a backing device
2870  * that requires page contents to be held stable during writeback.  If so, then
2871  * it will wait for any pending writeback to complete.
2872  */
2873 void wait_for_stable_page(struct page *page)
2874 {
2875         if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2876                 wait_on_page_writeback(page);
2877 }
2878 EXPORT_SYMBOL_GPL(wait_for_stable_page);