]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/sparse.c
mm, sparsemem: break out of loops early
[linux.git] / mm / sparse.c
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
13
14 #include "internal.h"
15 #include <asm/dma.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18
19 /*
20  * Permanent SPARSEMEM data:
21  *
22  * 1) mem_section       - memory sections, mem_map's for valid memory
23  */
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section *mem_section[NR_SECTION_ROOTS]
26         ____cacheline_internodealigned_in_smp;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29         ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47         return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53         section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64         struct mem_section *section = NULL;
65         unsigned long array_size = SECTIONS_PER_ROOT *
66                                    sizeof(struct mem_section);
67
68         if (slab_is_available()) {
69                 if (node_state(nid, N_HIGH_MEMORY))
70                         section = kzalloc_node(array_size, GFP_KERNEL, nid);
71                 else
72                         section = kzalloc(array_size, GFP_KERNEL);
73         } else {
74                 section = memblock_virt_alloc_node(array_size, nid);
75         }
76
77         return section;
78 }
79
80 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
81 {
82         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83         struct mem_section *section;
84
85         if (mem_section[root])
86                 return -EEXIST;
87
88         section = sparse_index_alloc(nid);
89         if (!section)
90                 return -ENOMEM;
91
92         mem_section[root] = section;
93
94         return 0;
95 }
96 #else /* !SPARSEMEM_EXTREME */
97 static inline int sparse_index_init(unsigned long section_nr, int nid)
98 {
99         return 0;
100 }
101 #endif
102
103 #ifdef CONFIG_SPARSEMEM_EXTREME
104 int __section_nr(struct mem_section* ms)
105 {
106         unsigned long root_nr;
107         struct mem_section* root;
108
109         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
110                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
111                 if (!root)
112                         continue;
113
114                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
115                      break;
116         }
117
118         VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
119
120         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
121 }
122 #else
123 int __section_nr(struct mem_section* ms)
124 {
125         return (int)(ms - mem_section[0]);
126 }
127 #endif
128
129 /*
130  * During early boot, before section_mem_map is used for an actual
131  * mem_map, we use section_mem_map to store the section's NUMA
132  * node.  This keeps us from having to use another data structure.  The
133  * node information is cleared just before we store the real mem_map.
134  */
135 static inline unsigned long sparse_encode_early_nid(int nid)
136 {
137         return (nid << SECTION_NID_SHIFT);
138 }
139
140 static inline int sparse_early_nid(struct mem_section *section)
141 {
142         return (section->section_mem_map >> SECTION_NID_SHIFT);
143 }
144
145 /* Validate the physical addressing limitations of the model */
146 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
147                                                 unsigned long *end_pfn)
148 {
149         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
150
151         /*
152          * Sanity checks - do not allow an architecture to pass
153          * in larger pfns than the maximum scope of sparsemem:
154          */
155         if (*start_pfn > max_sparsemem_pfn) {
156                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
157                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
158                         *start_pfn, *end_pfn, max_sparsemem_pfn);
159                 WARN_ON_ONCE(1);
160                 *start_pfn = max_sparsemem_pfn;
161                 *end_pfn = max_sparsemem_pfn;
162         } else if (*end_pfn > max_sparsemem_pfn) {
163                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
164                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
165                         *start_pfn, *end_pfn, max_sparsemem_pfn);
166                 WARN_ON_ONCE(1);
167                 *end_pfn = max_sparsemem_pfn;
168         }
169 }
170
171 /*
172  * There are a number of times that we loop over NR_MEM_SECTIONS,
173  * looking for section_present() on each.  But, when we have very
174  * large physical address spaces, NR_MEM_SECTIONS can also be
175  * very large which makes the loops quite long.
176  *
177  * Keeping track of this gives us an easy way to break out of
178  * those loops early.
179  */
180 int __highest_present_section_nr;
181 static void section_mark_present(struct mem_section *ms)
182 {
183         int section_nr = __section_nr(ms);
184
185         if (section_nr > __highest_present_section_nr)
186                 __highest_present_section_nr = section_nr;
187
188         ms->section_mem_map |= SECTION_MARKED_PRESENT;
189 }
190
191 static inline int next_present_section_nr(int section_nr)
192 {
193         do {
194                 section_nr++;
195                 if (present_section_nr(section_nr))
196                         return section_nr;
197         } while ((section_nr < NR_MEM_SECTIONS) &&
198                  (section_nr <= __highest_present_section_nr));
199
200         return -1;
201 }
202 #define for_each_present_section_nr(start, section_nr)          \
203         for (section_nr = next_present_section_nr(start-1);     \
204              ((section_nr >= 0) &&                              \
205               (section_nr < NR_MEM_SECTIONS) &&                 \
206               (section_nr <= __highest_present_section_nr));    \
207              section_nr = next_present_section_nr(section_nr))
208
209 /* Record a memory area against a node. */
210 void __init memory_present(int nid, unsigned long start, unsigned long end)
211 {
212         unsigned long pfn;
213
214         start &= PAGE_SECTION_MASK;
215         mminit_validate_memmodel_limits(&start, &end);
216         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
217                 unsigned long section = pfn_to_section_nr(pfn);
218                 struct mem_section *ms;
219
220                 sparse_index_init(section, nid);
221                 set_section_nid(section, nid);
222
223                 ms = __nr_to_section(section);
224                 if (!ms->section_mem_map) {
225                         ms->section_mem_map = sparse_encode_early_nid(nid);
226                         section_mark_present(ms);
227                 }
228         }
229 }
230
231 /*
232  * Only used by the i386 NUMA architecures, but relatively
233  * generic code.
234  */
235 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
236                                                      unsigned long end_pfn)
237 {
238         unsigned long pfn;
239         unsigned long nr_pages = 0;
240
241         mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
242         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
243                 if (nid != early_pfn_to_nid(pfn))
244                         continue;
245
246                 if (pfn_present(pfn))
247                         nr_pages += PAGES_PER_SECTION;
248         }
249
250         return nr_pages * sizeof(struct page);
251 }
252
253 /*
254  * Subtle, we encode the real pfn into the mem_map such that
255  * the identity pfn - section_mem_map will return the actual
256  * physical page frame number.
257  */
258 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
259 {
260         return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
261 }
262
263 /*
264  * Decode mem_map from the coded memmap
265  */
266 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
267 {
268         /* mask off the extra low bits of information */
269         coded_mem_map &= SECTION_MAP_MASK;
270         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
271 }
272
273 static int __meminit sparse_init_one_section(struct mem_section *ms,
274                 unsigned long pnum, struct page *mem_map,
275                 unsigned long *pageblock_bitmap)
276 {
277         if (!present_section(ms))
278                 return -EINVAL;
279
280         ms->section_mem_map &= ~SECTION_MAP_MASK;
281         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
282                                                         SECTION_HAS_MEM_MAP;
283         ms->pageblock_flags = pageblock_bitmap;
284
285         return 1;
286 }
287
288 unsigned long usemap_size(void)
289 {
290         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
291 }
292
293 #ifdef CONFIG_MEMORY_HOTPLUG
294 static unsigned long *__kmalloc_section_usemap(void)
295 {
296         return kmalloc(usemap_size(), GFP_KERNEL);
297 }
298 #endif /* CONFIG_MEMORY_HOTPLUG */
299
300 #ifdef CONFIG_MEMORY_HOTREMOVE
301 static unsigned long * __init
302 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
303                                          unsigned long size)
304 {
305         unsigned long goal, limit;
306         unsigned long *p;
307         int nid;
308         /*
309          * A page may contain usemaps for other sections preventing the
310          * page being freed and making a section unremovable while
311          * other sections referencing the usemap remain active. Similarly,
312          * a pgdat can prevent a section being removed. If section A
313          * contains a pgdat and section B contains the usemap, both
314          * sections become inter-dependent. This allocates usemaps
315          * from the same section as the pgdat where possible to avoid
316          * this problem.
317          */
318         goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
319         limit = goal + (1UL << PA_SECTION_SHIFT);
320         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
321 again:
322         p = memblock_virt_alloc_try_nid_nopanic(size,
323                                                 SMP_CACHE_BYTES, goal, limit,
324                                                 nid);
325         if (!p && limit) {
326                 limit = 0;
327                 goto again;
328         }
329         return p;
330 }
331
332 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
333 {
334         unsigned long usemap_snr, pgdat_snr;
335         static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
336         static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
337         struct pglist_data *pgdat = NODE_DATA(nid);
338         int usemap_nid;
339
340         usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
341         pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
342         if (usemap_snr == pgdat_snr)
343                 return;
344
345         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
346                 /* skip redundant message */
347                 return;
348
349         old_usemap_snr = usemap_snr;
350         old_pgdat_snr = pgdat_snr;
351
352         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
353         if (usemap_nid != nid) {
354                 pr_info("node %d must be removed before remove section %ld\n",
355                         nid, usemap_snr);
356                 return;
357         }
358         /*
359          * There is a circular dependency.
360          * Some platforms allow un-removable section because they will just
361          * gather other removable sections for dynamic partitioning.
362          * Just notify un-removable section's number here.
363          */
364         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
365                 usemap_snr, pgdat_snr, nid);
366 }
367 #else
368 static unsigned long * __init
369 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
370                                          unsigned long size)
371 {
372         return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
373 }
374
375 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
376 {
377 }
378 #endif /* CONFIG_MEMORY_HOTREMOVE */
379
380 static void __init sparse_early_usemaps_alloc_node(void *data,
381                                  unsigned long pnum_begin,
382                                  unsigned long pnum_end,
383                                  unsigned long usemap_count, int nodeid)
384 {
385         void *usemap;
386         unsigned long pnum;
387         unsigned long **usemap_map = (unsigned long **)data;
388         int size = usemap_size();
389
390         usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
391                                                           size * usemap_count);
392         if (!usemap) {
393                 pr_warn("%s: allocation failed\n", __func__);
394                 return;
395         }
396
397         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
398                 if (!present_section_nr(pnum))
399                         continue;
400                 usemap_map[pnum] = usemap;
401                 usemap += size;
402                 check_usemap_section_nr(nodeid, usemap_map[pnum]);
403         }
404 }
405
406 #ifndef CONFIG_SPARSEMEM_VMEMMAP
407 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
408 {
409         struct page *map;
410         unsigned long size;
411
412         map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
413         if (map)
414                 return map;
415
416         size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
417         map = memblock_virt_alloc_try_nid(size,
418                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
419                                           BOOTMEM_ALLOC_ACCESSIBLE, nid);
420         return map;
421 }
422 void __init sparse_mem_maps_populate_node(struct page **map_map,
423                                           unsigned long pnum_begin,
424                                           unsigned long pnum_end,
425                                           unsigned long map_count, int nodeid)
426 {
427         void *map;
428         unsigned long pnum;
429         unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
430
431         map = alloc_remap(nodeid, size * map_count);
432         if (map) {
433                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
434                         if (!present_section_nr(pnum))
435                                 continue;
436                         map_map[pnum] = map;
437                         map += size;
438                 }
439                 return;
440         }
441
442         size = PAGE_ALIGN(size);
443         map = memblock_virt_alloc_try_nid(size * map_count,
444                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
445                                           BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
446         if (map) {
447                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
448                         if (!present_section_nr(pnum))
449                                 continue;
450                         map_map[pnum] = map;
451                         map += size;
452                 }
453                 return;
454         }
455
456         /* fallback */
457         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
458                 struct mem_section *ms;
459
460                 if (!present_section_nr(pnum))
461                         continue;
462                 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
463                 if (map_map[pnum])
464                         continue;
465                 ms = __nr_to_section(pnum);
466                 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
467                        __func__);
468                 ms->section_mem_map = 0;
469         }
470 }
471 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
472
473 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
474 static void __init sparse_early_mem_maps_alloc_node(void *data,
475                                  unsigned long pnum_begin,
476                                  unsigned long pnum_end,
477                                  unsigned long map_count, int nodeid)
478 {
479         struct page **map_map = (struct page **)data;
480         sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
481                                          map_count, nodeid);
482 }
483 #else
484 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
485 {
486         struct page *map;
487         struct mem_section *ms = __nr_to_section(pnum);
488         int nid = sparse_early_nid(ms);
489
490         map = sparse_mem_map_populate(pnum, nid);
491         if (map)
492                 return map;
493
494         pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
495                __func__);
496         ms->section_mem_map = 0;
497         return NULL;
498 }
499 #endif
500
501 void __weak __meminit vmemmap_populate_print_last(void)
502 {
503 }
504
505 /**
506  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
507  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
508  */
509 static void __init alloc_usemap_and_memmap(void (*alloc_func)
510                                         (void *, unsigned long, unsigned long,
511                                         unsigned long, int), void *data)
512 {
513         unsigned long pnum;
514         unsigned long map_count;
515         int nodeid_begin = 0;
516         unsigned long pnum_begin = 0;
517
518         for_each_present_section_nr(0, pnum) {
519                 struct mem_section *ms;
520
521                 ms = __nr_to_section(pnum);
522                 nodeid_begin = sparse_early_nid(ms);
523                 pnum_begin = pnum;
524                 break;
525         }
526         map_count = 1;
527         for_each_present_section_nr(pnum_begin + 1, pnum) {
528                 struct mem_section *ms;
529                 int nodeid;
530
531                 ms = __nr_to_section(pnum);
532                 nodeid = sparse_early_nid(ms);
533                 if (nodeid == nodeid_begin) {
534                         map_count++;
535                         continue;
536                 }
537                 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
538                 alloc_func(data, pnum_begin, pnum,
539                                                 map_count, nodeid_begin);
540                 /* new start, update count etc*/
541                 nodeid_begin = nodeid;
542                 pnum_begin = pnum;
543                 map_count = 1;
544         }
545         /* ok, last chunk */
546         alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
547                                                 map_count, nodeid_begin);
548 }
549
550 /*
551  * Allocate the accumulated non-linear sections, allocate a mem_map
552  * for each and record the physical to section mapping.
553  */
554 void __init sparse_init(void)
555 {
556         unsigned long pnum;
557         struct page *map;
558         unsigned long *usemap;
559         unsigned long **usemap_map;
560         int size;
561 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
562         int size2;
563         struct page **map_map;
564 #endif
565
566         /* see include/linux/mmzone.h 'struct mem_section' definition */
567         BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
568
569         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
570         set_pageblock_order();
571
572         /*
573          * map is using big page (aka 2M in x86 64 bit)
574          * usemap is less one page (aka 24 bytes)
575          * so alloc 2M (with 2M align) and 24 bytes in turn will
576          * make next 2M slip to one more 2M later.
577          * then in big system, the memory will have a lot of holes...
578          * here try to allocate 2M pages continuously.
579          *
580          * powerpc need to call sparse_init_one_section right after each
581          * sparse_early_mem_map_alloc, so allocate usemap_map at first.
582          */
583         size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
584         usemap_map = memblock_virt_alloc(size, 0);
585         if (!usemap_map)
586                 panic("can not allocate usemap_map\n");
587         alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
588                                                         (void *)usemap_map);
589
590 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
591         size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
592         map_map = memblock_virt_alloc(size2, 0);
593         if (!map_map)
594                 panic("can not allocate map_map\n");
595         alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
596                                                         (void *)map_map);
597 #endif
598
599         for_each_present_section_nr(0, pnum) {
600                 usemap = usemap_map[pnum];
601                 if (!usemap)
602                         continue;
603
604 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
605                 map = map_map[pnum];
606 #else
607                 map = sparse_early_mem_map_alloc(pnum);
608 #endif
609                 if (!map)
610                         continue;
611
612                 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
613                                                                 usemap);
614         }
615
616         vmemmap_populate_print_last();
617
618 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
619         memblock_free_early(__pa(map_map), size2);
620 #endif
621         memblock_free_early(__pa(usemap_map), size);
622 }
623
624 #ifdef CONFIG_MEMORY_HOTPLUG
625 #ifdef CONFIG_SPARSEMEM_VMEMMAP
626 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
627 {
628         /* This will make the necessary allocations eventually. */
629         return sparse_mem_map_populate(pnum, nid);
630 }
631 static void __kfree_section_memmap(struct page *memmap)
632 {
633         unsigned long start = (unsigned long)memmap;
634         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
635
636         vmemmap_free(start, end);
637 }
638 #ifdef CONFIG_MEMORY_HOTREMOVE
639 static void free_map_bootmem(struct page *memmap)
640 {
641         unsigned long start = (unsigned long)memmap;
642         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
643
644         vmemmap_free(start, end);
645 }
646 #endif /* CONFIG_MEMORY_HOTREMOVE */
647 #else
648 static struct page *__kmalloc_section_memmap(void)
649 {
650         struct page *page, *ret;
651         unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
652
653         page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
654         if (page)
655                 goto got_map_page;
656
657         ret = vmalloc(memmap_size);
658         if (ret)
659                 goto got_map_ptr;
660
661         return NULL;
662 got_map_page:
663         ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
664 got_map_ptr:
665
666         return ret;
667 }
668
669 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
670 {
671         return __kmalloc_section_memmap();
672 }
673
674 static void __kfree_section_memmap(struct page *memmap)
675 {
676         if (is_vmalloc_addr(memmap))
677                 vfree(memmap);
678         else
679                 free_pages((unsigned long)memmap,
680                            get_order(sizeof(struct page) * PAGES_PER_SECTION));
681 }
682
683 #ifdef CONFIG_MEMORY_HOTREMOVE
684 static void free_map_bootmem(struct page *memmap)
685 {
686         unsigned long maps_section_nr, removing_section_nr, i;
687         unsigned long magic, nr_pages;
688         struct page *page = virt_to_page(memmap);
689
690         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
691                 >> PAGE_SHIFT;
692
693         for (i = 0; i < nr_pages; i++, page++) {
694                 magic = (unsigned long) page->freelist;
695
696                 BUG_ON(magic == NODE_INFO);
697
698                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
699                 removing_section_nr = page_private(page);
700
701                 /*
702                  * When this function is called, the removing section is
703                  * logical offlined state. This means all pages are isolated
704                  * from page allocator. If removing section's memmap is placed
705                  * on the same section, it must not be freed.
706                  * If it is freed, page allocator may allocate it which will
707                  * be removed physically soon.
708                  */
709                 if (maps_section_nr != removing_section_nr)
710                         put_page_bootmem(page);
711         }
712 }
713 #endif /* CONFIG_MEMORY_HOTREMOVE */
714 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
715
716 /*
717  * returns the number of sections whose mem_maps were properly
718  * set.  If this is <=0, then that means that the passed-in
719  * map was not consumed and must be freed.
720  */
721 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
722 {
723         unsigned long section_nr = pfn_to_section_nr(start_pfn);
724         struct pglist_data *pgdat = zone->zone_pgdat;
725         struct mem_section *ms;
726         struct page *memmap;
727         unsigned long *usemap;
728         unsigned long flags;
729         int ret;
730
731         /*
732          * no locking for this, because it does its own
733          * plus, it does a kmalloc
734          */
735         ret = sparse_index_init(section_nr, pgdat->node_id);
736         if (ret < 0 && ret != -EEXIST)
737                 return ret;
738         memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
739         if (!memmap)
740                 return -ENOMEM;
741         usemap = __kmalloc_section_usemap();
742         if (!usemap) {
743                 __kfree_section_memmap(memmap);
744                 return -ENOMEM;
745         }
746
747         pgdat_resize_lock(pgdat, &flags);
748
749         ms = __pfn_to_section(start_pfn);
750         if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
751                 ret = -EEXIST;
752                 goto out;
753         }
754
755         memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
756
757         section_mark_present(ms);
758
759         ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
760
761 out:
762         pgdat_resize_unlock(pgdat, &flags);
763         if (ret <= 0) {
764                 kfree(usemap);
765                 __kfree_section_memmap(memmap);
766         }
767         return ret;
768 }
769
770 #ifdef CONFIG_MEMORY_HOTREMOVE
771 #ifdef CONFIG_MEMORY_FAILURE
772 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
773 {
774         int i;
775
776         if (!memmap)
777                 return;
778
779         for (i = 0; i < nr_pages; i++) {
780                 if (PageHWPoison(&memmap[i])) {
781                         atomic_long_sub(1, &num_poisoned_pages);
782                         ClearPageHWPoison(&memmap[i]);
783                 }
784         }
785 }
786 #else
787 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
788 {
789 }
790 #endif
791
792 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
793 {
794         struct page *usemap_page;
795
796         if (!usemap)
797                 return;
798
799         usemap_page = virt_to_page(usemap);
800         /*
801          * Check to see if allocation came from hot-plug-add
802          */
803         if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
804                 kfree(usemap);
805                 if (memmap)
806                         __kfree_section_memmap(memmap);
807                 return;
808         }
809
810         /*
811          * The usemap came from bootmem. This is packed with other usemaps
812          * on the section which has pgdat at boot time. Just keep it as is now.
813          */
814
815         if (memmap)
816                 free_map_bootmem(memmap);
817 }
818
819 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
820                 unsigned long map_offset)
821 {
822         struct page *memmap = NULL;
823         unsigned long *usemap = NULL, flags;
824         struct pglist_data *pgdat = zone->zone_pgdat;
825
826         pgdat_resize_lock(pgdat, &flags);
827         if (ms->section_mem_map) {
828                 usemap = ms->pageblock_flags;
829                 memmap = sparse_decode_mem_map(ms->section_mem_map,
830                                                 __section_nr(ms));
831                 ms->section_mem_map = 0;
832                 ms->pageblock_flags = NULL;
833         }
834         pgdat_resize_unlock(pgdat, &flags);
835
836         clear_hwpoisoned_pages(memmap + map_offset,
837                         PAGES_PER_SECTION - map_offset);
838         free_section_usemap(memmap, usemap);
839 }
840 #endif /* CONFIG_MEMORY_HOTREMOVE */
841 #endif /* CONFIG_MEMORY_HOTPLUG */