]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/sparse.c
mm/sparse: optimize memmap allocation during sparse_init()
[linux.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section       - memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29         ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47         return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53         section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64         struct mem_section *section = NULL;
65         unsigned long array_size = SECTIONS_PER_ROOT *
66                                    sizeof(struct mem_section);
67
68         if (slab_is_available())
69                 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70         else
71                 section = memblock_virt_alloc_node(array_size, nid);
72
73         return section;
74 }
75
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79         struct mem_section *section;
80
81         if (mem_section[root])
82                 return -EEXIST;
83
84         section = sparse_index_alloc(nid);
85         if (!section)
86                 return -ENOMEM;
87
88         mem_section[root] = section;
89
90         return 0;
91 }
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
94 {
95         return 0;
96 }
97 #endif
98
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
101 {
102         unsigned long root_nr;
103         struct mem_section *root = NULL;
104
105         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107                 if (!root)
108                         continue;
109
110                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111                      break;
112         }
113
114         VM_BUG_ON(!root);
115
116         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117 }
118 #else
119 int __section_nr(struct mem_section* ms)
120 {
121         return (int)(ms - mem_section[0]);
122 }
123 #endif
124
125 /*
126  * During early boot, before section_mem_map is used for an actual
127  * mem_map, we use section_mem_map to store the section's NUMA
128  * node.  This keeps us from having to use another data structure.  The
129  * node information is cleared just before we store the real mem_map.
130  */
131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133         return (nid << SECTION_NID_SHIFT);
134 }
135
136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138         return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143                                                 unsigned long *end_pfn)
144 {
145         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146
147         /*
148          * Sanity checks - do not allow an architecture to pass
149          * in larger pfns than the maximum scope of sparsemem:
150          */
151         if (*start_pfn > max_sparsemem_pfn) {
152                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154                         *start_pfn, *end_pfn, max_sparsemem_pfn);
155                 WARN_ON_ONCE(1);
156                 *start_pfn = max_sparsemem_pfn;
157                 *end_pfn = max_sparsemem_pfn;
158         } else if (*end_pfn > max_sparsemem_pfn) {
159                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161                         *start_pfn, *end_pfn, max_sparsemem_pfn);
162                 WARN_ON_ONCE(1);
163                 *end_pfn = max_sparsemem_pfn;
164         }
165 }
166
167 /*
168  * There are a number of times that we loop over NR_MEM_SECTIONS,
169  * looking for section_present() on each.  But, when we have very
170  * large physical address spaces, NR_MEM_SECTIONS can also be
171  * very large which makes the loops quite long.
172  *
173  * Keeping track of this gives us an easy way to break out of
174  * those loops early.
175  */
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
178 {
179         int section_nr = __section_nr(ms);
180
181         if (section_nr > __highest_present_section_nr)
182                 __highest_present_section_nr = section_nr;
183
184         ms->section_mem_map |= SECTION_MARKED_PRESENT;
185 }
186
187 static inline int next_present_section_nr(int section_nr)
188 {
189         do {
190                 section_nr++;
191                 if (present_section_nr(section_nr))
192                         return section_nr;
193         } while ((section_nr <= __highest_present_section_nr));
194
195         return -1;
196 }
197 #define for_each_present_section_nr(start, section_nr)          \
198         for (section_nr = next_present_section_nr(start-1);     \
199              ((section_nr >= 0) &&                              \
200               (section_nr <= __highest_present_section_nr));    \
201              section_nr = next_present_section_nr(section_nr))
202
203 /*
204  * Record how many memory sections are marked as present
205  * during system bootup.
206  */
207 static int __initdata nr_present_sections;
208
209 /* Record a memory area against a node. */
210 void __init memory_present(int nid, unsigned long start, unsigned long end)
211 {
212         unsigned long pfn;
213
214 #ifdef CONFIG_SPARSEMEM_EXTREME
215         if (unlikely(!mem_section)) {
216                 unsigned long size, align;
217
218                 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
219                 align = 1 << (INTERNODE_CACHE_SHIFT);
220                 mem_section = memblock_virt_alloc(size, align);
221         }
222 #endif
223
224         start &= PAGE_SECTION_MASK;
225         mminit_validate_memmodel_limits(&start, &end);
226         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
227                 unsigned long section = pfn_to_section_nr(pfn);
228                 struct mem_section *ms;
229
230                 sparse_index_init(section, nid);
231                 set_section_nid(section, nid);
232
233                 ms = __nr_to_section(section);
234                 if (!ms->section_mem_map) {
235                         ms->section_mem_map = sparse_encode_early_nid(nid) |
236                                                         SECTION_IS_ONLINE;
237                         section_mark_present(ms);
238                         nr_present_sections++;
239                 }
240         }
241 }
242
243 /*
244  * Subtle, we encode the real pfn into the mem_map such that
245  * the identity pfn - section_mem_map will return the actual
246  * physical page frame number.
247  */
248 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
249 {
250         unsigned long coded_mem_map =
251                 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
252         BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
253         BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
254         return coded_mem_map;
255 }
256
257 /*
258  * Decode mem_map from the coded memmap
259  */
260 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
261 {
262         /* mask off the extra low bits of information */
263         coded_mem_map &= SECTION_MAP_MASK;
264         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
265 }
266
267 static void __meminit sparse_init_one_section(struct mem_section *ms,
268                 unsigned long pnum, struct page *mem_map,
269                 unsigned long *pageblock_bitmap)
270 {
271         ms->section_mem_map &= ~SECTION_MAP_MASK;
272         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
273                                                         SECTION_HAS_MEM_MAP;
274         ms->pageblock_flags = pageblock_bitmap;
275 }
276
277 unsigned long usemap_size(void)
278 {
279         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
280 }
281
282 #ifdef CONFIG_MEMORY_HOTPLUG
283 static unsigned long *__kmalloc_section_usemap(void)
284 {
285         return kmalloc(usemap_size(), GFP_KERNEL);
286 }
287 #endif /* CONFIG_MEMORY_HOTPLUG */
288
289 #ifdef CONFIG_MEMORY_HOTREMOVE
290 static unsigned long * __init
291 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
292                                          unsigned long size)
293 {
294         unsigned long goal, limit;
295         unsigned long *p;
296         int nid;
297         /*
298          * A page may contain usemaps for other sections preventing the
299          * page being freed and making a section unremovable while
300          * other sections referencing the usemap remain active. Similarly,
301          * a pgdat can prevent a section being removed. If section A
302          * contains a pgdat and section B contains the usemap, both
303          * sections become inter-dependent. This allocates usemaps
304          * from the same section as the pgdat where possible to avoid
305          * this problem.
306          */
307         goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
308         limit = goal + (1UL << PA_SECTION_SHIFT);
309         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
310 again:
311         p = memblock_virt_alloc_try_nid_nopanic(size,
312                                                 SMP_CACHE_BYTES, goal, limit,
313                                                 nid);
314         if (!p && limit) {
315                 limit = 0;
316                 goto again;
317         }
318         return p;
319 }
320
321 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
322 {
323         unsigned long usemap_snr, pgdat_snr;
324         static unsigned long old_usemap_snr;
325         static unsigned long old_pgdat_snr;
326         struct pglist_data *pgdat = NODE_DATA(nid);
327         int usemap_nid;
328
329         /* First call */
330         if (!old_usemap_snr) {
331                 old_usemap_snr = NR_MEM_SECTIONS;
332                 old_pgdat_snr = NR_MEM_SECTIONS;
333         }
334
335         usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
336         pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
337         if (usemap_snr == pgdat_snr)
338                 return;
339
340         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
341                 /* skip redundant message */
342                 return;
343
344         old_usemap_snr = usemap_snr;
345         old_pgdat_snr = pgdat_snr;
346
347         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
348         if (usemap_nid != nid) {
349                 pr_info("node %d must be removed before remove section %ld\n",
350                         nid, usemap_snr);
351                 return;
352         }
353         /*
354          * There is a circular dependency.
355          * Some platforms allow un-removable section because they will just
356          * gather other removable sections for dynamic partitioning.
357          * Just notify un-removable section's number here.
358          */
359         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
360                 usemap_snr, pgdat_snr, nid);
361 }
362 #else
363 static unsigned long * __init
364 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
365                                          unsigned long size)
366 {
367         return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
368 }
369
370 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
371 {
372 }
373 #endif /* CONFIG_MEMORY_HOTREMOVE */
374
375 static void __init sparse_early_usemaps_alloc_node(void *data,
376                                  unsigned long pnum_begin,
377                                  unsigned long pnum_end,
378                                  unsigned long usemap_count, int nodeid)
379 {
380         void *usemap;
381         unsigned long pnum;
382         unsigned long **usemap_map = (unsigned long **)data;
383         int size = usemap_size();
384         int nr_consumed_maps = 0;
385
386         usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
387                                                           size * usemap_count);
388         if (!usemap) {
389                 pr_warn("%s: allocation failed\n", __func__);
390                 return;
391         }
392
393         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
394                 if (!present_section_nr(pnum))
395                         continue;
396                 usemap_map[nr_consumed_maps] = usemap;
397                 usemap += size;
398                 check_usemap_section_nr(nodeid, usemap_map[nr_consumed_maps]);
399                 nr_consumed_maps++;
400         }
401 }
402
403 #ifndef CONFIG_SPARSEMEM_VMEMMAP
404 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
405                 struct vmem_altmap *altmap)
406 {
407         struct page *map;
408         unsigned long size;
409
410         size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
411         map = memblock_virt_alloc_try_nid(size,
412                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
413                                           BOOTMEM_ALLOC_ACCESSIBLE, nid);
414         return map;
415 }
416 void __init sparse_mem_maps_populate_node(struct page **map_map,
417                                           unsigned long pnum_begin,
418                                           unsigned long pnum_end,
419                                           unsigned long map_count, int nodeid)
420 {
421         void *map;
422         unsigned long pnum;
423         unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
424         int nr_consumed_maps;
425
426         size = PAGE_ALIGN(size);
427         map = memblock_virt_alloc_try_nid_raw(size * map_count,
428                                               PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
429                                               BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
430         if (map) {
431                 nr_consumed_maps = 0;
432                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
433                         if (!present_section_nr(pnum))
434                                 continue;
435                         map_map[nr_consumed_maps] = map;
436                         map += size;
437                         nr_consumed_maps++;
438                 }
439                 return;
440         }
441
442         /* fallback */
443         nr_consumed_maps = 0;
444         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
445                 struct mem_section *ms;
446
447                 if (!present_section_nr(pnum))
448                         continue;
449                 map_map[nr_consumed_maps] =
450                                 sparse_mem_map_populate(pnum, nodeid, NULL);
451                 if (map_map[nr_consumed_maps++])
452                         continue;
453                 ms = __nr_to_section(pnum);
454                 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
455                        __func__);
456         }
457 }
458 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
459
460 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
461 static void __init sparse_early_mem_maps_alloc_node(void *data,
462                                  unsigned long pnum_begin,
463                                  unsigned long pnum_end,
464                                  unsigned long map_count, int nodeid)
465 {
466         struct page **map_map = (struct page **)data;
467         sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
468                                          map_count, nodeid);
469 }
470 #else
471 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
472 {
473         struct page *map;
474         struct mem_section *ms = __nr_to_section(pnum);
475         int nid = sparse_early_nid(ms);
476
477         map = sparse_mem_map_populate(pnum, nid, NULL);
478         if (map)
479                 return map;
480
481         pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
482                __func__);
483         return NULL;
484 }
485 #endif
486
487 void __weak __meminit vmemmap_populate_print_last(void)
488 {
489 }
490
491 /**
492  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
493  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
494  *  @unit_size: size of map unit
495  */
496 static void __init alloc_usemap_and_memmap(void (*alloc_func)
497                                         (void *, unsigned long, unsigned long,
498                                         unsigned long, int), void *data,
499                                         int data_unit_size)
500 {
501         unsigned long pnum;
502         unsigned long map_count;
503         int nodeid_begin = 0;
504         unsigned long pnum_begin = 0;
505
506         for_each_present_section_nr(0, pnum) {
507                 struct mem_section *ms;
508
509                 ms = __nr_to_section(pnum);
510                 nodeid_begin = sparse_early_nid(ms);
511                 pnum_begin = pnum;
512                 break;
513         }
514         map_count = 1;
515         for_each_present_section_nr(pnum_begin + 1, pnum) {
516                 struct mem_section *ms;
517                 int nodeid;
518
519                 ms = __nr_to_section(pnum);
520                 nodeid = sparse_early_nid(ms);
521                 if (nodeid == nodeid_begin) {
522                         map_count++;
523                         continue;
524                 }
525                 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
526                 alloc_func(data, pnum_begin, pnum,
527                                                 map_count, nodeid_begin);
528                 /* new start, update count etc*/
529                 nodeid_begin = nodeid;
530                 pnum_begin = pnum;
531                 data += map_count * data_unit_size;
532                 map_count = 1;
533         }
534         /* ok, last chunk */
535         alloc_func(data, pnum_begin, __highest_present_section_nr+1,
536                                                 map_count, nodeid_begin);
537 }
538
539 /*
540  * Allocate the accumulated non-linear sections, allocate a mem_map
541  * for each and record the physical to section mapping.
542  */
543 void __init sparse_init(void)
544 {
545         unsigned long pnum;
546         struct page *map;
547         unsigned long *usemap;
548         unsigned long **usemap_map;
549         int size;
550         int nr_consumed_maps = 0;
551 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
552         int size2;
553         struct page **map_map;
554 #endif
555
556         /* see include/linux/mmzone.h 'struct mem_section' definition */
557         BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
558
559         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
560         set_pageblock_order();
561
562         /*
563          * map is using big page (aka 2M in x86 64 bit)
564          * usemap is less one page (aka 24 bytes)
565          * so alloc 2M (with 2M align) and 24 bytes in turn will
566          * make next 2M slip to one more 2M later.
567          * then in big system, the memory will have a lot of holes...
568          * here try to allocate 2M pages continuously.
569          *
570          * powerpc need to call sparse_init_one_section right after each
571          * sparse_early_mem_map_alloc, so allocate usemap_map at first.
572          */
573         size = sizeof(unsigned long *) * nr_present_sections;
574         usemap_map = memblock_virt_alloc(size, 0);
575         if (!usemap_map)
576                 panic("can not allocate usemap_map\n");
577         alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
578                                 (void *)usemap_map,
579                                 sizeof(usemap_map[0]));
580
581 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
582         size2 = sizeof(struct page *) * nr_present_sections;
583         map_map = memblock_virt_alloc(size2, 0);
584         if (!map_map)
585                 panic("can not allocate map_map\n");
586         alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
587                                 (void *)map_map,
588                                 sizeof(map_map[0]));
589 #endif
590
591         /*
592          * The number of present sections stored in nr_present_sections
593          * are kept the same since mem sections are marked as present in
594          * memory_present(). In this for loop, we need check which sections
595          * failed to allocate memmap or usemap, then clear its
596          * ->section_mem_map accordingly. During this process, we need
597          * increase 'nr_consumed_maps' whether its allocation of memmap
598          * or usemap failed or not, so that after we handle the i-th
599          * memory section, can get memmap and usemap of (i+1)-th section
600          * correctly.
601          */
602         for_each_present_section_nr(0, pnum) {
603                 struct mem_section *ms;
604
605                 if (nr_consumed_maps >= nr_present_sections) {
606                         pr_err("nr_consumed_maps goes beyond nr_present_sections\n");
607                         break;
608                 }
609                 ms = __nr_to_section(pnum);
610                 usemap = usemap_map[nr_consumed_maps];
611                 if (!usemap) {
612                         ms->section_mem_map = 0;
613                         nr_consumed_maps++;
614                         continue;
615                 }
616
617 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
618                 map = map_map[nr_consumed_maps];
619 #else
620                 map = sparse_early_mem_map_alloc(pnum);
621 #endif
622                 if (!map) {
623                         ms->section_mem_map = 0;
624                         nr_consumed_maps++;
625                         continue;
626                 }
627
628                 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
629                                                                 usemap);
630                 nr_consumed_maps++;
631         }
632
633         vmemmap_populate_print_last();
634
635 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
636         memblock_free_early(__pa(map_map), size2);
637 #endif
638         memblock_free_early(__pa(usemap_map), size);
639 }
640
641 #ifdef CONFIG_MEMORY_HOTPLUG
642
643 /* Mark all memory sections within the pfn range as online */
644 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
645 {
646         unsigned long pfn;
647
648         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
649                 unsigned long section_nr = pfn_to_section_nr(pfn);
650                 struct mem_section *ms;
651
652                 /* onlining code should never touch invalid ranges */
653                 if (WARN_ON(!valid_section_nr(section_nr)))
654                         continue;
655
656                 ms = __nr_to_section(section_nr);
657                 ms->section_mem_map |= SECTION_IS_ONLINE;
658         }
659 }
660
661 #ifdef CONFIG_MEMORY_HOTREMOVE
662 /* Mark all memory sections within the pfn range as online */
663 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
664 {
665         unsigned long pfn;
666
667         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
668                 unsigned long section_nr = pfn_to_section_nr(pfn);
669                 struct mem_section *ms;
670
671                 /*
672                  * TODO this needs some double checking. Offlining code makes
673                  * sure to check pfn_valid but those checks might be just bogus
674                  */
675                 if (WARN_ON(!valid_section_nr(section_nr)))
676                         continue;
677
678                 ms = __nr_to_section(section_nr);
679                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
680         }
681 }
682 #endif
683
684 #ifdef CONFIG_SPARSEMEM_VMEMMAP
685 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
686                 struct vmem_altmap *altmap)
687 {
688         /* This will make the necessary allocations eventually. */
689         return sparse_mem_map_populate(pnum, nid, altmap);
690 }
691 static void __kfree_section_memmap(struct page *memmap,
692                 struct vmem_altmap *altmap)
693 {
694         unsigned long start = (unsigned long)memmap;
695         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
696
697         vmemmap_free(start, end, altmap);
698 }
699 #ifdef CONFIG_MEMORY_HOTREMOVE
700 static void free_map_bootmem(struct page *memmap)
701 {
702         unsigned long start = (unsigned long)memmap;
703         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
704
705         vmemmap_free(start, end, NULL);
706 }
707 #endif /* CONFIG_MEMORY_HOTREMOVE */
708 #else
709 static struct page *__kmalloc_section_memmap(void)
710 {
711         struct page *page, *ret;
712         unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
713
714         page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
715         if (page)
716                 goto got_map_page;
717
718         ret = vmalloc(memmap_size);
719         if (ret)
720                 goto got_map_ptr;
721
722         return NULL;
723 got_map_page:
724         ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
725 got_map_ptr:
726
727         return ret;
728 }
729
730 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
731                 struct vmem_altmap *altmap)
732 {
733         return __kmalloc_section_memmap();
734 }
735
736 static void __kfree_section_memmap(struct page *memmap,
737                 struct vmem_altmap *altmap)
738 {
739         if (is_vmalloc_addr(memmap))
740                 vfree(memmap);
741         else
742                 free_pages((unsigned long)memmap,
743                            get_order(sizeof(struct page) * PAGES_PER_SECTION));
744 }
745
746 #ifdef CONFIG_MEMORY_HOTREMOVE
747 static void free_map_bootmem(struct page *memmap)
748 {
749         unsigned long maps_section_nr, removing_section_nr, i;
750         unsigned long magic, nr_pages;
751         struct page *page = virt_to_page(memmap);
752
753         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
754                 >> PAGE_SHIFT;
755
756         for (i = 0; i < nr_pages; i++, page++) {
757                 magic = (unsigned long) page->freelist;
758
759                 BUG_ON(magic == NODE_INFO);
760
761                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
762                 removing_section_nr = page_private(page);
763
764                 /*
765                  * When this function is called, the removing section is
766                  * logical offlined state. This means all pages are isolated
767                  * from page allocator. If removing section's memmap is placed
768                  * on the same section, it must not be freed.
769                  * If it is freed, page allocator may allocate it which will
770                  * be removed physically soon.
771                  */
772                 if (maps_section_nr != removing_section_nr)
773                         put_page_bootmem(page);
774         }
775 }
776 #endif /* CONFIG_MEMORY_HOTREMOVE */
777 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
778
779 /*
780  * returns the number of sections whose mem_maps were properly
781  * set.  If this is <=0, then that means that the passed-in
782  * map was not consumed and must be freed.
783  */
784 int __meminit sparse_add_one_section(struct pglist_data *pgdat,
785                 unsigned long start_pfn, struct vmem_altmap *altmap)
786 {
787         unsigned long section_nr = pfn_to_section_nr(start_pfn);
788         struct mem_section *ms;
789         struct page *memmap;
790         unsigned long *usemap;
791         unsigned long flags;
792         int ret;
793
794         /*
795          * no locking for this, because it does its own
796          * plus, it does a kmalloc
797          */
798         ret = sparse_index_init(section_nr, pgdat->node_id);
799         if (ret < 0 && ret != -EEXIST)
800                 return ret;
801         ret = 0;
802         memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
803         if (!memmap)
804                 return -ENOMEM;
805         usemap = __kmalloc_section_usemap();
806         if (!usemap) {
807                 __kfree_section_memmap(memmap, altmap);
808                 return -ENOMEM;
809         }
810
811         pgdat_resize_lock(pgdat, &flags);
812
813         ms = __pfn_to_section(start_pfn);
814         if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
815                 ret = -EEXIST;
816                 goto out;
817         }
818
819 #ifdef CONFIG_DEBUG_VM
820         /*
821          * Poison uninitialized struct pages in order to catch invalid flags
822          * combinations.
823          */
824         memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION);
825 #endif
826
827         section_mark_present(ms);
828         sparse_init_one_section(ms, section_nr, memmap, usemap);
829
830 out:
831         pgdat_resize_unlock(pgdat, &flags);
832         if (ret < 0) {
833                 kfree(usemap);
834                 __kfree_section_memmap(memmap, altmap);
835         }
836         return ret;
837 }
838
839 #ifdef CONFIG_MEMORY_HOTREMOVE
840 #ifdef CONFIG_MEMORY_FAILURE
841 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
842 {
843         int i;
844
845         if (!memmap)
846                 return;
847
848         for (i = 0; i < nr_pages; i++) {
849                 if (PageHWPoison(&memmap[i])) {
850                         atomic_long_sub(1, &num_poisoned_pages);
851                         ClearPageHWPoison(&memmap[i]);
852                 }
853         }
854 }
855 #else
856 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
857 {
858 }
859 #endif
860
861 static void free_section_usemap(struct page *memmap, unsigned long *usemap,
862                 struct vmem_altmap *altmap)
863 {
864         struct page *usemap_page;
865
866         if (!usemap)
867                 return;
868
869         usemap_page = virt_to_page(usemap);
870         /*
871          * Check to see if allocation came from hot-plug-add
872          */
873         if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
874                 kfree(usemap);
875                 if (memmap)
876                         __kfree_section_memmap(memmap, altmap);
877                 return;
878         }
879
880         /*
881          * The usemap came from bootmem. This is packed with other usemaps
882          * on the section which has pgdat at boot time. Just keep it as is now.
883          */
884
885         if (memmap)
886                 free_map_bootmem(memmap);
887 }
888
889 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
890                 unsigned long map_offset, struct vmem_altmap *altmap)
891 {
892         struct page *memmap = NULL;
893         unsigned long *usemap = NULL, flags;
894         struct pglist_data *pgdat = zone->zone_pgdat;
895
896         pgdat_resize_lock(pgdat, &flags);
897         if (ms->section_mem_map) {
898                 usemap = ms->pageblock_flags;
899                 memmap = sparse_decode_mem_map(ms->section_mem_map,
900                                                 __section_nr(ms));
901                 ms->section_mem_map = 0;
902                 ms->pageblock_flags = NULL;
903         }
904         pgdat_resize_unlock(pgdat, &flags);
905
906         clear_hwpoisoned_pages(memmap + map_offset,
907                         PAGES_PER_SECTION - map_offset);
908         free_section_usemap(memmap, usemap, altmap);
909 }
910 #endif /* CONFIG_MEMORY_HOTREMOVE */
911 #endif /* CONFIG_MEMORY_HOTPLUG */