]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/swapfile.c
mm/swapfile.c: unify normal/huge code path in swap_page_trans_huge_swapped()
[linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static inline unsigned char swap_count(unsigned char ent)
102 {
103         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
104 }
105
106 /* returns 1 if swap entry is freed */
107 static int
108 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109 {
110         swp_entry_t entry = swp_entry(si->type, offset);
111         struct page *page;
112         int ret = 0;
113
114         page = find_get_page(swap_address_space(entry), swp_offset(entry));
115         if (!page)
116                 return 0;
117         /*
118          * This function is called from scan_swap_map() and it's called
119          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120          * We have to use trylock for avoiding deadlock. This is a special
121          * case and you should use try_to_free_swap() with explicit lock_page()
122          * in usual operations.
123          */
124         if (trylock_page(page)) {
125                 ret = try_to_free_swap(page);
126                 unlock_page(page);
127         }
128         put_page(page);
129         return ret;
130 }
131
132 /*
133  * swapon tell device that all the old swap contents can be discarded,
134  * to allow the swap device to optimize its wear-levelling.
135  */
136 static int discard_swap(struct swap_info_struct *si)
137 {
138         struct swap_extent *se;
139         sector_t start_block;
140         sector_t nr_blocks;
141         int err = 0;
142
143         /* Do not discard the swap header page! */
144         se = &si->first_swap_extent;
145         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147         if (nr_blocks) {
148                 err = blkdev_issue_discard(si->bdev, start_block,
149                                 nr_blocks, GFP_KERNEL, 0);
150                 if (err)
151                         return err;
152                 cond_resched();
153         }
154
155         list_for_each_entry(se, &si->first_swap_extent.list, list) {
156                 start_block = se->start_block << (PAGE_SHIFT - 9);
157                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
158
159                 err = blkdev_issue_discard(si->bdev, start_block,
160                                 nr_blocks, GFP_KERNEL, 0);
161                 if (err)
162                         break;
163
164                 cond_resched();
165         }
166         return err;             /* That will often be -EOPNOTSUPP */
167 }
168
169 /*
170  * swap allocation tell device that a cluster of swap can now be discarded,
171  * to allow the swap device to optimize its wear-levelling.
172  */
173 static void discard_swap_cluster(struct swap_info_struct *si,
174                                  pgoff_t start_page, pgoff_t nr_pages)
175 {
176         struct swap_extent *se = si->curr_swap_extent;
177         int found_extent = 0;
178
179         while (nr_pages) {
180                 if (se->start_page <= start_page &&
181                     start_page < se->start_page + se->nr_pages) {
182                         pgoff_t offset = start_page - se->start_page;
183                         sector_t start_block = se->start_block + offset;
184                         sector_t nr_blocks = se->nr_pages - offset;
185
186                         if (nr_blocks > nr_pages)
187                                 nr_blocks = nr_pages;
188                         start_page += nr_blocks;
189                         nr_pages -= nr_blocks;
190
191                         if (!found_extent++)
192                                 si->curr_swap_extent = se;
193
194                         start_block <<= PAGE_SHIFT - 9;
195                         nr_blocks <<= PAGE_SHIFT - 9;
196                         if (blkdev_issue_discard(si->bdev, start_block,
197                                     nr_blocks, GFP_NOIO, 0))
198                                 break;
199                 }
200
201                 se = list_next_entry(se, list);
202         }
203 }
204
205 #ifdef CONFIG_THP_SWAP
206 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
207 #else
208 #define SWAPFILE_CLUSTER        256
209 #endif
210 #define LATENCY_LIMIT           256
211
212 static inline void cluster_set_flag(struct swap_cluster_info *info,
213         unsigned int flag)
214 {
215         info->flags = flag;
216 }
217
218 static inline unsigned int cluster_count(struct swap_cluster_info *info)
219 {
220         return info->data;
221 }
222
223 static inline void cluster_set_count(struct swap_cluster_info *info,
224                                      unsigned int c)
225 {
226         info->data = c;
227 }
228
229 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
230                                          unsigned int c, unsigned int f)
231 {
232         info->flags = f;
233         info->data = c;
234 }
235
236 static inline unsigned int cluster_next(struct swap_cluster_info *info)
237 {
238         return info->data;
239 }
240
241 static inline void cluster_set_next(struct swap_cluster_info *info,
242                                     unsigned int n)
243 {
244         info->data = n;
245 }
246
247 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
248                                          unsigned int n, unsigned int f)
249 {
250         info->flags = f;
251         info->data = n;
252 }
253
254 static inline bool cluster_is_free(struct swap_cluster_info *info)
255 {
256         return info->flags & CLUSTER_FLAG_FREE;
257 }
258
259 static inline bool cluster_is_null(struct swap_cluster_info *info)
260 {
261         return info->flags & CLUSTER_FLAG_NEXT_NULL;
262 }
263
264 static inline void cluster_set_null(struct swap_cluster_info *info)
265 {
266         info->flags = CLUSTER_FLAG_NEXT_NULL;
267         info->data = 0;
268 }
269
270 static inline bool cluster_is_huge(struct swap_cluster_info *info)
271 {
272         if (IS_ENABLED(CONFIG_THP_SWAP))
273                 return info->flags & CLUSTER_FLAG_HUGE;
274         return false;
275 }
276
277 static inline void cluster_clear_huge(struct swap_cluster_info *info)
278 {
279         info->flags &= ~CLUSTER_FLAG_HUGE;
280 }
281
282 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
283                                                      unsigned long offset)
284 {
285         struct swap_cluster_info *ci;
286
287         ci = si->cluster_info;
288         if (ci) {
289                 ci += offset / SWAPFILE_CLUSTER;
290                 spin_lock(&ci->lock);
291         }
292         return ci;
293 }
294
295 static inline void unlock_cluster(struct swap_cluster_info *ci)
296 {
297         if (ci)
298                 spin_unlock(&ci->lock);
299 }
300
301 /*
302  * Determine the locking method in use for this device.  Return
303  * swap_cluster_info if SSD-style cluster-based locking is in place.
304  */
305 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
306                 struct swap_info_struct *si, unsigned long offset)
307 {
308         struct swap_cluster_info *ci;
309
310         /* Try to use fine-grained SSD-style locking if available: */
311         ci = lock_cluster(si, offset);
312         /* Otherwise, fall back to traditional, coarse locking: */
313         if (!ci)
314                 spin_lock(&si->lock);
315
316         return ci;
317 }
318
319 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
320                                                struct swap_cluster_info *ci)
321 {
322         if (ci)
323                 unlock_cluster(ci);
324         else
325                 spin_unlock(&si->lock);
326 }
327
328 static inline bool cluster_list_empty(struct swap_cluster_list *list)
329 {
330         return cluster_is_null(&list->head);
331 }
332
333 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
334 {
335         return cluster_next(&list->head);
336 }
337
338 static void cluster_list_init(struct swap_cluster_list *list)
339 {
340         cluster_set_null(&list->head);
341         cluster_set_null(&list->tail);
342 }
343
344 static void cluster_list_add_tail(struct swap_cluster_list *list,
345                                   struct swap_cluster_info *ci,
346                                   unsigned int idx)
347 {
348         if (cluster_list_empty(list)) {
349                 cluster_set_next_flag(&list->head, idx, 0);
350                 cluster_set_next_flag(&list->tail, idx, 0);
351         } else {
352                 struct swap_cluster_info *ci_tail;
353                 unsigned int tail = cluster_next(&list->tail);
354
355                 /*
356                  * Nested cluster lock, but both cluster locks are
357                  * only acquired when we held swap_info_struct->lock
358                  */
359                 ci_tail = ci + tail;
360                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
361                 cluster_set_next(ci_tail, idx);
362                 spin_unlock(&ci_tail->lock);
363                 cluster_set_next_flag(&list->tail, idx, 0);
364         }
365 }
366
367 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
368                                            struct swap_cluster_info *ci)
369 {
370         unsigned int idx;
371
372         idx = cluster_next(&list->head);
373         if (cluster_next(&list->tail) == idx) {
374                 cluster_set_null(&list->head);
375                 cluster_set_null(&list->tail);
376         } else
377                 cluster_set_next_flag(&list->head,
378                                       cluster_next(&ci[idx]), 0);
379
380         return idx;
381 }
382
383 /* Add a cluster to discard list and schedule it to do discard */
384 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
385                 unsigned int idx)
386 {
387         /*
388          * If scan_swap_map() can't find a free cluster, it will check
389          * si->swap_map directly. To make sure the discarding cluster isn't
390          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
391          * will be cleared after discard
392          */
393         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
394                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
395
396         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
397
398         schedule_work(&si->discard_work);
399 }
400
401 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
402 {
403         struct swap_cluster_info *ci = si->cluster_info;
404
405         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
406         cluster_list_add_tail(&si->free_clusters, ci, idx);
407 }
408
409 /*
410  * Doing discard actually. After a cluster discard is finished, the cluster
411  * will be added to free cluster list. caller should hold si->lock.
412 */
413 static void swap_do_scheduled_discard(struct swap_info_struct *si)
414 {
415         struct swap_cluster_info *info, *ci;
416         unsigned int idx;
417
418         info = si->cluster_info;
419
420         while (!cluster_list_empty(&si->discard_clusters)) {
421                 idx = cluster_list_del_first(&si->discard_clusters, info);
422                 spin_unlock(&si->lock);
423
424                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
425                                 SWAPFILE_CLUSTER);
426
427                 spin_lock(&si->lock);
428                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
429                 __free_cluster(si, idx);
430                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
431                                 0, SWAPFILE_CLUSTER);
432                 unlock_cluster(ci);
433         }
434 }
435
436 static void swap_discard_work(struct work_struct *work)
437 {
438         struct swap_info_struct *si;
439
440         si = container_of(work, struct swap_info_struct, discard_work);
441
442         spin_lock(&si->lock);
443         swap_do_scheduled_discard(si);
444         spin_unlock(&si->lock);
445 }
446
447 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
448 {
449         struct swap_cluster_info *ci = si->cluster_info;
450
451         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
452         cluster_list_del_first(&si->free_clusters, ci);
453         cluster_set_count_flag(ci + idx, 0, 0);
454 }
455
456 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
457 {
458         struct swap_cluster_info *ci = si->cluster_info + idx;
459
460         VM_BUG_ON(cluster_count(ci) != 0);
461         /*
462          * If the swap is discardable, prepare discard the cluster
463          * instead of free it immediately. The cluster will be freed
464          * after discard.
465          */
466         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
467             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
468                 swap_cluster_schedule_discard(si, idx);
469                 return;
470         }
471
472         __free_cluster(si, idx);
473 }
474
475 /*
476  * The cluster corresponding to page_nr will be used. The cluster will be
477  * removed from free cluster list and its usage counter will be increased.
478  */
479 static void inc_cluster_info_page(struct swap_info_struct *p,
480         struct swap_cluster_info *cluster_info, unsigned long page_nr)
481 {
482         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
483
484         if (!cluster_info)
485                 return;
486         if (cluster_is_free(&cluster_info[idx]))
487                 alloc_cluster(p, idx);
488
489         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
490         cluster_set_count(&cluster_info[idx],
491                 cluster_count(&cluster_info[idx]) + 1);
492 }
493
494 /*
495  * The cluster corresponding to page_nr decreases one usage. If the usage
496  * counter becomes 0, which means no page in the cluster is in using, we can
497  * optionally discard the cluster and add it to free cluster list.
498  */
499 static void dec_cluster_info_page(struct swap_info_struct *p,
500         struct swap_cluster_info *cluster_info, unsigned long page_nr)
501 {
502         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
503
504         if (!cluster_info)
505                 return;
506
507         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
508         cluster_set_count(&cluster_info[idx],
509                 cluster_count(&cluster_info[idx]) - 1);
510
511         if (cluster_count(&cluster_info[idx]) == 0)
512                 free_cluster(p, idx);
513 }
514
515 /*
516  * It's possible scan_swap_map() uses a free cluster in the middle of free
517  * cluster list. Avoiding such abuse to avoid list corruption.
518  */
519 static bool
520 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
521         unsigned long offset)
522 {
523         struct percpu_cluster *percpu_cluster;
524         bool conflict;
525
526         offset /= SWAPFILE_CLUSTER;
527         conflict = !cluster_list_empty(&si->free_clusters) &&
528                 offset != cluster_list_first(&si->free_clusters) &&
529                 cluster_is_free(&si->cluster_info[offset]);
530
531         if (!conflict)
532                 return false;
533
534         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
535         cluster_set_null(&percpu_cluster->index);
536         return true;
537 }
538
539 /*
540  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
541  * might involve allocating a new cluster for current CPU too.
542  */
543 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
544         unsigned long *offset, unsigned long *scan_base)
545 {
546         struct percpu_cluster *cluster;
547         struct swap_cluster_info *ci;
548         bool found_free;
549         unsigned long tmp, max;
550
551 new_cluster:
552         cluster = this_cpu_ptr(si->percpu_cluster);
553         if (cluster_is_null(&cluster->index)) {
554                 if (!cluster_list_empty(&si->free_clusters)) {
555                         cluster->index = si->free_clusters.head;
556                         cluster->next = cluster_next(&cluster->index) *
557                                         SWAPFILE_CLUSTER;
558                 } else if (!cluster_list_empty(&si->discard_clusters)) {
559                         /*
560                          * we don't have free cluster but have some clusters in
561                          * discarding, do discard now and reclaim them
562                          */
563                         swap_do_scheduled_discard(si);
564                         *scan_base = *offset = si->cluster_next;
565                         goto new_cluster;
566                 } else
567                         return false;
568         }
569
570         found_free = false;
571
572         /*
573          * Other CPUs can use our cluster if they can't find a free cluster,
574          * check if there is still free entry in the cluster
575          */
576         tmp = cluster->next;
577         max = min_t(unsigned long, si->max,
578                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
579         if (tmp >= max) {
580                 cluster_set_null(&cluster->index);
581                 goto new_cluster;
582         }
583         ci = lock_cluster(si, tmp);
584         while (tmp < max) {
585                 if (!si->swap_map[tmp]) {
586                         found_free = true;
587                         break;
588                 }
589                 tmp++;
590         }
591         unlock_cluster(ci);
592         if (!found_free) {
593                 cluster_set_null(&cluster->index);
594                 goto new_cluster;
595         }
596         cluster->next = tmp + 1;
597         *offset = tmp;
598         *scan_base = tmp;
599         return found_free;
600 }
601
602 static void __del_from_avail_list(struct swap_info_struct *p)
603 {
604         int nid;
605
606         for_each_node(nid)
607                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
608 }
609
610 static void del_from_avail_list(struct swap_info_struct *p)
611 {
612         spin_lock(&swap_avail_lock);
613         __del_from_avail_list(p);
614         spin_unlock(&swap_avail_lock);
615 }
616
617 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
618                              unsigned int nr_entries)
619 {
620         unsigned int end = offset + nr_entries - 1;
621
622         if (offset == si->lowest_bit)
623                 si->lowest_bit += nr_entries;
624         if (end == si->highest_bit)
625                 si->highest_bit -= nr_entries;
626         si->inuse_pages += nr_entries;
627         if (si->inuse_pages == si->pages) {
628                 si->lowest_bit = si->max;
629                 si->highest_bit = 0;
630                 del_from_avail_list(si);
631         }
632 }
633
634 static void add_to_avail_list(struct swap_info_struct *p)
635 {
636         int nid;
637
638         spin_lock(&swap_avail_lock);
639         for_each_node(nid) {
640                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
641                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
642         }
643         spin_unlock(&swap_avail_lock);
644 }
645
646 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
647                             unsigned int nr_entries)
648 {
649         unsigned long end = offset + nr_entries - 1;
650         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
651
652         if (offset < si->lowest_bit)
653                 si->lowest_bit = offset;
654         if (end > si->highest_bit) {
655                 bool was_full = !si->highest_bit;
656
657                 si->highest_bit = end;
658                 if (was_full && (si->flags & SWP_WRITEOK))
659                         add_to_avail_list(si);
660         }
661         atomic_long_add(nr_entries, &nr_swap_pages);
662         si->inuse_pages -= nr_entries;
663         if (si->flags & SWP_BLKDEV)
664                 swap_slot_free_notify =
665                         si->bdev->bd_disk->fops->swap_slot_free_notify;
666         else
667                 swap_slot_free_notify = NULL;
668         while (offset <= end) {
669                 frontswap_invalidate_page(si->type, offset);
670                 if (swap_slot_free_notify)
671                         swap_slot_free_notify(si->bdev, offset);
672                 offset++;
673         }
674 }
675
676 static int scan_swap_map_slots(struct swap_info_struct *si,
677                                unsigned char usage, int nr,
678                                swp_entry_t slots[])
679 {
680         struct swap_cluster_info *ci;
681         unsigned long offset;
682         unsigned long scan_base;
683         unsigned long last_in_cluster = 0;
684         int latency_ration = LATENCY_LIMIT;
685         int n_ret = 0;
686
687         if (nr > SWAP_BATCH)
688                 nr = SWAP_BATCH;
689
690         /*
691          * We try to cluster swap pages by allocating them sequentially
692          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
693          * way, however, we resort to first-free allocation, starting
694          * a new cluster.  This prevents us from scattering swap pages
695          * all over the entire swap partition, so that we reduce
696          * overall disk seek times between swap pages.  -- sct
697          * But we do now try to find an empty cluster.  -Andrea
698          * And we let swap pages go all over an SSD partition.  Hugh
699          */
700
701         si->flags += SWP_SCANNING;
702         scan_base = offset = si->cluster_next;
703
704         /* SSD algorithm */
705         if (si->cluster_info) {
706                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
707                         goto checks;
708                 else
709                         goto scan;
710         }
711
712         if (unlikely(!si->cluster_nr--)) {
713                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
714                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
715                         goto checks;
716                 }
717
718                 spin_unlock(&si->lock);
719
720                 /*
721                  * If seek is expensive, start searching for new cluster from
722                  * start of partition, to minimize the span of allocated swap.
723                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
724                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
725                  */
726                 scan_base = offset = si->lowest_bit;
727                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
728
729                 /* Locate the first empty (unaligned) cluster */
730                 for (; last_in_cluster <= si->highest_bit; offset++) {
731                         if (si->swap_map[offset])
732                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
733                         else if (offset == last_in_cluster) {
734                                 spin_lock(&si->lock);
735                                 offset -= SWAPFILE_CLUSTER - 1;
736                                 si->cluster_next = offset;
737                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
738                                 goto checks;
739                         }
740                         if (unlikely(--latency_ration < 0)) {
741                                 cond_resched();
742                                 latency_ration = LATENCY_LIMIT;
743                         }
744                 }
745
746                 offset = scan_base;
747                 spin_lock(&si->lock);
748                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
749         }
750
751 checks:
752         if (si->cluster_info) {
753                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
754                 /* take a break if we already got some slots */
755                         if (n_ret)
756                                 goto done;
757                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
758                                                         &scan_base))
759                                 goto scan;
760                 }
761         }
762         if (!(si->flags & SWP_WRITEOK))
763                 goto no_page;
764         if (!si->highest_bit)
765                 goto no_page;
766         if (offset > si->highest_bit)
767                 scan_base = offset = si->lowest_bit;
768
769         ci = lock_cluster(si, offset);
770         /* reuse swap entry of cache-only swap if not busy. */
771         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
772                 int swap_was_freed;
773                 unlock_cluster(ci);
774                 spin_unlock(&si->lock);
775                 swap_was_freed = __try_to_reclaim_swap(si, offset);
776                 spin_lock(&si->lock);
777                 /* entry was freed successfully, try to use this again */
778                 if (swap_was_freed)
779                         goto checks;
780                 goto scan; /* check next one */
781         }
782
783         if (si->swap_map[offset]) {
784                 unlock_cluster(ci);
785                 if (!n_ret)
786                         goto scan;
787                 else
788                         goto done;
789         }
790         si->swap_map[offset] = usage;
791         inc_cluster_info_page(si, si->cluster_info, offset);
792         unlock_cluster(ci);
793
794         swap_range_alloc(si, offset, 1);
795         si->cluster_next = offset + 1;
796         slots[n_ret++] = swp_entry(si->type, offset);
797
798         /* got enough slots or reach max slots? */
799         if ((n_ret == nr) || (offset >= si->highest_bit))
800                 goto done;
801
802         /* search for next available slot */
803
804         /* time to take a break? */
805         if (unlikely(--latency_ration < 0)) {
806                 if (n_ret)
807                         goto done;
808                 spin_unlock(&si->lock);
809                 cond_resched();
810                 spin_lock(&si->lock);
811                 latency_ration = LATENCY_LIMIT;
812         }
813
814         /* try to get more slots in cluster */
815         if (si->cluster_info) {
816                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
817                         goto checks;
818                 else
819                         goto done;
820         }
821         /* non-ssd case */
822         ++offset;
823
824         /* non-ssd case, still more slots in cluster? */
825         if (si->cluster_nr && !si->swap_map[offset]) {
826                 --si->cluster_nr;
827                 goto checks;
828         }
829
830 done:
831         si->flags -= SWP_SCANNING;
832         return n_ret;
833
834 scan:
835         spin_unlock(&si->lock);
836         while (++offset <= si->highest_bit) {
837                 if (!si->swap_map[offset]) {
838                         spin_lock(&si->lock);
839                         goto checks;
840                 }
841                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
842                         spin_lock(&si->lock);
843                         goto checks;
844                 }
845                 if (unlikely(--latency_ration < 0)) {
846                         cond_resched();
847                         latency_ration = LATENCY_LIMIT;
848                 }
849         }
850         offset = si->lowest_bit;
851         while (offset < scan_base) {
852                 if (!si->swap_map[offset]) {
853                         spin_lock(&si->lock);
854                         goto checks;
855                 }
856                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
857                         spin_lock(&si->lock);
858                         goto checks;
859                 }
860                 if (unlikely(--latency_ration < 0)) {
861                         cond_resched();
862                         latency_ration = LATENCY_LIMIT;
863                 }
864                 offset++;
865         }
866         spin_lock(&si->lock);
867
868 no_page:
869         si->flags -= SWP_SCANNING;
870         return n_ret;
871 }
872
873 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
874 {
875         unsigned long idx;
876         struct swap_cluster_info *ci;
877         unsigned long offset, i;
878         unsigned char *map;
879
880         /*
881          * Should not even be attempting cluster allocations when huge
882          * page swap is disabled.  Warn and fail the allocation.
883          */
884         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
885                 VM_WARN_ON_ONCE(1);
886                 return 0;
887         }
888
889         if (cluster_list_empty(&si->free_clusters))
890                 return 0;
891
892         idx = cluster_list_first(&si->free_clusters);
893         offset = idx * SWAPFILE_CLUSTER;
894         ci = lock_cluster(si, offset);
895         alloc_cluster(si, idx);
896         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
897
898         map = si->swap_map + offset;
899         for (i = 0; i < SWAPFILE_CLUSTER; i++)
900                 map[i] = SWAP_HAS_CACHE;
901         unlock_cluster(ci);
902         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
903         *slot = swp_entry(si->type, offset);
904
905         return 1;
906 }
907
908 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
909 {
910         unsigned long offset = idx * SWAPFILE_CLUSTER;
911         struct swap_cluster_info *ci;
912
913         ci = lock_cluster(si, offset);
914         cluster_set_count_flag(ci, 0, 0);
915         free_cluster(si, idx);
916         unlock_cluster(ci);
917         swap_range_free(si, offset, SWAPFILE_CLUSTER);
918 }
919
920 static unsigned long scan_swap_map(struct swap_info_struct *si,
921                                    unsigned char usage)
922 {
923         swp_entry_t entry;
924         int n_ret;
925
926         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
927
928         if (n_ret)
929                 return swp_offset(entry);
930         else
931                 return 0;
932
933 }
934
935 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
936 {
937         unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
938         struct swap_info_struct *si, *next;
939         long avail_pgs;
940         int n_ret = 0;
941         int node;
942
943         /* Only single cluster request supported */
944         WARN_ON_ONCE(n_goal > 1 && cluster);
945
946         avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
947         if (avail_pgs <= 0)
948                 goto noswap;
949
950         if (n_goal > SWAP_BATCH)
951                 n_goal = SWAP_BATCH;
952
953         if (n_goal > avail_pgs)
954                 n_goal = avail_pgs;
955
956         atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
957
958         spin_lock(&swap_avail_lock);
959
960 start_over:
961         node = numa_node_id();
962         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
963                 /* requeue si to after same-priority siblings */
964                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
965                 spin_unlock(&swap_avail_lock);
966                 spin_lock(&si->lock);
967                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
968                         spin_lock(&swap_avail_lock);
969                         if (plist_node_empty(&si->avail_lists[node])) {
970                                 spin_unlock(&si->lock);
971                                 goto nextsi;
972                         }
973                         WARN(!si->highest_bit,
974                              "swap_info %d in list but !highest_bit\n",
975                              si->type);
976                         WARN(!(si->flags & SWP_WRITEOK),
977                              "swap_info %d in list but !SWP_WRITEOK\n",
978                              si->type);
979                         __del_from_avail_list(si);
980                         spin_unlock(&si->lock);
981                         goto nextsi;
982                 }
983                 if (cluster) {
984                         if (!(si->flags & SWP_FILE))
985                                 n_ret = swap_alloc_cluster(si, swp_entries);
986                 } else
987                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
988                                                     n_goal, swp_entries);
989                 spin_unlock(&si->lock);
990                 if (n_ret || cluster)
991                         goto check_out;
992                 pr_debug("scan_swap_map of si %d failed to find offset\n",
993                         si->type);
994
995                 spin_lock(&swap_avail_lock);
996 nextsi:
997                 /*
998                  * if we got here, it's likely that si was almost full before,
999                  * and since scan_swap_map() can drop the si->lock, multiple
1000                  * callers probably all tried to get a page from the same si
1001                  * and it filled up before we could get one; or, the si filled
1002                  * up between us dropping swap_avail_lock and taking si->lock.
1003                  * Since we dropped the swap_avail_lock, the swap_avail_head
1004                  * list may have been modified; so if next is still in the
1005                  * swap_avail_head list then try it, otherwise start over
1006                  * if we have not gotten any slots.
1007                  */
1008                 if (plist_node_empty(&next->avail_lists[node]))
1009                         goto start_over;
1010         }
1011
1012         spin_unlock(&swap_avail_lock);
1013
1014 check_out:
1015         if (n_ret < n_goal)
1016                 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1017                                 &nr_swap_pages);
1018 noswap:
1019         return n_ret;
1020 }
1021
1022 /* The only caller of this function is now suspend routine */
1023 swp_entry_t get_swap_page_of_type(int type)
1024 {
1025         struct swap_info_struct *si;
1026         pgoff_t offset;
1027
1028         si = swap_info[type];
1029         spin_lock(&si->lock);
1030         if (si && (si->flags & SWP_WRITEOK)) {
1031                 atomic_long_dec(&nr_swap_pages);
1032                 /* This is called for allocating swap entry, not cache */
1033                 offset = scan_swap_map(si, 1);
1034                 if (offset) {
1035                         spin_unlock(&si->lock);
1036                         return swp_entry(type, offset);
1037                 }
1038                 atomic_long_inc(&nr_swap_pages);
1039         }
1040         spin_unlock(&si->lock);
1041         return (swp_entry_t) {0};
1042 }
1043
1044 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1045 {
1046         struct swap_info_struct *p;
1047         unsigned long offset, type;
1048
1049         if (!entry.val)
1050                 goto out;
1051         type = swp_type(entry);
1052         if (type >= nr_swapfiles)
1053                 goto bad_nofile;
1054         p = swap_info[type];
1055         if (!(p->flags & SWP_USED))
1056                 goto bad_device;
1057         offset = swp_offset(entry);
1058         if (offset >= p->max)
1059                 goto bad_offset;
1060         return p;
1061
1062 bad_offset:
1063         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1064         goto out;
1065 bad_device:
1066         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1067         goto out;
1068 bad_nofile:
1069         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1070 out:
1071         return NULL;
1072 }
1073
1074 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1075 {
1076         struct swap_info_struct *p;
1077
1078         p = __swap_info_get(entry);
1079         if (!p)
1080                 goto out;
1081         if (!p->swap_map[swp_offset(entry)])
1082                 goto bad_free;
1083         return p;
1084
1085 bad_free:
1086         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1087         goto out;
1088 out:
1089         return NULL;
1090 }
1091
1092 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1093 {
1094         struct swap_info_struct *p;
1095
1096         p = _swap_info_get(entry);
1097         if (p)
1098                 spin_lock(&p->lock);
1099         return p;
1100 }
1101
1102 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1103                                         struct swap_info_struct *q)
1104 {
1105         struct swap_info_struct *p;
1106
1107         p = _swap_info_get(entry);
1108
1109         if (p != q) {
1110                 if (q != NULL)
1111                         spin_unlock(&q->lock);
1112                 if (p != NULL)
1113                         spin_lock(&p->lock);
1114         }
1115         return p;
1116 }
1117
1118 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1119                                        swp_entry_t entry, unsigned char usage)
1120 {
1121         struct swap_cluster_info *ci;
1122         unsigned long offset = swp_offset(entry);
1123         unsigned char count;
1124         unsigned char has_cache;
1125
1126         ci = lock_cluster_or_swap_info(p, offset);
1127
1128         count = p->swap_map[offset];
1129
1130         has_cache = count & SWAP_HAS_CACHE;
1131         count &= ~SWAP_HAS_CACHE;
1132
1133         if (usage == SWAP_HAS_CACHE) {
1134                 VM_BUG_ON(!has_cache);
1135                 has_cache = 0;
1136         } else if (count == SWAP_MAP_SHMEM) {
1137                 /*
1138                  * Or we could insist on shmem.c using a special
1139                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1140                  */
1141                 count = 0;
1142         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1143                 if (count == COUNT_CONTINUED) {
1144                         if (swap_count_continued(p, offset, count))
1145                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1146                         else
1147                                 count = SWAP_MAP_MAX;
1148                 } else
1149                         count--;
1150         }
1151
1152         usage = count | has_cache;
1153         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1154
1155         unlock_cluster_or_swap_info(p, ci);
1156
1157         return usage;
1158 }
1159
1160 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1161 {
1162         struct swap_cluster_info *ci;
1163         unsigned long offset = swp_offset(entry);
1164         unsigned char count;
1165
1166         ci = lock_cluster(p, offset);
1167         count = p->swap_map[offset];
1168         VM_BUG_ON(count != SWAP_HAS_CACHE);
1169         p->swap_map[offset] = 0;
1170         dec_cluster_info_page(p, p->cluster_info, offset);
1171         unlock_cluster(ci);
1172
1173         mem_cgroup_uncharge_swap(entry, 1);
1174         swap_range_free(p, offset, 1);
1175 }
1176
1177 /*
1178  * Caller has made sure that the swap device corresponding to entry
1179  * is still around or has not been recycled.
1180  */
1181 void swap_free(swp_entry_t entry)
1182 {
1183         struct swap_info_struct *p;
1184
1185         p = _swap_info_get(entry);
1186         if (p) {
1187                 if (!__swap_entry_free(p, entry, 1))
1188                         free_swap_slot(entry);
1189         }
1190 }
1191
1192 /*
1193  * Called after dropping swapcache to decrease refcnt to swap entries.
1194  */
1195 static void swapcache_free(swp_entry_t entry)
1196 {
1197         struct swap_info_struct *p;
1198
1199         p = _swap_info_get(entry);
1200         if (p) {
1201                 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1202                         free_swap_slot(entry);
1203         }
1204 }
1205
1206 static void swapcache_free_cluster(swp_entry_t entry)
1207 {
1208         unsigned long offset = swp_offset(entry);
1209         unsigned long idx = offset / SWAPFILE_CLUSTER;
1210         struct swap_cluster_info *ci;
1211         struct swap_info_struct *si;
1212         unsigned char *map;
1213         unsigned int i, free_entries = 0;
1214         unsigned char val;
1215
1216         if (!IS_ENABLED(CONFIG_THP_SWAP))
1217                 return;
1218
1219         si = _swap_info_get(entry);
1220         if (!si)
1221                 return;
1222
1223         ci = lock_cluster(si, offset);
1224         VM_BUG_ON(!cluster_is_huge(ci));
1225         map = si->swap_map + offset;
1226         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1227                 val = map[i];
1228                 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1229                 if (val == SWAP_HAS_CACHE)
1230                         free_entries++;
1231         }
1232         if (!free_entries) {
1233                 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1234                         map[i] &= ~SWAP_HAS_CACHE;
1235         }
1236         cluster_clear_huge(ci);
1237         unlock_cluster(ci);
1238         if (free_entries == SWAPFILE_CLUSTER) {
1239                 spin_lock(&si->lock);
1240                 ci = lock_cluster(si, offset);
1241                 memset(map, 0, SWAPFILE_CLUSTER);
1242                 unlock_cluster(ci);
1243                 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1244                 swap_free_cluster(si, idx);
1245                 spin_unlock(&si->lock);
1246         } else if (free_entries) {
1247                 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1248                         if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1249                                 free_swap_slot(entry);
1250                 }
1251         }
1252 }
1253
1254 #ifdef CONFIG_THP_SWAP
1255 int split_swap_cluster(swp_entry_t entry)
1256 {
1257         struct swap_info_struct *si;
1258         struct swap_cluster_info *ci;
1259         unsigned long offset = swp_offset(entry);
1260
1261         si = _swap_info_get(entry);
1262         if (!si)
1263                 return -EBUSY;
1264         ci = lock_cluster(si, offset);
1265         cluster_clear_huge(ci);
1266         unlock_cluster(ci);
1267         return 0;
1268 }
1269 #endif
1270
1271 void put_swap_page(struct page *page, swp_entry_t entry)
1272 {
1273         if (!PageTransHuge(page))
1274                 swapcache_free(entry);
1275         else
1276                 swapcache_free_cluster(entry);
1277 }
1278
1279 static int swp_entry_cmp(const void *ent1, const void *ent2)
1280 {
1281         const swp_entry_t *e1 = ent1, *e2 = ent2;
1282
1283         return (int)swp_type(*e1) - (int)swp_type(*e2);
1284 }
1285
1286 void swapcache_free_entries(swp_entry_t *entries, int n)
1287 {
1288         struct swap_info_struct *p, *prev;
1289         int i;
1290
1291         if (n <= 0)
1292                 return;
1293
1294         prev = NULL;
1295         p = NULL;
1296
1297         /*
1298          * Sort swap entries by swap device, so each lock is only taken once.
1299          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1300          * so low that it isn't necessary to optimize further.
1301          */
1302         if (nr_swapfiles > 1)
1303                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1304         for (i = 0; i < n; ++i) {
1305                 p = swap_info_get_cont(entries[i], prev);
1306                 if (p)
1307                         swap_entry_free(p, entries[i]);
1308                 prev = p;
1309         }
1310         if (p)
1311                 spin_unlock(&p->lock);
1312 }
1313
1314 /*
1315  * How many references to page are currently swapped out?
1316  * This does not give an exact answer when swap count is continued,
1317  * but does include the high COUNT_CONTINUED flag to allow for that.
1318  */
1319 int page_swapcount(struct page *page)
1320 {
1321         int count = 0;
1322         struct swap_info_struct *p;
1323         struct swap_cluster_info *ci;
1324         swp_entry_t entry;
1325         unsigned long offset;
1326
1327         entry.val = page_private(page);
1328         p = _swap_info_get(entry);
1329         if (p) {
1330                 offset = swp_offset(entry);
1331                 ci = lock_cluster_or_swap_info(p, offset);
1332                 count = swap_count(p->swap_map[offset]);
1333                 unlock_cluster_or_swap_info(p, ci);
1334         }
1335         return count;
1336 }
1337
1338 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1339 {
1340         pgoff_t offset = swp_offset(entry);
1341
1342         return swap_count(si->swap_map[offset]);
1343 }
1344
1345 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1346 {
1347         int count = 0;
1348         pgoff_t offset = swp_offset(entry);
1349         struct swap_cluster_info *ci;
1350
1351         ci = lock_cluster_or_swap_info(si, offset);
1352         count = swap_count(si->swap_map[offset]);
1353         unlock_cluster_or_swap_info(si, ci);
1354         return count;
1355 }
1356
1357 /*
1358  * How many references to @entry are currently swapped out?
1359  * This does not give an exact answer when swap count is continued,
1360  * but does include the high COUNT_CONTINUED flag to allow for that.
1361  */
1362 int __swp_swapcount(swp_entry_t entry)
1363 {
1364         int count = 0;
1365         struct swap_info_struct *si;
1366
1367         si = __swap_info_get(entry);
1368         if (si)
1369                 count = swap_swapcount(si, entry);
1370         return count;
1371 }
1372
1373 /*
1374  * How many references to @entry are currently swapped out?
1375  * This considers COUNT_CONTINUED so it returns exact answer.
1376  */
1377 int swp_swapcount(swp_entry_t entry)
1378 {
1379         int count, tmp_count, n;
1380         struct swap_info_struct *p;
1381         struct swap_cluster_info *ci;
1382         struct page *page;
1383         pgoff_t offset;
1384         unsigned char *map;
1385
1386         p = _swap_info_get(entry);
1387         if (!p)
1388                 return 0;
1389
1390         offset = swp_offset(entry);
1391
1392         ci = lock_cluster_or_swap_info(p, offset);
1393
1394         count = swap_count(p->swap_map[offset]);
1395         if (!(count & COUNT_CONTINUED))
1396                 goto out;
1397
1398         count &= ~COUNT_CONTINUED;
1399         n = SWAP_MAP_MAX + 1;
1400
1401         page = vmalloc_to_page(p->swap_map + offset);
1402         offset &= ~PAGE_MASK;
1403         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1404
1405         do {
1406                 page = list_next_entry(page, lru);
1407                 map = kmap_atomic(page);
1408                 tmp_count = map[offset];
1409                 kunmap_atomic(map);
1410
1411                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1412                 n *= (SWAP_CONT_MAX + 1);
1413         } while (tmp_count & COUNT_CONTINUED);
1414 out:
1415         unlock_cluster_or_swap_info(p, ci);
1416         return count;
1417 }
1418
1419 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1420                                          swp_entry_t entry)
1421 {
1422         struct swap_cluster_info *ci;
1423         unsigned char *map = si->swap_map;
1424         unsigned long roffset = swp_offset(entry);
1425         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1426         int i;
1427         bool ret = false;
1428
1429         ci = lock_cluster_or_swap_info(si, offset);
1430         if (!ci || !cluster_is_huge(ci)) {
1431                 if (swap_count(map[roffset]))
1432                         ret = true;
1433                 goto unlock_out;
1434         }
1435         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1436                 if (swap_count(map[offset + i])) {
1437                         ret = true;
1438                         break;
1439                 }
1440         }
1441 unlock_out:
1442         unlock_cluster_or_swap_info(si, ci);
1443         return ret;
1444 }
1445
1446 static bool page_swapped(struct page *page)
1447 {
1448         swp_entry_t entry;
1449         struct swap_info_struct *si;
1450
1451         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1452                 return page_swapcount(page) != 0;
1453
1454         page = compound_head(page);
1455         entry.val = page_private(page);
1456         si = _swap_info_get(entry);
1457         if (si)
1458                 return swap_page_trans_huge_swapped(si, entry);
1459         return false;
1460 }
1461
1462 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1463                                          int *total_swapcount)
1464 {
1465         int i, map_swapcount, _total_mapcount, _total_swapcount;
1466         unsigned long offset = 0;
1467         struct swap_info_struct *si;
1468         struct swap_cluster_info *ci = NULL;
1469         unsigned char *map = NULL;
1470         int mapcount, swapcount = 0;
1471
1472         /* hugetlbfs shouldn't call it */
1473         VM_BUG_ON_PAGE(PageHuge(page), page);
1474
1475         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1476                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1477                 if (PageSwapCache(page))
1478                         swapcount = page_swapcount(page);
1479                 if (total_swapcount)
1480                         *total_swapcount = swapcount;
1481                 return mapcount + swapcount;
1482         }
1483
1484         page = compound_head(page);
1485
1486         _total_mapcount = _total_swapcount = map_swapcount = 0;
1487         if (PageSwapCache(page)) {
1488                 swp_entry_t entry;
1489
1490                 entry.val = page_private(page);
1491                 si = _swap_info_get(entry);
1492                 if (si) {
1493                         map = si->swap_map;
1494                         offset = swp_offset(entry);
1495                 }
1496         }
1497         if (map)
1498                 ci = lock_cluster(si, offset);
1499         for (i = 0; i < HPAGE_PMD_NR; i++) {
1500                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1501                 _total_mapcount += mapcount;
1502                 if (map) {
1503                         swapcount = swap_count(map[offset + i]);
1504                         _total_swapcount += swapcount;
1505                 }
1506                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1507         }
1508         unlock_cluster(ci);
1509         if (PageDoubleMap(page)) {
1510                 map_swapcount -= 1;
1511                 _total_mapcount -= HPAGE_PMD_NR;
1512         }
1513         mapcount = compound_mapcount(page);
1514         map_swapcount += mapcount;
1515         _total_mapcount += mapcount;
1516         if (total_mapcount)
1517                 *total_mapcount = _total_mapcount;
1518         if (total_swapcount)
1519                 *total_swapcount = _total_swapcount;
1520
1521         return map_swapcount;
1522 }
1523
1524 /*
1525  * We can write to an anon page without COW if there are no other references
1526  * to it.  And as a side-effect, free up its swap: because the old content
1527  * on disk will never be read, and seeking back there to write new content
1528  * later would only waste time away from clustering.
1529  *
1530  * NOTE: total_map_swapcount should not be relied upon by the caller if
1531  * reuse_swap_page() returns false, but it may be always overwritten
1532  * (see the other implementation for CONFIG_SWAP=n).
1533  */
1534 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1535 {
1536         int count, total_mapcount, total_swapcount;
1537
1538         VM_BUG_ON_PAGE(!PageLocked(page), page);
1539         if (unlikely(PageKsm(page)))
1540                 return false;
1541         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1542                                               &total_swapcount);
1543         if (total_map_swapcount)
1544                 *total_map_swapcount = total_mapcount + total_swapcount;
1545         if (count == 1 && PageSwapCache(page) &&
1546             (likely(!PageTransCompound(page)) ||
1547              /* The remaining swap count will be freed soon */
1548              total_swapcount == page_swapcount(page))) {
1549                 if (!PageWriteback(page)) {
1550                         page = compound_head(page);
1551                         delete_from_swap_cache(page);
1552                         SetPageDirty(page);
1553                 } else {
1554                         swp_entry_t entry;
1555                         struct swap_info_struct *p;
1556
1557                         entry.val = page_private(page);
1558                         p = swap_info_get(entry);
1559                         if (p->flags & SWP_STABLE_WRITES) {
1560                                 spin_unlock(&p->lock);
1561                                 return false;
1562                         }
1563                         spin_unlock(&p->lock);
1564                 }
1565         }
1566
1567         return count <= 1;
1568 }
1569
1570 /*
1571  * If swap is getting full, or if there are no more mappings of this page,
1572  * then try_to_free_swap is called to free its swap space.
1573  */
1574 int try_to_free_swap(struct page *page)
1575 {
1576         VM_BUG_ON_PAGE(!PageLocked(page), page);
1577
1578         if (!PageSwapCache(page))
1579                 return 0;
1580         if (PageWriteback(page))
1581                 return 0;
1582         if (page_swapped(page))
1583                 return 0;
1584
1585         /*
1586          * Once hibernation has begun to create its image of memory,
1587          * there's a danger that one of the calls to try_to_free_swap()
1588          * - most probably a call from __try_to_reclaim_swap() while
1589          * hibernation is allocating its own swap pages for the image,
1590          * but conceivably even a call from memory reclaim - will free
1591          * the swap from a page which has already been recorded in the
1592          * image as a clean swapcache page, and then reuse its swap for
1593          * another page of the image.  On waking from hibernation, the
1594          * original page might be freed under memory pressure, then
1595          * later read back in from swap, now with the wrong data.
1596          *
1597          * Hibernation suspends storage while it is writing the image
1598          * to disk so check that here.
1599          */
1600         if (pm_suspended_storage())
1601                 return 0;
1602
1603         page = compound_head(page);
1604         delete_from_swap_cache(page);
1605         SetPageDirty(page);
1606         return 1;
1607 }
1608
1609 /*
1610  * Free the swap entry like above, but also try to
1611  * free the page cache entry if it is the last user.
1612  */
1613 int free_swap_and_cache(swp_entry_t entry)
1614 {
1615         struct swap_info_struct *p;
1616         struct page *page = NULL;
1617         unsigned char count;
1618
1619         if (non_swap_entry(entry))
1620                 return 1;
1621
1622         p = _swap_info_get(entry);
1623         if (p) {
1624                 count = __swap_entry_free(p, entry, 1);
1625                 if (count == SWAP_HAS_CACHE &&
1626                     !swap_page_trans_huge_swapped(p, entry)) {
1627                         page = find_get_page(swap_address_space(entry),
1628                                              swp_offset(entry));
1629                         if (page && !trylock_page(page)) {
1630                                 put_page(page);
1631                                 page = NULL;
1632                         }
1633                 } else if (!count)
1634                         free_swap_slot(entry);
1635         }
1636         if (page) {
1637                 /*
1638                  * Not mapped elsewhere, or swap space full? Free it!
1639                  * Also recheck PageSwapCache now page is locked (above).
1640                  */
1641                 if (PageSwapCache(page) && !PageWriteback(page) &&
1642                     (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1643                     !swap_page_trans_huge_swapped(p, entry)) {
1644                         page = compound_head(page);
1645                         delete_from_swap_cache(page);
1646                         SetPageDirty(page);
1647                 }
1648                 unlock_page(page);
1649                 put_page(page);
1650         }
1651         return p != NULL;
1652 }
1653
1654 #ifdef CONFIG_HIBERNATION
1655 /*
1656  * Find the swap type that corresponds to given device (if any).
1657  *
1658  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1659  * from 0, in which the swap header is expected to be located.
1660  *
1661  * This is needed for the suspend to disk (aka swsusp).
1662  */
1663 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1664 {
1665         struct block_device *bdev = NULL;
1666         int type;
1667
1668         if (device)
1669                 bdev = bdget(device);
1670
1671         spin_lock(&swap_lock);
1672         for (type = 0; type < nr_swapfiles; type++) {
1673                 struct swap_info_struct *sis = swap_info[type];
1674
1675                 if (!(sis->flags & SWP_WRITEOK))
1676                         continue;
1677
1678                 if (!bdev) {
1679                         if (bdev_p)
1680                                 *bdev_p = bdgrab(sis->bdev);
1681
1682                         spin_unlock(&swap_lock);
1683                         return type;
1684                 }
1685                 if (bdev == sis->bdev) {
1686                         struct swap_extent *se = &sis->first_swap_extent;
1687
1688                         if (se->start_block == offset) {
1689                                 if (bdev_p)
1690                                         *bdev_p = bdgrab(sis->bdev);
1691
1692                                 spin_unlock(&swap_lock);
1693                                 bdput(bdev);
1694                                 return type;
1695                         }
1696                 }
1697         }
1698         spin_unlock(&swap_lock);
1699         if (bdev)
1700                 bdput(bdev);
1701
1702         return -ENODEV;
1703 }
1704
1705 /*
1706  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1707  * corresponding to given index in swap_info (swap type).
1708  */
1709 sector_t swapdev_block(int type, pgoff_t offset)
1710 {
1711         struct block_device *bdev;
1712
1713         if ((unsigned int)type >= nr_swapfiles)
1714                 return 0;
1715         if (!(swap_info[type]->flags & SWP_WRITEOK))
1716                 return 0;
1717         return map_swap_entry(swp_entry(type, offset), &bdev);
1718 }
1719
1720 /*
1721  * Return either the total number of swap pages of given type, or the number
1722  * of free pages of that type (depending on @free)
1723  *
1724  * This is needed for software suspend
1725  */
1726 unsigned int count_swap_pages(int type, int free)
1727 {
1728         unsigned int n = 0;
1729
1730         spin_lock(&swap_lock);
1731         if ((unsigned int)type < nr_swapfiles) {
1732                 struct swap_info_struct *sis = swap_info[type];
1733
1734                 spin_lock(&sis->lock);
1735                 if (sis->flags & SWP_WRITEOK) {
1736                         n = sis->pages;
1737                         if (free)
1738                                 n -= sis->inuse_pages;
1739                 }
1740                 spin_unlock(&sis->lock);
1741         }
1742         spin_unlock(&swap_lock);
1743         return n;
1744 }
1745 #endif /* CONFIG_HIBERNATION */
1746
1747 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1748 {
1749         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1750 }
1751
1752 /*
1753  * No need to decide whether this PTE shares the swap entry with others,
1754  * just let do_wp_page work it out if a write is requested later - to
1755  * force COW, vm_page_prot omits write permission from any private vma.
1756  */
1757 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1758                 unsigned long addr, swp_entry_t entry, struct page *page)
1759 {
1760         struct page *swapcache;
1761         struct mem_cgroup *memcg;
1762         spinlock_t *ptl;
1763         pte_t *pte;
1764         int ret = 1;
1765
1766         swapcache = page;
1767         page = ksm_might_need_to_copy(page, vma, addr);
1768         if (unlikely(!page))
1769                 return -ENOMEM;
1770
1771         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1772                                 &memcg, false)) {
1773                 ret = -ENOMEM;
1774                 goto out_nolock;
1775         }
1776
1777         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1778         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1779                 mem_cgroup_cancel_charge(page, memcg, false);
1780                 ret = 0;
1781                 goto out;
1782         }
1783
1784         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1785         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1786         get_page(page);
1787         set_pte_at(vma->vm_mm, addr, pte,
1788                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1789         if (page == swapcache) {
1790                 page_add_anon_rmap(page, vma, addr, false);
1791                 mem_cgroup_commit_charge(page, memcg, true, false);
1792         } else { /* ksm created a completely new copy */
1793                 page_add_new_anon_rmap(page, vma, addr, false);
1794                 mem_cgroup_commit_charge(page, memcg, false, false);
1795                 lru_cache_add_active_or_unevictable(page, vma);
1796         }
1797         swap_free(entry);
1798         /*
1799          * Move the page to the active list so it is not
1800          * immediately swapped out again after swapon.
1801          */
1802         activate_page(page);
1803 out:
1804         pte_unmap_unlock(pte, ptl);
1805 out_nolock:
1806         if (page != swapcache) {
1807                 unlock_page(page);
1808                 put_page(page);
1809         }
1810         return ret;
1811 }
1812
1813 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1814                                 unsigned long addr, unsigned long end,
1815                                 swp_entry_t entry, struct page *page)
1816 {
1817         pte_t swp_pte = swp_entry_to_pte(entry);
1818         pte_t *pte;
1819         int ret = 0;
1820
1821         /*
1822          * We don't actually need pte lock while scanning for swp_pte: since
1823          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1824          * page table while we're scanning; though it could get zapped, and on
1825          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1826          * of unmatched parts which look like swp_pte, so unuse_pte must
1827          * recheck under pte lock.  Scanning without pte lock lets it be
1828          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1829          */
1830         pte = pte_offset_map(pmd, addr);
1831         do {
1832                 /*
1833                  * swapoff spends a _lot_ of time in this loop!
1834                  * Test inline before going to call unuse_pte.
1835                  */
1836                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1837                         pte_unmap(pte);
1838                         ret = unuse_pte(vma, pmd, addr, entry, page);
1839                         if (ret)
1840                                 goto out;
1841                         pte = pte_offset_map(pmd, addr);
1842                 }
1843         } while (pte++, addr += PAGE_SIZE, addr != end);
1844         pte_unmap(pte - 1);
1845 out:
1846         return ret;
1847 }
1848
1849 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1850                                 unsigned long addr, unsigned long end,
1851                                 swp_entry_t entry, struct page *page)
1852 {
1853         pmd_t *pmd;
1854         unsigned long next;
1855         int ret;
1856
1857         pmd = pmd_offset(pud, addr);
1858         do {
1859                 cond_resched();
1860                 next = pmd_addr_end(addr, end);
1861                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1862                         continue;
1863                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1864                 if (ret)
1865                         return ret;
1866         } while (pmd++, addr = next, addr != end);
1867         return 0;
1868 }
1869
1870 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1871                                 unsigned long addr, unsigned long end,
1872                                 swp_entry_t entry, struct page *page)
1873 {
1874         pud_t *pud;
1875         unsigned long next;
1876         int ret;
1877
1878         pud = pud_offset(p4d, addr);
1879         do {
1880                 next = pud_addr_end(addr, end);
1881                 if (pud_none_or_clear_bad(pud))
1882                         continue;
1883                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1884                 if (ret)
1885                         return ret;
1886         } while (pud++, addr = next, addr != end);
1887         return 0;
1888 }
1889
1890 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1891                                 unsigned long addr, unsigned long end,
1892                                 swp_entry_t entry, struct page *page)
1893 {
1894         p4d_t *p4d;
1895         unsigned long next;
1896         int ret;
1897
1898         p4d = p4d_offset(pgd, addr);
1899         do {
1900                 next = p4d_addr_end(addr, end);
1901                 if (p4d_none_or_clear_bad(p4d))
1902                         continue;
1903                 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1904                 if (ret)
1905                         return ret;
1906         } while (p4d++, addr = next, addr != end);
1907         return 0;
1908 }
1909
1910 static int unuse_vma(struct vm_area_struct *vma,
1911                                 swp_entry_t entry, struct page *page)
1912 {
1913         pgd_t *pgd;
1914         unsigned long addr, end, next;
1915         int ret;
1916
1917         if (page_anon_vma(page)) {
1918                 addr = page_address_in_vma(page, vma);
1919                 if (addr == -EFAULT)
1920                         return 0;
1921                 else
1922                         end = addr + PAGE_SIZE;
1923         } else {
1924                 addr = vma->vm_start;
1925                 end = vma->vm_end;
1926         }
1927
1928         pgd = pgd_offset(vma->vm_mm, addr);
1929         do {
1930                 next = pgd_addr_end(addr, end);
1931                 if (pgd_none_or_clear_bad(pgd))
1932                         continue;
1933                 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1934                 if (ret)
1935                         return ret;
1936         } while (pgd++, addr = next, addr != end);
1937         return 0;
1938 }
1939
1940 static int unuse_mm(struct mm_struct *mm,
1941                                 swp_entry_t entry, struct page *page)
1942 {
1943         struct vm_area_struct *vma;
1944         int ret = 0;
1945
1946         if (!down_read_trylock(&mm->mmap_sem)) {
1947                 /*
1948                  * Activate page so shrink_inactive_list is unlikely to unmap
1949                  * its ptes while lock is dropped, so swapoff can make progress.
1950                  */
1951                 activate_page(page);
1952                 unlock_page(page);
1953                 down_read(&mm->mmap_sem);
1954                 lock_page(page);
1955         }
1956         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1957                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1958                         break;
1959                 cond_resched();
1960         }
1961         up_read(&mm->mmap_sem);
1962         return (ret < 0)? ret: 0;
1963 }
1964
1965 /*
1966  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1967  * from current position to next entry still in use.
1968  * Recycle to start on reaching the end, returning 0 when empty.
1969  */
1970 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1971                                         unsigned int prev, bool frontswap)
1972 {
1973         unsigned int max = si->max;
1974         unsigned int i = prev;
1975         unsigned char count;
1976
1977         /*
1978          * No need for swap_lock here: we're just looking
1979          * for whether an entry is in use, not modifying it; false
1980          * hits are okay, and sys_swapoff() has already prevented new
1981          * allocations from this area (while holding swap_lock).
1982          */
1983         for (;;) {
1984                 if (++i >= max) {
1985                         if (!prev) {
1986                                 i = 0;
1987                                 break;
1988                         }
1989                         /*
1990                          * No entries in use at top of swap_map,
1991                          * loop back to start and recheck there.
1992                          */
1993                         max = prev + 1;
1994                         prev = 0;
1995                         i = 1;
1996                 }
1997                 count = READ_ONCE(si->swap_map[i]);
1998                 if (count && swap_count(count) != SWAP_MAP_BAD)
1999                         if (!frontswap || frontswap_test(si, i))
2000                                 break;
2001                 if ((i % LATENCY_LIMIT) == 0)
2002                         cond_resched();
2003         }
2004         return i;
2005 }
2006
2007 /*
2008  * We completely avoid races by reading each swap page in advance,
2009  * and then search for the process using it.  All the necessary
2010  * page table adjustments can then be made atomically.
2011  *
2012  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2013  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2014  */
2015 int try_to_unuse(unsigned int type, bool frontswap,
2016                  unsigned long pages_to_unuse)
2017 {
2018         struct swap_info_struct *si = swap_info[type];
2019         struct mm_struct *start_mm;
2020         volatile unsigned char *swap_map; /* swap_map is accessed without
2021                                            * locking. Mark it as volatile
2022                                            * to prevent compiler doing
2023                                            * something odd.
2024                                            */
2025         unsigned char swcount;
2026         struct page *page;
2027         swp_entry_t entry;
2028         unsigned int i = 0;
2029         int retval = 0;
2030
2031         /*
2032          * When searching mms for an entry, a good strategy is to
2033          * start at the first mm we freed the previous entry from
2034          * (though actually we don't notice whether we or coincidence
2035          * freed the entry).  Initialize this start_mm with a hold.
2036          *
2037          * A simpler strategy would be to start at the last mm we
2038          * freed the previous entry from; but that would take less
2039          * advantage of mmlist ordering, which clusters forked mms
2040          * together, child after parent.  If we race with dup_mmap(), we
2041          * prefer to resolve parent before child, lest we miss entries
2042          * duplicated after we scanned child: using last mm would invert
2043          * that.
2044          */
2045         start_mm = &init_mm;
2046         mmget(&init_mm);
2047
2048         /*
2049          * Keep on scanning until all entries have gone.  Usually,
2050          * one pass through swap_map is enough, but not necessarily:
2051          * there are races when an instance of an entry might be missed.
2052          */
2053         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2054                 if (signal_pending(current)) {
2055                         retval = -EINTR;
2056                         break;
2057                 }
2058
2059                 /*
2060                  * Get a page for the entry, using the existing swap
2061                  * cache page if there is one.  Otherwise, get a clean
2062                  * page and read the swap into it.
2063                  */
2064                 swap_map = &si->swap_map[i];
2065                 entry = swp_entry(type, i);
2066                 page = read_swap_cache_async(entry,
2067                                         GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2068                 if (!page) {
2069                         /*
2070                          * Either swap_duplicate() failed because entry
2071                          * has been freed independently, and will not be
2072                          * reused since sys_swapoff() already disabled
2073                          * allocation from here, or alloc_page() failed.
2074                          */
2075                         swcount = *swap_map;
2076                         /*
2077                          * We don't hold lock here, so the swap entry could be
2078                          * SWAP_MAP_BAD (when the cluster is discarding).
2079                          * Instead of fail out, We can just skip the swap
2080                          * entry because swapoff will wait for discarding
2081                          * finish anyway.
2082                          */
2083                         if (!swcount || swcount == SWAP_MAP_BAD)
2084                                 continue;
2085                         retval = -ENOMEM;
2086                         break;
2087                 }
2088
2089                 /*
2090                  * Don't hold on to start_mm if it looks like exiting.
2091                  */
2092                 if (atomic_read(&start_mm->mm_users) == 1) {
2093                         mmput(start_mm);
2094                         start_mm = &init_mm;
2095                         mmget(&init_mm);
2096                 }
2097
2098                 /*
2099                  * Wait for and lock page.  When do_swap_page races with
2100                  * try_to_unuse, do_swap_page can handle the fault much
2101                  * faster than try_to_unuse can locate the entry.  This
2102                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
2103                  * defer to do_swap_page in such a case - in some tests,
2104                  * do_swap_page and try_to_unuse repeatedly compete.
2105                  */
2106                 wait_on_page_locked(page);
2107                 wait_on_page_writeback(page);
2108                 lock_page(page);
2109                 wait_on_page_writeback(page);
2110
2111                 /*
2112                  * Remove all references to entry.
2113                  */
2114                 swcount = *swap_map;
2115                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2116                         retval = shmem_unuse(entry, page);
2117                         /* page has already been unlocked and released */
2118                         if (retval < 0)
2119                                 break;
2120                         continue;
2121                 }
2122                 if (swap_count(swcount) && start_mm != &init_mm)
2123                         retval = unuse_mm(start_mm, entry, page);
2124
2125                 if (swap_count(*swap_map)) {
2126                         int set_start_mm = (*swap_map >= swcount);
2127                         struct list_head *p = &start_mm->mmlist;
2128                         struct mm_struct *new_start_mm = start_mm;
2129                         struct mm_struct *prev_mm = start_mm;
2130                         struct mm_struct *mm;
2131
2132                         mmget(new_start_mm);
2133                         mmget(prev_mm);
2134                         spin_lock(&mmlist_lock);
2135                         while (swap_count(*swap_map) && !retval &&
2136                                         (p = p->next) != &start_mm->mmlist) {
2137                                 mm = list_entry(p, struct mm_struct, mmlist);
2138                                 if (!mmget_not_zero(mm))
2139                                         continue;
2140                                 spin_unlock(&mmlist_lock);
2141                                 mmput(prev_mm);
2142                                 prev_mm = mm;
2143
2144                                 cond_resched();
2145
2146                                 swcount = *swap_map;
2147                                 if (!swap_count(swcount)) /* any usage ? */
2148                                         ;
2149                                 else if (mm == &init_mm)
2150                                         set_start_mm = 1;
2151                                 else
2152                                         retval = unuse_mm(mm, entry, page);
2153
2154                                 if (set_start_mm && *swap_map < swcount) {
2155                                         mmput(new_start_mm);
2156                                         mmget(mm);
2157                                         new_start_mm = mm;
2158                                         set_start_mm = 0;
2159                                 }
2160                                 spin_lock(&mmlist_lock);
2161                         }
2162                         spin_unlock(&mmlist_lock);
2163                         mmput(prev_mm);
2164                         mmput(start_mm);
2165                         start_mm = new_start_mm;
2166                 }
2167                 if (retval) {
2168                         unlock_page(page);
2169                         put_page(page);
2170                         break;
2171                 }
2172
2173                 /*
2174                  * If a reference remains (rare), we would like to leave
2175                  * the page in the swap cache; but try_to_unmap could
2176                  * then re-duplicate the entry once we drop page lock,
2177                  * so we might loop indefinitely; also, that page could
2178                  * not be swapped out to other storage meanwhile.  So:
2179                  * delete from cache even if there's another reference,
2180                  * after ensuring that the data has been saved to disk -
2181                  * since if the reference remains (rarer), it will be
2182                  * read from disk into another page.  Splitting into two
2183                  * pages would be incorrect if swap supported "shared
2184                  * private" pages, but they are handled by tmpfs files.
2185                  *
2186                  * Given how unuse_vma() targets one particular offset
2187                  * in an anon_vma, once the anon_vma has been determined,
2188                  * this splitting happens to be just what is needed to
2189                  * handle where KSM pages have been swapped out: re-reading
2190                  * is unnecessarily slow, but we can fix that later on.
2191                  */
2192                 if (swap_count(*swap_map) &&
2193                      PageDirty(page) && PageSwapCache(page)) {
2194                         struct writeback_control wbc = {
2195                                 .sync_mode = WB_SYNC_NONE,
2196                         };
2197
2198                         swap_writepage(compound_head(page), &wbc);
2199                         lock_page(page);
2200                         wait_on_page_writeback(page);
2201                 }
2202
2203                 /*
2204                  * It is conceivable that a racing task removed this page from
2205                  * swap cache just before we acquired the page lock at the top,
2206                  * or while we dropped it in unuse_mm().  The page might even
2207                  * be back in swap cache on another swap area: that we must not
2208                  * delete, since it may not have been written out to swap yet.
2209                  */
2210                 if (PageSwapCache(page) &&
2211                     likely(page_private(page) == entry.val) &&
2212                     !page_swapped(page))
2213                         delete_from_swap_cache(compound_head(page));
2214
2215                 /*
2216                  * So we could skip searching mms once swap count went
2217                  * to 1, we did not mark any present ptes as dirty: must
2218                  * mark page dirty so shrink_page_list will preserve it.
2219                  */
2220                 SetPageDirty(page);
2221                 unlock_page(page);
2222                 put_page(page);
2223
2224                 /*
2225                  * Make sure that we aren't completely killing
2226                  * interactive performance.
2227                  */
2228                 cond_resched();
2229                 if (frontswap && pages_to_unuse > 0) {
2230                         if (!--pages_to_unuse)
2231                                 break;
2232                 }
2233         }
2234
2235         mmput(start_mm);
2236         return retval;
2237 }
2238
2239 /*
2240  * After a successful try_to_unuse, if no swap is now in use, we know
2241  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2242  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2243  * added to the mmlist just after page_duplicate - before would be racy.
2244  */
2245 static void drain_mmlist(void)
2246 {
2247         struct list_head *p, *next;
2248         unsigned int type;
2249
2250         for (type = 0; type < nr_swapfiles; type++)
2251                 if (swap_info[type]->inuse_pages)
2252                         return;
2253         spin_lock(&mmlist_lock);
2254         list_for_each_safe(p, next, &init_mm.mmlist)
2255                 list_del_init(p);
2256         spin_unlock(&mmlist_lock);
2257 }
2258
2259 /*
2260  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2261  * corresponds to page offset for the specified swap entry.
2262  * Note that the type of this function is sector_t, but it returns page offset
2263  * into the bdev, not sector offset.
2264  */
2265 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2266 {
2267         struct swap_info_struct *sis;
2268         struct swap_extent *start_se;
2269         struct swap_extent *se;
2270         pgoff_t offset;
2271
2272         sis = swap_info[swp_type(entry)];
2273         *bdev = sis->bdev;
2274
2275         offset = swp_offset(entry);
2276         start_se = sis->curr_swap_extent;
2277         se = start_se;
2278
2279         for ( ; ; ) {
2280                 if (se->start_page <= offset &&
2281                                 offset < (se->start_page + se->nr_pages)) {
2282                         return se->start_block + (offset - se->start_page);
2283                 }
2284                 se = list_next_entry(se, list);
2285                 sis->curr_swap_extent = se;
2286                 BUG_ON(se == start_se);         /* It *must* be present */
2287         }
2288 }
2289
2290 /*
2291  * Returns the page offset into bdev for the specified page's swap entry.
2292  */
2293 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2294 {
2295         swp_entry_t entry;
2296         entry.val = page_private(page);
2297         return map_swap_entry(entry, bdev);
2298 }
2299
2300 /*
2301  * Free all of a swapdev's extent information
2302  */
2303 static void destroy_swap_extents(struct swap_info_struct *sis)
2304 {
2305         while (!list_empty(&sis->first_swap_extent.list)) {
2306                 struct swap_extent *se;
2307
2308                 se = list_first_entry(&sis->first_swap_extent.list,
2309                                 struct swap_extent, list);
2310                 list_del(&se->list);
2311                 kfree(se);
2312         }
2313
2314         if (sis->flags & SWP_FILE) {
2315                 struct file *swap_file = sis->swap_file;
2316                 struct address_space *mapping = swap_file->f_mapping;
2317
2318                 sis->flags &= ~SWP_FILE;
2319                 mapping->a_ops->swap_deactivate(swap_file);
2320         }
2321 }
2322
2323 /*
2324  * Add a block range (and the corresponding page range) into this swapdev's
2325  * extent list.  The extent list is kept sorted in page order.
2326  *
2327  * This function rather assumes that it is called in ascending page order.
2328  */
2329 int
2330 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2331                 unsigned long nr_pages, sector_t start_block)
2332 {
2333         struct swap_extent *se;
2334         struct swap_extent *new_se;
2335         struct list_head *lh;
2336
2337         if (start_page == 0) {
2338                 se = &sis->first_swap_extent;
2339                 sis->curr_swap_extent = se;
2340                 se->start_page = 0;
2341                 se->nr_pages = nr_pages;
2342                 se->start_block = start_block;
2343                 return 1;
2344         } else {
2345                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2346                 se = list_entry(lh, struct swap_extent, list);
2347                 BUG_ON(se->start_page + se->nr_pages != start_page);
2348                 if (se->start_block + se->nr_pages == start_block) {
2349                         /* Merge it */
2350                         se->nr_pages += nr_pages;
2351                         return 0;
2352                 }
2353         }
2354
2355         /*
2356          * No merge.  Insert a new extent, preserving ordering.
2357          */
2358         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2359         if (new_se == NULL)
2360                 return -ENOMEM;
2361         new_se->start_page = start_page;
2362         new_se->nr_pages = nr_pages;
2363         new_se->start_block = start_block;
2364
2365         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2366         return 1;
2367 }
2368
2369 /*
2370  * A `swap extent' is a simple thing which maps a contiguous range of pages
2371  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2372  * is built at swapon time and is then used at swap_writepage/swap_readpage
2373  * time for locating where on disk a page belongs.
2374  *
2375  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2376  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2377  * swap files identically.
2378  *
2379  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2380  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2381  * swapfiles are handled *identically* after swapon time.
2382  *
2383  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2384  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2385  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2386  * requirements, they are simply tossed out - we will never use those blocks
2387  * for swapping.
2388  *
2389  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2390  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2391  * which will scribble on the fs.
2392  *
2393  * The amount of disk space which a single swap extent represents varies.
2394  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2395  * extents in the list.  To avoid much list walking, we cache the previous
2396  * search location in `curr_swap_extent', and start new searches from there.
2397  * This is extremely effective.  The average number of iterations in
2398  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2399  */
2400 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2401 {
2402         struct file *swap_file = sis->swap_file;
2403         struct address_space *mapping = swap_file->f_mapping;
2404         struct inode *inode = mapping->host;
2405         int ret;
2406
2407         if (S_ISBLK(inode->i_mode)) {
2408                 ret = add_swap_extent(sis, 0, sis->max, 0);
2409                 *span = sis->pages;
2410                 return ret;
2411         }
2412
2413         if (mapping->a_ops->swap_activate) {
2414                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2415                 if (!ret) {
2416                         sis->flags |= SWP_FILE;
2417                         ret = add_swap_extent(sis, 0, sis->max, 0);
2418                         *span = sis->pages;
2419                 }
2420                 return ret;
2421         }
2422
2423         return generic_swapfile_activate(sis, swap_file, span);
2424 }
2425
2426 static int swap_node(struct swap_info_struct *p)
2427 {
2428         struct block_device *bdev;
2429
2430         if (p->bdev)
2431                 bdev = p->bdev;
2432         else
2433                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2434
2435         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2436 }
2437
2438 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2439                                 unsigned char *swap_map,
2440                                 struct swap_cluster_info *cluster_info)
2441 {
2442         int i;
2443
2444         if (prio >= 0)
2445                 p->prio = prio;
2446         else
2447                 p->prio = --least_priority;
2448         /*
2449          * the plist prio is negated because plist ordering is
2450          * low-to-high, while swap ordering is high-to-low
2451          */
2452         p->list.prio = -p->prio;
2453         for_each_node(i) {
2454                 if (p->prio >= 0)
2455                         p->avail_lists[i].prio = -p->prio;
2456                 else {
2457                         if (swap_node(p) == i)
2458                                 p->avail_lists[i].prio = 1;
2459                         else
2460                                 p->avail_lists[i].prio = -p->prio;
2461                 }
2462         }
2463         p->swap_map = swap_map;
2464         p->cluster_info = cluster_info;
2465         p->flags |= SWP_WRITEOK;
2466         atomic_long_add(p->pages, &nr_swap_pages);
2467         total_swap_pages += p->pages;
2468
2469         assert_spin_locked(&swap_lock);
2470         /*
2471          * both lists are plists, and thus priority ordered.
2472          * swap_active_head needs to be priority ordered for swapoff(),
2473          * which on removal of any swap_info_struct with an auto-assigned
2474          * (i.e. negative) priority increments the auto-assigned priority
2475          * of any lower-priority swap_info_structs.
2476          * swap_avail_head needs to be priority ordered for get_swap_page(),
2477          * which allocates swap pages from the highest available priority
2478          * swap_info_struct.
2479          */
2480         plist_add(&p->list, &swap_active_head);
2481         add_to_avail_list(p);
2482 }
2483
2484 static void enable_swap_info(struct swap_info_struct *p, int prio,
2485                                 unsigned char *swap_map,
2486                                 struct swap_cluster_info *cluster_info,
2487                                 unsigned long *frontswap_map)
2488 {
2489         frontswap_init(p->type, frontswap_map);
2490         spin_lock(&swap_lock);
2491         spin_lock(&p->lock);
2492          _enable_swap_info(p, prio, swap_map, cluster_info);
2493         spin_unlock(&p->lock);
2494         spin_unlock(&swap_lock);
2495 }
2496
2497 static void reinsert_swap_info(struct swap_info_struct *p)
2498 {
2499         spin_lock(&swap_lock);
2500         spin_lock(&p->lock);
2501         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2502         spin_unlock(&p->lock);
2503         spin_unlock(&swap_lock);
2504 }
2505
2506 bool has_usable_swap(void)
2507 {
2508         bool ret = true;
2509
2510         spin_lock(&swap_lock);
2511         if (plist_head_empty(&swap_active_head))
2512                 ret = false;
2513         spin_unlock(&swap_lock);
2514         return ret;
2515 }
2516
2517 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2518 {
2519         struct swap_info_struct *p = NULL;
2520         unsigned char *swap_map;
2521         struct swap_cluster_info *cluster_info;
2522         unsigned long *frontswap_map;
2523         struct file *swap_file, *victim;
2524         struct address_space *mapping;
2525         struct inode *inode;
2526         struct filename *pathname;
2527         int err, found = 0;
2528         unsigned int old_block_size;
2529
2530         if (!capable(CAP_SYS_ADMIN))
2531                 return -EPERM;
2532
2533         BUG_ON(!current->mm);
2534
2535         pathname = getname(specialfile);
2536         if (IS_ERR(pathname))
2537                 return PTR_ERR(pathname);
2538
2539         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2540         err = PTR_ERR(victim);
2541         if (IS_ERR(victim))
2542                 goto out;
2543
2544         mapping = victim->f_mapping;
2545         spin_lock(&swap_lock);
2546         plist_for_each_entry(p, &swap_active_head, list) {
2547                 if (p->flags & SWP_WRITEOK) {
2548                         if (p->swap_file->f_mapping == mapping) {
2549                                 found = 1;
2550                                 break;
2551                         }
2552                 }
2553         }
2554         if (!found) {
2555                 err = -EINVAL;
2556                 spin_unlock(&swap_lock);
2557                 goto out_dput;
2558         }
2559         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2560                 vm_unacct_memory(p->pages);
2561         else {
2562                 err = -ENOMEM;
2563                 spin_unlock(&swap_lock);
2564                 goto out_dput;
2565         }
2566         del_from_avail_list(p);
2567         spin_lock(&p->lock);
2568         if (p->prio < 0) {
2569                 struct swap_info_struct *si = p;
2570                 int nid;
2571
2572                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2573                         si->prio++;
2574                         si->list.prio--;
2575                         for_each_node(nid) {
2576                                 if (si->avail_lists[nid].prio != 1)
2577                                         si->avail_lists[nid].prio--;
2578                         }
2579                 }
2580                 least_priority++;
2581         }
2582         plist_del(&p->list, &swap_active_head);
2583         atomic_long_sub(p->pages, &nr_swap_pages);
2584         total_swap_pages -= p->pages;
2585         p->flags &= ~SWP_WRITEOK;
2586         spin_unlock(&p->lock);
2587         spin_unlock(&swap_lock);
2588
2589         disable_swap_slots_cache_lock();
2590
2591         set_current_oom_origin();
2592         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2593         clear_current_oom_origin();
2594
2595         if (err) {
2596                 /* re-insert swap space back into swap_list */
2597                 reinsert_swap_info(p);
2598                 reenable_swap_slots_cache_unlock();
2599                 goto out_dput;
2600         }
2601
2602         reenable_swap_slots_cache_unlock();
2603
2604         flush_work(&p->discard_work);
2605
2606         destroy_swap_extents(p);
2607         if (p->flags & SWP_CONTINUED)
2608                 free_swap_count_continuations(p);
2609
2610         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2611                 atomic_dec(&nr_rotate_swap);
2612
2613         mutex_lock(&swapon_mutex);
2614         spin_lock(&swap_lock);
2615         spin_lock(&p->lock);
2616         drain_mmlist();
2617
2618         /* wait for anyone still in scan_swap_map */
2619         p->highest_bit = 0;             /* cuts scans short */
2620         while (p->flags >= SWP_SCANNING) {
2621                 spin_unlock(&p->lock);
2622                 spin_unlock(&swap_lock);
2623                 schedule_timeout_uninterruptible(1);
2624                 spin_lock(&swap_lock);
2625                 spin_lock(&p->lock);
2626         }
2627
2628         swap_file = p->swap_file;
2629         old_block_size = p->old_block_size;
2630         p->swap_file = NULL;
2631         p->max = 0;
2632         swap_map = p->swap_map;
2633         p->swap_map = NULL;
2634         cluster_info = p->cluster_info;
2635         p->cluster_info = NULL;
2636         frontswap_map = frontswap_map_get(p);
2637         spin_unlock(&p->lock);
2638         spin_unlock(&swap_lock);
2639         frontswap_invalidate_area(p->type);
2640         frontswap_map_set(p, NULL);
2641         mutex_unlock(&swapon_mutex);
2642         free_percpu(p->percpu_cluster);
2643         p->percpu_cluster = NULL;
2644         vfree(swap_map);
2645         kvfree(cluster_info);
2646         kvfree(frontswap_map);
2647         /* Destroy swap account information */
2648         swap_cgroup_swapoff(p->type);
2649         exit_swap_address_space(p->type);
2650
2651         inode = mapping->host;
2652         if (S_ISBLK(inode->i_mode)) {
2653                 struct block_device *bdev = I_BDEV(inode);
2654                 set_blocksize(bdev, old_block_size);
2655                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2656         } else {
2657                 inode_lock(inode);
2658                 inode->i_flags &= ~S_SWAPFILE;
2659                 inode_unlock(inode);
2660         }
2661         filp_close(swap_file, NULL);
2662
2663         /*
2664          * Clear the SWP_USED flag after all resources are freed so that swapon
2665          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2666          * not hold p->lock after we cleared its SWP_WRITEOK.
2667          */
2668         spin_lock(&swap_lock);
2669         p->flags = 0;
2670         spin_unlock(&swap_lock);
2671
2672         err = 0;
2673         atomic_inc(&proc_poll_event);
2674         wake_up_interruptible(&proc_poll_wait);
2675
2676 out_dput:
2677         filp_close(victim, NULL);
2678 out:
2679         putname(pathname);
2680         return err;
2681 }
2682
2683 #ifdef CONFIG_PROC_FS
2684 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2685 {
2686         struct seq_file *seq = file->private_data;
2687
2688         poll_wait(file, &proc_poll_wait, wait);
2689
2690         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2691                 seq->poll_event = atomic_read(&proc_poll_event);
2692                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2693         }
2694
2695         return EPOLLIN | EPOLLRDNORM;
2696 }
2697
2698 /* iterator */
2699 static void *swap_start(struct seq_file *swap, loff_t *pos)
2700 {
2701         struct swap_info_struct *si;
2702         int type;
2703         loff_t l = *pos;
2704
2705         mutex_lock(&swapon_mutex);
2706
2707         if (!l)
2708                 return SEQ_START_TOKEN;
2709
2710         for (type = 0; type < nr_swapfiles; type++) {
2711                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2712                 si = swap_info[type];
2713                 if (!(si->flags & SWP_USED) || !si->swap_map)
2714                         continue;
2715                 if (!--l)
2716                         return si;
2717         }
2718
2719         return NULL;
2720 }
2721
2722 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2723 {
2724         struct swap_info_struct *si = v;
2725         int type;
2726
2727         if (v == SEQ_START_TOKEN)
2728                 type = 0;
2729         else
2730                 type = si->type + 1;
2731
2732         for (; type < nr_swapfiles; type++) {
2733                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2734                 si = swap_info[type];
2735                 if (!(si->flags & SWP_USED) || !si->swap_map)
2736                         continue;
2737                 ++*pos;
2738                 return si;
2739         }
2740
2741         return NULL;
2742 }
2743
2744 static void swap_stop(struct seq_file *swap, void *v)
2745 {
2746         mutex_unlock(&swapon_mutex);
2747 }
2748
2749 static int swap_show(struct seq_file *swap, void *v)
2750 {
2751         struct swap_info_struct *si = v;
2752         struct file *file;
2753         int len;
2754
2755         if (si == SEQ_START_TOKEN) {
2756                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2757                 return 0;
2758         }
2759
2760         file = si->swap_file;
2761         len = seq_file_path(swap, file, " \t\n\\");
2762         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2763                         len < 40 ? 40 - len : 1, " ",
2764                         S_ISBLK(file_inode(file)->i_mode) ?
2765                                 "partition" : "file\t",
2766                         si->pages << (PAGE_SHIFT - 10),
2767                         si->inuse_pages << (PAGE_SHIFT - 10),
2768                         si->prio);
2769         return 0;
2770 }
2771
2772 static const struct seq_operations swaps_op = {
2773         .start =        swap_start,
2774         .next =         swap_next,
2775         .stop =         swap_stop,
2776         .show =         swap_show
2777 };
2778
2779 static int swaps_open(struct inode *inode, struct file *file)
2780 {
2781         struct seq_file *seq;
2782         int ret;
2783
2784         ret = seq_open(file, &swaps_op);
2785         if (ret)
2786                 return ret;
2787
2788         seq = file->private_data;
2789         seq->poll_event = atomic_read(&proc_poll_event);
2790         return 0;
2791 }
2792
2793 static const struct file_operations proc_swaps_operations = {
2794         .open           = swaps_open,
2795         .read           = seq_read,
2796         .llseek         = seq_lseek,
2797         .release        = seq_release,
2798         .poll           = swaps_poll,
2799 };
2800
2801 static int __init procswaps_init(void)
2802 {
2803         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2804         return 0;
2805 }
2806 __initcall(procswaps_init);
2807 #endif /* CONFIG_PROC_FS */
2808
2809 #ifdef MAX_SWAPFILES_CHECK
2810 static int __init max_swapfiles_check(void)
2811 {
2812         MAX_SWAPFILES_CHECK();
2813         return 0;
2814 }
2815 late_initcall(max_swapfiles_check);
2816 #endif
2817
2818 static struct swap_info_struct *alloc_swap_info(void)
2819 {
2820         struct swap_info_struct *p;
2821         unsigned int type;
2822         int i;
2823
2824         p = kzalloc(sizeof(*p), GFP_KERNEL);
2825         if (!p)
2826                 return ERR_PTR(-ENOMEM);
2827
2828         spin_lock(&swap_lock);
2829         for (type = 0; type < nr_swapfiles; type++) {
2830                 if (!(swap_info[type]->flags & SWP_USED))
2831                         break;
2832         }
2833         if (type >= MAX_SWAPFILES) {
2834                 spin_unlock(&swap_lock);
2835                 kfree(p);
2836                 return ERR_PTR(-EPERM);
2837         }
2838         if (type >= nr_swapfiles) {
2839                 p->type = type;
2840                 swap_info[type] = p;
2841                 /*
2842                  * Write swap_info[type] before nr_swapfiles, in case a
2843                  * racing procfs swap_start() or swap_next() is reading them.
2844                  * (We never shrink nr_swapfiles, we never free this entry.)
2845                  */
2846                 smp_wmb();
2847                 nr_swapfiles++;
2848         } else {
2849                 kfree(p);
2850                 p = swap_info[type];
2851                 /*
2852                  * Do not memset this entry: a racing procfs swap_next()
2853                  * would be relying on p->type to remain valid.
2854                  */
2855         }
2856         INIT_LIST_HEAD(&p->first_swap_extent.list);
2857         plist_node_init(&p->list, 0);
2858         for_each_node(i)
2859                 plist_node_init(&p->avail_lists[i], 0);
2860         p->flags = SWP_USED;
2861         spin_unlock(&swap_lock);
2862         spin_lock_init(&p->lock);
2863         spin_lock_init(&p->cont_lock);
2864
2865         return p;
2866 }
2867
2868 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2869 {
2870         int error;
2871
2872         if (S_ISBLK(inode->i_mode)) {
2873                 p->bdev = bdgrab(I_BDEV(inode));
2874                 error = blkdev_get(p->bdev,
2875                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2876                 if (error < 0) {
2877                         p->bdev = NULL;
2878                         return error;
2879                 }
2880                 p->old_block_size = block_size(p->bdev);
2881                 error = set_blocksize(p->bdev, PAGE_SIZE);
2882                 if (error < 0)
2883                         return error;
2884                 p->flags |= SWP_BLKDEV;
2885         } else if (S_ISREG(inode->i_mode)) {
2886                 p->bdev = inode->i_sb->s_bdev;
2887                 inode_lock(inode);
2888                 if (IS_SWAPFILE(inode))
2889                         return -EBUSY;
2890         } else
2891                 return -EINVAL;
2892
2893         return 0;
2894 }
2895
2896
2897 /*
2898  * Find out how many pages are allowed for a single swap device. There
2899  * are two limiting factors:
2900  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2901  * 2) the number of bits in the swap pte, as defined by the different
2902  * architectures.
2903  *
2904  * In order to find the largest possible bit mask, a swap entry with
2905  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2906  * decoded to a swp_entry_t again, and finally the swap offset is
2907  * extracted.
2908  *
2909  * This will mask all the bits from the initial ~0UL mask that can't
2910  * be encoded in either the swp_entry_t or the architecture definition
2911  * of a swap pte.
2912  */
2913 unsigned long generic_max_swapfile_size(void)
2914 {
2915         return swp_offset(pte_to_swp_entry(
2916                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2917 }
2918
2919 /* Can be overridden by an architecture for additional checks. */
2920 __weak unsigned long max_swapfile_size(void)
2921 {
2922         return generic_max_swapfile_size();
2923 }
2924
2925 static unsigned long read_swap_header(struct swap_info_struct *p,
2926                                         union swap_header *swap_header,
2927                                         struct inode *inode)
2928 {
2929         int i;
2930         unsigned long maxpages;
2931         unsigned long swapfilepages;
2932         unsigned long last_page;
2933
2934         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2935                 pr_err("Unable to find swap-space signature\n");
2936                 return 0;
2937         }
2938
2939         /* swap partition endianess hack... */
2940         if (swab32(swap_header->info.version) == 1) {
2941                 swab32s(&swap_header->info.version);
2942                 swab32s(&swap_header->info.last_page);
2943                 swab32s(&swap_header->info.nr_badpages);
2944                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2945                         return 0;
2946                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2947                         swab32s(&swap_header->info.badpages[i]);
2948         }
2949         /* Check the swap header's sub-version */
2950         if (swap_header->info.version != 1) {
2951                 pr_warn("Unable to handle swap header version %d\n",
2952                         swap_header->info.version);
2953                 return 0;
2954         }
2955
2956         p->lowest_bit  = 1;
2957         p->cluster_next = 1;
2958         p->cluster_nr = 0;
2959
2960         maxpages = max_swapfile_size();
2961         last_page = swap_header->info.last_page;
2962         if (!last_page) {
2963                 pr_warn("Empty swap-file\n");
2964                 return 0;
2965         }
2966         if (last_page > maxpages) {
2967                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2968                         maxpages << (PAGE_SHIFT - 10),
2969                         last_page << (PAGE_SHIFT - 10));
2970         }
2971         if (maxpages > last_page) {
2972                 maxpages = last_page + 1;
2973                 /* p->max is an unsigned int: don't overflow it */
2974                 if ((unsigned int)maxpages == 0)
2975                         maxpages = UINT_MAX;
2976         }
2977         p->highest_bit = maxpages - 1;
2978
2979         if (!maxpages)
2980                 return 0;
2981         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2982         if (swapfilepages && maxpages > swapfilepages) {
2983                 pr_warn("Swap area shorter than signature indicates\n");
2984                 return 0;
2985         }
2986         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2987                 return 0;
2988         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2989                 return 0;
2990
2991         return maxpages;
2992 }
2993
2994 #define SWAP_CLUSTER_INFO_COLS                                          \
2995         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2996 #define SWAP_CLUSTER_SPACE_COLS                                         \
2997         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2998 #define SWAP_CLUSTER_COLS                                               \
2999         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3000
3001 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3002                                         union swap_header *swap_header,
3003                                         unsigned char *swap_map,
3004                                         struct swap_cluster_info *cluster_info,
3005                                         unsigned long maxpages,
3006                                         sector_t *span)
3007 {
3008         unsigned int j, k;
3009         unsigned int nr_good_pages;
3010         int nr_extents;
3011         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3012         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3013         unsigned long i, idx;
3014
3015         nr_good_pages = maxpages - 1;   /* omit header page */
3016
3017         cluster_list_init(&p->free_clusters);
3018         cluster_list_init(&p->discard_clusters);
3019
3020         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3021                 unsigned int page_nr = swap_header->info.badpages[i];
3022                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3023                         return -EINVAL;
3024                 if (page_nr < maxpages) {
3025                         swap_map[page_nr] = SWAP_MAP_BAD;
3026                         nr_good_pages--;
3027                         /*
3028                          * Haven't marked the cluster free yet, no list
3029                          * operation involved
3030                          */
3031                         inc_cluster_info_page(p, cluster_info, page_nr);
3032                 }
3033         }
3034
3035         /* Haven't marked the cluster free yet, no list operation involved */
3036         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3037                 inc_cluster_info_page(p, cluster_info, i);
3038
3039         if (nr_good_pages) {
3040                 swap_map[0] = SWAP_MAP_BAD;
3041                 /*
3042                  * Not mark the cluster free yet, no list
3043                  * operation involved
3044                  */
3045                 inc_cluster_info_page(p, cluster_info, 0);
3046                 p->max = maxpages;
3047                 p->pages = nr_good_pages;
3048                 nr_extents = setup_swap_extents(p, span);
3049                 if (nr_extents < 0)
3050                         return nr_extents;
3051                 nr_good_pages = p->pages;
3052         }
3053         if (!nr_good_pages) {
3054                 pr_warn("Empty swap-file\n");
3055                 return -EINVAL;
3056         }
3057
3058         if (!cluster_info)
3059                 return nr_extents;
3060
3061
3062         /*
3063          * Reduce false cache line sharing between cluster_info and
3064          * sharing same address space.
3065          */
3066         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3067                 j = (k + col) % SWAP_CLUSTER_COLS;
3068                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3069                         idx = i * SWAP_CLUSTER_COLS + j;
3070                         if (idx >= nr_clusters)
3071                                 continue;
3072                         if (cluster_count(&cluster_info[idx]))
3073                                 continue;
3074                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3075                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3076                                               idx);
3077                 }
3078         }
3079         return nr_extents;
3080 }
3081
3082 /*
3083  * Helper to sys_swapon determining if a given swap
3084  * backing device queue supports DISCARD operations.
3085  */
3086 static bool swap_discardable(struct swap_info_struct *si)
3087 {
3088         struct request_queue *q = bdev_get_queue(si->bdev);
3089
3090         if (!q || !blk_queue_discard(q))
3091                 return false;
3092
3093         return true;
3094 }
3095
3096 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3097 {
3098         struct swap_info_struct *p;
3099         struct filename *name;
3100         struct file *swap_file = NULL;
3101         struct address_space *mapping;
3102         int prio;
3103         int error;
3104         union swap_header *swap_header;
3105         int nr_extents;
3106         sector_t span;
3107         unsigned long maxpages;
3108         unsigned char *swap_map = NULL;
3109         struct swap_cluster_info *cluster_info = NULL;
3110         unsigned long *frontswap_map = NULL;
3111         struct page *page = NULL;
3112         struct inode *inode = NULL;
3113         bool inced_nr_rotate_swap = false;
3114
3115         if (swap_flags & ~SWAP_FLAGS_VALID)
3116                 return -EINVAL;
3117
3118         if (!capable(CAP_SYS_ADMIN))
3119                 return -EPERM;
3120
3121         if (!swap_avail_heads)
3122                 return -ENOMEM;
3123
3124         p = alloc_swap_info();
3125         if (IS_ERR(p))
3126                 return PTR_ERR(p);
3127
3128         INIT_WORK(&p->discard_work, swap_discard_work);
3129
3130         name = getname(specialfile);
3131         if (IS_ERR(name)) {
3132                 error = PTR_ERR(name);
3133                 name = NULL;
3134                 goto bad_swap;
3135         }
3136         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3137         if (IS_ERR(swap_file)) {
3138                 error = PTR_ERR(swap_file);
3139                 swap_file = NULL;
3140                 goto bad_swap;
3141         }
3142
3143         p->swap_file = swap_file;
3144         mapping = swap_file->f_mapping;
3145         inode = mapping->host;
3146
3147         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3148         error = claim_swapfile(p, inode);
3149         if (unlikely(error))
3150                 goto bad_swap;
3151
3152         /*
3153          * Read the swap header.
3154          */
3155         if (!mapping->a_ops->readpage) {
3156                 error = -EINVAL;
3157                 goto bad_swap;
3158         }
3159         page = read_mapping_page(mapping, 0, swap_file);
3160         if (IS_ERR(page)) {
3161                 error = PTR_ERR(page);
3162                 goto bad_swap;
3163         }
3164         swap_header = kmap(page);
3165
3166         maxpages = read_swap_header(p, swap_header, inode);
3167         if (unlikely(!maxpages)) {
3168                 error = -EINVAL;
3169                 goto bad_swap;
3170         }
3171
3172         /* OK, set up the swap map and apply the bad block list */
3173         swap_map = vzalloc(maxpages);
3174         if (!swap_map) {
3175                 error = -ENOMEM;
3176                 goto bad_swap;
3177         }
3178
3179         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3180                 p->flags |= SWP_STABLE_WRITES;
3181
3182         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3183                 p->flags |= SWP_SYNCHRONOUS_IO;
3184
3185         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3186                 int cpu;
3187                 unsigned long ci, nr_cluster;
3188
3189                 p->flags |= SWP_SOLIDSTATE;
3190                 /*
3191                  * select a random position to start with to help wear leveling
3192                  * SSD
3193                  */
3194                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3195                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3196
3197                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3198                                         GFP_KERNEL);
3199                 if (!cluster_info) {
3200                         error = -ENOMEM;
3201                         goto bad_swap;
3202                 }
3203
3204                 for (ci = 0; ci < nr_cluster; ci++)
3205                         spin_lock_init(&((cluster_info + ci)->lock));
3206
3207                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3208                 if (!p->percpu_cluster) {
3209                         error = -ENOMEM;
3210                         goto bad_swap;
3211                 }
3212                 for_each_possible_cpu(cpu) {
3213                         struct percpu_cluster *cluster;
3214                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3215                         cluster_set_null(&cluster->index);
3216                 }
3217         } else {
3218                 atomic_inc(&nr_rotate_swap);
3219                 inced_nr_rotate_swap = true;
3220         }
3221
3222         error = swap_cgroup_swapon(p->type, maxpages);
3223         if (error)
3224                 goto bad_swap;
3225
3226         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3227                 cluster_info, maxpages, &span);
3228         if (unlikely(nr_extents < 0)) {
3229                 error = nr_extents;
3230                 goto bad_swap;
3231         }
3232         /* frontswap enabled? set up bit-per-page map for frontswap */
3233         if (IS_ENABLED(CONFIG_FRONTSWAP))
3234                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3235                                          sizeof(long),
3236                                          GFP_KERNEL);
3237
3238         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3239                 /*
3240                  * When discard is enabled for swap with no particular
3241                  * policy flagged, we set all swap discard flags here in
3242                  * order to sustain backward compatibility with older
3243                  * swapon(8) releases.
3244                  */
3245                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3246                              SWP_PAGE_DISCARD);
3247
3248                 /*
3249                  * By flagging sys_swapon, a sysadmin can tell us to
3250                  * either do single-time area discards only, or to just
3251                  * perform discards for released swap page-clusters.
3252                  * Now it's time to adjust the p->flags accordingly.
3253                  */
3254                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3255                         p->flags &= ~SWP_PAGE_DISCARD;
3256                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3257                         p->flags &= ~SWP_AREA_DISCARD;
3258
3259                 /* issue a swapon-time discard if it's still required */
3260                 if (p->flags & SWP_AREA_DISCARD) {
3261                         int err = discard_swap(p);
3262                         if (unlikely(err))
3263                                 pr_err("swapon: discard_swap(%p): %d\n",
3264                                         p, err);
3265                 }
3266         }
3267
3268         error = init_swap_address_space(p->type, maxpages);
3269         if (error)
3270                 goto bad_swap;
3271
3272         mutex_lock(&swapon_mutex);
3273         prio = -1;
3274         if (swap_flags & SWAP_FLAG_PREFER)
3275                 prio =
3276                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3277         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3278
3279         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3280                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3281                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3282                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3283                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3284                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3285                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3286                 (frontswap_map) ? "FS" : "");
3287
3288         mutex_unlock(&swapon_mutex);
3289         atomic_inc(&proc_poll_event);
3290         wake_up_interruptible(&proc_poll_wait);
3291
3292         if (S_ISREG(inode->i_mode))
3293                 inode->i_flags |= S_SWAPFILE;
3294         error = 0;
3295         goto out;
3296 bad_swap:
3297         free_percpu(p->percpu_cluster);
3298         p->percpu_cluster = NULL;
3299         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3300                 set_blocksize(p->bdev, p->old_block_size);
3301                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3302         }
3303         destroy_swap_extents(p);
3304         swap_cgroup_swapoff(p->type);
3305         spin_lock(&swap_lock);
3306         p->swap_file = NULL;
3307         p->flags = 0;
3308         spin_unlock(&swap_lock);
3309         vfree(swap_map);
3310         kvfree(cluster_info);
3311         kvfree(frontswap_map);
3312         if (inced_nr_rotate_swap)
3313                 atomic_dec(&nr_rotate_swap);
3314         if (swap_file) {
3315                 if (inode && S_ISREG(inode->i_mode)) {
3316                         inode_unlock(inode);
3317                         inode = NULL;
3318                 }
3319                 filp_close(swap_file, NULL);
3320         }
3321 out:
3322         if (page && !IS_ERR(page)) {
3323                 kunmap(page);
3324                 put_page(page);
3325         }
3326         if (name)
3327                 putname(name);
3328         if (inode && S_ISREG(inode->i_mode))
3329                 inode_unlock(inode);
3330         if (!error)
3331                 enable_swap_slots_cache();
3332         return error;
3333 }
3334
3335 void si_swapinfo(struct sysinfo *val)
3336 {
3337         unsigned int type;
3338         unsigned long nr_to_be_unused = 0;
3339
3340         spin_lock(&swap_lock);
3341         for (type = 0; type < nr_swapfiles; type++) {
3342                 struct swap_info_struct *si = swap_info[type];
3343
3344                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3345                         nr_to_be_unused += si->inuse_pages;
3346         }
3347         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3348         val->totalswap = total_swap_pages + nr_to_be_unused;
3349         spin_unlock(&swap_lock);
3350 }
3351
3352 /*
3353  * Verify that a swap entry is valid and increment its swap map count.
3354  *
3355  * Returns error code in following case.
3356  * - success -> 0
3357  * - swp_entry is invalid -> EINVAL
3358  * - swp_entry is migration entry -> EINVAL
3359  * - swap-cache reference is requested but there is already one. -> EEXIST
3360  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3361  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3362  */
3363 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3364 {
3365         struct swap_info_struct *p;
3366         struct swap_cluster_info *ci;
3367         unsigned long offset, type;
3368         unsigned char count;
3369         unsigned char has_cache;
3370         int err = -EINVAL;
3371
3372         if (non_swap_entry(entry))
3373                 goto out;
3374
3375         type = swp_type(entry);
3376         if (type >= nr_swapfiles)
3377                 goto bad_file;
3378         p = swap_info[type];
3379         offset = swp_offset(entry);
3380         if (unlikely(offset >= p->max))
3381                 goto out;
3382
3383         ci = lock_cluster_or_swap_info(p, offset);
3384
3385         count = p->swap_map[offset];
3386
3387         /*
3388          * swapin_readahead() doesn't check if a swap entry is valid, so the
3389          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3390          */
3391         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3392                 err = -ENOENT;
3393                 goto unlock_out;
3394         }
3395
3396         has_cache = count & SWAP_HAS_CACHE;
3397         count &= ~SWAP_HAS_CACHE;
3398         err = 0;
3399
3400         if (usage == SWAP_HAS_CACHE) {
3401
3402                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3403                 if (!has_cache && count)
3404                         has_cache = SWAP_HAS_CACHE;
3405                 else if (has_cache)             /* someone else added cache */
3406                         err = -EEXIST;
3407                 else                            /* no users remaining */
3408                         err = -ENOENT;
3409
3410         } else if (count || has_cache) {
3411
3412                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3413                         count += usage;
3414                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3415                         err = -EINVAL;
3416                 else if (swap_count_continued(p, offset, count))
3417                         count = COUNT_CONTINUED;
3418                 else
3419                         err = -ENOMEM;
3420         } else
3421                 err = -ENOENT;                  /* unused swap entry */
3422
3423         p->swap_map[offset] = count | has_cache;
3424
3425 unlock_out:
3426         unlock_cluster_or_swap_info(p, ci);
3427 out:
3428         return err;
3429
3430 bad_file:
3431         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3432         goto out;
3433 }
3434
3435 /*
3436  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3437  * (in which case its reference count is never incremented).
3438  */
3439 void swap_shmem_alloc(swp_entry_t entry)
3440 {
3441         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3442 }
3443
3444 /*
3445  * Increase reference count of swap entry by 1.
3446  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3447  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3448  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3449  * might occur if a page table entry has got corrupted.
3450  */
3451 int swap_duplicate(swp_entry_t entry)
3452 {
3453         int err = 0;
3454
3455         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3456                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3457         return err;
3458 }
3459
3460 /*
3461  * @entry: swap entry for which we allocate swap cache.
3462  *
3463  * Called when allocating swap cache for existing swap entry,
3464  * This can return error codes. Returns 0 at success.
3465  * -EBUSY means there is a swap cache.
3466  * Note: return code is different from swap_duplicate().
3467  */
3468 int swapcache_prepare(swp_entry_t entry)
3469 {
3470         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3471 }
3472
3473 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3474 {
3475         return swap_info[swp_type(entry)];
3476 }
3477
3478 struct swap_info_struct *page_swap_info(struct page *page)
3479 {
3480         swp_entry_t entry = { .val = page_private(page) };
3481         return swp_swap_info(entry);
3482 }
3483
3484 /*
3485  * out-of-line __page_file_ methods to avoid include hell.
3486  */
3487 struct address_space *__page_file_mapping(struct page *page)
3488 {
3489         return page_swap_info(page)->swap_file->f_mapping;
3490 }
3491 EXPORT_SYMBOL_GPL(__page_file_mapping);
3492
3493 pgoff_t __page_file_index(struct page *page)
3494 {
3495         swp_entry_t swap = { .val = page_private(page) };
3496         return swp_offset(swap);
3497 }
3498 EXPORT_SYMBOL_GPL(__page_file_index);
3499
3500 /*
3501  * add_swap_count_continuation - called when a swap count is duplicated
3502  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3503  * page of the original vmalloc'ed swap_map, to hold the continuation count
3504  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3505  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3506  *
3507  * These continuation pages are seldom referenced: the common paths all work
3508  * on the original swap_map, only referring to a continuation page when the
3509  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3510  *
3511  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3512  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3513  * can be called after dropping locks.
3514  */
3515 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3516 {
3517         struct swap_info_struct *si;
3518         struct swap_cluster_info *ci;
3519         struct page *head;
3520         struct page *page;
3521         struct page *list_page;
3522         pgoff_t offset;
3523         unsigned char count;
3524
3525         /*
3526          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3527          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3528          */
3529         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3530
3531         si = swap_info_get(entry);
3532         if (!si) {
3533                 /*
3534                  * An acceptable race has occurred since the failing
3535                  * __swap_duplicate(): the swap entry has been freed,
3536                  * perhaps even the whole swap_map cleared for swapoff.
3537                  */
3538                 goto outer;
3539         }
3540
3541         offset = swp_offset(entry);
3542
3543         ci = lock_cluster(si, offset);
3544
3545         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3546
3547         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3548                 /*
3549                  * The higher the swap count, the more likely it is that tasks
3550                  * will race to add swap count continuation: we need to avoid
3551                  * over-provisioning.
3552                  */
3553                 goto out;
3554         }
3555
3556         if (!page) {
3557                 unlock_cluster(ci);
3558                 spin_unlock(&si->lock);
3559                 return -ENOMEM;
3560         }
3561
3562         /*
3563          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3564          * no architecture is using highmem pages for kernel page tables: so it
3565          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3566          */
3567         head = vmalloc_to_page(si->swap_map + offset);
3568         offset &= ~PAGE_MASK;
3569
3570         spin_lock(&si->cont_lock);
3571         /*
3572          * Page allocation does not initialize the page's lru field,
3573          * but it does always reset its private field.
3574          */
3575         if (!page_private(head)) {
3576                 BUG_ON(count & COUNT_CONTINUED);
3577                 INIT_LIST_HEAD(&head->lru);
3578                 set_page_private(head, SWP_CONTINUED);
3579                 si->flags |= SWP_CONTINUED;
3580         }
3581
3582         list_for_each_entry(list_page, &head->lru, lru) {
3583                 unsigned char *map;
3584
3585                 /*
3586                  * If the previous map said no continuation, but we've found
3587                  * a continuation page, free our allocation and use this one.
3588                  */
3589                 if (!(count & COUNT_CONTINUED))
3590                         goto out_unlock_cont;
3591
3592                 map = kmap_atomic(list_page) + offset;
3593                 count = *map;
3594                 kunmap_atomic(map);
3595
3596                 /*
3597                  * If this continuation count now has some space in it,
3598                  * free our allocation and use this one.
3599                  */
3600                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3601                         goto out_unlock_cont;
3602         }
3603
3604         list_add_tail(&page->lru, &head->lru);
3605         page = NULL;                    /* now it's attached, don't free it */
3606 out_unlock_cont:
3607         spin_unlock(&si->cont_lock);
3608 out:
3609         unlock_cluster(ci);
3610         spin_unlock(&si->lock);
3611 outer:
3612         if (page)
3613                 __free_page(page);
3614         return 0;
3615 }
3616
3617 /*
3618  * swap_count_continued - when the original swap_map count is incremented
3619  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3620  * into, carry if so, or else fail until a new continuation page is allocated;
3621  * when the original swap_map count is decremented from 0 with continuation,
3622  * borrow from the continuation and report whether it still holds more.
3623  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3624  * lock.
3625  */
3626 static bool swap_count_continued(struct swap_info_struct *si,
3627                                  pgoff_t offset, unsigned char count)
3628 {
3629         struct page *head;
3630         struct page *page;
3631         unsigned char *map;
3632         bool ret;
3633
3634         head = vmalloc_to_page(si->swap_map + offset);
3635         if (page_private(head) != SWP_CONTINUED) {
3636                 BUG_ON(count & COUNT_CONTINUED);
3637                 return false;           /* need to add count continuation */
3638         }
3639
3640         spin_lock(&si->cont_lock);
3641         offset &= ~PAGE_MASK;
3642         page = list_entry(head->lru.next, struct page, lru);
3643         map = kmap_atomic(page) + offset;
3644
3645         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3646                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3647
3648         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3649                 /*
3650                  * Think of how you add 1 to 999
3651                  */
3652                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3653                         kunmap_atomic(map);
3654                         page = list_entry(page->lru.next, struct page, lru);
3655                         BUG_ON(page == head);
3656                         map = kmap_atomic(page) + offset;
3657                 }
3658                 if (*map == SWAP_CONT_MAX) {
3659                         kunmap_atomic(map);
3660                         page = list_entry(page->lru.next, struct page, lru);
3661                         if (page == head) {
3662                                 ret = false;    /* add count continuation */
3663                                 goto out;
3664                         }
3665                         map = kmap_atomic(page) + offset;
3666 init_map:               *map = 0;               /* we didn't zero the page */
3667                 }
3668                 *map += 1;
3669                 kunmap_atomic(map);
3670                 page = list_entry(page->lru.prev, struct page, lru);
3671                 while (page != head) {
3672                         map = kmap_atomic(page) + offset;
3673                         *map = COUNT_CONTINUED;
3674                         kunmap_atomic(map);
3675                         page = list_entry(page->lru.prev, struct page, lru);
3676                 }
3677                 ret = true;                     /* incremented */
3678
3679         } else {                                /* decrementing */
3680                 /*
3681                  * Think of how you subtract 1 from 1000
3682                  */
3683                 BUG_ON(count != COUNT_CONTINUED);
3684                 while (*map == COUNT_CONTINUED) {
3685                         kunmap_atomic(map);
3686                         page = list_entry(page->lru.next, struct page, lru);
3687                         BUG_ON(page == head);
3688                         map = kmap_atomic(page) + offset;
3689                 }
3690                 BUG_ON(*map == 0);
3691                 *map -= 1;
3692                 if (*map == 0)
3693                         count = 0;
3694                 kunmap_atomic(map);
3695                 page = list_entry(page->lru.prev, struct page, lru);
3696                 while (page != head) {
3697                         map = kmap_atomic(page) + offset;
3698                         *map = SWAP_CONT_MAX | count;
3699                         count = COUNT_CONTINUED;
3700                         kunmap_atomic(map);
3701                         page = list_entry(page->lru.prev, struct page, lru);
3702                 }
3703                 ret = count == COUNT_CONTINUED;
3704         }
3705 out:
3706         spin_unlock(&si->cont_lock);
3707         return ret;
3708 }
3709
3710 /*
3711  * free_swap_count_continuations - swapoff free all the continuation pages
3712  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3713  */
3714 static void free_swap_count_continuations(struct swap_info_struct *si)
3715 {
3716         pgoff_t offset;
3717
3718         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3719                 struct page *head;
3720                 head = vmalloc_to_page(si->swap_map + offset);
3721                 if (page_private(head)) {
3722                         struct page *page, *next;
3723
3724                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3725                                 list_del(&page->lru);
3726                                 __free_page(page);
3727                         }
3728                 }
3729         }
3730 }
3731
3732 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3733 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3734                                   gfp_t gfp_mask)
3735 {
3736         struct swap_info_struct *si, *next;
3737         if (!(gfp_mask & __GFP_IO) || !memcg)
3738                 return;
3739
3740         if (!blk_cgroup_congested())
3741                 return;
3742
3743         /*
3744          * We've already scheduled a throttle, avoid taking the global swap
3745          * lock.
3746          */
3747         if (current->throttle_queue)
3748                 return;
3749
3750         spin_lock(&swap_avail_lock);
3751         plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3752                                   avail_lists[node]) {
3753                 if (si->bdev) {
3754                         blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3755                                                 true);
3756                         break;
3757                 }
3758         }
3759         spin_unlock(&swap_avail_lock);
3760 }
3761 #endif
3762
3763 static int __init swapfile_init(void)
3764 {
3765         int nid;
3766
3767         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3768                                          GFP_KERNEL);
3769         if (!swap_avail_heads) {
3770                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3771                 return -ENOMEM;
3772         }
3773
3774         for_each_node(nid)
3775                 plist_head_init(&swap_avail_heads[nid]);
3776
3777         return 0;
3778 }
3779 subsys_initcall(swapfile_init);