]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/swapfile.c
mm: swap: add comments to lock_cluster_or_swap_info()
[linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static inline unsigned char swap_count(unsigned char ent)
102 {
103         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
104 }
105
106 /* returns 1 if swap entry is freed */
107 static int
108 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109 {
110         swp_entry_t entry = swp_entry(si->type, offset);
111         struct page *page;
112         int ret = 0;
113
114         page = find_get_page(swap_address_space(entry), swp_offset(entry));
115         if (!page)
116                 return 0;
117         /*
118          * This function is called from scan_swap_map() and it's called
119          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120          * We have to use trylock for avoiding deadlock. This is a special
121          * case and you should use try_to_free_swap() with explicit lock_page()
122          * in usual operations.
123          */
124         if (trylock_page(page)) {
125                 ret = try_to_free_swap(page);
126                 unlock_page(page);
127         }
128         put_page(page);
129         return ret;
130 }
131
132 /*
133  * swapon tell device that all the old swap contents can be discarded,
134  * to allow the swap device to optimize its wear-levelling.
135  */
136 static int discard_swap(struct swap_info_struct *si)
137 {
138         struct swap_extent *se;
139         sector_t start_block;
140         sector_t nr_blocks;
141         int err = 0;
142
143         /* Do not discard the swap header page! */
144         se = &si->first_swap_extent;
145         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147         if (nr_blocks) {
148                 err = blkdev_issue_discard(si->bdev, start_block,
149                                 nr_blocks, GFP_KERNEL, 0);
150                 if (err)
151                         return err;
152                 cond_resched();
153         }
154
155         list_for_each_entry(se, &si->first_swap_extent.list, list) {
156                 start_block = se->start_block << (PAGE_SHIFT - 9);
157                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
158
159                 err = blkdev_issue_discard(si->bdev, start_block,
160                                 nr_blocks, GFP_KERNEL, 0);
161                 if (err)
162                         break;
163
164                 cond_resched();
165         }
166         return err;             /* That will often be -EOPNOTSUPP */
167 }
168
169 /*
170  * swap allocation tell device that a cluster of swap can now be discarded,
171  * to allow the swap device to optimize its wear-levelling.
172  */
173 static void discard_swap_cluster(struct swap_info_struct *si,
174                                  pgoff_t start_page, pgoff_t nr_pages)
175 {
176         struct swap_extent *se = si->curr_swap_extent;
177         int found_extent = 0;
178
179         while (nr_pages) {
180                 if (se->start_page <= start_page &&
181                     start_page < se->start_page + se->nr_pages) {
182                         pgoff_t offset = start_page - se->start_page;
183                         sector_t start_block = se->start_block + offset;
184                         sector_t nr_blocks = se->nr_pages - offset;
185
186                         if (nr_blocks > nr_pages)
187                                 nr_blocks = nr_pages;
188                         start_page += nr_blocks;
189                         nr_pages -= nr_blocks;
190
191                         if (!found_extent++)
192                                 si->curr_swap_extent = se;
193
194                         start_block <<= PAGE_SHIFT - 9;
195                         nr_blocks <<= PAGE_SHIFT - 9;
196                         if (blkdev_issue_discard(si->bdev, start_block,
197                                     nr_blocks, GFP_NOIO, 0))
198                                 break;
199                 }
200
201                 se = list_next_entry(se, list);
202         }
203 }
204
205 #ifdef CONFIG_THP_SWAP
206 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
207 #else
208 #define SWAPFILE_CLUSTER        256
209 #endif
210 #define LATENCY_LIMIT           256
211
212 static inline void cluster_set_flag(struct swap_cluster_info *info,
213         unsigned int flag)
214 {
215         info->flags = flag;
216 }
217
218 static inline unsigned int cluster_count(struct swap_cluster_info *info)
219 {
220         return info->data;
221 }
222
223 static inline void cluster_set_count(struct swap_cluster_info *info,
224                                      unsigned int c)
225 {
226         info->data = c;
227 }
228
229 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
230                                          unsigned int c, unsigned int f)
231 {
232         info->flags = f;
233         info->data = c;
234 }
235
236 static inline unsigned int cluster_next(struct swap_cluster_info *info)
237 {
238         return info->data;
239 }
240
241 static inline void cluster_set_next(struct swap_cluster_info *info,
242                                     unsigned int n)
243 {
244         info->data = n;
245 }
246
247 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
248                                          unsigned int n, unsigned int f)
249 {
250         info->flags = f;
251         info->data = n;
252 }
253
254 static inline bool cluster_is_free(struct swap_cluster_info *info)
255 {
256         return info->flags & CLUSTER_FLAG_FREE;
257 }
258
259 static inline bool cluster_is_null(struct swap_cluster_info *info)
260 {
261         return info->flags & CLUSTER_FLAG_NEXT_NULL;
262 }
263
264 static inline void cluster_set_null(struct swap_cluster_info *info)
265 {
266         info->flags = CLUSTER_FLAG_NEXT_NULL;
267         info->data = 0;
268 }
269
270 static inline bool cluster_is_huge(struct swap_cluster_info *info)
271 {
272         return info->flags & CLUSTER_FLAG_HUGE;
273 }
274
275 static inline void cluster_clear_huge(struct swap_cluster_info *info)
276 {
277         info->flags &= ~CLUSTER_FLAG_HUGE;
278 }
279
280 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
281                                                      unsigned long offset)
282 {
283         struct swap_cluster_info *ci;
284
285         ci = si->cluster_info;
286         if (ci) {
287                 ci += offset / SWAPFILE_CLUSTER;
288                 spin_lock(&ci->lock);
289         }
290         return ci;
291 }
292
293 static inline void unlock_cluster(struct swap_cluster_info *ci)
294 {
295         if (ci)
296                 spin_unlock(&ci->lock);
297 }
298
299 /*
300  * Determine the locking method in use for this device.  Return
301  * swap_cluster_info if SSD-style cluster-based locking is in place.
302  */
303 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
304                 struct swap_info_struct *si, unsigned long offset)
305 {
306         struct swap_cluster_info *ci;
307
308         /* Try to use fine-grained SSD-style locking if available: */
309         ci = lock_cluster(si, offset);
310         /* Otherwise, fall back to traditional, coarse locking: */
311         if (!ci)
312                 spin_lock(&si->lock);
313
314         return ci;
315 }
316
317 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
318                                                struct swap_cluster_info *ci)
319 {
320         if (ci)
321                 unlock_cluster(ci);
322         else
323                 spin_unlock(&si->lock);
324 }
325
326 static inline bool cluster_list_empty(struct swap_cluster_list *list)
327 {
328         return cluster_is_null(&list->head);
329 }
330
331 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
332 {
333         return cluster_next(&list->head);
334 }
335
336 static void cluster_list_init(struct swap_cluster_list *list)
337 {
338         cluster_set_null(&list->head);
339         cluster_set_null(&list->tail);
340 }
341
342 static void cluster_list_add_tail(struct swap_cluster_list *list,
343                                   struct swap_cluster_info *ci,
344                                   unsigned int idx)
345 {
346         if (cluster_list_empty(list)) {
347                 cluster_set_next_flag(&list->head, idx, 0);
348                 cluster_set_next_flag(&list->tail, idx, 0);
349         } else {
350                 struct swap_cluster_info *ci_tail;
351                 unsigned int tail = cluster_next(&list->tail);
352
353                 /*
354                  * Nested cluster lock, but both cluster locks are
355                  * only acquired when we held swap_info_struct->lock
356                  */
357                 ci_tail = ci + tail;
358                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
359                 cluster_set_next(ci_tail, idx);
360                 spin_unlock(&ci_tail->lock);
361                 cluster_set_next_flag(&list->tail, idx, 0);
362         }
363 }
364
365 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
366                                            struct swap_cluster_info *ci)
367 {
368         unsigned int idx;
369
370         idx = cluster_next(&list->head);
371         if (cluster_next(&list->tail) == idx) {
372                 cluster_set_null(&list->head);
373                 cluster_set_null(&list->tail);
374         } else
375                 cluster_set_next_flag(&list->head,
376                                       cluster_next(&ci[idx]), 0);
377
378         return idx;
379 }
380
381 /* Add a cluster to discard list and schedule it to do discard */
382 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
383                 unsigned int idx)
384 {
385         /*
386          * If scan_swap_map() can't find a free cluster, it will check
387          * si->swap_map directly. To make sure the discarding cluster isn't
388          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
389          * will be cleared after discard
390          */
391         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
392                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
393
394         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
395
396         schedule_work(&si->discard_work);
397 }
398
399 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
400 {
401         struct swap_cluster_info *ci = si->cluster_info;
402
403         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
404         cluster_list_add_tail(&si->free_clusters, ci, idx);
405 }
406
407 /*
408  * Doing discard actually. After a cluster discard is finished, the cluster
409  * will be added to free cluster list. caller should hold si->lock.
410 */
411 static void swap_do_scheduled_discard(struct swap_info_struct *si)
412 {
413         struct swap_cluster_info *info, *ci;
414         unsigned int idx;
415
416         info = si->cluster_info;
417
418         while (!cluster_list_empty(&si->discard_clusters)) {
419                 idx = cluster_list_del_first(&si->discard_clusters, info);
420                 spin_unlock(&si->lock);
421
422                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
423                                 SWAPFILE_CLUSTER);
424
425                 spin_lock(&si->lock);
426                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
427                 __free_cluster(si, idx);
428                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
429                                 0, SWAPFILE_CLUSTER);
430                 unlock_cluster(ci);
431         }
432 }
433
434 static void swap_discard_work(struct work_struct *work)
435 {
436         struct swap_info_struct *si;
437
438         si = container_of(work, struct swap_info_struct, discard_work);
439
440         spin_lock(&si->lock);
441         swap_do_scheduled_discard(si);
442         spin_unlock(&si->lock);
443 }
444
445 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
446 {
447         struct swap_cluster_info *ci = si->cluster_info;
448
449         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
450         cluster_list_del_first(&si->free_clusters, ci);
451         cluster_set_count_flag(ci + idx, 0, 0);
452 }
453
454 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
455 {
456         struct swap_cluster_info *ci = si->cluster_info + idx;
457
458         VM_BUG_ON(cluster_count(ci) != 0);
459         /*
460          * If the swap is discardable, prepare discard the cluster
461          * instead of free it immediately. The cluster will be freed
462          * after discard.
463          */
464         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
465             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
466                 swap_cluster_schedule_discard(si, idx);
467                 return;
468         }
469
470         __free_cluster(si, idx);
471 }
472
473 /*
474  * The cluster corresponding to page_nr will be used. The cluster will be
475  * removed from free cluster list and its usage counter will be increased.
476  */
477 static void inc_cluster_info_page(struct swap_info_struct *p,
478         struct swap_cluster_info *cluster_info, unsigned long page_nr)
479 {
480         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
481
482         if (!cluster_info)
483                 return;
484         if (cluster_is_free(&cluster_info[idx]))
485                 alloc_cluster(p, idx);
486
487         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
488         cluster_set_count(&cluster_info[idx],
489                 cluster_count(&cluster_info[idx]) + 1);
490 }
491
492 /*
493  * The cluster corresponding to page_nr decreases one usage. If the usage
494  * counter becomes 0, which means no page in the cluster is in using, we can
495  * optionally discard the cluster and add it to free cluster list.
496  */
497 static void dec_cluster_info_page(struct swap_info_struct *p,
498         struct swap_cluster_info *cluster_info, unsigned long page_nr)
499 {
500         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
501
502         if (!cluster_info)
503                 return;
504
505         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
506         cluster_set_count(&cluster_info[idx],
507                 cluster_count(&cluster_info[idx]) - 1);
508
509         if (cluster_count(&cluster_info[idx]) == 0)
510                 free_cluster(p, idx);
511 }
512
513 /*
514  * It's possible scan_swap_map() uses a free cluster in the middle of free
515  * cluster list. Avoiding such abuse to avoid list corruption.
516  */
517 static bool
518 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
519         unsigned long offset)
520 {
521         struct percpu_cluster *percpu_cluster;
522         bool conflict;
523
524         offset /= SWAPFILE_CLUSTER;
525         conflict = !cluster_list_empty(&si->free_clusters) &&
526                 offset != cluster_list_first(&si->free_clusters) &&
527                 cluster_is_free(&si->cluster_info[offset]);
528
529         if (!conflict)
530                 return false;
531
532         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
533         cluster_set_null(&percpu_cluster->index);
534         return true;
535 }
536
537 /*
538  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
539  * might involve allocating a new cluster for current CPU too.
540  */
541 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
542         unsigned long *offset, unsigned long *scan_base)
543 {
544         struct percpu_cluster *cluster;
545         struct swap_cluster_info *ci;
546         bool found_free;
547         unsigned long tmp, max;
548
549 new_cluster:
550         cluster = this_cpu_ptr(si->percpu_cluster);
551         if (cluster_is_null(&cluster->index)) {
552                 if (!cluster_list_empty(&si->free_clusters)) {
553                         cluster->index = si->free_clusters.head;
554                         cluster->next = cluster_next(&cluster->index) *
555                                         SWAPFILE_CLUSTER;
556                 } else if (!cluster_list_empty(&si->discard_clusters)) {
557                         /*
558                          * we don't have free cluster but have some clusters in
559                          * discarding, do discard now and reclaim them
560                          */
561                         swap_do_scheduled_discard(si);
562                         *scan_base = *offset = si->cluster_next;
563                         goto new_cluster;
564                 } else
565                         return false;
566         }
567
568         found_free = false;
569
570         /*
571          * Other CPUs can use our cluster if they can't find a free cluster,
572          * check if there is still free entry in the cluster
573          */
574         tmp = cluster->next;
575         max = min_t(unsigned long, si->max,
576                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
577         if (tmp >= max) {
578                 cluster_set_null(&cluster->index);
579                 goto new_cluster;
580         }
581         ci = lock_cluster(si, tmp);
582         while (tmp < max) {
583                 if (!si->swap_map[tmp]) {
584                         found_free = true;
585                         break;
586                 }
587                 tmp++;
588         }
589         unlock_cluster(ci);
590         if (!found_free) {
591                 cluster_set_null(&cluster->index);
592                 goto new_cluster;
593         }
594         cluster->next = tmp + 1;
595         *offset = tmp;
596         *scan_base = tmp;
597         return found_free;
598 }
599
600 static void __del_from_avail_list(struct swap_info_struct *p)
601 {
602         int nid;
603
604         for_each_node(nid)
605                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
606 }
607
608 static void del_from_avail_list(struct swap_info_struct *p)
609 {
610         spin_lock(&swap_avail_lock);
611         __del_from_avail_list(p);
612         spin_unlock(&swap_avail_lock);
613 }
614
615 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
616                              unsigned int nr_entries)
617 {
618         unsigned int end = offset + nr_entries - 1;
619
620         if (offset == si->lowest_bit)
621                 si->lowest_bit += nr_entries;
622         if (end == si->highest_bit)
623                 si->highest_bit -= nr_entries;
624         si->inuse_pages += nr_entries;
625         if (si->inuse_pages == si->pages) {
626                 si->lowest_bit = si->max;
627                 si->highest_bit = 0;
628                 del_from_avail_list(si);
629         }
630 }
631
632 static void add_to_avail_list(struct swap_info_struct *p)
633 {
634         int nid;
635
636         spin_lock(&swap_avail_lock);
637         for_each_node(nid) {
638                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
639                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
640         }
641         spin_unlock(&swap_avail_lock);
642 }
643
644 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
645                             unsigned int nr_entries)
646 {
647         unsigned long end = offset + nr_entries - 1;
648         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
649
650         if (offset < si->lowest_bit)
651                 si->lowest_bit = offset;
652         if (end > si->highest_bit) {
653                 bool was_full = !si->highest_bit;
654
655                 si->highest_bit = end;
656                 if (was_full && (si->flags & SWP_WRITEOK))
657                         add_to_avail_list(si);
658         }
659         atomic_long_add(nr_entries, &nr_swap_pages);
660         si->inuse_pages -= nr_entries;
661         if (si->flags & SWP_BLKDEV)
662                 swap_slot_free_notify =
663                         si->bdev->bd_disk->fops->swap_slot_free_notify;
664         else
665                 swap_slot_free_notify = NULL;
666         while (offset <= end) {
667                 frontswap_invalidate_page(si->type, offset);
668                 if (swap_slot_free_notify)
669                         swap_slot_free_notify(si->bdev, offset);
670                 offset++;
671         }
672 }
673
674 static int scan_swap_map_slots(struct swap_info_struct *si,
675                                unsigned char usage, int nr,
676                                swp_entry_t slots[])
677 {
678         struct swap_cluster_info *ci;
679         unsigned long offset;
680         unsigned long scan_base;
681         unsigned long last_in_cluster = 0;
682         int latency_ration = LATENCY_LIMIT;
683         int n_ret = 0;
684
685         if (nr > SWAP_BATCH)
686                 nr = SWAP_BATCH;
687
688         /*
689          * We try to cluster swap pages by allocating them sequentially
690          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
691          * way, however, we resort to first-free allocation, starting
692          * a new cluster.  This prevents us from scattering swap pages
693          * all over the entire swap partition, so that we reduce
694          * overall disk seek times between swap pages.  -- sct
695          * But we do now try to find an empty cluster.  -Andrea
696          * And we let swap pages go all over an SSD partition.  Hugh
697          */
698
699         si->flags += SWP_SCANNING;
700         scan_base = offset = si->cluster_next;
701
702         /* SSD algorithm */
703         if (si->cluster_info) {
704                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
705                         goto checks;
706                 else
707                         goto scan;
708         }
709
710         if (unlikely(!si->cluster_nr--)) {
711                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
712                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
713                         goto checks;
714                 }
715
716                 spin_unlock(&si->lock);
717
718                 /*
719                  * If seek is expensive, start searching for new cluster from
720                  * start of partition, to minimize the span of allocated swap.
721                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
722                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
723                  */
724                 scan_base = offset = si->lowest_bit;
725                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
726
727                 /* Locate the first empty (unaligned) cluster */
728                 for (; last_in_cluster <= si->highest_bit; offset++) {
729                         if (si->swap_map[offset])
730                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
731                         else if (offset == last_in_cluster) {
732                                 spin_lock(&si->lock);
733                                 offset -= SWAPFILE_CLUSTER - 1;
734                                 si->cluster_next = offset;
735                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
736                                 goto checks;
737                         }
738                         if (unlikely(--latency_ration < 0)) {
739                                 cond_resched();
740                                 latency_ration = LATENCY_LIMIT;
741                         }
742                 }
743
744                 offset = scan_base;
745                 spin_lock(&si->lock);
746                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
747         }
748
749 checks:
750         if (si->cluster_info) {
751                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
752                 /* take a break if we already got some slots */
753                         if (n_ret)
754                                 goto done;
755                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
756                                                         &scan_base))
757                                 goto scan;
758                 }
759         }
760         if (!(si->flags & SWP_WRITEOK))
761                 goto no_page;
762         if (!si->highest_bit)
763                 goto no_page;
764         if (offset > si->highest_bit)
765                 scan_base = offset = si->lowest_bit;
766
767         ci = lock_cluster(si, offset);
768         /* reuse swap entry of cache-only swap if not busy. */
769         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
770                 int swap_was_freed;
771                 unlock_cluster(ci);
772                 spin_unlock(&si->lock);
773                 swap_was_freed = __try_to_reclaim_swap(si, offset);
774                 spin_lock(&si->lock);
775                 /* entry was freed successfully, try to use this again */
776                 if (swap_was_freed)
777                         goto checks;
778                 goto scan; /* check next one */
779         }
780
781         if (si->swap_map[offset]) {
782                 unlock_cluster(ci);
783                 if (!n_ret)
784                         goto scan;
785                 else
786                         goto done;
787         }
788         si->swap_map[offset] = usage;
789         inc_cluster_info_page(si, si->cluster_info, offset);
790         unlock_cluster(ci);
791
792         swap_range_alloc(si, offset, 1);
793         si->cluster_next = offset + 1;
794         slots[n_ret++] = swp_entry(si->type, offset);
795
796         /* got enough slots or reach max slots? */
797         if ((n_ret == nr) || (offset >= si->highest_bit))
798                 goto done;
799
800         /* search for next available slot */
801
802         /* time to take a break? */
803         if (unlikely(--latency_ration < 0)) {
804                 if (n_ret)
805                         goto done;
806                 spin_unlock(&si->lock);
807                 cond_resched();
808                 spin_lock(&si->lock);
809                 latency_ration = LATENCY_LIMIT;
810         }
811
812         /* try to get more slots in cluster */
813         if (si->cluster_info) {
814                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
815                         goto checks;
816                 else
817                         goto done;
818         }
819         /* non-ssd case */
820         ++offset;
821
822         /* non-ssd case, still more slots in cluster? */
823         if (si->cluster_nr && !si->swap_map[offset]) {
824                 --si->cluster_nr;
825                 goto checks;
826         }
827
828 done:
829         si->flags -= SWP_SCANNING;
830         return n_ret;
831
832 scan:
833         spin_unlock(&si->lock);
834         while (++offset <= si->highest_bit) {
835                 if (!si->swap_map[offset]) {
836                         spin_lock(&si->lock);
837                         goto checks;
838                 }
839                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
840                         spin_lock(&si->lock);
841                         goto checks;
842                 }
843                 if (unlikely(--latency_ration < 0)) {
844                         cond_resched();
845                         latency_ration = LATENCY_LIMIT;
846                 }
847         }
848         offset = si->lowest_bit;
849         while (offset < scan_base) {
850                 if (!si->swap_map[offset]) {
851                         spin_lock(&si->lock);
852                         goto checks;
853                 }
854                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
855                         spin_lock(&si->lock);
856                         goto checks;
857                 }
858                 if (unlikely(--latency_ration < 0)) {
859                         cond_resched();
860                         latency_ration = LATENCY_LIMIT;
861                 }
862                 offset++;
863         }
864         spin_lock(&si->lock);
865
866 no_page:
867         si->flags -= SWP_SCANNING;
868         return n_ret;
869 }
870
871 #ifdef CONFIG_THP_SWAP
872 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
873 {
874         unsigned long idx;
875         struct swap_cluster_info *ci;
876         unsigned long offset, i;
877         unsigned char *map;
878
879         if (cluster_list_empty(&si->free_clusters))
880                 return 0;
881
882         idx = cluster_list_first(&si->free_clusters);
883         offset = idx * SWAPFILE_CLUSTER;
884         ci = lock_cluster(si, offset);
885         alloc_cluster(si, idx);
886         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
887
888         map = si->swap_map + offset;
889         for (i = 0; i < SWAPFILE_CLUSTER; i++)
890                 map[i] = SWAP_HAS_CACHE;
891         unlock_cluster(ci);
892         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
893         *slot = swp_entry(si->type, offset);
894
895         return 1;
896 }
897
898 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
899 {
900         unsigned long offset = idx * SWAPFILE_CLUSTER;
901         struct swap_cluster_info *ci;
902
903         ci = lock_cluster(si, offset);
904         cluster_set_count_flag(ci, 0, 0);
905         free_cluster(si, idx);
906         unlock_cluster(ci);
907         swap_range_free(si, offset, SWAPFILE_CLUSTER);
908 }
909 #else
910 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
911 {
912         VM_WARN_ON_ONCE(1);
913         return 0;
914 }
915 #endif /* CONFIG_THP_SWAP */
916
917 static unsigned long scan_swap_map(struct swap_info_struct *si,
918                                    unsigned char usage)
919 {
920         swp_entry_t entry;
921         int n_ret;
922
923         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
924
925         if (n_ret)
926                 return swp_offset(entry);
927         else
928                 return 0;
929
930 }
931
932 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
933 {
934         unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
935         struct swap_info_struct *si, *next;
936         long avail_pgs;
937         int n_ret = 0;
938         int node;
939
940         /* Only single cluster request supported */
941         WARN_ON_ONCE(n_goal > 1 && cluster);
942
943         avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
944         if (avail_pgs <= 0)
945                 goto noswap;
946
947         if (n_goal > SWAP_BATCH)
948                 n_goal = SWAP_BATCH;
949
950         if (n_goal > avail_pgs)
951                 n_goal = avail_pgs;
952
953         atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
954
955         spin_lock(&swap_avail_lock);
956
957 start_over:
958         node = numa_node_id();
959         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
960                 /* requeue si to after same-priority siblings */
961                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
962                 spin_unlock(&swap_avail_lock);
963                 spin_lock(&si->lock);
964                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
965                         spin_lock(&swap_avail_lock);
966                         if (plist_node_empty(&si->avail_lists[node])) {
967                                 spin_unlock(&si->lock);
968                                 goto nextsi;
969                         }
970                         WARN(!si->highest_bit,
971                              "swap_info %d in list but !highest_bit\n",
972                              si->type);
973                         WARN(!(si->flags & SWP_WRITEOK),
974                              "swap_info %d in list but !SWP_WRITEOK\n",
975                              si->type);
976                         __del_from_avail_list(si);
977                         spin_unlock(&si->lock);
978                         goto nextsi;
979                 }
980                 if (cluster) {
981                         if (!(si->flags & SWP_FILE))
982                                 n_ret = swap_alloc_cluster(si, swp_entries);
983                 } else
984                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
985                                                     n_goal, swp_entries);
986                 spin_unlock(&si->lock);
987                 if (n_ret || cluster)
988                         goto check_out;
989                 pr_debug("scan_swap_map of si %d failed to find offset\n",
990                         si->type);
991
992                 spin_lock(&swap_avail_lock);
993 nextsi:
994                 /*
995                  * if we got here, it's likely that si was almost full before,
996                  * and since scan_swap_map() can drop the si->lock, multiple
997                  * callers probably all tried to get a page from the same si
998                  * and it filled up before we could get one; or, the si filled
999                  * up between us dropping swap_avail_lock and taking si->lock.
1000                  * Since we dropped the swap_avail_lock, the swap_avail_head
1001                  * list may have been modified; so if next is still in the
1002                  * swap_avail_head list then try it, otherwise start over
1003                  * if we have not gotten any slots.
1004                  */
1005                 if (plist_node_empty(&next->avail_lists[node]))
1006                         goto start_over;
1007         }
1008
1009         spin_unlock(&swap_avail_lock);
1010
1011 check_out:
1012         if (n_ret < n_goal)
1013                 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1014                                 &nr_swap_pages);
1015 noswap:
1016         return n_ret;
1017 }
1018
1019 /* The only caller of this function is now suspend routine */
1020 swp_entry_t get_swap_page_of_type(int type)
1021 {
1022         struct swap_info_struct *si;
1023         pgoff_t offset;
1024
1025         si = swap_info[type];
1026         spin_lock(&si->lock);
1027         if (si && (si->flags & SWP_WRITEOK)) {
1028                 atomic_long_dec(&nr_swap_pages);
1029                 /* This is called for allocating swap entry, not cache */
1030                 offset = scan_swap_map(si, 1);
1031                 if (offset) {
1032                         spin_unlock(&si->lock);
1033                         return swp_entry(type, offset);
1034                 }
1035                 atomic_long_inc(&nr_swap_pages);
1036         }
1037         spin_unlock(&si->lock);
1038         return (swp_entry_t) {0};
1039 }
1040
1041 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1042 {
1043         struct swap_info_struct *p;
1044         unsigned long offset, type;
1045
1046         if (!entry.val)
1047                 goto out;
1048         type = swp_type(entry);
1049         if (type >= nr_swapfiles)
1050                 goto bad_nofile;
1051         p = swap_info[type];
1052         if (!(p->flags & SWP_USED))
1053                 goto bad_device;
1054         offset = swp_offset(entry);
1055         if (offset >= p->max)
1056                 goto bad_offset;
1057         return p;
1058
1059 bad_offset:
1060         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1061         goto out;
1062 bad_device:
1063         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1064         goto out;
1065 bad_nofile:
1066         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1067 out:
1068         return NULL;
1069 }
1070
1071 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1072 {
1073         struct swap_info_struct *p;
1074
1075         p = __swap_info_get(entry);
1076         if (!p)
1077                 goto out;
1078         if (!p->swap_map[swp_offset(entry)])
1079                 goto bad_free;
1080         return p;
1081
1082 bad_free:
1083         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1084         goto out;
1085 out:
1086         return NULL;
1087 }
1088
1089 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1090 {
1091         struct swap_info_struct *p;
1092
1093         p = _swap_info_get(entry);
1094         if (p)
1095                 spin_lock(&p->lock);
1096         return p;
1097 }
1098
1099 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1100                                         struct swap_info_struct *q)
1101 {
1102         struct swap_info_struct *p;
1103
1104         p = _swap_info_get(entry);
1105
1106         if (p != q) {
1107                 if (q != NULL)
1108                         spin_unlock(&q->lock);
1109                 if (p != NULL)
1110                         spin_lock(&p->lock);
1111         }
1112         return p;
1113 }
1114
1115 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1116                                        swp_entry_t entry, unsigned char usage)
1117 {
1118         struct swap_cluster_info *ci;
1119         unsigned long offset = swp_offset(entry);
1120         unsigned char count;
1121         unsigned char has_cache;
1122
1123         ci = lock_cluster_or_swap_info(p, offset);
1124
1125         count = p->swap_map[offset];
1126
1127         has_cache = count & SWAP_HAS_CACHE;
1128         count &= ~SWAP_HAS_CACHE;
1129
1130         if (usage == SWAP_HAS_CACHE) {
1131                 VM_BUG_ON(!has_cache);
1132                 has_cache = 0;
1133         } else if (count == SWAP_MAP_SHMEM) {
1134                 /*
1135                  * Or we could insist on shmem.c using a special
1136                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1137                  */
1138                 count = 0;
1139         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1140                 if (count == COUNT_CONTINUED) {
1141                         if (swap_count_continued(p, offset, count))
1142                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1143                         else
1144                                 count = SWAP_MAP_MAX;
1145                 } else
1146                         count--;
1147         }
1148
1149         usage = count | has_cache;
1150         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1151
1152         unlock_cluster_or_swap_info(p, ci);
1153
1154         return usage;
1155 }
1156
1157 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1158 {
1159         struct swap_cluster_info *ci;
1160         unsigned long offset = swp_offset(entry);
1161         unsigned char count;
1162
1163         ci = lock_cluster(p, offset);
1164         count = p->swap_map[offset];
1165         VM_BUG_ON(count != SWAP_HAS_CACHE);
1166         p->swap_map[offset] = 0;
1167         dec_cluster_info_page(p, p->cluster_info, offset);
1168         unlock_cluster(ci);
1169
1170         mem_cgroup_uncharge_swap(entry, 1);
1171         swap_range_free(p, offset, 1);
1172 }
1173
1174 /*
1175  * Caller has made sure that the swap device corresponding to entry
1176  * is still around or has not been recycled.
1177  */
1178 void swap_free(swp_entry_t entry)
1179 {
1180         struct swap_info_struct *p;
1181
1182         p = _swap_info_get(entry);
1183         if (p) {
1184                 if (!__swap_entry_free(p, entry, 1))
1185                         free_swap_slot(entry);
1186         }
1187 }
1188
1189 /*
1190  * Called after dropping swapcache to decrease refcnt to swap entries.
1191  */
1192 static void swapcache_free(swp_entry_t entry)
1193 {
1194         struct swap_info_struct *p;
1195
1196         p = _swap_info_get(entry);
1197         if (p) {
1198                 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1199                         free_swap_slot(entry);
1200         }
1201 }
1202
1203 #ifdef CONFIG_THP_SWAP
1204 static void swapcache_free_cluster(swp_entry_t entry)
1205 {
1206         unsigned long offset = swp_offset(entry);
1207         unsigned long idx = offset / SWAPFILE_CLUSTER;
1208         struct swap_cluster_info *ci;
1209         struct swap_info_struct *si;
1210         unsigned char *map;
1211         unsigned int i, free_entries = 0;
1212         unsigned char val;
1213
1214         si = _swap_info_get(entry);
1215         if (!si)
1216                 return;
1217
1218         ci = lock_cluster(si, offset);
1219         VM_BUG_ON(!cluster_is_huge(ci));
1220         map = si->swap_map + offset;
1221         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1222                 val = map[i];
1223                 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1224                 if (val == SWAP_HAS_CACHE)
1225                         free_entries++;
1226         }
1227         if (!free_entries) {
1228                 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1229                         map[i] &= ~SWAP_HAS_CACHE;
1230         }
1231         cluster_clear_huge(ci);
1232         unlock_cluster(ci);
1233         if (free_entries == SWAPFILE_CLUSTER) {
1234                 spin_lock(&si->lock);
1235                 ci = lock_cluster(si, offset);
1236                 memset(map, 0, SWAPFILE_CLUSTER);
1237                 unlock_cluster(ci);
1238                 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1239                 swap_free_cluster(si, idx);
1240                 spin_unlock(&si->lock);
1241         } else if (free_entries) {
1242                 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1243                         if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1244                                 free_swap_slot(entry);
1245                 }
1246         }
1247 }
1248
1249 int split_swap_cluster(swp_entry_t entry)
1250 {
1251         struct swap_info_struct *si;
1252         struct swap_cluster_info *ci;
1253         unsigned long offset = swp_offset(entry);
1254
1255         si = _swap_info_get(entry);
1256         if (!si)
1257                 return -EBUSY;
1258         ci = lock_cluster(si, offset);
1259         cluster_clear_huge(ci);
1260         unlock_cluster(ci);
1261         return 0;
1262 }
1263 #else
1264 static inline void swapcache_free_cluster(swp_entry_t entry)
1265 {
1266 }
1267 #endif /* CONFIG_THP_SWAP */
1268
1269 void put_swap_page(struct page *page, swp_entry_t entry)
1270 {
1271         if (!PageTransHuge(page))
1272                 swapcache_free(entry);
1273         else
1274                 swapcache_free_cluster(entry);
1275 }
1276
1277 static int swp_entry_cmp(const void *ent1, const void *ent2)
1278 {
1279         const swp_entry_t *e1 = ent1, *e2 = ent2;
1280
1281         return (int)swp_type(*e1) - (int)swp_type(*e2);
1282 }
1283
1284 void swapcache_free_entries(swp_entry_t *entries, int n)
1285 {
1286         struct swap_info_struct *p, *prev;
1287         int i;
1288
1289         if (n <= 0)
1290                 return;
1291
1292         prev = NULL;
1293         p = NULL;
1294
1295         /*
1296          * Sort swap entries by swap device, so each lock is only taken once.
1297          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1298          * so low that it isn't necessary to optimize further.
1299          */
1300         if (nr_swapfiles > 1)
1301                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1302         for (i = 0; i < n; ++i) {
1303                 p = swap_info_get_cont(entries[i], prev);
1304                 if (p)
1305                         swap_entry_free(p, entries[i]);
1306                 prev = p;
1307         }
1308         if (p)
1309                 spin_unlock(&p->lock);
1310 }
1311
1312 /*
1313  * How many references to page are currently swapped out?
1314  * This does not give an exact answer when swap count is continued,
1315  * but does include the high COUNT_CONTINUED flag to allow for that.
1316  */
1317 int page_swapcount(struct page *page)
1318 {
1319         int count = 0;
1320         struct swap_info_struct *p;
1321         struct swap_cluster_info *ci;
1322         swp_entry_t entry;
1323         unsigned long offset;
1324
1325         entry.val = page_private(page);
1326         p = _swap_info_get(entry);
1327         if (p) {
1328                 offset = swp_offset(entry);
1329                 ci = lock_cluster_or_swap_info(p, offset);
1330                 count = swap_count(p->swap_map[offset]);
1331                 unlock_cluster_or_swap_info(p, ci);
1332         }
1333         return count;
1334 }
1335
1336 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1337 {
1338         pgoff_t offset = swp_offset(entry);
1339
1340         return swap_count(si->swap_map[offset]);
1341 }
1342
1343 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1344 {
1345         int count = 0;
1346         pgoff_t offset = swp_offset(entry);
1347         struct swap_cluster_info *ci;
1348
1349         ci = lock_cluster_or_swap_info(si, offset);
1350         count = swap_count(si->swap_map[offset]);
1351         unlock_cluster_or_swap_info(si, ci);
1352         return count;
1353 }
1354
1355 /*
1356  * How many references to @entry are currently swapped out?
1357  * This does not give an exact answer when swap count is continued,
1358  * but does include the high COUNT_CONTINUED flag to allow for that.
1359  */
1360 int __swp_swapcount(swp_entry_t entry)
1361 {
1362         int count = 0;
1363         struct swap_info_struct *si;
1364
1365         si = __swap_info_get(entry);
1366         if (si)
1367                 count = swap_swapcount(si, entry);
1368         return count;
1369 }
1370
1371 /*
1372  * How many references to @entry are currently swapped out?
1373  * This considers COUNT_CONTINUED so it returns exact answer.
1374  */
1375 int swp_swapcount(swp_entry_t entry)
1376 {
1377         int count, tmp_count, n;
1378         struct swap_info_struct *p;
1379         struct swap_cluster_info *ci;
1380         struct page *page;
1381         pgoff_t offset;
1382         unsigned char *map;
1383
1384         p = _swap_info_get(entry);
1385         if (!p)
1386                 return 0;
1387
1388         offset = swp_offset(entry);
1389
1390         ci = lock_cluster_or_swap_info(p, offset);
1391
1392         count = swap_count(p->swap_map[offset]);
1393         if (!(count & COUNT_CONTINUED))
1394                 goto out;
1395
1396         count &= ~COUNT_CONTINUED;
1397         n = SWAP_MAP_MAX + 1;
1398
1399         page = vmalloc_to_page(p->swap_map + offset);
1400         offset &= ~PAGE_MASK;
1401         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1402
1403         do {
1404                 page = list_next_entry(page, lru);
1405                 map = kmap_atomic(page);
1406                 tmp_count = map[offset];
1407                 kunmap_atomic(map);
1408
1409                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1410                 n *= (SWAP_CONT_MAX + 1);
1411         } while (tmp_count & COUNT_CONTINUED);
1412 out:
1413         unlock_cluster_or_swap_info(p, ci);
1414         return count;
1415 }
1416
1417 #ifdef CONFIG_THP_SWAP
1418 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1419                                          swp_entry_t entry)
1420 {
1421         struct swap_cluster_info *ci;
1422         unsigned char *map = si->swap_map;
1423         unsigned long roffset = swp_offset(entry);
1424         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1425         int i;
1426         bool ret = false;
1427
1428         ci = lock_cluster_or_swap_info(si, offset);
1429         if (!ci || !cluster_is_huge(ci)) {
1430                 if (map[roffset] != SWAP_HAS_CACHE)
1431                         ret = true;
1432                 goto unlock_out;
1433         }
1434         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1435                 if (map[offset + i] != SWAP_HAS_CACHE) {
1436                         ret = true;
1437                         break;
1438                 }
1439         }
1440 unlock_out:
1441         unlock_cluster_or_swap_info(si, ci);
1442         return ret;
1443 }
1444
1445 static bool page_swapped(struct page *page)
1446 {
1447         swp_entry_t entry;
1448         struct swap_info_struct *si;
1449
1450         if (likely(!PageTransCompound(page)))
1451                 return page_swapcount(page) != 0;
1452
1453         page = compound_head(page);
1454         entry.val = page_private(page);
1455         si = _swap_info_get(entry);
1456         if (si)
1457                 return swap_page_trans_huge_swapped(si, entry);
1458         return false;
1459 }
1460
1461 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1462                                          int *total_swapcount)
1463 {
1464         int i, map_swapcount, _total_mapcount, _total_swapcount;
1465         unsigned long offset = 0;
1466         struct swap_info_struct *si;
1467         struct swap_cluster_info *ci = NULL;
1468         unsigned char *map = NULL;
1469         int mapcount, swapcount = 0;
1470
1471         /* hugetlbfs shouldn't call it */
1472         VM_BUG_ON_PAGE(PageHuge(page), page);
1473
1474         if (likely(!PageTransCompound(page))) {
1475                 mapcount = atomic_read(&page->_mapcount) + 1;
1476                 if (total_mapcount)
1477                         *total_mapcount = mapcount;
1478                 if (PageSwapCache(page))
1479                         swapcount = page_swapcount(page);
1480                 if (total_swapcount)
1481                         *total_swapcount = swapcount;
1482                 return mapcount + swapcount;
1483         }
1484
1485         page = compound_head(page);
1486
1487         _total_mapcount = _total_swapcount = map_swapcount = 0;
1488         if (PageSwapCache(page)) {
1489                 swp_entry_t entry;
1490
1491                 entry.val = page_private(page);
1492                 si = _swap_info_get(entry);
1493                 if (si) {
1494                         map = si->swap_map;
1495                         offset = swp_offset(entry);
1496                 }
1497         }
1498         if (map)
1499                 ci = lock_cluster(si, offset);
1500         for (i = 0; i < HPAGE_PMD_NR; i++) {
1501                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1502                 _total_mapcount += mapcount;
1503                 if (map) {
1504                         swapcount = swap_count(map[offset + i]);
1505                         _total_swapcount += swapcount;
1506                 }
1507                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1508         }
1509         unlock_cluster(ci);
1510         if (PageDoubleMap(page)) {
1511                 map_swapcount -= 1;
1512                 _total_mapcount -= HPAGE_PMD_NR;
1513         }
1514         mapcount = compound_mapcount(page);
1515         map_swapcount += mapcount;
1516         _total_mapcount += mapcount;
1517         if (total_mapcount)
1518                 *total_mapcount = _total_mapcount;
1519         if (total_swapcount)
1520                 *total_swapcount = _total_swapcount;
1521
1522         return map_swapcount;
1523 }
1524 #else
1525 #define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1526 #define page_swapped(page)                      (page_swapcount(page) != 0)
1527
1528 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1529                                          int *total_swapcount)
1530 {
1531         int mapcount, swapcount = 0;
1532
1533         /* hugetlbfs shouldn't call it */
1534         VM_BUG_ON_PAGE(PageHuge(page), page);
1535
1536         mapcount = page_trans_huge_mapcount(page, total_mapcount);
1537         if (PageSwapCache(page))
1538                 swapcount = page_swapcount(page);
1539         if (total_swapcount)
1540                 *total_swapcount = swapcount;
1541         return mapcount + swapcount;
1542 }
1543 #endif
1544
1545 /*
1546  * We can write to an anon page without COW if there are no other references
1547  * to it.  And as a side-effect, free up its swap: because the old content
1548  * on disk will never be read, and seeking back there to write new content
1549  * later would only waste time away from clustering.
1550  *
1551  * NOTE: total_map_swapcount should not be relied upon by the caller if
1552  * reuse_swap_page() returns false, but it may be always overwritten
1553  * (see the other implementation for CONFIG_SWAP=n).
1554  */
1555 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1556 {
1557         int count, total_mapcount, total_swapcount;
1558
1559         VM_BUG_ON_PAGE(!PageLocked(page), page);
1560         if (unlikely(PageKsm(page)))
1561                 return false;
1562         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1563                                               &total_swapcount);
1564         if (total_map_swapcount)
1565                 *total_map_swapcount = total_mapcount + total_swapcount;
1566         if (count == 1 && PageSwapCache(page) &&
1567             (likely(!PageTransCompound(page)) ||
1568              /* The remaining swap count will be freed soon */
1569              total_swapcount == page_swapcount(page))) {
1570                 if (!PageWriteback(page)) {
1571                         page = compound_head(page);
1572                         delete_from_swap_cache(page);
1573                         SetPageDirty(page);
1574                 } else {
1575                         swp_entry_t entry;
1576                         struct swap_info_struct *p;
1577
1578                         entry.val = page_private(page);
1579                         p = swap_info_get(entry);
1580                         if (p->flags & SWP_STABLE_WRITES) {
1581                                 spin_unlock(&p->lock);
1582                                 return false;
1583                         }
1584                         spin_unlock(&p->lock);
1585                 }
1586         }
1587
1588         return count <= 1;
1589 }
1590
1591 /*
1592  * If swap is getting full, or if there are no more mappings of this page,
1593  * then try_to_free_swap is called to free its swap space.
1594  */
1595 int try_to_free_swap(struct page *page)
1596 {
1597         VM_BUG_ON_PAGE(!PageLocked(page), page);
1598
1599         if (!PageSwapCache(page))
1600                 return 0;
1601         if (PageWriteback(page))
1602                 return 0;
1603         if (page_swapped(page))
1604                 return 0;
1605
1606         /*
1607          * Once hibernation has begun to create its image of memory,
1608          * there's a danger that one of the calls to try_to_free_swap()
1609          * - most probably a call from __try_to_reclaim_swap() while
1610          * hibernation is allocating its own swap pages for the image,
1611          * but conceivably even a call from memory reclaim - will free
1612          * the swap from a page which has already been recorded in the
1613          * image as a clean swapcache page, and then reuse its swap for
1614          * another page of the image.  On waking from hibernation, the
1615          * original page might be freed under memory pressure, then
1616          * later read back in from swap, now with the wrong data.
1617          *
1618          * Hibernation suspends storage while it is writing the image
1619          * to disk so check that here.
1620          */
1621         if (pm_suspended_storage())
1622                 return 0;
1623
1624         page = compound_head(page);
1625         delete_from_swap_cache(page);
1626         SetPageDirty(page);
1627         return 1;
1628 }
1629
1630 /*
1631  * Free the swap entry like above, but also try to
1632  * free the page cache entry if it is the last user.
1633  */
1634 int free_swap_and_cache(swp_entry_t entry)
1635 {
1636         struct swap_info_struct *p;
1637         struct page *page = NULL;
1638         unsigned char count;
1639
1640         if (non_swap_entry(entry))
1641                 return 1;
1642
1643         p = _swap_info_get(entry);
1644         if (p) {
1645                 count = __swap_entry_free(p, entry, 1);
1646                 if (count == SWAP_HAS_CACHE &&
1647                     !swap_page_trans_huge_swapped(p, entry)) {
1648                         page = find_get_page(swap_address_space(entry),
1649                                              swp_offset(entry));
1650                         if (page && !trylock_page(page)) {
1651                                 put_page(page);
1652                                 page = NULL;
1653                         }
1654                 } else if (!count)
1655                         free_swap_slot(entry);
1656         }
1657         if (page) {
1658                 /*
1659                  * Not mapped elsewhere, or swap space full? Free it!
1660                  * Also recheck PageSwapCache now page is locked (above).
1661                  */
1662                 if (PageSwapCache(page) && !PageWriteback(page) &&
1663                     (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1664                     !swap_page_trans_huge_swapped(p, entry)) {
1665                         page = compound_head(page);
1666                         delete_from_swap_cache(page);
1667                         SetPageDirty(page);
1668                 }
1669                 unlock_page(page);
1670                 put_page(page);
1671         }
1672         return p != NULL;
1673 }
1674
1675 #ifdef CONFIG_HIBERNATION
1676 /*
1677  * Find the swap type that corresponds to given device (if any).
1678  *
1679  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1680  * from 0, in which the swap header is expected to be located.
1681  *
1682  * This is needed for the suspend to disk (aka swsusp).
1683  */
1684 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1685 {
1686         struct block_device *bdev = NULL;
1687         int type;
1688
1689         if (device)
1690                 bdev = bdget(device);
1691
1692         spin_lock(&swap_lock);
1693         for (type = 0; type < nr_swapfiles; type++) {
1694                 struct swap_info_struct *sis = swap_info[type];
1695
1696                 if (!(sis->flags & SWP_WRITEOK))
1697                         continue;
1698
1699                 if (!bdev) {
1700                         if (bdev_p)
1701                                 *bdev_p = bdgrab(sis->bdev);
1702
1703                         spin_unlock(&swap_lock);
1704                         return type;
1705                 }
1706                 if (bdev == sis->bdev) {
1707                         struct swap_extent *se = &sis->first_swap_extent;
1708
1709                         if (se->start_block == offset) {
1710                                 if (bdev_p)
1711                                         *bdev_p = bdgrab(sis->bdev);
1712
1713                                 spin_unlock(&swap_lock);
1714                                 bdput(bdev);
1715                                 return type;
1716                         }
1717                 }
1718         }
1719         spin_unlock(&swap_lock);
1720         if (bdev)
1721                 bdput(bdev);
1722
1723         return -ENODEV;
1724 }
1725
1726 /*
1727  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1728  * corresponding to given index in swap_info (swap type).
1729  */
1730 sector_t swapdev_block(int type, pgoff_t offset)
1731 {
1732         struct block_device *bdev;
1733
1734         if ((unsigned int)type >= nr_swapfiles)
1735                 return 0;
1736         if (!(swap_info[type]->flags & SWP_WRITEOK))
1737                 return 0;
1738         return map_swap_entry(swp_entry(type, offset), &bdev);
1739 }
1740
1741 /*
1742  * Return either the total number of swap pages of given type, or the number
1743  * of free pages of that type (depending on @free)
1744  *
1745  * This is needed for software suspend
1746  */
1747 unsigned int count_swap_pages(int type, int free)
1748 {
1749         unsigned int n = 0;
1750
1751         spin_lock(&swap_lock);
1752         if ((unsigned int)type < nr_swapfiles) {
1753                 struct swap_info_struct *sis = swap_info[type];
1754
1755                 spin_lock(&sis->lock);
1756                 if (sis->flags & SWP_WRITEOK) {
1757                         n = sis->pages;
1758                         if (free)
1759                                 n -= sis->inuse_pages;
1760                 }
1761                 spin_unlock(&sis->lock);
1762         }
1763         spin_unlock(&swap_lock);
1764         return n;
1765 }
1766 #endif /* CONFIG_HIBERNATION */
1767
1768 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1769 {
1770         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1771 }
1772
1773 /*
1774  * No need to decide whether this PTE shares the swap entry with others,
1775  * just let do_wp_page work it out if a write is requested later - to
1776  * force COW, vm_page_prot omits write permission from any private vma.
1777  */
1778 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1779                 unsigned long addr, swp_entry_t entry, struct page *page)
1780 {
1781         struct page *swapcache;
1782         struct mem_cgroup *memcg;
1783         spinlock_t *ptl;
1784         pte_t *pte;
1785         int ret = 1;
1786
1787         swapcache = page;
1788         page = ksm_might_need_to_copy(page, vma, addr);
1789         if (unlikely(!page))
1790                 return -ENOMEM;
1791
1792         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1793                                 &memcg, false)) {
1794                 ret = -ENOMEM;
1795                 goto out_nolock;
1796         }
1797
1798         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1799         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1800                 mem_cgroup_cancel_charge(page, memcg, false);
1801                 ret = 0;
1802                 goto out;
1803         }
1804
1805         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1806         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1807         get_page(page);
1808         set_pte_at(vma->vm_mm, addr, pte,
1809                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1810         if (page == swapcache) {
1811                 page_add_anon_rmap(page, vma, addr, false);
1812                 mem_cgroup_commit_charge(page, memcg, true, false);
1813         } else { /* ksm created a completely new copy */
1814                 page_add_new_anon_rmap(page, vma, addr, false);
1815                 mem_cgroup_commit_charge(page, memcg, false, false);
1816                 lru_cache_add_active_or_unevictable(page, vma);
1817         }
1818         swap_free(entry);
1819         /*
1820          * Move the page to the active list so it is not
1821          * immediately swapped out again after swapon.
1822          */
1823         activate_page(page);
1824 out:
1825         pte_unmap_unlock(pte, ptl);
1826 out_nolock:
1827         if (page != swapcache) {
1828                 unlock_page(page);
1829                 put_page(page);
1830         }
1831         return ret;
1832 }
1833
1834 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1835                                 unsigned long addr, unsigned long end,
1836                                 swp_entry_t entry, struct page *page)
1837 {
1838         pte_t swp_pte = swp_entry_to_pte(entry);
1839         pte_t *pte;
1840         int ret = 0;
1841
1842         /*
1843          * We don't actually need pte lock while scanning for swp_pte: since
1844          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1845          * page table while we're scanning; though it could get zapped, and on
1846          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1847          * of unmatched parts which look like swp_pte, so unuse_pte must
1848          * recheck under pte lock.  Scanning without pte lock lets it be
1849          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1850          */
1851         pte = pte_offset_map(pmd, addr);
1852         do {
1853                 /*
1854                  * swapoff spends a _lot_ of time in this loop!
1855                  * Test inline before going to call unuse_pte.
1856                  */
1857                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1858                         pte_unmap(pte);
1859                         ret = unuse_pte(vma, pmd, addr, entry, page);
1860                         if (ret)
1861                                 goto out;
1862                         pte = pte_offset_map(pmd, addr);
1863                 }
1864         } while (pte++, addr += PAGE_SIZE, addr != end);
1865         pte_unmap(pte - 1);
1866 out:
1867         return ret;
1868 }
1869
1870 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1871                                 unsigned long addr, unsigned long end,
1872                                 swp_entry_t entry, struct page *page)
1873 {
1874         pmd_t *pmd;
1875         unsigned long next;
1876         int ret;
1877
1878         pmd = pmd_offset(pud, addr);
1879         do {
1880                 cond_resched();
1881                 next = pmd_addr_end(addr, end);
1882                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1883                         continue;
1884                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1885                 if (ret)
1886                         return ret;
1887         } while (pmd++, addr = next, addr != end);
1888         return 0;
1889 }
1890
1891 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1892                                 unsigned long addr, unsigned long end,
1893                                 swp_entry_t entry, struct page *page)
1894 {
1895         pud_t *pud;
1896         unsigned long next;
1897         int ret;
1898
1899         pud = pud_offset(p4d, addr);
1900         do {
1901                 next = pud_addr_end(addr, end);
1902                 if (pud_none_or_clear_bad(pud))
1903                         continue;
1904                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1905                 if (ret)
1906                         return ret;
1907         } while (pud++, addr = next, addr != end);
1908         return 0;
1909 }
1910
1911 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1912                                 unsigned long addr, unsigned long end,
1913                                 swp_entry_t entry, struct page *page)
1914 {
1915         p4d_t *p4d;
1916         unsigned long next;
1917         int ret;
1918
1919         p4d = p4d_offset(pgd, addr);
1920         do {
1921                 next = p4d_addr_end(addr, end);
1922                 if (p4d_none_or_clear_bad(p4d))
1923                         continue;
1924                 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1925                 if (ret)
1926                         return ret;
1927         } while (p4d++, addr = next, addr != end);
1928         return 0;
1929 }
1930
1931 static int unuse_vma(struct vm_area_struct *vma,
1932                                 swp_entry_t entry, struct page *page)
1933 {
1934         pgd_t *pgd;
1935         unsigned long addr, end, next;
1936         int ret;
1937
1938         if (page_anon_vma(page)) {
1939                 addr = page_address_in_vma(page, vma);
1940                 if (addr == -EFAULT)
1941                         return 0;
1942                 else
1943                         end = addr + PAGE_SIZE;
1944         } else {
1945                 addr = vma->vm_start;
1946                 end = vma->vm_end;
1947         }
1948
1949         pgd = pgd_offset(vma->vm_mm, addr);
1950         do {
1951                 next = pgd_addr_end(addr, end);
1952                 if (pgd_none_or_clear_bad(pgd))
1953                         continue;
1954                 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1955                 if (ret)
1956                         return ret;
1957         } while (pgd++, addr = next, addr != end);
1958         return 0;
1959 }
1960
1961 static int unuse_mm(struct mm_struct *mm,
1962                                 swp_entry_t entry, struct page *page)
1963 {
1964         struct vm_area_struct *vma;
1965         int ret = 0;
1966
1967         if (!down_read_trylock(&mm->mmap_sem)) {
1968                 /*
1969                  * Activate page so shrink_inactive_list is unlikely to unmap
1970                  * its ptes while lock is dropped, so swapoff can make progress.
1971                  */
1972                 activate_page(page);
1973                 unlock_page(page);
1974                 down_read(&mm->mmap_sem);
1975                 lock_page(page);
1976         }
1977         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1978                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1979                         break;
1980                 cond_resched();
1981         }
1982         up_read(&mm->mmap_sem);
1983         return (ret < 0)? ret: 0;
1984 }
1985
1986 /*
1987  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1988  * from current position to next entry still in use.
1989  * Recycle to start on reaching the end, returning 0 when empty.
1990  */
1991 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1992                                         unsigned int prev, bool frontswap)
1993 {
1994         unsigned int max = si->max;
1995         unsigned int i = prev;
1996         unsigned char count;
1997
1998         /*
1999          * No need for swap_lock here: we're just looking
2000          * for whether an entry is in use, not modifying it; false
2001          * hits are okay, and sys_swapoff() has already prevented new
2002          * allocations from this area (while holding swap_lock).
2003          */
2004         for (;;) {
2005                 if (++i >= max) {
2006                         if (!prev) {
2007                                 i = 0;
2008                                 break;
2009                         }
2010                         /*
2011                          * No entries in use at top of swap_map,
2012                          * loop back to start and recheck there.
2013                          */
2014                         max = prev + 1;
2015                         prev = 0;
2016                         i = 1;
2017                 }
2018                 count = READ_ONCE(si->swap_map[i]);
2019                 if (count && swap_count(count) != SWAP_MAP_BAD)
2020                         if (!frontswap || frontswap_test(si, i))
2021                                 break;
2022                 if ((i % LATENCY_LIMIT) == 0)
2023                         cond_resched();
2024         }
2025         return i;
2026 }
2027
2028 /*
2029  * We completely avoid races by reading each swap page in advance,
2030  * and then search for the process using it.  All the necessary
2031  * page table adjustments can then be made atomically.
2032  *
2033  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2034  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2035  */
2036 int try_to_unuse(unsigned int type, bool frontswap,
2037                  unsigned long pages_to_unuse)
2038 {
2039         struct swap_info_struct *si = swap_info[type];
2040         struct mm_struct *start_mm;
2041         volatile unsigned char *swap_map; /* swap_map is accessed without
2042                                            * locking. Mark it as volatile
2043                                            * to prevent compiler doing
2044                                            * something odd.
2045                                            */
2046         unsigned char swcount;
2047         struct page *page;
2048         swp_entry_t entry;
2049         unsigned int i = 0;
2050         int retval = 0;
2051
2052         /*
2053          * When searching mms for an entry, a good strategy is to
2054          * start at the first mm we freed the previous entry from
2055          * (though actually we don't notice whether we or coincidence
2056          * freed the entry).  Initialize this start_mm with a hold.
2057          *
2058          * A simpler strategy would be to start at the last mm we
2059          * freed the previous entry from; but that would take less
2060          * advantage of mmlist ordering, which clusters forked mms
2061          * together, child after parent.  If we race with dup_mmap(), we
2062          * prefer to resolve parent before child, lest we miss entries
2063          * duplicated after we scanned child: using last mm would invert
2064          * that.
2065          */
2066         start_mm = &init_mm;
2067         mmget(&init_mm);
2068
2069         /*
2070          * Keep on scanning until all entries have gone.  Usually,
2071          * one pass through swap_map is enough, but not necessarily:
2072          * there are races when an instance of an entry might be missed.
2073          */
2074         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2075                 if (signal_pending(current)) {
2076                         retval = -EINTR;
2077                         break;
2078                 }
2079
2080                 /*
2081                  * Get a page for the entry, using the existing swap
2082                  * cache page if there is one.  Otherwise, get a clean
2083                  * page and read the swap into it.
2084                  */
2085                 swap_map = &si->swap_map[i];
2086                 entry = swp_entry(type, i);
2087                 page = read_swap_cache_async(entry,
2088                                         GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2089                 if (!page) {
2090                         /*
2091                          * Either swap_duplicate() failed because entry
2092                          * has been freed independently, and will not be
2093                          * reused since sys_swapoff() already disabled
2094                          * allocation from here, or alloc_page() failed.
2095                          */
2096                         swcount = *swap_map;
2097                         /*
2098                          * We don't hold lock here, so the swap entry could be
2099                          * SWAP_MAP_BAD (when the cluster is discarding).
2100                          * Instead of fail out, We can just skip the swap
2101                          * entry because swapoff will wait for discarding
2102                          * finish anyway.
2103                          */
2104                         if (!swcount || swcount == SWAP_MAP_BAD)
2105                                 continue;
2106                         retval = -ENOMEM;
2107                         break;
2108                 }
2109
2110                 /*
2111                  * Don't hold on to start_mm if it looks like exiting.
2112                  */
2113                 if (atomic_read(&start_mm->mm_users) == 1) {
2114                         mmput(start_mm);
2115                         start_mm = &init_mm;
2116                         mmget(&init_mm);
2117                 }
2118
2119                 /*
2120                  * Wait for and lock page.  When do_swap_page races with
2121                  * try_to_unuse, do_swap_page can handle the fault much
2122                  * faster than try_to_unuse can locate the entry.  This
2123                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
2124                  * defer to do_swap_page in such a case - in some tests,
2125                  * do_swap_page and try_to_unuse repeatedly compete.
2126                  */
2127                 wait_on_page_locked(page);
2128                 wait_on_page_writeback(page);
2129                 lock_page(page);
2130                 wait_on_page_writeback(page);
2131
2132                 /*
2133                  * Remove all references to entry.
2134                  */
2135                 swcount = *swap_map;
2136                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2137                         retval = shmem_unuse(entry, page);
2138                         /* page has already been unlocked and released */
2139                         if (retval < 0)
2140                                 break;
2141                         continue;
2142                 }
2143                 if (swap_count(swcount) && start_mm != &init_mm)
2144                         retval = unuse_mm(start_mm, entry, page);
2145
2146                 if (swap_count(*swap_map)) {
2147                         int set_start_mm = (*swap_map >= swcount);
2148                         struct list_head *p = &start_mm->mmlist;
2149                         struct mm_struct *new_start_mm = start_mm;
2150                         struct mm_struct *prev_mm = start_mm;
2151                         struct mm_struct *mm;
2152
2153                         mmget(new_start_mm);
2154                         mmget(prev_mm);
2155                         spin_lock(&mmlist_lock);
2156                         while (swap_count(*swap_map) && !retval &&
2157                                         (p = p->next) != &start_mm->mmlist) {
2158                                 mm = list_entry(p, struct mm_struct, mmlist);
2159                                 if (!mmget_not_zero(mm))
2160                                         continue;
2161                                 spin_unlock(&mmlist_lock);
2162                                 mmput(prev_mm);
2163                                 prev_mm = mm;
2164
2165                                 cond_resched();
2166
2167                                 swcount = *swap_map;
2168                                 if (!swap_count(swcount)) /* any usage ? */
2169                                         ;
2170                                 else if (mm == &init_mm)
2171                                         set_start_mm = 1;
2172                                 else
2173                                         retval = unuse_mm(mm, entry, page);
2174
2175                                 if (set_start_mm && *swap_map < swcount) {
2176                                         mmput(new_start_mm);
2177                                         mmget(mm);
2178                                         new_start_mm = mm;
2179                                         set_start_mm = 0;
2180                                 }
2181                                 spin_lock(&mmlist_lock);
2182                         }
2183                         spin_unlock(&mmlist_lock);
2184                         mmput(prev_mm);
2185                         mmput(start_mm);
2186                         start_mm = new_start_mm;
2187                 }
2188                 if (retval) {
2189                         unlock_page(page);
2190                         put_page(page);
2191                         break;
2192                 }
2193
2194                 /*
2195                  * If a reference remains (rare), we would like to leave
2196                  * the page in the swap cache; but try_to_unmap could
2197                  * then re-duplicate the entry once we drop page lock,
2198                  * so we might loop indefinitely; also, that page could
2199                  * not be swapped out to other storage meanwhile.  So:
2200                  * delete from cache even if there's another reference,
2201                  * after ensuring that the data has been saved to disk -
2202                  * since if the reference remains (rarer), it will be
2203                  * read from disk into another page.  Splitting into two
2204                  * pages would be incorrect if swap supported "shared
2205                  * private" pages, but they are handled by tmpfs files.
2206                  *
2207                  * Given how unuse_vma() targets one particular offset
2208                  * in an anon_vma, once the anon_vma has been determined,
2209                  * this splitting happens to be just what is needed to
2210                  * handle where KSM pages have been swapped out: re-reading
2211                  * is unnecessarily slow, but we can fix that later on.
2212                  */
2213                 if (swap_count(*swap_map) &&
2214                      PageDirty(page) && PageSwapCache(page)) {
2215                         struct writeback_control wbc = {
2216                                 .sync_mode = WB_SYNC_NONE,
2217                         };
2218
2219                         swap_writepage(compound_head(page), &wbc);
2220                         lock_page(page);
2221                         wait_on_page_writeback(page);
2222                 }
2223
2224                 /*
2225                  * It is conceivable that a racing task removed this page from
2226                  * swap cache just before we acquired the page lock at the top,
2227                  * or while we dropped it in unuse_mm().  The page might even
2228                  * be back in swap cache on another swap area: that we must not
2229                  * delete, since it may not have been written out to swap yet.
2230                  */
2231                 if (PageSwapCache(page) &&
2232                     likely(page_private(page) == entry.val) &&
2233                     !page_swapped(page))
2234                         delete_from_swap_cache(compound_head(page));
2235
2236                 /*
2237                  * So we could skip searching mms once swap count went
2238                  * to 1, we did not mark any present ptes as dirty: must
2239                  * mark page dirty so shrink_page_list will preserve it.
2240                  */
2241                 SetPageDirty(page);
2242                 unlock_page(page);
2243                 put_page(page);
2244
2245                 /*
2246                  * Make sure that we aren't completely killing
2247                  * interactive performance.
2248                  */
2249                 cond_resched();
2250                 if (frontswap && pages_to_unuse > 0) {
2251                         if (!--pages_to_unuse)
2252                                 break;
2253                 }
2254         }
2255
2256         mmput(start_mm);
2257         return retval;
2258 }
2259
2260 /*
2261  * After a successful try_to_unuse, if no swap is now in use, we know
2262  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2263  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2264  * added to the mmlist just after page_duplicate - before would be racy.
2265  */
2266 static void drain_mmlist(void)
2267 {
2268         struct list_head *p, *next;
2269         unsigned int type;
2270
2271         for (type = 0; type < nr_swapfiles; type++)
2272                 if (swap_info[type]->inuse_pages)
2273                         return;
2274         spin_lock(&mmlist_lock);
2275         list_for_each_safe(p, next, &init_mm.mmlist)
2276                 list_del_init(p);
2277         spin_unlock(&mmlist_lock);
2278 }
2279
2280 /*
2281  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2282  * corresponds to page offset for the specified swap entry.
2283  * Note that the type of this function is sector_t, but it returns page offset
2284  * into the bdev, not sector offset.
2285  */
2286 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2287 {
2288         struct swap_info_struct *sis;
2289         struct swap_extent *start_se;
2290         struct swap_extent *se;
2291         pgoff_t offset;
2292
2293         sis = swap_info[swp_type(entry)];
2294         *bdev = sis->bdev;
2295
2296         offset = swp_offset(entry);
2297         start_se = sis->curr_swap_extent;
2298         se = start_se;
2299
2300         for ( ; ; ) {
2301                 if (se->start_page <= offset &&
2302                                 offset < (se->start_page + se->nr_pages)) {
2303                         return se->start_block + (offset - se->start_page);
2304                 }
2305                 se = list_next_entry(se, list);
2306                 sis->curr_swap_extent = se;
2307                 BUG_ON(se == start_se);         /* It *must* be present */
2308         }
2309 }
2310
2311 /*
2312  * Returns the page offset into bdev for the specified page's swap entry.
2313  */
2314 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2315 {
2316         swp_entry_t entry;
2317         entry.val = page_private(page);
2318         return map_swap_entry(entry, bdev);
2319 }
2320
2321 /*
2322  * Free all of a swapdev's extent information
2323  */
2324 static void destroy_swap_extents(struct swap_info_struct *sis)
2325 {
2326         while (!list_empty(&sis->first_swap_extent.list)) {
2327                 struct swap_extent *se;
2328
2329                 se = list_first_entry(&sis->first_swap_extent.list,
2330                                 struct swap_extent, list);
2331                 list_del(&se->list);
2332                 kfree(se);
2333         }
2334
2335         if (sis->flags & SWP_FILE) {
2336                 struct file *swap_file = sis->swap_file;
2337                 struct address_space *mapping = swap_file->f_mapping;
2338
2339                 sis->flags &= ~SWP_FILE;
2340                 mapping->a_ops->swap_deactivate(swap_file);
2341         }
2342 }
2343
2344 /*
2345  * Add a block range (and the corresponding page range) into this swapdev's
2346  * extent list.  The extent list is kept sorted in page order.
2347  *
2348  * This function rather assumes that it is called in ascending page order.
2349  */
2350 int
2351 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2352                 unsigned long nr_pages, sector_t start_block)
2353 {
2354         struct swap_extent *se;
2355         struct swap_extent *new_se;
2356         struct list_head *lh;
2357
2358         if (start_page == 0) {
2359                 se = &sis->first_swap_extent;
2360                 sis->curr_swap_extent = se;
2361                 se->start_page = 0;
2362                 se->nr_pages = nr_pages;
2363                 se->start_block = start_block;
2364                 return 1;
2365         } else {
2366                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2367                 se = list_entry(lh, struct swap_extent, list);
2368                 BUG_ON(se->start_page + se->nr_pages != start_page);
2369                 if (se->start_block + se->nr_pages == start_block) {
2370                         /* Merge it */
2371                         se->nr_pages += nr_pages;
2372                         return 0;
2373                 }
2374         }
2375
2376         /*
2377          * No merge.  Insert a new extent, preserving ordering.
2378          */
2379         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2380         if (new_se == NULL)
2381                 return -ENOMEM;
2382         new_se->start_page = start_page;
2383         new_se->nr_pages = nr_pages;
2384         new_se->start_block = start_block;
2385
2386         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2387         return 1;
2388 }
2389
2390 /*
2391  * A `swap extent' is a simple thing which maps a contiguous range of pages
2392  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2393  * is built at swapon time and is then used at swap_writepage/swap_readpage
2394  * time for locating where on disk a page belongs.
2395  *
2396  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2397  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2398  * swap files identically.
2399  *
2400  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2401  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2402  * swapfiles are handled *identically* after swapon time.
2403  *
2404  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2405  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2406  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2407  * requirements, they are simply tossed out - we will never use those blocks
2408  * for swapping.
2409  *
2410  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2411  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2412  * which will scribble on the fs.
2413  *
2414  * The amount of disk space which a single swap extent represents varies.
2415  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2416  * extents in the list.  To avoid much list walking, we cache the previous
2417  * search location in `curr_swap_extent', and start new searches from there.
2418  * This is extremely effective.  The average number of iterations in
2419  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2420  */
2421 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2422 {
2423         struct file *swap_file = sis->swap_file;
2424         struct address_space *mapping = swap_file->f_mapping;
2425         struct inode *inode = mapping->host;
2426         int ret;
2427
2428         if (S_ISBLK(inode->i_mode)) {
2429                 ret = add_swap_extent(sis, 0, sis->max, 0);
2430                 *span = sis->pages;
2431                 return ret;
2432         }
2433
2434         if (mapping->a_ops->swap_activate) {
2435                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2436                 if (!ret) {
2437                         sis->flags |= SWP_FILE;
2438                         ret = add_swap_extent(sis, 0, sis->max, 0);
2439                         *span = sis->pages;
2440                 }
2441                 return ret;
2442         }
2443
2444         return generic_swapfile_activate(sis, swap_file, span);
2445 }
2446
2447 static int swap_node(struct swap_info_struct *p)
2448 {
2449         struct block_device *bdev;
2450
2451         if (p->bdev)
2452                 bdev = p->bdev;
2453         else
2454                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2455
2456         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2457 }
2458
2459 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2460                                 unsigned char *swap_map,
2461                                 struct swap_cluster_info *cluster_info)
2462 {
2463         int i;
2464
2465         if (prio >= 0)
2466                 p->prio = prio;
2467         else
2468                 p->prio = --least_priority;
2469         /*
2470          * the plist prio is negated because plist ordering is
2471          * low-to-high, while swap ordering is high-to-low
2472          */
2473         p->list.prio = -p->prio;
2474         for_each_node(i) {
2475                 if (p->prio >= 0)
2476                         p->avail_lists[i].prio = -p->prio;
2477                 else {
2478                         if (swap_node(p) == i)
2479                                 p->avail_lists[i].prio = 1;
2480                         else
2481                                 p->avail_lists[i].prio = -p->prio;
2482                 }
2483         }
2484         p->swap_map = swap_map;
2485         p->cluster_info = cluster_info;
2486         p->flags |= SWP_WRITEOK;
2487         atomic_long_add(p->pages, &nr_swap_pages);
2488         total_swap_pages += p->pages;
2489
2490         assert_spin_locked(&swap_lock);
2491         /*
2492          * both lists are plists, and thus priority ordered.
2493          * swap_active_head needs to be priority ordered for swapoff(),
2494          * which on removal of any swap_info_struct with an auto-assigned
2495          * (i.e. negative) priority increments the auto-assigned priority
2496          * of any lower-priority swap_info_structs.
2497          * swap_avail_head needs to be priority ordered for get_swap_page(),
2498          * which allocates swap pages from the highest available priority
2499          * swap_info_struct.
2500          */
2501         plist_add(&p->list, &swap_active_head);
2502         add_to_avail_list(p);
2503 }
2504
2505 static void enable_swap_info(struct swap_info_struct *p, int prio,
2506                                 unsigned char *swap_map,
2507                                 struct swap_cluster_info *cluster_info,
2508                                 unsigned long *frontswap_map)
2509 {
2510         frontswap_init(p->type, frontswap_map);
2511         spin_lock(&swap_lock);
2512         spin_lock(&p->lock);
2513          _enable_swap_info(p, prio, swap_map, cluster_info);
2514         spin_unlock(&p->lock);
2515         spin_unlock(&swap_lock);
2516 }
2517
2518 static void reinsert_swap_info(struct swap_info_struct *p)
2519 {
2520         spin_lock(&swap_lock);
2521         spin_lock(&p->lock);
2522         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2523         spin_unlock(&p->lock);
2524         spin_unlock(&swap_lock);
2525 }
2526
2527 bool has_usable_swap(void)
2528 {
2529         bool ret = true;
2530
2531         spin_lock(&swap_lock);
2532         if (plist_head_empty(&swap_active_head))
2533                 ret = false;
2534         spin_unlock(&swap_lock);
2535         return ret;
2536 }
2537
2538 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2539 {
2540         struct swap_info_struct *p = NULL;
2541         unsigned char *swap_map;
2542         struct swap_cluster_info *cluster_info;
2543         unsigned long *frontswap_map;
2544         struct file *swap_file, *victim;
2545         struct address_space *mapping;
2546         struct inode *inode;
2547         struct filename *pathname;
2548         int err, found = 0;
2549         unsigned int old_block_size;
2550
2551         if (!capable(CAP_SYS_ADMIN))
2552                 return -EPERM;
2553
2554         BUG_ON(!current->mm);
2555
2556         pathname = getname(specialfile);
2557         if (IS_ERR(pathname))
2558                 return PTR_ERR(pathname);
2559
2560         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2561         err = PTR_ERR(victim);
2562         if (IS_ERR(victim))
2563                 goto out;
2564
2565         mapping = victim->f_mapping;
2566         spin_lock(&swap_lock);
2567         plist_for_each_entry(p, &swap_active_head, list) {
2568                 if (p->flags & SWP_WRITEOK) {
2569                         if (p->swap_file->f_mapping == mapping) {
2570                                 found = 1;
2571                                 break;
2572                         }
2573                 }
2574         }
2575         if (!found) {
2576                 err = -EINVAL;
2577                 spin_unlock(&swap_lock);
2578                 goto out_dput;
2579         }
2580         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2581                 vm_unacct_memory(p->pages);
2582         else {
2583                 err = -ENOMEM;
2584                 spin_unlock(&swap_lock);
2585                 goto out_dput;
2586         }
2587         del_from_avail_list(p);
2588         spin_lock(&p->lock);
2589         if (p->prio < 0) {
2590                 struct swap_info_struct *si = p;
2591                 int nid;
2592
2593                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2594                         si->prio++;
2595                         si->list.prio--;
2596                         for_each_node(nid) {
2597                                 if (si->avail_lists[nid].prio != 1)
2598                                         si->avail_lists[nid].prio--;
2599                         }
2600                 }
2601                 least_priority++;
2602         }
2603         plist_del(&p->list, &swap_active_head);
2604         atomic_long_sub(p->pages, &nr_swap_pages);
2605         total_swap_pages -= p->pages;
2606         p->flags &= ~SWP_WRITEOK;
2607         spin_unlock(&p->lock);
2608         spin_unlock(&swap_lock);
2609
2610         disable_swap_slots_cache_lock();
2611
2612         set_current_oom_origin();
2613         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2614         clear_current_oom_origin();
2615
2616         if (err) {
2617                 /* re-insert swap space back into swap_list */
2618                 reinsert_swap_info(p);
2619                 reenable_swap_slots_cache_unlock();
2620                 goto out_dput;
2621         }
2622
2623         reenable_swap_slots_cache_unlock();
2624
2625         flush_work(&p->discard_work);
2626
2627         destroy_swap_extents(p);
2628         if (p->flags & SWP_CONTINUED)
2629                 free_swap_count_continuations(p);
2630
2631         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2632                 atomic_dec(&nr_rotate_swap);
2633
2634         mutex_lock(&swapon_mutex);
2635         spin_lock(&swap_lock);
2636         spin_lock(&p->lock);
2637         drain_mmlist();
2638
2639         /* wait for anyone still in scan_swap_map */
2640         p->highest_bit = 0;             /* cuts scans short */
2641         while (p->flags >= SWP_SCANNING) {
2642                 spin_unlock(&p->lock);
2643                 spin_unlock(&swap_lock);
2644                 schedule_timeout_uninterruptible(1);
2645                 spin_lock(&swap_lock);
2646                 spin_lock(&p->lock);
2647         }
2648
2649         swap_file = p->swap_file;
2650         old_block_size = p->old_block_size;
2651         p->swap_file = NULL;
2652         p->max = 0;
2653         swap_map = p->swap_map;
2654         p->swap_map = NULL;
2655         cluster_info = p->cluster_info;
2656         p->cluster_info = NULL;
2657         frontswap_map = frontswap_map_get(p);
2658         spin_unlock(&p->lock);
2659         spin_unlock(&swap_lock);
2660         frontswap_invalidate_area(p->type);
2661         frontswap_map_set(p, NULL);
2662         mutex_unlock(&swapon_mutex);
2663         free_percpu(p->percpu_cluster);
2664         p->percpu_cluster = NULL;
2665         vfree(swap_map);
2666         kvfree(cluster_info);
2667         kvfree(frontswap_map);
2668         /* Destroy swap account information */
2669         swap_cgroup_swapoff(p->type);
2670         exit_swap_address_space(p->type);
2671
2672         inode = mapping->host;
2673         if (S_ISBLK(inode->i_mode)) {
2674                 struct block_device *bdev = I_BDEV(inode);
2675                 set_blocksize(bdev, old_block_size);
2676                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2677         } else {
2678                 inode_lock(inode);
2679                 inode->i_flags &= ~S_SWAPFILE;
2680                 inode_unlock(inode);
2681         }
2682         filp_close(swap_file, NULL);
2683
2684         /*
2685          * Clear the SWP_USED flag after all resources are freed so that swapon
2686          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2687          * not hold p->lock after we cleared its SWP_WRITEOK.
2688          */
2689         spin_lock(&swap_lock);
2690         p->flags = 0;
2691         spin_unlock(&swap_lock);
2692
2693         err = 0;
2694         atomic_inc(&proc_poll_event);
2695         wake_up_interruptible(&proc_poll_wait);
2696
2697 out_dput:
2698         filp_close(victim, NULL);
2699 out:
2700         putname(pathname);
2701         return err;
2702 }
2703
2704 #ifdef CONFIG_PROC_FS
2705 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2706 {
2707         struct seq_file *seq = file->private_data;
2708
2709         poll_wait(file, &proc_poll_wait, wait);
2710
2711         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2712                 seq->poll_event = atomic_read(&proc_poll_event);
2713                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2714         }
2715
2716         return EPOLLIN | EPOLLRDNORM;
2717 }
2718
2719 /* iterator */
2720 static void *swap_start(struct seq_file *swap, loff_t *pos)
2721 {
2722         struct swap_info_struct *si;
2723         int type;
2724         loff_t l = *pos;
2725
2726         mutex_lock(&swapon_mutex);
2727
2728         if (!l)
2729                 return SEQ_START_TOKEN;
2730
2731         for (type = 0; type < nr_swapfiles; type++) {
2732                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2733                 si = swap_info[type];
2734                 if (!(si->flags & SWP_USED) || !si->swap_map)
2735                         continue;
2736                 if (!--l)
2737                         return si;
2738         }
2739
2740         return NULL;
2741 }
2742
2743 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2744 {
2745         struct swap_info_struct *si = v;
2746         int type;
2747
2748         if (v == SEQ_START_TOKEN)
2749                 type = 0;
2750         else
2751                 type = si->type + 1;
2752
2753         for (; type < nr_swapfiles; type++) {
2754                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2755                 si = swap_info[type];
2756                 if (!(si->flags & SWP_USED) || !si->swap_map)
2757                         continue;
2758                 ++*pos;
2759                 return si;
2760         }
2761
2762         return NULL;
2763 }
2764
2765 static void swap_stop(struct seq_file *swap, void *v)
2766 {
2767         mutex_unlock(&swapon_mutex);
2768 }
2769
2770 static int swap_show(struct seq_file *swap, void *v)
2771 {
2772         struct swap_info_struct *si = v;
2773         struct file *file;
2774         int len;
2775
2776         if (si == SEQ_START_TOKEN) {
2777                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2778                 return 0;
2779         }
2780
2781         file = si->swap_file;
2782         len = seq_file_path(swap, file, " \t\n\\");
2783         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2784                         len < 40 ? 40 - len : 1, " ",
2785                         S_ISBLK(file_inode(file)->i_mode) ?
2786                                 "partition" : "file\t",
2787                         si->pages << (PAGE_SHIFT - 10),
2788                         si->inuse_pages << (PAGE_SHIFT - 10),
2789                         si->prio);
2790         return 0;
2791 }
2792
2793 static const struct seq_operations swaps_op = {
2794         .start =        swap_start,
2795         .next =         swap_next,
2796         .stop =         swap_stop,
2797         .show =         swap_show
2798 };
2799
2800 static int swaps_open(struct inode *inode, struct file *file)
2801 {
2802         struct seq_file *seq;
2803         int ret;
2804
2805         ret = seq_open(file, &swaps_op);
2806         if (ret)
2807                 return ret;
2808
2809         seq = file->private_data;
2810         seq->poll_event = atomic_read(&proc_poll_event);
2811         return 0;
2812 }
2813
2814 static const struct file_operations proc_swaps_operations = {
2815         .open           = swaps_open,
2816         .read           = seq_read,
2817         .llseek         = seq_lseek,
2818         .release        = seq_release,
2819         .poll           = swaps_poll,
2820 };
2821
2822 static int __init procswaps_init(void)
2823 {
2824         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2825         return 0;
2826 }
2827 __initcall(procswaps_init);
2828 #endif /* CONFIG_PROC_FS */
2829
2830 #ifdef MAX_SWAPFILES_CHECK
2831 static int __init max_swapfiles_check(void)
2832 {
2833         MAX_SWAPFILES_CHECK();
2834         return 0;
2835 }
2836 late_initcall(max_swapfiles_check);
2837 #endif
2838
2839 static struct swap_info_struct *alloc_swap_info(void)
2840 {
2841         struct swap_info_struct *p;
2842         unsigned int type;
2843         int i;
2844
2845         p = kzalloc(sizeof(*p), GFP_KERNEL);
2846         if (!p)
2847                 return ERR_PTR(-ENOMEM);
2848
2849         spin_lock(&swap_lock);
2850         for (type = 0; type < nr_swapfiles; type++) {
2851                 if (!(swap_info[type]->flags & SWP_USED))
2852                         break;
2853         }
2854         if (type >= MAX_SWAPFILES) {
2855                 spin_unlock(&swap_lock);
2856                 kfree(p);
2857                 return ERR_PTR(-EPERM);
2858         }
2859         if (type >= nr_swapfiles) {
2860                 p->type = type;
2861                 swap_info[type] = p;
2862                 /*
2863                  * Write swap_info[type] before nr_swapfiles, in case a
2864                  * racing procfs swap_start() or swap_next() is reading them.
2865                  * (We never shrink nr_swapfiles, we never free this entry.)
2866                  */
2867                 smp_wmb();
2868                 nr_swapfiles++;
2869         } else {
2870                 kfree(p);
2871                 p = swap_info[type];
2872                 /*
2873                  * Do not memset this entry: a racing procfs swap_next()
2874                  * would be relying on p->type to remain valid.
2875                  */
2876         }
2877         INIT_LIST_HEAD(&p->first_swap_extent.list);
2878         plist_node_init(&p->list, 0);
2879         for_each_node(i)
2880                 plist_node_init(&p->avail_lists[i], 0);
2881         p->flags = SWP_USED;
2882         spin_unlock(&swap_lock);
2883         spin_lock_init(&p->lock);
2884         spin_lock_init(&p->cont_lock);
2885
2886         return p;
2887 }
2888
2889 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2890 {
2891         int error;
2892
2893         if (S_ISBLK(inode->i_mode)) {
2894                 p->bdev = bdgrab(I_BDEV(inode));
2895                 error = blkdev_get(p->bdev,
2896                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2897                 if (error < 0) {
2898                         p->bdev = NULL;
2899                         return error;
2900                 }
2901                 p->old_block_size = block_size(p->bdev);
2902                 error = set_blocksize(p->bdev, PAGE_SIZE);
2903                 if (error < 0)
2904                         return error;
2905                 p->flags |= SWP_BLKDEV;
2906         } else if (S_ISREG(inode->i_mode)) {
2907                 p->bdev = inode->i_sb->s_bdev;
2908                 inode_lock(inode);
2909                 if (IS_SWAPFILE(inode))
2910                         return -EBUSY;
2911         } else
2912                 return -EINVAL;
2913
2914         return 0;
2915 }
2916
2917
2918 /*
2919  * Find out how many pages are allowed for a single swap device. There
2920  * are two limiting factors:
2921  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2922  * 2) the number of bits in the swap pte, as defined by the different
2923  * architectures.
2924  *
2925  * In order to find the largest possible bit mask, a swap entry with
2926  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2927  * decoded to a swp_entry_t again, and finally the swap offset is
2928  * extracted.
2929  *
2930  * This will mask all the bits from the initial ~0UL mask that can't
2931  * be encoded in either the swp_entry_t or the architecture definition
2932  * of a swap pte.
2933  */
2934 unsigned long generic_max_swapfile_size(void)
2935 {
2936         return swp_offset(pte_to_swp_entry(
2937                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2938 }
2939
2940 /* Can be overridden by an architecture for additional checks. */
2941 __weak unsigned long max_swapfile_size(void)
2942 {
2943         return generic_max_swapfile_size();
2944 }
2945
2946 static unsigned long read_swap_header(struct swap_info_struct *p,
2947                                         union swap_header *swap_header,
2948                                         struct inode *inode)
2949 {
2950         int i;
2951         unsigned long maxpages;
2952         unsigned long swapfilepages;
2953         unsigned long last_page;
2954
2955         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2956                 pr_err("Unable to find swap-space signature\n");
2957                 return 0;
2958         }
2959
2960         /* swap partition endianess hack... */
2961         if (swab32(swap_header->info.version) == 1) {
2962                 swab32s(&swap_header->info.version);
2963                 swab32s(&swap_header->info.last_page);
2964                 swab32s(&swap_header->info.nr_badpages);
2965                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2966                         return 0;
2967                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2968                         swab32s(&swap_header->info.badpages[i]);
2969         }
2970         /* Check the swap header's sub-version */
2971         if (swap_header->info.version != 1) {
2972                 pr_warn("Unable to handle swap header version %d\n",
2973                         swap_header->info.version);
2974                 return 0;
2975         }
2976
2977         p->lowest_bit  = 1;
2978         p->cluster_next = 1;
2979         p->cluster_nr = 0;
2980
2981         maxpages = max_swapfile_size();
2982         last_page = swap_header->info.last_page;
2983         if (!last_page) {
2984                 pr_warn("Empty swap-file\n");
2985                 return 0;
2986         }
2987         if (last_page > maxpages) {
2988                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2989                         maxpages << (PAGE_SHIFT - 10),
2990                         last_page << (PAGE_SHIFT - 10));
2991         }
2992         if (maxpages > last_page) {
2993                 maxpages = last_page + 1;
2994                 /* p->max is an unsigned int: don't overflow it */
2995                 if ((unsigned int)maxpages == 0)
2996                         maxpages = UINT_MAX;
2997         }
2998         p->highest_bit = maxpages - 1;
2999
3000         if (!maxpages)
3001                 return 0;
3002         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3003         if (swapfilepages && maxpages > swapfilepages) {
3004                 pr_warn("Swap area shorter than signature indicates\n");
3005                 return 0;
3006         }
3007         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3008                 return 0;
3009         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3010                 return 0;
3011
3012         return maxpages;
3013 }
3014
3015 #define SWAP_CLUSTER_INFO_COLS                                          \
3016         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3017 #define SWAP_CLUSTER_SPACE_COLS                                         \
3018         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3019 #define SWAP_CLUSTER_COLS                                               \
3020         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3021
3022 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3023                                         union swap_header *swap_header,
3024                                         unsigned char *swap_map,
3025                                         struct swap_cluster_info *cluster_info,
3026                                         unsigned long maxpages,
3027                                         sector_t *span)
3028 {
3029         unsigned int j, k;
3030         unsigned int nr_good_pages;
3031         int nr_extents;
3032         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3033         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3034         unsigned long i, idx;
3035
3036         nr_good_pages = maxpages - 1;   /* omit header page */
3037
3038         cluster_list_init(&p->free_clusters);
3039         cluster_list_init(&p->discard_clusters);
3040
3041         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3042                 unsigned int page_nr = swap_header->info.badpages[i];
3043                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3044                         return -EINVAL;
3045                 if (page_nr < maxpages) {
3046                         swap_map[page_nr] = SWAP_MAP_BAD;
3047                         nr_good_pages--;
3048                         /*
3049                          * Haven't marked the cluster free yet, no list
3050                          * operation involved
3051                          */
3052                         inc_cluster_info_page(p, cluster_info, page_nr);
3053                 }
3054         }
3055
3056         /* Haven't marked the cluster free yet, no list operation involved */
3057         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3058                 inc_cluster_info_page(p, cluster_info, i);
3059
3060         if (nr_good_pages) {
3061                 swap_map[0] = SWAP_MAP_BAD;
3062                 /*
3063                  * Not mark the cluster free yet, no list
3064                  * operation involved
3065                  */
3066                 inc_cluster_info_page(p, cluster_info, 0);
3067                 p->max = maxpages;
3068                 p->pages = nr_good_pages;
3069                 nr_extents = setup_swap_extents(p, span);
3070                 if (nr_extents < 0)
3071                         return nr_extents;
3072                 nr_good_pages = p->pages;
3073         }
3074         if (!nr_good_pages) {
3075                 pr_warn("Empty swap-file\n");
3076                 return -EINVAL;
3077         }
3078
3079         if (!cluster_info)
3080                 return nr_extents;
3081
3082
3083         /*
3084          * Reduce false cache line sharing between cluster_info and
3085          * sharing same address space.
3086          */
3087         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3088                 j = (k + col) % SWAP_CLUSTER_COLS;
3089                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3090                         idx = i * SWAP_CLUSTER_COLS + j;
3091                         if (idx >= nr_clusters)
3092                                 continue;
3093                         if (cluster_count(&cluster_info[idx]))
3094                                 continue;
3095                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3096                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3097                                               idx);
3098                 }
3099         }
3100         return nr_extents;
3101 }
3102
3103 /*
3104  * Helper to sys_swapon determining if a given swap
3105  * backing device queue supports DISCARD operations.
3106  */
3107 static bool swap_discardable(struct swap_info_struct *si)
3108 {
3109         struct request_queue *q = bdev_get_queue(si->bdev);
3110
3111         if (!q || !blk_queue_discard(q))
3112                 return false;
3113
3114         return true;
3115 }
3116
3117 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3118 {
3119         struct swap_info_struct *p;
3120         struct filename *name;
3121         struct file *swap_file = NULL;
3122         struct address_space *mapping;
3123         int prio;
3124         int error;
3125         union swap_header *swap_header;
3126         int nr_extents;
3127         sector_t span;
3128         unsigned long maxpages;
3129         unsigned char *swap_map = NULL;
3130         struct swap_cluster_info *cluster_info = NULL;
3131         unsigned long *frontswap_map = NULL;
3132         struct page *page = NULL;
3133         struct inode *inode = NULL;
3134         bool inced_nr_rotate_swap = false;
3135
3136         if (swap_flags & ~SWAP_FLAGS_VALID)
3137                 return -EINVAL;
3138
3139         if (!capable(CAP_SYS_ADMIN))
3140                 return -EPERM;
3141
3142         if (!swap_avail_heads)
3143                 return -ENOMEM;
3144
3145         p = alloc_swap_info();
3146         if (IS_ERR(p))
3147                 return PTR_ERR(p);
3148
3149         INIT_WORK(&p->discard_work, swap_discard_work);
3150
3151         name = getname(specialfile);
3152         if (IS_ERR(name)) {
3153                 error = PTR_ERR(name);
3154                 name = NULL;
3155                 goto bad_swap;
3156         }
3157         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3158         if (IS_ERR(swap_file)) {
3159                 error = PTR_ERR(swap_file);
3160                 swap_file = NULL;
3161                 goto bad_swap;
3162         }
3163
3164         p->swap_file = swap_file;
3165         mapping = swap_file->f_mapping;
3166         inode = mapping->host;
3167
3168         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3169         error = claim_swapfile(p, inode);
3170         if (unlikely(error))
3171                 goto bad_swap;
3172
3173         /*
3174          * Read the swap header.
3175          */
3176         if (!mapping->a_ops->readpage) {
3177                 error = -EINVAL;
3178                 goto bad_swap;
3179         }
3180         page = read_mapping_page(mapping, 0, swap_file);
3181         if (IS_ERR(page)) {
3182                 error = PTR_ERR(page);
3183                 goto bad_swap;
3184         }
3185         swap_header = kmap(page);
3186
3187         maxpages = read_swap_header(p, swap_header, inode);
3188         if (unlikely(!maxpages)) {
3189                 error = -EINVAL;
3190                 goto bad_swap;
3191         }
3192
3193         /* OK, set up the swap map and apply the bad block list */
3194         swap_map = vzalloc(maxpages);
3195         if (!swap_map) {
3196                 error = -ENOMEM;
3197                 goto bad_swap;
3198         }
3199
3200         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3201                 p->flags |= SWP_STABLE_WRITES;
3202
3203         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3204                 p->flags |= SWP_SYNCHRONOUS_IO;
3205
3206         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3207                 int cpu;
3208                 unsigned long ci, nr_cluster;
3209
3210                 p->flags |= SWP_SOLIDSTATE;
3211                 /*
3212                  * select a random position to start with to help wear leveling
3213                  * SSD
3214                  */
3215                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3216                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3217
3218                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3219                                         GFP_KERNEL);
3220                 if (!cluster_info) {
3221                         error = -ENOMEM;
3222                         goto bad_swap;
3223                 }
3224
3225                 for (ci = 0; ci < nr_cluster; ci++)
3226                         spin_lock_init(&((cluster_info + ci)->lock));
3227
3228                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3229                 if (!p->percpu_cluster) {
3230                         error = -ENOMEM;
3231                         goto bad_swap;
3232                 }
3233                 for_each_possible_cpu(cpu) {
3234                         struct percpu_cluster *cluster;
3235                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3236                         cluster_set_null(&cluster->index);
3237                 }
3238         } else {
3239                 atomic_inc(&nr_rotate_swap);
3240                 inced_nr_rotate_swap = true;
3241         }
3242
3243         error = swap_cgroup_swapon(p->type, maxpages);
3244         if (error)
3245                 goto bad_swap;
3246
3247         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3248                 cluster_info, maxpages, &span);
3249         if (unlikely(nr_extents < 0)) {
3250                 error = nr_extents;
3251                 goto bad_swap;
3252         }
3253         /* frontswap enabled? set up bit-per-page map for frontswap */
3254         if (IS_ENABLED(CONFIG_FRONTSWAP))
3255                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3256                                          sizeof(long),
3257                                          GFP_KERNEL);
3258
3259         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3260                 /*
3261                  * When discard is enabled for swap with no particular
3262                  * policy flagged, we set all swap discard flags here in
3263                  * order to sustain backward compatibility with older
3264                  * swapon(8) releases.
3265                  */
3266                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3267                              SWP_PAGE_DISCARD);
3268
3269                 /*
3270                  * By flagging sys_swapon, a sysadmin can tell us to
3271                  * either do single-time area discards only, or to just
3272                  * perform discards for released swap page-clusters.
3273                  * Now it's time to adjust the p->flags accordingly.
3274                  */
3275                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3276                         p->flags &= ~SWP_PAGE_DISCARD;
3277                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3278                         p->flags &= ~SWP_AREA_DISCARD;
3279
3280                 /* issue a swapon-time discard if it's still required */
3281                 if (p->flags & SWP_AREA_DISCARD) {
3282                         int err = discard_swap(p);
3283                         if (unlikely(err))
3284                                 pr_err("swapon: discard_swap(%p): %d\n",
3285                                         p, err);
3286                 }
3287         }
3288
3289         error = init_swap_address_space(p->type, maxpages);
3290         if (error)
3291                 goto bad_swap;
3292
3293         mutex_lock(&swapon_mutex);
3294         prio = -1;
3295         if (swap_flags & SWAP_FLAG_PREFER)
3296                 prio =
3297                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3298         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3299
3300         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3301                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3302                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3303                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3304                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3305                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3306                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3307                 (frontswap_map) ? "FS" : "");
3308
3309         mutex_unlock(&swapon_mutex);
3310         atomic_inc(&proc_poll_event);
3311         wake_up_interruptible(&proc_poll_wait);
3312
3313         if (S_ISREG(inode->i_mode))
3314                 inode->i_flags |= S_SWAPFILE;
3315         error = 0;
3316         goto out;
3317 bad_swap:
3318         free_percpu(p->percpu_cluster);
3319         p->percpu_cluster = NULL;
3320         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3321                 set_blocksize(p->bdev, p->old_block_size);
3322                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3323         }
3324         destroy_swap_extents(p);
3325         swap_cgroup_swapoff(p->type);
3326         spin_lock(&swap_lock);
3327         p->swap_file = NULL;
3328         p->flags = 0;
3329         spin_unlock(&swap_lock);
3330         vfree(swap_map);
3331         kvfree(cluster_info);
3332         kvfree(frontswap_map);
3333         if (inced_nr_rotate_swap)
3334                 atomic_dec(&nr_rotate_swap);
3335         if (swap_file) {
3336                 if (inode && S_ISREG(inode->i_mode)) {
3337                         inode_unlock(inode);
3338                         inode = NULL;
3339                 }
3340                 filp_close(swap_file, NULL);
3341         }
3342 out:
3343         if (page && !IS_ERR(page)) {
3344                 kunmap(page);
3345                 put_page(page);
3346         }
3347         if (name)
3348                 putname(name);
3349         if (inode && S_ISREG(inode->i_mode))
3350                 inode_unlock(inode);
3351         if (!error)
3352                 enable_swap_slots_cache();
3353         return error;
3354 }
3355
3356 void si_swapinfo(struct sysinfo *val)
3357 {
3358         unsigned int type;
3359         unsigned long nr_to_be_unused = 0;
3360
3361         spin_lock(&swap_lock);
3362         for (type = 0; type < nr_swapfiles; type++) {
3363                 struct swap_info_struct *si = swap_info[type];
3364
3365                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3366                         nr_to_be_unused += si->inuse_pages;
3367         }
3368         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3369         val->totalswap = total_swap_pages + nr_to_be_unused;
3370         spin_unlock(&swap_lock);
3371 }
3372
3373 /*
3374  * Verify that a swap entry is valid and increment its swap map count.
3375  *
3376  * Returns error code in following case.
3377  * - success -> 0
3378  * - swp_entry is invalid -> EINVAL
3379  * - swp_entry is migration entry -> EINVAL
3380  * - swap-cache reference is requested but there is already one. -> EEXIST
3381  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3382  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3383  */
3384 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3385 {
3386         struct swap_info_struct *p;
3387         struct swap_cluster_info *ci;
3388         unsigned long offset, type;
3389         unsigned char count;
3390         unsigned char has_cache;
3391         int err = -EINVAL;
3392
3393         if (non_swap_entry(entry))
3394                 goto out;
3395
3396         type = swp_type(entry);
3397         if (type >= nr_swapfiles)
3398                 goto bad_file;
3399         p = swap_info[type];
3400         offset = swp_offset(entry);
3401         if (unlikely(offset >= p->max))
3402                 goto out;
3403
3404         ci = lock_cluster_or_swap_info(p, offset);
3405
3406         count = p->swap_map[offset];
3407
3408         /*
3409          * swapin_readahead() doesn't check if a swap entry is valid, so the
3410          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3411          */
3412         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3413                 err = -ENOENT;
3414                 goto unlock_out;
3415         }
3416
3417         has_cache = count & SWAP_HAS_CACHE;
3418         count &= ~SWAP_HAS_CACHE;
3419         err = 0;
3420
3421         if (usage == SWAP_HAS_CACHE) {
3422
3423                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3424                 if (!has_cache && count)
3425                         has_cache = SWAP_HAS_CACHE;
3426                 else if (has_cache)             /* someone else added cache */
3427                         err = -EEXIST;
3428                 else                            /* no users remaining */
3429                         err = -ENOENT;
3430
3431         } else if (count || has_cache) {
3432
3433                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3434                         count += usage;
3435                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3436                         err = -EINVAL;
3437                 else if (swap_count_continued(p, offset, count))
3438                         count = COUNT_CONTINUED;
3439                 else
3440                         err = -ENOMEM;
3441         } else
3442                 err = -ENOENT;                  /* unused swap entry */
3443
3444         p->swap_map[offset] = count | has_cache;
3445
3446 unlock_out:
3447         unlock_cluster_or_swap_info(p, ci);
3448 out:
3449         return err;
3450
3451 bad_file:
3452         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3453         goto out;
3454 }
3455
3456 /*
3457  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3458  * (in which case its reference count is never incremented).
3459  */
3460 void swap_shmem_alloc(swp_entry_t entry)
3461 {
3462         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3463 }
3464
3465 /*
3466  * Increase reference count of swap entry by 1.
3467  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3468  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3469  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3470  * might occur if a page table entry has got corrupted.
3471  */
3472 int swap_duplicate(swp_entry_t entry)
3473 {
3474         int err = 0;
3475
3476         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3477                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3478         return err;
3479 }
3480
3481 /*
3482  * @entry: swap entry for which we allocate swap cache.
3483  *
3484  * Called when allocating swap cache for existing swap entry,
3485  * This can return error codes. Returns 0 at success.
3486  * -EBUSY means there is a swap cache.
3487  * Note: return code is different from swap_duplicate().
3488  */
3489 int swapcache_prepare(swp_entry_t entry)
3490 {
3491         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3492 }
3493
3494 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3495 {
3496         return swap_info[swp_type(entry)];
3497 }
3498
3499 struct swap_info_struct *page_swap_info(struct page *page)
3500 {
3501         swp_entry_t entry = { .val = page_private(page) };
3502         return swp_swap_info(entry);
3503 }
3504
3505 /*
3506  * out-of-line __page_file_ methods to avoid include hell.
3507  */
3508 struct address_space *__page_file_mapping(struct page *page)
3509 {
3510         return page_swap_info(page)->swap_file->f_mapping;
3511 }
3512 EXPORT_SYMBOL_GPL(__page_file_mapping);
3513
3514 pgoff_t __page_file_index(struct page *page)
3515 {
3516         swp_entry_t swap = { .val = page_private(page) };
3517         return swp_offset(swap);
3518 }
3519 EXPORT_SYMBOL_GPL(__page_file_index);
3520
3521 /*
3522  * add_swap_count_continuation - called when a swap count is duplicated
3523  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3524  * page of the original vmalloc'ed swap_map, to hold the continuation count
3525  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3526  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3527  *
3528  * These continuation pages are seldom referenced: the common paths all work
3529  * on the original swap_map, only referring to a continuation page when the
3530  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3531  *
3532  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3533  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3534  * can be called after dropping locks.
3535  */
3536 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3537 {
3538         struct swap_info_struct *si;
3539         struct swap_cluster_info *ci;
3540         struct page *head;
3541         struct page *page;
3542         struct page *list_page;
3543         pgoff_t offset;
3544         unsigned char count;
3545
3546         /*
3547          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3548          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3549          */
3550         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3551
3552         si = swap_info_get(entry);
3553         if (!si) {
3554                 /*
3555                  * An acceptable race has occurred since the failing
3556                  * __swap_duplicate(): the swap entry has been freed,
3557                  * perhaps even the whole swap_map cleared for swapoff.
3558                  */
3559                 goto outer;
3560         }
3561
3562         offset = swp_offset(entry);
3563
3564         ci = lock_cluster(si, offset);
3565
3566         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3567
3568         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3569                 /*
3570                  * The higher the swap count, the more likely it is that tasks
3571                  * will race to add swap count continuation: we need to avoid
3572                  * over-provisioning.
3573                  */
3574                 goto out;
3575         }
3576
3577         if (!page) {
3578                 unlock_cluster(ci);
3579                 spin_unlock(&si->lock);
3580                 return -ENOMEM;
3581         }
3582
3583         /*
3584          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3585          * no architecture is using highmem pages for kernel page tables: so it
3586          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3587          */
3588         head = vmalloc_to_page(si->swap_map + offset);
3589         offset &= ~PAGE_MASK;
3590
3591         spin_lock(&si->cont_lock);
3592         /*
3593          * Page allocation does not initialize the page's lru field,
3594          * but it does always reset its private field.
3595          */
3596         if (!page_private(head)) {
3597                 BUG_ON(count & COUNT_CONTINUED);
3598                 INIT_LIST_HEAD(&head->lru);
3599                 set_page_private(head, SWP_CONTINUED);
3600                 si->flags |= SWP_CONTINUED;
3601         }
3602
3603         list_for_each_entry(list_page, &head->lru, lru) {
3604                 unsigned char *map;
3605
3606                 /*
3607                  * If the previous map said no continuation, but we've found
3608                  * a continuation page, free our allocation and use this one.
3609                  */
3610                 if (!(count & COUNT_CONTINUED))
3611                         goto out_unlock_cont;
3612
3613                 map = kmap_atomic(list_page) + offset;
3614                 count = *map;
3615                 kunmap_atomic(map);
3616
3617                 /*
3618                  * If this continuation count now has some space in it,
3619                  * free our allocation and use this one.
3620                  */
3621                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3622                         goto out_unlock_cont;
3623         }
3624
3625         list_add_tail(&page->lru, &head->lru);
3626         page = NULL;                    /* now it's attached, don't free it */
3627 out_unlock_cont:
3628         spin_unlock(&si->cont_lock);
3629 out:
3630         unlock_cluster(ci);
3631         spin_unlock(&si->lock);
3632 outer:
3633         if (page)
3634                 __free_page(page);
3635         return 0;
3636 }
3637
3638 /*
3639  * swap_count_continued - when the original swap_map count is incremented
3640  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3641  * into, carry if so, or else fail until a new continuation page is allocated;
3642  * when the original swap_map count is decremented from 0 with continuation,
3643  * borrow from the continuation and report whether it still holds more.
3644  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3645  * lock.
3646  */
3647 static bool swap_count_continued(struct swap_info_struct *si,
3648                                  pgoff_t offset, unsigned char count)
3649 {
3650         struct page *head;
3651         struct page *page;
3652         unsigned char *map;
3653         bool ret;
3654
3655         head = vmalloc_to_page(si->swap_map + offset);
3656         if (page_private(head) != SWP_CONTINUED) {
3657                 BUG_ON(count & COUNT_CONTINUED);
3658                 return false;           /* need to add count continuation */
3659         }
3660
3661         spin_lock(&si->cont_lock);
3662         offset &= ~PAGE_MASK;
3663         page = list_entry(head->lru.next, struct page, lru);
3664         map = kmap_atomic(page) + offset;
3665
3666         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3667                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3668
3669         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3670                 /*
3671                  * Think of how you add 1 to 999
3672                  */
3673                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3674                         kunmap_atomic(map);
3675                         page = list_entry(page->lru.next, struct page, lru);
3676                         BUG_ON(page == head);
3677                         map = kmap_atomic(page) + offset;
3678                 }
3679                 if (*map == SWAP_CONT_MAX) {
3680                         kunmap_atomic(map);
3681                         page = list_entry(page->lru.next, struct page, lru);
3682                         if (page == head) {
3683                                 ret = false;    /* add count continuation */
3684                                 goto out;
3685                         }
3686                         map = kmap_atomic(page) + offset;
3687 init_map:               *map = 0;               /* we didn't zero the page */
3688                 }
3689                 *map += 1;
3690                 kunmap_atomic(map);
3691                 page = list_entry(page->lru.prev, struct page, lru);
3692                 while (page != head) {
3693                         map = kmap_atomic(page) + offset;
3694                         *map = COUNT_CONTINUED;
3695                         kunmap_atomic(map);
3696                         page = list_entry(page->lru.prev, struct page, lru);
3697                 }
3698                 ret = true;                     /* incremented */
3699
3700         } else {                                /* decrementing */
3701                 /*
3702                  * Think of how you subtract 1 from 1000
3703                  */
3704                 BUG_ON(count != COUNT_CONTINUED);
3705                 while (*map == COUNT_CONTINUED) {
3706                         kunmap_atomic(map);
3707                         page = list_entry(page->lru.next, struct page, lru);
3708                         BUG_ON(page == head);
3709                         map = kmap_atomic(page) + offset;
3710                 }
3711                 BUG_ON(*map == 0);
3712                 *map -= 1;
3713                 if (*map == 0)
3714                         count = 0;
3715                 kunmap_atomic(map);
3716                 page = list_entry(page->lru.prev, struct page, lru);
3717                 while (page != head) {
3718                         map = kmap_atomic(page) + offset;
3719                         *map = SWAP_CONT_MAX | count;
3720                         count = COUNT_CONTINUED;
3721                         kunmap_atomic(map);
3722                         page = list_entry(page->lru.prev, struct page, lru);
3723                 }
3724                 ret = count == COUNT_CONTINUED;
3725         }
3726 out:
3727         spin_unlock(&si->cont_lock);
3728         return ret;
3729 }
3730
3731 /*
3732  * free_swap_count_continuations - swapoff free all the continuation pages
3733  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3734  */
3735 static void free_swap_count_continuations(struct swap_info_struct *si)
3736 {
3737         pgoff_t offset;
3738
3739         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3740                 struct page *head;
3741                 head = vmalloc_to_page(si->swap_map + offset);
3742                 if (page_private(head)) {
3743                         struct page *page, *next;
3744
3745                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3746                                 list_del(&page->lru);
3747                                 __free_page(page);
3748                         }
3749                 }
3750         }
3751 }
3752
3753 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3754 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3755                                   gfp_t gfp_mask)
3756 {
3757         struct swap_info_struct *si, *next;
3758         if (!(gfp_mask & __GFP_IO) || !memcg)
3759                 return;
3760
3761         if (!blk_cgroup_congested())
3762                 return;
3763
3764         /*
3765          * We've already scheduled a throttle, avoid taking the global swap
3766          * lock.
3767          */
3768         if (current->throttle_queue)
3769                 return;
3770
3771         spin_lock(&swap_avail_lock);
3772         plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3773                                   avail_lists[node]) {
3774                 if (si->bdev) {
3775                         blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3776                                                 true);
3777                         break;
3778                 }
3779         }
3780         spin_unlock(&swap_avail_lock);
3781 }
3782 #endif
3783
3784 static int __init swapfile_init(void)
3785 {
3786         int nid;
3787
3788         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3789                                          GFP_KERNEL);
3790         if (!swap_avail_heads) {
3791                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3792                 return -ENOMEM;
3793         }
3794
3795         for_each_node(nid)
3796                 plist_head_init(&swap_avail_heads[nid]);
3797
3798         return 0;
3799 }
3800 subsys_initcall(swapfile_init);