]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/swapfile.c
mm/swapfile.c: unify normal/huge code path in put_swap_page()
[linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static inline unsigned char swap_count(unsigned char ent)
102 {
103         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
104 }
105
106 /* returns 1 if swap entry is freed */
107 static int
108 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109 {
110         swp_entry_t entry = swp_entry(si->type, offset);
111         struct page *page;
112         int ret = 0;
113
114         page = find_get_page(swap_address_space(entry), swp_offset(entry));
115         if (!page)
116                 return 0;
117         /*
118          * This function is called from scan_swap_map() and it's called
119          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120          * We have to use trylock for avoiding deadlock. This is a special
121          * case and you should use try_to_free_swap() with explicit lock_page()
122          * in usual operations.
123          */
124         if (trylock_page(page)) {
125                 ret = try_to_free_swap(page);
126                 unlock_page(page);
127         }
128         put_page(page);
129         return ret;
130 }
131
132 /*
133  * swapon tell device that all the old swap contents can be discarded,
134  * to allow the swap device to optimize its wear-levelling.
135  */
136 static int discard_swap(struct swap_info_struct *si)
137 {
138         struct swap_extent *se;
139         sector_t start_block;
140         sector_t nr_blocks;
141         int err = 0;
142
143         /* Do not discard the swap header page! */
144         se = &si->first_swap_extent;
145         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147         if (nr_blocks) {
148                 err = blkdev_issue_discard(si->bdev, start_block,
149                                 nr_blocks, GFP_KERNEL, 0);
150                 if (err)
151                         return err;
152                 cond_resched();
153         }
154
155         list_for_each_entry(se, &si->first_swap_extent.list, list) {
156                 start_block = se->start_block << (PAGE_SHIFT - 9);
157                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
158
159                 err = blkdev_issue_discard(si->bdev, start_block,
160                                 nr_blocks, GFP_KERNEL, 0);
161                 if (err)
162                         break;
163
164                 cond_resched();
165         }
166         return err;             /* That will often be -EOPNOTSUPP */
167 }
168
169 /*
170  * swap allocation tell device that a cluster of swap can now be discarded,
171  * to allow the swap device to optimize its wear-levelling.
172  */
173 static void discard_swap_cluster(struct swap_info_struct *si,
174                                  pgoff_t start_page, pgoff_t nr_pages)
175 {
176         struct swap_extent *se = si->curr_swap_extent;
177         int found_extent = 0;
178
179         while (nr_pages) {
180                 if (se->start_page <= start_page &&
181                     start_page < se->start_page + se->nr_pages) {
182                         pgoff_t offset = start_page - se->start_page;
183                         sector_t start_block = se->start_block + offset;
184                         sector_t nr_blocks = se->nr_pages - offset;
185
186                         if (nr_blocks > nr_pages)
187                                 nr_blocks = nr_pages;
188                         start_page += nr_blocks;
189                         nr_pages -= nr_blocks;
190
191                         if (!found_extent++)
192                                 si->curr_swap_extent = se;
193
194                         start_block <<= PAGE_SHIFT - 9;
195                         nr_blocks <<= PAGE_SHIFT - 9;
196                         if (blkdev_issue_discard(si->bdev, start_block,
197                                     nr_blocks, GFP_NOIO, 0))
198                                 break;
199                 }
200
201                 se = list_next_entry(se, list);
202         }
203 }
204
205 #ifdef CONFIG_THP_SWAP
206 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
207
208 #define swap_entry_size(size)   (size)
209 #else
210 #define SWAPFILE_CLUSTER        256
211
212 /*
213  * Define swap_entry_size() as constant to let compiler to optimize
214  * out some code if !CONFIG_THP_SWAP
215  */
216 #define swap_entry_size(size)   1
217 #endif
218 #define LATENCY_LIMIT           256
219
220 static inline void cluster_set_flag(struct swap_cluster_info *info,
221         unsigned int flag)
222 {
223         info->flags = flag;
224 }
225
226 static inline unsigned int cluster_count(struct swap_cluster_info *info)
227 {
228         return info->data;
229 }
230
231 static inline void cluster_set_count(struct swap_cluster_info *info,
232                                      unsigned int c)
233 {
234         info->data = c;
235 }
236
237 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
238                                          unsigned int c, unsigned int f)
239 {
240         info->flags = f;
241         info->data = c;
242 }
243
244 static inline unsigned int cluster_next(struct swap_cluster_info *info)
245 {
246         return info->data;
247 }
248
249 static inline void cluster_set_next(struct swap_cluster_info *info,
250                                     unsigned int n)
251 {
252         info->data = n;
253 }
254
255 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
256                                          unsigned int n, unsigned int f)
257 {
258         info->flags = f;
259         info->data = n;
260 }
261
262 static inline bool cluster_is_free(struct swap_cluster_info *info)
263 {
264         return info->flags & CLUSTER_FLAG_FREE;
265 }
266
267 static inline bool cluster_is_null(struct swap_cluster_info *info)
268 {
269         return info->flags & CLUSTER_FLAG_NEXT_NULL;
270 }
271
272 static inline void cluster_set_null(struct swap_cluster_info *info)
273 {
274         info->flags = CLUSTER_FLAG_NEXT_NULL;
275         info->data = 0;
276 }
277
278 static inline bool cluster_is_huge(struct swap_cluster_info *info)
279 {
280         if (IS_ENABLED(CONFIG_THP_SWAP))
281                 return info->flags & CLUSTER_FLAG_HUGE;
282         return false;
283 }
284
285 static inline void cluster_clear_huge(struct swap_cluster_info *info)
286 {
287         info->flags &= ~CLUSTER_FLAG_HUGE;
288 }
289
290 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
291                                                      unsigned long offset)
292 {
293         struct swap_cluster_info *ci;
294
295         ci = si->cluster_info;
296         if (ci) {
297                 ci += offset / SWAPFILE_CLUSTER;
298                 spin_lock(&ci->lock);
299         }
300         return ci;
301 }
302
303 static inline void unlock_cluster(struct swap_cluster_info *ci)
304 {
305         if (ci)
306                 spin_unlock(&ci->lock);
307 }
308
309 /*
310  * Determine the locking method in use for this device.  Return
311  * swap_cluster_info if SSD-style cluster-based locking is in place.
312  */
313 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
314                 struct swap_info_struct *si, unsigned long offset)
315 {
316         struct swap_cluster_info *ci;
317
318         /* Try to use fine-grained SSD-style locking if available: */
319         ci = lock_cluster(si, offset);
320         /* Otherwise, fall back to traditional, coarse locking: */
321         if (!ci)
322                 spin_lock(&si->lock);
323
324         return ci;
325 }
326
327 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
328                                                struct swap_cluster_info *ci)
329 {
330         if (ci)
331                 unlock_cluster(ci);
332         else
333                 spin_unlock(&si->lock);
334 }
335
336 static inline bool cluster_list_empty(struct swap_cluster_list *list)
337 {
338         return cluster_is_null(&list->head);
339 }
340
341 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
342 {
343         return cluster_next(&list->head);
344 }
345
346 static void cluster_list_init(struct swap_cluster_list *list)
347 {
348         cluster_set_null(&list->head);
349         cluster_set_null(&list->tail);
350 }
351
352 static void cluster_list_add_tail(struct swap_cluster_list *list,
353                                   struct swap_cluster_info *ci,
354                                   unsigned int idx)
355 {
356         if (cluster_list_empty(list)) {
357                 cluster_set_next_flag(&list->head, idx, 0);
358                 cluster_set_next_flag(&list->tail, idx, 0);
359         } else {
360                 struct swap_cluster_info *ci_tail;
361                 unsigned int tail = cluster_next(&list->tail);
362
363                 /*
364                  * Nested cluster lock, but both cluster locks are
365                  * only acquired when we held swap_info_struct->lock
366                  */
367                 ci_tail = ci + tail;
368                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
369                 cluster_set_next(ci_tail, idx);
370                 spin_unlock(&ci_tail->lock);
371                 cluster_set_next_flag(&list->tail, idx, 0);
372         }
373 }
374
375 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
376                                            struct swap_cluster_info *ci)
377 {
378         unsigned int idx;
379
380         idx = cluster_next(&list->head);
381         if (cluster_next(&list->tail) == idx) {
382                 cluster_set_null(&list->head);
383                 cluster_set_null(&list->tail);
384         } else
385                 cluster_set_next_flag(&list->head,
386                                       cluster_next(&ci[idx]), 0);
387
388         return idx;
389 }
390
391 /* Add a cluster to discard list and schedule it to do discard */
392 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
393                 unsigned int idx)
394 {
395         /*
396          * If scan_swap_map() can't find a free cluster, it will check
397          * si->swap_map directly. To make sure the discarding cluster isn't
398          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
399          * will be cleared after discard
400          */
401         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
402                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
403
404         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
405
406         schedule_work(&si->discard_work);
407 }
408
409 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
410 {
411         struct swap_cluster_info *ci = si->cluster_info;
412
413         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
414         cluster_list_add_tail(&si->free_clusters, ci, idx);
415 }
416
417 /*
418  * Doing discard actually. After a cluster discard is finished, the cluster
419  * will be added to free cluster list. caller should hold si->lock.
420 */
421 static void swap_do_scheduled_discard(struct swap_info_struct *si)
422 {
423         struct swap_cluster_info *info, *ci;
424         unsigned int idx;
425
426         info = si->cluster_info;
427
428         while (!cluster_list_empty(&si->discard_clusters)) {
429                 idx = cluster_list_del_first(&si->discard_clusters, info);
430                 spin_unlock(&si->lock);
431
432                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
433                                 SWAPFILE_CLUSTER);
434
435                 spin_lock(&si->lock);
436                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
437                 __free_cluster(si, idx);
438                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
439                                 0, SWAPFILE_CLUSTER);
440                 unlock_cluster(ci);
441         }
442 }
443
444 static void swap_discard_work(struct work_struct *work)
445 {
446         struct swap_info_struct *si;
447
448         si = container_of(work, struct swap_info_struct, discard_work);
449
450         spin_lock(&si->lock);
451         swap_do_scheduled_discard(si);
452         spin_unlock(&si->lock);
453 }
454
455 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
456 {
457         struct swap_cluster_info *ci = si->cluster_info;
458
459         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
460         cluster_list_del_first(&si->free_clusters, ci);
461         cluster_set_count_flag(ci + idx, 0, 0);
462 }
463
464 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
465 {
466         struct swap_cluster_info *ci = si->cluster_info + idx;
467
468         VM_BUG_ON(cluster_count(ci) != 0);
469         /*
470          * If the swap is discardable, prepare discard the cluster
471          * instead of free it immediately. The cluster will be freed
472          * after discard.
473          */
474         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
475             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
476                 swap_cluster_schedule_discard(si, idx);
477                 return;
478         }
479
480         __free_cluster(si, idx);
481 }
482
483 /*
484  * The cluster corresponding to page_nr will be used. The cluster will be
485  * removed from free cluster list and its usage counter will be increased.
486  */
487 static void inc_cluster_info_page(struct swap_info_struct *p,
488         struct swap_cluster_info *cluster_info, unsigned long page_nr)
489 {
490         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
491
492         if (!cluster_info)
493                 return;
494         if (cluster_is_free(&cluster_info[idx]))
495                 alloc_cluster(p, idx);
496
497         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
498         cluster_set_count(&cluster_info[idx],
499                 cluster_count(&cluster_info[idx]) + 1);
500 }
501
502 /*
503  * The cluster corresponding to page_nr decreases one usage. If the usage
504  * counter becomes 0, which means no page in the cluster is in using, we can
505  * optionally discard the cluster and add it to free cluster list.
506  */
507 static void dec_cluster_info_page(struct swap_info_struct *p,
508         struct swap_cluster_info *cluster_info, unsigned long page_nr)
509 {
510         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
511
512         if (!cluster_info)
513                 return;
514
515         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
516         cluster_set_count(&cluster_info[idx],
517                 cluster_count(&cluster_info[idx]) - 1);
518
519         if (cluster_count(&cluster_info[idx]) == 0)
520                 free_cluster(p, idx);
521 }
522
523 /*
524  * It's possible scan_swap_map() uses a free cluster in the middle of free
525  * cluster list. Avoiding such abuse to avoid list corruption.
526  */
527 static bool
528 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
529         unsigned long offset)
530 {
531         struct percpu_cluster *percpu_cluster;
532         bool conflict;
533
534         offset /= SWAPFILE_CLUSTER;
535         conflict = !cluster_list_empty(&si->free_clusters) &&
536                 offset != cluster_list_first(&si->free_clusters) &&
537                 cluster_is_free(&si->cluster_info[offset]);
538
539         if (!conflict)
540                 return false;
541
542         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
543         cluster_set_null(&percpu_cluster->index);
544         return true;
545 }
546
547 /*
548  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
549  * might involve allocating a new cluster for current CPU too.
550  */
551 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
552         unsigned long *offset, unsigned long *scan_base)
553 {
554         struct percpu_cluster *cluster;
555         struct swap_cluster_info *ci;
556         bool found_free;
557         unsigned long tmp, max;
558
559 new_cluster:
560         cluster = this_cpu_ptr(si->percpu_cluster);
561         if (cluster_is_null(&cluster->index)) {
562                 if (!cluster_list_empty(&si->free_clusters)) {
563                         cluster->index = si->free_clusters.head;
564                         cluster->next = cluster_next(&cluster->index) *
565                                         SWAPFILE_CLUSTER;
566                 } else if (!cluster_list_empty(&si->discard_clusters)) {
567                         /*
568                          * we don't have free cluster but have some clusters in
569                          * discarding, do discard now and reclaim them
570                          */
571                         swap_do_scheduled_discard(si);
572                         *scan_base = *offset = si->cluster_next;
573                         goto new_cluster;
574                 } else
575                         return false;
576         }
577
578         found_free = false;
579
580         /*
581          * Other CPUs can use our cluster if they can't find a free cluster,
582          * check if there is still free entry in the cluster
583          */
584         tmp = cluster->next;
585         max = min_t(unsigned long, si->max,
586                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
587         if (tmp >= max) {
588                 cluster_set_null(&cluster->index);
589                 goto new_cluster;
590         }
591         ci = lock_cluster(si, tmp);
592         while (tmp < max) {
593                 if (!si->swap_map[tmp]) {
594                         found_free = true;
595                         break;
596                 }
597                 tmp++;
598         }
599         unlock_cluster(ci);
600         if (!found_free) {
601                 cluster_set_null(&cluster->index);
602                 goto new_cluster;
603         }
604         cluster->next = tmp + 1;
605         *offset = tmp;
606         *scan_base = tmp;
607         return found_free;
608 }
609
610 static void __del_from_avail_list(struct swap_info_struct *p)
611 {
612         int nid;
613
614         for_each_node(nid)
615                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
616 }
617
618 static void del_from_avail_list(struct swap_info_struct *p)
619 {
620         spin_lock(&swap_avail_lock);
621         __del_from_avail_list(p);
622         spin_unlock(&swap_avail_lock);
623 }
624
625 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
626                              unsigned int nr_entries)
627 {
628         unsigned int end = offset + nr_entries - 1;
629
630         if (offset == si->lowest_bit)
631                 si->lowest_bit += nr_entries;
632         if (end == si->highest_bit)
633                 si->highest_bit -= nr_entries;
634         si->inuse_pages += nr_entries;
635         if (si->inuse_pages == si->pages) {
636                 si->lowest_bit = si->max;
637                 si->highest_bit = 0;
638                 del_from_avail_list(si);
639         }
640 }
641
642 static void add_to_avail_list(struct swap_info_struct *p)
643 {
644         int nid;
645
646         spin_lock(&swap_avail_lock);
647         for_each_node(nid) {
648                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
649                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
650         }
651         spin_unlock(&swap_avail_lock);
652 }
653
654 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
655                             unsigned int nr_entries)
656 {
657         unsigned long end = offset + nr_entries - 1;
658         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
659
660         if (offset < si->lowest_bit)
661                 si->lowest_bit = offset;
662         if (end > si->highest_bit) {
663                 bool was_full = !si->highest_bit;
664
665                 si->highest_bit = end;
666                 if (was_full && (si->flags & SWP_WRITEOK))
667                         add_to_avail_list(si);
668         }
669         atomic_long_add(nr_entries, &nr_swap_pages);
670         si->inuse_pages -= nr_entries;
671         if (si->flags & SWP_BLKDEV)
672                 swap_slot_free_notify =
673                         si->bdev->bd_disk->fops->swap_slot_free_notify;
674         else
675                 swap_slot_free_notify = NULL;
676         while (offset <= end) {
677                 frontswap_invalidate_page(si->type, offset);
678                 if (swap_slot_free_notify)
679                         swap_slot_free_notify(si->bdev, offset);
680                 offset++;
681         }
682 }
683
684 static int scan_swap_map_slots(struct swap_info_struct *si,
685                                unsigned char usage, int nr,
686                                swp_entry_t slots[])
687 {
688         struct swap_cluster_info *ci;
689         unsigned long offset;
690         unsigned long scan_base;
691         unsigned long last_in_cluster = 0;
692         int latency_ration = LATENCY_LIMIT;
693         int n_ret = 0;
694
695         if (nr > SWAP_BATCH)
696                 nr = SWAP_BATCH;
697
698         /*
699          * We try to cluster swap pages by allocating them sequentially
700          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
701          * way, however, we resort to first-free allocation, starting
702          * a new cluster.  This prevents us from scattering swap pages
703          * all over the entire swap partition, so that we reduce
704          * overall disk seek times between swap pages.  -- sct
705          * But we do now try to find an empty cluster.  -Andrea
706          * And we let swap pages go all over an SSD partition.  Hugh
707          */
708
709         si->flags += SWP_SCANNING;
710         scan_base = offset = si->cluster_next;
711
712         /* SSD algorithm */
713         if (si->cluster_info) {
714                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
715                         goto checks;
716                 else
717                         goto scan;
718         }
719
720         if (unlikely(!si->cluster_nr--)) {
721                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
722                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
723                         goto checks;
724                 }
725
726                 spin_unlock(&si->lock);
727
728                 /*
729                  * If seek is expensive, start searching for new cluster from
730                  * start of partition, to minimize the span of allocated swap.
731                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
732                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
733                  */
734                 scan_base = offset = si->lowest_bit;
735                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
736
737                 /* Locate the first empty (unaligned) cluster */
738                 for (; last_in_cluster <= si->highest_bit; offset++) {
739                         if (si->swap_map[offset])
740                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
741                         else if (offset == last_in_cluster) {
742                                 spin_lock(&si->lock);
743                                 offset -= SWAPFILE_CLUSTER - 1;
744                                 si->cluster_next = offset;
745                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
746                                 goto checks;
747                         }
748                         if (unlikely(--latency_ration < 0)) {
749                                 cond_resched();
750                                 latency_ration = LATENCY_LIMIT;
751                         }
752                 }
753
754                 offset = scan_base;
755                 spin_lock(&si->lock);
756                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
757         }
758
759 checks:
760         if (si->cluster_info) {
761                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
762                 /* take a break if we already got some slots */
763                         if (n_ret)
764                                 goto done;
765                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
766                                                         &scan_base))
767                                 goto scan;
768                 }
769         }
770         if (!(si->flags & SWP_WRITEOK))
771                 goto no_page;
772         if (!si->highest_bit)
773                 goto no_page;
774         if (offset > si->highest_bit)
775                 scan_base = offset = si->lowest_bit;
776
777         ci = lock_cluster(si, offset);
778         /* reuse swap entry of cache-only swap if not busy. */
779         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
780                 int swap_was_freed;
781                 unlock_cluster(ci);
782                 spin_unlock(&si->lock);
783                 swap_was_freed = __try_to_reclaim_swap(si, offset);
784                 spin_lock(&si->lock);
785                 /* entry was freed successfully, try to use this again */
786                 if (swap_was_freed)
787                         goto checks;
788                 goto scan; /* check next one */
789         }
790
791         if (si->swap_map[offset]) {
792                 unlock_cluster(ci);
793                 if (!n_ret)
794                         goto scan;
795                 else
796                         goto done;
797         }
798         si->swap_map[offset] = usage;
799         inc_cluster_info_page(si, si->cluster_info, offset);
800         unlock_cluster(ci);
801
802         swap_range_alloc(si, offset, 1);
803         si->cluster_next = offset + 1;
804         slots[n_ret++] = swp_entry(si->type, offset);
805
806         /* got enough slots or reach max slots? */
807         if ((n_ret == nr) || (offset >= si->highest_bit))
808                 goto done;
809
810         /* search for next available slot */
811
812         /* time to take a break? */
813         if (unlikely(--latency_ration < 0)) {
814                 if (n_ret)
815                         goto done;
816                 spin_unlock(&si->lock);
817                 cond_resched();
818                 spin_lock(&si->lock);
819                 latency_ration = LATENCY_LIMIT;
820         }
821
822         /* try to get more slots in cluster */
823         if (si->cluster_info) {
824                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
825                         goto checks;
826                 else
827                         goto done;
828         }
829         /* non-ssd case */
830         ++offset;
831
832         /* non-ssd case, still more slots in cluster? */
833         if (si->cluster_nr && !si->swap_map[offset]) {
834                 --si->cluster_nr;
835                 goto checks;
836         }
837
838 done:
839         si->flags -= SWP_SCANNING;
840         return n_ret;
841
842 scan:
843         spin_unlock(&si->lock);
844         while (++offset <= si->highest_bit) {
845                 if (!si->swap_map[offset]) {
846                         spin_lock(&si->lock);
847                         goto checks;
848                 }
849                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
850                         spin_lock(&si->lock);
851                         goto checks;
852                 }
853                 if (unlikely(--latency_ration < 0)) {
854                         cond_resched();
855                         latency_ration = LATENCY_LIMIT;
856                 }
857         }
858         offset = si->lowest_bit;
859         while (offset < scan_base) {
860                 if (!si->swap_map[offset]) {
861                         spin_lock(&si->lock);
862                         goto checks;
863                 }
864                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
865                         spin_lock(&si->lock);
866                         goto checks;
867                 }
868                 if (unlikely(--latency_ration < 0)) {
869                         cond_resched();
870                         latency_ration = LATENCY_LIMIT;
871                 }
872                 offset++;
873         }
874         spin_lock(&si->lock);
875
876 no_page:
877         si->flags -= SWP_SCANNING;
878         return n_ret;
879 }
880
881 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
882 {
883         unsigned long idx;
884         struct swap_cluster_info *ci;
885         unsigned long offset, i;
886         unsigned char *map;
887
888         /*
889          * Should not even be attempting cluster allocations when huge
890          * page swap is disabled.  Warn and fail the allocation.
891          */
892         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
893                 VM_WARN_ON_ONCE(1);
894                 return 0;
895         }
896
897         if (cluster_list_empty(&si->free_clusters))
898                 return 0;
899
900         idx = cluster_list_first(&si->free_clusters);
901         offset = idx * SWAPFILE_CLUSTER;
902         ci = lock_cluster(si, offset);
903         alloc_cluster(si, idx);
904         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
905
906         map = si->swap_map + offset;
907         for (i = 0; i < SWAPFILE_CLUSTER; i++)
908                 map[i] = SWAP_HAS_CACHE;
909         unlock_cluster(ci);
910         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
911         *slot = swp_entry(si->type, offset);
912
913         return 1;
914 }
915
916 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
917 {
918         unsigned long offset = idx * SWAPFILE_CLUSTER;
919         struct swap_cluster_info *ci;
920
921         ci = lock_cluster(si, offset);
922         cluster_set_count_flag(ci, 0, 0);
923         free_cluster(si, idx);
924         unlock_cluster(ci);
925         swap_range_free(si, offset, SWAPFILE_CLUSTER);
926 }
927
928 static unsigned long scan_swap_map(struct swap_info_struct *si,
929                                    unsigned char usage)
930 {
931         swp_entry_t entry;
932         int n_ret;
933
934         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
935
936         if (n_ret)
937                 return swp_offset(entry);
938         else
939                 return 0;
940
941 }
942
943 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
944 {
945         unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
946         struct swap_info_struct *si, *next;
947         long avail_pgs;
948         int n_ret = 0;
949         int node;
950
951         /* Only single cluster request supported */
952         WARN_ON_ONCE(n_goal > 1 && cluster);
953
954         avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
955         if (avail_pgs <= 0)
956                 goto noswap;
957
958         if (n_goal > SWAP_BATCH)
959                 n_goal = SWAP_BATCH;
960
961         if (n_goal > avail_pgs)
962                 n_goal = avail_pgs;
963
964         atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
965
966         spin_lock(&swap_avail_lock);
967
968 start_over:
969         node = numa_node_id();
970         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
971                 /* requeue si to after same-priority siblings */
972                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
973                 spin_unlock(&swap_avail_lock);
974                 spin_lock(&si->lock);
975                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
976                         spin_lock(&swap_avail_lock);
977                         if (plist_node_empty(&si->avail_lists[node])) {
978                                 spin_unlock(&si->lock);
979                                 goto nextsi;
980                         }
981                         WARN(!si->highest_bit,
982                              "swap_info %d in list but !highest_bit\n",
983                              si->type);
984                         WARN(!(si->flags & SWP_WRITEOK),
985                              "swap_info %d in list but !SWP_WRITEOK\n",
986                              si->type);
987                         __del_from_avail_list(si);
988                         spin_unlock(&si->lock);
989                         goto nextsi;
990                 }
991                 if (cluster) {
992                         if (!(si->flags & SWP_FILE))
993                                 n_ret = swap_alloc_cluster(si, swp_entries);
994                 } else
995                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
996                                                     n_goal, swp_entries);
997                 spin_unlock(&si->lock);
998                 if (n_ret || cluster)
999                         goto check_out;
1000                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1001                         si->type);
1002
1003                 spin_lock(&swap_avail_lock);
1004 nextsi:
1005                 /*
1006                  * if we got here, it's likely that si was almost full before,
1007                  * and since scan_swap_map() can drop the si->lock, multiple
1008                  * callers probably all tried to get a page from the same si
1009                  * and it filled up before we could get one; or, the si filled
1010                  * up between us dropping swap_avail_lock and taking si->lock.
1011                  * Since we dropped the swap_avail_lock, the swap_avail_head
1012                  * list may have been modified; so if next is still in the
1013                  * swap_avail_head list then try it, otherwise start over
1014                  * if we have not gotten any slots.
1015                  */
1016                 if (plist_node_empty(&next->avail_lists[node]))
1017                         goto start_over;
1018         }
1019
1020         spin_unlock(&swap_avail_lock);
1021
1022 check_out:
1023         if (n_ret < n_goal)
1024                 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1025                                 &nr_swap_pages);
1026 noswap:
1027         return n_ret;
1028 }
1029
1030 /* The only caller of this function is now suspend routine */
1031 swp_entry_t get_swap_page_of_type(int type)
1032 {
1033         struct swap_info_struct *si;
1034         pgoff_t offset;
1035
1036         si = swap_info[type];
1037         spin_lock(&si->lock);
1038         if (si && (si->flags & SWP_WRITEOK)) {
1039                 atomic_long_dec(&nr_swap_pages);
1040                 /* This is called for allocating swap entry, not cache */
1041                 offset = scan_swap_map(si, 1);
1042                 if (offset) {
1043                         spin_unlock(&si->lock);
1044                         return swp_entry(type, offset);
1045                 }
1046                 atomic_long_inc(&nr_swap_pages);
1047         }
1048         spin_unlock(&si->lock);
1049         return (swp_entry_t) {0};
1050 }
1051
1052 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1053 {
1054         struct swap_info_struct *p;
1055         unsigned long offset, type;
1056
1057         if (!entry.val)
1058                 goto out;
1059         type = swp_type(entry);
1060         if (type >= nr_swapfiles)
1061                 goto bad_nofile;
1062         p = swap_info[type];
1063         if (!(p->flags & SWP_USED))
1064                 goto bad_device;
1065         offset = swp_offset(entry);
1066         if (offset >= p->max)
1067                 goto bad_offset;
1068         return p;
1069
1070 bad_offset:
1071         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1072         goto out;
1073 bad_device:
1074         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1075         goto out;
1076 bad_nofile:
1077         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1078 out:
1079         return NULL;
1080 }
1081
1082 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1083 {
1084         struct swap_info_struct *p;
1085
1086         p = __swap_info_get(entry);
1087         if (!p)
1088                 goto out;
1089         if (!p->swap_map[swp_offset(entry)])
1090                 goto bad_free;
1091         return p;
1092
1093 bad_free:
1094         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1095         goto out;
1096 out:
1097         return NULL;
1098 }
1099
1100 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1101 {
1102         struct swap_info_struct *p;
1103
1104         p = _swap_info_get(entry);
1105         if (p)
1106                 spin_lock(&p->lock);
1107         return p;
1108 }
1109
1110 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1111                                         struct swap_info_struct *q)
1112 {
1113         struct swap_info_struct *p;
1114
1115         p = _swap_info_get(entry);
1116
1117         if (p != q) {
1118                 if (q != NULL)
1119                         spin_unlock(&q->lock);
1120                 if (p != NULL)
1121                         spin_lock(&p->lock);
1122         }
1123         return p;
1124 }
1125
1126 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1127                                        swp_entry_t entry, unsigned char usage)
1128 {
1129         struct swap_cluster_info *ci;
1130         unsigned long offset = swp_offset(entry);
1131         unsigned char count;
1132         unsigned char has_cache;
1133
1134         ci = lock_cluster_or_swap_info(p, offset);
1135
1136         count = p->swap_map[offset];
1137
1138         has_cache = count & SWAP_HAS_CACHE;
1139         count &= ~SWAP_HAS_CACHE;
1140
1141         if (usage == SWAP_HAS_CACHE) {
1142                 VM_BUG_ON(!has_cache);
1143                 has_cache = 0;
1144         } else if (count == SWAP_MAP_SHMEM) {
1145                 /*
1146                  * Or we could insist on shmem.c using a special
1147                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1148                  */
1149                 count = 0;
1150         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1151                 if (count == COUNT_CONTINUED) {
1152                         if (swap_count_continued(p, offset, count))
1153                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1154                         else
1155                                 count = SWAP_MAP_MAX;
1156                 } else
1157                         count--;
1158         }
1159
1160         usage = count | has_cache;
1161         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1162
1163         unlock_cluster_or_swap_info(p, ci);
1164
1165         return usage;
1166 }
1167
1168 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1169 {
1170         struct swap_cluster_info *ci;
1171         unsigned long offset = swp_offset(entry);
1172         unsigned char count;
1173
1174         ci = lock_cluster(p, offset);
1175         count = p->swap_map[offset];
1176         VM_BUG_ON(count != SWAP_HAS_CACHE);
1177         p->swap_map[offset] = 0;
1178         dec_cluster_info_page(p, p->cluster_info, offset);
1179         unlock_cluster(ci);
1180
1181         mem_cgroup_uncharge_swap(entry, 1);
1182         swap_range_free(p, offset, 1);
1183 }
1184
1185 /*
1186  * Caller has made sure that the swap device corresponding to entry
1187  * is still around or has not been recycled.
1188  */
1189 void swap_free(swp_entry_t entry)
1190 {
1191         struct swap_info_struct *p;
1192
1193         p = _swap_info_get(entry);
1194         if (p) {
1195                 if (!__swap_entry_free(p, entry, 1))
1196                         free_swap_slot(entry);
1197         }
1198 }
1199
1200 /*
1201  * Called after dropping swapcache to decrease refcnt to swap entries.
1202  */
1203 void put_swap_page(struct page *page, swp_entry_t entry)
1204 {
1205         unsigned long offset = swp_offset(entry);
1206         unsigned long idx = offset / SWAPFILE_CLUSTER;
1207         struct swap_cluster_info *ci;
1208         struct swap_info_struct *si;
1209         unsigned char *map;
1210         unsigned int i, free_entries = 0;
1211         unsigned char val;
1212         int size = swap_entry_size(hpage_nr_pages(page));
1213
1214         si = _swap_info_get(entry);
1215         if (!si)
1216                 return;
1217
1218         if (size == SWAPFILE_CLUSTER) {
1219                 ci = lock_cluster(si, offset);
1220                 VM_BUG_ON(!cluster_is_huge(ci));
1221                 map = si->swap_map + offset;
1222                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1223                         val = map[i];
1224                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1225                         if (val == SWAP_HAS_CACHE)
1226                                 free_entries++;
1227                 }
1228                 if (!free_entries) {
1229                         for (i = 0; i < SWAPFILE_CLUSTER; i++)
1230                                 map[i] &= ~SWAP_HAS_CACHE;
1231                 }
1232                 cluster_clear_huge(ci);
1233                 unlock_cluster(ci);
1234                 if (free_entries == SWAPFILE_CLUSTER) {
1235                         spin_lock(&si->lock);
1236                         ci = lock_cluster(si, offset);
1237                         memset(map, 0, SWAPFILE_CLUSTER);
1238                         unlock_cluster(ci);
1239                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1240                         swap_free_cluster(si, idx);
1241                         spin_unlock(&si->lock);
1242                         return;
1243                 }
1244         }
1245         if (size == 1 || free_entries) {
1246                 for (i = 0; i < size; i++, entry.val++) {
1247                         if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1248                                 free_swap_slot(entry);
1249                 }
1250         }
1251 }
1252
1253 #ifdef CONFIG_THP_SWAP
1254 int split_swap_cluster(swp_entry_t entry)
1255 {
1256         struct swap_info_struct *si;
1257         struct swap_cluster_info *ci;
1258         unsigned long offset = swp_offset(entry);
1259
1260         si = _swap_info_get(entry);
1261         if (!si)
1262                 return -EBUSY;
1263         ci = lock_cluster(si, offset);
1264         cluster_clear_huge(ci);
1265         unlock_cluster(ci);
1266         return 0;
1267 }
1268 #endif
1269
1270 static int swp_entry_cmp(const void *ent1, const void *ent2)
1271 {
1272         const swp_entry_t *e1 = ent1, *e2 = ent2;
1273
1274         return (int)swp_type(*e1) - (int)swp_type(*e2);
1275 }
1276
1277 void swapcache_free_entries(swp_entry_t *entries, int n)
1278 {
1279         struct swap_info_struct *p, *prev;
1280         int i;
1281
1282         if (n <= 0)
1283                 return;
1284
1285         prev = NULL;
1286         p = NULL;
1287
1288         /*
1289          * Sort swap entries by swap device, so each lock is only taken once.
1290          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1291          * so low that it isn't necessary to optimize further.
1292          */
1293         if (nr_swapfiles > 1)
1294                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1295         for (i = 0; i < n; ++i) {
1296                 p = swap_info_get_cont(entries[i], prev);
1297                 if (p)
1298                         swap_entry_free(p, entries[i]);
1299                 prev = p;
1300         }
1301         if (p)
1302                 spin_unlock(&p->lock);
1303 }
1304
1305 /*
1306  * How many references to page are currently swapped out?
1307  * This does not give an exact answer when swap count is continued,
1308  * but does include the high COUNT_CONTINUED flag to allow for that.
1309  */
1310 int page_swapcount(struct page *page)
1311 {
1312         int count = 0;
1313         struct swap_info_struct *p;
1314         struct swap_cluster_info *ci;
1315         swp_entry_t entry;
1316         unsigned long offset;
1317
1318         entry.val = page_private(page);
1319         p = _swap_info_get(entry);
1320         if (p) {
1321                 offset = swp_offset(entry);
1322                 ci = lock_cluster_or_swap_info(p, offset);
1323                 count = swap_count(p->swap_map[offset]);
1324                 unlock_cluster_or_swap_info(p, ci);
1325         }
1326         return count;
1327 }
1328
1329 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1330 {
1331         pgoff_t offset = swp_offset(entry);
1332
1333         return swap_count(si->swap_map[offset]);
1334 }
1335
1336 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1337 {
1338         int count = 0;
1339         pgoff_t offset = swp_offset(entry);
1340         struct swap_cluster_info *ci;
1341
1342         ci = lock_cluster_or_swap_info(si, offset);
1343         count = swap_count(si->swap_map[offset]);
1344         unlock_cluster_or_swap_info(si, ci);
1345         return count;
1346 }
1347
1348 /*
1349  * How many references to @entry are currently swapped out?
1350  * This does not give an exact answer when swap count is continued,
1351  * but does include the high COUNT_CONTINUED flag to allow for that.
1352  */
1353 int __swp_swapcount(swp_entry_t entry)
1354 {
1355         int count = 0;
1356         struct swap_info_struct *si;
1357
1358         si = __swap_info_get(entry);
1359         if (si)
1360                 count = swap_swapcount(si, entry);
1361         return count;
1362 }
1363
1364 /*
1365  * How many references to @entry are currently swapped out?
1366  * This considers COUNT_CONTINUED so it returns exact answer.
1367  */
1368 int swp_swapcount(swp_entry_t entry)
1369 {
1370         int count, tmp_count, n;
1371         struct swap_info_struct *p;
1372         struct swap_cluster_info *ci;
1373         struct page *page;
1374         pgoff_t offset;
1375         unsigned char *map;
1376
1377         p = _swap_info_get(entry);
1378         if (!p)
1379                 return 0;
1380
1381         offset = swp_offset(entry);
1382
1383         ci = lock_cluster_or_swap_info(p, offset);
1384
1385         count = swap_count(p->swap_map[offset]);
1386         if (!(count & COUNT_CONTINUED))
1387                 goto out;
1388
1389         count &= ~COUNT_CONTINUED;
1390         n = SWAP_MAP_MAX + 1;
1391
1392         page = vmalloc_to_page(p->swap_map + offset);
1393         offset &= ~PAGE_MASK;
1394         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1395
1396         do {
1397                 page = list_next_entry(page, lru);
1398                 map = kmap_atomic(page);
1399                 tmp_count = map[offset];
1400                 kunmap_atomic(map);
1401
1402                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1403                 n *= (SWAP_CONT_MAX + 1);
1404         } while (tmp_count & COUNT_CONTINUED);
1405 out:
1406         unlock_cluster_or_swap_info(p, ci);
1407         return count;
1408 }
1409
1410 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1411                                          swp_entry_t entry)
1412 {
1413         struct swap_cluster_info *ci;
1414         unsigned char *map = si->swap_map;
1415         unsigned long roffset = swp_offset(entry);
1416         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1417         int i;
1418         bool ret = false;
1419
1420         ci = lock_cluster_or_swap_info(si, offset);
1421         if (!ci || !cluster_is_huge(ci)) {
1422                 if (swap_count(map[roffset]))
1423                         ret = true;
1424                 goto unlock_out;
1425         }
1426         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1427                 if (swap_count(map[offset + i])) {
1428                         ret = true;
1429                         break;
1430                 }
1431         }
1432 unlock_out:
1433         unlock_cluster_or_swap_info(si, ci);
1434         return ret;
1435 }
1436
1437 static bool page_swapped(struct page *page)
1438 {
1439         swp_entry_t entry;
1440         struct swap_info_struct *si;
1441
1442         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1443                 return page_swapcount(page) != 0;
1444
1445         page = compound_head(page);
1446         entry.val = page_private(page);
1447         si = _swap_info_get(entry);
1448         if (si)
1449                 return swap_page_trans_huge_swapped(si, entry);
1450         return false;
1451 }
1452
1453 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1454                                          int *total_swapcount)
1455 {
1456         int i, map_swapcount, _total_mapcount, _total_swapcount;
1457         unsigned long offset = 0;
1458         struct swap_info_struct *si;
1459         struct swap_cluster_info *ci = NULL;
1460         unsigned char *map = NULL;
1461         int mapcount, swapcount = 0;
1462
1463         /* hugetlbfs shouldn't call it */
1464         VM_BUG_ON_PAGE(PageHuge(page), page);
1465
1466         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1467                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1468                 if (PageSwapCache(page))
1469                         swapcount = page_swapcount(page);
1470                 if (total_swapcount)
1471                         *total_swapcount = swapcount;
1472                 return mapcount + swapcount;
1473         }
1474
1475         page = compound_head(page);
1476
1477         _total_mapcount = _total_swapcount = map_swapcount = 0;
1478         if (PageSwapCache(page)) {
1479                 swp_entry_t entry;
1480
1481                 entry.val = page_private(page);
1482                 si = _swap_info_get(entry);
1483                 if (si) {
1484                         map = si->swap_map;
1485                         offset = swp_offset(entry);
1486                 }
1487         }
1488         if (map)
1489                 ci = lock_cluster(si, offset);
1490         for (i = 0; i < HPAGE_PMD_NR; i++) {
1491                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1492                 _total_mapcount += mapcount;
1493                 if (map) {
1494                         swapcount = swap_count(map[offset + i]);
1495                         _total_swapcount += swapcount;
1496                 }
1497                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1498         }
1499         unlock_cluster(ci);
1500         if (PageDoubleMap(page)) {
1501                 map_swapcount -= 1;
1502                 _total_mapcount -= HPAGE_PMD_NR;
1503         }
1504         mapcount = compound_mapcount(page);
1505         map_swapcount += mapcount;
1506         _total_mapcount += mapcount;
1507         if (total_mapcount)
1508                 *total_mapcount = _total_mapcount;
1509         if (total_swapcount)
1510                 *total_swapcount = _total_swapcount;
1511
1512         return map_swapcount;
1513 }
1514
1515 /*
1516  * We can write to an anon page without COW if there are no other references
1517  * to it.  And as a side-effect, free up its swap: because the old content
1518  * on disk will never be read, and seeking back there to write new content
1519  * later would only waste time away from clustering.
1520  *
1521  * NOTE: total_map_swapcount should not be relied upon by the caller if
1522  * reuse_swap_page() returns false, but it may be always overwritten
1523  * (see the other implementation for CONFIG_SWAP=n).
1524  */
1525 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1526 {
1527         int count, total_mapcount, total_swapcount;
1528
1529         VM_BUG_ON_PAGE(!PageLocked(page), page);
1530         if (unlikely(PageKsm(page)))
1531                 return false;
1532         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1533                                               &total_swapcount);
1534         if (total_map_swapcount)
1535                 *total_map_swapcount = total_mapcount + total_swapcount;
1536         if (count == 1 && PageSwapCache(page) &&
1537             (likely(!PageTransCompound(page)) ||
1538              /* The remaining swap count will be freed soon */
1539              total_swapcount == page_swapcount(page))) {
1540                 if (!PageWriteback(page)) {
1541                         page = compound_head(page);
1542                         delete_from_swap_cache(page);
1543                         SetPageDirty(page);
1544                 } else {
1545                         swp_entry_t entry;
1546                         struct swap_info_struct *p;
1547
1548                         entry.val = page_private(page);
1549                         p = swap_info_get(entry);
1550                         if (p->flags & SWP_STABLE_WRITES) {
1551                                 spin_unlock(&p->lock);
1552                                 return false;
1553                         }
1554                         spin_unlock(&p->lock);
1555                 }
1556         }
1557
1558         return count <= 1;
1559 }
1560
1561 /*
1562  * If swap is getting full, or if there are no more mappings of this page,
1563  * then try_to_free_swap is called to free its swap space.
1564  */
1565 int try_to_free_swap(struct page *page)
1566 {
1567         VM_BUG_ON_PAGE(!PageLocked(page), page);
1568
1569         if (!PageSwapCache(page))
1570                 return 0;
1571         if (PageWriteback(page))
1572                 return 0;
1573         if (page_swapped(page))
1574                 return 0;
1575
1576         /*
1577          * Once hibernation has begun to create its image of memory,
1578          * there's a danger that one of the calls to try_to_free_swap()
1579          * - most probably a call from __try_to_reclaim_swap() while
1580          * hibernation is allocating its own swap pages for the image,
1581          * but conceivably even a call from memory reclaim - will free
1582          * the swap from a page which has already been recorded in the
1583          * image as a clean swapcache page, and then reuse its swap for
1584          * another page of the image.  On waking from hibernation, the
1585          * original page might be freed under memory pressure, then
1586          * later read back in from swap, now with the wrong data.
1587          *
1588          * Hibernation suspends storage while it is writing the image
1589          * to disk so check that here.
1590          */
1591         if (pm_suspended_storage())
1592                 return 0;
1593
1594         page = compound_head(page);
1595         delete_from_swap_cache(page);
1596         SetPageDirty(page);
1597         return 1;
1598 }
1599
1600 /*
1601  * Free the swap entry like above, but also try to
1602  * free the page cache entry if it is the last user.
1603  */
1604 int free_swap_and_cache(swp_entry_t entry)
1605 {
1606         struct swap_info_struct *p;
1607         struct page *page = NULL;
1608         unsigned char count;
1609
1610         if (non_swap_entry(entry))
1611                 return 1;
1612
1613         p = _swap_info_get(entry);
1614         if (p) {
1615                 count = __swap_entry_free(p, entry, 1);
1616                 if (count == SWAP_HAS_CACHE &&
1617                     !swap_page_trans_huge_swapped(p, entry)) {
1618                         page = find_get_page(swap_address_space(entry),
1619                                              swp_offset(entry));
1620                         if (page && !trylock_page(page)) {
1621                                 put_page(page);
1622                                 page = NULL;
1623                         }
1624                 } else if (!count)
1625                         free_swap_slot(entry);
1626         }
1627         if (page) {
1628                 /*
1629                  * Not mapped elsewhere, or swap space full? Free it!
1630                  * Also recheck PageSwapCache now page is locked (above).
1631                  */
1632                 if (PageSwapCache(page) && !PageWriteback(page) &&
1633                     (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1634                     !swap_page_trans_huge_swapped(p, entry)) {
1635                         page = compound_head(page);
1636                         delete_from_swap_cache(page);
1637                         SetPageDirty(page);
1638                 }
1639                 unlock_page(page);
1640                 put_page(page);
1641         }
1642         return p != NULL;
1643 }
1644
1645 #ifdef CONFIG_HIBERNATION
1646 /*
1647  * Find the swap type that corresponds to given device (if any).
1648  *
1649  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1650  * from 0, in which the swap header is expected to be located.
1651  *
1652  * This is needed for the suspend to disk (aka swsusp).
1653  */
1654 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1655 {
1656         struct block_device *bdev = NULL;
1657         int type;
1658
1659         if (device)
1660                 bdev = bdget(device);
1661
1662         spin_lock(&swap_lock);
1663         for (type = 0; type < nr_swapfiles; type++) {
1664                 struct swap_info_struct *sis = swap_info[type];
1665
1666                 if (!(sis->flags & SWP_WRITEOK))
1667                         continue;
1668
1669                 if (!bdev) {
1670                         if (bdev_p)
1671                                 *bdev_p = bdgrab(sis->bdev);
1672
1673                         spin_unlock(&swap_lock);
1674                         return type;
1675                 }
1676                 if (bdev == sis->bdev) {
1677                         struct swap_extent *se = &sis->first_swap_extent;
1678
1679                         if (se->start_block == offset) {
1680                                 if (bdev_p)
1681                                         *bdev_p = bdgrab(sis->bdev);
1682
1683                                 spin_unlock(&swap_lock);
1684                                 bdput(bdev);
1685                                 return type;
1686                         }
1687                 }
1688         }
1689         spin_unlock(&swap_lock);
1690         if (bdev)
1691                 bdput(bdev);
1692
1693         return -ENODEV;
1694 }
1695
1696 /*
1697  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1698  * corresponding to given index in swap_info (swap type).
1699  */
1700 sector_t swapdev_block(int type, pgoff_t offset)
1701 {
1702         struct block_device *bdev;
1703
1704         if ((unsigned int)type >= nr_swapfiles)
1705                 return 0;
1706         if (!(swap_info[type]->flags & SWP_WRITEOK))
1707                 return 0;
1708         return map_swap_entry(swp_entry(type, offset), &bdev);
1709 }
1710
1711 /*
1712  * Return either the total number of swap pages of given type, or the number
1713  * of free pages of that type (depending on @free)
1714  *
1715  * This is needed for software suspend
1716  */
1717 unsigned int count_swap_pages(int type, int free)
1718 {
1719         unsigned int n = 0;
1720
1721         spin_lock(&swap_lock);
1722         if ((unsigned int)type < nr_swapfiles) {
1723                 struct swap_info_struct *sis = swap_info[type];
1724
1725                 spin_lock(&sis->lock);
1726                 if (sis->flags & SWP_WRITEOK) {
1727                         n = sis->pages;
1728                         if (free)
1729                                 n -= sis->inuse_pages;
1730                 }
1731                 spin_unlock(&sis->lock);
1732         }
1733         spin_unlock(&swap_lock);
1734         return n;
1735 }
1736 #endif /* CONFIG_HIBERNATION */
1737
1738 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1739 {
1740         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1741 }
1742
1743 /*
1744  * No need to decide whether this PTE shares the swap entry with others,
1745  * just let do_wp_page work it out if a write is requested later - to
1746  * force COW, vm_page_prot omits write permission from any private vma.
1747  */
1748 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1749                 unsigned long addr, swp_entry_t entry, struct page *page)
1750 {
1751         struct page *swapcache;
1752         struct mem_cgroup *memcg;
1753         spinlock_t *ptl;
1754         pte_t *pte;
1755         int ret = 1;
1756
1757         swapcache = page;
1758         page = ksm_might_need_to_copy(page, vma, addr);
1759         if (unlikely(!page))
1760                 return -ENOMEM;
1761
1762         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1763                                 &memcg, false)) {
1764                 ret = -ENOMEM;
1765                 goto out_nolock;
1766         }
1767
1768         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1769         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1770                 mem_cgroup_cancel_charge(page, memcg, false);
1771                 ret = 0;
1772                 goto out;
1773         }
1774
1775         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1776         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1777         get_page(page);
1778         set_pte_at(vma->vm_mm, addr, pte,
1779                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1780         if (page == swapcache) {
1781                 page_add_anon_rmap(page, vma, addr, false);
1782                 mem_cgroup_commit_charge(page, memcg, true, false);
1783         } else { /* ksm created a completely new copy */
1784                 page_add_new_anon_rmap(page, vma, addr, false);
1785                 mem_cgroup_commit_charge(page, memcg, false, false);
1786                 lru_cache_add_active_or_unevictable(page, vma);
1787         }
1788         swap_free(entry);
1789         /*
1790          * Move the page to the active list so it is not
1791          * immediately swapped out again after swapon.
1792          */
1793         activate_page(page);
1794 out:
1795         pte_unmap_unlock(pte, ptl);
1796 out_nolock:
1797         if (page != swapcache) {
1798                 unlock_page(page);
1799                 put_page(page);
1800         }
1801         return ret;
1802 }
1803
1804 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1805                                 unsigned long addr, unsigned long end,
1806                                 swp_entry_t entry, struct page *page)
1807 {
1808         pte_t swp_pte = swp_entry_to_pte(entry);
1809         pte_t *pte;
1810         int ret = 0;
1811
1812         /*
1813          * We don't actually need pte lock while scanning for swp_pte: since
1814          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1815          * page table while we're scanning; though it could get zapped, and on
1816          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1817          * of unmatched parts which look like swp_pte, so unuse_pte must
1818          * recheck under pte lock.  Scanning without pte lock lets it be
1819          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1820          */
1821         pte = pte_offset_map(pmd, addr);
1822         do {
1823                 /*
1824                  * swapoff spends a _lot_ of time in this loop!
1825                  * Test inline before going to call unuse_pte.
1826                  */
1827                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1828                         pte_unmap(pte);
1829                         ret = unuse_pte(vma, pmd, addr, entry, page);
1830                         if (ret)
1831                                 goto out;
1832                         pte = pte_offset_map(pmd, addr);
1833                 }
1834         } while (pte++, addr += PAGE_SIZE, addr != end);
1835         pte_unmap(pte - 1);
1836 out:
1837         return ret;
1838 }
1839
1840 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1841                                 unsigned long addr, unsigned long end,
1842                                 swp_entry_t entry, struct page *page)
1843 {
1844         pmd_t *pmd;
1845         unsigned long next;
1846         int ret;
1847
1848         pmd = pmd_offset(pud, addr);
1849         do {
1850                 cond_resched();
1851                 next = pmd_addr_end(addr, end);
1852                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1853                         continue;
1854                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1855                 if (ret)
1856                         return ret;
1857         } while (pmd++, addr = next, addr != end);
1858         return 0;
1859 }
1860
1861 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1862                                 unsigned long addr, unsigned long end,
1863                                 swp_entry_t entry, struct page *page)
1864 {
1865         pud_t *pud;
1866         unsigned long next;
1867         int ret;
1868
1869         pud = pud_offset(p4d, addr);
1870         do {
1871                 next = pud_addr_end(addr, end);
1872                 if (pud_none_or_clear_bad(pud))
1873                         continue;
1874                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1875                 if (ret)
1876                         return ret;
1877         } while (pud++, addr = next, addr != end);
1878         return 0;
1879 }
1880
1881 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1882                                 unsigned long addr, unsigned long end,
1883                                 swp_entry_t entry, struct page *page)
1884 {
1885         p4d_t *p4d;
1886         unsigned long next;
1887         int ret;
1888
1889         p4d = p4d_offset(pgd, addr);
1890         do {
1891                 next = p4d_addr_end(addr, end);
1892                 if (p4d_none_or_clear_bad(p4d))
1893                         continue;
1894                 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1895                 if (ret)
1896                         return ret;
1897         } while (p4d++, addr = next, addr != end);
1898         return 0;
1899 }
1900
1901 static int unuse_vma(struct vm_area_struct *vma,
1902                                 swp_entry_t entry, struct page *page)
1903 {
1904         pgd_t *pgd;
1905         unsigned long addr, end, next;
1906         int ret;
1907
1908         if (page_anon_vma(page)) {
1909                 addr = page_address_in_vma(page, vma);
1910                 if (addr == -EFAULT)
1911                         return 0;
1912                 else
1913                         end = addr + PAGE_SIZE;
1914         } else {
1915                 addr = vma->vm_start;
1916                 end = vma->vm_end;
1917         }
1918
1919         pgd = pgd_offset(vma->vm_mm, addr);
1920         do {
1921                 next = pgd_addr_end(addr, end);
1922                 if (pgd_none_or_clear_bad(pgd))
1923                         continue;
1924                 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1925                 if (ret)
1926                         return ret;
1927         } while (pgd++, addr = next, addr != end);
1928         return 0;
1929 }
1930
1931 static int unuse_mm(struct mm_struct *mm,
1932                                 swp_entry_t entry, struct page *page)
1933 {
1934         struct vm_area_struct *vma;
1935         int ret = 0;
1936
1937         if (!down_read_trylock(&mm->mmap_sem)) {
1938                 /*
1939                  * Activate page so shrink_inactive_list is unlikely to unmap
1940                  * its ptes while lock is dropped, so swapoff can make progress.
1941                  */
1942                 activate_page(page);
1943                 unlock_page(page);
1944                 down_read(&mm->mmap_sem);
1945                 lock_page(page);
1946         }
1947         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1948                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1949                         break;
1950                 cond_resched();
1951         }
1952         up_read(&mm->mmap_sem);
1953         return (ret < 0)? ret: 0;
1954 }
1955
1956 /*
1957  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1958  * from current position to next entry still in use.
1959  * Recycle to start on reaching the end, returning 0 when empty.
1960  */
1961 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1962                                         unsigned int prev, bool frontswap)
1963 {
1964         unsigned int max = si->max;
1965         unsigned int i = prev;
1966         unsigned char count;
1967
1968         /*
1969          * No need for swap_lock here: we're just looking
1970          * for whether an entry is in use, not modifying it; false
1971          * hits are okay, and sys_swapoff() has already prevented new
1972          * allocations from this area (while holding swap_lock).
1973          */
1974         for (;;) {
1975                 if (++i >= max) {
1976                         if (!prev) {
1977                                 i = 0;
1978                                 break;
1979                         }
1980                         /*
1981                          * No entries in use at top of swap_map,
1982                          * loop back to start and recheck there.
1983                          */
1984                         max = prev + 1;
1985                         prev = 0;
1986                         i = 1;
1987                 }
1988                 count = READ_ONCE(si->swap_map[i]);
1989                 if (count && swap_count(count) != SWAP_MAP_BAD)
1990                         if (!frontswap || frontswap_test(si, i))
1991                                 break;
1992                 if ((i % LATENCY_LIMIT) == 0)
1993                         cond_resched();
1994         }
1995         return i;
1996 }
1997
1998 /*
1999  * We completely avoid races by reading each swap page in advance,
2000  * and then search for the process using it.  All the necessary
2001  * page table adjustments can then be made atomically.
2002  *
2003  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2004  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2005  */
2006 int try_to_unuse(unsigned int type, bool frontswap,
2007                  unsigned long pages_to_unuse)
2008 {
2009         struct swap_info_struct *si = swap_info[type];
2010         struct mm_struct *start_mm;
2011         volatile unsigned char *swap_map; /* swap_map is accessed without
2012                                            * locking. Mark it as volatile
2013                                            * to prevent compiler doing
2014                                            * something odd.
2015                                            */
2016         unsigned char swcount;
2017         struct page *page;
2018         swp_entry_t entry;
2019         unsigned int i = 0;
2020         int retval = 0;
2021
2022         /*
2023          * When searching mms for an entry, a good strategy is to
2024          * start at the first mm we freed the previous entry from
2025          * (though actually we don't notice whether we or coincidence
2026          * freed the entry).  Initialize this start_mm with a hold.
2027          *
2028          * A simpler strategy would be to start at the last mm we
2029          * freed the previous entry from; but that would take less
2030          * advantage of mmlist ordering, which clusters forked mms
2031          * together, child after parent.  If we race with dup_mmap(), we
2032          * prefer to resolve parent before child, lest we miss entries
2033          * duplicated after we scanned child: using last mm would invert
2034          * that.
2035          */
2036         start_mm = &init_mm;
2037         mmget(&init_mm);
2038
2039         /*
2040          * Keep on scanning until all entries have gone.  Usually,
2041          * one pass through swap_map is enough, but not necessarily:
2042          * there are races when an instance of an entry might be missed.
2043          */
2044         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2045                 if (signal_pending(current)) {
2046                         retval = -EINTR;
2047                         break;
2048                 }
2049
2050                 /*
2051                  * Get a page for the entry, using the existing swap
2052                  * cache page if there is one.  Otherwise, get a clean
2053                  * page and read the swap into it.
2054                  */
2055                 swap_map = &si->swap_map[i];
2056                 entry = swp_entry(type, i);
2057                 page = read_swap_cache_async(entry,
2058                                         GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2059                 if (!page) {
2060                         /*
2061                          * Either swap_duplicate() failed because entry
2062                          * has been freed independently, and will not be
2063                          * reused since sys_swapoff() already disabled
2064                          * allocation from here, or alloc_page() failed.
2065                          */
2066                         swcount = *swap_map;
2067                         /*
2068                          * We don't hold lock here, so the swap entry could be
2069                          * SWAP_MAP_BAD (when the cluster is discarding).
2070                          * Instead of fail out, We can just skip the swap
2071                          * entry because swapoff will wait for discarding
2072                          * finish anyway.
2073                          */
2074                         if (!swcount || swcount == SWAP_MAP_BAD)
2075                                 continue;
2076                         retval = -ENOMEM;
2077                         break;
2078                 }
2079
2080                 /*
2081                  * Don't hold on to start_mm if it looks like exiting.
2082                  */
2083                 if (atomic_read(&start_mm->mm_users) == 1) {
2084                         mmput(start_mm);
2085                         start_mm = &init_mm;
2086                         mmget(&init_mm);
2087                 }
2088
2089                 /*
2090                  * Wait for and lock page.  When do_swap_page races with
2091                  * try_to_unuse, do_swap_page can handle the fault much
2092                  * faster than try_to_unuse can locate the entry.  This
2093                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
2094                  * defer to do_swap_page in such a case - in some tests,
2095                  * do_swap_page and try_to_unuse repeatedly compete.
2096                  */
2097                 wait_on_page_locked(page);
2098                 wait_on_page_writeback(page);
2099                 lock_page(page);
2100                 wait_on_page_writeback(page);
2101
2102                 /*
2103                  * Remove all references to entry.
2104                  */
2105                 swcount = *swap_map;
2106                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2107                         retval = shmem_unuse(entry, page);
2108                         /* page has already been unlocked and released */
2109                         if (retval < 0)
2110                                 break;
2111                         continue;
2112                 }
2113                 if (swap_count(swcount) && start_mm != &init_mm)
2114                         retval = unuse_mm(start_mm, entry, page);
2115
2116                 if (swap_count(*swap_map)) {
2117                         int set_start_mm = (*swap_map >= swcount);
2118                         struct list_head *p = &start_mm->mmlist;
2119                         struct mm_struct *new_start_mm = start_mm;
2120                         struct mm_struct *prev_mm = start_mm;
2121                         struct mm_struct *mm;
2122
2123                         mmget(new_start_mm);
2124                         mmget(prev_mm);
2125                         spin_lock(&mmlist_lock);
2126                         while (swap_count(*swap_map) && !retval &&
2127                                         (p = p->next) != &start_mm->mmlist) {
2128                                 mm = list_entry(p, struct mm_struct, mmlist);
2129                                 if (!mmget_not_zero(mm))
2130                                         continue;
2131                                 spin_unlock(&mmlist_lock);
2132                                 mmput(prev_mm);
2133                                 prev_mm = mm;
2134
2135                                 cond_resched();
2136
2137                                 swcount = *swap_map;
2138                                 if (!swap_count(swcount)) /* any usage ? */
2139                                         ;
2140                                 else if (mm == &init_mm)
2141                                         set_start_mm = 1;
2142                                 else
2143                                         retval = unuse_mm(mm, entry, page);
2144
2145                                 if (set_start_mm && *swap_map < swcount) {
2146                                         mmput(new_start_mm);
2147                                         mmget(mm);
2148                                         new_start_mm = mm;
2149                                         set_start_mm = 0;
2150                                 }
2151                                 spin_lock(&mmlist_lock);
2152                         }
2153                         spin_unlock(&mmlist_lock);
2154                         mmput(prev_mm);
2155                         mmput(start_mm);
2156                         start_mm = new_start_mm;
2157                 }
2158                 if (retval) {
2159                         unlock_page(page);
2160                         put_page(page);
2161                         break;
2162                 }
2163
2164                 /*
2165                  * If a reference remains (rare), we would like to leave
2166                  * the page in the swap cache; but try_to_unmap could
2167                  * then re-duplicate the entry once we drop page lock,
2168                  * so we might loop indefinitely; also, that page could
2169                  * not be swapped out to other storage meanwhile.  So:
2170                  * delete from cache even if there's another reference,
2171                  * after ensuring that the data has been saved to disk -
2172                  * since if the reference remains (rarer), it will be
2173                  * read from disk into another page.  Splitting into two
2174                  * pages would be incorrect if swap supported "shared
2175                  * private" pages, but they are handled by tmpfs files.
2176                  *
2177                  * Given how unuse_vma() targets one particular offset
2178                  * in an anon_vma, once the anon_vma has been determined,
2179                  * this splitting happens to be just what is needed to
2180                  * handle where KSM pages have been swapped out: re-reading
2181                  * is unnecessarily slow, but we can fix that later on.
2182                  */
2183                 if (swap_count(*swap_map) &&
2184                      PageDirty(page) && PageSwapCache(page)) {
2185                         struct writeback_control wbc = {
2186                                 .sync_mode = WB_SYNC_NONE,
2187                         };
2188
2189                         swap_writepage(compound_head(page), &wbc);
2190                         lock_page(page);
2191                         wait_on_page_writeback(page);
2192                 }
2193
2194                 /*
2195                  * It is conceivable that a racing task removed this page from
2196                  * swap cache just before we acquired the page lock at the top,
2197                  * or while we dropped it in unuse_mm().  The page might even
2198                  * be back in swap cache on another swap area: that we must not
2199                  * delete, since it may not have been written out to swap yet.
2200                  */
2201                 if (PageSwapCache(page) &&
2202                     likely(page_private(page) == entry.val) &&
2203                     !page_swapped(page))
2204                         delete_from_swap_cache(compound_head(page));
2205
2206                 /*
2207                  * So we could skip searching mms once swap count went
2208                  * to 1, we did not mark any present ptes as dirty: must
2209                  * mark page dirty so shrink_page_list will preserve it.
2210                  */
2211                 SetPageDirty(page);
2212                 unlock_page(page);
2213                 put_page(page);
2214
2215                 /*
2216                  * Make sure that we aren't completely killing
2217                  * interactive performance.
2218                  */
2219                 cond_resched();
2220                 if (frontswap && pages_to_unuse > 0) {
2221                         if (!--pages_to_unuse)
2222                                 break;
2223                 }
2224         }
2225
2226         mmput(start_mm);
2227         return retval;
2228 }
2229
2230 /*
2231  * After a successful try_to_unuse, if no swap is now in use, we know
2232  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2233  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2234  * added to the mmlist just after page_duplicate - before would be racy.
2235  */
2236 static void drain_mmlist(void)
2237 {
2238         struct list_head *p, *next;
2239         unsigned int type;
2240
2241         for (type = 0; type < nr_swapfiles; type++)
2242                 if (swap_info[type]->inuse_pages)
2243                         return;
2244         spin_lock(&mmlist_lock);
2245         list_for_each_safe(p, next, &init_mm.mmlist)
2246                 list_del_init(p);
2247         spin_unlock(&mmlist_lock);
2248 }
2249
2250 /*
2251  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2252  * corresponds to page offset for the specified swap entry.
2253  * Note that the type of this function is sector_t, but it returns page offset
2254  * into the bdev, not sector offset.
2255  */
2256 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2257 {
2258         struct swap_info_struct *sis;
2259         struct swap_extent *start_se;
2260         struct swap_extent *se;
2261         pgoff_t offset;
2262
2263         sis = swap_info[swp_type(entry)];
2264         *bdev = sis->bdev;
2265
2266         offset = swp_offset(entry);
2267         start_se = sis->curr_swap_extent;
2268         se = start_se;
2269
2270         for ( ; ; ) {
2271                 if (se->start_page <= offset &&
2272                                 offset < (se->start_page + se->nr_pages)) {
2273                         return se->start_block + (offset - se->start_page);
2274                 }
2275                 se = list_next_entry(se, list);
2276                 sis->curr_swap_extent = se;
2277                 BUG_ON(se == start_se);         /* It *must* be present */
2278         }
2279 }
2280
2281 /*
2282  * Returns the page offset into bdev for the specified page's swap entry.
2283  */
2284 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2285 {
2286         swp_entry_t entry;
2287         entry.val = page_private(page);
2288         return map_swap_entry(entry, bdev);
2289 }
2290
2291 /*
2292  * Free all of a swapdev's extent information
2293  */
2294 static void destroy_swap_extents(struct swap_info_struct *sis)
2295 {
2296         while (!list_empty(&sis->first_swap_extent.list)) {
2297                 struct swap_extent *se;
2298
2299                 se = list_first_entry(&sis->first_swap_extent.list,
2300                                 struct swap_extent, list);
2301                 list_del(&se->list);
2302                 kfree(se);
2303         }
2304
2305         if (sis->flags & SWP_FILE) {
2306                 struct file *swap_file = sis->swap_file;
2307                 struct address_space *mapping = swap_file->f_mapping;
2308
2309                 sis->flags &= ~SWP_FILE;
2310                 mapping->a_ops->swap_deactivate(swap_file);
2311         }
2312 }
2313
2314 /*
2315  * Add a block range (and the corresponding page range) into this swapdev's
2316  * extent list.  The extent list is kept sorted in page order.
2317  *
2318  * This function rather assumes that it is called in ascending page order.
2319  */
2320 int
2321 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2322                 unsigned long nr_pages, sector_t start_block)
2323 {
2324         struct swap_extent *se;
2325         struct swap_extent *new_se;
2326         struct list_head *lh;
2327
2328         if (start_page == 0) {
2329                 se = &sis->first_swap_extent;
2330                 sis->curr_swap_extent = se;
2331                 se->start_page = 0;
2332                 se->nr_pages = nr_pages;
2333                 se->start_block = start_block;
2334                 return 1;
2335         } else {
2336                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2337                 se = list_entry(lh, struct swap_extent, list);
2338                 BUG_ON(se->start_page + se->nr_pages != start_page);
2339                 if (se->start_block + se->nr_pages == start_block) {
2340                         /* Merge it */
2341                         se->nr_pages += nr_pages;
2342                         return 0;
2343                 }
2344         }
2345
2346         /*
2347          * No merge.  Insert a new extent, preserving ordering.
2348          */
2349         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2350         if (new_se == NULL)
2351                 return -ENOMEM;
2352         new_se->start_page = start_page;
2353         new_se->nr_pages = nr_pages;
2354         new_se->start_block = start_block;
2355
2356         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2357         return 1;
2358 }
2359
2360 /*
2361  * A `swap extent' is a simple thing which maps a contiguous range of pages
2362  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2363  * is built at swapon time and is then used at swap_writepage/swap_readpage
2364  * time for locating where on disk a page belongs.
2365  *
2366  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2367  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2368  * swap files identically.
2369  *
2370  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2371  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2372  * swapfiles are handled *identically* after swapon time.
2373  *
2374  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2375  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2376  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2377  * requirements, they are simply tossed out - we will never use those blocks
2378  * for swapping.
2379  *
2380  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2381  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2382  * which will scribble on the fs.
2383  *
2384  * The amount of disk space which a single swap extent represents varies.
2385  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2386  * extents in the list.  To avoid much list walking, we cache the previous
2387  * search location in `curr_swap_extent', and start new searches from there.
2388  * This is extremely effective.  The average number of iterations in
2389  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2390  */
2391 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2392 {
2393         struct file *swap_file = sis->swap_file;
2394         struct address_space *mapping = swap_file->f_mapping;
2395         struct inode *inode = mapping->host;
2396         int ret;
2397
2398         if (S_ISBLK(inode->i_mode)) {
2399                 ret = add_swap_extent(sis, 0, sis->max, 0);
2400                 *span = sis->pages;
2401                 return ret;
2402         }
2403
2404         if (mapping->a_ops->swap_activate) {
2405                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2406                 if (!ret) {
2407                         sis->flags |= SWP_FILE;
2408                         ret = add_swap_extent(sis, 0, sis->max, 0);
2409                         *span = sis->pages;
2410                 }
2411                 return ret;
2412         }
2413
2414         return generic_swapfile_activate(sis, swap_file, span);
2415 }
2416
2417 static int swap_node(struct swap_info_struct *p)
2418 {
2419         struct block_device *bdev;
2420
2421         if (p->bdev)
2422                 bdev = p->bdev;
2423         else
2424                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2425
2426         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2427 }
2428
2429 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2430                                 unsigned char *swap_map,
2431                                 struct swap_cluster_info *cluster_info)
2432 {
2433         int i;
2434
2435         if (prio >= 0)
2436                 p->prio = prio;
2437         else
2438                 p->prio = --least_priority;
2439         /*
2440          * the plist prio is negated because plist ordering is
2441          * low-to-high, while swap ordering is high-to-low
2442          */
2443         p->list.prio = -p->prio;
2444         for_each_node(i) {
2445                 if (p->prio >= 0)
2446                         p->avail_lists[i].prio = -p->prio;
2447                 else {
2448                         if (swap_node(p) == i)
2449                                 p->avail_lists[i].prio = 1;
2450                         else
2451                                 p->avail_lists[i].prio = -p->prio;
2452                 }
2453         }
2454         p->swap_map = swap_map;
2455         p->cluster_info = cluster_info;
2456         p->flags |= SWP_WRITEOK;
2457         atomic_long_add(p->pages, &nr_swap_pages);
2458         total_swap_pages += p->pages;
2459
2460         assert_spin_locked(&swap_lock);
2461         /*
2462          * both lists are plists, and thus priority ordered.
2463          * swap_active_head needs to be priority ordered for swapoff(),
2464          * which on removal of any swap_info_struct with an auto-assigned
2465          * (i.e. negative) priority increments the auto-assigned priority
2466          * of any lower-priority swap_info_structs.
2467          * swap_avail_head needs to be priority ordered for get_swap_page(),
2468          * which allocates swap pages from the highest available priority
2469          * swap_info_struct.
2470          */
2471         plist_add(&p->list, &swap_active_head);
2472         add_to_avail_list(p);
2473 }
2474
2475 static void enable_swap_info(struct swap_info_struct *p, int prio,
2476                                 unsigned char *swap_map,
2477                                 struct swap_cluster_info *cluster_info,
2478                                 unsigned long *frontswap_map)
2479 {
2480         frontswap_init(p->type, frontswap_map);
2481         spin_lock(&swap_lock);
2482         spin_lock(&p->lock);
2483          _enable_swap_info(p, prio, swap_map, cluster_info);
2484         spin_unlock(&p->lock);
2485         spin_unlock(&swap_lock);
2486 }
2487
2488 static void reinsert_swap_info(struct swap_info_struct *p)
2489 {
2490         spin_lock(&swap_lock);
2491         spin_lock(&p->lock);
2492         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2493         spin_unlock(&p->lock);
2494         spin_unlock(&swap_lock);
2495 }
2496
2497 bool has_usable_swap(void)
2498 {
2499         bool ret = true;
2500
2501         spin_lock(&swap_lock);
2502         if (plist_head_empty(&swap_active_head))
2503                 ret = false;
2504         spin_unlock(&swap_lock);
2505         return ret;
2506 }
2507
2508 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2509 {
2510         struct swap_info_struct *p = NULL;
2511         unsigned char *swap_map;
2512         struct swap_cluster_info *cluster_info;
2513         unsigned long *frontswap_map;
2514         struct file *swap_file, *victim;
2515         struct address_space *mapping;
2516         struct inode *inode;
2517         struct filename *pathname;
2518         int err, found = 0;
2519         unsigned int old_block_size;
2520
2521         if (!capable(CAP_SYS_ADMIN))
2522                 return -EPERM;
2523
2524         BUG_ON(!current->mm);
2525
2526         pathname = getname(specialfile);
2527         if (IS_ERR(pathname))
2528                 return PTR_ERR(pathname);
2529
2530         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2531         err = PTR_ERR(victim);
2532         if (IS_ERR(victim))
2533                 goto out;
2534
2535         mapping = victim->f_mapping;
2536         spin_lock(&swap_lock);
2537         plist_for_each_entry(p, &swap_active_head, list) {
2538                 if (p->flags & SWP_WRITEOK) {
2539                         if (p->swap_file->f_mapping == mapping) {
2540                                 found = 1;
2541                                 break;
2542                         }
2543                 }
2544         }
2545         if (!found) {
2546                 err = -EINVAL;
2547                 spin_unlock(&swap_lock);
2548                 goto out_dput;
2549         }
2550         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2551                 vm_unacct_memory(p->pages);
2552         else {
2553                 err = -ENOMEM;
2554                 spin_unlock(&swap_lock);
2555                 goto out_dput;
2556         }
2557         del_from_avail_list(p);
2558         spin_lock(&p->lock);
2559         if (p->prio < 0) {
2560                 struct swap_info_struct *si = p;
2561                 int nid;
2562
2563                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2564                         si->prio++;
2565                         si->list.prio--;
2566                         for_each_node(nid) {
2567                                 if (si->avail_lists[nid].prio != 1)
2568                                         si->avail_lists[nid].prio--;
2569                         }
2570                 }
2571                 least_priority++;
2572         }
2573         plist_del(&p->list, &swap_active_head);
2574         atomic_long_sub(p->pages, &nr_swap_pages);
2575         total_swap_pages -= p->pages;
2576         p->flags &= ~SWP_WRITEOK;
2577         spin_unlock(&p->lock);
2578         spin_unlock(&swap_lock);
2579
2580         disable_swap_slots_cache_lock();
2581
2582         set_current_oom_origin();
2583         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2584         clear_current_oom_origin();
2585
2586         if (err) {
2587                 /* re-insert swap space back into swap_list */
2588                 reinsert_swap_info(p);
2589                 reenable_swap_slots_cache_unlock();
2590                 goto out_dput;
2591         }
2592
2593         reenable_swap_slots_cache_unlock();
2594
2595         flush_work(&p->discard_work);
2596
2597         destroy_swap_extents(p);
2598         if (p->flags & SWP_CONTINUED)
2599                 free_swap_count_continuations(p);
2600
2601         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2602                 atomic_dec(&nr_rotate_swap);
2603
2604         mutex_lock(&swapon_mutex);
2605         spin_lock(&swap_lock);
2606         spin_lock(&p->lock);
2607         drain_mmlist();
2608
2609         /* wait for anyone still in scan_swap_map */
2610         p->highest_bit = 0;             /* cuts scans short */
2611         while (p->flags >= SWP_SCANNING) {
2612                 spin_unlock(&p->lock);
2613                 spin_unlock(&swap_lock);
2614                 schedule_timeout_uninterruptible(1);
2615                 spin_lock(&swap_lock);
2616                 spin_lock(&p->lock);
2617         }
2618
2619         swap_file = p->swap_file;
2620         old_block_size = p->old_block_size;
2621         p->swap_file = NULL;
2622         p->max = 0;
2623         swap_map = p->swap_map;
2624         p->swap_map = NULL;
2625         cluster_info = p->cluster_info;
2626         p->cluster_info = NULL;
2627         frontswap_map = frontswap_map_get(p);
2628         spin_unlock(&p->lock);
2629         spin_unlock(&swap_lock);
2630         frontswap_invalidate_area(p->type);
2631         frontswap_map_set(p, NULL);
2632         mutex_unlock(&swapon_mutex);
2633         free_percpu(p->percpu_cluster);
2634         p->percpu_cluster = NULL;
2635         vfree(swap_map);
2636         kvfree(cluster_info);
2637         kvfree(frontswap_map);
2638         /* Destroy swap account information */
2639         swap_cgroup_swapoff(p->type);
2640         exit_swap_address_space(p->type);
2641
2642         inode = mapping->host;
2643         if (S_ISBLK(inode->i_mode)) {
2644                 struct block_device *bdev = I_BDEV(inode);
2645                 set_blocksize(bdev, old_block_size);
2646                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2647         } else {
2648                 inode_lock(inode);
2649                 inode->i_flags &= ~S_SWAPFILE;
2650                 inode_unlock(inode);
2651         }
2652         filp_close(swap_file, NULL);
2653
2654         /*
2655          * Clear the SWP_USED flag after all resources are freed so that swapon
2656          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2657          * not hold p->lock after we cleared its SWP_WRITEOK.
2658          */
2659         spin_lock(&swap_lock);
2660         p->flags = 0;
2661         spin_unlock(&swap_lock);
2662
2663         err = 0;
2664         atomic_inc(&proc_poll_event);
2665         wake_up_interruptible(&proc_poll_wait);
2666
2667 out_dput:
2668         filp_close(victim, NULL);
2669 out:
2670         putname(pathname);
2671         return err;
2672 }
2673
2674 #ifdef CONFIG_PROC_FS
2675 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2676 {
2677         struct seq_file *seq = file->private_data;
2678
2679         poll_wait(file, &proc_poll_wait, wait);
2680
2681         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2682                 seq->poll_event = atomic_read(&proc_poll_event);
2683                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2684         }
2685
2686         return EPOLLIN | EPOLLRDNORM;
2687 }
2688
2689 /* iterator */
2690 static void *swap_start(struct seq_file *swap, loff_t *pos)
2691 {
2692         struct swap_info_struct *si;
2693         int type;
2694         loff_t l = *pos;
2695
2696         mutex_lock(&swapon_mutex);
2697
2698         if (!l)
2699                 return SEQ_START_TOKEN;
2700
2701         for (type = 0; type < nr_swapfiles; type++) {
2702                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2703                 si = swap_info[type];
2704                 if (!(si->flags & SWP_USED) || !si->swap_map)
2705                         continue;
2706                 if (!--l)
2707                         return si;
2708         }
2709
2710         return NULL;
2711 }
2712
2713 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2714 {
2715         struct swap_info_struct *si = v;
2716         int type;
2717
2718         if (v == SEQ_START_TOKEN)
2719                 type = 0;
2720         else
2721                 type = si->type + 1;
2722
2723         for (; type < nr_swapfiles; type++) {
2724                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2725                 si = swap_info[type];
2726                 if (!(si->flags & SWP_USED) || !si->swap_map)
2727                         continue;
2728                 ++*pos;
2729                 return si;
2730         }
2731
2732         return NULL;
2733 }
2734
2735 static void swap_stop(struct seq_file *swap, void *v)
2736 {
2737         mutex_unlock(&swapon_mutex);
2738 }
2739
2740 static int swap_show(struct seq_file *swap, void *v)
2741 {
2742         struct swap_info_struct *si = v;
2743         struct file *file;
2744         int len;
2745
2746         if (si == SEQ_START_TOKEN) {
2747                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2748                 return 0;
2749         }
2750
2751         file = si->swap_file;
2752         len = seq_file_path(swap, file, " \t\n\\");
2753         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2754                         len < 40 ? 40 - len : 1, " ",
2755                         S_ISBLK(file_inode(file)->i_mode) ?
2756                                 "partition" : "file\t",
2757                         si->pages << (PAGE_SHIFT - 10),
2758                         si->inuse_pages << (PAGE_SHIFT - 10),
2759                         si->prio);
2760         return 0;
2761 }
2762
2763 static const struct seq_operations swaps_op = {
2764         .start =        swap_start,
2765         .next =         swap_next,
2766         .stop =         swap_stop,
2767         .show =         swap_show
2768 };
2769
2770 static int swaps_open(struct inode *inode, struct file *file)
2771 {
2772         struct seq_file *seq;
2773         int ret;
2774
2775         ret = seq_open(file, &swaps_op);
2776         if (ret)
2777                 return ret;
2778
2779         seq = file->private_data;
2780         seq->poll_event = atomic_read(&proc_poll_event);
2781         return 0;
2782 }
2783
2784 static const struct file_operations proc_swaps_operations = {
2785         .open           = swaps_open,
2786         .read           = seq_read,
2787         .llseek         = seq_lseek,
2788         .release        = seq_release,
2789         .poll           = swaps_poll,
2790 };
2791
2792 static int __init procswaps_init(void)
2793 {
2794         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2795         return 0;
2796 }
2797 __initcall(procswaps_init);
2798 #endif /* CONFIG_PROC_FS */
2799
2800 #ifdef MAX_SWAPFILES_CHECK
2801 static int __init max_swapfiles_check(void)
2802 {
2803         MAX_SWAPFILES_CHECK();
2804         return 0;
2805 }
2806 late_initcall(max_swapfiles_check);
2807 #endif
2808
2809 static struct swap_info_struct *alloc_swap_info(void)
2810 {
2811         struct swap_info_struct *p;
2812         unsigned int type;
2813         int i;
2814
2815         p = kzalloc(sizeof(*p), GFP_KERNEL);
2816         if (!p)
2817                 return ERR_PTR(-ENOMEM);
2818
2819         spin_lock(&swap_lock);
2820         for (type = 0; type < nr_swapfiles; type++) {
2821                 if (!(swap_info[type]->flags & SWP_USED))
2822                         break;
2823         }
2824         if (type >= MAX_SWAPFILES) {
2825                 spin_unlock(&swap_lock);
2826                 kfree(p);
2827                 return ERR_PTR(-EPERM);
2828         }
2829         if (type >= nr_swapfiles) {
2830                 p->type = type;
2831                 swap_info[type] = p;
2832                 /*
2833                  * Write swap_info[type] before nr_swapfiles, in case a
2834                  * racing procfs swap_start() or swap_next() is reading them.
2835                  * (We never shrink nr_swapfiles, we never free this entry.)
2836                  */
2837                 smp_wmb();
2838                 nr_swapfiles++;
2839         } else {
2840                 kfree(p);
2841                 p = swap_info[type];
2842                 /*
2843                  * Do not memset this entry: a racing procfs swap_next()
2844                  * would be relying on p->type to remain valid.
2845                  */
2846         }
2847         INIT_LIST_HEAD(&p->first_swap_extent.list);
2848         plist_node_init(&p->list, 0);
2849         for_each_node(i)
2850                 plist_node_init(&p->avail_lists[i], 0);
2851         p->flags = SWP_USED;
2852         spin_unlock(&swap_lock);
2853         spin_lock_init(&p->lock);
2854         spin_lock_init(&p->cont_lock);
2855
2856         return p;
2857 }
2858
2859 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2860 {
2861         int error;
2862
2863         if (S_ISBLK(inode->i_mode)) {
2864                 p->bdev = bdgrab(I_BDEV(inode));
2865                 error = blkdev_get(p->bdev,
2866                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2867                 if (error < 0) {
2868                         p->bdev = NULL;
2869                         return error;
2870                 }
2871                 p->old_block_size = block_size(p->bdev);
2872                 error = set_blocksize(p->bdev, PAGE_SIZE);
2873                 if (error < 0)
2874                         return error;
2875                 p->flags |= SWP_BLKDEV;
2876         } else if (S_ISREG(inode->i_mode)) {
2877                 p->bdev = inode->i_sb->s_bdev;
2878                 inode_lock(inode);
2879                 if (IS_SWAPFILE(inode))
2880                         return -EBUSY;
2881         } else
2882                 return -EINVAL;
2883
2884         return 0;
2885 }
2886
2887
2888 /*
2889  * Find out how many pages are allowed for a single swap device. There
2890  * are two limiting factors:
2891  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2892  * 2) the number of bits in the swap pte, as defined by the different
2893  * architectures.
2894  *
2895  * In order to find the largest possible bit mask, a swap entry with
2896  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2897  * decoded to a swp_entry_t again, and finally the swap offset is
2898  * extracted.
2899  *
2900  * This will mask all the bits from the initial ~0UL mask that can't
2901  * be encoded in either the swp_entry_t or the architecture definition
2902  * of a swap pte.
2903  */
2904 unsigned long generic_max_swapfile_size(void)
2905 {
2906         return swp_offset(pte_to_swp_entry(
2907                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2908 }
2909
2910 /* Can be overridden by an architecture for additional checks. */
2911 __weak unsigned long max_swapfile_size(void)
2912 {
2913         return generic_max_swapfile_size();
2914 }
2915
2916 static unsigned long read_swap_header(struct swap_info_struct *p,
2917                                         union swap_header *swap_header,
2918                                         struct inode *inode)
2919 {
2920         int i;
2921         unsigned long maxpages;
2922         unsigned long swapfilepages;
2923         unsigned long last_page;
2924
2925         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2926                 pr_err("Unable to find swap-space signature\n");
2927                 return 0;
2928         }
2929
2930         /* swap partition endianess hack... */
2931         if (swab32(swap_header->info.version) == 1) {
2932                 swab32s(&swap_header->info.version);
2933                 swab32s(&swap_header->info.last_page);
2934                 swab32s(&swap_header->info.nr_badpages);
2935                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2936                         return 0;
2937                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2938                         swab32s(&swap_header->info.badpages[i]);
2939         }
2940         /* Check the swap header's sub-version */
2941         if (swap_header->info.version != 1) {
2942                 pr_warn("Unable to handle swap header version %d\n",
2943                         swap_header->info.version);
2944                 return 0;
2945         }
2946
2947         p->lowest_bit  = 1;
2948         p->cluster_next = 1;
2949         p->cluster_nr = 0;
2950
2951         maxpages = max_swapfile_size();
2952         last_page = swap_header->info.last_page;
2953         if (!last_page) {
2954                 pr_warn("Empty swap-file\n");
2955                 return 0;
2956         }
2957         if (last_page > maxpages) {
2958                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2959                         maxpages << (PAGE_SHIFT - 10),
2960                         last_page << (PAGE_SHIFT - 10));
2961         }
2962         if (maxpages > last_page) {
2963                 maxpages = last_page + 1;
2964                 /* p->max is an unsigned int: don't overflow it */
2965                 if ((unsigned int)maxpages == 0)
2966                         maxpages = UINT_MAX;
2967         }
2968         p->highest_bit = maxpages - 1;
2969
2970         if (!maxpages)
2971                 return 0;
2972         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2973         if (swapfilepages && maxpages > swapfilepages) {
2974                 pr_warn("Swap area shorter than signature indicates\n");
2975                 return 0;
2976         }
2977         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2978                 return 0;
2979         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2980                 return 0;
2981
2982         return maxpages;
2983 }
2984
2985 #define SWAP_CLUSTER_INFO_COLS                                          \
2986         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2987 #define SWAP_CLUSTER_SPACE_COLS                                         \
2988         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2989 #define SWAP_CLUSTER_COLS                                               \
2990         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2991
2992 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2993                                         union swap_header *swap_header,
2994                                         unsigned char *swap_map,
2995                                         struct swap_cluster_info *cluster_info,
2996                                         unsigned long maxpages,
2997                                         sector_t *span)
2998 {
2999         unsigned int j, k;
3000         unsigned int nr_good_pages;
3001         int nr_extents;
3002         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3003         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3004         unsigned long i, idx;
3005
3006         nr_good_pages = maxpages - 1;   /* omit header page */
3007
3008         cluster_list_init(&p->free_clusters);
3009         cluster_list_init(&p->discard_clusters);
3010
3011         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3012                 unsigned int page_nr = swap_header->info.badpages[i];
3013                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3014                         return -EINVAL;
3015                 if (page_nr < maxpages) {
3016                         swap_map[page_nr] = SWAP_MAP_BAD;
3017                         nr_good_pages--;
3018                         /*
3019                          * Haven't marked the cluster free yet, no list
3020                          * operation involved
3021                          */
3022                         inc_cluster_info_page(p, cluster_info, page_nr);
3023                 }
3024         }
3025
3026         /* Haven't marked the cluster free yet, no list operation involved */
3027         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3028                 inc_cluster_info_page(p, cluster_info, i);
3029
3030         if (nr_good_pages) {
3031                 swap_map[0] = SWAP_MAP_BAD;
3032                 /*
3033                  * Not mark the cluster free yet, no list
3034                  * operation involved
3035                  */
3036                 inc_cluster_info_page(p, cluster_info, 0);
3037                 p->max = maxpages;
3038                 p->pages = nr_good_pages;
3039                 nr_extents = setup_swap_extents(p, span);
3040                 if (nr_extents < 0)
3041                         return nr_extents;
3042                 nr_good_pages = p->pages;
3043         }
3044         if (!nr_good_pages) {
3045                 pr_warn("Empty swap-file\n");
3046                 return -EINVAL;
3047         }
3048
3049         if (!cluster_info)
3050                 return nr_extents;
3051
3052
3053         /*
3054          * Reduce false cache line sharing between cluster_info and
3055          * sharing same address space.
3056          */
3057         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3058                 j = (k + col) % SWAP_CLUSTER_COLS;
3059                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3060                         idx = i * SWAP_CLUSTER_COLS + j;
3061                         if (idx >= nr_clusters)
3062                                 continue;
3063                         if (cluster_count(&cluster_info[idx]))
3064                                 continue;
3065                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3066                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3067                                               idx);
3068                 }
3069         }
3070         return nr_extents;
3071 }
3072
3073 /*
3074  * Helper to sys_swapon determining if a given swap
3075  * backing device queue supports DISCARD operations.
3076  */
3077 static bool swap_discardable(struct swap_info_struct *si)
3078 {
3079         struct request_queue *q = bdev_get_queue(si->bdev);
3080
3081         if (!q || !blk_queue_discard(q))
3082                 return false;
3083
3084         return true;
3085 }
3086
3087 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3088 {
3089         struct swap_info_struct *p;
3090         struct filename *name;
3091         struct file *swap_file = NULL;
3092         struct address_space *mapping;
3093         int prio;
3094         int error;
3095         union swap_header *swap_header;
3096         int nr_extents;
3097         sector_t span;
3098         unsigned long maxpages;
3099         unsigned char *swap_map = NULL;
3100         struct swap_cluster_info *cluster_info = NULL;
3101         unsigned long *frontswap_map = NULL;
3102         struct page *page = NULL;
3103         struct inode *inode = NULL;
3104         bool inced_nr_rotate_swap = false;
3105
3106         if (swap_flags & ~SWAP_FLAGS_VALID)
3107                 return -EINVAL;
3108
3109         if (!capable(CAP_SYS_ADMIN))
3110                 return -EPERM;
3111
3112         if (!swap_avail_heads)
3113                 return -ENOMEM;
3114
3115         p = alloc_swap_info();
3116         if (IS_ERR(p))
3117                 return PTR_ERR(p);
3118
3119         INIT_WORK(&p->discard_work, swap_discard_work);
3120
3121         name = getname(specialfile);
3122         if (IS_ERR(name)) {
3123                 error = PTR_ERR(name);
3124                 name = NULL;
3125                 goto bad_swap;
3126         }
3127         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3128         if (IS_ERR(swap_file)) {
3129                 error = PTR_ERR(swap_file);
3130                 swap_file = NULL;
3131                 goto bad_swap;
3132         }
3133
3134         p->swap_file = swap_file;
3135         mapping = swap_file->f_mapping;
3136         inode = mapping->host;
3137
3138         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3139         error = claim_swapfile(p, inode);
3140         if (unlikely(error))
3141                 goto bad_swap;
3142
3143         /*
3144          * Read the swap header.
3145          */
3146         if (!mapping->a_ops->readpage) {
3147                 error = -EINVAL;
3148                 goto bad_swap;
3149         }
3150         page = read_mapping_page(mapping, 0, swap_file);
3151         if (IS_ERR(page)) {
3152                 error = PTR_ERR(page);
3153                 goto bad_swap;
3154         }
3155         swap_header = kmap(page);
3156
3157         maxpages = read_swap_header(p, swap_header, inode);
3158         if (unlikely(!maxpages)) {
3159                 error = -EINVAL;
3160                 goto bad_swap;
3161         }
3162
3163         /* OK, set up the swap map and apply the bad block list */
3164         swap_map = vzalloc(maxpages);
3165         if (!swap_map) {
3166                 error = -ENOMEM;
3167                 goto bad_swap;
3168         }
3169
3170         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3171                 p->flags |= SWP_STABLE_WRITES;
3172
3173         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3174                 p->flags |= SWP_SYNCHRONOUS_IO;
3175
3176         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3177                 int cpu;
3178                 unsigned long ci, nr_cluster;
3179
3180                 p->flags |= SWP_SOLIDSTATE;
3181                 /*
3182                  * select a random position to start with to help wear leveling
3183                  * SSD
3184                  */
3185                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3186                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3187
3188                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3189                                         GFP_KERNEL);
3190                 if (!cluster_info) {
3191                         error = -ENOMEM;
3192                         goto bad_swap;
3193                 }
3194
3195                 for (ci = 0; ci < nr_cluster; ci++)
3196                         spin_lock_init(&((cluster_info + ci)->lock));
3197
3198                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3199                 if (!p->percpu_cluster) {
3200                         error = -ENOMEM;
3201                         goto bad_swap;
3202                 }
3203                 for_each_possible_cpu(cpu) {
3204                         struct percpu_cluster *cluster;
3205                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3206                         cluster_set_null(&cluster->index);
3207                 }
3208         } else {
3209                 atomic_inc(&nr_rotate_swap);
3210                 inced_nr_rotate_swap = true;
3211         }
3212
3213         error = swap_cgroup_swapon(p->type, maxpages);
3214         if (error)
3215                 goto bad_swap;
3216
3217         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3218                 cluster_info, maxpages, &span);
3219         if (unlikely(nr_extents < 0)) {
3220                 error = nr_extents;
3221                 goto bad_swap;
3222         }
3223         /* frontswap enabled? set up bit-per-page map for frontswap */
3224         if (IS_ENABLED(CONFIG_FRONTSWAP))
3225                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3226                                          sizeof(long),
3227                                          GFP_KERNEL);
3228
3229         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3230                 /*
3231                  * When discard is enabled for swap with no particular
3232                  * policy flagged, we set all swap discard flags here in
3233                  * order to sustain backward compatibility with older
3234                  * swapon(8) releases.
3235                  */
3236                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3237                              SWP_PAGE_DISCARD);
3238
3239                 /*
3240                  * By flagging sys_swapon, a sysadmin can tell us to
3241                  * either do single-time area discards only, or to just
3242                  * perform discards for released swap page-clusters.
3243                  * Now it's time to adjust the p->flags accordingly.
3244                  */
3245                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3246                         p->flags &= ~SWP_PAGE_DISCARD;
3247                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3248                         p->flags &= ~SWP_AREA_DISCARD;
3249
3250                 /* issue a swapon-time discard if it's still required */
3251                 if (p->flags & SWP_AREA_DISCARD) {
3252                         int err = discard_swap(p);
3253                         if (unlikely(err))
3254                                 pr_err("swapon: discard_swap(%p): %d\n",
3255                                         p, err);
3256                 }
3257         }
3258
3259         error = init_swap_address_space(p->type, maxpages);
3260         if (error)
3261                 goto bad_swap;
3262
3263         mutex_lock(&swapon_mutex);
3264         prio = -1;
3265         if (swap_flags & SWAP_FLAG_PREFER)
3266                 prio =
3267                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3268         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3269
3270         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3271                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3272                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3273                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3274                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3275                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3276                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3277                 (frontswap_map) ? "FS" : "");
3278
3279         mutex_unlock(&swapon_mutex);
3280         atomic_inc(&proc_poll_event);
3281         wake_up_interruptible(&proc_poll_wait);
3282
3283         if (S_ISREG(inode->i_mode))
3284                 inode->i_flags |= S_SWAPFILE;
3285         error = 0;
3286         goto out;
3287 bad_swap:
3288         free_percpu(p->percpu_cluster);
3289         p->percpu_cluster = NULL;
3290         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3291                 set_blocksize(p->bdev, p->old_block_size);
3292                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3293         }
3294         destroy_swap_extents(p);
3295         swap_cgroup_swapoff(p->type);
3296         spin_lock(&swap_lock);
3297         p->swap_file = NULL;
3298         p->flags = 0;
3299         spin_unlock(&swap_lock);
3300         vfree(swap_map);
3301         kvfree(cluster_info);
3302         kvfree(frontswap_map);
3303         if (inced_nr_rotate_swap)
3304                 atomic_dec(&nr_rotate_swap);
3305         if (swap_file) {
3306                 if (inode && S_ISREG(inode->i_mode)) {
3307                         inode_unlock(inode);
3308                         inode = NULL;
3309                 }
3310                 filp_close(swap_file, NULL);
3311         }
3312 out:
3313         if (page && !IS_ERR(page)) {
3314                 kunmap(page);
3315                 put_page(page);
3316         }
3317         if (name)
3318                 putname(name);
3319         if (inode && S_ISREG(inode->i_mode))
3320                 inode_unlock(inode);
3321         if (!error)
3322                 enable_swap_slots_cache();
3323         return error;
3324 }
3325
3326 void si_swapinfo(struct sysinfo *val)
3327 {
3328         unsigned int type;
3329         unsigned long nr_to_be_unused = 0;
3330
3331         spin_lock(&swap_lock);
3332         for (type = 0; type < nr_swapfiles; type++) {
3333                 struct swap_info_struct *si = swap_info[type];
3334
3335                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3336                         nr_to_be_unused += si->inuse_pages;
3337         }
3338         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3339         val->totalswap = total_swap_pages + nr_to_be_unused;
3340         spin_unlock(&swap_lock);
3341 }
3342
3343 /*
3344  * Verify that a swap entry is valid and increment its swap map count.
3345  *
3346  * Returns error code in following case.
3347  * - success -> 0
3348  * - swp_entry is invalid -> EINVAL
3349  * - swp_entry is migration entry -> EINVAL
3350  * - swap-cache reference is requested but there is already one. -> EEXIST
3351  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3352  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3353  */
3354 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3355 {
3356         struct swap_info_struct *p;
3357         struct swap_cluster_info *ci;
3358         unsigned long offset, type;
3359         unsigned char count;
3360         unsigned char has_cache;
3361         int err = -EINVAL;
3362
3363         if (non_swap_entry(entry))
3364                 goto out;
3365
3366         type = swp_type(entry);
3367         if (type >= nr_swapfiles)
3368                 goto bad_file;
3369         p = swap_info[type];
3370         offset = swp_offset(entry);
3371         if (unlikely(offset >= p->max))
3372                 goto out;
3373
3374         ci = lock_cluster_or_swap_info(p, offset);
3375
3376         count = p->swap_map[offset];
3377
3378         /*
3379          * swapin_readahead() doesn't check if a swap entry is valid, so the
3380          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3381          */
3382         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3383                 err = -ENOENT;
3384                 goto unlock_out;
3385         }
3386
3387         has_cache = count & SWAP_HAS_CACHE;
3388         count &= ~SWAP_HAS_CACHE;
3389         err = 0;
3390
3391         if (usage == SWAP_HAS_CACHE) {
3392
3393                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3394                 if (!has_cache && count)
3395                         has_cache = SWAP_HAS_CACHE;
3396                 else if (has_cache)             /* someone else added cache */
3397                         err = -EEXIST;
3398                 else                            /* no users remaining */
3399                         err = -ENOENT;
3400
3401         } else if (count || has_cache) {
3402
3403                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3404                         count += usage;
3405                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3406                         err = -EINVAL;
3407                 else if (swap_count_continued(p, offset, count))
3408                         count = COUNT_CONTINUED;
3409                 else
3410                         err = -ENOMEM;
3411         } else
3412                 err = -ENOENT;                  /* unused swap entry */
3413
3414         p->swap_map[offset] = count | has_cache;
3415
3416 unlock_out:
3417         unlock_cluster_or_swap_info(p, ci);
3418 out:
3419         return err;
3420
3421 bad_file:
3422         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3423         goto out;
3424 }
3425
3426 /*
3427  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3428  * (in which case its reference count is never incremented).
3429  */
3430 void swap_shmem_alloc(swp_entry_t entry)
3431 {
3432         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3433 }
3434
3435 /*
3436  * Increase reference count of swap entry by 1.
3437  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3438  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3439  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3440  * might occur if a page table entry has got corrupted.
3441  */
3442 int swap_duplicate(swp_entry_t entry)
3443 {
3444         int err = 0;
3445
3446         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3447                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3448         return err;
3449 }
3450
3451 /*
3452  * @entry: swap entry for which we allocate swap cache.
3453  *
3454  * Called when allocating swap cache for existing swap entry,
3455  * This can return error codes. Returns 0 at success.
3456  * -EBUSY means there is a swap cache.
3457  * Note: return code is different from swap_duplicate().
3458  */
3459 int swapcache_prepare(swp_entry_t entry)
3460 {
3461         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3462 }
3463
3464 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3465 {
3466         return swap_info[swp_type(entry)];
3467 }
3468
3469 struct swap_info_struct *page_swap_info(struct page *page)
3470 {
3471         swp_entry_t entry = { .val = page_private(page) };
3472         return swp_swap_info(entry);
3473 }
3474
3475 /*
3476  * out-of-line __page_file_ methods to avoid include hell.
3477  */
3478 struct address_space *__page_file_mapping(struct page *page)
3479 {
3480         return page_swap_info(page)->swap_file->f_mapping;
3481 }
3482 EXPORT_SYMBOL_GPL(__page_file_mapping);
3483
3484 pgoff_t __page_file_index(struct page *page)
3485 {
3486         swp_entry_t swap = { .val = page_private(page) };
3487         return swp_offset(swap);
3488 }
3489 EXPORT_SYMBOL_GPL(__page_file_index);
3490
3491 /*
3492  * add_swap_count_continuation - called when a swap count is duplicated
3493  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3494  * page of the original vmalloc'ed swap_map, to hold the continuation count
3495  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3496  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3497  *
3498  * These continuation pages are seldom referenced: the common paths all work
3499  * on the original swap_map, only referring to a continuation page when the
3500  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3501  *
3502  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3503  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3504  * can be called after dropping locks.
3505  */
3506 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3507 {
3508         struct swap_info_struct *si;
3509         struct swap_cluster_info *ci;
3510         struct page *head;
3511         struct page *page;
3512         struct page *list_page;
3513         pgoff_t offset;
3514         unsigned char count;
3515
3516         /*
3517          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3518          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3519          */
3520         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3521
3522         si = swap_info_get(entry);
3523         if (!si) {
3524                 /*
3525                  * An acceptable race has occurred since the failing
3526                  * __swap_duplicate(): the swap entry has been freed,
3527                  * perhaps even the whole swap_map cleared for swapoff.
3528                  */
3529                 goto outer;
3530         }
3531
3532         offset = swp_offset(entry);
3533
3534         ci = lock_cluster(si, offset);
3535
3536         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3537
3538         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3539                 /*
3540                  * The higher the swap count, the more likely it is that tasks
3541                  * will race to add swap count continuation: we need to avoid
3542                  * over-provisioning.
3543                  */
3544                 goto out;
3545         }
3546
3547         if (!page) {
3548                 unlock_cluster(ci);
3549                 spin_unlock(&si->lock);
3550                 return -ENOMEM;
3551         }
3552
3553         /*
3554          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3555          * no architecture is using highmem pages for kernel page tables: so it
3556          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3557          */
3558         head = vmalloc_to_page(si->swap_map + offset);
3559         offset &= ~PAGE_MASK;
3560
3561         spin_lock(&si->cont_lock);
3562         /*
3563          * Page allocation does not initialize the page's lru field,
3564          * but it does always reset its private field.
3565          */
3566         if (!page_private(head)) {
3567                 BUG_ON(count & COUNT_CONTINUED);
3568                 INIT_LIST_HEAD(&head->lru);
3569                 set_page_private(head, SWP_CONTINUED);
3570                 si->flags |= SWP_CONTINUED;
3571         }
3572
3573         list_for_each_entry(list_page, &head->lru, lru) {
3574                 unsigned char *map;
3575
3576                 /*
3577                  * If the previous map said no continuation, but we've found
3578                  * a continuation page, free our allocation and use this one.
3579                  */
3580                 if (!(count & COUNT_CONTINUED))
3581                         goto out_unlock_cont;
3582
3583                 map = kmap_atomic(list_page) + offset;
3584                 count = *map;
3585                 kunmap_atomic(map);
3586
3587                 /*
3588                  * If this continuation count now has some space in it,
3589                  * free our allocation and use this one.
3590                  */
3591                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3592                         goto out_unlock_cont;
3593         }
3594
3595         list_add_tail(&page->lru, &head->lru);
3596         page = NULL;                    /* now it's attached, don't free it */
3597 out_unlock_cont:
3598         spin_unlock(&si->cont_lock);
3599 out:
3600         unlock_cluster(ci);
3601         spin_unlock(&si->lock);
3602 outer:
3603         if (page)
3604                 __free_page(page);
3605         return 0;
3606 }
3607
3608 /*
3609  * swap_count_continued - when the original swap_map count is incremented
3610  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3611  * into, carry if so, or else fail until a new continuation page is allocated;
3612  * when the original swap_map count is decremented from 0 with continuation,
3613  * borrow from the continuation and report whether it still holds more.
3614  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3615  * lock.
3616  */
3617 static bool swap_count_continued(struct swap_info_struct *si,
3618                                  pgoff_t offset, unsigned char count)
3619 {
3620         struct page *head;
3621         struct page *page;
3622         unsigned char *map;
3623         bool ret;
3624
3625         head = vmalloc_to_page(si->swap_map + offset);
3626         if (page_private(head) != SWP_CONTINUED) {
3627                 BUG_ON(count & COUNT_CONTINUED);
3628                 return false;           /* need to add count continuation */
3629         }
3630
3631         spin_lock(&si->cont_lock);
3632         offset &= ~PAGE_MASK;
3633         page = list_entry(head->lru.next, struct page, lru);
3634         map = kmap_atomic(page) + offset;
3635
3636         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3637                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3638
3639         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3640                 /*
3641                  * Think of how you add 1 to 999
3642                  */
3643                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3644                         kunmap_atomic(map);
3645                         page = list_entry(page->lru.next, struct page, lru);
3646                         BUG_ON(page == head);
3647                         map = kmap_atomic(page) + offset;
3648                 }
3649                 if (*map == SWAP_CONT_MAX) {
3650                         kunmap_atomic(map);
3651                         page = list_entry(page->lru.next, struct page, lru);
3652                         if (page == head) {
3653                                 ret = false;    /* add count continuation */
3654                                 goto out;
3655                         }
3656                         map = kmap_atomic(page) + offset;
3657 init_map:               *map = 0;               /* we didn't zero the page */
3658                 }
3659                 *map += 1;
3660                 kunmap_atomic(map);
3661                 page = list_entry(page->lru.prev, struct page, lru);
3662                 while (page != head) {
3663                         map = kmap_atomic(page) + offset;
3664                         *map = COUNT_CONTINUED;
3665                         kunmap_atomic(map);
3666                         page = list_entry(page->lru.prev, struct page, lru);
3667                 }
3668                 ret = true;                     /* incremented */
3669
3670         } else {                                /* decrementing */
3671                 /*
3672                  * Think of how you subtract 1 from 1000
3673                  */
3674                 BUG_ON(count != COUNT_CONTINUED);
3675                 while (*map == COUNT_CONTINUED) {
3676                         kunmap_atomic(map);
3677                         page = list_entry(page->lru.next, struct page, lru);
3678                         BUG_ON(page == head);
3679                         map = kmap_atomic(page) + offset;
3680                 }
3681                 BUG_ON(*map == 0);
3682                 *map -= 1;
3683                 if (*map == 0)
3684                         count = 0;
3685                 kunmap_atomic(map);
3686                 page = list_entry(page->lru.prev, struct page, lru);
3687                 while (page != head) {
3688                         map = kmap_atomic(page) + offset;
3689                         *map = SWAP_CONT_MAX | count;
3690                         count = COUNT_CONTINUED;
3691                         kunmap_atomic(map);
3692                         page = list_entry(page->lru.prev, struct page, lru);
3693                 }
3694                 ret = count == COUNT_CONTINUED;
3695         }
3696 out:
3697         spin_unlock(&si->cont_lock);
3698         return ret;
3699 }
3700
3701 /*
3702  * free_swap_count_continuations - swapoff free all the continuation pages
3703  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3704  */
3705 static void free_swap_count_continuations(struct swap_info_struct *si)
3706 {
3707         pgoff_t offset;
3708
3709         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3710                 struct page *head;
3711                 head = vmalloc_to_page(si->swap_map + offset);
3712                 if (page_private(head)) {
3713                         struct page *page, *next;
3714
3715                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3716                                 list_del(&page->lru);
3717                                 __free_page(page);
3718                         }
3719                 }
3720         }
3721 }
3722
3723 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3724 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3725                                   gfp_t gfp_mask)
3726 {
3727         struct swap_info_struct *si, *next;
3728         if (!(gfp_mask & __GFP_IO) || !memcg)
3729                 return;
3730
3731         if (!blk_cgroup_congested())
3732                 return;
3733
3734         /*
3735          * We've already scheduled a throttle, avoid taking the global swap
3736          * lock.
3737          */
3738         if (current->throttle_queue)
3739                 return;
3740
3741         spin_lock(&swap_avail_lock);
3742         plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3743                                   avail_lists[node]) {
3744                 if (si->bdev) {
3745                         blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3746                                                 true);
3747                         break;
3748                 }
3749         }
3750         spin_unlock(&swap_avail_lock);
3751 }
3752 #endif
3753
3754 static int __init swapfile_init(void)
3755 {
3756         int nid;
3757
3758         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3759                                          GFP_KERNEL);
3760         if (!swap_avail_heads) {
3761                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3762                 return -ENOMEM;
3763         }
3764
3765         for_each_node(nid)
3766                 plist_head_init(&swap_avail_heads[nid]);
3767
3768         return 0;
3769 }
3770 subsys_initcall(swapfile_init);