]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/swapfile.c
mm/swapfile.c: use swap_count() in swap_page_trans_huge_swapped()
[linux.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static inline unsigned char swap_count(unsigned char ent)
102 {
103         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
104 }
105
106 /* returns 1 if swap entry is freed */
107 static int
108 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109 {
110         swp_entry_t entry = swp_entry(si->type, offset);
111         struct page *page;
112         int ret = 0;
113
114         page = find_get_page(swap_address_space(entry), swp_offset(entry));
115         if (!page)
116                 return 0;
117         /*
118          * This function is called from scan_swap_map() and it's called
119          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120          * We have to use trylock for avoiding deadlock. This is a special
121          * case and you should use try_to_free_swap() with explicit lock_page()
122          * in usual operations.
123          */
124         if (trylock_page(page)) {
125                 ret = try_to_free_swap(page);
126                 unlock_page(page);
127         }
128         put_page(page);
129         return ret;
130 }
131
132 /*
133  * swapon tell device that all the old swap contents can be discarded,
134  * to allow the swap device to optimize its wear-levelling.
135  */
136 static int discard_swap(struct swap_info_struct *si)
137 {
138         struct swap_extent *se;
139         sector_t start_block;
140         sector_t nr_blocks;
141         int err = 0;
142
143         /* Do not discard the swap header page! */
144         se = &si->first_swap_extent;
145         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147         if (nr_blocks) {
148                 err = blkdev_issue_discard(si->bdev, start_block,
149                                 nr_blocks, GFP_KERNEL, 0);
150                 if (err)
151                         return err;
152                 cond_resched();
153         }
154
155         list_for_each_entry(se, &si->first_swap_extent.list, list) {
156                 start_block = se->start_block << (PAGE_SHIFT - 9);
157                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
158
159                 err = blkdev_issue_discard(si->bdev, start_block,
160                                 nr_blocks, GFP_KERNEL, 0);
161                 if (err)
162                         break;
163
164                 cond_resched();
165         }
166         return err;             /* That will often be -EOPNOTSUPP */
167 }
168
169 /*
170  * swap allocation tell device that a cluster of swap can now be discarded,
171  * to allow the swap device to optimize its wear-levelling.
172  */
173 static void discard_swap_cluster(struct swap_info_struct *si,
174                                  pgoff_t start_page, pgoff_t nr_pages)
175 {
176         struct swap_extent *se = si->curr_swap_extent;
177         int found_extent = 0;
178
179         while (nr_pages) {
180                 if (se->start_page <= start_page &&
181                     start_page < se->start_page + se->nr_pages) {
182                         pgoff_t offset = start_page - se->start_page;
183                         sector_t start_block = se->start_block + offset;
184                         sector_t nr_blocks = se->nr_pages - offset;
185
186                         if (nr_blocks > nr_pages)
187                                 nr_blocks = nr_pages;
188                         start_page += nr_blocks;
189                         nr_pages -= nr_blocks;
190
191                         if (!found_extent++)
192                                 si->curr_swap_extent = se;
193
194                         start_block <<= PAGE_SHIFT - 9;
195                         nr_blocks <<= PAGE_SHIFT - 9;
196                         if (blkdev_issue_discard(si->bdev, start_block,
197                                     nr_blocks, GFP_NOIO, 0))
198                                 break;
199                 }
200
201                 se = list_next_entry(se, list);
202         }
203 }
204
205 #ifdef CONFIG_THP_SWAP
206 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
207 #else
208 #define SWAPFILE_CLUSTER        256
209 #endif
210 #define LATENCY_LIMIT           256
211
212 static inline void cluster_set_flag(struct swap_cluster_info *info,
213         unsigned int flag)
214 {
215         info->flags = flag;
216 }
217
218 static inline unsigned int cluster_count(struct swap_cluster_info *info)
219 {
220         return info->data;
221 }
222
223 static inline void cluster_set_count(struct swap_cluster_info *info,
224                                      unsigned int c)
225 {
226         info->data = c;
227 }
228
229 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
230                                          unsigned int c, unsigned int f)
231 {
232         info->flags = f;
233         info->data = c;
234 }
235
236 static inline unsigned int cluster_next(struct swap_cluster_info *info)
237 {
238         return info->data;
239 }
240
241 static inline void cluster_set_next(struct swap_cluster_info *info,
242                                     unsigned int n)
243 {
244         info->data = n;
245 }
246
247 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
248                                          unsigned int n, unsigned int f)
249 {
250         info->flags = f;
251         info->data = n;
252 }
253
254 static inline bool cluster_is_free(struct swap_cluster_info *info)
255 {
256         return info->flags & CLUSTER_FLAG_FREE;
257 }
258
259 static inline bool cluster_is_null(struct swap_cluster_info *info)
260 {
261         return info->flags & CLUSTER_FLAG_NEXT_NULL;
262 }
263
264 static inline void cluster_set_null(struct swap_cluster_info *info)
265 {
266         info->flags = CLUSTER_FLAG_NEXT_NULL;
267         info->data = 0;
268 }
269
270 static inline bool cluster_is_huge(struct swap_cluster_info *info)
271 {
272         return info->flags & CLUSTER_FLAG_HUGE;
273 }
274
275 static inline void cluster_clear_huge(struct swap_cluster_info *info)
276 {
277         info->flags &= ~CLUSTER_FLAG_HUGE;
278 }
279
280 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
281                                                      unsigned long offset)
282 {
283         struct swap_cluster_info *ci;
284
285         ci = si->cluster_info;
286         if (ci) {
287                 ci += offset / SWAPFILE_CLUSTER;
288                 spin_lock(&ci->lock);
289         }
290         return ci;
291 }
292
293 static inline void unlock_cluster(struct swap_cluster_info *ci)
294 {
295         if (ci)
296                 spin_unlock(&ci->lock);
297 }
298
299 /*
300  * Determine the locking method in use for this device.  Return
301  * swap_cluster_info if SSD-style cluster-based locking is in place.
302  */
303 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
304                 struct swap_info_struct *si, unsigned long offset)
305 {
306         struct swap_cluster_info *ci;
307
308         /* Try to use fine-grained SSD-style locking if available: */
309         ci = lock_cluster(si, offset);
310         /* Otherwise, fall back to traditional, coarse locking: */
311         if (!ci)
312                 spin_lock(&si->lock);
313
314         return ci;
315 }
316
317 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
318                                                struct swap_cluster_info *ci)
319 {
320         if (ci)
321                 unlock_cluster(ci);
322         else
323                 spin_unlock(&si->lock);
324 }
325
326 static inline bool cluster_list_empty(struct swap_cluster_list *list)
327 {
328         return cluster_is_null(&list->head);
329 }
330
331 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
332 {
333         return cluster_next(&list->head);
334 }
335
336 static void cluster_list_init(struct swap_cluster_list *list)
337 {
338         cluster_set_null(&list->head);
339         cluster_set_null(&list->tail);
340 }
341
342 static void cluster_list_add_tail(struct swap_cluster_list *list,
343                                   struct swap_cluster_info *ci,
344                                   unsigned int idx)
345 {
346         if (cluster_list_empty(list)) {
347                 cluster_set_next_flag(&list->head, idx, 0);
348                 cluster_set_next_flag(&list->tail, idx, 0);
349         } else {
350                 struct swap_cluster_info *ci_tail;
351                 unsigned int tail = cluster_next(&list->tail);
352
353                 /*
354                  * Nested cluster lock, but both cluster locks are
355                  * only acquired when we held swap_info_struct->lock
356                  */
357                 ci_tail = ci + tail;
358                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
359                 cluster_set_next(ci_tail, idx);
360                 spin_unlock(&ci_tail->lock);
361                 cluster_set_next_flag(&list->tail, idx, 0);
362         }
363 }
364
365 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
366                                            struct swap_cluster_info *ci)
367 {
368         unsigned int idx;
369
370         idx = cluster_next(&list->head);
371         if (cluster_next(&list->tail) == idx) {
372                 cluster_set_null(&list->head);
373                 cluster_set_null(&list->tail);
374         } else
375                 cluster_set_next_flag(&list->head,
376                                       cluster_next(&ci[idx]), 0);
377
378         return idx;
379 }
380
381 /* Add a cluster to discard list and schedule it to do discard */
382 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
383                 unsigned int idx)
384 {
385         /*
386          * If scan_swap_map() can't find a free cluster, it will check
387          * si->swap_map directly. To make sure the discarding cluster isn't
388          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
389          * will be cleared after discard
390          */
391         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
392                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
393
394         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
395
396         schedule_work(&si->discard_work);
397 }
398
399 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
400 {
401         struct swap_cluster_info *ci = si->cluster_info;
402
403         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
404         cluster_list_add_tail(&si->free_clusters, ci, idx);
405 }
406
407 /*
408  * Doing discard actually. After a cluster discard is finished, the cluster
409  * will be added to free cluster list. caller should hold si->lock.
410 */
411 static void swap_do_scheduled_discard(struct swap_info_struct *si)
412 {
413         struct swap_cluster_info *info, *ci;
414         unsigned int idx;
415
416         info = si->cluster_info;
417
418         while (!cluster_list_empty(&si->discard_clusters)) {
419                 idx = cluster_list_del_first(&si->discard_clusters, info);
420                 spin_unlock(&si->lock);
421
422                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
423                                 SWAPFILE_CLUSTER);
424
425                 spin_lock(&si->lock);
426                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
427                 __free_cluster(si, idx);
428                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
429                                 0, SWAPFILE_CLUSTER);
430                 unlock_cluster(ci);
431         }
432 }
433
434 static void swap_discard_work(struct work_struct *work)
435 {
436         struct swap_info_struct *si;
437
438         si = container_of(work, struct swap_info_struct, discard_work);
439
440         spin_lock(&si->lock);
441         swap_do_scheduled_discard(si);
442         spin_unlock(&si->lock);
443 }
444
445 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
446 {
447         struct swap_cluster_info *ci = si->cluster_info;
448
449         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
450         cluster_list_del_first(&si->free_clusters, ci);
451         cluster_set_count_flag(ci + idx, 0, 0);
452 }
453
454 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
455 {
456         struct swap_cluster_info *ci = si->cluster_info + idx;
457
458         VM_BUG_ON(cluster_count(ci) != 0);
459         /*
460          * If the swap is discardable, prepare discard the cluster
461          * instead of free it immediately. The cluster will be freed
462          * after discard.
463          */
464         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
465             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
466                 swap_cluster_schedule_discard(si, idx);
467                 return;
468         }
469
470         __free_cluster(si, idx);
471 }
472
473 /*
474  * The cluster corresponding to page_nr will be used. The cluster will be
475  * removed from free cluster list and its usage counter will be increased.
476  */
477 static void inc_cluster_info_page(struct swap_info_struct *p,
478         struct swap_cluster_info *cluster_info, unsigned long page_nr)
479 {
480         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
481
482         if (!cluster_info)
483                 return;
484         if (cluster_is_free(&cluster_info[idx]))
485                 alloc_cluster(p, idx);
486
487         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
488         cluster_set_count(&cluster_info[idx],
489                 cluster_count(&cluster_info[idx]) + 1);
490 }
491
492 /*
493  * The cluster corresponding to page_nr decreases one usage. If the usage
494  * counter becomes 0, which means no page in the cluster is in using, we can
495  * optionally discard the cluster and add it to free cluster list.
496  */
497 static void dec_cluster_info_page(struct swap_info_struct *p,
498         struct swap_cluster_info *cluster_info, unsigned long page_nr)
499 {
500         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
501
502         if (!cluster_info)
503                 return;
504
505         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
506         cluster_set_count(&cluster_info[idx],
507                 cluster_count(&cluster_info[idx]) - 1);
508
509         if (cluster_count(&cluster_info[idx]) == 0)
510                 free_cluster(p, idx);
511 }
512
513 /*
514  * It's possible scan_swap_map() uses a free cluster in the middle of free
515  * cluster list. Avoiding such abuse to avoid list corruption.
516  */
517 static bool
518 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
519         unsigned long offset)
520 {
521         struct percpu_cluster *percpu_cluster;
522         bool conflict;
523
524         offset /= SWAPFILE_CLUSTER;
525         conflict = !cluster_list_empty(&si->free_clusters) &&
526                 offset != cluster_list_first(&si->free_clusters) &&
527                 cluster_is_free(&si->cluster_info[offset]);
528
529         if (!conflict)
530                 return false;
531
532         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
533         cluster_set_null(&percpu_cluster->index);
534         return true;
535 }
536
537 /*
538  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
539  * might involve allocating a new cluster for current CPU too.
540  */
541 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
542         unsigned long *offset, unsigned long *scan_base)
543 {
544         struct percpu_cluster *cluster;
545         struct swap_cluster_info *ci;
546         bool found_free;
547         unsigned long tmp, max;
548
549 new_cluster:
550         cluster = this_cpu_ptr(si->percpu_cluster);
551         if (cluster_is_null(&cluster->index)) {
552                 if (!cluster_list_empty(&si->free_clusters)) {
553                         cluster->index = si->free_clusters.head;
554                         cluster->next = cluster_next(&cluster->index) *
555                                         SWAPFILE_CLUSTER;
556                 } else if (!cluster_list_empty(&si->discard_clusters)) {
557                         /*
558                          * we don't have free cluster but have some clusters in
559                          * discarding, do discard now and reclaim them
560                          */
561                         swap_do_scheduled_discard(si);
562                         *scan_base = *offset = si->cluster_next;
563                         goto new_cluster;
564                 } else
565                         return false;
566         }
567
568         found_free = false;
569
570         /*
571          * Other CPUs can use our cluster if they can't find a free cluster,
572          * check if there is still free entry in the cluster
573          */
574         tmp = cluster->next;
575         max = min_t(unsigned long, si->max,
576                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
577         if (tmp >= max) {
578                 cluster_set_null(&cluster->index);
579                 goto new_cluster;
580         }
581         ci = lock_cluster(si, tmp);
582         while (tmp < max) {
583                 if (!si->swap_map[tmp]) {
584                         found_free = true;
585                         break;
586                 }
587                 tmp++;
588         }
589         unlock_cluster(ci);
590         if (!found_free) {
591                 cluster_set_null(&cluster->index);
592                 goto new_cluster;
593         }
594         cluster->next = tmp + 1;
595         *offset = tmp;
596         *scan_base = tmp;
597         return found_free;
598 }
599
600 static void __del_from_avail_list(struct swap_info_struct *p)
601 {
602         int nid;
603
604         for_each_node(nid)
605                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
606 }
607
608 static void del_from_avail_list(struct swap_info_struct *p)
609 {
610         spin_lock(&swap_avail_lock);
611         __del_from_avail_list(p);
612         spin_unlock(&swap_avail_lock);
613 }
614
615 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
616                              unsigned int nr_entries)
617 {
618         unsigned int end = offset + nr_entries - 1;
619
620         if (offset == si->lowest_bit)
621                 si->lowest_bit += nr_entries;
622         if (end == si->highest_bit)
623                 si->highest_bit -= nr_entries;
624         si->inuse_pages += nr_entries;
625         if (si->inuse_pages == si->pages) {
626                 si->lowest_bit = si->max;
627                 si->highest_bit = 0;
628                 del_from_avail_list(si);
629         }
630 }
631
632 static void add_to_avail_list(struct swap_info_struct *p)
633 {
634         int nid;
635
636         spin_lock(&swap_avail_lock);
637         for_each_node(nid) {
638                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
639                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
640         }
641         spin_unlock(&swap_avail_lock);
642 }
643
644 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
645                             unsigned int nr_entries)
646 {
647         unsigned long end = offset + nr_entries - 1;
648         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
649
650         if (offset < si->lowest_bit)
651                 si->lowest_bit = offset;
652         if (end > si->highest_bit) {
653                 bool was_full = !si->highest_bit;
654
655                 si->highest_bit = end;
656                 if (was_full && (si->flags & SWP_WRITEOK))
657                         add_to_avail_list(si);
658         }
659         atomic_long_add(nr_entries, &nr_swap_pages);
660         si->inuse_pages -= nr_entries;
661         if (si->flags & SWP_BLKDEV)
662                 swap_slot_free_notify =
663                         si->bdev->bd_disk->fops->swap_slot_free_notify;
664         else
665                 swap_slot_free_notify = NULL;
666         while (offset <= end) {
667                 frontswap_invalidate_page(si->type, offset);
668                 if (swap_slot_free_notify)
669                         swap_slot_free_notify(si->bdev, offset);
670                 offset++;
671         }
672 }
673
674 static int scan_swap_map_slots(struct swap_info_struct *si,
675                                unsigned char usage, int nr,
676                                swp_entry_t slots[])
677 {
678         struct swap_cluster_info *ci;
679         unsigned long offset;
680         unsigned long scan_base;
681         unsigned long last_in_cluster = 0;
682         int latency_ration = LATENCY_LIMIT;
683         int n_ret = 0;
684
685         if (nr > SWAP_BATCH)
686                 nr = SWAP_BATCH;
687
688         /*
689          * We try to cluster swap pages by allocating them sequentially
690          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
691          * way, however, we resort to first-free allocation, starting
692          * a new cluster.  This prevents us from scattering swap pages
693          * all over the entire swap partition, so that we reduce
694          * overall disk seek times between swap pages.  -- sct
695          * But we do now try to find an empty cluster.  -Andrea
696          * And we let swap pages go all over an SSD partition.  Hugh
697          */
698
699         si->flags += SWP_SCANNING;
700         scan_base = offset = si->cluster_next;
701
702         /* SSD algorithm */
703         if (si->cluster_info) {
704                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
705                         goto checks;
706                 else
707                         goto scan;
708         }
709
710         if (unlikely(!si->cluster_nr--)) {
711                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
712                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
713                         goto checks;
714                 }
715
716                 spin_unlock(&si->lock);
717
718                 /*
719                  * If seek is expensive, start searching for new cluster from
720                  * start of partition, to minimize the span of allocated swap.
721                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
722                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
723                  */
724                 scan_base = offset = si->lowest_bit;
725                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
726
727                 /* Locate the first empty (unaligned) cluster */
728                 for (; last_in_cluster <= si->highest_bit; offset++) {
729                         if (si->swap_map[offset])
730                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
731                         else if (offset == last_in_cluster) {
732                                 spin_lock(&si->lock);
733                                 offset -= SWAPFILE_CLUSTER - 1;
734                                 si->cluster_next = offset;
735                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
736                                 goto checks;
737                         }
738                         if (unlikely(--latency_ration < 0)) {
739                                 cond_resched();
740                                 latency_ration = LATENCY_LIMIT;
741                         }
742                 }
743
744                 offset = scan_base;
745                 spin_lock(&si->lock);
746                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
747         }
748
749 checks:
750         if (si->cluster_info) {
751                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
752                 /* take a break if we already got some slots */
753                         if (n_ret)
754                                 goto done;
755                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
756                                                         &scan_base))
757                                 goto scan;
758                 }
759         }
760         if (!(si->flags & SWP_WRITEOK))
761                 goto no_page;
762         if (!si->highest_bit)
763                 goto no_page;
764         if (offset > si->highest_bit)
765                 scan_base = offset = si->lowest_bit;
766
767         ci = lock_cluster(si, offset);
768         /* reuse swap entry of cache-only swap if not busy. */
769         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
770                 int swap_was_freed;
771                 unlock_cluster(ci);
772                 spin_unlock(&si->lock);
773                 swap_was_freed = __try_to_reclaim_swap(si, offset);
774                 spin_lock(&si->lock);
775                 /* entry was freed successfully, try to use this again */
776                 if (swap_was_freed)
777                         goto checks;
778                 goto scan; /* check next one */
779         }
780
781         if (si->swap_map[offset]) {
782                 unlock_cluster(ci);
783                 if (!n_ret)
784                         goto scan;
785                 else
786                         goto done;
787         }
788         si->swap_map[offset] = usage;
789         inc_cluster_info_page(si, si->cluster_info, offset);
790         unlock_cluster(ci);
791
792         swap_range_alloc(si, offset, 1);
793         si->cluster_next = offset + 1;
794         slots[n_ret++] = swp_entry(si->type, offset);
795
796         /* got enough slots or reach max slots? */
797         if ((n_ret == nr) || (offset >= si->highest_bit))
798                 goto done;
799
800         /* search for next available slot */
801
802         /* time to take a break? */
803         if (unlikely(--latency_ration < 0)) {
804                 if (n_ret)
805                         goto done;
806                 spin_unlock(&si->lock);
807                 cond_resched();
808                 spin_lock(&si->lock);
809                 latency_ration = LATENCY_LIMIT;
810         }
811
812         /* try to get more slots in cluster */
813         if (si->cluster_info) {
814                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
815                         goto checks;
816                 else
817                         goto done;
818         }
819         /* non-ssd case */
820         ++offset;
821
822         /* non-ssd case, still more slots in cluster? */
823         if (si->cluster_nr && !si->swap_map[offset]) {
824                 --si->cluster_nr;
825                 goto checks;
826         }
827
828 done:
829         si->flags -= SWP_SCANNING;
830         return n_ret;
831
832 scan:
833         spin_unlock(&si->lock);
834         while (++offset <= si->highest_bit) {
835                 if (!si->swap_map[offset]) {
836                         spin_lock(&si->lock);
837                         goto checks;
838                 }
839                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
840                         spin_lock(&si->lock);
841                         goto checks;
842                 }
843                 if (unlikely(--latency_ration < 0)) {
844                         cond_resched();
845                         latency_ration = LATENCY_LIMIT;
846                 }
847         }
848         offset = si->lowest_bit;
849         while (offset < scan_base) {
850                 if (!si->swap_map[offset]) {
851                         spin_lock(&si->lock);
852                         goto checks;
853                 }
854                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
855                         spin_lock(&si->lock);
856                         goto checks;
857                 }
858                 if (unlikely(--latency_ration < 0)) {
859                         cond_resched();
860                         latency_ration = LATENCY_LIMIT;
861                 }
862                 offset++;
863         }
864         spin_lock(&si->lock);
865
866 no_page:
867         si->flags -= SWP_SCANNING;
868         return n_ret;
869 }
870
871 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
872 {
873         unsigned long idx;
874         struct swap_cluster_info *ci;
875         unsigned long offset, i;
876         unsigned char *map;
877
878         /*
879          * Should not even be attempting cluster allocations when huge
880          * page swap is disabled.  Warn and fail the allocation.
881          */
882         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
883                 VM_WARN_ON_ONCE(1);
884                 return 0;
885         }
886
887         if (cluster_list_empty(&si->free_clusters))
888                 return 0;
889
890         idx = cluster_list_first(&si->free_clusters);
891         offset = idx * SWAPFILE_CLUSTER;
892         ci = lock_cluster(si, offset);
893         alloc_cluster(si, idx);
894         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
895
896         map = si->swap_map + offset;
897         for (i = 0; i < SWAPFILE_CLUSTER; i++)
898                 map[i] = SWAP_HAS_CACHE;
899         unlock_cluster(ci);
900         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
901         *slot = swp_entry(si->type, offset);
902
903         return 1;
904 }
905
906 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
907 {
908         unsigned long offset = idx * SWAPFILE_CLUSTER;
909         struct swap_cluster_info *ci;
910
911         ci = lock_cluster(si, offset);
912         cluster_set_count_flag(ci, 0, 0);
913         free_cluster(si, idx);
914         unlock_cluster(ci);
915         swap_range_free(si, offset, SWAPFILE_CLUSTER);
916 }
917
918 static unsigned long scan_swap_map(struct swap_info_struct *si,
919                                    unsigned char usage)
920 {
921         swp_entry_t entry;
922         int n_ret;
923
924         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
925
926         if (n_ret)
927                 return swp_offset(entry);
928         else
929                 return 0;
930
931 }
932
933 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
934 {
935         unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
936         struct swap_info_struct *si, *next;
937         long avail_pgs;
938         int n_ret = 0;
939         int node;
940
941         /* Only single cluster request supported */
942         WARN_ON_ONCE(n_goal > 1 && cluster);
943
944         avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
945         if (avail_pgs <= 0)
946                 goto noswap;
947
948         if (n_goal > SWAP_BATCH)
949                 n_goal = SWAP_BATCH;
950
951         if (n_goal > avail_pgs)
952                 n_goal = avail_pgs;
953
954         atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
955
956         spin_lock(&swap_avail_lock);
957
958 start_over:
959         node = numa_node_id();
960         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
961                 /* requeue si to after same-priority siblings */
962                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
963                 spin_unlock(&swap_avail_lock);
964                 spin_lock(&si->lock);
965                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
966                         spin_lock(&swap_avail_lock);
967                         if (plist_node_empty(&si->avail_lists[node])) {
968                                 spin_unlock(&si->lock);
969                                 goto nextsi;
970                         }
971                         WARN(!si->highest_bit,
972                              "swap_info %d in list but !highest_bit\n",
973                              si->type);
974                         WARN(!(si->flags & SWP_WRITEOK),
975                              "swap_info %d in list but !SWP_WRITEOK\n",
976                              si->type);
977                         __del_from_avail_list(si);
978                         spin_unlock(&si->lock);
979                         goto nextsi;
980                 }
981                 if (cluster) {
982                         if (!(si->flags & SWP_FILE))
983                                 n_ret = swap_alloc_cluster(si, swp_entries);
984                 } else
985                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
986                                                     n_goal, swp_entries);
987                 spin_unlock(&si->lock);
988                 if (n_ret || cluster)
989                         goto check_out;
990                 pr_debug("scan_swap_map of si %d failed to find offset\n",
991                         si->type);
992
993                 spin_lock(&swap_avail_lock);
994 nextsi:
995                 /*
996                  * if we got here, it's likely that si was almost full before,
997                  * and since scan_swap_map() can drop the si->lock, multiple
998                  * callers probably all tried to get a page from the same si
999                  * and it filled up before we could get one; or, the si filled
1000                  * up between us dropping swap_avail_lock and taking si->lock.
1001                  * Since we dropped the swap_avail_lock, the swap_avail_head
1002                  * list may have been modified; so if next is still in the
1003                  * swap_avail_head list then try it, otherwise start over
1004                  * if we have not gotten any slots.
1005                  */
1006                 if (plist_node_empty(&next->avail_lists[node]))
1007                         goto start_over;
1008         }
1009
1010         spin_unlock(&swap_avail_lock);
1011
1012 check_out:
1013         if (n_ret < n_goal)
1014                 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1015                                 &nr_swap_pages);
1016 noswap:
1017         return n_ret;
1018 }
1019
1020 /* The only caller of this function is now suspend routine */
1021 swp_entry_t get_swap_page_of_type(int type)
1022 {
1023         struct swap_info_struct *si;
1024         pgoff_t offset;
1025
1026         si = swap_info[type];
1027         spin_lock(&si->lock);
1028         if (si && (si->flags & SWP_WRITEOK)) {
1029                 atomic_long_dec(&nr_swap_pages);
1030                 /* This is called for allocating swap entry, not cache */
1031                 offset = scan_swap_map(si, 1);
1032                 if (offset) {
1033                         spin_unlock(&si->lock);
1034                         return swp_entry(type, offset);
1035                 }
1036                 atomic_long_inc(&nr_swap_pages);
1037         }
1038         spin_unlock(&si->lock);
1039         return (swp_entry_t) {0};
1040 }
1041
1042 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1043 {
1044         struct swap_info_struct *p;
1045         unsigned long offset, type;
1046
1047         if (!entry.val)
1048                 goto out;
1049         type = swp_type(entry);
1050         if (type >= nr_swapfiles)
1051                 goto bad_nofile;
1052         p = swap_info[type];
1053         if (!(p->flags & SWP_USED))
1054                 goto bad_device;
1055         offset = swp_offset(entry);
1056         if (offset >= p->max)
1057                 goto bad_offset;
1058         return p;
1059
1060 bad_offset:
1061         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1062         goto out;
1063 bad_device:
1064         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1065         goto out;
1066 bad_nofile:
1067         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1068 out:
1069         return NULL;
1070 }
1071
1072 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1073 {
1074         struct swap_info_struct *p;
1075
1076         p = __swap_info_get(entry);
1077         if (!p)
1078                 goto out;
1079         if (!p->swap_map[swp_offset(entry)])
1080                 goto bad_free;
1081         return p;
1082
1083 bad_free:
1084         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1085         goto out;
1086 out:
1087         return NULL;
1088 }
1089
1090 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1091 {
1092         struct swap_info_struct *p;
1093
1094         p = _swap_info_get(entry);
1095         if (p)
1096                 spin_lock(&p->lock);
1097         return p;
1098 }
1099
1100 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1101                                         struct swap_info_struct *q)
1102 {
1103         struct swap_info_struct *p;
1104
1105         p = _swap_info_get(entry);
1106
1107         if (p != q) {
1108                 if (q != NULL)
1109                         spin_unlock(&q->lock);
1110                 if (p != NULL)
1111                         spin_lock(&p->lock);
1112         }
1113         return p;
1114 }
1115
1116 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1117                                        swp_entry_t entry, unsigned char usage)
1118 {
1119         struct swap_cluster_info *ci;
1120         unsigned long offset = swp_offset(entry);
1121         unsigned char count;
1122         unsigned char has_cache;
1123
1124         ci = lock_cluster_or_swap_info(p, offset);
1125
1126         count = p->swap_map[offset];
1127
1128         has_cache = count & SWAP_HAS_CACHE;
1129         count &= ~SWAP_HAS_CACHE;
1130
1131         if (usage == SWAP_HAS_CACHE) {
1132                 VM_BUG_ON(!has_cache);
1133                 has_cache = 0;
1134         } else if (count == SWAP_MAP_SHMEM) {
1135                 /*
1136                  * Or we could insist on shmem.c using a special
1137                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1138                  */
1139                 count = 0;
1140         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1141                 if (count == COUNT_CONTINUED) {
1142                         if (swap_count_continued(p, offset, count))
1143                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1144                         else
1145                                 count = SWAP_MAP_MAX;
1146                 } else
1147                         count--;
1148         }
1149
1150         usage = count | has_cache;
1151         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1152
1153         unlock_cluster_or_swap_info(p, ci);
1154
1155         return usage;
1156 }
1157
1158 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1159 {
1160         struct swap_cluster_info *ci;
1161         unsigned long offset = swp_offset(entry);
1162         unsigned char count;
1163
1164         ci = lock_cluster(p, offset);
1165         count = p->swap_map[offset];
1166         VM_BUG_ON(count != SWAP_HAS_CACHE);
1167         p->swap_map[offset] = 0;
1168         dec_cluster_info_page(p, p->cluster_info, offset);
1169         unlock_cluster(ci);
1170
1171         mem_cgroup_uncharge_swap(entry, 1);
1172         swap_range_free(p, offset, 1);
1173 }
1174
1175 /*
1176  * Caller has made sure that the swap device corresponding to entry
1177  * is still around or has not been recycled.
1178  */
1179 void swap_free(swp_entry_t entry)
1180 {
1181         struct swap_info_struct *p;
1182
1183         p = _swap_info_get(entry);
1184         if (p) {
1185                 if (!__swap_entry_free(p, entry, 1))
1186                         free_swap_slot(entry);
1187         }
1188 }
1189
1190 /*
1191  * Called after dropping swapcache to decrease refcnt to swap entries.
1192  */
1193 static void swapcache_free(swp_entry_t entry)
1194 {
1195         struct swap_info_struct *p;
1196
1197         p = _swap_info_get(entry);
1198         if (p) {
1199                 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1200                         free_swap_slot(entry);
1201         }
1202 }
1203
1204 static void swapcache_free_cluster(swp_entry_t entry)
1205 {
1206         unsigned long offset = swp_offset(entry);
1207         unsigned long idx = offset / SWAPFILE_CLUSTER;
1208         struct swap_cluster_info *ci;
1209         struct swap_info_struct *si;
1210         unsigned char *map;
1211         unsigned int i, free_entries = 0;
1212         unsigned char val;
1213
1214         if (!IS_ENABLED(CONFIG_THP_SWAP))
1215                 return;
1216
1217         si = _swap_info_get(entry);
1218         if (!si)
1219                 return;
1220
1221         ci = lock_cluster(si, offset);
1222         VM_BUG_ON(!cluster_is_huge(ci));
1223         map = si->swap_map + offset;
1224         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1225                 val = map[i];
1226                 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1227                 if (val == SWAP_HAS_CACHE)
1228                         free_entries++;
1229         }
1230         if (!free_entries) {
1231                 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1232                         map[i] &= ~SWAP_HAS_CACHE;
1233         }
1234         cluster_clear_huge(ci);
1235         unlock_cluster(ci);
1236         if (free_entries == SWAPFILE_CLUSTER) {
1237                 spin_lock(&si->lock);
1238                 ci = lock_cluster(si, offset);
1239                 memset(map, 0, SWAPFILE_CLUSTER);
1240                 unlock_cluster(ci);
1241                 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1242                 swap_free_cluster(si, idx);
1243                 spin_unlock(&si->lock);
1244         } else if (free_entries) {
1245                 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1246                         if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1247                                 free_swap_slot(entry);
1248                 }
1249         }
1250 }
1251
1252 #ifdef CONFIG_THP_SWAP
1253 int split_swap_cluster(swp_entry_t entry)
1254 {
1255         struct swap_info_struct *si;
1256         struct swap_cluster_info *ci;
1257         unsigned long offset = swp_offset(entry);
1258
1259         si = _swap_info_get(entry);
1260         if (!si)
1261                 return -EBUSY;
1262         ci = lock_cluster(si, offset);
1263         cluster_clear_huge(ci);
1264         unlock_cluster(ci);
1265         return 0;
1266 }
1267 #endif
1268
1269 void put_swap_page(struct page *page, swp_entry_t entry)
1270 {
1271         if (!PageTransHuge(page))
1272                 swapcache_free(entry);
1273         else
1274                 swapcache_free_cluster(entry);
1275 }
1276
1277 static int swp_entry_cmp(const void *ent1, const void *ent2)
1278 {
1279         const swp_entry_t *e1 = ent1, *e2 = ent2;
1280
1281         return (int)swp_type(*e1) - (int)swp_type(*e2);
1282 }
1283
1284 void swapcache_free_entries(swp_entry_t *entries, int n)
1285 {
1286         struct swap_info_struct *p, *prev;
1287         int i;
1288
1289         if (n <= 0)
1290                 return;
1291
1292         prev = NULL;
1293         p = NULL;
1294
1295         /*
1296          * Sort swap entries by swap device, so each lock is only taken once.
1297          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1298          * so low that it isn't necessary to optimize further.
1299          */
1300         if (nr_swapfiles > 1)
1301                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1302         for (i = 0; i < n; ++i) {
1303                 p = swap_info_get_cont(entries[i], prev);
1304                 if (p)
1305                         swap_entry_free(p, entries[i]);
1306                 prev = p;
1307         }
1308         if (p)
1309                 spin_unlock(&p->lock);
1310 }
1311
1312 /*
1313  * How many references to page are currently swapped out?
1314  * This does not give an exact answer when swap count is continued,
1315  * but does include the high COUNT_CONTINUED flag to allow for that.
1316  */
1317 int page_swapcount(struct page *page)
1318 {
1319         int count = 0;
1320         struct swap_info_struct *p;
1321         struct swap_cluster_info *ci;
1322         swp_entry_t entry;
1323         unsigned long offset;
1324
1325         entry.val = page_private(page);
1326         p = _swap_info_get(entry);
1327         if (p) {
1328                 offset = swp_offset(entry);
1329                 ci = lock_cluster_or_swap_info(p, offset);
1330                 count = swap_count(p->swap_map[offset]);
1331                 unlock_cluster_or_swap_info(p, ci);
1332         }
1333         return count;
1334 }
1335
1336 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1337 {
1338         pgoff_t offset = swp_offset(entry);
1339
1340         return swap_count(si->swap_map[offset]);
1341 }
1342
1343 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1344 {
1345         int count = 0;
1346         pgoff_t offset = swp_offset(entry);
1347         struct swap_cluster_info *ci;
1348
1349         ci = lock_cluster_or_swap_info(si, offset);
1350         count = swap_count(si->swap_map[offset]);
1351         unlock_cluster_or_swap_info(si, ci);
1352         return count;
1353 }
1354
1355 /*
1356  * How many references to @entry are currently swapped out?
1357  * This does not give an exact answer when swap count is continued,
1358  * but does include the high COUNT_CONTINUED flag to allow for that.
1359  */
1360 int __swp_swapcount(swp_entry_t entry)
1361 {
1362         int count = 0;
1363         struct swap_info_struct *si;
1364
1365         si = __swap_info_get(entry);
1366         if (si)
1367                 count = swap_swapcount(si, entry);
1368         return count;
1369 }
1370
1371 /*
1372  * How many references to @entry are currently swapped out?
1373  * This considers COUNT_CONTINUED so it returns exact answer.
1374  */
1375 int swp_swapcount(swp_entry_t entry)
1376 {
1377         int count, tmp_count, n;
1378         struct swap_info_struct *p;
1379         struct swap_cluster_info *ci;
1380         struct page *page;
1381         pgoff_t offset;
1382         unsigned char *map;
1383
1384         p = _swap_info_get(entry);
1385         if (!p)
1386                 return 0;
1387
1388         offset = swp_offset(entry);
1389
1390         ci = lock_cluster_or_swap_info(p, offset);
1391
1392         count = swap_count(p->swap_map[offset]);
1393         if (!(count & COUNT_CONTINUED))
1394                 goto out;
1395
1396         count &= ~COUNT_CONTINUED;
1397         n = SWAP_MAP_MAX + 1;
1398
1399         page = vmalloc_to_page(p->swap_map + offset);
1400         offset &= ~PAGE_MASK;
1401         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1402
1403         do {
1404                 page = list_next_entry(page, lru);
1405                 map = kmap_atomic(page);
1406                 tmp_count = map[offset];
1407                 kunmap_atomic(map);
1408
1409                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1410                 n *= (SWAP_CONT_MAX + 1);
1411         } while (tmp_count & COUNT_CONTINUED);
1412 out:
1413         unlock_cluster_or_swap_info(p, ci);
1414         return count;
1415 }
1416
1417 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1418                                          swp_entry_t entry)
1419 {
1420         struct swap_cluster_info *ci;
1421         unsigned char *map = si->swap_map;
1422         unsigned long roffset = swp_offset(entry);
1423         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1424         int i;
1425         bool ret = false;
1426
1427         if (!IS_ENABLED(CONFIG_THP_SWAP))
1428                 return swap_swapcount(si, entry) != 0;
1429
1430         ci = lock_cluster_or_swap_info(si, offset);
1431         if (!ci || !cluster_is_huge(ci)) {
1432                 if (swap_count(map[roffset]))
1433                         ret = true;
1434                 goto unlock_out;
1435         }
1436         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1437                 if (swap_count(map[offset + i])) {
1438                         ret = true;
1439                         break;
1440                 }
1441         }
1442 unlock_out:
1443         unlock_cluster_or_swap_info(si, ci);
1444         return ret;
1445 }
1446
1447 static bool page_swapped(struct page *page)
1448 {
1449         swp_entry_t entry;
1450         struct swap_info_struct *si;
1451
1452         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1453                 return page_swapcount(page) != 0;
1454
1455         page = compound_head(page);
1456         entry.val = page_private(page);
1457         si = _swap_info_get(entry);
1458         if (si)
1459                 return swap_page_trans_huge_swapped(si, entry);
1460         return false;
1461 }
1462
1463 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1464                                          int *total_swapcount)
1465 {
1466         int i, map_swapcount, _total_mapcount, _total_swapcount;
1467         unsigned long offset = 0;
1468         struct swap_info_struct *si;
1469         struct swap_cluster_info *ci = NULL;
1470         unsigned char *map = NULL;
1471         int mapcount, swapcount = 0;
1472
1473         /* hugetlbfs shouldn't call it */
1474         VM_BUG_ON_PAGE(PageHuge(page), page);
1475
1476         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1477                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1478                 if (PageSwapCache(page))
1479                         swapcount = page_swapcount(page);
1480                 if (total_swapcount)
1481                         *total_swapcount = swapcount;
1482                 return mapcount + swapcount;
1483         }
1484
1485         page = compound_head(page);
1486
1487         _total_mapcount = _total_swapcount = map_swapcount = 0;
1488         if (PageSwapCache(page)) {
1489                 swp_entry_t entry;
1490
1491                 entry.val = page_private(page);
1492                 si = _swap_info_get(entry);
1493                 if (si) {
1494                         map = si->swap_map;
1495                         offset = swp_offset(entry);
1496                 }
1497         }
1498         if (map)
1499                 ci = lock_cluster(si, offset);
1500         for (i = 0; i < HPAGE_PMD_NR; i++) {
1501                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1502                 _total_mapcount += mapcount;
1503                 if (map) {
1504                         swapcount = swap_count(map[offset + i]);
1505                         _total_swapcount += swapcount;
1506                 }
1507                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1508         }
1509         unlock_cluster(ci);
1510         if (PageDoubleMap(page)) {
1511                 map_swapcount -= 1;
1512                 _total_mapcount -= HPAGE_PMD_NR;
1513         }
1514         mapcount = compound_mapcount(page);
1515         map_swapcount += mapcount;
1516         _total_mapcount += mapcount;
1517         if (total_mapcount)
1518                 *total_mapcount = _total_mapcount;
1519         if (total_swapcount)
1520                 *total_swapcount = _total_swapcount;
1521
1522         return map_swapcount;
1523 }
1524
1525 /*
1526  * We can write to an anon page without COW if there are no other references
1527  * to it.  And as a side-effect, free up its swap: because the old content
1528  * on disk will never be read, and seeking back there to write new content
1529  * later would only waste time away from clustering.
1530  *
1531  * NOTE: total_map_swapcount should not be relied upon by the caller if
1532  * reuse_swap_page() returns false, but it may be always overwritten
1533  * (see the other implementation for CONFIG_SWAP=n).
1534  */
1535 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1536 {
1537         int count, total_mapcount, total_swapcount;
1538
1539         VM_BUG_ON_PAGE(!PageLocked(page), page);
1540         if (unlikely(PageKsm(page)))
1541                 return false;
1542         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1543                                               &total_swapcount);
1544         if (total_map_swapcount)
1545                 *total_map_swapcount = total_mapcount + total_swapcount;
1546         if (count == 1 && PageSwapCache(page) &&
1547             (likely(!PageTransCompound(page)) ||
1548              /* The remaining swap count will be freed soon */
1549              total_swapcount == page_swapcount(page))) {
1550                 if (!PageWriteback(page)) {
1551                         page = compound_head(page);
1552                         delete_from_swap_cache(page);
1553                         SetPageDirty(page);
1554                 } else {
1555                         swp_entry_t entry;
1556                         struct swap_info_struct *p;
1557
1558                         entry.val = page_private(page);
1559                         p = swap_info_get(entry);
1560                         if (p->flags & SWP_STABLE_WRITES) {
1561                                 spin_unlock(&p->lock);
1562                                 return false;
1563                         }
1564                         spin_unlock(&p->lock);
1565                 }
1566         }
1567
1568         return count <= 1;
1569 }
1570
1571 /*
1572  * If swap is getting full, or if there are no more mappings of this page,
1573  * then try_to_free_swap is called to free its swap space.
1574  */
1575 int try_to_free_swap(struct page *page)
1576 {
1577         VM_BUG_ON_PAGE(!PageLocked(page), page);
1578
1579         if (!PageSwapCache(page))
1580                 return 0;
1581         if (PageWriteback(page))
1582                 return 0;
1583         if (page_swapped(page))
1584                 return 0;
1585
1586         /*
1587          * Once hibernation has begun to create its image of memory,
1588          * there's a danger that one of the calls to try_to_free_swap()
1589          * - most probably a call from __try_to_reclaim_swap() while
1590          * hibernation is allocating its own swap pages for the image,
1591          * but conceivably even a call from memory reclaim - will free
1592          * the swap from a page which has already been recorded in the
1593          * image as a clean swapcache page, and then reuse its swap for
1594          * another page of the image.  On waking from hibernation, the
1595          * original page might be freed under memory pressure, then
1596          * later read back in from swap, now with the wrong data.
1597          *
1598          * Hibernation suspends storage while it is writing the image
1599          * to disk so check that here.
1600          */
1601         if (pm_suspended_storage())
1602                 return 0;
1603
1604         page = compound_head(page);
1605         delete_from_swap_cache(page);
1606         SetPageDirty(page);
1607         return 1;
1608 }
1609
1610 /*
1611  * Free the swap entry like above, but also try to
1612  * free the page cache entry if it is the last user.
1613  */
1614 int free_swap_and_cache(swp_entry_t entry)
1615 {
1616         struct swap_info_struct *p;
1617         struct page *page = NULL;
1618         unsigned char count;
1619
1620         if (non_swap_entry(entry))
1621                 return 1;
1622
1623         p = _swap_info_get(entry);
1624         if (p) {
1625                 count = __swap_entry_free(p, entry, 1);
1626                 if (count == SWAP_HAS_CACHE &&
1627                     !swap_page_trans_huge_swapped(p, entry)) {
1628                         page = find_get_page(swap_address_space(entry),
1629                                              swp_offset(entry));
1630                         if (page && !trylock_page(page)) {
1631                                 put_page(page);
1632                                 page = NULL;
1633                         }
1634                 } else if (!count)
1635                         free_swap_slot(entry);
1636         }
1637         if (page) {
1638                 /*
1639                  * Not mapped elsewhere, or swap space full? Free it!
1640                  * Also recheck PageSwapCache now page is locked (above).
1641                  */
1642                 if (PageSwapCache(page) && !PageWriteback(page) &&
1643                     (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1644                     !swap_page_trans_huge_swapped(p, entry)) {
1645                         page = compound_head(page);
1646                         delete_from_swap_cache(page);
1647                         SetPageDirty(page);
1648                 }
1649                 unlock_page(page);
1650                 put_page(page);
1651         }
1652         return p != NULL;
1653 }
1654
1655 #ifdef CONFIG_HIBERNATION
1656 /*
1657  * Find the swap type that corresponds to given device (if any).
1658  *
1659  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1660  * from 0, in which the swap header is expected to be located.
1661  *
1662  * This is needed for the suspend to disk (aka swsusp).
1663  */
1664 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1665 {
1666         struct block_device *bdev = NULL;
1667         int type;
1668
1669         if (device)
1670                 bdev = bdget(device);
1671
1672         spin_lock(&swap_lock);
1673         for (type = 0; type < nr_swapfiles; type++) {
1674                 struct swap_info_struct *sis = swap_info[type];
1675
1676                 if (!(sis->flags & SWP_WRITEOK))
1677                         continue;
1678
1679                 if (!bdev) {
1680                         if (bdev_p)
1681                                 *bdev_p = bdgrab(sis->bdev);
1682
1683                         spin_unlock(&swap_lock);
1684                         return type;
1685                 }
1686                 if (bdev == sis->bdev) {
1687                         struct swap_extent *se = &sis->first_swap_extent;
1688
1689                         if (se->start_block == offset) {
1690                                 if (bdev_p)
1691                                         *bdev_p = bdgrab(sis->bdev);
1692
1693                                 spin_unlock(&swap_lock);
1694                                 bdput(bdev);
1695                                 return type;
1696                         }
1697                 }
1698         }
1699         spin_unlock(&swap_lock);
1700         if (bdev)
1701                 bdput(bdev);
1702
1703         return -ENODEV;
1704 }
1705
1706 /*
1707  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1708  * corresponding to given index in swap_info (swap type).
1709  */
1710 sector_t swapdev_block(int type, pgoff_t offset)
1711 {
1712         struct block_device *bdev;
1713
1714         if ((unsigned int)type >= nr_swapfiles)
1715                 return 0;
1716         if (!(swap_info[type]->flags & SWP_WRITEOK))
1717                 return 0;
1718         return map_swap_entry(swp_entry(type, offset), &bdev);
1719 }
1720
1721 /*
1722  * Return either the total number of swap pages of given type, or the number
1723  * of free pages of that type (depending on @free)
1724  *
1725  * This is needed for software suspend
1726  */
1727 unsigned int count_swap_pages(int type, int free)
1728 {
1729         unsigned int n = 0;
1730
1731         spin_lock(&swap_lock);
1732         if ((unsigned int)type < nr_swapfiles) {
1733                 struct swap_info_struct *sis = swap_info[type];
1734
1735                 spin_lock(&sis->lock);
1736                 if (sis->flags & SWP_WRITEOK) {
1737                         n = sis->pages;
1738                         if (free)
1739                                 n -= sis->inuse_pages;
1740                 }
1741                 spin_unlock(&sis->lock);
1742         }
1743         spin_unlock(&swap_lock);
1744         return n;
1745 }
1746 #endif /* CONFIG_HIBERNATION */
1747
1748 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1749 {
1750         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1751 }
1752
1753 /*
1754  * No need to decide whether this PTE shares the swap entry with others,
1755  * just let do_wp_page work it out if a write is requested later - to
1756  * force COW, vm_page_prot omits write permission from any private vma.
1757  */
1758 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1759                 unsigned long addr, swp_entry_t entry, struct page *page)
1760 {
1761         struct page *swapcache;
1762         struct mem_cgroup *memcg;
1763         spinlock_t *ptl;
1764         pte_t *pte;
1765         int ret = 1;
1766
1767         swapcache = page;
1768         page = ksm_might_need_to_copy(page, vma, addr);
1769         if (unlikely(!page))
1770                 return -ENOMEM;
1771
1772         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1773                                 &memcg, false)) {
1774                 ret = -ENOMEM;
1775                 goto out_nolock;
1776         }
1777
1778         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1779         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1780                 mem_cgroup_cancel_charge(page, memcg, false);
1781                 ret = 0;
1782                 goto out;
1783         }
1784
1785         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1786         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1787         get_page(page);
1788         set_pte_at(vma->vm_mm, addr, pte,
1789                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1790         if (page == swapcache) {
1791                 page_add_anon_rmap(page, vma, addr, false);
1792                 mem_cgroup_commit_charge(page, memcg, true, false);
1793         } else { /* ksm created a completely new copy */
1794                 page_add_new_anon_rmap(page, vma, addr, false);
1795                 mem_cgroup_commit_charge(page, memcg, false, false);
1796                 lru_cache_add_active_or_unevictable(page, vma);
1797         }
1798         swap_free(entry);
1799         /*
1800          * Move the page to the active list so it is not
1801          * immediately swapped out again after swapon.
1802          */
1803         activate_page(page);
1804 out:
1805         pte_unmap_unlock(pte, ptl);
1806 out_nolock:
1807         if (page != swapcache) {
1808                 unlock_page(page);
1809                 put_page(page);
1810         }
1811         return ret;
1812 }
1813
1814 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1815                                 unsigned long addr, unsigned long end,
1816                                 swp_entry_t entry, struct page *page)
1817 {
1818         pte_t swp_pte = swp_entry_to_pte(entry);
1819         pte_t *pte;
1820         int ret = 0;
1821
1822         /*
1823          * We don't actually need pte lock while scanning for swp_pte: since
1824          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1825          * page table while we're scanning; though it could get zapped, and on
1826          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1827          * of unmatched parts which look like swp_pte, so unuse_pte must
1828          * recheck under pte lock.  Scanning without pte lock lets it be
1829          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1830          */
1831         pte = pte_offset_map(pmd, addr);
1832         do {
1833                 /*
1834                  * swapoff spends a _lot_ of time in this loop!
1835                  * Test inline before going to call unuse_pte.
1836                  */
1837                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1838                         pte_unmap(pte);
1839                         ret = unuse_pte(vma, pmd, addr, entry, page);
1840                         if (ret)
1841                                 goto out;
1842                         pte = pte_offset_map(pmd, addr);
1843                 }
1844         } while (pte++, addr += PAGE_SIZE, addr != end);
1845         pte_unmap(pte - 1);
1846 out:
1847         return ret;
1848 }
1849
1850 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1851                                 unsigned long addr, unsigned long end,
1852                                 swp_entry_t entry, struct page *page)
1853 {
1854         pmd_t *pmd;
1855         unsigned long next;
1856         int ret;
1857
1858         pmd = pmd_offset(pud, addr);
1859         do {
1860                 cond_resched();
1861                 next = pmd_addr_end(addr, end);
1862                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1863                         continue;
1864                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1865                 if (ret)
1866                         return ret;
1867         } while (pmd++, addr = next, addr != end);
1868         return 0;
1869 }
1870
1871 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1872                                 unsigned long addr, unsigned long end,
1873                                 swp_entry_t entry, struct page *page)
1874 {
1875         pud_t *pud;
1876         unsigned long next;
1877         int ret;
1878
1879         pud = pud_offset(p4d, addr);
1880         do {
1881                 next = pud_addr_end(addr, end);
1882                 if (pud_none_or_clear_bad(pud))
1883                         continue;
1884                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1885                 if (ret)
1886                         return ret;
1887         } while (pud++, addr = next, addr != end);
1888         return 0;
1889 }
1890
1891 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1892                                 unsigned long addr, unsigned long end,
1893                                 swp_entry_t entry, struct page *page)
1894 {
1895         p4d_t *p4d;
1896         unsigned long next;
1897         int ret;
1898
1899         p4d = p4d_offset(pgd, addr);
1900         do {
1901                 next = p4d_addr_end(addr, end);
1902                 if (p4d_none_or_clear_bad(p4d))
1903                         continue;
1904                 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1905                 if (ret)
1906                         return ret;
1907         } while (p4d++, addr = next, addr != end);
1908         return 0;
1909 }
1910
1911 static int unuse_vma(struct vm_area_struct *vma,
1912                                 swp_entry_t entry, struct page *page)
1913 {
1914         pgd_t *pgd;
1915         unsigned long addr, end, next;
1916         int ret;
1917
1918         if (page_anon_vma(page)) {
1919                 addr = page_address_in_vma(page, vma);
1920                 if (addr == -EFAULT)
1921                         return 0;
1922                 else
1923                         end = addr + PAGE_SIZE;
1924         } else {
1925                 addr = vma->vm_start;
1926                 end = vma->vm_end;
1927         }
1928
1929         pgd = pgd_offset(vma->vm_mm, addr);
1930         do {
1931                 next = pgd_addr_end(addr, end);
1932                 if (pgd_none_or_clear_bad(pgd))
1933                         continue;
1934                 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1935                 if (ret)
1936                         return ret;
1937         } while (pgd++, addr = next, addr != end);
1938         return 0;
1939 }
1940
1941 static int unuse_mm(struct mm_struct *mm,
1942                                 swp_entry_t entry, struct page *page)
1943 {
1944         struct vm_area_struct *vma;
1945         int ret = 0;
1946
1947         if (!down_read_trylock(&mm->mmap_sem)) {
1948                 /*
1949                  * Activate page so shrink_inactive_list is unlikely to unmap
1950                  * its ptes while lock is dropped, so swapoff can make progress.
1951                  */
1952                 activate_page(page);
1953                 unlock_page(page);
1954                 down_read(&mm->mmap_sem);
1955                 lock_page(page);
1956         }
1957         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1958                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1959                         break;
1960                 cond_resched();
1961         }
1962         up_read(&mm->mmap_sem);
1963         return (ret < 0)? ret: 0;
1964 }
1965
1966 /*
1967  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1968  * from current position to next entry still in use.
1969  * Recycle to start on reaching the end, returning 0 when empty.
1970  */
1971 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1972                                         unsigned int prev, bool frontswap)
1973 {
1974         unsigned int max = si->max;
1975         unsigned int i = prev;
1976         unsigned char count;
1977
1978         /*
1979          * No need for swap_lock here: we're just looking
1980          * for whether an entry is in use, not modifying it; false
1981          * hits are okay, and sys_swapoff() has already prevented new
1982          * allocations from this area (while holding swap_lock).
1983          */
1984         for (;;) {
1985                 if (++i >= max) {
1986                         if (!prev) {
1987                                 i = 0;
1988                                 break;
1989                         }
1990                         /*
1991                          * No entries in use at top of swap_map,
1992                          * loop back to start and recheck there.
1993                          */
1994                         max = prev + 1;
1995                         prev = 0;
1996                         i = 1;
1997                 }
1998                 count = READ_ONCE(si->swap_map[i]);
1999                 if (count && swap_count(count) != SWAP_MAP_BAD)
2000                         if (!frontswap || frontswap_test(si, i))
2001                                 break;
2002                 if ((i % LATENCY_LIMIT) == 0)
2003                         cond_resched();
2004         }
2005         return i;
2006 }
2007
2008 /*
2009  * We completely avoid races by reading each swap page in advance,
2010  * and then search for the process using it.  All the necessary
2011  * page table adjustments can then be made atomically.
2012  *
2013  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2014  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2015  */
2016 int try_to_unuse(unsigned int type, bool frontswap,
2017                  unsigned long pages_to_unuse)
2018 {
2019         struct swap_info_struct *si = swap_info[type];
2020         struct mm_struct *start_mm;
2021         volatile unsigned char *swap_map; /* swap_map is accessed without
2022                                            * locking. Mark it as volatile
2023                                            * to prevent compiler doing
2024                                            * something odd.
2025                                            */
2026         unsigned char swcount;
2027         struct page *page;
2028         swp_entry_t entry;
2029         unsigned int i = 0;
2030         int retval = 0;
2031
2032         /*
2033          * When searching mms for an entry, a good strategy is to
2034          * start at the first mm we freed the previous entry from
2035          * (though actually we don't notice whether we or coincidence
2036          * freed the entry).  Initialize this start_mm with a hold.
2037          *
2038          * A simpler strategy would be to start at the last mm we
2039          * freed the previous entry from; but that would take less
2040          * advantage of mmlist ordering, which clusters forked mms
2041          * together, child after parent.  If we race with dup_mmap(), we
2042          * prefer to resolve parent before child, lest we miss entries
2043          * duplicated after we scanned child: using last mm would invert
2044          * that.
2045          */
2046         start_mm = &init_mm;
2047         mmget(&init_mm);
2048
2049         /*
2050          * Keep on scanning until all entries have gone.  Usually,
2051          * one pass through swap_map is enough, but not necessarily:
2052          * there are races when an instance of an entry might be missed.
2053          */
2054         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2055                 if (signal_pending(current)) {
2056                         retval = -EINTR;
2057                         break;
2058                 }
2059
2060                 /*
2061                  * Get a page for the entry, using the existing swap
2062                  * cache page if there is one.  Otherwise, get a clean
2063                  * page and read the swap into it.
2064                  */
2065                 swap_map = &si->swap_map[i];
2066                 entry = swp_entry(type, i);
2067                 page = read_swap_cache_async(entry,
2068                                         GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2069                 if (!page) {
2070                         /*
2071                          * Either swap_duplicate() failed because entry
2072                          * has been freed independently, and will not be
2073                          * reused since sys_swapoff() already disabled
2074                          * allocation from here, or alloc_page() failed.
2075                          */
2076                         swcount = *swap_map;
2077                         /*
2078                          * We don't hold lock here, so the swap entry could be
2079                          * SWAP_MAP_BAD (when the cluster is discarding).
2080                          * Instead of fail out, We can just skip the swap
2081                          * entry because swapoff will wait for discarding
2082                          * finish anyway.
2083                          */
2084                         if (!swcount || swcount == SWAP_MAP_BAD)
2085                                 continue;
2086                         retval = -ENOMEM;
2087                         break;
2088                 }
2089
2090                 /*
2091                  * Don't hold on to start_mm if it looks like exiting.
2092                  */
2093                 if (atomic_read(&start_mm->mm_users) == 1) {
2094                         mmput(start_mm);
2095                         start_mm = &init_mm;
2096                         mmget(&init_mm);
2097                 }
2098
2099                 /*
2100                  * Wait for and lock page.  When do_swap_page races with
2101                  * try_to_unuse, do_swap_page can handle the fault much
2102                  * faster than try_to_unuse can locate the entry.  This
2103                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
2104                  * defer to do_swap_page in such a case - in some tests,
2105                  * do_swap_page and try_to_unuse repeatedly compete.
2106                  */
2107                 wait_on_page_locked(page);
2108                 wait_on_page_writeback(page);
2109                 lock_page(page);
2110                 wait_on_page_writeback(page);
2111
2112                 /*
2113                  * Remove all references to entry.
2114                  */
2115                 swcount = *swap_map;
2116                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2117                         retval = shmem_unuse(entry, page);
2118                         /* page has already been unlocked and released */
2119                         if (retval < 0)
2120                                 break;
2121                         continue;
2122                 }
2123                 if (swap_count(swcount) && start_mm != &init_mm)
2124                         retval = unuse_mm(start_mm, entry, page);
2125
2126                 if (swap_count(*swap_map)) {
2127                         int set_start_mm = (*swap_map >= swcount);
2128                         struct list_head *p = &start_mm->mmlist;
2129                         struct mm_struct *new_start_mm = start_mm;
2130                         struct mm_struct *prev_mm = start_mm;
2131                         struct mm_struct *mm;
2132
2133                         mmget(new_start_mm);
2134                         mmget(prev_mm);
2135                         spin_lock(&mmlist_lock);
2136                         while (swap_count(*swap_map) && !retval &&
2137                                         (p = p->next) != &start_mm->mmlist) {
2138                                 mm = list_entry(p, struct mm_struct, mmlist);
2139                                 if (!mmget_not_zero(mm))
2140                                         continue;
2141                                 spin_unlock(&mmlist_lock);
2142                                 mmput(prev_mm);
2143                                 prev_mm = mm;
2144
2145                                 cond_resched();
2146
2147                                 swcount = *swap_map;
2148                                 if (!swap_count(swcount)) /* any usage ? */
2149                                         ;
2150                                 else if (mm == &init_mm)
2151                                         set_start_mm = 1;
2152                                 else
2153                                         retval = unuse_mm(mm, entry, page);
2154
2155                                 if (set_start_mm && *swap_map < swcount) {
2156                                         mmput(new_start_mm);
2157                                         mmget(mm);
2158                                         new_start_mm = mm;
2159                                         set_start_mm = 0;
2160                                 }
2161                                 spin_lock(&mmlist_lock);
2162                         }
2163                         spin_unlock(&mmlist_lock);
2164                         mmput(prev_mm);
2165                         mmput(start_mm);
2166                         start_mm = new_start_mm;
2167                 }
2168                 if (retval) {
2169                         unlock_page(page);
2170                         put_page(page);
2171                         break;
2172                 }
2173
2174                 /*
2175                  * If a reference remains (rare), we would like to leave
2176                  * the page in the swap cache; but try_to_unmap could
2177                  * then re-duplicate the entry once we drop page lock,
2178                  * so we might loop indefinitely; also, that page could
2179                  * not be swapped out to other storage meanwhile.  So:
2180                  * delete from cache even if there's another reference,
2181                  * after ensuring that the data has been saved to disk -
2182                  * since if the reference remains (rarer), it will be
2183                  * read from disk into another page.  Splitting into two
2184                  * pages would be incorrect if swap supported "shared
2185                  * private" pages, but they are handled by tmpfs files.
2186                  *
2187                  * Given how unuse_vma() targets one particular offset
2188                  * in an anon_vma, once the anon_vma has been determined,
2189                  * this splitting happens to be just what is needed to
2190                  * handle where KSM pages have been swapped out: re-reading
2191                  * is unnecessarily slow, but we can fix that later on.
2192                  */
2193                 if (swap_count(*swap_map) &&
2194                      PageDirty(page) && PageSwapCache(page)) {
2195                         struct writeback_control wbc = {
2196                                 .sync_mode = WB_SYNC_NONE,
2197                         };
2198
2199                         swap_writepage(compound_head(page), &wbc);
2200                         lock_page(page);
2201                         wait_on_page_writeback(page);
2202                 }
2203
2204                 /*
2205                  * It is conceivable that a racing task removed this page from
2206                  * swap cache just before we acquired the page lock at the top,
2207                  * or while we dropped it in unuse_mm().  The page might even
2208                  * be back in swap cache on another swap area: that we must not
2209                  * delete, since it may not have been written out to swap yet.
2210                  */
2211                 if (PageSwapCache(page) &&
2212                     likely(page_private(page) == entry.val) &&
2213                     !page_swapped(page))
2214                         delete_from_swap_cache(compound_head(page));
2215
2216                 /*
2217                  * So we could skip searching mms once swap count went
2218                  * to 1, we did not mark any present ptes as dirty: must
2219                  * mark page dirty so shrink_page_list will preserve it.
2220                  */
2221                 SetPageDirty(page);
2222                 unlock_page(page);
2223                 put_page(page);
2224
2225                 /*
2226                  * Make sure that we aren't completely killing
2227                  * interactive performance.
2228                  */
2229                 cond_resched();
2230                 if (frontswap && pages_to_unuse > 0) {
2231                         if (!--pages_to_unuse)
2232                                 break;
2233                 }
2234         }
2235
2236         mmput(start_mm);
2237         return retval;
2238 }
2239
2240 /*
2241  * After a successful try_to_unuse, if no swap is now in use, we know
2242  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2243  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2244  * added to the mmlist just after page_duplicate - before would be racy.
2245  */
2246 static void drain_mmlist(void)
2247 {
2248         struct list_head *p, *next;
2249         unsigned int type;
2250
2251         for (type = 0; type < nr_swapfiles; type++)
2252                 if (swap_info[type]->inuse_pages)
2253                         return;
2254         spin_lock(&mmlist_lock);
2255         list_for_each_safe(p, next, &init_mm.mmlist)
2256                 list_del_init(p);
2257         spin_unlock(&mmlist_lock);
2258 }
2259
2260 /*
2261  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2262  * corresponds to page offset for the specified swap entry.
2263  * Note that the type of this function is sector_t, but it returns page offset
2264  * into the bdev, not sector offset.
2265  */
2266 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2267 {
2268         struct swap_info_struct *sis;
2269         struct swap_extent *start_se;
2270         struct swap_extent *se;
2271         pgoff_t offset;
2272
2273         sis = swap_info[swp_type(entry)];
2274         *bdev = sis->bdev;
2275
2276         offset = swp_offset(entry);
2277         start_se = sis->curr_swap_extent;
2278         se = start_se;
2279
2280         for ( ; ; ) {
2281                 if (se->start_page <= offset &&
2282                                 offset < (se->start_page + se->nr_pages)) {
2283                         return se->start_block + (offset - se->start_page);
2284                 }
2285                 se = list_next_entry(se, list);
2286                 sis->curr_swap_extent = se;
2287                 BUG_ON(se == start_se);         /* It *must* be present */
2288         }
2289 }
2290
2291 /*
2292  * Returns the page offset into bdev for the specified page's swap entry.
2293  */
2294 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2295 {
2296         swp_entry_t entry;
2297         entry.val = page_private(page);
2298         return map_swap_entry(entry, bdev);
2299 }
2300
2301 /*
2302  * Free all of a swapdev's extent information
2303  */
2304 static void destroy_swap_extents(struct swap_info_struct *sis)
2305 {
2306         while (!list_empty(&sis->first_swap_extent.list)) {
2307                 struct swap_extent *se;
2308
2309                 se = list_first_entry(&sis->first_swap_extent.list,
2310                                 struct swap_extent, list);
2311                 list_del(&se->list);
2312                 kfree(se);
2313         }
2314
2315         if (sis->flags & SWP_FILE) {
2316                 struct file *swap_file = sis->swap_file;
2317                 struct address_space *mapping = swap_file->f_mapping;
2318
2319                 sis->flags &= ~SWP_FILE;
2320                 mapping->a_ops->swap_deactivate(swap_file);
2321         }
2322 }
2323
2324 /*
2325  * Add a block range (and the corresponding page range) into this swapdev's
2326  * extent list.  The extent list is kept sorted in page order.
2327  *
2328  * This function rather assumes that it is called in ascending page order.
2329  */
2330 int
2331 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2332                 unsigned long nr_pages, sector_t start_block)
2333 {
2334         struct swap_extent *se;
2335         struct swap_extent *new_se;
2336         struct list_head *lh;
2337
2338         if (start_page == 0) {
2339                 se = &sis->first_swap_extent;
2340                 sis->curr_swap_extent = se;
2341                 se->start_page = 0;
2342                 se->nr_pages = nr_pages;
2343                 se->start_block = start_block;
2344                 return 1;
2345         } else {
2346                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2347                 se = list_entry(lh, struct swap_extent, list);
2348                 BUG_ON(se->start_page + se->nr_pages != start_page);
2349                 if (se->start_block + se->nr_pages == start_block) {
2350                         /* Merge it */
2351                         se->nr_pages += nr_pages;
2352                         return 0;
2353                 }
2354         }
2355
2356         /*
2357          * No merge.  Insert a new extent, preserving ordering.
2358          */
2359         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2360         if (new_se == NULL)
2361                 return -ENOMEM;
2362         new_se->start_page = start_page;
2363         new_se->nr_pages = nr_pages;
2364         new_se->start_block = start_block;
2365
2366         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2367         return 1;
2368 }
2369
2370 /*
2371  * A `swap extent' is a simple thing which maps a contiguous range of pages
2372  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2373  * is built at swapon time and is then used at swap_writepage/swap_readpage
2374  * time for locating where on disk a page belongs.
2375  *
2376  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2377  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2378  * swap files identically.
2379  *
2380  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2381  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2382  * swapfiles are handled *identically* after swapon time.
2383  *
2384  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2385  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2386  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2387  * requirements, they are simply tossed out - we will never use those blocks
2388  * for swapping.
2389  *
2390  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2391  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2392  * which will scribble on the fs.
2393  *
2394  * The amount of disk space which a single swap extent represents varies.
2395  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2396  * extents in the list.  To avoid much list walking, we cache the previous
2397  * search location in `curr_swap_extent', and start new searches from there.
2398  * This is extremely effective.  The average number of iterations in
2399  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2400  */
2401 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2402 {
2403         struct file *swap_file = sis->swap_file;
2404         struct address_space *mapping = swap_file->f_mapping;
2405         struct inode *inode = mapping->host;
2406         int ret;
2407
2408         if (S_ISBLK(inode->i_mode)) {
2409                 ret = add_swap_extent(sis, 0, sis->max, 0);
2410                 *span = sis->pages;
2411                 return ret;
2412         }
2413
2414         if (mapping->a_ops->swap_activate) {
2415                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2416                 if (!ret) {
2417                         sis->flags |= SWP_FILE;
2418                         ret = add_swap_extent(sis, 0, sis->max, 0);
2419                         *span = sis->pages;
2420                 }
2421                 return ret;
2422         }
2423
2424         return generic_swapfile_activate(sis, swap_file, span);
2425 }
2426
2427 static int swap_node(struct swap_info_struct *p)
2428 {
2429         struct block_device *bdev;
2430
2431         if (p->bdev)
2432                 bdev = p->bdev;
2433         else
2434                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2435
2436         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2437 }
2438
2439 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2440                                 unsigned char *swap_map,
2441                                 struct swap_cluster_info *cluster_info)
2442 {
2443         int i;
2444
2445         if (prio >= 0)
2446                 p->prio = prio;
2447         else
2448                 p->prio = --least_priority;
2449         /*
2450          * the plist prio is negated because plist ordering is
2451          * low-to-high, while swap ordering is high-to-low
2452          */
2453         p->list.prio = -p->prio;
2454         for_each_node(i) {
2455                 if (p->prio >= 0)
2456                         p->avail_lists[i].prio = -p->prio;
2457                 else {
2458                         if (swap_node(p) == i)
2459                                 p->avail_lists[i].prio = 1;
2460                         else
2461                                 p->avail_lists[i].prio = -p->prio;
2462                 }
2463         }
2464         p->swap_map = swap_map;
2465         p->cluster_info = cluster_info;
2466         p->flags |= SWP_WRITEOK;
2467         atomic_long_add(p->pages, &nr_swap_pages);
2468         total_swap_pages += p->pages;
2469
2470         assert_spin_locked(&swap_lock);
2471         /*
2472          * both lists are plists, and thus priority ordered.
2473          * swap_active_head needs to be priority ordered for swapoff(),
2474          * which on removal of any swap_info_struct with an auto-assigned
2475          * (i.e. negative) priority increments the auto-assigned priority
2476          * of any lower-priority swap_info_structs.
2477          * swap_avail_head needs to be priority ordered for get_swap_page(),
2478          * which allocates swap pages from the highest available priority
2479          * swap_info_struct.
2480          */
2481         plist_add(&p->list, &swap_active_head);
2482         add_to_avail_list(p);
2483 }
2484
2485 static void enable_swap_info(struct swap_info_struct *p, int prio,
2486                                 unsigned char *swap_map,
2487                                 struct swap_cluster_info *cluster_info,
2488                                 unsigned long *frontswap_map)
2489 {
2490         frontswap_init(p->type, frontswap_map);
2491         spin_lock(&swap_lock);
2492         spin_lock(&p->lock);
2493          _enable_swap_info(p, prio, swap_map, cluster_info);
2494         spin_unlock(&p->lock);
2495         spin_unlock(&swap_lock);
2496 }
2497
2498 static void reinsert_swap_info(struct swap_info_struct *p)
2499 {
2500         spin_lock(&swap_lock);
2501         spin_lock(&p->lock);
2502         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2503         spin_unlock(&p->lock);
2504         spin_unlock(&swap_lock);
2505 }
2506
2507 bool has_usable_swap(void)
2508 {
2509         bool ret = true;
2510
2511         spin_lock(&swap_lock);
2512         if (plist_head_empty(&swap_active_head))
2513                 ret = false;
2514         spin_unlock(&swap_lock);
2515         return ret;
2516 }
2517
2518 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2519 {
2520         struct swap_info_struct *p = NULL;
2521         unsigned char *swap_map;
2522         struct swap_cluster_info *cluster_info;
2523         unsigned long *frontswap_map;
2524         struct file *swap_file, *victim;
2525         struct address_space *mapping;
2526         struct inode *inode;
2527         struct filename *pathname;
2528         int err, found = 0;
2529         unsigned int old_block_size;
2530
2531         if (!capable(CAP_SYS_ADMIN))
2532                 return -EPERM;
2533
2534         BUG_ON(!current->mm);
2535
2536         pathname = getname(specialfile);
2537         if (IS_ERR(pathname))
2538                 return PTR_ERR(pathname);
2539
2540         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2541         err = PTR_ERR(victim);
2542         if (IS_ERR(victim))
2543                 goto out;
2544
2545         mapping = victim->f_mapping;
2546         spin_lock(&swap_lock);
2547         plist_for_each_entry(p, &swap_active_head, list) {
2548                 if (p->flags & SWP_WRITEOK) {
2549                         if (p->swap_file->f_mapping == mapping) {
2550                                 found = 1;
2551                                 break;
2552                         }
2553                 }
2554         }
2555         if (!found) {
2556                 err = -EINVAL;
2557                 spin_unlock(&swap_lock);
2558                 goto out_dput;
2559         }
2560         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2561                 vm_unacct_memory(p->pages);
2562         else {
2563                 err = -ENOMEM;
2564                 spin_unlock(&swap_lock);
2565                 goto out_dput;
2566         }
2567         del_from_avail_list(p);
2568         spin_lock(&p->lock);
2569         if (p->prio < 0) {
2570                 struct swap_info_struct *si = p;
2571                 int nid;
2572
2573                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2574                         si->prio++;
2575                         si->list.prio--;
2576                         for_each_node(nid) {
2577                                 if (si->avail_lists[nid].prio != 1)
2578                                         si->avail_lists[nid].prio--;
2579                         }
2580                 }
2581                 least_priority++;
2582         }
2583         plist_del(&p->list, &swap_active_head);
2584         atomic_long_sub(p->pages, &nr_swap_pages);
2585         total_swap_pages -= p->pages;
2586         p->flags &= ~SWP_WRITEOK;
2587         spin_unlock(&p->lock);
2588         spin_unlock(&swap_lock);
2589
2590         disable_swap_slots_cache_lock();
2591
2592         set_current_oom_origin();
2593         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2594         clear_current_oom_origin();
2595
2596         if (err) {
2597                 /* re-insert swap space back into swap_list */
2598                 reinsert_swap_info(p);
2599                 reenable_swap_slots_cache_unlock();
2600                 goto out_dput;
2601         }
2602
2603         reenable_swap_slots_cache_unlock();
2604
2605         flush_work(&p->discard_work);
2606
2607         destroy_swap_extents(p);
2608         if (p->flags & SWP_CONTINUED)
2609                 free_swap_count_continuations(p);
2610
2611         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2612                 atomic_dec(&nr_rotate_swap);
2613
2614         mutex_lock(&swapon_mutex);
2615         spin_lock(&swap_lock);
2616         spin_lock(&p->lock);
2617         drain_mmlist();
2618
2619         /* wait for anyone still in scan_swap_map */
2620         p->highest_bit = 0;             /* cuts scans short */
2621         while (p->flags >= SWP_SCANNING) {
2622                 spin_unlock(&p->lock);
2623                 spin_unlock(&swap_lock);
2624                 schedule_timeout_uninterruptible(1);
2625                 spin_lock(&swap_lock);
2626                 spin_lock(&p->lock);
2627         }
2628
2629         swap_file = p->swap_file;
2630         old_block_size = p->old_block_size;
2631         p->swap_file = NULL;
2632         p->max = 0;
2633         swap_map = p->swap_map;
2634         p->swap_map = NULL;
2635         cluster_info = p->cluster_info;
2636         p->cluster_info = NULL;
2637         frontswap_map = frontswap_map_get(p);
2638         spin_unlock(&p->lock);
2639         spin_unlock(&swap_lock);
2640         frontswap_invalidate_area(p->type);
2641         frontswap_map_set(p, NULL);
2642         mutex_unlock(&swapon_mutex);
2643         free_percpu(p->percpu_cluster);
2644         p->percpu_cluster = NULL;
2645         vfree(swap_map);
2646         kvfree(cluster_info);
2647         kvfree(frontswap_map);
2648         /* Destroy swap account information */
2649         swap_cgroup_swapoff(p->type);
2650         exit_swap_address_space(p->type);
2651
2652         inode = mapping->host;
2653         if (S_ISBLK(inode->i_mode)) {
2654                 struct block_device *bdev = I_BDEV(inode);
2655                 set_blocksize(bdev, old_block_size);
2656                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2657         } else {
2658                 inode_lock(inode);
2659                 inode->i_flags &= ~S_SWAPFILE;
2660                 inode_unlock(inode);
2661         }
2662         filp_close(swap_file, NULL);
2663
2664         /*
2665          * Clear the SWP_USED flag after all resources are freed so that swapon
2666          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2667          * not hold p->lock after we cleared its SWP_WRITEOK.
2668          */
2669         spin_lock(&swap_lock);
2670         p->flags = 0;
2671         spin_unlock(&swap_lock);
2672
2673         err = 0;
2674         atomic_inc(&proc_poll_event);
2675         wake_up_interruptible(&proc_poll_wait);
2676
2677 out_dput:
2678         filp_close(victim, NULL);
2679 out:
2680         putname(pathname);
2681         return err;
2682 }
2683
2684 #ifdef CONFIG_PROC_FS
2685 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2686 {
2687         struct seq_file *seq = file->private_data;
2688
2689         poll_wait(file, &proc_poll_wait, wait);
2690
2691         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2692                 seq->poll_event = atomic_read(&proc_poll_event);
2693                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2694         }
2695
2696         return EPOLLIN | EPOLLRDNORM;
2697 }
2698
2699 /* iterator */
2700 static void *swap_start(struct seq_file *swap, loff_t *pos)
2701 {
2702         struct swap_info_struct *si;
2703         int type;
2704         loff_t l = *pos;
2705
2706         mutex_lock(&swapon_mutex);
2707
2708         if (!l)
2709                 return SEQ_START_TOKEN;
2710
2711         for (type = 0; type < nr_swapfiles; type++) {
2712                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2713                 si = swap_info[type];
2714                 if (!(si->flags & SWP_USED) || !si->swap_map)
2715                         continue;
2716                 if (!--l)
2717                         return si;
2718         }
2719
2720         return NULL;
2721 }
2722
2723 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2724 {
2725         struct swap_info_struct *si = v;
2726         int type;
2727
2728         if (v == SEQ_START_TOKEN)
2729                 type = 0;
2730         else
2731                 type = si->type + 1;
2732
2733         for (; type < nr_swapfiles; type++) {
2734                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2735                 si = swap_info[type];
2736                 if (!(si->flags & SWP_USED) || !si->swap_map)
2737                         continue;
2738                 ++*pos;
2739                 return si;
2740         }
2741
2742         return NULL;
2743 }
2744
2745 static void swap_stop(struct seq_file *swap, void *v)
2746 {
2747         mutex_unlock(&swapon_mutex);
2748 }
2749
2750 static int swap_show(struct seq_file *swap, void *v)
2751 {
2752         struct swap_info_struct *si = v;
2753         struct file *file;
2754         int len;
2755
2756         if (si == SEQ_START_TOKEN) {
2757                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2758                 return 0;
2759         }
2760
2761         file = si->swap_file;
2762         len = seq_file_path(swap, file, " \t\n\\");
2763         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2764                         len < 40 ? 40 - len : 1, " ",
2765                         S_ISBLK(file_inode(file)->i_mode) ?
2766                                 "partition" : "file\t",
2767                         si->pages << (PAGE_SHIFT - 10),
2768                         si->inuse_pages << (PAGE_SHIFT - 10),
2769                         si->prio);
2770         return 0;
2771 }
2772
2773 static const struct seq_operations swaps_op = {
2774         .start =        swap_start,
2775         .next =         swap_next,
2776         .stop =         swap_stop,
2777         .show =         swap_show
2778 };
2779
2780 static int swaps_open(struct inode *inode, struct file *file)
2781 {
2782         struct seq_file *seq;
2783         int ret;
2784
2785         ret = seq_open(file, &swaps_op);
2786         if (ret)
2787                 return ret;
2788
2789         seq = file->private_data;
2790         seq->poll_event = atomic_read(&proc_poll_event);
2791         return 0;
2792 }
2793
2794 static const struct file_operations proc_swaps_operations = {
2795         .open           = swaps_open,
2796         .read           = seq_read,
2797         .llseek         = seq_lseek,
2798         .release        = seq_release,
2799         .poll           = swaps_poll,
2800 };
2801
2802 static int __init procswaps_init(void)
2803 {
2804         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2805         return 0;
2806 }
2807 __initcall(procswaps_init);
2808 #endif /* CONFIG_PROC_FS */
2809
2810 #ifdef MAX_SWAPFILES_CHECK
2811 static int __init max_swapfiles_check(void)
2812 {
2813         MAX_SWAPFILES_CHECK();
2814         return 0;
2815 }
2816 late_initcall(max_swapfiles_check);
2817 #endif
2818
2819 static struct swap_info_struct *alloc_swap_info(void)
2820 {
2821         struct swap_info_struct *p;
2822         unsigned int type;
2823         int i;
2824
2825         p = kzalloc(sizeof(*p), GFP_KERNEL);
2826         if (!p)
2827                 return ERR_PTR(-ENOMEM);
2828
2829         spin_lock(&swap_lock);
2830         for (type = 0; type < nr_swapfiles; type++) {
2831                 if (!(swap_info[type]->flags & SWP_USED))
2832                         break;
2833         }
2834         if (type >= MAX_SWAPFILES) {
2835                 spin_unlock(&swap_lock);
2836                 kfree(p);
2837                 return ERR_PTR(-EPERM);
2838         }
2839         if (type >= nr_swapfiles) {
2840                 p->type = type;
2841                 swap_info[type] = p;
2842                 /*
2843                  * Write swap_info[type] before nr_swapfiles, in case a
2844                  * racing procfs swap_start() or swap_next() is reading them.
2845                  * (We never shrink nr_swapfiles, we never free this entry.)
2846                  */
2847                 smp_wmb();
2848                 nr_swapfiles++;
2849         } else {
2850                 kfree(p);
2851                 p = swap_info[type];
2852                 /*
2853                  * Do not memset this entry: a racing procfs swap_next()
2854                  * would be relying on p->type to remain valid.
2855                  */
2856         }
2857         INIT_LIST_HEAD(&p->first_swap_extent.list);
2858         plist_node_init(&p->list, 0);
2859         for_each_node(i)
2860                 plist_node_init(&p->avail_lists[i], 0);
2861         p->flags = SWP_USED;
2862         spin_unlock(&swap_lock);
2863         spin_lock_init(&p->lock);
2864         spin_lock_init(&p->cont_lock);
2865
2866         return p;
2867 }
2868
2869 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2870 {
2871         int error;
2872
2873         if (S_ISBLK(inode->i_mode)) {
2874                 p->bdev = bdgrab(I_BDEV(inode));
2875                 error = blkdev_get(p->bdev,
2876                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2877                 if (error < 0) {
2878                         p->bdev = NULL;
2879                         return error;
2880                 }
2881                 p->old_block_size = block_size(p->bdev);
2882                 error = set_blocksize(p->bdev, PAGE_SIZE);
2883                 if (error < 0)
2884                         return error;
2885                 p->flags |= SWP_BLKDEV;
2886         } else if (S_ISREG(inode->i_mode)) {
2887                 p->bdev = inode->i_sb->s_bdev;
2888                 inode_lock(inode);
2889                 if (IS_SWAPFILE(inode))
2890                         return -EBUSY;
2891         } else
2892                 return -EINVAL;
2893
2894         return 0;
2895 }
2896
2897
2898 /*
2899  * Find out how many pages are allowed for a single swap device. There
2900  * are two limiting factors:
2901  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2902  * 2) the number of bits in the swap pte, as defined by the different
2903  * architectures.
2904  *
2905  * In order to find the largest possible bit mask, a swap entry with
2906  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2907  * decoded to a swp_entry_t again, and finally the swap offset is
2908  * extracted.
2909  *
2910  * This will mask all the bits from the initial ~0UL mask that can't
2911  * be encoded in either the swp_entry_t or the architecture definition
2912  * of a swap pte.
2913  */
2914 unsigned long generic_max_swapfile_size(void)
2915 {
2916         return swp_offset(pte_to_swp_entry(
2917                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2918 }
2919
2920 /* Can be overridden by an architecture for additional checks. */
2921 __weak unsigned long max_swapfile_size(void)
2922 {
2923         return generic_max_swapfile_size();
2924 }
2925
2926 static unsigned long read_swap_header(struct swap_info_struct *p,
2927                                         union swap_header *swap_header,
2928                                         struct inode *inode)
2929 {
2930         int i;
2931         unsigned long maxpages;
2932         unsigned long swapfilepages;
2933         unsigned long last_page;
2934
2935         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2936                 pr_err("Unable to find swap-space signature\n");
2937                 return 0;
2938         }
2939
2940         /* swap partition endianess hack... */
2941         if (swab32(swap_header->info.version) == 1) {
2942                 swab32s(&swap_header->info.version);
2943                 swab32s(&swap_header->info.last_page);
2944                 swab32s(&swap_header->info.nr_badpages);
2945                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2946                         return 0;
2947                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2948                         swab32s(&swap_header->info.badpages[i]);
2949         }
2950         /* Check the swap header's sub-version */
2951         if (swap_header->info.version != 1) {
2952                 pr_warn("Unable to handle swap header version %d\n",
2953                         swap_header->info.version);
2954                 return 0;
2955         }
2956
2957         p->lowest_bit  = 1;
2958         p->cluster_next = 1;
2959         p->cluster_nr = 0;
2960
2961         maxpages = max_swapfile_size();
2962         last_page = swap_header->info.last_page;
2963         if (!last_page) {
2964                 pr_warn("Empty swap-file\n");
2965                 return 0;
2966         }
2967         if (last_page > maxpages) {
2968                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2969                         maxpages << (PAGE_SHIFT - 10),
2970                         last_page << (PAGE_SHIFT - 10));
2971         }
2972         if (maxpages > last_page) {
2973                 maxpages = last_page + 1;
2974                 /* p->max is an unsigned int: don't overflow it */
2975                 if ((unsigned int)maxpages == 0)
2976                         maxpages = UINT_MAX;
2977         }
2978         p->highest_bit = maxpages - 1;
2979
2980         if (!maxpages)
2981                 return 0;
2982         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2983         if (swapfilepages && maxpages > swapfilepages) {
2984                 pr_warn("Swap area shorter than signature indicates\n");
2985                 return 0;
2986         }
2987         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2988                 return 0;
2989         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2990                 return 0;
2991
2992         return maxpages;
2993 }
2994
2995 #define SWAP_CLUSTER_INFO_COLS                                          \
2996         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2997 #define SWAP_CLUSTER_SPACE_COLS                                         \
2998         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2999 #define SWAP_CLUSTER_COLS                                               \
3000         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3001
3002 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3003                                         union swap_header *swap_header,
3004                                         unsigned char *swap_map,
3005                                         struct swap_cluster_info *cluster_info,
3006                                         unsigned long maxpages,
3007                                         sector_t *span)
3008 {
3009         unsigned int j, k;
3010         unsigned int nr_good_pages;
3011         int nr_extents;
3012         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3013         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3014         unsigned long i, idx;
3015
3016         nr_good_pages = maxpages - 1;   /* omit header page */
3017
3018         cluster_list_init(&p->free_clusters);
3019         cluster_list_init(&p->discard_clusters);
3020
3021         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3022                 unsigned int page_nr = swap_header->info.badpages[i];
3023                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3024                         return -EINVAL;
3025                 if (page_nr < maxpages) {
3026                         swap_map[page_nr] = SWAP_MAP_BAD;
3027                         nr_good_pages--;
3028                         /*
3029                          * Haven't marked the cluster free yet, no list
3030                          * operation involved
3031                          */
3032                         inc_cluster_info_page(p, cluster_info, page_nr);
3033                 }
3034         }
3035
3036         /* Haven't marked the cluster free yet, no list operation involved */
3037         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3038                 inc_cluster_info_page(p, cluster_info, i);
3039
3040         if (nr_good_pages) {
3041                 swap_map[0] = SWAP_MAP_BAD;
3042                 /*
3043                  * Not mark the cluster free yet, no list
3044                  * operation involved
3045                  */
3046                 inc_cluster_info_page(p, cluster_info, 0);
3047                 p->max = maxpages;
3048                 p->pages = nr_good_pages;
3049                 nr_extents = setup_swap_extents(p, span);
3050                 if (nr_extents < 0)
3051                         return nr_extents;
3052                 nr_good_pages = p->pages;
3053         }
3054         if (!nr_good_pages) {
3055                 pr_warn("Empty swap-file\n");
3056                 return -EINVAL;
3057         }
3058
3059         if (!cluster_info)
3060                 return nr_extents;
3061
3062
3063         /*
3064          * Reduce false cache line sharing between cluster_info and
3065          * sharing same address space.
3066          */
3067         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3068                 j = (k + col) % SWAP_CLUSTER_COLS;
3069                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3070                         idx = i * SWAP_CLUSTER_COLS + j;
3071                         if (idx >= nr_clusters)
3072                                 continue;
3073                         if (cluster_count(&cluster_info[idx]))
3074                                 continue;
3075                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3076                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3077                                               idx);
3078                 }
3079         }
3080         return nr_extents;
3081 }
3082
3083 /*
3084  * Helper to sys_swapon determining if a given swap
3085  * backing device queue supports DISCARD operations.
3086  */
3087 static bool swap_discardable(struct swap_info_struct *si)
3088 {
3089         struct request_queue *q = bdev_get_queue(si->bdev);
3090
3091         if (!q || !blk_queue_discard(q))
3092                 return false;
3093
3094         return true;
3095 }
3096
3097 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3098 {
3099         struct swap_info_struct *p;
3100         struct filename *name;
3101         struct file *swap_file = NULL;
3102         struct address_space *mapping;
3103         int prio;
3104         int error;
3105         union swap_header *swap_header;
3106         int nr_extents;
3107         sector_t span;
3108         unsigned long maxpages;
3109         unsigned char *swap_map = NULL;
3110         struct swap_cluster_info *cluster_info = NULL;
3111         unsigned long *frontswap_map = NULL;
3112         struct page *page = NULL;
3113         struct inode *inode = NULL;
3114         bool inced_nr_rotate_swap = false;
3115
3116         if (swap_flags & ~SWAP_FLAGS_VALID)
3117                 return -EINVAL;
3118
3119         if (!capable(CAP_SYS_ADMIN))
3120                 return -EPERM;
3121
3122         if (!swap_avail_heads)
3123                 return -ENOMEM;
3124
3125         p = alloc_swap_info();
3126         if (IS_ERR(p))
3127                 return PTR_ERR(p);
3128
3129         INIT_WORK(&p->discard_work, swap_discard_work);
3130
3131         name = getname(specialfile);
3132         if (IS_ERR(name)) {
3133                 error = PTR_ERR(name);
3134                 name = NULL;
3135                 goto bad_swap;
3136         }
3137         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3138         if (IS_ERR(swap_file)) {
3139                 error = PTR_ERR(swap_file);
3140                 swap_file = NULL;
3141                 goto bad_swap;
3142         }
3143
3144         p->swap_file = swap_file;
3145         mapping = swap_file->f_mapping;
3146         inode = mapping->host;
3147
3148         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3149         error = claim_swapfile(p, inode);
3150         if (unlikely(error))
3151                 goto bad_swap;
3152
3153         /*
3154          * Read the swap header.
3155          */
3156         if (!mapping->a_ops->readpage) {
3157                 error = -EINVAL;
3158                 goto bad_swap;
3159         }
3160         page = read_mapping_page(mapping, 0, swap_file);
3161         if (IS_ERR(page)) {
3162                 error = PTR_ERR(page);
3163                 goto bad_swap;
3164         }
3165         swap_header = kmap(page);
3166
3167         maxpages = read_swap_header(p, swap_header, inode);
3168         if (unlikely(!maxpages)) {
3169                 error = -EINVAL;
3170                 goto bad_swap;
3171         }
3172
3173         /* OK, set up the swap map and apply the bad block list */
3174         swap_map = vzalloc(maxpages);
3175         if (!swap_map) {
3176                 error = -ENOMEM;
3177                 goto bad_swap;
3178         }
3179
3180         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3181                 p->flags |= SWP_STABLE_WRITES;
3182
3183         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3184                 p->flags |= SWP_SYNCHRONOUS_IO;
3185
3186         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3187                 int cpu;
3188                 unsigned long ci, nr_cluster;
3189
3190                 p->flags |= SWP_SOLIDSTATE;
3191                 /*
3192                  * select a random position to start with to help wear leveling
3193                  * SSD
3194                  */
3195                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3196                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3197
3198                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3199                                         GFP_KERNEL);
3200                 if (!cluster_info) {
3201                         error = -ENOMEM;
3202                         goto bad_swap;
3203                 }
3204
3205                 for (ci = 0; ci < nr_cluster; ci++)
3206                         spin_lock_init(&((cluster_info + ci)->lock));
3207
3208                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3209                 if (!p->percpu_cluster) {
3210                         error = -ENOMEM;
3211                         goto bad_swap;
3212                 }
3213                 for_each_possible_cpu(cpu) {
3214                         struct percpu_cluster *cluster;
3215                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3216                         cluster_set_null(&cluster->index);
3217                 }
3218         } else {
3219                 atomic_inc(&nr_rotate_swap);
3220                 inced_nr_rotate_swap = true;
3221         }
3222
3223         error = swap_cgroup_swapon(p->type, maxpages);
3224         if (error)
3225                 goto bad_swap;
3226
3227         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3228                 cluster_info, maxpages, &span);
3229         if (unlikely(nr_extents < 0)) {
3230                 error = nr_extents;
3231                 goto bad_swap;
3232         }
3233         /* frontswap enabled? set up bit-per-page map for frontswap */
3234         if (IS_ENABLED(CONFIG_FRONTSWAP))
3235                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3236                                          sizeof(long),
3237                                          GFP_KERNEL);
3238
3239         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3240                 /*
3241                  * When discard is enabled for swap with no particular
3242                  * policy flagged, we set all swap discard flags here in
3243                  * order to sustain backward compatibility with older
3244                  * swapon(8) releases.
3245                  */
3246                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3247                              SWP_PAGE_DISCARD);
3248
3249                 /*
3250                  * By flagging sys_swapon, a sysadmin can tell us to
3251                  * either do single-time area discards only, or to just
3252                  * perform discards for released swap page-clusters.
3253                  * Now it's time to adjust the p->flags accordingly.
3254                  */
3255                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3256                         p->flags &= ~SWP_PAGE_DISCARD;
3257                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3258                         p->flags &= ~SWP_AREA_DISCARD;
3259
3260                 /* issue a swapon-time discard if it's still required */
3261                 if (p->flags & SWP_AREA_DISCARD) {
3262                         int err = discard_swap(p);
3263                         if (unlikely(err))
3264                                 pr_err("swapon: discard_swap(%p): %d\n",
3265                                         p, err);
3266                 }
3267         }
3268
3269         error = init_swap_address_space(p->type, maxpages);
3270         if (error)
3271                 goto bad_swap;
3272
3273         mutex_lock(&swapon_mutex);
3274         prio = -1;
3275         if (swap_flags & SWAP_FLAG_PREFER)
3276                 prio =
3277                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3278         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3279
3280         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3281                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3282                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3283                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3284                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3285                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3286                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3287                 (frontswap_map) ? "FS" : "");
3288
3289         mutex_unlock(&swapon_mutex);
3290         atomic_inc(&proc_poll_event);
3291         wake_up_interruptible(&proc_poll_wait);
3292
3293         if (S_ISREG(inode->i_mode))
3294                 inode->i_flags |= S_SWAPFILE;
3295         error = 0;
3296         goto out;
3297 bad_swap:
3298         free_percpu(p->percpu_cluster);
3299         p->percpu_cluster = NULL;
3300         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3301                 set_blocksize(p->bdev, p->old_block_size);
3302                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3303         }
3304         destroy_swap_extents(p);
3305         swap_cgroup_swapoff(p->type);
3306         spin_lock(&swap_lock);
3307         p->swap_file = NULL;
3308         p->flags = 0;
3309         spin_unlock(&swap_lock);
3310         vfree(swap_map);
3311         kvfree(cluster_info);
3312         kvfree(frontswap_map);
3313         if (inced_nr_rotate_swap)
3314                 atomic_dec(&nr_rotate_swap);
3315         if (swap_file) {
3316                 if (inode && S_ISREG(inode->i_mode)) {
3317                         inode_unlock(inode);
3318                         inode = NULL;
3319                 }
3320                 filp_close(swap_file, NULL);
3321         }
3322 out:
3323         if (page && !IS_ERR(page)) {
3324                 kunmap(page);
3325                 put_page(page);
3326         }
3327         if (name)
3328                 putname(name);
3329         if (inode && S_ISREG(inode->i_mode))
3330                 inode_unlock(inode);
3331         if (!error)
3332                 enable_swap_slots_cache();
3333         return error;
3334 }
3335
3336 void si_swapinfo(struct sysinfo *val)
3337 {
3338         unsigned int type;
3339         unsigned long nr_to_be_unused = 0;
3340
3341         spin_lock(&swap_lock);
3342         for (type = 0; type < nr_swapfiles; type++) {
3343                 struct swap_info_struct *si = swap_info[type];
3344
3345                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3346                         nr_to_be_unused += si->inuse_pages;
3347         }
3348         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3349         val->totalswap = total_swap_pages + nr_to_be_unused;
3350         spin_unlock(&swap_lock);
3351 }
3352
3353 /*
3354  * Verify that a swap entry is valid and increment its swap map count.
3355  *
3356  * Returns error code in following case.
3357  * - success -> 0
3358  * - swp_entry is invalid -> EINVAL
3359  * - swp_entry is migration entry -> EINVAL
3360  * - swap-cache reference is requested but there is already one. -> EEXIST
3361  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3362  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3363  */
3364 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3365 {
3366         struct swap_info_struct *p;
3367         struct swap_cluster_info *ci;
3368         unsigned long offset, type;
3369         unsigned char count;
3370         unsigned char has_cache;
3371         int err = -EINVAL;
3372
3373         if (non_swap_entry(entry))
3374                 goto out;
3375
3376         type = swp_type(entry);
3377         if (type >= nr_swapfiles)
3378                 goto bad_file;
3379         p = swap_info[type];
3380         offset = swp_offset(entry);
3381         if (unlikely(offset >= p->max))
3382                 goto out;
3383
3384         ci = lock_cluster_or_swap_info(p, offset);
3385
3386         count = p->swap_map[offset];
3387
3388         /*
3389          * swapin_readahead() doesn't check if a swap entry is valid, so the
3390          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3391          */
3392         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3393                 err = -ENOENT;
3394                 goto unlock_out;
3395         }
3396
3397         has_cache = count & SWAP_HAS_CACHE;
3398         count &= ~SWAP_HAS_CACHE;
3399         err = 0;
3400
3401         if (usage == SWAP_HAS_CACHE) {
3402
3403                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3404                 if (!has_cache && count)
3405                         has_cache = SWAP_HAS_CACHE;
3406                 else if (has_cache)             /* someone else added cache */
3407                         err = -EEXIST;
3408                 else                            /* no users remaining */
3409                         err = -ENOENT;
3410
3411         } else if (count || has_cache) {
3412
3413                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3414                         count += usage;
3415                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3416                         err = -EINVAL;
3417                 else if (swap_count_continued(p, offset, count))
3418                         count = COUNT_CONTINUED;
3419                 else
3420                         err = -ENOMEM;
3421         } else
3422                 err = -ENOENT;                  /* unused swap entry */
3423
3424         p->swap_map[offset] = count | has_cache;
3425
3426 unlock_out:
3427         unlock_cluster_or_swap_info(p, ci);
3428 out:
3429         return err;
3430
3431 bad_file:
3432         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3433         goto out;
3434 }
3435
3436 /*
3437  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3438  * (in which case its reference count is never incremented).
3439  */
3440 void swap_shmem_alloc(swp_entry_t entry)
3441 {
3442         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3443 }
3444
3445 /*
3446  * Increase reference count of swap entry by 1.
3447  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3448  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3449  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3450  * might occur if a page table entry has got corrupted.
3451  */
3452 int swap_duplicate(swp_entry_t entry)
3453 {
3454         int err = 0;
3455
3456         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3457                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3458         return err;
3459 }
3460
3461 /*
3462  * @entry: swap entry for which we allocate swap cache.
3463  *
3464  * Called when allocating swap cache for existing swap entry,
3465  * This can return error codes. Returns 0 at success.
3466  * -EBUSY means there is a swap cache.
3467  * Note: return code is different from swap_duplicate().
3468  */
3469 int swapcache_prepare(swp_entry_t entry)
3470 {
3471         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3472 }
3473
3474 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3475 {
3476         return swap_info[swp_type(entry)];
3477 }
3478
3479 struct swap_info_struct *page_swap_info(struct page *page)
3480 {
3481         swp_entry_t entry = { .val = page_private(page) };
3482         return swp_swap_info(entry);
3483 }
3484
3485 /*
3486  * out-of-line __page_file_ methods to avoid include hell.
3487  */
3488 struct address_space *__page_file_mapping(struct page *page)
3489 {
3490         return page_swap_info(page)->swap_file->f_mapping;
3491 }
3492 EXPORT_SYMBOL_GPL(__page_file_mapping);
3493
3494 pgoff_t __page_file_index(struct page *page)
3495 {
3496         swp_entry_t swap = { .val = page_private(page) };
3497         return swp_offset(swap);
3498 }
3499 EXPORT_SYMBOL_GPL(__page_file_index);
3500
3501 /*
3502  * add_swap_count_continuation - called when a swap count is duplicated
3503  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3504  * page of the original vmalloc'ed swap_map, to hold the continuation count
3505  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3506  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3507  *
3508  * These continuation pages are seldom referenced: the common paths all work
3509  * on the original swap_map, only referring to a continuation page when the
3510  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3511  *
3512  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3513  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3514  * can be called after dropping locks.
3515  */
3516 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3517 {
3518         struct swap_info_struct *si;
3519         struct swap_cluster_info *ci;
3520         struct page *head;
3521         struct page *page;
3522         struct page *list_page;
3523         pgoff_t offset;
3524         unsigned char count;
3525
3526         /*
3527          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3528          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3529          */
3530         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3531
3532         si = swap_info_get(entry);
3533         if (!si) {
3534                 /*
3535                  * An acceptable race has occurred since the failing
3536                  * __swap_duplicate(): the swap entry has been freed,
3537                  * perhaps even the whole swap_map cleared for swapoff.
3538                  */
3539                 goto outer;
3540         }
3541
3542         offset = swp_offset(entry);
3543
3544         ci = lock_cluster(si, offset);
3545
3546         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3547
3548         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3549                 /*
3550                  * The higher the swap count, the more likely it is that tasks
3551                  * will race to add swap count continuation: we need to avoid
3552                  * over-provisioning.
3553                  */
3554                 goto out;
3555         }
3556
3557         if (!page) {
3558                 unlock_cluster(ci);
3559                 spin_unlock(&si->lock);
3560                 return -ENOMEM;
3561         }
3562
3563         /*
3564          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3565          * no architecture is using highmem pages for kernel page tables: so it
3566          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3567          */
3568         head = vmalloc_to_page(si->swap_map + offset);
3569         offset &= ~PAGE_MASK;
3570
3571         spin_lock(&si->cont_lock);
3572         /*
3573          * Page allocation does not initialize the page's lru field,
3574          * but it does always reset its private field.
3575          */
3576         if (!page_private(head)) {
3577                 BUG_ON(count & COUNT_CONTINUED);
3578                 INIT_LIST_HEAD(&head->lru);
3579                 set_page_private(head, SWP_CONTINUED);
3580                 si->flags |= SWP_CONTINUED;
3581         }
3582
3583         list_for_each_entry(list_page, &head->lru, lru) {
3584                 unsigned char *map;
3585
3586                 /*
3587                  * If the previous map said no continuation, but we've found
3588                  * a continuation page, free our allocation and use this one.
3589                  */
3590                 if (!(count & COUNT_CONTINUED))
3591                         goto out_unlock_cont;
3592
3593                 map = kmap_atomic(list_page) + offset;
3594                 count = *map;
3595                 kunmap_atomic(map);
3596
3597                 /*
3598                  * If this continuation count now has some space in it,
3599                  * free our allocation and use this one.
3600                  */
3601                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3602                         goto out_unlock_cont;
3603         }
3604
3605         list_add_tail(&page->lru, &head->lru);
3606         page = NULL;                    /* now it's attached, don't free it */
3607 out_unlock_cont:
3608         spin_unlock(&si->cont_lock);
3609 out:
3610         unlock_cluster(ci);
3611         spin_unlock(&si->lock);
3612 outer:
3613         if (page)
3614                 __free_page(page);
3615         return 0;
3616 }
3617
3618 /*
3619  * swap_count_continued - when the original swap_map count is incremented
3620  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3621  * into, carry if so, or else fail until a new continuation page is allocated;
3622  * when the original swap_map count is decremented from 0 with continuation,
3623  * borrow from the continuation and report whether it still holds more.
3624  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3625  * lock.
3626  */
3627 static bool swap_count_continued(struct swap_info_struct *si,
3628                                  pgoff_t offset, unsigned char count)
3629 {
3630         struct page *head;
3631         struct page *page;
3632         unsigned char *map;
3633         bool ret;
3634
3635         head = vmalloc_to_page(si->swap_map + offset);
3636         if (page_private(head) != SWP_CONTINUED) {
3637                 BUG_ON(count & COUNT_CONTINUED);
3638                 return false;           /* need to add count continuation */
3639         }
3640
3641         spin_lock(&si->cont_lock);
3642         offset &= ~PAGE_MASK;
3643         page = list_entry(head->lru.next, struct page, lru);
3644         map = kmap_atomic(page) + offset;
3645
3646         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3647                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3648
3649         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3650                 /*
3651                  * Think of how you add 1 to 999
3652                  */
3653                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3654                         kunmap_atomic(map);
3655                         page = list_entry(page->lru.next, struct page, lru);
3656                         BUG_ON(page == head);
3657                         map = kmap_atomic(page) + offset;
3658                 }
3659                 if (*map == SWAP_CONT_MAX) {
3660                         kunmap_atomic(map);
3661                         page = list_entry(page->lru.next, struct page, lru);
3662                         if (page == head) {
3663                                 ret = false;    /* add count continuation */
3664                                 goto out;
3665                         }
3666                         map = kmap_atomic(page) + offset;
3667 init_map:               *map = 0;               /* we didn't zero the page */
3668                 }
3669                 *map += 1;
3670                 kunmap_atomic(map);
3671                 page = list_entry(page->lru.prev, struct page, lru);
3672                 while (page != head) {
3673                         map = kmap_atomic(page) + offset;
3674                         *map = COUNT_CONTINUED;
3675                         kunmap_atomic(map);
3676                         page = list_entry(page->lru.prev, struct page, lru);
3677                 }
3678                 ret = true;                     /* incremented */
3679
3680         } else {                                /* decrementing */
3681                 /*
3682                  * Think of how you subtract 1 from 1000
3683                  */
3684                 BUG_ON(count != COUNT_CONTINUED);
3685                 while (*map == COUNT_CONTINUED) {
3686                         kunmap_atomic(map);
3687                         page = list_entry(page->lru.next, struct page, lru);
3688                         BUG_ON(page == head);
3689                         map = kmap_atomic(page) + offset;
3690                 }
3691                 BUG_ON(*map == 0);
3692                 *map -= 1;
3693                 if (*map == 0)
3694                         count = 0;
3695                 kunmap_atomic(map);
3696                 page = list_entry(page->lru.prev, struct page, lru);
3697                 while (page != head) {
3698                         map = kmap_atomic(page) + offset;
3699                         *map = SWAP_CONT_MAX | count;
3700                         count = COUNT_CONTINUED;
3701                         kunmap_atomic(map);
3702                         page = list_entry(page->lru.prev, struct page, lru);
3703                 }
3704                 ret = count == COUNT_CONTINUED;
3705         }
3706 out:
3707         spin_unlock(&si->cont_lock);
3708         return ret;
3709 }
3710
3711 /*
3712  * free_swap_count_continuations - swapoff free all the continuation pages
3713  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3714  */
3715 static void free_swap_count_continuations(struct swap_info_struct *si)
3716 {
3717         pgoff_t offset;
3718
3719         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3720                 struct page *head;
3721                 head = vmalloc_to_page(si->swap_map + offset);
3722                 if (page_private(head)) {
3723                         struct page *page, *next;
3724
3725                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3726                                 list_del(&page->lru);
3727                                 __free_page(page);
3728                         }
3729                 }
3730         }
3731 }
3732
3733 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3734 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3735                                   gfp_t gfp_mask)
3736 {
3737         struct swap_info_struct *si, *next;
3738         if (!(gfp_mask & __GFP_IO) || !memcg)
3739                 return;
3740
3741         if (!blk_cgroup_congested())
3742                 return;
3743
3744         /*
3745          * We've already scheduled a throttle, avoid taking the global swap
3746          * lock.
3747          */
3748         if (current->throttle_queue)
3749                 return;
3750
3751         spin_lock(&swap_avail_lock);
3752         plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3753                                   avail_lists[node]) {
3754                 if (si->bdev) {
3755                         blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3756                                                 true);
3757                         break;
3758                 }
3759         }
3760         spin_unlock(&swap_avail_lock);
3761 }
3762 #endif
3763
3764 static int __init swapfile_init(void)
3765 {
3766         int nid;
3767
3768         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3769                                          GFP_KERNEL);
3770         if (!swap_avail_heads) {
3771                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3772                 return -ENOMEM;
3773         }
3774
3775         for_each_node(nid)
3776                 plist_head_init(&swap_avail_heads[nid]);
3777
3778         return 0;
3779 }
3780 subsys_initcall(swapfile_init);