]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/zsmalloc.c
mm: reuse DEFINE_SHOW_ATTRIBUTE() macro
[linux.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
57 #include <linux/fs.h>
58
59 #define ZSPAGE_MAGIC    0x58
60
61 /*
62  * This must be power of 2 and greater than of equal to sizeof(link_free).
63  * These two conditions ensure that any 'struct link_free' itself doesn't
64  * span more than 1 page which avoids complex case of mapping 2 pages simply
65  * to restore link_free pointer values.
66  */
67 #define ZS_ALIGN                8
68
69 /*
70  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72  */
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * as single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98
99 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100
101 /*
102  * Memory for allocating for handle keeps object position by
103  * encoding <page, obj_idx> and the encoded value has a room
104  * in least bit(ie, look at obj_to_location).
105  * We use the bit to synchronize between object access by
106  * user and migration.
107  */
108 #define HANDLE_PIN_BIT  0
109
110 /*
111  * Head in allocated object should have OBJ_ALLOCATED_TAG
112  * to identify the object was allocated or not.
113  * It's okay to add the status bit in the least bit because
114  * header keeps handle which is 4byte-aligned address so we
115  * have room for two bit at least.
116  */
117 #define OBJ_ALLOCATED_TAG 1
118 #define OBJ_TAG_BITS 1
119 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
120 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121
122 #define FULLNESS_BITS   2
123 #define CLASS_BITS      8
124 #define ISOLATED_BITS   3
125 #define MAGIC_VAL_BITS  8
126
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
133
134 /*
135  * On systems with 4K page size, this gives 255 size classes! There is a
136  * trader-off here:
137  *  - Large number of size classes is potentially wasteful as free page are
138  *    spread across these classes
139  *  - Small number of size classes causes large internal fragmentation
140  *  - Probably its better to use specific size classes (empirically
141  *    determined). NOTE: all those class sizes must be set as multiple of
142  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143  *
144  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145  *  (reason above)
146  */
147 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149                                       ZS_SIZE_CLASS_DELTA) + 1)
150
151 enum fullness_group {
152         ZS_EMPTY,
153         ZS_ALMOST_EMPTY,
154         ZS_ALMOST_FULL,
155         ZS_FULL,
156         NR_ZS_FULLNESS,
157 };
158
159 enum zs_stat_type {
160         CLASS_EMPTY,
161         CLASS_ALMOST_EMPTY,
162         CLASS_ALMOST_FULL,
163         CLASS_FULL,
164         OBJ_ALLOCATED,
165         OBJ_USED,
166         NR_ZS_STAT_TYPE,
167 };
168
169 struct zs_size_stat {
170         unsigned long objs[NR_ZS_STAT_TYPE];
171 };
172
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry *zs_stat_root;
175 #endif
176
177 #ifdef CONFIG_COMPACTION
178 static struct vfsmount *zsmalloc_mnt;
179 #endif
180
181 /*
182  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183  *      n <= N / f, where
184  * n = number of allocated objects
185  * N = total number of objects zspage can store
186  * f = fullness_threshold_frac
187  *
188  * Similarly, we assign zspage to:
189  *      ZS_ALMOST_FULL  when n > N / f
190  *      ZS_EMPTY        when n == 0
191  *      ZS_FULL         when n == N
192  *
193  * (see: fix_fullness_group())
194  */
195 static const int fullness_threshold_frac = 4;
196
197 struct size_class {
198         spinlock_t lock;
199         struct list_head fullness_list[NR_ZS_FULLNESS];
200         /*
201          * Size of objects stored in this class. Must be multiple
202          * of ZS_ALIGN.
203          */
204         int size;
205         int objs_per_zspage;
206         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
207         int pages_per_zspage;
208
209         unsigned int index;
210         struct zs_size_stat stats;
211 };
212
213 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
214 static void SetPageHugeObject(struct page *page)
215 {
216         SetPageOwnerPriv1(page);
217 }
218
219 static void ClearPageHugeObject(struct page *page)
220 {
221         ClearPageOwnerPriv1(page);
222 }
223
224 static int PageHugeObject(struct page *page)
225 {
226         return PageOwnerPriv1(page);
227 }
228
229 /*
230  * Placed within free objects to form a singly linked list.
231  * For every zspage, zspage->freeobj gives head of this list.
232  *
233  * This must be power of 2 and less than or equal to ZS_ALIGN
234  */
235 struct link_free {
236         union {
237                 /*
238                  * Free object index;
239                  * It's valid for non-allocated object
240                  */
241                 unsigned long next;
242                 /*
243                  * Handle of allocated object.
244                  */
245                 unsigned long handle;
246         };
247 };
248
249 struct zs_pool {
250         const char *name;
251
252         struct size_class *size_class[ZS_SIZE_CLASSES];
253         struct kmem_cache *handle_cachep;
254         struct kmem_cache *zspage_cachep;
255
256         atomic_long_t pages_allocated;
257
258         struct zs_pool_stats stats;
259
260         /* Compact classes */
261         struct shrinker shrinker;
262
263 #ifdef CONFIG_ZSMALLOC_STAT
264         struct dentry *stat_dentry;
265 #endif
266 #ifdef CONFIG_COMPACTION
267         struct inode *inode;
268         struct work_struct free_work;
269 #endif
270 };
271
272 struct zspage {
273         struct {
274                 unsigned int fullness:FULLNESS_BITS;
275                 unsigned int class:CLASS_BITS + 1;
276                 unsigned int isolated:ISOLATED_BITS;
277                 unsigned int magic:MAGIC_VAL_BITS;
278         };
279         unsigned int inuse;
280         unsigned int freeobj;
281         struct page *first_page;
282         struct list_head list; /* fullness list */
283 #ifdef CONFIG_COMPACTION
284         rwlock_t lock;
285 #endif
286 };
287
288 struct mapping_area {
289 #ifdef CONFIG_PGTABLE_MAPPING
290         struct vm_struct *vm; /* vm area for mapping object that span pages */
291 #else
292         char *vm_buf; /* copy buffer for objects that span pages */
293 #endif
294         char *vm_addr; /* address of kmap_atomic()'ed pages */
295         enum zs_mapmode vm_mm; /* mapping mode */
296 };
297
298 #ifdef CONFIG_COMPACTION
299 static int zs_register_migration(struct zs_pool *pool);
300 static void zs_unregister_migration(struct zs_pool *pool);
301 static void migrate_lock_init(struct zspage *zspage);
302 static void migrate_read_lock(struct zspage *zspage);
303 static void migrate_read_unlock(struct zspage *zspage);
304 static void kick_deferred_free(struct zs_pool *pool);
305 static void init_deferred_free(struct zs_pool *pool);
306 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
307 #else
308 static int zsmalloc_mount(void) { return 0; }
309 static void zsmalloc_unmount(void) {}
310 static int zs_register_migration(struct zs_pool *pool) { return 0; }
311 static void zs_unregister_migration(struct zs_pool *pool) {}
312 static void migrate_lock_init(struct zspage *zspage) {}
313 static void migrate_read_lock(struct zspage *zspage) {}
314 static void migrate_read_unlock(struct zspage *zspage) {}
315 static void kick_deferred_free(struct zs_pool *pool) {}
316 static void init_deferred_free(struct zs_pool *pool) {}
317 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
318 #endif
319
320 static int create_cache(struct zs_pool *pool)
321 {
322         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
323                                         0, 0, NULL);
324         if (!pool->handle_cachep)
325                 return 1;
326
327         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
328                                         0, 0, NULL);
329         if (!pool->zspage_cachep) {
330                 kmem_cache_destroy(pool->handle_cachep);
331                 pool->handle_cachep = NULL;
332                 return 1;
333         }
334
335         return 0;
336 }
337
338 static void destroy_cache(struct zs_pool *pool)
339 {
340         kmem_cache_destroy(pool->handle_cachep);
341         kmem_cache_destroy(pool->zspage_cachep);
342 }
343
344 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
345 {
346         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
347                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
348 }
349
350 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
351 {
352         kmem_cache_free(pool->handle_cachep, (void *)handle);
353 }
354
355 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
356 {
357         return kmem_cache_alloc(pool->zspage_cachep,
358                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
359 }
360
361 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
362 {
363         kmem_cache_free(pool->zspage_cachep, zspage);
364 }
365
366 static void record_obj(unsigned long handle, unsigned long obj)
367 {
368         /*
369          * lsb of @obj represents handle lock while other bits
370          * represent object value the handle is pointing so
371          * updating shouldn't do store tearing.
372          */
373         WRITE_ONCE(*(unsigned long *)handle, obj);
374 }
375
376 /* zpool driver */
377
378 #ifdef CONFIG_ZPOOL
379
380 static void *zs_zpool_create(const char *name, gfp_t gfp,
381                              const struct zpool_ops *zpool_ops,
382                              struct zpool *zpool)
383 {
384         /*
385          * Ignore global gfp flags: zs_malloc() may be invoked from
386          * different contexts and its caller must provide a valid
387          * gfp mask.
388          */
389         return zs_create_pool(name);
390 }
391
392 static void zs_zpool_destroy(void *pool)
393 {
394         zs_destroy_pool(pool);
395 }
396
397 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
398                         unsigned long *handle)
399 {
400         *handle = zs_malloc(pool, size, gfp);
401         return *handle ? 0 : -1;
402 }
403 static void zs_zpool_free(void *pool, unsigned long handle)
404 {
405         zs_free(pool, handle);
406 }
407
408 static void *zs_zpool_map(void *pool, unsigned long handle,
409                         enum zpool_mapmode mm)
410 {
411         enum zs_mapmode zs_mm;
412
413         switch (mm) {
414         case ZPOOL_MM_RO:
415                 zs_mm = ZS_MM_RO;
416                 break;
417         case ZPOOL_MM_WO:
418                 zs_mm = ZS_MM_WO;
419                 break;
420         case ZPOOL_MM_RW: /* fallthru */
421         default:
422                 zs_mm = ZS_MM_RW;
423                 break;
424         }
425
426         return zs_map_object(pool, handle, zs_mm);
427 }
428 static void zs_zpool_unmap(void *pool, unsigned long handle)
429 {
430         zs_unmap_object(pool, handle);
431 }
432
433 static u64 zs_zpool_total_size(void *pool)
434 {
435         return zs_get_total_pages(pool) << PAGE_SHIFT;
436 }
437
438 static struct zpool_driver zs_zpool_driver = {
439         .type =         "zsmalloc",
440         .owner =        THIS_MODULE,
441         .create =       zs_zpool_create,
442         .destroy =      zs_zpool_destroy,
443         .malloc =       zs_zpool_malloc,
444         .free =         zs_zpool_free,
445         .map =          zs_zpool_map,
446         .unmap =        zs_zpool_unmap,
447         .total_size =   zs_zpool_total_size,
448 };
449
450 MODULE_ALIAS("zpool-zsmalloc");
451 #endif /* CONFIG_ZPOOL */
452
453 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
454 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
455
456 static bool is_zspage_isolated(struct zspage *zspage)
457 {
458         return zspage->isolated;
459 }
460
461 static __maybe_unused int is_first_page(struct page *page)
462 {
463         return PagePrivate(page);
464 }
465
466 /* Protected by class->lock */
467 static inline int get_zspage_inuse(struct zspage *zspage)
468 {
469         return zspage->inuse;
470 }
471
472 static inline void set_zspage_inuse(struct zspage *zspage, int val)
473 {
474         zspage->inuse = val;
475 }
476
477 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
478 {
479         zspage->inuse += val;
480 }
481
482 static inline struct page *get_first_page(struct zspage *zspage)
483 {
484         struct page *first_page = zspage->first_page;
485
486         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487         return first_page;
488 }
489
490 static inline int get_first_obj_offset(struct page *page)
491 {
492         return page->units;
493 }
494
495 static inline void set_first_obj_offset(struct page *page, int offset)
496 {
497         page->units = offset;
498 }
499
500 static inline unsigned int get_freeobj(struct zspage *zspage)
501 {
502         return zspage->freeobj;
503 }
504
505 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
506 {
507         zspage->freeobj = obj;
508 }
509
510 static void get_zspage_mapping(struct zspage *zspage,
511                                 unsigned int *class_idx,
512                                 enum fullness_group *fullness)
513 {
514         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515
516         *fullness = zspage->fullness;
517         *class_idx = zspage->class;
518 }
519
520 static void set_zspage_mapping(struct zspage *zspage,
521                                 unsigned int class_idx,
522                                 enum fullness_group fullness)
523 {
524         zspage->class = class_idx;
525         zspage->fullness = fullness;
526 }
527
528 /*
529  * zsmalloc divides the pool into various size classes where each
530  * class maintains a list of zspages where each zspage is divided
531  * into equal sized chunks. Each allocation falls into one of these
532  * classes depending on its size. This function returns index of the
533  * size class which has chunk size big enough to hold the give size.
534  */
535 static int get_size_class_index(int size)
536 {
537         int idx = 0;
538
539         if (likely(size > ZS_MIN_ALLOC_SIZE))
540                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541                                 ZS_SIZE_CLASS_DELTA);
542
543         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
544 }
545
546 /* type can be of enum type zs_stat_type or fullness_group */
547 static inline void zs_stat_inc(struct size_class *class,
548                                 int type, unsigned long cnt)
549 {
550         class->stats.objs[type] += cnt;
551 }
552
553 /* type can be of enum type zs_stat_type or fullness_group */
554 static inline void zs_stat_dec(struct size_class *class,
555                                 int type, unsigned long cnt)
556 {
557         class->stats.objs[type] -= cnt;
558 }
559
560 /* type can be of enum type zs_stat_type or fullness_group */
561 static inline unsigned long zs_stat_get(struct size_class *class,
562                                 int type)
563 {
564         return class->stats.objs[type];
565 }
566
567 #ifdef CONFIG_ZSMALLOC_STAT
568
569 static void __init zs_stat_init(void)
570 {
571         if (!debugfs_initialized()) {
572                 pr_warn("debugfs not available, stat dir not created\n");
573                 return;
574         }
575
576         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
577         if (!zs_stat_root)
578                 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
579 }
580
581 static void __exit zs_stat_exit(void)
582 {
583         debugfs_remove_recursive(zs_stat_root);
584 }
585
586 static unsigned long zs_can_compact(struct size_class *class);
587
588 static int zs_stats_size_show(struct seq_file *s, void *v)
589 {
590         int i;
591         struct zs_pool *pool = s->private;
592         struct size_class *class;
593         int objs_per_zspage;
594         unsigned long class_almost_full, class_almost_empty;
595         unsigned long obj_allocated, obj_used, pages_used, freeable;
596         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
597         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
598         unsigned long total_freeable = 0;
599
600         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
601                         "class", "size", "almost_full", "almost_empty",
602                         "obj_allocated", "obj_used", "pages_used",
603                         "pages_per_zspage", "freeable");
604
605         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
606                 class = pool->size_class[i];
607
608                 if (class->index != i)
609                         continue;
610
611                 spin_lock(&class->lock);
612                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
613                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
614                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
615                 obj_used = zs_stat_get(class, OBJ_USED);
616                 freeable = zs_can_compact(class);
617                 spin_unlock(&class->lock);
618
619                 objs_per_zspage = class->objs_per_zspage;
620                 pages_used = obj_allocated / objs_per_zspage *
621                                 class->pages_per_zspage;
622
623                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
624                                 " %10lu %10lu %16d %8lu\n",
625                         i, class->size, class_almost_full, class_almost_empty,
626                         obj_allocated, obj_used, pages_used,
627                         class->pages_per_zspage, freeable);
628
629                 total_class_almost_full += class_almost_full;
630                 total_class_almost_empty += class_almost_empty;
631                 total_objs += obj_allocated;
632                 total_used_objs += obj_used;
633                 total_pages += pages_used;
634                 total_freeable += freeable;
635         }
636
637         seq_puts(s, "\n");
638         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
639                         "Total", "", total_class_almost_full,
640                         total_class_almost_empty, total_objs,
641                         total_used_objs, total_pages, "", total_freeable);
642
643         return 0;
644 }
645 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
646
647 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
648 {
649         struct dentry *entry;
650
651         if (!zs_stat_root) {
652                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
653                 return;
654         }
655
656         entry = debugfs_create_dir(name, zs_stat_root);
657         if (!entry) {
658                 pr_warn("debugfs dir <%s> creation failed\n", name);
659                 return;
660         }
661         pool->stat_dentry = entry;
662
663         entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
664                         pool->stat_dentry, pool, &zs_stats_size_fops);
665         if (!entry) {
666                 pr_warn("%s: debugfs file entry <%s> creation failed\n",
667                                 name, "classes");
668                 debugfs_remove_recursive(pool->stat_dentry);
669                 pool->stat_dentry = NULL;
670         }
671 }
672
673 static void zs_pool_stat_destroy(struct zs_pool *pool)
674 {
675         debugfs_remove_recursive(pool->stat_dentry);
676 }
677
678 #else /* CONFIG_ZSMALLOC_STAT */
679 static void __init zs_stat_init(void)
680 {
681 }
682
683 static void __exit zs_stat_exit(void)
684 {
685 }
686
687 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
688 {
689 }
690
691 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
692 {
693 }
694 #endif
695
696
697 /*
698  * For each size class, zspages are divided into different groups
699  * depending on how "full" they are. This was done so that we could
700  * easily find empty or nearly empty zspages when we try to shrink
701  * the pool (not yet implemented). This function returns fullness
702  * status of the given page.
703  */
704 static enum fullness_group get_fullness_group(struct size_class *class,
705                                                 struct zspage *zspage)
706 {
707         int inuse, objs_per_zspage;
708         enum fullness_group fg;
709
710         inuse = get_zspage_inuse(zspage);
711         objs_per_zspage = class->objs_per_zspage;
712
713         if (inuse == 0)
714                 fg = ZS_EMPTY;
715         else if (inuse == objs_per_zspage)
716                 fg = ZS_FULL;
717         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
718                 fg = ZS_ALMOST_EMPTY;
719         else
720                 fg = ZS_ALMOST_FULL;
721
722         return fg;
723 }
724
725 /*
726  * Each size class maintains various freelists and zspages are assigned
727  * to one of these freelists based on the number of live objects they
728  * have. This functions inserts the given zspage into the freelist
729  * identified by <class, fullness_group>.
730  */
731 static void insert_zspage(struct size_class *class,
732                                 struct zspage *zspage,
733                                 enum fullness_group fullness)
734 {
735         struct zspage *head;
736
737         zs_stat_inc(class, fullness, 1);
738         head = list_first_entry_or_null(&class->fullness_list[fullness],
739                                         struct zspage, list);
740         /*
741          * We want to see more ZS_FULL pages and less almost empty/full.
742          * Put pages with higher ->inuse first.
743          */
744         if (head) {
745                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
746                         list_add(&zspage->list, &head->list);
747                         return;
748                 }
749         }
750         list_add(&zspage->list, &class->fullness_list[fullness]);
751 }
752
753 /*
754  * This function removes the given zspage from the freelist identified
755  * by <class, fullness_group>.
756  */
757 static void remove_zspage(struct size_class *class,
758                                 struct zspage *zspage,
759                                 enum fullness_group fullness)
760 {
761         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
762         VM_BUG_ON(is_zspage_isolated(zspage));
763
764         list_del_init(&zspage->list);
765         zs_stat_dec(class, fullness, 1);
766 }
767
768 /*
769  * Each size class maintains zspages in different fullness groups depending
770  * on the number of live objects they contain. When allocating or freeing
771  * objects, the fullness status of the page can change, say, from ALMOST_FULL
772  * to ALMOST_EMPTY when freeing an object. This function checks if such
773  * a status change has occurred for the given page and accordingly moves the
774  * page from the freelist of the old fullness group to that of the new
775  * fullness group.
776  */
777 static enum fullness_group fix_fullness_group(struct size_class *class,
778                                                 struct zspage *zspage)
779 {
780         int class_idx;
781         enum fullness_group currfg, newfg;
782
783         get_zspage_mapping(zspage, &class_idx, &currfg);
784         newfg = get_fullness_group(class, zspage);
785         if (newfg == currfg)
786                 goto out;
787
788         if (!is_zspage_isolated(zspage)) {
789                 remove_zspage(class, zspage, currfg);
790                 insert_zspage(class, zspage, newfg);
791         }
792
793         set_zspage_mapping(zspage, class_idx, newfg);
794
795 out:
796         return newfg;
797 }
798
799 /*
800  * We have to decide on how many pages to link together
801  * to form a zspage for each size class. This is important
802  * to reduce wastage due to unusable space left at end of
803  * each zspage which is given as:
804  *     wastage = Zp % class_size
805  *     usage = Zp - wastage
806  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
807  *
808  * For example, for size class of 3/8 * PAGE_SIZE, we should
809  * link together 3 PAGE_SIZE sized pages to form a zspage
810  * since then we can perfectly fit in 8 such objects.
811  */
812 static int get_pages_per_zspage(int class_size)
813 {
814         int i, max_usedpc = 0;
815         /* zspage order which gives maximum used size per KB */
816         int max_usedpc_order = 1;
817
818         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
819                 int zspage_size;
820                 int waste, usedpc;
821
822                 zspage_size = i * PAGE_SIZE;
823                 waste = zspage_size % class_size;
824                 usedpc = (zspage_size - waste) * 100 / zspage_size;
825
826                 if (usedpc > max_usedpc) {
827                         max_usedpc = usedpc;
828                         max_usedpc_order = i;
829                 }
830         }
831
832         return max_usedpc_order;
833 }
834
835 static struct zspage *get_zspage(struct page *page)
836 {
837         struct zspage *zspage = (struct zspage *)page->private;
838
839         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
840         return zspage;
841 }
842
843 static struct page *get_next_page(struct page *page)
844 {
845         if (unlikely(PageHugeObject(page)))
846                 return NULL;
847
848         return page->freelist;
849 }
850
851 /**
852  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
853  * @page: page object resides in zspage
854  * @obj_idx: object index
855  */
856 static void obj_to_location(unsigned long obj, struct page **page,
857                                 unsigned int *obj_idx)
858 {
859         obj >>= OBJ_TAG_BITS;
860         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
861         *obj_idx = (obj & OBJ_INDEX_MASK);
862 }
863
864 /**
865  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
866  * @page: page object resides in zspage
867  * @obj_idx: object index
868  */
869 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
870 {
871         unsigned long obj;
872
873         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
874         obj |= obj_idx & OBJ_INDEX_MASK;
875         obj <<= OBJ_TAG_BITS;
876
877         return obj;
878 }
879
880 static unsigned long handle_to_obj(unsigned long handle)
881 {
882         return *(unsigned long *)handle;
883 }
884
885 static unsigned long obj_to_head(struct page *page, void *obj)
886 {
887         if (unlikely(PageHugeObject(page))) {
888                 VM_BUG_ON_PAGE(!is_first_page(page), page);
889                 return page->index;
890         } else
891                 return *(unsigned long *)obj;
892 }
893
894 static inline int testpin_tag(unsigned long handle)
895 {
896         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
897 }
898
899 static inline int trypin_tag(unsigned long handle)
900 {
901         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
902 }
903
904 static void pin_tag(unsigned long handle)
905 {
906         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
907 }
908
909 static void unpin_tag(unsigned long handle)
910 {
911         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
912 }
913
914 static void reset_page(struct page *page)
915 {
916         __ClearPageMovable(page);
917         ClearPagePrivate(page);
918         set_page_private(page, 0);
919         page_mapcount_reset(page);
920         ClearPageHugeObject(page);
921         page->freelist = NULL;
922 }
923
924 /*
925  * To prevent zspage destroy during migration, zspage freeing should
926  * hold locks of all pages in the zspage.
927  */
928 void lock_zspage(struct zspage *zspage)
929 {
930         struct page *page = get_first_page(zspage);
931
932         do {
933                 lock_page(page);
934         } while ((page = get_next_page(page)) != NULL);
935 }
936
937 int trylock_zspage(struct zspage *zspage)
938 {
939         struct page *cursor, *fail;
940
941         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
942                                         get_next_page(cursor)) {
943                 if (!trylock_page(cursor)) {
944                         fail = cursor;
945                         goto unlock;
946                 }
947         }
948
949         return 1;
950 unlock:
951         for (cursor = get_first_page(zspage); cursor != fail; cursor =
952                                         get_next_page(cursor))
953                 unlock_page(cursor);
954
955         return 0;
956 }
957
958 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
959                                 struct zspage *zspage)
960 {
961         struct page *page, *next;
962         enum fullness_group fg;
963         unsigned int class_idx;
964
965         get_zspage_mapping(zspage, &class_idx, &fg);
966
967         assert_spin_locked(&class->lock);
968
969         VM_BUG_ON(get_zspage_inuse(zspage));
970         VM_BUG_ON(fg != ZS_EMPTY);
971
972         next = page = get_first_page(zspage);
973         do {
974                 VM_BUG_ON_PAGE(!PageLocked(page), page);
975                 next = get_next_page(page);
976                 reset_page(page);
977                 unlock_page(page);
978                 dec_zone_page_state(page, NR_ZSPAGES);
979                 put_page(page);
980                 page = next;
981         } while (page != NULL);
982
983         cache_free_zspage(pool, zspage);
984
985         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
986         atomic_long_sub(class->pages_per_zspage,
987                                         &pool->pages_allocated);
988 }
989
990 static void free_zspage(struct zs_pool *pool, struct size_class *class,
991                                 struct zspage *zspage)
992 {
993         VM_BUG_ON(get_zspage_inuse(zspage));
994         VM_BUG_ON(list_empty(&zspage->list));
995
996         if (!trylock_zspage(zspage)) {
997                 kick_deferred_free(pool);
998                 return;
999         }
1000
1001         remove_zspage(class, zspage, ZS_EMPTY);
1002         __free_zspage(pool, class, zspage);
1003 }
1004
1005 /* Initialize a newly allocated zspage */
1006 static void init_zspage(struct size_class *class, struct zspage *zspage)
1007 {
1008         unsigned int freeobj = 1;
1009         unsigned long off = 0;
1010         struct page *page = get_first_page(zspage);
1011
1012         while (page) {
1013                 struct page *next_page;
1014                 struct link_free *link;
1015                 void *vaddr;
1016
1017                 set_first_obj_offset(page, off);
1018
1019                 vaddr = kmap_atomic(page);
1020                 link = (struct link_free *)vaddr + off / sizeof(*link);
1021
1022                 while ((off += class->size) < PAGE_SIZE) {
1023                         link->next = freeobj++ << OBJ_TAG_BITS;
1024                         link += class->size / sizeof(*link);
1025                 }
1026
1027                 /*
1028                  * We now come to the last (full or partial) object on this
1029                  * page, which must point to the first object on the next
1030                  * page (if present)
1031                  */
1032                 next_page = get_next_page(page);
1033                 if (next_page) {
1034                         link->next = freeobj++ << OBJ_TAG_BITS;
1035                 } else {
1036                         /*
1037                          * Reset OBJ_TAG_BITS bit to last link to tell
1038                          * whether it's allocated object or not.
1039                          */
1040                         link->next = -1UL << OBJ_TAG_BITS;
1041                 }
1042                 kunmap_atomic(vaddr);
1043                 page = next_page;
1044                 off %= PAGE_SIZE;
1045         }
1046
1047         set_freeobj(zspage, 0);
1048 }
1049
1050 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1051                                 struct page *pages[])
1052 {
1053         int i;
1054         struct page *page;
1055         struct page *prev_page = NULL;
1056         int nr_pages = class->pages_per_zspage;
1057
1058         /*
1059          * Allocate individual pages and link them together as:
1060          * 1. all pages are linked together using page->freelist
1061          * 2. each sub-page point to zspage using page->private
1062          *
1063          * we set PG_private to identify the first page (i.e. no other sub-page
1064          * has this flag set).
1065          */
1066         for (i = 0; i < nr_pages; i++) {
1067                 page = pages[i];
1068                 set_page_private(page, (unsigned long)zspage);
1069                 page->freelist = NULL;
1070                 if (i == 0) {
1071                         zspage->first_page = page;
1072                         SetPagePrivate(page);
1073                         if (unlikely(class->objs_per_zspage == 1 &&
1074                                         class->pages_per_zspage == 1))
1075                                 SetPageHugeObject(page);
1076                 } else {
1077                         prev_page->freelist = page;
1078                 }
1079                 prev_page = page;
1080         }
1081 }
1082
1083 /*
1084  * Allocate a zspage for the given size class
1085  */
1086 static struct zspage *alloc_zspage(struct zs_pool *pool,
1087                                         struct size_class *class,
1088                                         gfp_t gfp)
1089 {
1090         int i;
1091         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1092         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1093
1094         if (!zspage)
1095                 return NULL;
1096
1097         memset(zspage, 0, sizeof(struct zspage));
1098         zspage->magic = ZSPAGE_MAGIC;
1099         migrate_lock_init(zspage);
1100
1101         for (i = 0; i < class->pages_per_zspage; i++) {
1102                 struct page *page;
1103
1104                 page = alloc_page(gfp);
1105                 if (!page) {
1106                         while (--i >= 0) {
1107                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1108                                 __free_page(pages[i]);
1109                         }
1110                         cache_free_zspage(pool, zspage);
1111                         return NULL;
1112                 }
1113
1114                 inc_zone_page_state(page, NR_ZSPAGES);
1115                 pages[i] = page;
1116         }
1117
1118         create_page_chain(class, zspage, pages);
1119         init_zspage(class, zspage);
1120
1121         return zspage;
1122 }
1123
1124 static struct zspage *find_get_zspage(struct size_class *class)
1125 {
1126         int i;
1127         struct zspage *zspage;
1128
1129         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1130                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1131                                 struct zspage, list);
1132                 if (zspage)
1133                         break;
1134         }
1135
1136         return zspage;
1137 }
1138
1139 #ifdef CONFIG_PGTABLE_MAPPING
1140 static inline int __zs_cpu_up(struct mapping_area *area)
1141 {
1142         /*
1143          * Make sure we don't leak memory if a cpu UP notification
1144          * and zs_init() race and both call zs_cpu_up() on the same cpu
1145          */
1146         if (area->vm)
1147                 return 0;
1148         area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1149         if (!area->vm)
1150                 return -ENOMEM;
1151         return 0;
1152 }
1153
1154 static inline void __zs_cpu_down(struct mapping_area *area)
1155 {
1156         if (area->vm)
1157                 free_vm_area(area->vm);
1158         area->vm = NULL;
1159 }
1160
1161 static inline void *__zs_map_object(struct mapping_area *area,
1162                                 struct page *pages[2], int off, int size)
1163 {
1164         BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1165         area->vm_addr = area->vm->addr;
1166         return area->vm_addr + off;
1167 }
1168
1169 static inline void __zs_unmap_object(struct mapping_area *area,
1170                                 struct page *pages[2], int off, int size)
1171 {
1172         unsigned long addr = (unsigned long)area->vm_addr;
1173
1174         unmap_kernel_range(addr, PAGE_SIZE * 2);
1175 }
1176
1177 #else /* CONFIG_PGTABLE_MAPPING */
1178
1179 static inline int __zs_cpu_up(struct mapping_area *area)
1180 {
1181         /*
1182          * Make sure we don't leak memory if a cpu UP notification
1183          * and zs_init() race and both call zs_cpu_up() on the same cpu
1184          */
1185         if (area->vm_buf)
1186                 return 0;
1187         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1188         if (!area->vm_buf)
1189                 return -ENOMEM;
1190         return 0;
1191 }
1192
1193 static inline void __zs_cpu_down(struct mapping_area *area)
1194 {
1195         kfree(area->vm_buf);
1196         area->vm_buf = NULL;
1197 }
1198
1199 static void *__zs_map_object(struct mapping_area *area,
1200                         struct page *pages[2], int off, int size)
1201 {
1202         int sizes[2];
1203         void *addr;
1204         char *buf = area->vm_buf;
1205
1206         /* disable page faults to match kmap_atomic() return conditions */
1207         pagefault_disable();
1208
1209         /* no read fastpath */
1210         if (area->vm_mm == ZS_MM_WO)
1211                 goto out;
1212
1213         sizes[0] = PAGE_SIZE - off;
1214         sizes[1] = size - sizes[0];
1215
1216         /* copy object to per-cpu buffer */
1217         addr = kmap_atomic(pages[0]);
1218         memcpy(buf, addr + off, sizes[0]);
1219         kunmap_atomic(addr);
1220         addr = kmap_atomic(pages[1]);
1221         memcpy(buf + sizes[0], addr, sizes[1]);
1222         kunmap_atomic(addr);
1223 out:
1224         return area->vm_buf;
1225 }
1226
1227 static void __zs_unmap_object(struct mapping_area *area,
1228                         struct page *pages[2], int off, int size)
1229 {
1230         int sizes[2];
1231         void *addr;
1232         char *buf;
1233
1234         /* no write fastpath */
1235         if (area->vm_mm == ZS_MM_RO)
1236                 goto out;
1237
1238         buf = area->vm_buf;
1239         buf = buf + ZS_HANDLE_SIZE;
1240         size -= ZS_HANDLE_SIZE;
1241         off += ZS_HANDLE_SIZE;
1242
1243         sizes[0] = PAGE_SIZE - off;
1244         sizes[1] = size - sizes[0];
1245
1246         /* copy per-cpu buffer to object */
1247         addr = kmap_atomic(pages[0]);
1248         memcpy(addr + off, buf, sizes[0]);
1249         kunmap_atomic(addr);
1250         addr = kmap_atomic(pages[1]);
1251         memcpy(addr, buf + sizes[0], sizes[1]);
1252         kunmap_atomic(addr);
1253
1254 out:
1255         /* enable page faults to match kunmap_atomic() return conditions */
1256         pagefault_enable();
1257 }
1258
1259 #endif /* CONFIG_PGTABLE_MAPPING */
1260
1261 static int zs_cpu_prepare(unsigned int cpu)
1262 {
1263         struct mapping_area *area;
1264
1265         area = &per_cpu(zs_map_area, cpu);
1266         return __zs_cpu_up(area);
1267 }
1268
1269 static int zs_cpu_dead(unsigned int cpu)
1270 {
1271         struct mapping_area *area;
1272
1273         area = &per_cpu(zs_map_area, cpu);
1274         __zs_cpu_down(area);
1275         return 0;
1276 }
1277
1278 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1279                                         int objs_per_zspage)
1280 {
1281         if (prev->pages_per_zspage == pages_per_zspage &&
1282                 prev->objs_per_zspage == objs_per_zspage)
1283                 return true;
1284
1285         return false;
1286 }
1287
1288 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1289 {
1290         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1291 }
1292
1293 unsigned long zs_get_total_pages(struct zs_pool *pool)
1294 {
1295         return atomic_long_read(&pool->pages_allocated);
1296 }
1297 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1298
1299 /**
1300  * zs_map_object - get address of allocated object from handle.
1301  * @pool: pool from which the object was allocated
1302  * @handle: handle returned from zs_malloc
1303  *
1304  * Before using an object allocated from zs_malloc, it must be mapped using
1305  * this function. When done with the object, it must be unmapped using
1306  * zs_unmap_object.
1307  *
1308  * Only one object can be mapped per cpu at a time. There is no protection
1309  * against nested mappings.
1310  *
1311  * This function returns with preemption and page faults disabled.
1312  */
1313 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1314                         enum zs_mapmode mm)
1315 {
1316         struct zspage *zspage;
1317         struct page *page;
1318         unsigned long obj, off;
1319         unsigned int obj_idx;
1320
1321         unsigned int class_idx;
1322         enum fullness_group fg;
1323         struct size_class *class;
1324         struct mapping_area *area;
1325         struct page *pages[2];
1326         void *ret;
1327
1328         /*
1329          * Because we use per-cpu mapping areas shared among the
1330          * pools/users, we can't allow mapping in interrupt context
1331          * because it can corrupt another users mappings.
1332          */
1333         BUG_ON(in_interrupt());
1334
1335         /* From now on, migration cannot move the object */
1336         pin_tag(handle);
1337
1338         obj = handle_to_obj(handle);
1339         obj_to_location(obj, &page, &obj_idx);
1340         zspage = get_zspage(page);
1341
1342         /* migration cannot move any subpage in this zspage */
1343         migrate_read_lock(zspage);
1344
1345         get_zspage_mapping(zspage, &class_idx, &fg);
1346         class = pool->size_class[class_idx];
1347         off = (class->size * obj_idx) & ~PAGE_MASK;
1348
1349         area = &get_cpu_var(zs_map_area);
1350         area->vm_mm = mm;
1351         if (off + class->size <= PAGE_SIZE) {
1352                 /* this object is contained entirely within a page */
1353                 area->vm_addr = kmap_atomic(page);
1354                 ret = area->vm_addr + off;
1355                 goto out;
1356         }
1357
1358         /* this object spans two pages */
1359         pages[0] = page;
1360         pages[1] = get_next_page(page);
1361         BUG_ON(!pages[1]);
1362
1363         ret = __zs_map_object(area, pages, off, class->size);
1364 out:
1365         if (likely(!PageHugeObject(page)))
1366                 ret += ZS_HANDLE_SIZE;
1367
1368         return ret;
1369 }
1370 EXPORT_SYMBOL_GPL(zs_map_object);
1371
1372 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1373 {
1374         struct zspage *zspage;
1375         struct page *page;
1376         unsigned long obj, off;
1377         unsigned int obj_idx;
1378
1379         unsigned int class_idx;
1380         enum fullness_group fg;
1381         struct size_class *class;
1382         struct mapping_area *area;
1383
1384         obj = handle_to_obj(handle);
1385         obj_to_location(obj, &page, &obj_idx);
1386         zspage = get_zspage(page);
1387         get_zspage_mapping(zspage, &class_idx, &fg);
1388         class = pool->size_class[class_idx];
1389         off = (class->size * obj_idx) & ~PAGE_MASK;
1390
1391         area = this_cpu_ptr(&zs_map_area);
1392         if (off + class->size <= PAGE_SIZE)
1393                 kunmap_atomic(area->vm_addr);
1394         else {
1395                 struct page *pages[2];
1396
1397                 pages[0] = page;
1398                 pages[1] = get_next_page(page);
1399                 BUG_ON(!pages[1]);
1400
1401                 __zs_unmap_object(area, pages, off, class->size);
1402         }
1403         put_cpu_var(zs_map_area);
1404
1405         migrate_read_unlock(zspage);
1406         unpin_tag(handle);
1407 }
1408 EXPORT_SYMBOL_GPL(zs_unmap_object);
1409
1410 static unsigned long obj_malloc(struct size_class *class,
1411                                 struct zspage *zspage, unsigned long handle)
1412 {
1413         int i, nr_page, offset;
1414         unsigned long obj;
1415         struct link_free *link;
1416
1417         struct page *m_page;
1418         unsigned long m_offset;
1419         void *vaddr;
1420
1421         handle |= OBJ_ALLOCATED_TAG;
1422         obj = get_freeobj(zspage);
1423
1424         offset = obj * class->size;
1425         nr_page = offset >> PAGE_SHIFT;
1426         m_offset = offset & ~PAGE_MASK;
1427         m_page = get_first_page(zspage);
1428
1429         for (i = 0; i < nr_page; i++)
1430                 m_page = get_next_page(m_page);
1431
1432         vaddr = kmap_atomic(m_page);
1433         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1434         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1435         if (likely(!PageHugeObject(m_page)))
1436                 /* record handle in the header of allocated chunk */
1437                 link->handle = handle;
1438         else
1439                 /* record handle to page->index */
1440                 zspage->first_page->index = handle;
1441
1442         kunmap_atomic(vaddr);
1443         mod_zspage_inuse(zspage, 1);
1444         zs_stat_inc(class, OBJ_USED, 1);
1445
1446         obj = location_to_obj(m_page, obj);
1447
1448         return obj;
1449 }
1450
1451
1452 /**
1453  * zs_malloc - Allocate block of given size from pool.
1454  * @pool: pool to allocate from
1455  * @size: size of block to allocate
1456  * @gfp: gfp flags when allocating object
1457  *
1458  * On success, handle to the allocated object is returned,
1459  * otherwise 0.
1460  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1461  */
1462 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1463 {
1464         unsigned long handle, obj;
1465         struct size_class *class;
1466         enum fullness_group newfg;
1467         struct zspage *zspage;
1468
1469         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1470                 return 0;
1471
1472         handle = cache_alloc_handle(pool, gfp);
1473         if (!handle)
1474                 return 0;
1475
1476         /* extra space in chunk to keep the handle */
1477         size += ZS_HANDLE_SIZE;
1478         class = pool->size_class[get_size_class_index(size)];
1479
1480         spin_lock(&class->lock);
1481         zspage = find_get_zspage(class);
1482         if (likely(zspage)) {
1483                 obj = obj_malloc(class, zspage, handle);
1484                 /* Now move the zspage to another fullness group, if required */
1485                 fix_fullness_group(class, zspage);
1486                 record_obj(handle, obj);
1487                 spin_unlock(&class->lock);
1488
1489                 return handle;
1490         }
1491
1492         spin_unlock(&class->lock);
1493
1494         zspage = alloc_zspage(pool, class, gfp);
1495         if (!zspage) {
1496                 cache_free_handle(pool, handle);
1497                 return 0;
1498         }
1499
1500         spin_lock(&class->lock);
1501         obj = obj_malloc(class, zspage, handle);
1502         newfg = get_fullness_group(class, zspage);
1503         insert_zspage(class, zspage, newfg);
1504         set_zspage_mapping(zspage, class->index, newfg);
1505         record_obj(handle, obj);
1506         atomic_long_add(class->pages_per_zspage,
1507                                 &pool->pages_allocated);
1508         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1509
1510         /* We completely set up zspage so mark them as movable */
1511         SetZsPageMovable(pool, zspage);
1512         spin_unlock(&class->lock);
1513
1514         return handle;
1515 }
1516 EXPORT_SYMBOL_GPL(zs_malloc);
1517
1518 static void obj_free(struct size_class *class, unsigned long obj)
1519 {
1520         struct link_free *link;
1521         struct zspage *zspage;
1522         struct page *f_page;
1523         unsigned long f_offset;
1524         unsigned int f_objidx;
1525         void *vaddr;
1526
1527         obj &= ~OBJ_ALLOCATED_TAG;
1528         obj_to_location(obj, &f_page, &f_objidx);
1529         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1530         zspage = get_zspage(f_page);
1531
1532         vaddr = kmap_atomic(f_page);
1533
1534         /* Insert this object in containing zspage's freelist */
1535         link = (struct link_free *)(vaddr + f_offset);
1536         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1537         kunmap_atomic(vaddr);
1538         set_freeobj(zspage, f_objidx);
1539         mod_zspage_inuse(zspage, -1);
1540         zs_stat_dec(class, OBJ_USED, 1);
1541 }
1542
1543 void zs_free(struct zs_pool *pool, unsigned long handle)
1544 {
1545         struct zspage *zspage;
1546         struct page *f_page;
1547         unsigned long obj;
1548         unsigned int f_objidx;
1549         int class_idx;
1550         struct size_class *class;
1551         enum fullness_group fullness;
1552         bool isolated;
1553
1554         if (unlikely(!handle))
1555                 return;
1556
1557         pin_tag(handle);
1558         obj = handle_to_obj(handle);
1559         obj_to_location(obj, &f_page, &f_objidx);
1560         zspage = get_zspage(f_page);
1561
1562         migrate_read_lock(zspage);
1563
1564         get_zspage_mapping(zspage, &class_idx, &fullness);
1565         class = pool->size_class[class_idx];
1566
1567         spin_lock(&class->lock);
1568         obj_free(class, obj);
1569         fullness = fix_fullness_group(class, zspage);
1570         if (fullness != ZS_EMPTY) {
1571                 migrate_read_unlock(zspage);
1572                 goto out;
1573         }
1574
1575         isolated = is_zspage_isolated(zspage);
1576         migrate_read_unlock(zspage);
1577         /* If zspage is isolated, zs_page_putback will free the zspage */
1578         if (likely(!isolated))
1579                 free_zspage(pool, class, zspage);
1580 out:
1581
1582         spin_unlock(&class->lock);
1583         unpin_tag(handle);
1584         cache_free_handle(pool, handle);
1585 }
1586 EXPORT_SYMBOL_GPL(zs_free);
1587
1588 static void zs_object_copy(struct size_class *class, unsigned long dst,
1589                                 unsigned long src)
1590 {
1591         struct page *s_page, *d_page;
1592         unsigned int s_objidx, d_objidx;
1593         unsigned long s_off, d_off;
1594         void *s_addr, *d_addr;
1595         int s_size, d_size, size;
1596         int written = 0;
1597
1598         s_size = d_size = class->size;
1599
1600         obj_to_location(src, &s_page, &s_objidx);
1601         obj_to_location(dst, &d_page, &d_objidx);
1602
1603         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1604         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1605
1606         if (s_off + class->size > PAGE_SIZE)
1607                 s_size = PAGE_SIZE - s_off;
1608
1609         if (d_off + class->size > PAGE_SIZE)
1610                 d_size = PAGE_SIZE - d_off;
1611
1612         s_addr = kmap_atomic(s_page);
1613         d_addr = kmap_atomic(d_page);
1614
1615         while (1) {
1616                 size = min(s_size, d_size);
1617                 memcpy(d_addr + d_off, s_addr + s_off, size);
1618                 written += size;
1619
1620                 if (written == class->size)
1621                         break;
1622
1623                 s_off += size;
1624                 s_size -= size;
1625                 d_off += size;
1626                 d_size -= size;
1627
1628                 if (s_off >= PAGE_SIZE) {
1629                         kunmap_atomic(d_addr);
1630                         kunmap_atomic(s_addr);
1631                         s_page = get_next_page(s_page);
1632                         s_addr = kmap_atomic(s_page);
1633                         d_addr = kmap_atomic(d_page);
1634                         s_size = class->size - written;
1635                         s_off = 0;
1636                 }
1637
1638                 if (d_off >= PAGE_SIZE) {
1639                         kunmap_atomic(d_addr);
1640                         d_page = get_next_page(d_page);
1641                         d_addr = kmap_atomic(d_page);
1642                         d_size = class->size - written;
1643                         d_off = 0;
1644                 }
1645         }
1646
1647         kunmap_atomic(d_addr);
1648         kunmap_atomic(s_addr);
1649 }
1650
1651 /*
1652  * Find alloced object in zspage from index object and
1653  * return handle.
1654  */
1655 static unsigned long find_alloced_obj(struct size_class *class,
1656                                         struct page *page, int *obj_idx)
1657 {
1658         unsigned long head;
1659         int offset = 0;
1660         int index = *obj_idx;
1661         unsigned long handle = 0;
1662         void *addr = kmap_atomic(page);
1663
1664         offset = get_first_obj_offset(page);
1665         offset += class->size * index;
1666
1667         while (offset < PAGE_SIZE) {
1668                 head = obj_to_head(page, addr + offset);
1669                 if (head & OBJ_ALLOCATED_TAG) {
1670                         handle = head & ~OBJ_ALLOCATED_TAG;
1671                         if (trypin_tag(handle))
1672                                 break;
1673                         handle = 0;
1674                 }
1675
1676                 offset += class->size;
1677                 index++;
1678         }
1679
1680         kunmap_atomic(addr);
1681
1682         *obj_idx = index;
1683
1684         return handle;
1685 }
1686
1687 struct zs_compact_control {
1688         /* Source spage for migration which could be a subpage of zspage */
1689         struct page *s_page;
1690         /* Destination page for migration which should be a first page
1691          * of zspage. */
1692         struct page *d_page;
1693          /* Starting object index within @s_page which used for live object
1694           * in the subpage. */
1695         int obj_idx;
1696 };
1697
1698 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1699                                 struct zs_compact_control *cc)
1700 {
1701         unsigned long used_obj, free_obj;
1702         unsigned long handle;
1703         struct page *s_page = cc->s_page;
1704         struct page *d_page = cc->d_page;
1705         int obj_idx = cc->obj_idx;
1706         int ret = 0;
1707
1708         while (1) {
1709                 handle = find_alloced_obj(class, s_page, &obj_idx);
1710                 if (!handle) {
1711                         s_page = get_next_page(s_page);
1712                         if (!s_page)
1713                                 break;
1714                         obj_idx = 0;
1715                         continue;
1716                 }
1717
1718                 /* Stop if there is no more space */
1719                 if (zspage_full(class, get_zspage(d_page))) {
1720                         unpin_tag(handle);
1721                         ret = -ENOMEM;
1722                         break;
1723                 }
1724
1725                 used_obj = handle_to_obj(handle);
1726                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1727                 zs_object_copy(class, free_obj, used_obj);
1728                 obj_idx++;
1729                 /*
1730                  * record_obj updates handle's value to free_obj and it will
1731                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1732                  * breaks synchronization using pin_tag(e,g, zs_free) so
1733                  * let's keep the lock bit.
1734                  */
1735                 free_obj |= BIT(HANDLE_PIN_BIT);
1736                 record_obj(handle, free_obj);
1737                 unpin_tag(handle);
1738                 obj_free(class, used_obj);
1739         }
1740
1741         /* Remember last position in this iteration */
1742         cc->s_page = s_page;
1743         cc->obj_idx = obj_idx;
1744
1745         return ret;
1746 }
1747
1748 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1749 {
1750         int i;
1751         struct zspage *zspage;
1752         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1753
1754         if (!source) {
1755                 fg[0] = ZS_ALMOST_FULL;
1756                 fg[1] = ZS_ALMOST_EMPTY;
1757         }
1758
1759         for (i = 0; i < 2; i++) {
1760                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1761                                                         struct zspage, list);
1762                 if (zspage) {
1763                         VM_BUG_ON(is_zspage_isolated(zspage));
1764                         remove_zspage(class, zspage, fg[i]);
1765                         return zspage;
1766                 }
1767         }
1768
1769         return zspage;
1770 }
1771
1772 /*
1773  * putback_zspage - add @zspage into right class's fullness list
1774  * @class: destination class
1775  * @zspage: target page
1776  *
1777  * Return @zspage's fullness_group
1778  */
1779 static enum fullness_group putback_zspage(struct size_class *class,
1780                         struct zspage *zspage)
1781 {
1782         enum fullness_group fullness;
1783
1784         VM_BUG_ON(is_zspage_isolated(zspage));
1785
1786         fullness = get_fullness_group(class, zspage);
1787         insert_zspage(class, zspage, fullness);
1788         set_zspage_mapping(zspage, class->index, fullness);
1789
1790         return fullness;
1791 }
1792
1793 #ifdef CONFIG_COMPACTION
1794 static struct dentry *zs_mount(struct file_system_type *fs_type,
1795                                 int flags, const char *dev_name, void *data)
1796 {
1797         static const struct dentry_operations ops = {
1798                 .d_dname = simple_dname,
1799         };
1800
1801         return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1802 }
1803
1804 static struct file_system_type zsmalloc_fs = {
1805         .name           = "zsmalloc",
1806         .mount          = zs_mount,
1807         .kill_sb        = kill_anon_super,
1808 };
1809
1810 static int zsmalloc_mount(void)
1811 {
1812         int ret = 0;
1813
1814         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1815         if (IS_ERR(zsmalloc_mnt))
1816                 ret = PTR_ERR(zsmalloc_mnt);
1817
1818         return ret;
1819 }
1820
1821 static void zsmalloc_unmount(void)
1822 {
1823         kern_unmount(zsmalloc_mnt);
1824 }
1825
1826 static void migrate_lock_init(struct zspage *zspage)
1827 {
1828         rwlock_init(&zspage->lock);
1829 }
1830
1831 static void migrate_read_lock(struct zspage *zspage)
1832 {
1833         read_lock(&zspage->lock);
1834 }
1835
1836 static void migrate_read_unlock(struct zspage *zspage)
1837 {
1838         read_unlock(&zspage->lock);
1839 }
1840
1841 static void migrate_write_lock(struct zspage *zspage)
1842 {
1843         write_lock(&zspage->lock);
1844 }
1845
1846 static void migrate_write_unlock(struct zspage *zspage)
1847 {
1848         write_unlock(&zspage->lock);
1849 }
1850
1851 /* Number of isolated subpage for *page migration* in this zspage */
1852 static void inc_zspage_isolation(struct zspage *zspage)
1853 {
1854         zspage->isolated++;
1855 }
1856
1857 static void dec_zspage_isolation(struct zspage *zspage)
1858 {
1859         zspage->isolated--;
1860 }
1861
1862 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1863                                 struct page *newpage, struct page *oldpage)
1864 {
1865         struct page *page;
1866         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1867         int idx = 0;
1868
1869         page = get_first_page(zspage);
1870         do {
1871                 if (page == oldpage)
1872                         pages[idx] = newpage;
1873                 else
1874                         pages[idx] = page;
1875                 idx++;
1876         } while ((page = get_next_page(page)) != NULL);
1877
1878         create_page_chain(class, zspage, pages);
1879         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1880         if (unlikely(PageHugeObject(oldpage)))
1881                 newpage->index = oldpage->index;
1882         __SetPageMovable(newpage, page_mapping(oldpage));
1883 }
1884
1885 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1886 {
1887         struct zs_pool *pool;
1888         struct size_class *class;
1889         int class_idx;
1890         enum fullness_group fullness;
1891         struct zspage *zspage;
1892         struct address_space *mapping;
1893
1894         /*
1895          * Page is locked so zspage couldn't be destroyed. For detail, look at
1896          * lock_zspage in free_zspage.
1897          */
1898         VM_BUG_ON_PAGE(!PageMovable(page), page);
1899         VM_BUG_ON_PAGE(PageIsolated(page), page);
1900
1901         zspage = get_zspage(page);
1902
1903         /*
1904          * Without class lock, fullness could be stale while class_idx is okay
1905          * because class_idx is constant unless page is freed so we should get
1906          * fullness again under class lock.
1907          */
1908         get_zspage_mapping(zspage, &class_idx, &fullness);
1909         mapping = page_mapping(page);
1910         pool = mapping->private_data;
1911         class = pool->size_class[class_idx];
1912
1913         spin_lock(&class->lock);
1914         if (get_zspage_inuse(zspage) == 0) {
1915                 spin_unlock(&class->lock);
1916                 return false;
1917         }
1918
1919         /* zspage is isolated for object migration */
1920         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1921                 spin_unlock(&class->lock);
1922                 return false;
1923         }
1924
1925         /*
1926          * If this is first time isolation for the zspage, isolate zspage from
1927          * size_class to prevent further object allocation from the zspage.
1928          */
1929         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1930                 get_zspage_mapping(zspage, &class_idx, &fullness);
1931                 remove_zspage(class, zspage, fullness);
1932         }
1933
1934         inc_zspage_isolation(zspage);
1935         spin_unlock(&class->lock);
1936
1937         return true;
1938 }
1939
1940 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1941                 struct page *page, enum migrate_mode mode)
1942 {
1943         struct zs_pool *pool;
1944         struct size_class *class;
1945         int class_idx;
1946         enum fullness_group fullness;
1947         struct zspage *zspage;
1948         struct page *dummy;
1949         void *s_addr, *d_addr, *addr;
1950         int offset, pos;
1951         unsigned long handle, head;
1952         unsigned long old_obj, new_obj;
1953         unsigned int obj_idx;
1954         int ret = -EAGAIN;
1955
1956         /*
1957          * We cannot support the _NO_COPY case here, because copy needs to
1958          * happen under the zs lock, which does not work with
1959          * MIGRATE_SYNC_NO_COPY workflow.
1960          */
1961         if (mode == MIGRATE_SYNC_NO_COPY)
1962                 return -EINVAL;
1963
1964         VM_BUG_ON_PAGE(!PageMovable(page), page);
1965         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1966
1967         zspage = get_zspage(page);
1968
1969         /* Concurrent compactor cannot migrate any subpage in zspage */
1970         migrate_write_lock(zspage);
1971         get_zspage_mapping(zspage, &class_idx, &fullness);
1972         pool = mapping->private_data;
1973         class = pool->size_class[class_idx];
1974         offset = get_first_obj_offset(page);
1975
1976         spin_lock(&class->lock);
1977         if (!get_zspage_inuse(zspage)) {
1978                 /*
1979                  * Set "offset" to end of the page so that every loops
1980                  * skips unnecessary object scanning.
1981                  */
1982                 offset = PAGE_SIZE;
1983         }
1984
1985         pos = offset;
1986         s_addr = kmap_atomic(page);
1987         while (pos < PAGE_SIZE) {
1988                 head = obj_to_head(page, s_addr + pos);
1989                 if (head & OBJ_ALLOCATED_TAG) {
1990                         handle = head & ~OBJ_ALLOCATED_TAG;
1991                         if (!trypin_tag(handle))
1992                                 goto unpin_objects;
1993                 }
1994                 pos += class->size;
1995         }
1996
1997         /*
1998          * Here, any user cannot access all objects in the zspage so let's move.
1999          */
2000         d_addr = kmap_atomic(newpage);
2001         memcpy(d_addr, s_addr, PAGE_SIZE);
2002         kunmap_atomic(d_addr);
2003
2004         for (addr = s_addr + offset; addr < s_addr + pos;
2005                                         addr += class->size) {
2006                 head = obj_to_head(page, addr);
2007                 if (head & OBJ_ALLOCATED_TAG) {
2008                         handle = head & ~OBJ_ALLOCATED_TAG;
2009                         if (!testpin_tag(handle))
2010                                 BUG();
2011
2012                         old_obj = handle_to_obj(handle);
2013                         obj_to_location(old_obj, &dummy, &obj_idx);
2014                         new_obj = (unsigned long)location_to_obj(newpage,
2015                                                                 obj_idx);
2016                         new_obj |= BIT(HANDLE_PIN_BIT);
2017                         record_obj(handle, new_obj);
2018                 }
2019         }
2020
2021         replace_sub_page(class, zspage, newpage, page);
2022         get_page(newpage);
2023
2024         dec_zspage_isolation(zspage);
2025
2026         /*
2027          * Page migration is done so let's putback isolated zspage to
2028          * the list if @page is final isolated subpage in the zspage.
2029          */
2030         if (!is_zspage_isolated(zspage))
2031                 putback_zspage(class, zspage);
2032
2033         reset_page(page);
2034         put_page(page);
2035         page = newpage;
2036
2037         ret = MIGRATEPAGE_SUCCESS;
2038 unpin_objects:
2039         for (addr = s_addr + offset; addr < s_addr + pos;
2040                                                 addr += class->size) {
2041                 head = obj_to_head(page, addr);
2042                 if (head & OBJ_ALLOCATED_TAG) {
2043                         handle = head & ~OBJ_ALLOCATED_TAG;
2044                         if (!testpin_tag(handle))
2045                                 BUG();
2046                         unpin_tag(handle);
2047                 }
2048         }
2049         kunmap_atomic(s_addr);
2050         spin_unlock(&class->lock);
2051         migrate_write_unlock(zspage);
2052
2053         return ret;
2054 }
2055
2056 void zs_page_putback(struct page *page)
2057 {
2058         struct zs_pool *pool;
2059         struct size_class *class;
2060         int class_idx;
2061         enum fullness_group fg;
2062         struct address_space *mapping;
2063         struct zspage *zspage;
2064
2065         VM_BUG_ON_PAGE(!PageMovable(page), page);
2066         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2067
2068         zspage = get_zspage(page);
2069         get_zspage_mapping(zspage, &class_idx, &fg);
2070         mapping = page_mapping(page);
2071         pool = mapping->private_data;
2072         class = pool->size_class[class_idx];
2073
2074         spin_lock(&class->lock);
2075         dec_zspage_isolation(zspage);
2076         if (!is_zspage_isolated(zspage)) {
2077                 fg = putback_zspage(class, zspage);
2078                 /*
2079                  * Due to page_lock, we cannot free zspage immediately
2080                  * so let's defer.
2081                  */
2082                 if (fg == ZS_EMPTY)
2083                         schedule_work(&pool->free_work);
2084         }
2085         spin_unlock(&class->lock);
2086 }
2087
2088 const struct address_space_operations zsmalloc_aops = {
2089         .isolate_page = zs_page_isolate,
2090         .migratepage = zs_page_migrate,
2091         .putback_page = zs_page_putback,
2092 };
2093
2094 static int zs_register_migration(struct zs_pool *pool)
2095 {
2096         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2097         if (IS_ERR(pool->inode)) {
2098                 pool->inode = NULL;
2099                 return 1;
2100         }
2101
2102         pool->inode->i_mapping->private_data = pool;
2103         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2104         return 0;
2105 }
2106
2107 static void zs_unregister_migration(struct zs_pool *pool)
2108 {
2109         flush_work(&pool->free_work);
2110         iput(pool->inode);
2111 }
2112
2113 /*
2114  * Caller should hold page_lock of all pages in the zspage
2115  * In here, we cannot use zspage meta data.
2116  */
2117 static void async_free_zspage(struct work_struct *work)
2118 {
2119         int i;
2120         struct size_class *class;
2121         unsigned int class_idx;
2122         enum fullness_group fullness;
2123         struct zspage *zspage, *tmp;
2124         LIST_HEAD(free_pages);
2125         struct zs_pool *pool = container_of(work, struct zs_pool,
2126                                         free_work);
2127
2128         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2129                 class = pool->size_class[i];
2130                 if (class->index != i)
2131                         continue;
2132
2133                 spin_lock(&class->lock);
2134                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2135                 spin_unlock(&class->lock);
2136         }
2137
2138
2139         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2140                 list_del(&zspage->list);
2141                 lock_zspage(zspage);
2142
2143                 get_zspage_mapping(zspage, &class_idx, &fullness);
2144                 VM_BUG_ON(fullness != ZS_EMPTY);
2145                 class = pool->size_class[class_idx];
2146                 spin_lock(&class->lock);
2147                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2148                 spin_unlock(&class->lock);
2149         }
2150 };
2151
2152 static void kick_deferred_free(struct zs_pool *pool)
2153 {
2154         schedule_work(&pool->free_work);
2155 }
2156
2157 static void init_deferred_free(struct zs_pool *pool)
2158 {
2159         INIT_WORK(&pool->free_work, async_free_zspage);
2160 }
2161
2162 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2163 {
2164         struct page *page = get_first_page(zspage);
2165
2166         do {
2167                 WARN_ON(!trylock_page(page));
2168                 __SetPageMovable(page, pool->inode->i_mapping);
2169                 unlock_page(page);
2170         } while ((page = get_next_page(page)) != NULL);
2171 }
2172 #endif
2173
2174 /*
2175  *
2176  * Based on the number of unused allocated objects calculate
2177  * and return the number of pages that we can free.
2178  */
2179 static unsigned long zs_can_compact(struct size_class *class)
2180 {
2181         unsigned long obj_wasted;
2182         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2183         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2184
2185         if (obj_allocated <= obj_used)
2186                 return 0;
2187
2188         obj_wasted = obj_allocated - obj_used;
2189         obj_wasted /= class->objs_per_zspage;
2190
2191         return obj_wasted * class->pages_per_zspage;
2192 }
2193
2194 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2195 {
2196         struct zs_compact_control cc;
2197         struct zspage *src_zspage;
2198         struct zspage *dst_zspage = NULL;
2199
2200         spin_lock(&class->lock);
2201         while ((src_zspage = isolate_zspage(class, true))) {
2202
2203                 if (!zs_can_compact(class))
2204                         break;
2205
2206                 cc.obj_idx = 0;
2207                 cc.s_page = get_first_page(src_zspage);
2208
2209                 while ((dst_zspage = isolate_zspage(class, false))) {
2210                         cc.d_page = get_first_page(dst_zspage);
2211                         /*
2212                          * If there is no more space in dst_page, resched
2213                          * and see if anyone had allocated another zspage.
2214                          */
2215                         if (!migrate_zspage(pool, class, &cc))
2216                                 break;
2217
2218                         putback_zspage(class, dst_zspage);
2219                 }
2220
2221                 /* Stop if we couldn't find slot */
2222                 if (dst_zspage == NULL)
2223                         break;
2224
2225                 putback_zspage(class, dst_zspage);
2226                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2227                         free_zspage(pool, class, src_zspage);
2228                         pool->stats.pages_compacted += class->pages_per_zspage;
2229                 }
2230                 spin_unlock(&class->lock);
2231                 cond_resched();
2232                 spin_lock(&class->lock);
2233         }
2234
2235         if (src_zspage)
2236                 putback_zspage(class, src_zspage);
2237
2238         spin_unlock(&class->lock);
2239 }
2240
2241 unsigned long zs_compact(struct zs_pool *pool)
2242 {
2243         int i;
2244         struct size_class *class;
2245
2246         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2247                 class = pool->size_class[i];
2248                 if (!class)
2249                         continue;
2250                 if (class->index != i)
2251                         continue;
2252                 __zs_compact(pool, class);
2253         }
2254
2255         return pool->stats.pages_compacted;
2256 }
2257 EXPORT_SYMBOL_GPL(zs_compact);
2258
2259 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2260 {
2261         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2262 }
2263 EXPORT_SYMBOL_GPL(zs_pool_stats);
2264
2265 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2266                 struct shrink_control *sc)
2267 {
2268         unsigned long pages_freed;
2269         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2270                         shrinker);
2271
2272         pages_freed = pool->stats.pages_compacted;
2273         /*
2274          * Compact classes and calculate compaction delta.
2275          * Can run concurrently with a manually triggered
2276          * (by user) compaction.
2277          */
2278         pages_freed = zs_compact(pool) - pages_freed;
2279
2280         return pages_freed ? pages_freed : SHRINK_STOP;
2281 }
2282
2283 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2284                 struct shrink_control *sc)
2285 {
2286         int i;
2287         struct size_class *class;
2288         unsigned long pages_to_free = 0;
2289         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2290                         shrinker);
2291
2292         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2293                 class = pool->size_class[i];
2294                 if (!class)
2295                         continue;
2296                 if (class->index != i)
2297                         continue;
2298
2299                 pages_to_free += zs_can_compact(class);
2300         }
2301
2302         return pages_to_free;
2303 }
2304
2305 static void zs_unregister_shrinker(struct zs_pool *pool)
2306 {
2307         unregister_shrinker(&pool->shrinker);
2308 }
2309
2310 static int zs_register_shrinker(struct zs_pool *pool)
2311 {
2312         pool->shrinker.scan_objects = zs_shrinker_scan;
2313         pool->shrinker.count_objects = zs_shrinker_count;
2314         pool->shrinker.batch = 0;
2315         pool->shrinker.seeks = DEFAULT_SEEKS;
2316
2317         return register_shrinker(&pool->shrinker);
2318 }
2319
2320 /**
2321  * zs_create_pool - Creates an allocation pool to work from.
2322  * @name: pool name to be created
2323  *
2324  * This function must be called before anything when using
2325  * the zsmalloc allocator.
2326  *
2327  * On success, a pointer to the newly created pool is returned,
2328  * otherwise NULL.
2329  */
2330 struct zs_pool *zs_create_pool(const char *name)
2331 {
2332         int i;
2333         struct zs_pool *pool;
2334         struct size_class *prev_class = NULL;
2335
2336         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2337         if (!pool)
2338                 return NULL;
2339
2340         init_deferred_free(pool);
2341
2342         pool->name = kstrdup(name, GFP_KERNEL);
2343         if (!pool->name)
2344                 goto err;
2345
2346         if (create_cache(pool))
2347                 goto err;
2348
2349         /*
2350          * Iterate reversely, because, size of size_class that we want to use
2351          * for merging should be larger or equal to current size.
2352          */
2353         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2354                 int size;
2355                 int pages_per_zspage;
2356                 int objs_per_zspage;
2357                 struct size_class *class;
2358                 int fullness = 0;
2359
2360                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2361                 if (size > ZS_MAX_ALLOC_SIZE)
2362                         size = ZS_MAX_ALLOC_SIZE;
2363                 pages_per_zspage = get_pages_per_zspage(size);
2364                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2365
2366                 /*
2367                  * size_class is used for normal zsmalloc operation such
2368                  * as alloc/free for that size. Although it is natural that we
2369                  * have one size_class for each size, there is a chance that we
2370                  * can get more memory utilization if we use one size_class for
2371                  * many different sizes whose size_class have same
2372                  * characteristics. So, we makes size_class point to
2373                  * previous size_class if possible.
2374                  */
2375                 if (prev_class) {
2376                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2377                                 pool->size_class[i] = prev_class;
2378                                 continue;
2379                         }
2380                 }
2381
2382                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2383                 if (!class)
2384                         goto err;
2385
2386                 class->size = size;
2387                 class->index = i;
2388                 class->pages_per_zspage = pages_per_zspage;
2389                 class->objs_per_zspage = objs_per_zspage;
2390                 spin_lock_init(&class->lock);
2391                 pool->size_class[i] = class;
2392                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2393                                                         fullness++)
2394                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2395
2396                 prev_class = class;
2397         }
2398
2399         /* debug only, don't abort if it fails */
2400         zs_pool_stat_create(pool, name);
2401
2402         if (zs_register_migration(pool))
2403                 goto err;
2404
2405         /*
2406          * Not critical since shrinker is only used to trigger internal
2407          * defragmentation of the pool which is pretty optional thing.  If
2408          * registration fails we still can use the pool normally and user can
2409          * trigger compaction manually. Thus, ignore return code.
2410          */
2411         zs_register_shrinker(pool);
2412
2413         return pool;
2414
2415 err:
2416         zs_destroy_pool(pool);
2417         return NULL;
2418 }
2419 EXPORT_SYMBOL_GPL(zs_create_pool);
2420
2421 void zs_destroy_pool(struct zs_pool *pool)
2422 {
2423         int i;
2424
2425         zs_unregister_shrinker(pool);
2426         zs_unregister_migration(pool);
2427         zs_pool_stat_destroy(pool);
2428
2429         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2430                 int fg;
2431                 struct size_class *class = pool->size_class[i];
2432
2433                 if (!class)
2434                         continue;
2435
2436                 if (class->index != i)
2437                         continue;
2438
2439                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2440                         if (!list_empty(&class->fullness_list[fg])) {
2441                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2442                                         class->size, fg);
2443                         }
2444                 }
2445                 kfree(class);
2446         }
2447
2448         destroy_cache(pool);
2449         kfree(pool->name);
2450         kfree(pool);
2451 }
2452 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2453
2454 static int __init zs_init(void)
2455 {
2456         int ret;
2457
2458         ret = zsmalloc_mount();
2459         if (ret)
2460                 goto out;
2461
2462         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2463                                 zs_cpu_prepare, zs_cpu_dead);
2464         if (ret)
2465                 goto hp_setup_fail;
2466
2467 #ifdef CONFIG_ZPOOL
2468         zpool_register_driver(&zs_zpool_driver);
2469 #endif
2470
2471         zs_stat_init();
2472
2473         return 0;
2474
2475 hp_setup_fail:
2476         zsmalloc_unmount();
2477 out:
2478         return ret;
2479 }
2480
2481 static void __exit zs_exit(void)
2482 {
2483 #ifdef CONFIG_ZPOOL
2484         zpool_unregister_driver(&zs_zpool_driver);
2485 #endif
2486         zsmalloc_unmount();
2487         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2488
2489         zs_stat_exit();
2490 }
2491
2492 module_init(zs_init);
2493 module_exit(zs_exit);
2494
2495 MODULE_LICENSE("Dual BSD/GPL");
2496 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");