]> asedeno.scripts.mit.edu Git - linux.git/blob - net/bluetooth/hci_core.c
Merge tag 'regulator-fix-v5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <linux/property.h>
34 #include <asm/unaligned.h>
35
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 #include <net/bluetooth/l2cap.h>
39 #include <net/bluetooth/mgmt.h>
40
41 #include "hci_request.h"
42 #include "hci_debugfs.h"
43 #include "smp.h"
44 #include "leds.h"
45
46 static void hci_rx_work(struct work_struct *work);
47 static void hci_cmd_work(struct work_struct *work);
48 static void hci_tx_work(struct work_struct *work);
49
50 /* HCI device list */
51 LIST_HEAD(hci_dev_list);
52 DEFINE_RWLOCK(hci_dev_list_lock);
53
54 /* HCI callback list */
55 LIST_HEAD(hci_cb_list);
56 DEFINE_MUTEX(hci_cb_list_lock);
57
58 /* HCI ID Numbering */
59 static DEFINE_IDA(hci_index_ida);
60
61 /* ---- HCI debugfs entries ---- */
62
63 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
64                              size_t count, loff_t *ppos)
65 {
66         struct hci_dev *hdev = file->private_data;
67         char buf[3];
68
69         buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
70         buf[1] = '\n';
71         buf[2] = '\0';
72         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
73 }
74
75 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
76                               size_t count, loff_t *ppos)
77 {
78         struct hci_dev *hdev = file->private_data;
79         struct sk_buff *skb;
80         bool enable;
81         int err;
82
83         if (!test_bit(HCI_UP, &hdev->flags))
84                 return -ENETDOWN;
85
86         err = kstrtobool_from_user(user_buf, count, &enable);
87         if (err)
88                 return err;
89
90         if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
91                 return -EALREADY;
92
93         hci_req_sync_lock(hdev);
94         if (enable)
95                 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
96                                      HCI_CMD_TIMEOUT);
97         else
98                 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
99                                      HCI_CMD_TIMEOUT);
100         hci_req_sync_unlock(hdev);
101
102         if (IS_ERR(skb))
103                 return PTR_ERR(skb);
104
105         kfree_skb(skb);
106
107         hci_dev_change_flag(hdev, HCI_DUT_MODE);
108
109         return count;
110 }
111
112 static const struct file_operations dut_mode_fops = {
113         .open           = simple_open,
114         .read           = dut_mode_read,
115         .write          = dut_mode_write,
116         .llseek         = default_llseek,
117 };
118
119 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
120                                 size_t count, loff_t *ppos)
121 {
122         struct hci_dev *hdev = file->private_data;
123         char buf[3];
124
125         buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
126         buf[1] = '\n';
127         buf[2] = '\0';
128         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
129 }
130
131 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
132                                  size_t count, loff_t *ppos)
133 {
134         struct hci_dev *hdev = file->private_data;
135         bool enable;
136         int err;
137
138         err = kstrtobool_from_user(user_buf, count, &enable);
139         if (err)
140                 return err;
141
142         /* When the diagnostic flags are not persistent and the transport
143          * is not active or in user channel operation, then there is no need
144          * for the vendor callback. Instead just store the desired value and
145          * the setting will be programmed when the controller gets powered on.
146          */
147         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
148             (!test_bit(HCI_RUNNING, &hdev->flags) ||
149              hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
150                 goto done;
151
152         hci_req_sync_lock(hdev);
153         err = hdev->set_diag(hdev, enable);
154         hci_req_sync_unlock(hdev);
155
156         if (err < 0)
157                 return err;
158
159 done:
160         if (enable)
161                 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
162         else
163                 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
164
165         return count;
166 }
167
168 static const struct file_operations vendor_diag_fops = {
169         .open           = simple_open,
170         .read           = vendor_diag_read,
171         .write          = vendor_diag_write,
172         .llseek         = default_llseek,
173 };
174
175 static void hci_debugfs_create_basic(struct hci_dev *hdev)
176 {
177         debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
178                             &dut_mode_fops);
179
180         if (hdev->set_diag)
181                 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
182                                     &vendor_diag_fops);
183 }
184
185 static int hci_reset_req(struct hci_request *req, unsigned long opt)
186 {
187         BT_DBG("%s %ld", req->hdev->name, opt);
188
189         /* Reset device */
190         set_bit(HCI_RESET, &req->hdev->flags);
191         hci_req_add(req, HCI_OP_RESET, 0, NULL);
192         return 0;
193 }
194
195 static void bredr_init(struct hci_request *req)
196 {
197         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
198
199         /* Read Local Supported Features */
200         hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
201
202         /* Read Local Version */
203         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
204
205         /* Read BD Address */
206         hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
207 }
208
209 static void amp_init1(struct hci_request *req)
210 {
211         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
212
213         /* Read Local Version */
214         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
215
216         /* Read Local Supported Commands */
217         hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
218
219         /* Read Local AMP Info */
220         hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
221
222         /* Read Data Blk size */
223         hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
224
225         /* Read Flow Control Mode */
226         hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
227
228         /* Read Location Data */
229         hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
230 }
231
232 static int amp_init2(struct hci_request *req)
233 {
234         /* Read Local Supported Features. Not all AMP controllers
235          * support this so it's placed conditionally in the second
236          * stage init.
237          */
238         if (req->hdev->commands[14] & 0x20)
239                 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
240
241         return 0;
242 }
243
244 static int hci_init1_req(struct hci_request *req, unsigned long opt)
245 {
246         struct hci_dev *hdev = req->hdev;
247
248         BT_DBG("%s %ld", hdev->name, opt);
249
250         /* Reset */
251         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
252                 hci_reset_req(req, 0);
253
254         switch (hdev->dev_type) {
255         case HCI_PRIMARY:
256                 bredr_init(req);
257                 break;
258         case HCI_AMP:
259                 amp_init1(req);
260                 break;
261         default:
262                 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
263                 break;
264         }
265
266         return 0;
267 }
268
269 static void bredr_setup(struct hci_request *req)
270 {
271         __le16 param;
272         __u8 flt_type;
273
274         /* Read Buffer Size (ACL mtu, max pkt, etc.) */
275         hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
276
277         /* Read Class of Device */
278         hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
279
280         /* Read Local Name */
281         hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
282
283         /* Read Voice Setting */
284         hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
285
286         /* Read Number of Supported IAC */
287         hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
288
289         /* Read Current IAC LAP */
290         hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
291
292         /* Clear Event Filters */
293         flt_type = HCI_FLT_CLEAR_ALL;
294         hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
295
296         /* Connection accept timeout ~20 secs */
297         param = cpu_to_le16(0x7d00);
298         hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
299 }
300
301 static void le_setup(struct hci_request *req)
302 {
303         struct hci_dev *hdev = req->hdev;
304
305         /* Read LE Buffer Size */
306         hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
307
308         /* Read LE Local Supported Features */
309         hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
310
311         /* Read LE Supported States */
312         hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
313
314         /* LE-only controllers have LE implicitly enabled */
315         if (!lmp_bredr_capable(hdev))
316                 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
317 }
318
319 static void hci_setup_event_mask(struct hci_request *req)
320 {
321         struct hci_dev *hdev = req->hdev;
322
323         /* The second byte is 0xff instead of 0x9f (two reserved bits
324          * disabled) since a Broadcom 1.2 dongle doesn't respond to the
325          * command otherwise.
326          */
327         u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
328
329         /* CSR 1.1 dongles does not accept any bitfield so don't try to set
330          * any event mask for pre 1.2 devices.
331          */
332         if (hdev->hci_ver < BLUETOOTH_VER_1_2)
333                 return;
334
335         if (lmp_bredr_capable(hdev)) {
336                 events[4] |= 0x01; /* Flow Specification Complete */
337         } else {
338                 /* Use a different default for LE-only devices */
339                 memset(events, 0, sizeof(events));
340                 events[1] |= 0x20; /* Command Complete */
341                 events[1] |= 0x40; /* Command Status */
342                 events[1] |= 0x80; /* Hardware Error */
343
344                 /* If the controller supports the Disconnect command, enable
345                  * the corresponding event. In addition enable packet flow
346                  * control related events.
347                  */
348                 if (hdev->commands[0] & 0x20) {
349                         events[0] |= 0x10; /* Disconnection Complete */
350                         events[2] |= 0x04; /* Number of Completed Packets */
351                         events[3] |= 0x02; /* Data Buffer Overflow */
352                 }
353
354                 /* If the controller supports the Read Remote Version
355                  * Information command, enable the corresponding event.
356                  */
357                 if (hdev->commands[2] & 0x80)
358                         events[1] |= 0x08; /* Read Remote Version Information
359                                             * Complete
360                                             */
361
362                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
363                         events[0] |= 0x80; /* Encryption Change */
364                         events[5] |= 0x80; /* Encryption Key Refresh Complete */
365                 }
366         }
367
368         if (lmp_inq_rssi_capable(hdev) ||
369             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
370                 events[4] |= 0x02; /* Inquiry Result with RSSI */
371
372         if (lmp_ext_feat_capable(hdev))
373                 events[4] |= 0x04; /* Read Remote Extended Features Complete */
374
375         if (lmp_esco_capable(hdev)) {
376                 events[5] |= 0x08; /* Synchronous Connection Complete */
377                 events[5] |= 0x10; /* Synchronous Connection Changed */
378         }
379
380         if (lmp_sniffsubr_capable(hdev))
381                 events[5] |= 0x20; /* Sniff Subrating */
382
383         if (lmp_pause_enc_capable(hdev))
384                 events[5] |= 0x80; /* Encryption Key Refresh Complete */
385
386         if (lmp_ext_inq_capable(hdev))
387                 events[5] |= 0x40; /* Extended Inquiry Result */
388
389         if (lmp_no_flush_capable(hdev))
390                 events[7] |= 0x01; /* Enhanced Flush Complete */
391
392         if (lmp_lsto_capable(hdev))
393                 events[6] |= 0x80; /* Link Supervision Timeout Changed */
394
395         if (lmp_ssp_capable(hdev)) {
396                 events[6] |= 0x01;      /* IO Capability Request */
397                 events[6] |= 0x02;      /* IO Capability Response */
398                 events[6] |= 0x04;      /* User Confirmation Request */
399                 events[6] |= 0x08;      /* User Passkey Request */
400                 events[6] |= 0x10;      /* Remote OOB Data Request */
401                 events[6] |= 0x20;      /* Simple Pairing Complete */
402                 events[7] |= 0x04;      /* User Passkey Notification */
403                 events[7] |= 0x08;      /* Keypress Notification */
404                 events[7] |= 0x10;      /* Remote Host Supported
405                                          * Features Notification
406                                          */
407         }
408
409         if (lmp_le_capable(hdev))
410                 events[7] |= 0x20;      /* LE Meta-Event */
411
412         hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
413 }
414
415 static int hci_init2_req(struct hci_request *req, unsigned long opt)
416 {
417         struct hci_dev *hdev = req->hdev;
418
419         if (hdev->dev_type == HCI_AMP)
420                 return amp_init2(req);
421
422         if (lmp_bredr_capable(hdev))
423                 bredr_setup(req);
424         else
425                 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
426
427         if (lmp_le_capable(hdev))
428                 le_setup(req);
429
430         /* All Bluetooth 1.2 and later controllers should support the
431          * HCI command for reading the local supported commands.
432          *
433          * Unfortunately some controllers indicate Bluetooth 1.2 support,
434          * but do not have support for this command. If that is the case,
435          * the driver can quirk the behavior and skip reading the local
436          * supported commands.
437          */
438         if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
439             !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
440                 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
441
442         if (lmp_ssp_capable(hdev)) {
443                 /* When SSP is available, then the host features page
444                  * should also be available as well. However some
445                  * controllers list the max_page as 0 as long as SSP
446                  * has not been enabled. To achieve proper debugging
447                  * output, force the minimum max_page to 1 at least.
448                  */
449                 hdev->max_page = 0x01;
450
451                 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
452                         u8 mode = 0x01;
453
454                         hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
455                                     sizeof(mode), &mode);
456                 } else {
457                         struct hci_cp_write_eir cp;
458
459                         memset(hdev->eir, 0, sizeof(hdev->eir));
460                         memset(&cp, 0, sizeof(cp));
461
462                         hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
463                 }
464         }
465
466         if (lmp_inq_rssi_capable(hdev) ||
467             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
468                 u8 mode;
469
470                 /* If Extended Inquiry Result events are supported, then
471                  * they are clearly preferred over Inquiry Result with RSSI
472                  * events.
473                  */
474                 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
475
476                 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
477         }
478
479         if (lmp_inq_tx_pwr_capable(hdev))
480                 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
481
482         if (lmp_ext_feat_capable(hdev)) {
483                 struct hci_cp_read_local_ext_features cp;
484
485                 cp.page = 0x01;
486                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
487                             sizeof(cp), &cp);
488         }
489
490         if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
491                 u8 enable = 1;
492                 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
493                             &enable);
494         }
495
496         return 0;
497 }
498
499 static void hci_setup_link_policy(struct hci_request *req)
500 {
501         struct hci_dev *hdev = req->hdev;
502         struct hci_cp_write_def_link_policy cp;
503         u16 link_policy = 0;
504
505         if (lmp_rswitch_capable(hdev))
506                 link_policy |= HCI_LP_RSWITCH;
507         if (lmp_hold_capable(hdev))
508                 link_policy |= HCI_LP_HOLD;
509         if (lmp_sniff_capable(hdev))
510                 link_policy |= HCI_LP_SNIFF;
511         if (lmp_park_capable(hdev))
512                 link_policy |= HCI_LP_PARK;
513
514         cp.policy = cpu_to_le16(link_policy);
515         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
516 }
517
518 static void hci_set_le_support(struct hci_request *req)
519 {
520         struct hci_dev *hdev = req->hdev;
521         struct hci_cp_write_le_host_supported cp;
522
523         /* LE-only devices do not support explicit enablement */
524         if (!lmp_bredr_capable(hdev))
525                 return;
526
527         memset(&cp, 0, sizeof(cp));
528
529         if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
530                 cp.le = 0x01;
531                 cp.simul = 0x00;
532         }
533
534         if (cp.le != lmp_host_le_capable(hdev))
535                 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
536                             &cp);
537 }
538
539 static void hci_set_event_mask_page_2(struct hci_request *req)
540 {
541         struct hci_dev *hdev = req->hdev;
542         u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
543         bool changed = false;
544
545         /* If Connectionless Slave Broadcast master role is supported
546          * enable all necessary events for it.
547          */
548         if (lmp_csb_master_capable(hdev)) {
549                 events[1] |= 0x40;      /* Triggered Clock Capture */
550                 events[1] |= 0x80;      /* Synchronization Train Complete */
551                 events[2] |= 0x10;      /* Slave Page Response Timeout */
552                 events[2] |= 0x20;      /* CSB Channel Map Change */
553                 changed = true;
554         }
555
556         /* If Connectionless Slave Broadcast slave role is supported
557          * enable all necessary events for it.
558          */
559         if (lmp_csb_slave_capable(hdev)) {
560                 events[2] |= 0x01;      /* Synchronization Train Received */
561                 events[2] |= 0x02;      /* CSB Receive */
562                 events[2] |= 0x04;      /* CSB Timeout */
563                 events[2] |= 0x08;      /* Truncated Page Complete */
564                 changed = true;
565         }
566
567         /* Enable Authenticated Payload Timeout Expired event if supported */
568         if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
569                 events[2] |= 0x80;
570                 changed = true;
571         }
572
573         /* Some Broadcom based controllers indicate support for Set Event
574          * Mask Page 2 command, but then actually do not support it. Since
575          * the default value is all bits set to zero, the command is only
576          * required if the event mask has to be changed. In case no change
577          * to the event mask is needed, skip this command.
578          */
579         if (changed)
580                 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
581                             sizeof(events), events);
582 }
583
584 static int hci_init3_req(struct hci_request *req, unsigned long opt)
585 {
586         struct hci_dev *hdev = req->hdev;
587         u8 p;
588
589         hci_setup_event_mask(req);
590
591         if (hdev->commands[6] & 0x20 &&
592             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
593                 struct hci_cp_read_stored_link_key cp;
594
595                 bacpy(&cp.bdaddr, BDADDR_ANY);
596                 cp.read_all = 0x01;
597                 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
598         }
599
600         if (hdev->commands[5] & 0x10)
601                 hci_setup_link_policy(req);
602
603         if (hdev->commands[8] & 0x01)
604                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
605
606         /* Some older Broadcom based Bluetooth 1.2 controllers do not
607          * support the Read Page Scan Type command. Check support for
608          * this command in the bit mask of supported commands.
609          */
610         if (hdev->commands[13] & 0x01)
611                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
612
613         if (lmp_le_capable(hdev)) {
614                 u8 events[8];
615
616                 memset(events, 0, sizeof(events));
617
618                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
619                         events[0] |= 0x10;      /* LE Long Term Key Request */
620
621                 /* If controller supports the Connection Parameters Request
622                  * Link Layer Procedure, enable the corresponding event.
623                  */
624                 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
625                         events[0] |= 0x20;      /* LE Remote Connection
626                                                  * Parameter Request
627                                                  */
628
629                 /* If the controller supports the Data Length Extension
630                  * feature, enable the corresponding event.
631                  */
632                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
633                         events[0] |= 0x40;      /* LE Data Length Change */
634
635                 /* If the controller supports Extended Scanner Filter
636                  * Policies, enable the correspondig event.
637                  */
638                 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
639                         events[1] |= 0x04;      /* LE Direct Advertising
640                                                  * Report
641                                                  */
642
643                 /* If the controller supports Channel Selection Algorithm #2
644                  * feature, enable the corresponding event.
645                  */
646                 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
647                         events[2] |= 0x08;      /* LE Channel Selection
648                                                  * Algorithm
649                                                  */
650
651                 /* If the controller supports the LE Set Scan Enable command,
652                  * enable the corresponding advertising report event.
653                  */
654                 if (hdev->commands[26] & 0x08)
655                         events[0] |= 0x02;      /* LE Advertising Report */
656
657                 /* If the controller supports the LE Create Connection
658                  * command, enable the corresponding event.
659                  */
660                 if (hdev->commands[26] & 0x10)
661                         events[0] |= 0x01;      /* LE Connection Complete */
662
663                 /* If the controller supports the LE Connection Update
664                  * command, enable the corresponding event.
665                  */
666                 if (hdev->commands[27] & 0x04)
667                         events[0] |= 0x04;      /* LE Connection Update
668                                                  * Complete
669                                                  */
670
671                 /* If the controller supports the LE Read Remote Used Features
672                  * command, enable the corresponding event.
673                  */
674                 if (hdev->commands[27] & 0x20)
675                         events[0] |= 0x08;      /* LE Read Remote Used
676                                                  * Features Complete
677                                                  */
678
679                 /* If the controller supports the LE Read Local P-256
680                  * Public Key command, enable the corresponding event.
681                  */
682                 if (hdev->commands[34] & 0x02)
683                         events[0] |= 0x80;      /* LE Read Local P-256
684                                                  * Public Key Complete
685                                                  */
686
687                 /* If the controller supports the LE Generate DHKey
688                  * command, enable the corresponding event.
689                  */
690                 if (hdev->commands[34] & 0x04)
691                         events[1] |= 0x01;      /* LE Generate DHKey Complete */
692
693                 /* If the controller supports the LE Set Default PHY or
694                  * LE Set PHY commands, enable the corresponding event.
695                  */
696                 if (hdev->commands[35] & (0x20 | 0x40))
697                         events[1] |= 0x08;        /* LE PHY Update Complete */
698
699                 /* If the controller supports LE Set Extended Scan Parameters
700                  * and LE Set Extended Scan Enable commands, enable the
701                  * corresponding event.
702                  */
703                 if (use_ext_scan(hdev))
704                         events[1] |= 0x10;      /* LE Extended Advertising
705                                                  * Report
706                                                  */
707
708                 /* If the controller supports the LE Extended Create Connection
709                  * command, enable the corresponding event.
710                  */
711                 if (use_ext_conn(hdev))
712                         events[1] |= 0x02;      /* LE Enhanced Connection
713                                                  * Complete
714                                                  */
715
716                 /* If the controller supports the LE Extended Advertising
717                  * command, enable the corresponding event.
718                  */
719                 if (ext_adv_capable(hdev))
720                         events[2] |= 0x02;      /* LE Advertising Set
721                                                  * Terminated
722                                                  */
723
724                 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
725                             events);
726
727                 /* Read LE Advertising Channel TX Power */
728                 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
729                         /* HCI TS spec forbids mixing of legacy and extended
730                          * advertising commands wherein READ_ADV_TX_POWER is
731                          * also included. So do not call it if extended adv
732                          * is supported otherwise controller will return
733                          * COMMAND_DISALLOWED for extended commands.
734                          */
735                         hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
736                 }
737
738                 if (hdev->commands[26] & 0x40) {
739                         /* Read LE White List Size */
740                         hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
741                                     0, NULL);
742                 }
743
744                 if (hdev->commands[26] & 0x80) {
745                         /* Clear LE White List */
746                         hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
747                 }
748
749                 if (hdev->commands[34] & 0x40) {
750                         /* Read LE Resolving List Size */
751                         hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
752                                     0, NULL);
753                 }
754
755                 if (hdev->commands[34] & 0x20) {
756                         /* Clear LE Resolving List */
757                         hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
758                 }
759
760                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
761                         /* Read LE Maximum Data Length */
762                         hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
763
764                         /* Read LE Suggested Default Data Length */
765                         hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
766                 }
767
768                 if (ext_adv_capable(hdev)) {
769                         /* Read LE Number of Supported Advertising Sets */
770                         hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
771                                     0, NULL);
772                 }
773
774                 hci_set_le_support(req);
775         }
776
777         /* Read features beyond page 1 if available */
778         for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
779                 struct hci_cp_read_local_ext_features cp;
780
781                 cp.page = p;
782                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
783                             sizeof(cp), &cp);
784         }
785
786         return 0;
787 }
788
789 static int hci_init4_req(struct hci_request *req, unsigned long opt)
790 {
791         struct hci_dev *hdev = req->hdev;
792
793         /* Some Broadcom based Bluetooth controllers do not support the
794          * Delete Stored Link Key command. They are clearly indicating its
795          * absence in the bit mask of supported commands.
796          *
797          * Check the supported commands and only if the the command is marked
798          * as supported send it. If not supported assume that the controller
799          * does not have actual support for stored link keys which makes this
800          * command redundant anyway.
801          *
802          * Some controllers indicate that they support handling deleting
803          * stored link keys, but they don't. The quirk lets a driver
804          * just disable this command.
805          */
806         if (hdev->commands[6] & 0x80 &&
807             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
808                 struct hci_cp_delete_stored_link_key cp;
809
810                 bacpy(&cp.bdaddr, BDADDR_ANY);
811                 cp.delete_all = 0x01;
812                 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
813                             sizeof(cp), &cp);
814         }
815
816         /* Set event mask page 2 if the HCI command for it is supported */
817         if (hdev->commands[22] & 0x04)
818                 hci_set_event_mask_page_2(req);
819
820         /* Read local codec list if the HCI command is supported */
821         if (hdev->commands[29] & 0x20)
822                 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
823
824         /* Get MWS transport configuration if the HCI command is supported */
825         if (hdev->commands[30] & 0x08)
826                 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
827
828         /* Check for Synchronization Train support */
829         if (lmp_sync_train_capable(hdev))
830                 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
831
832         /* Enable Secure Connections if supported and configured */
833         if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
834             bredr_sc_enabled(hdev)) {
835                 u8 support = 0x01;
836
837                 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
838                             sizeof(support), &support);
839         }
840
841         /* Set Suggested Default Data Length to maximum if supported */
842         if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
843                 struct hci_cp_le_write_def_data_len cp;
844
845                 cp.tx_len = hdev->le_max_tx_len;
846                 cp.tx_time = hdev->le_max_tx_time;
847                 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
848         }
849
850         /* Set Default PHY parameters if command is supported */
851         if (hdev->commands[35] & 0x20) {
852                 struct hci_cp_le_set_default_phy cp;
853
854                 cp.all_phys = 0x00;
855                 cp.tx_phys = hdev->le_tx_def_phys;
856                 cp.rx_phys = hdev->le_rx_def_phys;
857
858                 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
859         }
860
861         return 0;
862 }
863
864 static int __hci_init(struct hci_dev *hdev)
865 {
866         int err;
867
868         err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
869         if (err < 0)
870                 return err;
871
872         if (hci_dev_test_flag(hdev, HCI_SETUP))
873                 hci_debugfs_create_basic(hdev);
874
875         err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
876         if (err < 0)
877                 return err;
878
879         /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
880          * BR/EDR/LE type controllers. AMP controllers only need the
881          * first two stages of init.
882          */
883         if (hdev->dev_type != HCI_PRIMARY)
884                 return 0;
885
886         err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
887         if (err < 0)
888                 return err;
889
890         err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
891         if (err < 0)
892                 return err;
893
894         /* This function is only called when the controller is actually in
895          * configured state. When the controller is marked as unconfigured,
896          * this initialization procedure is not run.
897          *
898          * It means that it is possible that a controller runs through its
899          * setup phase and then discovers missing settings. If that is the
900          * case, then this function will not be called. It then will only
901          * be called during the config phase.
902          *
903          * So only when in setup phase or config phase, create the debugfs
904          * entries and register the SMP channels.
905          */
906         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
907             !hci_dev_test_flag(hdev, HCI_CONFIG))
908                 return 0;
909
910         hci_debugfs_create_common(hdev);
911
912         if (lmp_bredr_capable(hdev))
913                 hci_debugfs_create_bredr(hdev);
914
915         if (lmp_le_capable(hdev))
916                 hci_debugfs_create_le(hdev);
917
918         return 0;
919 }
920
921 static int hci_init0_req(struct hci_request *req, unsigned long opt)
922 {
923         struct hci_dev *hdev = req->hdev;
924
925         BT_DBG("%s %ld", hdev->name, opt);
926
927         /* Reset */
928         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
929                 hci_reset_req(req, 0);
930
931         /* Read Local Version */
932         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
933
934         /* Read BD Address */
935         if (hdev->set_bdaddr)
936                 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
937
938         return 0;
939 }
940
941 static int __hci_unconf_init(struct hci_dev *hdev)
942 {
943         int err;
944
945         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
946                 return 0;
947
948         err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
949         if (err < 0)
950                 return err;
951
952         if (hci_dev_test_flag(hdev, HCI_SETUP))
953                 hci_debugfs_create_basic(hdev);
954
955         return 0;
956 }
957
958 static int hci_scan_req(struct hci_request *req, unsigned long opt)
959 {
960         __u8 scan = opt;
961
962         BT_DBG("%s %x", req->hdev->name, scan);
963
964         /* Inquiry and Page scans */
965         hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
966         return 0;
967 }
968
969 static int hci_auth_req(struct hci_request *req, unsigned long opt)
970 {
971         __u8 auth = opt;
972
973         BT_DBG("%s %x", req->hdev->name, auth);
974
975         /* Authentication */
976         hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
977         return 0;
978 }
979
980 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
981 {
982         __u8 encrypt = opt;
983
984         BT_DBG("%s %x", req->hdev->name, encrypt);
985
986         /* Encryption */
987         hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
988         return 0;
989 }
990
991 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
992 {
993         __le16 policy = cpu_to_le16(opt);
994
995         BT_DBG("%s %x", req->hdev->name, policy);
996
997         /* Default link policy */
998         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
999         return 0;
1000 }
1001
1002 /* Get HCI device by index.
1003  * Device is held on return. */
1004 struct hci_dev *hci_dev_get(int index)
1005 {
1006         struct hci_dev *hdev = NULL, *d;
1007
1008         BT_DBG("%d", index);
1009
1010         if (index < 0)
1011                 return NULL;
1012
1013         read_lock(&hci_dev_list_lock);
1014         list_for_each_entry(d, &hci_dev_list, list) {
1015                 if (d->id == index) {
1016                         hdev = hci_dev_hold(d);
1017                         break;
1018                 }
1019         }
1020         read_unlock(&hci_dev_list_lock);
1021         return hdev;
1022 }
1023
1024 /* ---- Inquiry support ---- */
1025
1026 bool hci_discovery_active(struct hci_dev *hdev)
1027 {
1028         struct discovery_state *discov = &hdev->discovery;
1029
1030         switch (discov->state) {
1031         case DISCOVERY_FINDING:
1032         case DISCOVERY_RESOLVING:
1033                 return true;
1034
1035         default:
1036                 return false;
1037         }
1038 }
1039
1040 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1041 {
1042         int old_state = hdev->discovery.state;
1043
1044         BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1045
1046         if (old_state == state)
1047                 return;
1048
1049         hdev->discovery.state = state;
1050
1051         switch (state) {
1052         case DISCOVERY_STOPPED:
1053                 hci_update_background_scan(hdev);
1054
1055                 if (old_state != DISCOVERY_STARTING)
1056                         mgmt_discovering(hdev, 0);
1057                 break;
1058         case DISCOVERY_STARTING:
1059                 break;
1060         case DISCOVERY_FINDING:
1061                 mgmt_discovering(hdev, 1);
1062                 break;
1063         case DISCOVERY_RESOLVING:
1064                 break;
1065         case DISCOVERY_STOPPING:
1066                 break;
1067         }
1068 }
1069
1070 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1071 {
1072         struct discovery_state *cache = &hdev->discovery;
1073         struct inquiry_entry *p, *n;
1074
1075         list_for_each_entry_safe(p, n, &cache->all, all) {
1076                 list_del(&p->all);
1077                 kfree(p);
1078         }
1079
1080         INIT_LIST_HEAD(&cache->unknown);
1081         INIT_LIST_HEAD(&cache->resolve);
1082 }
1083
1084 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1085                                                bdaddr_t *bdaddr)
1086 {
1087         struct discovery_state *cache = &hdev->discovery;
1088         struct inquiry_entry *e;
1089
1090         BT_DBG("cache %p, %pMR", cache, bdaddr);
1091
1092         list_for_each_entry(e, &cache->all, all) {
1093                 if (!bacmp(&e->data.bdaddr, bdaddr))
1094                         return e;
1095         }
1096
1097         return NULL;
1098 }
1099
1100 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1101                                                        bdaddr_t *bdaddr)
1102 {
1103         struct discovery_state *cache = &hdev->discovery;
1104         struct inquiry_entry *e;
1105
1106         BT_DBG("cache %p, %pMR", cache, bdaddr);
1107
1108         list_for_each_entry(e, &cache->unknown, list) {
1109                 if (!bacmp(&e->data.bdaddr, bdaddr))
1110                         return e;
1111         }
1112
1113         return NULL;
1114 }
1115
1116 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1117                                                        bdaddr_t *bdaddr,
1118                                                        int state)
1119 {
1120         struct discovery_state *cache = &hdev->discovery;
1121         struct inquiry_entry *e;
1122
1123         BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1124
1125         list_for_each_entry(e, &cache->resolve, list) {
1126                 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1127                         return e;
1128                 if (!bacmp(&e->data.bdaddr, bdaddr))
1129                         return e;
1130         }
1131
1132         return NULL;
1133 }
1134
1135 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1136                                       struct inquiry_entry *ie)
1137 {
1138         struct discovery_state *cache = &hdev->discovery;
1139         struct list_head *pos = &cache->resolve;
1140         struct inquiry_entry *p;
1141
1142         list_del(&ie->list);
1143
1144         list_for_each_entry(p, &cache->resolve, list) {
1145                 if (p->name_state != NAME_PENDING &&
1146                     abs(p->data.rssi) >= abs(ie->data.rssi))
1147                         break;
1148                 pos = &p->list;
1149         }
1150
1151         list_add(&ie->list, pos);
1152 }
1153
1154 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1155                              bool name_known)
1156 {
1157         struct discovery_state *cache = &hdev->discovery;
1158         struct inquiry_entry *ie;
1159         u32 flags = 0;
1160
1161         BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1162
1163         hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1164
1165         if (!data->ssp_mode)
1166                 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1167
1168         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1169         if (ie) {
1170                 if (!ie->data.ssp_mode)
1171                         flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1172
1173                 if (ie->name_state == NAME_NEEDED &&
1174                     data->rssi != ie->data.rssi) {
1175                         ie->data.rssi = data->rssi;
1176                         hci_inquiry_cache_update_resolve(hdev, ie);
1177                 }
1178
1179                 goto update;
1180         }
1181
1182         /* Entry not in the cache. Add new one. */
1183         ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1184         if (!ie) {
1185                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1186                 goto done;
1187         }
1188
1189         list_add(&ie->all, &cache->all);
1190
1191         if (name_known) {
1192                 ie->name_state = NAME_KNOWN;
1193         } else {
1194                 ie->name_state = NAME_NOT_KNOWN;
1195                 list_add(&ie->list, &cache->unknown);
1196         }
1197
1198 update:
1199         if (name_known && ie->name_state != NAME_KNOWN &&
1200             ie->name_state != NAME_PENDING) {
1201                 ie->name_state = NAME_KNOWN;
1202                 list_del(&ie->list);
1203         }
1204
1205         memcpy(&ie->data, data, sizeof(*data));
1206         ie->timestamp = jiffies;
1207         cache->timestamp = jiffies;
1208
1209         if (ie->name_state == NAME_NOT_KNOWN)
1210                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1211
1212 done:
1213         return flags;
1214 }
1215
1216 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1217 {
1218         struct discovery_state *cache = &hdev->discovery;
1219         struct inquiry_info *info = (struct inquiry_info *) buf;
1220         struct inquiry_entry *e;
1221         int copied = 0;
1222
1223         list_for_each_entry(e, &cache->all, all) {
1224                 struct inquiry_data *data = &e->data;
1225
1226                 if (copied >= num)
1227                         break;
1228
1229                 bacpy(&info->bdaddr, &data->bdaddr);
1230                 info->pscan_rep_mode    = data->pscan_rep_mode;
1231                 info->pscan_period_mode = data->pscan_period_mode;
1232                 info->pscan_mode        = data->pscan_mode;
1233                 memcpy(info->dev_class, data->dev_class, 3);
1234                 info->clock_offset      = data->clock_offset;
1235
1236                 info++;
1237                 copied++;
1238         }
1239
1240         BT_DBG("cache %p, copied %d", cache, copied);
1241         return copied;
1242 }
1243
1244 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1245 {
1246         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1247         struct hci_dev *hdev = req->hdev;
1248         struct hci_cp_inquiry cp;
1249
1250         BT_DBG("%s", hdev->name);
1251
1252         if (test_bit(HCI_INQUIRY, &hdev->flags))
1253                 return 0;
1254
1255         /* Start Inquiry */
1256         memcpy(&cp.lap, &ir->lap, 3);
1257         cp.length  = ir->length;
1258         cp.num_rsp = ir->num_rsp;
1259         hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1260
1261         return 0;
1262 }
1263
1264 int hci_inquiry(void __user *arg)
1265 {
1266         __u8 __user *ptr = arg;
1267         struct hci_inquiry_req ir;
1268         struct hci_dev *hdev;
1269         int err = 0, do_inquiry = 0, max_rsp;
1270         long timeo;
1271         __u8 *buf;
1272
1273         if (copy_from_user(&ir, ptr, sizeof(ir)))
1274                 return -EFAULT;
1275
1276         hdev = hci_dev_get(ir.dev_id);
1277         if (!hdev)
1278                 return -ENODEV;
1279
1280         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1281                 err = -EBUSY;
1282                 goto done;
1283         }
1284
1285         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1286                 err = -EOPNOTSUPP;
1287                 goto done;
1288         }
1289
1290         if (hdev->dev_type != HCI_PRIMARY) {
1291                 err = -EOPNOTSUPP;
1292                 goto done;
1293         }
1294
1295         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1296                 err = -EOPNOTSUPP;
1297                 goto done;
1298         }
1299
1300         hci_dev_lock(hdev);
1301         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1302             inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1303                 hci_inquiry_cache_flush(hdev);
1304                 do_inquiry = 1;
1305         }
1306         hci_dev_unlock(hdev);
1307
1308         timeo = ir.length * msecs_to_jiffies(2000);
1309
1310         if (do_inquiry) {
1311                 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1312                                    timeo, NULL);
1313                 if (err < 0)
1314                         goto done;
1315
1316                 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1317                  * cleared). If it is interrupted by a signal, return -EINTR.
1318                  */
1319                 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1320                                 TASK_INTERRUPTIBLE))
1321                         return -EINTR;
1322         }
1323
1324         /* for unlimited number of responses we will use buffer with
1325          * 255 entries
1326          */
1327         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1328
1329         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1330          * copy it to the user space.
1331          */
1332         buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1333         if (!buf) {
1334                 err = -ENOMEM;
1335                 goto done;
1336         }
1337
1338         hci_dev_lock(hdev);
1339         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1340         hci_dev_unlock(hdev);
1341
1342         BT_DBG("num_rsp %d", ir.num_rsp);
1343
1344         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1345                 ptr += sizeof(ir);
1346                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1347                                  ir.num_rsp))
1348                         err = -EFAULT;
1349         } else
1350                 err = -EFAULT;
1351
1352         kfree(buf);
1353
1354 done:
1355         hci_dev_put(hdev);
1356         return err;
1357 }
1358
1359 /**
1360  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1361  *                                     (BD_ADDR) for a HCI device from
1362  *                                     a firmware node property.
1363  * @hdev:       The HCI device
1364  *
1365  * Search the firmware node for 'local-bd-address'.
1366  *
1367  * All-zero BD addresses are rejected, because those could be properties
1368  * that exist in the firmware tables, but were not updated by the firmware. For
1369  * example, the DTS could define 'local-bd-address', with zero BD addresses.
1370  */
1371 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1372 {
1373         struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1374         bdaddr_t ba;
1375         int ret;
1376
1377         ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1378                                             (u8 *)&ba, sizeof(ba));
1379         if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1380                 return;
1381
1382         bacpy(&hdev->public_addr, &ba);
1383 }
1384
1385 static int hci_dev_do_open(struct hci_dev *hdev)
1386 {
1387         int ret = 0;
1388
1389         BT_DBG("%s %p", hdev->name, hdev);
1390
1391         hci_req_sync_lock(hdev);
1392
1393         if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1394                 ret = -ENODEV;
1395                 goto done;
1396         }
1397
1398         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1400                 /* Check for rfkill but allow the HCI setup stage to
1401                  * proceed (which in itself doesn't cause any RF activity).
1402                  */
1403                 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1404                         ret = -ERFKILL;
1405                         goto done;
1406                 }
1407
1408                 /* Check for valid public address or a configured static
1409                  * random adddress, but let the HCI setup proceed to
1410                  * be able to determine if there is a public address
1411                  * or not.
1412                  *
1413                  * In case of user channel usage, it is not important
1414                  * if a public address or static random address is
1415                  * available.
1416                  *
1417                  * This check is only valid for BR/EDR controllers
1418                  * since AMP controllers do not have an address.
1419                  */
1420                 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1421                     hdev->dev_type == HCI_PRIMARY &&
1422                     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1423                     !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1424                         ret = -EADDRNOTAVAIL;
1425                         goto done;
1426                 }
1427         }
1428
1429         if (test_bit(HCI_UP, &hdev->flags)) {
1430                 ret = -EALREADY;
1431                 goto done;
1432         }
1433
1434         if (hdev->open(hdev)) {
1435                 ret = -EIO;
1436                 goto done;
1437         }
1438
1439         set_bit(HCI_RUNNING, &hdev->flags);
1440         hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1441
1442         atomic_set(&hdev->cmd_cnt, 1);
1443         set_bit(HCI_INIT, &hdev->flags);
1444
1445         if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1446             test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1447                 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1448
1449                 if (hdev->setup)
1450                         ret = hdev->setup(hdev);
1451
1452                 if (ret)
1453                         goto setup_failed;
1454
1455                 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1456                         if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1457                                 hci_dev_get_bd_addr_from_property(hdev);
1458
1459                         if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1460                             hdev->set_bdaddr)
1461                                 ret = hdev->set_bdaddr(hdev,
1462                                                        &hdev->public_addr);
1463                 }
1464
1465 setup_failed:
1466                 /* The transport driver can set these quirks before
1467                  * creating the HCI device or in its setup callback.
1468                  *
1469                  * In case any of them is set, the controller has to
1470                  * start up as unconfigured.
1471                  */
1472                 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1473                     test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1474                         hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1475
1476                 /* For an unconfigured controller it is required to
1477                  * read at least the version information provided by
1478                  * the Read Local Version Information command.
1479                  *
1480                  * If the set_bdaddr driver callback is provided, then
1481                  * also the original Bluetooth public device address
1482                  * will be read using the Read BD Address command.
1483                  */
1484                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1485                         ret = __hci_unconf_init(hdev);
1486         }
1487
1488         if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1489                 /* If public address change is configured, ensure that
1490                  * the address gets programmed. If the driver does not
1491                  * support changing the public address, fail the power
1492                  * on procedure.
1493                  */
1494                 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1495                     hdev->set_bdaddr)
1496                         ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1497                 else
1498                         ret = -EADDRNOTAVAIL;
1499         }
1500
1501         if (!ret) {
1502                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1503                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1504                         ret = __hci_init(hdev);
1505                         if (!ret && hdev->post_init)
1506                                 ret = hdev->post_init(hdev);
1507                 }
1508         }
1509
1510         /* If the HCI Reset command is clearing all diagnostic settings,
1511          * then they need to be reprogrammed after the init procedure
1512          * completed.
1513          */
1514         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1515             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1516             hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1517                 ret = hdev->set_diag(hdev, true);
1518
1519         clear_bit(HCI_INIT, &hdev->flags);
1520
1521         if (!ret) {
1522                 hci_dev_hold(hdev);
1523                 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1524                 hci_adv_instances_set_rpa_expired(hdev, true);
1525                 set_bit(HCI_UP, &hdev->flags);
1526                 hci_sock_dev_event(hdev, HCI_DEV_UP);
1527                 hci_leds_update_powered(hdev, true);
1528                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1529                     !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1530                     !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1531                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1532                     hci_dev_test_flag(hdev, HCI_MGMT) &&
1533                     hdev->dev_type == HCI_PRIMARY) {
1534                         ret = __hci_req_hci_power_on(hdev);
1535                         mgmt_power_on(hdev, ret);
1536                 }
1537         } else {
1538                 /* Init failed, cleanup */
1539                 flush_work(&hdev->tx_work);
1540                 flush_work(&hdev->cmd_work);
1541                 flush_work(&hdev->rx_work);
1542
1543                 skb_queue_purge(&hdev->cmd_q);
1544                 skb_queue_purge(&hdev->rx_q);
1545
1546                 if (hdev->flush)
1547                         hdev->flush(hdev);
1548
1549                 if (hdev->sent_cmd) {
1550                         kfree_skb(hdev->sent_cmd);
1551                         hdev->sent_cmd = NULL;
1552                 }
1553
1554                 clear_bit(HCI_RUNNING, &hdev->flags);
1555                 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1556
1557                 hdev->close(hdev);
1558                 hdev->flags &= BIT(HCI_RAW);
1559         }
1560
1561 done:
1562         hci_req_sync_unlock(hdev);
1563         return ret;
1564 }
1565
1566 /* ---- HCI ioctl helpers ---- */
1567
1568 int hci_dev_open(__u16 dev)
1569 {
1570         struct hci_dev *hdev;
1571         int err;
1572
1573         hdev = hci_dev_get(dev);
1574         if (!hdev)
1575                 return -ENODEV;
1576
1577         /* Devices that are marked as unconfigured can only be powered
1578          * up as user channel. Trying to bring them up as normal devices
1579          * will result into a failure. Only user channel operation is
1580          * possible.
1581          *
1582          * When this function is called for a user channel, the flag
1583          * HCI_USER_CHANNEL will be set first before attempting to
1584          * open the device.
1585          */
1586         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1587             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1588                 err = -EOPNOTSUPP;
1589                 goto done;
1590         }
1591
1592         /* We need to ensure that no other power on/off work is pending
1593          * before proceeding to call hci_dev_do_open. This is
1594          * particularly important if the setup procedure has not yet
1595          * completed.
1596          */
1597         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1598                 cancel_delayed_work(&hdev->power_off);
1599
1600         /* After this call it is guaranteed that the setup procedure
1601          * has finished. This means that error conditions like RFKILL
1602          * or no valid public or static random address apply.
1603          */
1604         flush_workqueue(hdev->req_workqueue);
1605
1606         /* For controllers not using the management interface and that
1607          * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1608          * so that pairing works for them. Once the management interface
1609          * is in use this bit will be cleared again and userspace has
1610          * to explicitly enable it.
1611          */
1612         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1613             !hci_dev_test_flag(hdev, HCI_MGMT))
1614                 hci_dev_set_flag(hdev, HCI_BONDABLE);
1615
1616         err = hci_dev_do_open(hdev);
1617
1618 done:
1619         hci_dev_put(hdev);
1620         return err;
1621 }
1622
1623 /* This function requires the caller holds hdev->lock */
1624 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1625 {
1626         struct hci_conn_params *p;
1627
1628         list_for_each_entry(p, &hdev->le_conn_params, list) {
1629                 if (p->conn) {
1630                         hci_conn_drop(p->conn);
1631                         hci_conn_put(p->conn);
1632                         p->conn = NULL;
1633                 }
1634                 list_del_init(&p->action);
1635         }
1636
1637         BT_DBG("All LE pending actions cleared");
1638 }
1639
1640 int hci_dev_do_close(struct hci_dev *hdev)
1641 {
1642         bool auto_off;
1643
1644         BT_DBG("%s %p", hdev->name, hdev);
1645
1646         if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1647             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1648             test_bit(HCI_UP, &hdev->flags)) {
1649                 /* Execute vendor specific shutdown routine */
1650                 if (hdev->shutdown)
1651                         hdev->shutdown(hdev);
1652         }
1653
1654         cancel_delayed_work(&hdev->power_off);
1655
1656         hci_request_cancel_all(hdev);
1657         hci_req_sync_lock(hdev);
1658
1659         if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1660                 cancel_delayed_work_sync(&hdev->cmd_timer);
1661                 hci_req_sync_unlock(hdev);
1662                 return 0;
1663         }
1664
1665         hci_leds_update_powered(hdev, false);
1666
1667         /* Flush RX and TX works */
1668         flush_work(&hdev->tx_work);
1669         flush_work(&hdev->rx_work);
1670
1671         if (hdev->discov_timeout > 0) {
1672                 hdev->discov_timeout = 0;
1673                 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1674                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1675         }
1676
1677         if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1678                 cancel_delayed_work(&hdev->service_cache);
1679
1680         if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1681                 struct adv_info *adv_instance;
1682
1683                 cancel_delayed_work_sync(&hdev->rpa_expired);
1684
1685                 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1686                         cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1687         }
1688
1689         /* Avoid potential lockdep warnings from the *_flush() calls by
1690          * ensuring the workqueue is empty up front.
1691          */
1692         drain_workqueue(hdev->workqueue);
1693
1694         hci_dev_lock(hdev);
1695
1696         hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1697
1698         auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1699
1700         if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1701             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1702             hci_dev_test_flag(hdev, HCI_MGMT))
1703                 __mgmt_power_off(hdev);
1704
1705         hci_inquiry_cache_flush(hdev);
1706         hci_pend_le_actions_clear(hdev);
1707         hci_conn_hash_flush(hdev);
1708         hci_dev_unlock(hdev);
1709
1710         smp_unregister(hdev);
1711
1712         hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1713
1714         if (hdev->flush)
1715                 hdev->flush(hdev);
1716
1717         /* Reset device */
1718         skb_queue_purge(&hdev->cmd_q);
1719         atomic_set(&hdev->cmd_cnt, 1);
1720         if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1721             !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1722                 set_bit(HCI_INIT, &hdev->flags);
1723                 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1724                 clear_bit(HCI_INIT, &hdev->flags);
1725         }
1726
1727         /* flush cmd  work */
1728         flush_work(&hdev->cmd_work);
1729
1730         /* Drop queues */
1731         skb_queue_purge(&hdev->rx_q);
1732         skb_queue_purge(&hdev->cmd_q);
1733         skb_queue_purge(&hdev->raw_q);
1734
1735         /* Drop last sent command */
1736         if (hdev->sent_cmd) {
1737                 cancel_delayed_work_sync(&hdev->cmd_timer);
1738                 kfree_skb(hdev->sent_cmd);
1739                 hdev->sent_cmd = NULL;
1740         }
1741
1742         clear_bit(HCI_RUNNING, &hdev->flags);
1743         hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1744
1745         /* After this point our queues are empty
1746          * and no tasks are scheduled. */
1747         hdev->close(hdev);
1748
1749         /* Clear flags */
1750         hdev->flags &= BIT(HCI_RAW);
1751         hci_dev_clear_volatile_flags(hdev);
1752
1753         /* Controller radio is available but is currently powered down */
1754         hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1755
1756         memset(hdev->eir, 0, sizeof(hdev->eir));
1757         memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1758         bacpy(&hdev->random_addr, BDADDR_ANY);
1759
1760         hci_req_sync_unlock(hdev);
1761
1762         hci_dev_put(hdev);
1763         return 0;
1764 }
1765
1766 int hci_dev_close(__u16 dev)
1767 {
1768         struct hci_dev *hdev;
1769         int err;
1770
1771         hdev = hci_dev_get(dev);
1772         if (!hdev)
1773                 return -ENODEV;
1774
1775         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1776                 err = -EBUSY;
1777                 goto done;
1778         }
1779
1780         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1781                 cancel_delayed_work(&hdev->power_off);
1782
1783         err = hci_dev_do_close(hdev);
1784
1785 done:
1786         hci_dev_put(hdev);
1787         return err;
1788 }
1789
1790 static int hci_dev_do_reset(struct hci_dev *hdev)
1791 {
1792         int ret;
1793
1794         BT_DBG("%s %p", hdev->name, hdev);
1795
1796         hci_req_sync_lock(hdev);
1797
1798         /* Drop queues */
1799         skb_queue_purge(&hdev->rx_q);
1800         skb_queue_purge(&hdev->cmd_q);
1801
1802         /* Avoid potential lockdep warnings from the *_flush() calls by
1803          * ensuring the workqueue is empty up front.
1804          */
1805         drain_workqueue(hdev->workqueue);
1806
1807         hci_dev_lock(hdev);
1808         hci_inquiry_cache_flush(hdev);
1809         hci_conn_hash_flush(hdev);
1810         hci_dev_unlock(hdev);
1811
1812         if (hdev->flush)
1813                 hdev->flush(hdev);
1814
1815         atomic_set(&hdev->cmd_cnt, 1);
1816         hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1817
1818         ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1819
1820         hci_req_sync_unlock(hdev);
1821         return ret;
1822 }
1823
1824 int hci_dev_reset(__u16 dev)
1825 {
1826         struct hci_dev *hdev;
1827         int err;
1828
1829         hdev = hci_dev_get(dev);
1830         if (!hdev)
1831                 return -ENODEV;
1832
1833         if (!test_bit(HCI_UP, &hdev->flags)) {
1834                 err = -ENETDOWN;
1835                 goto done;
1836         }
1837
1838         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1839                 err = -EBUSY;
1840                 goto done;
1841         }
1842
1843         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1844                 err = -EOPNOTSUPP;
1845                 goto done;
1846         }
1847
1848         err = hci_dev_do_reset(hdev);
1849
1850 done:
1851         hci_dev_put(hdev);
1852         return err;
1853 }
1854
1855 int hci_dev_reset_stat(__u16 dev)
1856 {
1857         struct hci_dev *hdev;
1858         int ret = 0;
1859
1860         hdev = hci_dev_get(dev);
1861         if (!hdev)
1862                 return -ENODEV;
1863
1864         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1865                 ret = -EBUSY;
1866                 goto done;
1867         }
1868
1869         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1870                 ret = -EOPNOTSUPP;
1871                 goto done;
1872         }
1873
1874         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1875
1876 done:
1877         hci_dev_put(hdev);
1878         return ret;
1879 }
1880
1881 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1882 {
1883         bool conn_changed, discov_changed;
1884
1885         BT_DBG("%s scan 0x%02x", hdev->name, scan);
1886
1887         if ((scan & SCAN_PAGE))
1888                 conn_changed = !hci_dev_test_and_set_flag(hdev,
1889                                                           HCI_CONNECTABLE);
1890         else
1891                 conn_changed = hci_dev_test_and_clear_flag(hdev,
1892                                                            HCI_CONNECTABLE);
1893
1894         if ((scan & SCAN_INQUIRY)) {
1895                 discov_changed = !hci_dev_test_and_set_flag(hdev,
1896                                                             HCI_DISCOVERABLE);
1897         } else {
1898                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1899                 discov_changed = hci_dev_test_and_clear_flag(hdev,
1900                                                              HCI_DISCOVERABLE);
1901         }
1902
1903         if (!hci_dev_test_flag(hdev, HCI_MGMT))
1904                 return;
1905
1906         if (conn_changed || discov_changed) {
1907                 /* In case this was disabled through mgmt */
1908                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1909
1910                 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1911                         hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1912
1913                 mgmt_new_settings(hdev);
1914         }
1915 }
1916
1917 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1918 {
1919         struct hci_dev *hdev;
1920         struct hci_dev_req dr;
1921         int err = 0;
1922
1923         if (copy_from_user(&dr, arg, sizeof(dr)))
1924                 return -EFAULT;
1925
1926         hdev = hci_dev_get(dr.dev_id);
1927         if (!hdev)
1928                 return -ENODEV;
1929
1930         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1931                 err = -EBUSY;
1932                 goto done;
1933         }
1934
1935         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1936                 err = -EOPNOTSUPP;
1937                 goto done;
1938         }
1939
1940         if (hdev->dev_type != HCI_PRIMARY) {
1941                 err = -EOPNOTSUPP;
1942                 goto done;
1943         }
1944
1945         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1946                 err = -EOPNOTSUPP;
1947                 goto done;
1948         }
1949
1950         switch (cmd) {
1951         case HCISETAUTH:
1952                 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1953                                    HCI_INIT_TIMEOUT, NULL);
1954                 break;
1955
1956         case HCISETENCRYPT:
1957                 if (!lmp_encrypt_capable(hdev)) {
1958                         err = -EOPNOTSUPP;
1959                         break;
1960                 }
1961
1962                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1963                         /* Auth must be enabled first */
1964                         err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1965                                            HCI_INIT_TIMEOUT, NULL);
1966                         if (err)
1967                                 break;
1968                 }
1969
1970                 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1971                                    HCI_INIT_TIMEOUT, NULL);
1972                 break;
1973
1974         case HCISETSCAN:
1975                 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1976                                    HCI_INIT_TIMEOUT, NULL);
1977
1978                 /* Ensure that the connectable and discoverable states
1979                  * get correctly modified as this was a non-mgmt change.
1980                  */
1981                 if (!err)
1982                         hci_update_scan_state(hdev, dr.dev_opt);
1983                 break;
1984
1985         case HCISETLINKPOL:
1986                 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1987                                    HCI_INIT_TIMEOUT, NULL);
1988                 break;
1989
1990         case HCISETLINKMODE:
1991                 hdev->link_mode = ((__u16) dr.dev_opt) &
1992                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
1993                 break;
1994
1995         case HCISETPTYPE:
1996                 if (hdev->pkt_type == (__u16) dr.dev_opt)
1997                         break;
1998
1999                 hdev->pkt_type = (__u16) dr.dev_opt;
2000                 mgmt_phy_configuration_changed(hdev, NULL);
2001                 break;
2002
2003         case HCISETACLMTU:
2004                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2005                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2006                 break;
2007
2008         case HCISETSCOMTU:
2009                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2010                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2011                 break;
2012
2013         default:
2014                 err = -EINVAL;
2015                 break;
2016         }
2017
2018 done:
2019         hci_dev_put(hdev);
2020         return err;
2021 }
2022
2023 int hci_get_dev_list(void __user *arg)
2024 {
2025         struct hci_dev *hdev;
2026         struct hci_dev_list_req *dl;
2027         struct hci_dev_req *dr;
2028         int n = 0, size, err;
2029         __u16 dev_num;
2030
2031         if (get_user(dev_num, (__u16 __user *) arg))
2032                 return -EFAULT;
2033
2034         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2035                 return -EINVAL;
2036
2037         size = sizeof(*dl) + dev_num * sizeof(*dr);
2038
2039         dl = kzalloc(size, GFP_KERNEL);
2040         if (!dl)
2041                 return -ENOMEM;
2042
2043         dr = dl->dev_req;
2044
2045         read_lock(&hci_dev_list_lock);
2046         list_for_each_entry(hdev, &hci_dev_list, list) {
2047                 unsigned long flags = hdev->flags;
2048
2049                 /* When the auto-off is configured it means the transport
2050                  * is running, but in that case still indicate that the
2051                  * device is actually down.
2052                  */
2053                 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2054                         flags &= ~BIT(HCI_UP);
2055
2056                 (dr + n)->dev_id  = hdev->id;
2057                 (dr + n)->dev_opt = flags;
2058
2059                 if (++n >= dev_num)
2060                         break;
2061         }
2062         read_unlock(&hci_dev_list_lock);
2063
2064         dl->dev_num = n;
2065         size = sizeof(*dl) + n * sizeof(*dr);
2066
2067         err = copy_to_user(arg, dl, size);
2068         kfree(dl);
2069
2070         return err ? -EFAULT : 0;
2071 }
2072
2073 int hci_get_dev_info(void __user *arg)
2074 {
2075         struct hci_dev *hdev;
2076         struct hci_dev_info di;
2077         unsigned long flags;
2078         int err = 0;
2079
2080         if (copy_from_user(&di, arg, sizeof(di)))
2081                 return -EFAULT;
2082
2083         hdev = hci_dev_get(di.dev_id);
2084         if (!hdev)
2085                 return -ENODEV;
2086
2087         /* When the auto-off is configured it means the transport
2088          * is running, but in that case still indicate that the
2089          * device is actually down.
2090          */
2091         if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2092                 flags = hdev->flags & ~BIT(HCI_UP);
2093         else
2094                 flags = hdev->flags;
2095
2096         strcpy(di.name, hdev->name);
2097         di.bdaddr   = hdev->bdaddr;
2098         di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2099         di.flags    = flags;
2100         di.pkt_type = hdev->pkt_type;
2101         if (lmp_bredr_capable(hdev)) {
2102                 di.acl_mtu  = hdev->acl_mtu;
2103                 di.acl_pkts = hdev->acl_pkts;
2104                 di.sco_mtu  = hdev->sco_mtu;
2105                 di.sco_pkts = hdev->sco_pkts;
2106         } else {
2107                 di.acl_mtu  = hdev->le_mtu;
2108                 di.acl_pkts = hdev->le_pkts;
2109                 di.sco_mtu  = 0;
2110                 di.sco_pkts = 0;
2111         }
2112         di.link_policy = hdev->link_policy;
2113         di.link_mode   = hdev->link_mode;
2114
2115         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2116         memcpy(&di.features, &hdev->features, sizeof(di.features));
2117
2118         if (copy_to_user(arg, &di, sizeof(di)))
2119                 err = -EFAULT;
2120
2121         hci_dev_put(hdev);
2122
2123         return err;
2124 }
2125
2126 /* ---- Interface to HCI drivers ---- */
2127
2128 static int hci_rfkill_set_block(void *data, bool blocked)
2129 {
2130         struct hci_dev *hdev = data;
2131
2132         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2133
2134         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2135                 return -EBUSY;
2136
2137         if (blocked) {
2138                 hci_dev_set_flag(hdev, HCI_RFKILLED);
2139                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2140                     !hci_dev_test_flag(hdev, HCI_CONFIG))
2141                         hci_dev_do_close(hdev);
2142         } else {
2143                 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2144         }
2145
2146         return 0;
2147 }
2148
2149 static const struct rfkill_ops hci_rfkill_ops = {
2150         .set_block = hci_rfkill_set_block,
2151 };
2152
2153 static void hci_power_on(struct work_struct *work)
2154 {
2155         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2156         int err;
2157
2158         BT_DBG("%s", hdev->name);
2159
2160         if (test_bit(HCI_UP, &hdev->flags) &&
2161             hci_dev_test_flag(hdev, HCI_MGMT) &&
2162             hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2163                 cancel_delayed_work(&hdev->power_off);
2164                 hci_req_sync_lock(hdev);
2165                 err = __hci_req_hci_power_on(hdev);
2166                 hci_req_sync_unlock(hdev);
2167                 mgmt_power_on(hdev, err);
2168                 return;
2169         }
2170
2171         err = hci_dev_do_open(hdev);
2172         if (err < 0) {
2173                 hci_dev_lock(hdev);
2174                 mgmt_set_powered_failed(hdev, err);
2175                 hci_dev_unlock(hdev);
2176                 return;
2177         }
2178
2179         /* During the HCI setup phase, a few error conditions are
2180          * ignored and they need to be checked now. If they are still
2181          * valid, it is important to turn the device back off.
2182          */
2183         if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2184             hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2185             (hdev->dev_type == HCI_PRIMARY &&
2186              !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2187              !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2188                 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2189                 hci_dev_do_close(hdev);
2190         } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2191                 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2192                                    HCI_AUTO_OFF_TIMEOUT);
2193         }
2194
2195         if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2196                 /* For unconfigured devices, set the HCI_RAW flag
2197                  * so that userspace can easily identify them.
2198                  */
2199                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2200                         set_bit(HCI_RAW, &hdev->flags);
2201
2202                 /* For fully configured devices, this will send
2203                  * the Index Added event. For unconfigured devices,
2204                  * it will send Unconfigued Index Added event.
2205                  *
2206                  * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2207                  * and no event will be send.
2208                  */
2209                 mgmt_index_added(hdev);
2210         } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2211                 /* When the controller is now configured, then it
2212                  * is important to clear the HCI_RAW flag.
2213                  */
2214                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2215                         clear_bit(HCI_RAW, &hdev->flags);
2216
2217                 /* Powering on the controller with HCI_CONFIG set only
2218                  * happens with the transition from unconfigured to
2219                  * configured. This will send the Index Added event.
2220                  */
2221                 mgmt_index_added(hdev);
2222         }
2223 }
2224
2225 static void hci_power_off(struct work_struct *work)
2226 {
2227         struct hci_dev *hdev = container_of(work, struct hci_dev,
2228                                             power_off.work);
2229
2230         BT_DBG("%s", hdev->name);
2231
2232         hci_dev_do_close(hdev);
2233 }
2234
2235 static void hci_error_reset(struct work_struct *work)
2236 {
2237         struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2238
2239         BT_DBG("%s", hdev->name);
2240
2241         if (hdev->hw_error)
2242                 hdev->hw_error(hdev, hdev->hw_error_code);
2243         else
2244                 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2245
2246         if (hci_dev_do_close(hdev))
2247                 return;
2248
2249         hci_dev_do_open(hdev);
2250 }
2251
2252 void hci_uuids_clear(struct hci_dev *hdev)
2253 {
2254         struct bt_uuid *uuid, *tmp;
2255
2256         list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2257                 list_del(&uuid->list);
2258                 kfree(uuid);
2259         }
2260 }
2261
2262 void hci_link_keys_clear(struct hci_dev *hdev)
2263 {
2264         struct link_key *key;
2265
2266         list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2267                 list_del_rcu(&key->list);
2268                 kfree_rcu(key, rcu);
2269         }
2270 }
2271
2272 void hci_smp_ltks_clear(struct hci_dev *hdev)
2273 {
2274         struct smp_ltk *k;
2275
2276         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2277                 list_del_rcu(&k->list);
2278                 kfree_rcu(k, rcu);
2279         }
2280 }
2281
2282 void hci_smp_irks_clear(struct hci_dev *hdev)
2283 {
2284         struct smp_irk *k;
2285
2286         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2287                 list_del_rcu(&k->list);
2288                 kfree_rcu(k, rcu);
2289         }
2290 }
2291
2292 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2293 {
2294         struct link_key *k;
2295
2296         rcu_read_lock();
2297         list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2298                 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2299                         rcu_read_unlock();
2300                         return k;
2301                 }
2302         }
2303         rcu_read_unlock();
2304
2305         return NULL;
2306 }
2307
2308 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2309                                u8 key_type, u8 old_key_type)
2310 {
2311         /* Legacy key */
2312         if (key_type < 0x03)
2313                 return true;
2314
2315         /* Debug keys are insecure so don't store them persistently */
2316         if (key_type == HCI_LK_DEBUG_COMBINATION)
2317                 return false;
2318
2319         /* Changed combination key and there's no previous one */
2320         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2321                 return false;
2322
2323         /* Security mode 3 case */
2324         if (!conn)
2325                 return true;
2326
2327         /* BR/EDR key derived using SC from an LE link */
2328         if (conn->type == LE_LINK)
2329                 return true;
2330
2331         /* Neither local nor remote side had no-bonding as requirement */
2332         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2333                 return true;
2334
2335         /* Local side had dedicated bonding as requirement */
2336         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2337                 return true;
2338
2339         /* Remote side had dedicated bonding as requirement */
2340         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2341                 return true;
2342
2343         /* If none of the above criteria match, then don't store the key
2344          * persistently */
2345         return false;
2346 }
2347
2348 static u8 ltk_role(u8 type)
2349 {
2350         if (type == SMP_LTK)
2351                 return HCI_ROLE_MASTER;
2352
2353         return HCI_ROLE_SLAVE;
2354 }
2355
2356 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2357                              u8 addr_type, u8 role)
2358 {
2359         struct smp_ltk *k;
2360
2361         rcu_read_lock();
2362         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2363                 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2364                         continue;
2365
2366                 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2367                         rcu_read_unlock();
2368                         return k;
2369                 }
2370         }
2371         rcu_read_unlock();
2372
2373         return NULL;
2374 }
2375
2376 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2377 {
2378         struct smp_irk *irk;
2379
2380         rcu_read_lock();
2381         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2382                 if (!bacmp(&irk->rpa, rpa)) {
2383                         rcu_read_unlock();
2384                         return irk;
2385                 }
2386         }
2387
2388         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2389                 if (smp_irk_matches(hdev, irk->val, rpa)) {
2390                         bacpy(&irk->rpa, rpa);
2391                         rcu_read_unlock();
2392                         return irk;
2393                 }
2394         }
2395         rcu_read_unlock();
2396
2397         return NULL;
2398 }
2399
2400 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2401                                      u8 addr_type)
2402 {
2403         struct smp_irk *irk;
2404
2405         /* Identity Address must be public or static random */
2406         if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2407                 return NULL;
2408
2409         rcu_read_lock();
2410         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2411                 if (addr_type == irk->addr_type &&
2412                     bacmp(bdaddr, &irk->bdaddr) == 0) {
2413                         rcu_read_unlock();
2414                         return irk;
2415                 }
2416         }
2417         rcu_read_unlock();
2418
2419         return NULL;
2420 }
2421
2422 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2423                                   bdaddr_t *bdaddr, u8 *val, u8 type,
2424                                   u8 pin_len, bool *persistent)
2425 {
2426         struct link_key *key, *old_key;
2427         u8 old_key_type;
2428
2429         old_key = hci_find_link_key(hdev, bdaddr);
2430         if (old_key) {
2431                 old_key_type = old_key->type;
2432                 key = old_key;
2433         } else {
2434                 old_key_type = conn ? conn->key_type : 0xff;
2435                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2436                 if (!key)
2437                         return NULL;
2438                 list_add_rcu(&key->list, &hdev->link_keys);
2439         }
2440
2441         BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2442
2443         /* Some buggy controller combinations generate a changed
2444          * combination key for legacy pairing even when there's no
2445          * previous key */
2446         if (type == HCI_LK_CHANGED_COMBINATION &&
2447             (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2448                 type = HCI_LK_COMBINATION;
2449                 if (conn)
2450                         conn->key_type = type;
2451         }
2452
2453         bacpy(&key->bdaddr, bdaddr);
2454         memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2455         key->pin_len = pin_len;
2456
2457         if (type == HCI_LK_CHANGED_COMBINATION)
2458                 key->type = old_key_type;
2459         else
2460                 key->type = type;
2461
2462         if (persistent)
2463                 *persistent = hci_persistent_key(hdev, conn, type,
2464                                                  old_key_type);
2465
2466         return key;
2467 }
2468
2469 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2470                             u8 addr_type, u8 type, u8 authenticated,
2471                             u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2472 {
2473         struct smp_ltk *key, *old_key;
2474         u8 role = ltk_role(type);
2475
2476         old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2477         if (old_key)
2478                 key = old_key;
2479         else {
2480                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2481                 if (!key)
2482                         return NULL;
2483                 list_add_rcu(&key->list, &hdev->long_term_keys);
2484         }
2485
2486         bacpy(&key->bdaddr, bdaddr);
2487         key->bdaddr_type = addr_type;
2488         memcpy(key->val, tk, sizeof(key->val));
2489         key->authenticated = authenticated;
2490         key->ediv = ediv;
2491         key->rand = rand;
2492         key->enc_size = enc_size;
2493         key->type = type;
2494
2495         return key;
2496 }
2497
2498 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2499                             u8 addr_type, u8 val[16], bdaddr_t *rpa)
2500 {
2501         struct smp_irk *irk;
2502
2503         irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2504         if (!irk) {
2505                 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2506                 if (!irk)
2507                         return NULL;
2508
2509                 bacpy(&irk->bdaddr, bdaddr);
2510                 irk->addr_type = addr_type;
2511
2512                 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2513         }
2514
2515         memcpy(irk->val, val, 16);
2516         bacpy(&irk->rpa, rpa);
2517
2518         return irk;
2519 }
2520
2521 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2522 {
2523         struct link_key *key;
2524
2525         key = hci_find_link_key(hdev, bdaddr);
2526         if (!key)
2527                 return -ENOENT;
2528
2529         BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2530
2531         list_del_rcu(&key->list);
2532         kfree_rcu(key, rcu);
2533
2534         return 0;
2535 }
2536
2537 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2538 {
2539         struct smp_ltk *k;
2540         int removed = 0;
2541
2542         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2543                 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2544                         continue;
2545
2546                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2547
2548                 list_del_rcu(&k->list);
2549                 kfree_rcu(k, rcu);
2550                 removed++;
2551         }
2552
2553         return removed ? 0 : -ENOENT;
2554 }
2555
2556 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2557 {
2558         struct smp_irk *k;
2559
2560         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2561                 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2562                         continue;
2563
2564                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2565
2566                 list_del_rcu(&k->list);
2567                 kfree_rcu(k, rcu);
2568         }
2569 }
2570
2571 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2572 {
2573         struct smp_ltk *k;
2574         struct smp_irk *irk;
2575         u8 addr_type;
2576
2577         if (type == BDADDR_BREDR) {
2578                 if (hci_find_link_key(hdev, bdaddr))
2579                         return true;
2580                 return false;
2581         }
2582
2583         /* Convert to HCI addr type which struct smp_ltk uses */
2584         if (type == BDADDR_LE_PUBLIC)
2585                 addr_type = ADDR_LE_DEV_PUBLIC;
2586         else
2587                 addr_type = ADDR_LE_DEV_RANDOM;
2588
2589         irk = hci_get_irk(hdev, bdaddr, addr_type);
2590         if (irk) {
2591                 bdaddr = &irk->bdaddr;
2592                 addr_type = irk->addr_type;
2593         }
2594
2595         rcu_read_lock();
2596         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2597                 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2598                         rcu_read_unlock();
2599                         return true;
2600                 }
2601         }
2602         rcu_read_unlock();
2603
2604         return false;
2605 }
2606
2607 /* HCI command timer function */
2608 static void hci_cmd_timeout(struct work_struct *work)
2609 {
2610         struct hci_dev *hdev = container_of(work, struct hci_dev,
2611                                             cmd_timer.work);
2612
2613         if (hdev->sent_cmd) {
2614                 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2615                 u16 opcode = __le16_to_cpu(sent->opcode);
2616
2617                 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2618         } else {
2619                 bt_dev_err(hdev, "command tx timeout");
2620         }
2621
2622         if (hdev->cmd_timeout)
2623                 hdev->cmd_timeout(hdev);
2624
2625         atomic_set(&hdev->cmd_cnt, 1);
2626         queue_work(hdev->workqueue, &hdev->cmd_work);
2627 }
2628
2629 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2630                                           bdaddr_t *bdaddr, u8 bdaddr_type)
2631 {
2632         struct oob_data *data;
2633
2634         list_for_each_entry(data, &hdev->remote_oob_data, list) {
2635                 if (bacmp(bdaddr, &data->bdaddr) != 0)
2636                         continue;
2637                 if (data->bdaddr_type != bdaddr_type)
2638                         continue;
2639                 return data;
2640         }
2641
2642         return NULL;
2643 }
2644
2645 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2646                                u8 bdaddr_type)
2647 {
2648         struct oob_data *data;
2649
2650         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2651         if (!data)
2652                 return -ENOENT;
2653
2654         BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2655
2656         list_del(&data->list);
2657         kfree(data);
2658
2659         return 0;
2660 }
2661
2662 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2663 {
2664         struct oob_data *data, *n;
2665
2666         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2667                 list_del(&data->list);
2668                 kfree(data);
2669         }
2670 }
2671
2672 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2673                             u8 bdaddr_type, u8 *hash192, u8 *rand192,
2674                             u8 *hash256, u8 *rand256)
2675 {
2676         struct oob_data *data;
2677
2678         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2679         if (!data) {
2680                 data = kmalloc(sizeof(*data), GFP_KERNEL);
2681                 if (!data)
2682                         return -ENOMEM;
2683
2684                 bacpy(&data->bdaddr, bdaddr);
2685                 data->bdaddr_type = bdaddr_type;
2686                 list_add(&data->list, &hdev->remote_oob_data);
2687         }
2688
2689         if (hash192 && rand192) {
2690                 memcpy(data->hash192, hash192, sizeof(data->hash192));
2691                 memcpy(data->rand192, rand192, sizeof(data->rand192));
2692                 if (hash256 && rand256)
2693                         data->present = 0x03;
2694         } else {
2695                 memset(data->hash192, 0, sizeof(data->hash192));
2696                 memset(data->rand192, 0, sizeof(data->rand192));
2697                 if (hash256 && rand256)
2698                         data->present = 0x02;
2699                 else
2700                         data->present = 0x00;
2701         }
2702
2703         if (hash256 && rand256) {
2704                 memcpy(data->hash256, hash256, sizeof(data->hash256));
2705                 memcpy(data->rand256, rand256, sizeof(data->rand256));
2706         } else {
2707                 memset(data->hash256, 0, sizeof(data->hash256));
2708                 memset(data->rand256, 0, sizeof(data->rand256));
2709                 if (hash192 && rand192)
2710                         data->present = 0x01;
2711         }
2712
2713         BT_DBG("%s for %pMR", hdev->name, bdaddr);
2714
2715         return 0;
2716 }
2717
2718 /* This function requires the caller holds hdev->lock */
2719 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2720 {
2721         struct adv_info *adv_instance;
2722
2723         list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2724                 if (adv_instance->instance == instance)
2725                         return adv_instance;
2726         }
2727
2728         return NULL;
2729 }
2730
2731 /* This function requires the caller holds hdev->lock */
2732 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2733 {
2734         struct adv_info *cur_instance;
2735
2736         cur_instance = hci_find_adv_instance(hdev, instance);
2737         if (!cur_instance)
2738                 return NULL;
2739
2740         if (cur_instance == list_last_entry(&hdev->adv_instances,
2741                                             struct adv_info, list))
2742                 return list_first_entry(&hdev->adv_instances,
2743                                                  struct adv_info, list);
2744         else
2745                 return list_next_entry(cur_instance, list);
2746 }
2747
2748 /* This function requires the caller holds hdev->lock */
2749 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2750 {
2751         struct adv_info *adv_instance;
2752
2753         adv_instance = hci_find_adv_instance(hdev, instance);
2754         if (!adv_instance)
2755                 return -ENOENT;
2756
2757         BT_DBG("%s removing %dMR", hdev->name, instance);
2758
2759         if (hdev->cur_adv_instance == instance) {
2760                 if (hdev->adv_instance_timeout) {
2761                         cancel_delayed_work(&hdev->adv_instance_expire);
2762                         hdev->adv_instance_timeout = 0;
2763                 }
2764                 hdev->cur_adv_instance = 0x00;
2765         }
2766
2767         cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2768
2769         list_del(&adv_instance->list);
2770         kfree(adv_instance);
2771
2772         hdev->adv_instance_cnt--;
2773
2774         return 0;
2775 }
2776
2777 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2778 {
2779         struct adv_info *adv_instance, *n;
2780
2781         list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2782                 adv_instance->rpa_expired = rpa_expired;
2783 }
2784
2785 /* This function requires the caller holds hdev->lock */
2786 void hci_adv_instances_clear(struct hci_dev *hdev)
2787 {
2788         struct adv_info *adv_instance, *n;
2789
2790         if (hdev->adv_instance_timeout) {
2791                 cancel_delayed_work(&hdev->adv_instance_expire);
2792                 hdev->adv_instance_timeout = 0;
2793         }
2794
2795         list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2796                 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2797                 list_del(&adv_instance->list);
2798                 kfree(adv_instance);
2799         }
2800
2801         hdev->adv_instance_cnt = 0;
2802         hdev->cur_adv_instance = 0x00;
2803 }
2804
2805 static void adv_instance_rpa_expired(struct work_struct *work)
2806 {
2807         struct adv_info *adv_instance = container_of(work, struct adv_info,
2808                                                      rpa_expired_cb.work);
2809
2810         BT_DBG("");
2811
2812         adv_instance->rpa_expired = true;
2813 }
2814
2815 /* This function requires the caller holds hdev->lock */
2816 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2817                          u16 adv_data_len, u8 *adv_data,
2818                          u16 scan_rsp_len, u8 *scan_rsp_data,
2819                          u16 timeout, u16 duration)
2820 {
2821         struct adv_info *adv_instance;
2822
2823         adv_instance = hci_find_adv_instance(hdev, instance);
2824         if (adv_instance) {
2825                 memset(adv_instance->adv_data, 0,
2826                        sizeof(adv_instance->adv_data));
2827                 memset(adv_instance->scan_rsp_data, 0,
2828                        sizeof(adv_instance->scan_rsp_data));
2829         } else {
2830                 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2831                     instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2832                         return -EOVERFLOW;
2833
2834                 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2835                 if (!adv_instance)
2836                         return -ENOMEM;
2837
2838                 adv_instance->pending = true;
2839                 adv_instance->instance = instance;
2840                 list_add(&adv_instance->list, &hdev->adv_instances);
2841                 hdev->adv_instance_cnt++;
2842         }
2843
2844         adv_instance->flags = flags;
2845         adv_instance->adv_data_len = adv_data_len;
2846         adv_instance->scan_rsp_len = scan_rsp_len;
2847
2848         if (adv_data_len)
2849                 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2850
2851         if (scan_rsp_len)
2852                 memcpy(adv_instance->scan_rsp_data,
2853                        scan_rsp_data, scan_rsp_len);
2854
2855         adv_instance->timeout = timeout;
2856         adv_instance->remaining_time = timeout;
2857
2858         if (duration == 0)
2859                 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2860         else
2861                 adv_instance->duration = duration;
2862
2863         adv_instance->tx_power = HCI_TX_POWER_INVALID;
2864
2865         INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
2866                           adv_instance_rpa_expired);
2867
2868         BT_DBG("%s for %dMR", hdev->name, instance);
2869
2870         return 0;
2871 }
2872
2873 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2874                                          bdaddr_t *bdaddr, u8 type)
2875 {
2876         struct bdaddr_list *b;
2877
2878         list_for_each_entry(b, bdaddr_list, list) {
2879                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2880                         return b;
2881         }
2882
2883         return NULL;
2884 }
2885
2886 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2887                                 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2888                                 u8 type)
2889 {
2890         struct bdaddr_list_with_irk *b;
2891
2892         list_for_each_entry(b, bdaddr_list, list) {
2893                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2894                         return b;
2895         }
2896
2897         return NULL;
2898 }
2899
2900 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2901 {
2902         struct bdaddr_list *b, *n;
2903
2904         list_for_each_entry_safe(b, n, bdaddr_list, list) {
2905                 list_del(&b->list);
2906                 kfree(b);
2907         }
2908 }
2909
2910 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2911 {
2912         struct bdaddr_list *entry;
2913
2914         if (!bacmp(bdaddr, BDADDR_ANY))
2915                 return -EBADF;
2916
2917         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2918                 return -EEXIST;
2919
2920         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2921         if (!entry)
2922                 return -ENOMEM;
2923
2924         bacpy(&entry->bdaddr, bdaddr);
2925         entry->bdaddr_type = type;
2926
2927         list_add(&entry->list, list);
2928
2929         return 0;
2930 }
2931
2932 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2933                                         u8 type, u8 *peer_irk, u8 *local_irk)
2934 {
2935         struct bdaddr_list_with_irk *entry;
2936
2937         if (!bacmp(bdaddr, BDADDR_ANY))
2938                 return -EBADF;
2939
2940         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2941                 return -EEXIST;
2942
2943         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2944         if (!entry)
2945                 return -ENOMEM;
2946
2947         bacpy(&entry->bdaddr, bdaddr);
2948         entry->bdaddr_type = type;
2949
2950         if (peer_irk)
2951                 memcpy(entry->peer_irk, peer_irk, 16);
2952
2953         if (local_irk)
2954                 memcpy(entry->local_irk, local_irk, 16);
2955
2956         list_add(&entry->list, list);
2957
2958         return 0;
2959 }
2960
2961 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2962 {
2963         struct bdaddr_list *entry;
2964
2965         if (!bacmp(bdaddr, BDADDR_ANY)) {
2966                 hci_bdaddr_list_clear(list);
2967                 return 0;
2968         }
2969
2970         entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2971         if (!entry)
2972                 return -ENOENT;
2973
2974         list_del(&entry->list);
2975         kfree(entry);
2976
2977         return 0;
2978 }
2979
2980 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2981                                                         u8 type)
2982 {
2983         struct bdaddr_list_with_irk *entry;
2984
2985         if (!bacmp(bdaddr, BDADDR_ANY)) {
2986                 hci_bdaddr_list_clear(list);
2987                 return 0;
2988         }
2989
2990         entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2991         if (!entry)
2992                 return -ENOENT;
2993
2994         list_del(&entry->list);
2995         kfree(entry);
2996
2997         return 0;
2998 }
2999
3000 /* This function requires the caller holds hdev->lock */
3001 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3002                                                bdaddr_t *addr, u8 addr_type)
3003 {
3004         struct hci_conn_params *params;
3005
3006         list_for_each_entry(params, &hdev->le_conn_params, list) {
3007                 if (bacmp(&params->addr, addr) == 0 &&
3008                     params->addr_type == addr_type) {
3009                         return params;
3010                 }
3011         }
3012
3013         return NULL;
3014 }
3015
3016 /* This function requires the caller holds hdev->lock */
3017 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3018                                                   bdaddr_t *addr, u8 addr_type)
3019 {
3020         struct hci_conn_params *param;
3021
3022         list_for_each_entry(param, list, action) {
3023                 if (bacmp(&param->addr, addr) == 0 &&
3024                     param->addr_type == addr_type)
3025                         return param;
3026         }
3027
3028         return NULL;
3029 }
3030
3031 /* This function requires the caller holds hdev->lock */
3032 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3033                                             bdaddr_t *addr, u8 addr_type)
3034 {
3035         struct hci_conn_params *params;
3036
3037         params = hci_conn_params_lookup(hdev, addr, addr_type);
3038         if (params)
3039                 return params;
3040
3041         params = kzalloc(sizeof(*params), GFP_KERNEL);
3042         if (!params) {
3043                 bt_dev_err(hdev, "out of memory");
3044                 return NULL;
3045         }
3046
3047         bacpy(&params->addr, addr);
3048         params->addr_type = addr_type;
3049
3050         list_add(&params->list, &hdev->le_conn_params);
3051         INIT_LIST_HEAD(&params->action);
3052
3053         params->conn_min_interval = hdev->le_conn_min_interval;
3054         params->conn_max_interval = hdev->le_conn_max_interval;
3055         params->conn_latency = hdev->le_conn_latency;
3056         params->supervision_timeout = hdev->le_supv_timeout;
3057         params->auto_connect = HCI_AUTO_CONN_DISABLED;
3058
3059         BT_DBG("addr %pMR (type %u)", addr, addr_type);
3060
3061         return params;
3062 }
3063
3064 static void hci_conn_params_free(struct hci_conn_params *params)
3065 {
3066         if (params->conn) {
3067                 hci_conn_drop(params->conn);
3068                 hci_conn_put(params->conn);
3069         }
3070
3071         list_del(&params->action);
3072         list_del(&params->list);
3073         kfree(params);
3074 }
3075
3076 /* This function requires the caller holds hdev->lock */
3077 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3078 {
3079         struct hci_conn_params *params;
3080
3081         params = hci_conn_params_lookup(hdev, addr, addr_type);
3082         if (!params)
3083                 return;
3084
3085         hci_conn_params_free(params);
3086
3087         hci_update_background_scan(hdev);
3088
3089         BT_DBG("addr %pMR (type %u)", addr, addr_type);
3090 }
3091
3092 /* This function requires the caller holds hdev->lock */
3093 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3094 {
3095         struct hci_conn_params *params, *tmp;
3096
3097         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3098                 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3099                         continue;
3100
3101                 /* If trying to estabilish one time connection to disabled
3102                  * device, leave the params, but mark them as just once.
3103                  */
3104                 if (params->explicit_connect) {
3105                         params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3106                         continue;
3107                 }
3108
3109                 list_del(&params->list);
3110                 kfree(params);
3111         }
3112
3113         BT_DBG("All LE disabled connection parameters were removed");
3114 }
3115
3116 /* This function requires the caller holds hdev->lock */
3117 static void hci_conn_params_clear_all(struct hci_dev *hdev)
3118 {
3119         struct hci_conn_params *params, *tmp;
3120
3121         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3122                 hci_conn_params_free(params);
3123
3124         BT_DBG("All LE connection parameters were removed");
3125 }
3126
3127 /* Copy the Identity Address of the controller.
3128  *
3129  * If the controller has a public BD_ADDR, then by default use that one.
3130  * If this is a LE only controller without a public address, default to
3131  * the static random address.
3132  *
3133  * For debugging purposes it is possible to force controllers with a
3134  * public address to use the static random address instead.
3135  *
3136  * In case BR/EDR has been disabled on a dual-mode controller and
3137  * userspace has configured a static address, then that address
3138  * becomes the identity address instead of the public BR/EDR address.
3139  */
3140 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3141                                u8 *bdaddr_type)
3142 {
3143         if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3144             !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3145             (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3146              bacmp(&hdev->static_addr, BDADDR_ANY))) {
3147                 bacpy(bdaddr, &hdev->static_addr);
3148                 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3149         } else {
3150                 bacpy(bdaddr, &hdev->bdaddr);
3151                 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3152         }
3153 }
3154
3155 /* Alloc HCI device */
3156 struct hci_dev *hci_alloc_dev(void)
3157 {
3158         struct hci_dev *hdev;
3159
3160         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3161         if (!hdev)
3162                 return NULL;
3163
3164         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3165         hdev->esco_type = (ESCO_HV1);
3166         hdev->link_mode = (HCI_LM_ACCEPT);
3167         hdev->num_iac = 0x01;           /* One IAC support is mandatory */
3168         hdev->io_capability = 0x03;     /* No Input No Output */
3169         hdev->manufacturer = 0xffff;    /* Default to internal use */
3170         hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3171         hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3172         hdev->adv_instance_cnt = 0;
3173         hdev->cur_adv_instance = 0x00;
3174         hdev->adv_instance_timeout = 0;
3175
3176         hdev->sniff_max_interval = 800;
3177         hdev->sniff_min_interval = 80;
3178
3179         hdev->le_adv_channel_map = 0x07;
3180         hdev->le_adv_min_interval = 0x0800;
3181         hdev->le_adv_max_interval = 0x0800;
3182         hdev->le_scan_interval = 0x0060;
3183         hdev->le_scan_window = 0x0030;
3184         hdev->le_conn_min_interval = 0x0018;
3185         hdev->le_conn_max_interval = 0x0028;
3186         hdev->le_conn_latency = 0x0000;
3187         hdev->le_supv_timeout = 0x002a;
3188         hdev->le_def_tx_len = 0x001b;
3189         hdev->le_def_tx_time = 0x0148;
3190         hdev->le_max_tx_len = 0x001b;
3191         hdev->le_max_tx_time = 0x0148;
3192         hdev->le_max_rx_len = 0x001b;
3193         hdev->le_max_rx_time = 0x0148;
3194         hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3195         hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3196         hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3197         hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3198
3199         hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3200         hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3201         hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3202         hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3203
3204         mutex_init(&hdev->lock);
3205         mutex_init(&hdev->req_lock);
3206
3207         INIT_LIST_HEAD(&hdev->mgmt_pending);
3208         INIT_LIST_HEAD(&hdev->blacklist);
3209         INIT_LIST_HEAD(&hdev->whitelist);
3210         INIT_LIST_HEAD(&hdev->uuids);
3211         INIT_LIST_HEAD(&hdev->link_keys);
3212         INIT_LIST_HEAD(&hdev->long_term_keys);
3213         INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3214         INIT_LIST_HEAD(&hdev->remote_oob_data);
3215         INIT_LIST_HEAD(&hdev->le_white_list);
3216         INIT_LIST_HEAD(&hdev->le_resolv_list);
3217         INIT_LIST_HEAD(&hdev->le_conn_params);
3218         INIT_LIST_HEAD(&hdev->pend_le_conns);
3219         INIT_LIST_HEAD(&hdev->pend_le_reports);
3220         INIT_LIST_HEAD(&hdev->conn_hash.list);
3221         INIT_LIST_HEAD(&hdev->adv_instances);
3222
3223         INIT_WORK(&hdev->rx_work, hci_rx_work);
3224         INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3225         INIT_WORK(&hdev->tx_work, hci_tx_work);
3226         INIT_WORK(&hdev->power_on, hci_power_on);
3227         INIT_WORK(&hdev->error_reset, hci_error_reset);
3228
3229         INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3230
3231         skb_queue_head_init(&hdev->rx_q);
3232         skb_queue_head_init(&hdev->cmd_q);
3233         skb_queue_head_init(&hdev->raw_q);
3234
3235         init_waitqueue_head(&hdev->req_wait_q);
3236
3237         INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3238
3239         hci_request_setup(hdev);
3240
3241         hci_init_sysfs(hdev);
3242         discovery_init(hdev);
3243
3244         return hdev;
3245 }
3246 EXPORT_SYMBOL(hci_alloc_dev);
3247
3248 /* Free HCI device */
3249 void hci_free_dev(struct hci_dev *hdev)
3250 {
3251         /* will free via device release */
3252         put_device(&hdev->dev);
3253 }
3254 EXPORT_SYMBOL(hci_free_dev);
3255
3256 /* Register HCI device */
3257 int hci_register_dev(struct hci_dev *hdev)
3258 {
3259         int id, error;
3260
3261         if (!hdev->open || !hdev->close || !hdev->send)
3262                 return -EINVAL;
3263
3264         /* Do not allow HCI_AMP devices to register at index 0,
3265          * so the index can be used as the AMP controller ID.
3266          */
3267         switch (hdev->dev_type) {
3268         case HCI_PRIMARY:
3269                 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3270                 break;
3271         case HCI_AMP:
3272                 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3273                 break;
3274         default:
3275                 return -EINVAL;
3276         }
3277
3278         if (id < 0)
3279                 return id;
3280
3281         sprintf(hdev->name, "hci%d", id);
3282         hdev->id = id;
3283
3284         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3285
3286         hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3287         if (!hdev->workqueue) {
3288                 error = -ENOMEM;
3289                 goto err;
3290         }
3291
3292         hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3293                                                       hdev->name);
3294         if (!hdev->req_workqueue) {
3295                 destroy_workqueue(hdev->workqueue);
3296                 error = -ENOMEM;
3297                 goto err;
3298         }
3299
3300         if (!IS_ERR_OR_NULL(bt_debugfs))
3301                 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3302
3303         dev_set_name(&hdev->dev, "%s", hdev->name);
3304
3305         error = device_add(&hdev->dev);
3306         if (error < 0)
3307                 goto err_wqueue;
3308
3309         hci_leds_init(hdev);
3310
3311         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3312                                     RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3313                                     hdev);
3314         if (hdev->rfkill) {
3315                 if (rfkill_register(hdev->rfkill) < 0) {
3316                         rfkill_destroy(hdev->rfkill);
3317                         hdev->rfkill = NULL;
3318                 }
3319         }
3320
3321         if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3322                 hci_dev_set_flag(hdev, HCI_RFKILLED);
3323
3324         hci_dev_set_flag(hdev, HCI_SETUP);
3325         hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3326
3327         if (hdev->dev_type == HCI_PRIMARY) {
3328                 /* Assume BR/EDR support until proven otherwise (such as
3329                  * through reading supported features during init.
3330                  */
3331                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3332         }
3333
3334         write_lock(&hci_dev_list_lock);
3335         list_add(&hdev->list, &hci_dev_list);
3336         write_unlock(&hci_dev_list_lock);
3337
3338         /* Devices that are marked for raw-only usage are unconfigured
3339          * and should not be included in normal operation.
3340          */
3341         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3342                 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3343
3344         hci_sock_dev_event(hdev, HCI_DEV_REG);
3345         hci_dev_hold(hdev);
3346
3347         queue_work(hdev->req_workqueue, &hdev->power_on);
3348
3349         return id;
3350
3351 err_wqueue:
3352         destroy_workqueue(hdev->workqueue);
3353         destroy_workqueue(hdev->req_workqueue);
3354 err:
3355         ida_simple_remove(&hci_index_ida, hdev->id);
3356
3357         return error;
3358 }
3359 EXPORT_SYMBOL(hci_register_dev);
3360
3361 /* Unregister HCI device */
3362 void hci_unregister_dev(struct hci_dev *hdev)
3363 {
3364         int id;
3365
3366         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3367
3368         hci_dev_set_flag(hdev, HCI_UNREGISTER);
3369
3370         id = hdev->id;
3371
3372         write_lock(&hci_dev_list_lock);
3373         list_del(&hdev->list);
3374         write_unlock(&hci_dev_list_lock);
3375
3376         cancel_work_sync(&hdev->power_on);
3377
3378         hci_dev_do_close(hdev);
3379
3380         if (!test_bit(HCI_INIT, &hdev->flags) &&
3381             !hci_dev_test_flag(hdev, HCI_SETUP) &&
3382             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3383                 hci_dev_lock(hdev);
3384                 mgmt_index_removed(hdev);
3385                 hci_dev_unlock(hdev);
3386         }
3387
3388         /* mgmt_index_removed should take care of emptying the
3389          * pending list */
3390         BUG_ON(!list_empty(&hdev->mgmt_pending));
3391
3392         hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3393
3394         if (hdev->rfkill) {
3395                 rfkill_unregister(hdev->rfkill);
3396                 rfkill_destroy(hdev->rfkill);
3397         }
3398
3399         device_del(&hdev->dev);
3400
3401         debugfs_remove_recursive(hdev->debugfs);
3402         kfree_const(hdev->hw_info);
3403         kfree_const(hdev->fw_info);
3404
3405         destroy_workqueue(hdev->workqueue);
3406         destroy_workqueue(hdev->req_workqueue);
3407
3408         hci_dev_lock(hdev);
3409         hci_bdaddr_list_clear(&hdev->blacklist);
3410         hci_bdaddr_list_clear(&hdev->whitelist);
3411         hci_uuids_clear(hdev);
3412         hci_link_keys_clear(hdev);
3413         hci_smp_ltks_clear(hdev);
3414         hci_smp_irks_clear(hdev);
3415         hci_remote_oob_data_clear(hdev);
3416         hci_adv_instances_clear(hdev);
3417         hci_bdaddr_list_clear(&hdev->le_white_list);
3418         hci_bdaddr_list_clear(&hdev->le_resolv_list);
3419         hci_conn_params_clear_all(hdev);
3420         hci_discovery_filter_clear(hdev);
3421         hci_dev_unlock(hdev);
3422
3423         hci_dev_put(hdev);
3424
3425         ida_simple_remove(&hci_index_ida, id);
3426 }
3427 EXPORT_SYMBOL(hci_unregister_dev);
3428
3429 /* Suspend HCI device */
3430 int hci_suspend_dev(struct hci_dev *hdev)
3431 {
3432         hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3433         return 0;
3434 }
3435 EXPORT_SYMBOL(hci_suspend_dev);
3436
3437 /* Resume HCI device */
3438 int hci_resume_dev(struct hci_dev *hdev)
3439 {
3440         hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3441         return 0;
3442 }
3443 EXPORT_SYMBOL(hci_resume_dev);
3444
3445 /* Reset HCI device */
3446 int hci_reset_dev(struct hci_dev *hdev)
3447 {
3448         static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3449         struct sk_buff *skb;
3450
3451         skb = bt_skb_alloc(3, GFP_ATOMIC);
3452         if (!skb)
3453                 return -ENOMEM;
3454
3455         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3456         skb_put_data(skb, hw_err, 3);
3457
3458         /* Send Hardware Error to upper stack */
3459         return hci_recv_frame(hdev, skb);
3460 }
3461 EXPORT_SYMBOL(hci_reset_dev);
3462
3463 /* Receive frame from HCI drivers */
3464 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3465 {
3466         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3467                       && !test_bit(HCI_INIT, &hdev->flags))) {
3468                 kfree_skb(skb);
3469                 return -ENXIO;
3470         }
3471
3472         if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3473             hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3474             hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3475                 kfree_skb(skb);
3476                 return -EINVAL;
3477         }
3478
3479         /* Incoming skb */
3480         bt_cb(skb)->incoming = 1;
3481
3482         /* Time stamp */
3483         __net_timestamp(skb);
3484
3485         skb_queue_tail(&hdev->rx_q, skb);
3486         queue_work(hdev->workqueue, &hdev->rx_work);
3487
3488         return 0;
3489 }
3490 EXPORT_SYMBOL(hci_recv_frame);
3491
3492 /* Receive diagnostic message from HCI drivers */
3493 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3494 {
3495         /* Mark as diagnostic packet */
3496         hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3497
3498         /* Time stamp */
3499         __net_timestamp(skb);
3500
3501         skb_queue_tail(&hdev->rx_q, skb);
3502         queue_work(hdev->workqueue, &hdev->rx_work);
3503
3504         return 0;
3505 }
3506 EXPORT_SYMBOL(hci_recv_diag);
3507
3508 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3509 {
3510         va_list vargs;
3511
3512         va_start(vargs, fmt);
3513         kfree_const(hdev->hw_info);
3514         hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3515         va_end(vargs);
3516 }
3517 EXPORT_SYMBOL(hci_set_hw_info);
3518
3519 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3520 {
3521         va_list vargs;
3522
3523         va_start(vargs, fmt);
3524         kfree_const(hdev->fw_info);
3525         hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3526         va_end(vargs);
3527 }
3528 EXPORT_SYMBOL(hci_set_fw_info);
3529
3530 /* ---- Interface to upper protocols ---- */
3531
3532 int hci_register_cb(struct hci_cb *cb)
3533 {
3534         BT_DBG("%p name %s", cb, cb->name);
3535
3536         mutex_lock(&hci_cb_list_lock);
3537         list_add_tail(&cb->list, &hci_cb_list);
3538         mutex_unlock(&hci_cb_list_lock);
3539
3540         return 0;
3541 }
3542 EXPORT_SYMBOL(hci_register_cb);
3543
3544 int hci_unregister_cb(struct hci_cb *cb)
3545 {
3546         BT_DBG("%p name %s", cb, cb->name);
3547
3548         mutex_lock(&hci_cb_list_lock);
3549         list_del(&cb->list);
3550         mutex_unlock(&hci_cb_list_lock);
3551
3552         return 0;
3553 }
3554 EXPORT_SYMBOL(hci_unregister_cb);
3555
3556 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3557 {
3558         int err;
3559
3560         BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3561                skb->len);
3562
3563         /* Time stamp */
3564         __net_timestamp(skb);
3565
3566         /* Send copy to monitor */
3567         hci_send_to_monitor(hdev, skb);
3568
3569         if (atomic_read(&hdev->promisc)) {
3570                 /* Send copy to the sockets */
3571                 hci_send_to_sock(hdev, skb);
3572         }
3573
3574         /* Get rid of skb owner, prior to sending to the driver. */
3575         skb_orphan(skb);
3576
3577         if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3578                 kfree_skb(skb);
3579                 return;
3580         }
3581
3582         err = hdev->send(hdev, skb);
3583         if (err < 0) {
3584                 bt_dev_err(hdev, "sending frame failed (%d)", err);
3585                 kfree_skb(skb);
3586         }
3587 }
3588
3589 /* Send HCI command */
3590 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3591                  const void *param)
3592 {
3593         struct sk_buff *skb;
3594
3595         BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3596
3597         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3598         if (!skb) {
3599                 bt_dev_err(hdev, "no memory for command");
3600                 return -ENOMEM;
3601         }
3602
3603         /* Stand-alone HCI commands must be flagged as
3604          * single-command requests.
3605          */
3606         bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3607
3608         skb_queue_tail(&hdev->cmd_q, skb);
3609         queue_work(hdev->workqueue, &hdev->cmd_work);
3610
3611         return 0;
3612 }
3613
3614 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3615                    const void *param)
3616 {
3617         struct sk_buff *skb;
3618
3619         if (hci_opcode_ogf(opcode) != 0x3f) {
3620                 /* A controller receiving a command shall respond with either
3621                  * a Command Status Event or a Command Complete Event.
3622                  * Therefore, all standard HCI commands must be sent via the
3623                  * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3624                  * Some vendors do not comply with this rule for vendor-specific
3625                  * commands and do not return any event. We want to support
3626                  * unresponded commands for such cases only.
3627                  */
3628                 bt_dev_err(hdev, "unresponded command not supported");
3629                 return -EINVAL;
3630         }
3631
3632         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3633         if (!skb) {
3634                 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3635                            opcode);
3636                 return -ENOMEM;
3637         }
3638
3639         hci_send_frame(hdev, skb);
3640
3641         return 0;
3642 }
3643 EXPORT_SYMBOL(__hci_cmd_send);
3644
3645 /* Get data from the previously sent command */
3646 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3647 {
3648         struct hci_command_hdr *hdr;
3649
3650         if (!hdev->sent_cmd)
3651                 return NULL;
3652
3653         hdr = (void *) hdev->sent_cmd->data;
3654
3655         if (hdr->opcode != cpu_to_le16(opcode))
3656                 return NULL;
3657
3658         BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3659
3660         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3661 }
3662
3663 /* Send HCI command and wait for command commplete event */
3664 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3665                              const void *param, u32 timeout)
3666 {
3667         struct sk_buff *skb;
3668
3669         if (!test_bit(HCI_UP, &hdev->flags))
3670                 return ERR_PTR(-ENETDOWN);
3671
3672         bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3673
3674         hci_req_sync_lock(hdev);
3675         skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3676         hci_req_sync_unlock(hdev);
3677
3678         return skb;
3679 }
3680 EXPORT_SYMBOL(hci_cmd_sync);
3681
3682 /* Send ACL data */
3683 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3684 {
3685         struct hci_acl_hdr *hdr;
3686         int len = skb->len;
3687
3688         skb_push(skb, HCI_ACL_HDR_SIZE);
3689         skb_reset_transport_header(skb);
3690         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3691         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3692         hdr->dlen   = cpu_to_le16(len);
3693 }
3694
3695 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3696                           struct sk_buff *skb, __u16 flags)
3697 {
3698         struct hci_conn *conn = chan->conn;
3699         struct hci_dev *hdev = conn->hdev;
3700         struct sk_buff *list;
3701
3702         skb->len = skb_headlen(skb);
3703         skb->data_len = 0;
3704
3705         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3706
3707         switch (hdev->dev_type) {
3708         case HCI_PRIMARY:
3709                 hci_add_acl_hdr(skb, conn->handle, flags);
3710                 break;
3711         case HCI_AMP:
3712                 hci_add_acl_hdr(skb, chan->handle, flags);
3713                 break;
3714         default:
3715                 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3716                 return;
3717         }
3718
3719         list = skb_shinfo(skb)->frag_list;
3720         if (!list) {
3721                 /* Non fragmented */
3722                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3723
3724                 skb_queue_tail(queue, skb);
3725         } else {
3726                 /* Fragmented */
3727                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3728
3729                 skb_shinfo(skb)->frag_list = NULL;
3730
3731                 /* Queue all fragments atomically. We need to use spin_lock_bh
3732                  * here because of 6LoWPAN links, as there this function is
3733                  * called from softirq and using normal spin lock could cause
3734                  * deadlocks.
3735                  */
3736                 spin_lock_bh(&queue->lock);
3737
3738                 __skb_queue_tail(queue, skb);
3739
3740                 flags &= ~ACL_START;
3741                 flags |= ACL_CONT;
3742                 do {
3743                         skb = list; list = list->next;
3744
3745                         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3746                         hci_add_acl_hdr(skb, conn->handle, flags);
3747
3748                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3749
3750                         __skb_queue_tail(queue, skb);
3751                 } while (list);
3752
3753                 spin_unlock_bh(&queue->lock);
3754         }
3755 }
3756
3757 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3758 {
3759         struct hci_dev *hdev = chan->conn->hdev;
3760
3761         BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3762
3763         hci_queue_acl(chan, &chan->data_q, skb, flags);
3764
3765         queue_work(hdev->workqueue, &hdev->tx_work);
3766 }
3767
3768 /* Send SCO data */
3769 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3770 {
3771         struct hci_dev *hdev = conn->hdev;
3772         struct hci_sco_hdr hdr;
3773
3774         BT_DBG("%s len %d", hdev->name, skb->len);
3775
3776         hdr.handle = cpu_to_le16(conn->handle);
3777         hdr.dlen   = skb->len;
3778
3779         skb_push(skb, HCI_SCO_HDR_SIZE);
3780         skb_reset_transport_header(skb);
3781         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3782
3783         hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3784
3785         skb_queue_tail(&conn->data_q, skb);
3786         queue_work(hdev->workqueue, &hdev->tx_work);
3787 }
3788
3789 /* ---- HCI TX task (outgoing data) ---- */
3790
3791 /* HCI Connection scheduler */
3792 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3793                                      int *quote)
3794 {
3795         struct hci_conn_hash *h = &hdev->conn_hash;
3796         struct hci_conn *conn = NULL, *c;
3797         unsigned int num = 0, min = ~0;
3798
3799         /* We don't have to lock device here. Connections are always
3800          * added and removed with TX task disabled. */
3801
3802         rcu_read_lock();
3803
3804         list_for_each_entry_rcu(c, &h->list, list) {
3805                 if (c->type != type || skb_queue_empty(&c->data_q))
3806                         continue;
3807
3808                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3809                         continue;
3810
3811                 num++;
3812
3813                 if (c->sent < min) {
3814                         min  = c->sent;
3815                         conn = c;
3816                 }
3817
3818                 if (hci_conn_num(hdev, type) == num)
3819                         break;
3820         }
3821
3822         rcu_read_unlock();
3823
3824         if (conn) {
3825                 int cnt, q;
3826
3827                 switch (conn->type) {
3828                 case ACL_LINK:
3829                         cnt = hdev->acl_cnt;
3830                         break;
3831                 case SCO_LINK:
3832                 case ESCO_LINK:
3833                         cnt = hdev->sco_cnt;
3834                         break;
3835                 case LE_LINK:
3836                         cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3837                         break;
3838                 default:
3839                         cnt = 0;
3840                         bt_dev_err(hdev, "unknown link type %d", conn->type);
3841                 }
3842
3843                 q = cnt / num;
3844                 *quote = q ? q : 1;
3845         } else
3846                 *quote = 0;
3847
3848         BT_DBG("conn %p quote %d", conn, *quote);
3849         return conn;
3850 }
3851
3852 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3853 {
3854         struct hci_conn_hash *h = &hdev->conn_hash;
3855         struct hci_conn *c;
3856
3857         bt_dev_err(hdev, "link tx timeout");
3858
3859         rcu_read_lock();
3860
3861         /* Kill stalled connections */
3862         list_for_each_entry_rcu(c, &h->list, list) {
3863                 if (c->type == type && c->sent) {
3864                         bt_dev_err(hdev, "killing stalled connection %pMR",
3865                                    &c->dst);
3866                         hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3867                 }
3868         }
3869
3870         rcu_read_unlock();
3871 }
3872
3873 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3874                                       int *quote)
3875 {
3876         struct hci_conn_hash *h = &hdev->conn_hash;
3877         struct hci_chan *chan = NULL;
3878         unsigned int num = 0, min = ~0, cur_prio = 0;
3879         struct hci_conn *conn;
3880         int cnt, q, conn_num = 0;
3881
3882         BT_DBG("%s", hdev->name);
3883
3884         rcu_read_lock();
3885
3886         list_for_each_entry_rcu(conn, &h->list, list) {
3887                 struct hci_chan *tmp;
3888
3889                 if (conn->type != type)
3890                         continue;
3891
3892                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3893                         continue;
3894
3895                 conn_num++;
3896
3897                 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3898                         struct sk_buff *skb;
3899
3900                         if (skb_queue_empty(&tmp->data_q))
3901                                 continue;
3902
3903                         skb = skb_peek(&tmp->data_q);
3904                         if (skb->priority < cur_prio)
3905                                 continue;
3906
3907                         if (skb->priority > cur_prio) {
3908                                 num = 0;
3909                                 min = ~0;
3910                                 cur_prio = skb->priority;
3911                         }
3912
3913                         num++;
3914
3915                         if (conn->sent < min) {
3916                                 min  = conn->sent;
3917                                 chan = tmp;
3918                         }
3919                 }
3920
3921                 if (hci_conn_num(hdev, type) == conn_num)
3922                         break;
3923         }
3924
3925         rcu_read_unlock();
3926
3927         if (!chan)
3928                 return NULL;
3929
3930         switch (chan->conn->type) {
3931         case ACL_LINK:
3932                 cnt = hdev->acl_cnt;
3933                 break;
3934         case AMP_LINK:
3935                 cnt = hdev->block_cnt;
3936                 break;
3937         case SCO_LINK:
3938         case ESCO_LINK:
3939                 cnt = hdev->sco_cnt;
3940                 break;
3941         case LE_LINK:
3942                 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3943                 break;
3944         default:
3945                 cnt = 0;
3946                 bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
3947         }
3948
3949         q = cnt / num;
3950         *quote = q ? q : 1;
3951         BT_DBG("chan %p quote %d", chan, *quote);
3952         return chan;
3953 }
3954
3955 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3956 {
3957         struct hci_conn_hash *h = &hdev->conn_hash;
3958         struct hci_conn *conn;
3959         int num = 0;
3960
3961         BT_DBG("%s", hdev->name);
3962
3963         rcu_read_lock();
3964
3965         list_for_each_entry_rcu(conn, &h->list, list) {
3966                 struct hci_chan *chan;
3967
3968                 if (conn->type != type)
3969                         continue;
3970
3971                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3972                         continue;
3973
3974                 num++;
3975
3976                 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3977                         struct sk_buff *skb;
3978
3979                         if (chan->sent) {
3980                                 chan->sent = 0;
3981                                 continue;
3982                         }
3983
3984                         if (skb_queue_empty(&chan->data_q))
3985                                 continue;
3986
3987                         skb = skb_peek(&chan->data_q);
3988                         if (skb->priority >= HCI_PRIO_MAX - 1)
3989                                 continue;
3990
3991                         skb->priority = HCI_PRIO_MAX - 1;
3992
3993                         BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3994                                skb->priority);
3995                 }
3996
3997                 if (hci_conn_num(hdev, type) == num)
3998                         break;
3999         }
4000
4001         rcu_read_unlock();
4002
4003 }
4004
4005 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4006 {
4007         /* Calculate count of blocks used by this packet */
4008         return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4009 }
4010
4011 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4012 {
4013         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4014                 /* ACL tx timeout must be longer than maximum
4015                  * link supervision timeout (40.9 seconds) */
4016                 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4017                                        HCI_ACL_TX_TIMEOUT))
4018                         hci_link_tx_to(hdev, ACL_LINK);
4019         }
4020 }
4021
4022 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4023 {
4024         unsigned int cnt = hdev->acl_cnt;
4025         struct hci_chan *chan;
4026         struct sk_buff *skb;
4027         int quote;
4028
4029         __check_timeout(hdev, cnt);
4030
4031         while (hdev->acl_cnt &&
4032                (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4033                 u32 priority = (skb_peek(&chan->data_q))->priority;
4034                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4035                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4036                                skb->len, skb->priority);
4037
4038                         /* Stop if priority has changed */
4039                         if (skb->priority < priority)
4040                                 break;
4041
4042                         skb = skb_dequeue(&chan->data_q);
4043
4044                         hci_conn_enter_active_mode(chan->conn,
4045                                                    bt_cb(skb)->force_active);
4046
4047                         hci_send_frame(hdev, skb);
4048                         hdev->acl_last_tx = jiffies;
4049
4050                         hdev->acl_cnt--;
4051                         chan->sent++;
4052                         chan->conn->sent++;
4053                 }
4054         }
4055
4056         if (cnt != hdev->acl_cnt)
4057                 hci_prio_recalculate(hdev, ACL_LINK);
4058 }
4059
4060 static void hci_sched_acl_blk(struct hci_dev *hdev)
4061 {
4062         unsigned int cnt = hdev->block_cnt;
4063         struct hci_chan *chan;
4064         struct sk_buff *skb;
4065         int quote;
4066         u8 type;
4067
4068         __check_timeout(hdev, cnt);
4069
4070         BT_DBG("%s", hdev->name);
4071
4072         if (hdev->dev_type == HCI_AMP)
4073                 type = AMP_LINK;
4074         else
4075                 type = ACL_LINK;
4076
4077         while (hdev->block_cnt > 0 &&
4078                (chan = hci_chan_sent(hdev, type, &quote))) {
4079                 u32 priority = (skb_peek(&chan->data_q))->priority;
4080                 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4081                         int blocks;
4082
4083                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4084                                skb->len, skb->priority);
4085
4086                         /* Stop if priority has changed */
4087                         if (skb->priority < priority)
4088                                 break;
4089
4090                         skb = skb_dequeue(&chan->data_q);
4091
4092                         blocks = __get_blocks(hdev, skb);
4093                         if (blocks > hdev->block_cnt)
4094                                 return;
4095
4096                         hci_conn_enter_active_mode(chan->conn,
4097                                                    bt_cb(skb)->force_active);
4098
4099                         hci_send_frame(hdev, skb);
4100                         hdev->acl_last_tx = jiffies;
4101
4102                         hdev->block_cnt -= blocks;
4103                         quote -= blocks;
4104
4105                         chan->sent += blocks;
4106                         chan->conn->sent += blocks;
4107                 }
4108         }
4109
4110         if (cnt != hdev->block_cnt)
4111                 hci_prio_recalculate(hdev, type);
4112 }
4113
4114 static void hci_sched_acl(struct hci_dev *hdev)
4115 {
4116         BT_DBG("%s", hdev->name);
4117
4118         /* No ACL link over BR/EDR controller */
4119         if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4120                 return;
4121
4122         /* No AMP link over AMP controller */
4123         if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4124                 return;
4125
4126         switch (hdev->flow_ctl_mode) {
4127         case HCI_FLOW_CTL_MODE_PACKET_BASED:
4128                 hci_sched_acl_pkt(hdev);
4129                 break;
4130
4131         case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4132                 hci_sched_acl_blk(hdev);
4133                 break;
4134         }
4135 }
4136
4137 /* Schedule SCO */
4138 static void hci_sched_sco(struct hci_dev *hdev)
4139 {
4140         struct hci_conn *conn;
4141         struct sk_buff *skb;
4142         int quote;
4143
4144         BT_DBG("%s", hdev->name);
4145
4146         if (!hci_conn_num(hdev, SCO_LINK))
4147                 return;
4148
4149         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4150                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4151                         BT_DBG("skb %p len %d", skb, skb->len);
4152                         hci_send_frame(hdev, skb);
4153
4154                         conn->sent++;
4155                         if (conn->sent == ~0)
4156                                 conn->sent = 0;
4157                 }
4158         }
4159 }
4160
4161 static void hci_sched_esco(struct hci_dev *hdev)
4162 {
4163         struct hci_conn *conn;
4164         struct sk_buff *skb;
4165         int quote;
4166
4167         BT_DBG("%s", hdev->name);
4168
4169         if (!hci_conn_num(hdev, ESCO_LINK))
4170                 return;
4171
4172         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4173                                                      &quote))) {
4174                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4175                         BT_DBG("skb %p len %d", skb, skb->len);
4176                         hci_send_frame(hdev, skb);
4177
4178                         conn->sent++;
4179                         if (conn->sent == ~0)
4180                                 conn->sent = 0;
4181                 }
4182         }
4183 }
4184
4185 static void hci_sched_le(struct hci_dev *hdev)
4186 {
4187         struct hci_chan *chan;
4188         struct sk_buff *skb;
4189         int quote, cnt, tmp;
4190
4191         BT_DBG("%s", hdev->name);
4192
4193         if (!hci_conn_num(hdev, LE_LINK))
4194                 return;
4195
4196         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4197                 /* LE tx timeout must be longer than maximum
4198                  * link supervision timeout (40.9 seconds) */
4199                 if (!hdev->le_cnt && hdev->le_pkts &&
4200                     time_after(jiffies, hdev->le_last_tx + HZ * 45))
4201                         hci_link_tx_to(hdev, LE_LINK);
4202         }
4203
4204         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4205         tmp = cnt;
4206         while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4207                 u32 priority = (skb_peek(&chan->data_q))->priority;
4208                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4209                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4210                                skb->len, skb->priority);
4211
4212                         /* Stop if priority has changed */
4213                         if (skb->priority < priority)
4214                                 break;
4215
4216                         skb = skb_dequeue(&chan->data_q);
4217
4218                         hci_send_frame(hdev, skb);
4219                         hdev->le_last_tx = jiffies;
4220
4221                         cnt--;
4222                         chan->sent++;
4223                         chan->conn->sent++;
4224                 }
4225         }
4226
4227         if (hdev->le_pkts)
4228                 hdev->le_cnt = cnt;
4229         else
4230                 hdev->acl_cnt = cnt;
4231
4232         if (cnt != tmp)
4233                 hci_prio_recalculate(hdev, LE_LINK);
4234 }
4235
4236 static void hci_tx_work(struct work_struct *work)
4237 {
4238         struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4239         struct sk_buff *skb;
4240
4241         BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4242                hdev->sco_cnt, hdev->le_cnt);
4243
4244         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4245                 /* Schedule queues and send stuff to HCI driver */
4246                 hci_sched_acl(hdev);
4247                 hci_sched_sco(hdev);
4248                 hci_sched_esco(hdev);
4249                 hci_sched_le(hdev);
4250         }
4251
4252         /* Send next queued raw (unknown type) packet */
4253         while ((skb = skb_dequeue(&hdev->raw_q)))
4254                 hci_send_frame(hdev, skb);
4255 }
4256
4257 /* ----- HCI RX task (incoming data processing) ----- */
4258
4259 /* ACL data packet */
4260 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4261 {
4262         struct hci_acl_hdr *hdr = (void *) skb->data;
4263         struct hci_conn *conn;
4264         __u16 handle, flags;
4265
4266         skb_pull(skb, HCI_ACL_HDR_SIZE);
4267
4268         handle = __le16_to_cpu(hdr->handle);
4269         flags  = hci_flags(handle);
4270         handle = hci_handle(handle);
4271
4272         BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4273                handle, flags);
4274
4275         hdev->stat.acl_rx++;
4276
4277         hci_dev_lock(hdev);
4278         conn = hci_conn_hash_lookup_handle(hdev, handle);
4279         hci_dev_unlock(hdev);
4280
4281         if (conn) {
4282                 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4283
4284                 /* Send to upper protocol */
4285                 l2cap_recv_acldata(conn, skb, flags);
4286                 return;
4287         } else {
4288                 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4289                            handle);
4290         }
4291
4292         kfree_skb(skb);
4293 }
4294
4295 /* SCO data packet */
4296 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4297 {
4298         struct hci_sco_hdr *hdr = (void *) skb->data;
4299         struct hci_conn *conn;
4300         __u16 handle;
4301
4302         skb_pull(skb, HCI_SCO_HDR_SIZE);
4303
4304         handle = __le16_to_cpu(hdr->handle);
4305
4306         BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4307
4308         hdev->stat.sco_rx++;
4309
4310         hci_dev_lock(hdev);
4311         conn = hci_conn_hash_lookup_handle(hdev, handle);
4312         hci_dev_unlock(hdev);
4313
4314         if (conn) {
4315                 /* Send to upper protocol */
4316                 sco_recv_scodata(conn, skb);
4317                 return;
4318         } else {
4319                 bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4320                            handle);
4321         }
4322
4323         kfree_skb(skb);
4324 }
4325
4326 static bool hci_req_is_complete(struct hci_dev *hdev)
4327 {
4328         struct sk_buff *skb;
4329
4330         skb = skb_peek(&hdev->cmd_q);
4331         if (!skb)
4332                 return true;
4333
4334         return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4335 }
4336
4337 static void hci_resend_last(struct hci_dev *hdev)
4338 {
4339         struct hci_command_hdr *sent;
4340         struct sk_buff *skb;
4341         u16 opcode;
4342
4343         if (!hdev->sent_cmd)
4344                 return;
4345
4346         sent = (void *) hdev->sent_cmd->data;
4347         opcode = __le16_to_cpu(sent->opcode);
4348         if (opcode == HCI_OP_RESET)
4349                 return;
4350
4351         skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4352         if (!skb)
4353                 return;
4354
4355         skb_queue_head(&hdev->cmd_q, skb);
4356         queue_work(hdev->workqueue, &hdev->cmd_work);
4357 }
4358
4359 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4360                           hci_req_complete_t *req_complete,
4361                           hci_req_complete_skb_t *req_complete_skb)
4362 {
4363         struct sk_buff *skb;
4364         unsigned long flags;
4365
4366         BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4367
4368         /* If the completed command doesn't match the last one that was
4369          * sent we need to do special handling of it.
4370          */
4371         if (!hci_sent_cmd_data(hdev, opcode)) {
4372                 /* Some CSR based controllers generate a spontaneous
4373                  * reset complete event during init and any pending
4374                  * command will never be completed. In such a case we
4375                  * need to resend whatever was the last sent
4376                  * command.
4377                  */
4378                 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4379                         hci_resend_last(hdev);
4380
4381                 return;
4382         }
4383
4384         /* If we reach this point this event matches the last command sent */
4385         hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4386
4387         /* If the command succeeded and there's still more commands in
4388          * this request the request is not yet complete.
4389          */
4390         if (!status && !hci_req_is_complete(hdev))
4391                 return;
4392
4393         /* If this was the last command in a request the complete
4394          * callback would be found in hdev->sent_cmd instead of the
4395          * command queue (hdev->cmd_q).
4396          */
4397         if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4398                 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4399                 return;
4400         }
4401
4402         if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4403                 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4404                 return;
4405         }
4406
4407         /* Remove all pending commands belonging to this request */
4408         spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4409         while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4410                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4411                         __skb_queue_head(&hdev->cmd_q, skb);
4412                         break;
4413                 }
4414
4415                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4416                         *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4417                 else
4418                         *req_complete = bt_cb(skb)->hci.req_complete;
4419                 kfree_skb(skb);
4420         }
4421         spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4422 }
4423
4424 static void hci_rx_work(struct work_struct *work)
4425 {
4426         struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4427         struct sk_buff *skb;
4428
4429         BT_DBG("%s", hdev->name);
4430
4431         while ((skb = skb_dequeue(&hdev->rx_q))) {
4432                 /* Send copy to monitor */
4433                 hci_send_to_monitor(hdev, skb);
4434
4435                 if (atomic_read(&hdev->promisc)) {
4436                         /* Send copy to the sockets */
4437                         hci_send_to_sock(hdev, skb);
4438                 }
4439
4440                 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4441                         kfree_skb(skb);
4442                         continue;
4443                 }
4444
4445                 if (test_bit(HCI_INIT, &hdev->flags)) {
4446                         /* Don't process data packets in this states. */
4447                         switch (hci_skb_pkt_type(skb)) {
4448                         case HCI_ACLDATA_PKT:
4449                         case HCI_SCODATA_PKT:
4450                                 kfree_skb(skb);
4451                                 continue;
4452                         }
4453                 }
4454
4455                 /* Process frame */
4456                 switch (hci_skb_pkt_type(skb)) {
4457                 case HCI_EVENT_PKT:
4458                         BT_DBG("%s Event packet", hdev->name);
4459                         hci_event_packet(hdev, skb);
4460                         break;
4461
4462                 case HCI_ACLDATA_PKT:
4463                         BT_DBG("%s ACL data packet", hdev->name);
4464                         hci_acldata_packet(hdev, skb);
4465                         break;
4466
4467                 case HCI_SCODATA_PKT:
4468                         BT_DBG("%s SCO data packet", hdev->name);
4469                         hci_scodata_packet(hdev, skb);
4470                         break;
4471
4472                 default:
4473                         kfree_skb(skb);
4474                         break;
4475                 }
4476         }
4477 }
4478
4479 static void hci_cmd_work(struct work_struct *work)
4480 {
4481         struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4482         struct sk_buff *skb;
4483
4484         BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4485                atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4486
4487         /* Send queued commands */
4488         if (atomic_read(&hdev->cmd_cnt)) {
4489                 skb = skb_dequeue(&hdev->cmd_q);
4490                 if (!skb)
4491                         return;
4492
4493                 kfree_skb(hdev->sent_cmd);
4494
4495                 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4496                 if (hdev->sent_cmd) {
4497                         if (hci_req_status_pend(hdev))
4498                                 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4499                         atomic_dec(&hdev->cmd_cnt);
4500                         hci_send_frame(hdev, skb);
4501                         if (test_bit(HCI_RESET, &hdev->flags))
4502                                 cancel_delayed_work(&hdev->cmd_timer);
4503                         else
4504                                 schedule_delayed_work(&hdev->cmd_timer,
4505                                                       HCI_CMD_TIMEOUT);
4506                 } else {
4507                         skb_queue_head(&hdev->cmd_q, skb);
4508                         queue_work(hdev->workqueue, &hdev->cmd_work);
4509                 }
4510         }
4511 }