]> asedeno.scripts.mit.edu Git - linux.git/blob - net/bluetooth/hci_core.c
Linux 5.6-rc7
[linux.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <linux/property.h>
34 #include <asm/unaligned.h>
35
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 #include <net/bluetooth/l2cap.h>
39 #include <net/bluetooth/mgmt.h>
40
41 #include "hci_request.h"
42 #include "hci_debugfs.h"
43 #include "smp.h"
44 #include "leds.h"
45
46 static void hci_rx_work(struct work_struct *work);
47 static void hci_cmd_work(struct work_struct *work);
48 static void hci_tx_work(struct work_struct *work);
49
50 /* HCI device list */
51 LIST_HEAD(hci_dev_list);
52 DEFINE_RWLOCK(hci_dev_list_lock);
53
54 /* HCI callback list */
55 LIST_HEAD(hci_cb_list);
56 DEFINE_MUTEX(hci_cb_list_lock);
57
58 /* HCI ID Numbering */
59 static DEFINE_IDA(hci_index_ida);
60
61 /* ---- HCI debugfs entries ---- */
62
63 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
64                              size_t count, loff_t *ppos)
65 {
66         struct hci_dev *hdev = file->private_data;
67         char buf[3];
68
69         buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
70         buf[1] = '\n';
71         buf[2] = '\0';
72         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
73 }
74
75 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
76                               size_t count, loff_t *ppos)
77 {
78         struct hci_dev *hdev = file->private_data;
79         struct sk_buff *skb;
80         bool enable;
81         int err;
82
83         if (!test_bit(HCI_UP, &hdev->flags))
84                 return -ENETDOWN;
85
86         err = kstrtobool_from_user(user_buf, count, &enable);
87         if (err)
88                 return err;
89
90         if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
91                 return -EALREADY;
92
93         hci_req_sync_lock(hdev);
94         if (enable)
95                 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
96                                      HCI_CMD_TIMEOUT);
97         else
98                 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
99                                      HCI_CMD_TIMEOUT);
100         hci_req_sync_unlock(hdev);
101
102         if (IS_ERR(skb))
103                 return PTR_ERR(skb);
104
105         kfree_skb(skb);
106
107         hci_dev_change_flag(hdev, HCI_DUT_MODE);
108
109         return count;
110 }
111
112 static const struct file_operations dut_mode_fops = {
113         .open           = simple_open,
114         .read           = dut_mode_read,
115         .write          = dut_mode_write,
116         .llseek         = default_llseek,
117 };
118
119 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
120                                 size_t count, loff_t *ppos)
121 {
122         struct hci_dev *hdev = file->private_data;
123         char buf[3];
124
125         buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
126         buf[1] = '\n';
127         buf[2] = '\0';
128         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
129 }
130
131 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
132                                  size_t count, loff_t *ppos)
133 {
134         struct hci_dev *hdev = file->private_data;
135         bool enable;
136         int err;
137
138         err = kstrtobool_from_user(user_buf, count, &enable);
139         if (err)
140                 return err;
141
142         /* When the diagnostic flags are not persistent and the transport
143          * is not active or in user channel operation, then there is no need
144          * for the vendor callback. Instead just store the desired value and
145          * the setting will be programmed when the controller gets powered on.
146          */
147         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
148             (!test_bit(HCI_RUNNING, &hdev->flags) ||
149              hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
150                 goto done;
151
152         hci_req_sync_lock(hdev);
153         err = hdev->set_diag(hdev, enable);
154         hci_req_sync_unlock(hdev);
155
156         if (err < 0)
157                 return err;
158
159 done:
160         if (enable)
161                 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
162         else
163                 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
164
165         return count;
166 }
167
168 static const struct file_operations vendor_diag_fops = {
169         .open           = simple_open,
170         .read           = vendor_diag_read,
171         .write          = vendor_diag_write,
172         .llseek         = default_llseek,
173 };
174
175 static void hci_debugfs_create_basic(struct hci_dev *hdev)
176 {
177         debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
178                             &dut_mode_fops);
179
180         if (hdev->set_diag)
181                 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
182                                     &vendor_diag_fops);
183 }
184
185 static int hci_reset_req(struct hci_request *req, unsigned long opt)
186 {
187         BT_DBG("%s %ld", req->hdev->name, opt);
188
189         /* Reset device */
190         set_bit(HCI_RESET, &req->hdev->flags);
191         hci_req_add(req, HCI_OP_RESET, 0, NULL);
192         return 0;
193 }
194
195 static void bredr_init(struct hci_request *req)
196 {
197         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
198
199         /* Read Local Supported Features */
200         hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
201
202         /* Read Local Version */
203         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
204
205         /* Read BD Address */
206         hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
207 }
208
209 static void amp_init1(struct hci_request *req)
210 {
211         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
212
213         /* Read Local Version */
214         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
215
216         /* Read Local Supported Commands */
217         hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
218
219         /* Read Local AMP Info */
220         hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
221
222         /* Read Data Blk size */
223         hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
224
225         /* Read Flow Control Mode */
226         hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
227
228         /* Read Location Data */
229         hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
230 }
231
232 static int amp_init2(struct hci_request *req)
233 {
234         /* Read Local Supported Features. Not all AMP controllers
235          * support this so it's placed conditionally in the second
236          * stage init.
237          */
238         if (req->hdev->commands[14] & 0x20)
239                 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
240
241         return 0;
242 }
243
244 static int hci_init1_req(struct hci_request *req, unsigned long opt)
245 {
246         struct hci_dev *hdev = req->hdev;
247
248         BT_DBG("%s %ld", hdev->name, opt);
249
250         /* Reset */
251         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
252                 hci_reset_req(req, 0);
253
254         switch (hdev->dev_type) {
255         case HCI_PRIMARY:
256                 bredr_init(req);
257                 break;
258         case HCI_AMP:
259                 amp_init1(req);
260                 break;
261         default:
262                 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
263                 break;
264         }
265
266         return 0;
267 }
268
269 static void bredr_setup(struct hci_request *req)
270 {
271         __le16 param;
272         __u8 flt_type;
273
274         /* Read Buffer Size (ACL mtu, max pkt, etc.) */
275         hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
276
277         /* Read Class of Device */
278         hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
279
280         /* Read Local Name */
281         hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
282
283         /* Read Voice Setting */
284         hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
285
286         /* Read Number of Supported IAC */
287         hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
288
289         /* Read Current IAC LAP */
290         hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
291
292         /* Clear Event Filters */
293         flt_type = HCI_FLT_CLEAR_ALL;
294         hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
295
296         /* Connection accept timeout ~20 secs */
297         param = cpu_to_le16(0x7d00);
298         hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
299 }
300
301 static void le_setup(struct hci_request *req)
302 {
303         struct hci_dev *hdev = req->hdev;
304
305         /* Read LE Buffer Size */
306         hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
307
308         /* Read LE Local Supported Features */
309         hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
310
311         /* Read LE Supported States */
312         hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
313
314         /* LE-only controllers have LE implicitly enabled */
315         if (!lmp_bredr_capable(hdev))
316                 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
317 }
318
319 static void hci_setup_event_mask(struct hci_request *req)
320 {
321         struct hci_dev *hdev = req->hdev;
322
323         /* The second byte is 0xff instead of 0x9f (two reserved bits
324          * disabled) since a Broadcom 1.2 dongle doesn't respond to the
325          * command otherwise.
326          */
327         u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
328
329         /* CSR 1.1 dongles does not accept any bitfield so don't try to set
330          * any event mask for pre 1.2 devices.
331          */
332         if (hdev->hci_ver < BLUETOOTH_VER_1_2)
333                 return;
334
335         if (lmp_bredr_capable(hdev)) {
336                 events[4] |= 0x01; /* Flow Specification Complete */
337         } else {
338                 /* Use a different default for LE-only devices */
339                 memset(events, 0, sizeof(events));
340                 events[1] |= 0x20; /* Command Complete */
341                 events[1] |= 0x40; /* Command Status */
342                 events[1] |= 0x80; /* Hardware Error */
343
344                 /* If the controller supports the Disconnect command, enable
345                  * the corresponding event. In addition enable packet flow
346                  * control related events.
347                  */
348                 if (hdev->commands[0] & 0x20) {
349                         events[0] |= 0x10; /* Disconnection Complete */
350                         events[2] |= 0x04; /* Number of Completed Packets */
351                         events[3] |= 0x02; /* Data Buffer Overflow */
352                 }
353
354                 /* If the controller supports the Read Remote Version
355                  * Information command, enable the corresponding event.
356                  */
357                 if (hdev->commands[2] & 0x80)
358                         events[1] |= 0x08; /* Read Remote Version Information
359                                             * Complete
360                                             */
361
362                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
363                         events[0] |= 0x80; /* Encryption Change */
364                         events[5] |= 0x80; /* Encryption Key Refresh Complete */
365                 }
366         }
367
368         if (lmp_inq_rssi_capable(hdev) ||
369             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
370                 events[4] |= 0x02; /* Inquiry Result with RSSI */
371
372         if (lmp_ext_feat_capable(hdev))
373                 events[4] |= 0x04; /* Read Remote Extended Features Complete */
374
375         if (lmp_esco_capable(hdev)) {
376                 events[5] |= 0x08; /* Synchronous Connection Complete */
377                 events[5] |= 0x10; /* Synchronous Connection Changed */
378         }
379
380         if (lmp_sniffsubr_capable(hdev))
381                 events[5] |= 0x20; /* Sniff Subrating */
382
383         if (lmp_pause_enc_capable(hdev))
384                 events[5] |= 0x80; /* Encryption Key Refresh Complete */
385
386         if (lmp_ext_inq_capable(hdev))
387                 events[5] |= 0x40; /* Extended Inquiry Result */
388
389         if (lmp_no_flush_capable(hdev))
390                 events[7] |= 0x01; /* Enhanced Flush Complete */
391
392         if (lmp_lsto_capable(hdev))
393                 events[6] |= 0x80; /* Link Supervision Timeout Changed */
394
395         if (lmp_ssp_capable(hdev)) {
396                 events[6] |= 0x01;      /* IO Capability Request */
397                 events[6] |= 0x02;      /* IO Capability Response */
398                 events[6] |= 0x04;      /* User Confirmation Request */
399                 events[6] |= 0x08;      /* User Passkey Request */
400                 events[6] |= 0x10;      /* Remote OOB Data Request */
401                 events[6] |= 0x20;      /* Simple Pairing Complete */
402                 events[7] |= 0x04;      /* User Passkey Notification */
403                 events[7] |= 0x08;      /* Keypress Notification */
404                 events[7] |= 0x10;      /* Remote Host Supported
405                                          * Features Notification
406                                          */
407         }
408
409         if (lmp_le_capable(hdev))
410                 events[7] |= 0x20;      /* LE Meta-Event */
411
412         hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
413 }
414
415 static int hci_init2_req(struct hci_request *req, unsigned long opt)
416 {
417         struct hci_dev *hdev = req->hdev;
418
419         if (hdev->dev_type == HCI_AMP)
420                 return amp_init2(req);
421
422         if (lmp_bredr_capable(hdev))
423                 bredr_setup(req);
424         else
425                 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
426
427         if (lmp_le_capable(hdev))
428                 le_setup(req);
429
430         /* All Bluetooth 1.2 and later controllers should support the
431          * HCI command for reading the local supported commands.
432          *
433          * Unfortunately some controllers indicate Bluetooth 1.2 support,
434          * but do not have support for this command. If that is the case,
435          * the driver can quirk the behavior and skip reading the local
436          * supported commands.
437          */
438         if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
439             !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
440                 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
441
442         if (lmp_ssp_capable(hdev)) {
443                 /* When SSP is available, then the host features page
444                  * should also be available as well. However some
445                  * controllers list the max_page as 0 as long as SSP
446                  * has not been enabled. To achieve proper debugging
447                  * output, force the minimum max_page to 1 at least.
448                  */
449                 hdev->max_page = 0x01;
450
451                 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
452                         u8 mode = 0x01;
453
454                         hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
455                                     sizeof(mode), &mode);
456                 } else {
457                         struct hci_cp_write_eir cp;
458
459                         memset(hdev->eir, 0, sizeof(hdev->eir));
460                         memset(&cp, 0, sizeof(cp));
461
462                         hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
463                 }
464         }
465
466         if (lmp_inq_rssi_capable(hdev) ||
467             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
468                 u8 mode;
469
470                 /* If Extended Inquiry Result events are supported, then
471                  * they are clearly preferred over Inquiry Result with RSSI
472                  * events.
473                  */
474                 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
475
476                 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
477         }
478
479         if (lmp_inq_tx_pwr_capable(hdev))
480                 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
481
482         if (lmp_ext_feat_capable(hdev)) {
483                 struct hci_cp_read_local_ext_features cp;
484
485                 cp.page = 0x01;
486                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
487                             sizeof(cp), &cp);
488         }
489
490         if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
491                 u8 enable = 1;
492                 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
493                             &enable);
494         }
495
496         return 0;
497 }
498
499 static void hci_setup_link_policy(struct hci_request *req)
500 {
501         struct hci_dev *hdev = req->hdev;
502         struct hci_cp_write_def_link_policy cp;
503         u16 link_policy = 0;
504
505         if (lmp_rswitch_capable(hdev))
506                 link_policy |= HCI_LP_RSWITCH;
507         if (lmp_hold_capable(hdev))
508                 link_policy |= HCI_LP_HOLD;
509         if (lmp_sniff_capable(hdev))
510                 link_policy |= HCI_LP_SNIFF;
511         if (lmp_park_capable(hdev))
512                 link_policy |= HCI_LP_PARK;
513
514         cp.policy = cpu_to_le16(link_policy);
515         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
516 }
517
518 static void hci_set_le_support(struct hci_request *req)
519 {
520         struct hci_dev *hdev = req->hdev;
521         struct hci_cp_write_le_host_supported cp;
522
523         /* LE-only devices do not support explicit enablement */
524         if (!lmp_bredr_capable(hdev))
525                 return;
526
527         memset(&cp, 0, sizeof(cp));
528
529         if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
530                 cp.le = 0x01;
531                 cp.simul = 0x00;
532         }
533
534         if (cp.le != lmp_host_le_capable(hdev))
535                 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
536                             &cp);
537 }
538
539 static void hci_set_event_mask_page_2(struct hci_request *req)
540 {
541         struct hci_dev *hdev = req->hdev;
542         u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
543         bool changed = false;
544
545         /* If Connectionless Slave Broadcast master role is supported
546          * enable all necessary events for it.
547          */
548         if (lmp_csb_master_capable(hdev)) {
549                 events[1] |= 0x40;      /* Triggered Clock Capture */
550                 events[1] |= 0x80;      /* Synchronization Train Complete */
551                 events[2] |= 0x10;      /* Slave Page Response Timeout */
552                 events[2] |= 0x20;      /* CSB Channel Map Change */
553                 changed = true;
554         }
555
556         /* If Connectionless Slave Broadcast slave role is supported
557          * enable all necessary events for it.
558          */
559         if (lmp_csb_slave_capable(hdev)) {
560                 events[2] |= 0x01;      /* Synchronization Train Received */
561                 events[2] |= 0x02;      /* CSB Receive */
562                 events[2] |= 0x04;      /* CSB Timeout */
563                 events[2] |= 0x08;      /* Truncated Page Complete */
564                 changed = true;
565         }
566
567         /* Enable Authenticated Payload Timeout Expired event if supported */
568         if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
569                 events[2] |= 0x80;
570                 changed = true;
571         }
572
573         /* Some Broadcom based controllers indicate support for Set Event
574          * Mask Page 2 command, but then actually do not support it. Since
575          * the default value is all bits set to zero, the command is only
576          * required if the event mask has to be changed. In case no change
577          * to the event mask is needed, skip this command.
578          */
579         if (changed)
580                 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
581                             sizeof(events), events);
582 }
583
584 static int hci_init3_req(struct hci_request *req, unsigned long opt)
585 {
586         struct hci_dev *hdev = req->hdev;
587         u8 p;
588
589         hci_setup_event_mask(req);
590
591         if (hdev->commands[6] & 0x20 &&
592             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
593                 struct hci_cp_read_stored_link_key cp;
594
595                 bacpy(&cp.bdaddr, BDADDR_ANY);
596                 cp.read_all = 0x01;
597                 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
598         }
599
600         if (hdev->commands[5] & 0x10)
601                 hci_setup_link_policy(req);
602
603         if (hdev->commands[8] & 0x01)
604                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
605
606         /* Some older Broadcom based Bluetooth 1.2 controllers do not
607          * support the Read Page Scan Type command. Check support for
608          * this command in the bit mask of supported commands.
609          */
610         if (hdev->commands[13] & 0x01)
611                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
612
613         if (lmp_le_capable(hdev)) {
614                 u8 events[8];
615
616                 memset(events, 0, sizeof(events));
617
618                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
619                         events[0] |= 0x10;      /* LE Long Term Key Request */
620
621                 /* If controller supports the Connection Parameters Request
622                  * Link Layer Procedure, enable the corresponding event.
623                  */
624                 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
625                         events[0] |= 0x20;      /* LE Remote Connection
626                                                  * Parameter Request
627                                                  */
628
629                 /* If the controller supports the Data Length Extension
630                  * feature, enable the corresponding event.
631                  */
632                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
633                         events[0] |= 0x40;      /* LE Data Length Change */
634
635                 /* If the controller supports Extended Scanner Filter
636                  * Policies, enable the correspondig event.
637                  */
638                 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
639                         events[1] |= 0x04;      /* LE Direct Advertising
640                                                  * Report
641                                                  */
642
643                 /* If the controller supports Channel Selection Algorithm #2
644                  * feature, enable the corresponding event.
645                  */
646                 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
647                         events[2] |= 0x08;      /* LE Channel Selection
648                                                  * Algorithm
649                                                  */
650
651                 /* If the controller supports the LE Set Scan Enable command,
652                  * enable the corresponding advertising report event.
653                  */
654                 if (hdev->commands[26] & 0x08)
655                         events[0] |= 0x02;      /* LE Advertising Report */
656
657                 /* If the controller supports the LE Create Connection
658                  * command, enable the corresponding event.
659                  */
660                 if (hdev->commands[26] & 0x10)
661                         events[0] |= 0x01;      /* LE Connection Complete */
662
663                 /* If the controller supports the LE Connection Update
664                  * command, enable the corresponding event.
665                  */
666                 if (hdev->commands[27] & 0x04)
667                         events[0] |= 0x04;      /* LE Connection Update
668                                                  * Complete
669                                                  */
670
671                 /* If the controller supports the LE Read Remote Used Features
672                  * command, enable the corresponding event.
673                  */
674                 if (hdev->commands[27] & 0x20)
675                         events[0] |= 0x08;      /* LE Read Remote Used
676                                                  * Features Complete
677                                                  */
678
679                 /* If the controller supports the LE Read Local P-256
680                  * Public Key command, enable the corresponding event.
681                  */
682                 if (hdev->commands[34] & 0x02)
683                         events[0] |= 0x80;      /* LE Read Local P-256
684                                                  * Public Key Complete
685                                                  */
686
687                 /* If the controller supports the LE Generate DHKey
688                  * command, enable the corresponding event.
689                  */
690                 if (hdev->commands[34] & 0x04)
691                         events[1] |= 0x01;      /* LE Generate DHKey Complete */
692
693                 /* If the controller supports the LE Set Default PHY or
694                  * LE Set PHY commands, enable the corresponding event.
695                  */
696                 if (hdev->commands[35] & (0x20 | 0x40))
697                         events[1] |= 0x08;        /* LE PHY Update Complete */
698
699                 /* If the controller supports LE Set Extended Scan Parameters
700                  * and LE Set Extended Scan Enable commands, enable the
701                  * corresponding event.
702                  */
703                 if (use_ext_scan(hdev))
704                         events[1] |= 0x10;      /* LE Extended Advertising
705                                                  * Report
706                                                  */
707
708                 /* If the controller supports the LE Extended Create Connection
709                  * command, enable the corresponding event.
710                  */
711                 if (use_ext_conn(hdev))
712                         events[1] |= 0x02;      /* LE Enhanced Connection
713                                                  * Complete
714                                                  */
715
716                 /* If the controller supports the LE Extended Advertising
717                  * command, enable the corresponding event.
718                  */
719                 if (ext_adv_capable(hdev))
720                         events[2] |= 0x02;      /* LE Advertising Set
721                                                  * Terminated
722                                                  */
723
724                 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
725                             events);
726
727                 /* Read LE Advertising Channel TX Power */
728                 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
729                         /* HCI TS spec forbids mixing of legacy and extended
730                          * advertising commands wherein READ_ADV_TX_POWER is
731                          * also included. So do not call it if extended adv
732                          * is supported otherwise controller will return
733                          * COMMAND_DISALLOWED for extended commands.
734                          */
735                         hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
736                 }
737
738                 if (hdev->commands[26] & 0x40) {
739                         /* Read LE White List Size */
740                         hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
741                                     0, NULL);
742                 }
743
744                 if (hdev->commands[26] & 0x80) {
745                         /* Clear LE White List */
746                         hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
747                 }
748
749                 if (hdev->commands[34] & 0x40) {
750                         /* Read LE Resolving List Size */
751                         hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
752                                     0, NULL);
753                 }
754
755                 if (hdev->commands[34] & 0x20) {
756                         /* Clear LE Resolving List */
757                         hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
758                 }
759
760                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
761                         /* Read LE Maximum Data Length */
762                         hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
763
764                         /* Read LE Suggested Default Data Length */
765                         hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
766                 }
767
768                 if (ext_adv_capable(hdev)) {
769                         /* Read LE Number of Supported Advertising Sets */
770                         hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
771                                     0, NULL);
772                 }
773
774                 hci_set_le_support(req);
775         }
776
777         /* Read features beyond page 1 if available */
778         for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
779                 struct hci_cp_read_local_ext_features cp;
780
781                 cp.page = p;
782                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
783                             sizeof(cp), &cp);
784         }
785
786         return 0;
787 }
788
789 static int hci_init4_req(struct hci_request *req, unsigned long opt)
790 {
791         struct hci_dev *hdev = req->hdev;
792
793         /* Some Broadcom based Bluetooth controllers do not support the
794          * Delete Stored Link Key command. They are clearly indicating its
795          * absence in the bit mask of supported commands.
796          *
797          * Check the supported commands and only if the the command is marked
798          * as supported send it. If not supported assume that the controller
799          * does not have actual support for stored link keys which makes this
800          * command redundant anyway.
801          *
802          * Some controllers indicate that they support handling deleting
803          * stored link keys, but they don't. The quirk lets a driver
804          * just disable this command.
805          */
806         if (hdev->commands[6] & 0x80 &&
807             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
808                 struct hci_cp_delete_stored_link_key cp;
809
810                 bacpy(&cp.bdaddr, BDADDR_ANY);
811                 cp.delete_all = 0x01;
812                 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
813                             sizeof(cp), &cp);
814         }
815
816         /* Set event mask page 2 if the HCI command for it is supported */
817         if (hdev->commands[22] & 0x04)
818                 hci_set_event_mask_page_2(req);
819
820         /* Read local codec list if the HCI command is supported */
821         if (hdev->commands[29] & 0x20)
822                 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
823
824         /* Get MWS transport configuration if the HCI command is supported */
825         if (hdev->commands[30] & 0x08)
826                 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
827
828         /* Check for Synchronization Train support */
829         if (lmp_sync_train_capable(hdev))
830                 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
831
832         /* Enable Secure Connections if supported and configured */
833         if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
834             bredr_sc_enabled(hdev)) {
835                 u8 support = 0x01;
836
837                 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
838                             sizeof(support), &support);
839         }
840
841         /* Set Suggested Default Data Length to maximum if supported */
842         if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
843                 struct hci_cp_le_write_def_data_len cp;
844
845                 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
846                 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
847                 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
848         }
849
850         /* Set Default PHY parameters if command is supported */
851         if (hdev->commands[35] & 0x20) {
852                 struct hci_cp_le_set_default_phy cp;
853
854                 cp.all_phys = 0x00;
855                 cp.tx_phys = hdev->le_tx_def_phys;
856                 cp.rx_phys = hdev->le_rx_def_phys;
857
858                 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
859         }
860
861         return 0;
862 }
863
864 static int __hci_init(struct hci_dev *hdev)
865 {
866         int err;
867
868         err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
869         if (err < 0)
870                 return err;
871
872         if (hci_dev_test_flag(hdev, HCI_SETUP))
873                 hci_debugfs_create_basic(hdev);
874
875         err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
876         if (err < 0)
877                 return err;
878
879         /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
880          * BR/EDR/LE type controllers. AMP controllers only need the
881          * first two stages of init.
882          */
883         if (hdev->dev_type != HCI_PRIMARY)
884                 return 0;
885
886         err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
887         if (err < 0)
888                 return err;
889
890         err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
891         if (err < 0)
892                 return err;
893
894         /* This function is only called when the controller is actually in
895          * configured state. When the controller is marked as unconfigured,
896          * this initialization procedure is not run.
897          *
898          * It means that it is possible that a controller runs through its
899          * setup phase and then discovers missing settings. If that is the
900          * case, then this function will not be called. It then will only
901          * be called during the config phase.
902          *
903          * So only when in setup phase or config phase, create the debugfs
904          * entries and register the SMP channels.
905          */
906         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
907             !hci_dev_test_flag(hdev, HCI_CONFIG))
908                 return 0;
909
910         hci_debugfs_create_common(hdev);
911
912         if (lmp_bredr_capable(hdev))
913                 hci_debugfs_create_bredr(hdev);
914
915         if (lmp_le_capable(hdev))
916                 hci_debugfs_create_le(hdev);
917
918         return 0;
919 }
920
921 static int hci_init0_req(struct hci_request *req, unsigned long opt)
922 {
923         struct hci_dev *hdev = req->hdev;
924
925         BT_DBG("%s %ld", hdev->name, opt);
926
927         /* Reset */
928         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
929                 hci_reset_req(req, 0);
930
931         /* Read Local Version */
932         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
933
934         /* Read BD Address */
935         if (hdev->set_bdaddr)
936                 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
937
938         return 0;
939 }
940
941 static int __hci_unconf_init(struct hci_dev *hdev)
942 {
943         int err;
944
945         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
946                 return 0;
947
948         err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
949         if (err < 0)
950                 return err;
951
952         if (hci_dev_test_flag(hdev, HCI_SETUP))
953                 hci_debugfs_create_basic(hdev);
954
955         return 0;
956 }
957
958 static int hci_scan_req(struct hci_request *req, unsigned long opt)
959 {
960         __u8 scan = opt;
961
962         BT_DBG("%s %x", req->hdev->name, scan);
963
964         /* Inquiry and Page scans */
965         hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
966         return 0;
967 }
968
969 static int hci_auth_req(struct hci_request *req, unsigned long opt)
970 {
971         __u8 auth = opt;
972
973         BT_DBG("%s %x", req->hdev->name, auth);
974
975         /* Authentication */
976         hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
977         return 0;
978 }
979
980 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
981 {
982         __u8 encrypt = opt;
983
984         BT_DBG("%s %x", req->hdev->name, encrypt);
985
986         /* Encryption */
987         hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
988         return 0;
989 }
990
991 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
992 {
993         __le16 policy = cpu_to_le16(opt);
994
995         BT_DBG("%s %x", req->hdev->name, policy);
996
997         /* Default link policy */
998         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
999         return 0;
1000 }
1001
1002 /* Get HCI device by index.
1003  * Device is held on return. */
1004 struct hci_dev *hci_dev_get(int index)
1005 {
1006         struct hci_dev *hdev = NULL, *d;
1007
1008         BT_DBG("%d", index);
1009
1010         if (index < 0)
1011                 return NULL;
1012
1013         read_lock(&hci_dev_list_lock);
1014         list_for_each_entry(d, &hci_dev_list, list) {
1015                 if (d->id == index) {
1016                         hdev = hci_dev_hold(d);
1017                         break;
1018                 }
1019         }
1020         read_unlock(&hci_dev_list_lock);
1021         return hdev;
1022 }
1023
1024 /* ---- Inquiry support ---- */
1025
1026 bool hci_discovery_active(struct hci_dev *hdev)
1027 {
1028         struct discovery_state *discov = &hdev->discovery;
1029
1030         switch (discov->state) {
1031         case DISCOVERY_FINDING:
1032         case DISCOVERY_RESOLVING:
1033                 return true;
1034
1035         default:
1036                 return false;
1037         }
1038 }
1039
1040 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1041 {
1042         int old_state = hdev->discovery.state;
1043
1044         BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1045
1046         if (old_state == state)
1047                 return;
1048
1049         hdev->discovery.state = state;
1050
1051         switch (state) {
1052         case DISCOVERY_STOPPED:
1053                 hci_update_background_scan(hdev);
1054
1055                 if (old_state != DISCOVERY_STARTING)
1056                         mgmt_discovering(hdev, 0);
1057                 break;
1058         case DISCOVERY_STARTING:
1059                 break;
1060         case DISCOVERY_FINDING:
1061                 mgmt_discovering(hdev, 1);
1062                 break;
1063         case DISCOVERY_RESOLVING:
1064                 break;
1065         case DISCOVERY_STOPPING:
1066                 break;
1067         }
1068 }
1069
1070 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1071 {
1072         struct discovery_state *cache = &hdev->discovery;
1073         struct inquiry_entry *p, *n;
1074
1075         list_for_each_entry_safe(p, n, &cache->all, all) {
1076                 list_del(&p->all);
1077                 kfree(p);
1078         }
1079
1080         INIT_LIST_HEAD(&cache->unknown);
1081         INIT_LIST_HEAD(&cache->resolve);
1082 }
1083
1084 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1085                                                bdaddr_t *bdaddr)
1086 {
1087         struct discovery_state *cache = &hdev->discovery;
1088         struct inquiry_entry *e;
1089
1090         BT_DBG("cache %p, %pMR", cache, bdaddr);
1091
1092         list_for_each_entry(e, &cache->all, all) {
1093                 if (!bacmp(&e->data.bdaddr, bdaddr))
1094                         return e;
1095         }
1096
1097         return NULL;
1098 }
1099
1100 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1101                                                        bdaddr_t *bdaddr)
1102 {
1103         struct discovery_state *cache = &hdev->discovery;
1104         struct inquiry_entry *e;
1105
1106         BT_DBG("cache %p, %pMR", cache, bdaddr);
1107
1108         list_for_each_entry(e, &cache->unknown, list) {
1109                 if (!bacmp(&e->data.bdaddr, bdaddr))
1110                         return e;
1111         }
1112
1113         return NULL;
1114 }
1115
1116 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1117                                                        bdaddr_t *bdaddr,
1118                                                        int state)
1119 {
1120         struct discovery_state *cache = &hdev->discovery;
1121         struct inquiry_entry *e;
1122
1123         BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1124
1125         list_for_each_entry(e, &cache->resolve, list) {
1126                 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1127                         return e;
1128                 if (!bacmp(&e->data.bdaddr, bdaddr))
1129                         return e;
1130         }
1131
1132         return NULL;
1133 }
1134
1135 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1136                                       struct inquiry_entry *ie)
1137 {
1138         struct discovery_state *cache = &hdev->discovery;
1139         struct list_head *pos = &cache->resolve;
1140         struct inquiry_entry *p;
1141
1142         list_del(&ie->list);
1143
1144         list_for_each_entry(p, &cache->resolve, list) {
1145                 if (p->name_state != NAME_PENDING &&
1146                     abs(p->data.rssi) >= abs(ie->data.rssi))
1147                         break;
1148                 pos = &p->list;
1149         }
1150
1151         list_add(&ie->list, pos);
1152 }
1153
1154 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1155                              bool name_known)
1156 {
1157         struct discovery_state *cache = &hdev->discovery;
1158         struct inquiry_entry *ie;
1159         u32 flags = 0;
1160
1161         BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1162
1163         hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1164
1165         if (!data->ssp_mode)
1166                 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1167
1168         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1169         if (ie) {
1170                 if (!ie->data.ssp_mode)
1171                         flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1172
1173                 if (ie->name_state == NAME_NEEDED &&
1174                     data->rssi != ie->data.rssi) {
1175                         ie->data.rssi = data->rssi;
1176                         hci_inquiry_cache_update_resolve(hdev, ie);
1177                 }
1178
1179                 goto update;
1180         }
1181
1182         /* Entry not in the cache. Add new one. */
1183         ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1184         if (!ie) {
1185                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1186                 goto done;
1187         }
1188
1189         list_add(&ie->all, &cache->all);
1190
1191         if (name_known) {
1192                 ie->name_state = NAME_KNOWN;
1193         } else {
1194                 ie->name_state = NAME_NOT_KNOWN;
1195                 list_add(&ie->list, &cache->unknown);
1196         }
1197
1198 update:
1199         if (name_known && ie->name_state != NAME_KNOWN &&
1200             ie->name_state != NAME_PENDING) {
1201                 ie->name_state = NAME_KNOWN;
1202                 list_del(&ie->list);
1203         }
1204
1205         memcpy(&ie->data, data, sizeof(*data));
1206         ie->timestamp = jiffies;
1207         cache->timestamp = jiffies;
1208
1209         if (ie->name_state == NAME_NOT_KNOWN)
1210                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1211
1212 done:
1213         return flags;
1214 }
1215
1216 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1217 {
1218         struct discovery_state *cache = &hdev->discovery;
1219         struct inquiry_info *info = (struct inquiry_info *) buf;
1220         struct inquiry_entry *e;
1221         int copied = 0;
1222
1223         list_for_each_entry(e, &cache->all, all) {
1224                 struct inquiry_data *data = &e->data;
1225
1226                 if (copied >= num)
1227                         break;
1228
1229                 bacpy(&info->bdaddr, &data->bdaddr);
1230                 info->pscan_rep_mode    = data->pscan_rep_mode;
1231                 info->pscan_period_mode = data->pscan_period_mode;
1232                 info->pscan_mode        = data->pscan_mode;
1233                 memcpy(info->dev_class, data->dev_class, 3);
1234                 info->clock_offset      = data->clock_offset;
1235
1236                 info++;
1237                 copied++;
1238         }
1239
1240         BT_DBG("cache %p, copied %d", cache, copied);
1241         return copied;
1242 }
1243
1244 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1245 {
1246         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1247         struct hci_dev *hdev = req->hdev;
1248         struct hci_cp_inquiry cp;
1249
1250         BT_DBG("%s", hdev->name);
1251
1252         if (test_bit(HCI_INQUIRY, &hdev->flags))
1253                 return 0;
1254
1255         /* Start Inquiry */
1256         memcpy(&cp.lap, &ir->lap, 3);
1257         cp.length  = ir->length;
1258         cp.num_rsp = ir->num_rsp;
1259         hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1260
1261         return 0;
1262 }
1263
1264 int hci_inquiry(void __user *arg)
1265 {
1266         __u8 __user *ptr = arg;
1267         struct hci_inquiry_req ir;
1268         struct hci_dev *hdev;
1269         int err = 0, do_inquiry = 0, max_rsp;
1270         long timeo;
1271         __u8 *buf;
1272
1273         if (copy_from_user(&ir, ptr, sizeof(ir)))
1274                 return -EFAULT;
1275
1276         hdev = hci_dev_get(ir.dev_id);
1277         if (!hdev)
1278                 return -ENODEV;
1279
1280         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1281                 err = -EBUSY;
1282                 goto done;
1283         }
1284
1285         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1286                 err = -EOPNOTSUPP;
1287                 goto done;
1288         }
1289
1290         if (hdev->dev_type != HCI_PRIMARY) {
1291                 err = -EOPNOTSUPP;
1292                 goto done;
1293         }
1294
1295         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1296                 err = -EOPNOTSUPP;
1297                 goto done;
1298         }
1299
1300         hci_dev_lock(hdev);
1301         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1302             inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1303                 hci_inquiry_cache_flush(hdev);
1304                 do_inquiry = 1;
1305         }
1306         hci_dev_unlock(hdev);
1307
1308         timeo = ir.length * msecs_to_jiffies(2000);
1309
1310         if (do_inquiry) {
1311                 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1312                                    timeo, NULL);
1313                 if (err < 0)
1314                         goto done;
1315
1316                 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1317                  * cleared). If it is interrupted by a signal, return -EINTR.
1318                  */
1319                 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1320                                 TASK_INTERRUPTIBLE))
1321                         return -EINTR;
1322         }
1323
1324         /* for unlimited number of responses we will use buffer with
1325          * 255 entries
1326          */
1327         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1328
1329         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1330          * copy it to the user space.
1331          */
1332         buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1333         if (!buf) {
1334                 err = -ENOMEM;
1335                 goto done;
1336         }
1337
1338         hci_dev_lock(hdev);
1339         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1340         hci_dev_unlock(hdev);
1341
1342         BT_DBG("num_rsp %d", ir.num_rsp);
1343
1344         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1345                 ptr += sizeof(ir);
1346                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1347                                  ir.num_rsp))
1348                         err = -EFAULT;
1349         } else
1350                 err = -EFAULT;
1351
1352         kfree(buf);
1353
1354 done:
1355         hci_dev_put(hdev);
1356         return err;
1357 }
1358
1359 /**
1360  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1361  *                                     (BD_ADDR) for a HCI device from
1362  *                                     a firmware node property.
1363  * @hdev:       The HCI device
1364  *
1365  * Search the firmware node for 'local-bd-address'.
1366  *
1367  * All-zero BD addresses are rejected, because those could be properties
1368  * that exist in the firmware tables, but were not updated by the firmware. For
1369  * example, the DTS could define 'local-bd-address', with zero BD addresses.
1370  */
1371 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1372 {
1373         struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1374         bdaddr_t ba;
1375         int ret;
1376
1377         ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1378                                             (u8 *)&ba, sizeof(ba));
1379         if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1380                 return;
1381
1382         bacpy(&hdev->public_addr, &ba);
1383 }
1384
1385 static int hci_dev_do_open(struct hci_dev *hdev)
1386 {
1387         int ret = 0;
1388
1389         BT_DBG("%s %p", hdev->name, hdev);
1390
1391         hci_req_sync_lock(hdev);
1392
1393         if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1394                 ret = -ENODEV;
1395                 goto done;
1396         }
1397
1398         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1400                 /* Check for rfkill but allow the HCI setup stage to
1401                  * proceed (which in itself doesn't cause any RF activity).
1402                  */
1403                 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1404                         ret = -ERFKILL;
1405                         goto done;
1406                 }
1407
1408                 /* Check for valid public address or a configured static
1409                  * random adddress, but let the HCI setup proceed to
1410                  * be able to determine if there is a public address
1411                  * or not.
1412                  *
1413                  * In case of user channel usage, it is not important
1414                  * if a public address or static random address is
1415                  * available.
1416                  *
1417                  * This check is only valid for BR/EDR controllers
1418                  * since AMP controllers do not have an address.
1419                  */
1420                 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1421                     hdev->dev_type == HCI_PRIMARY &&
1422                     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1423                     !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1424                         ret = -EADDRNOTAVAIL;
1425                         goto done;
1426                 }
1427         }
1428
1429         if (test_bit(HCI_UP, &hdev->flags)) {
1430                 ret = -EALREADY;
1431                 goto done;
1432         }
1433
1434         if (hdev->open(hdev)) {
1435                 ret = -EIO;
1436                 goto done;
1437         }
1438
1439         set_bit(HCI_RUNNING, &hdev->flags);
1440         hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1441
1442         atomic_set(&hdev->cmd_cnt, 1);
1443         set_bit(HCI_INIT, &hdev->flags);
1444
1445         if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1446             test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1447                 bool invalid_bdaddr;
1448
1449                 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1450
1451                 if (hdev->setup)
1452                         ret = hdev->setup(hdev);
1453
1454                 /* The transport driver can set the quirk to mark the
1455                  * BD_ADDR invalid before creating the HCI device or in
1456                  * its setup callback.
1457                  */
1458                 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1459                                           &hdev->quirks);
1460
1461                 if (ret)
1462                         goto setup_failed;
1463
1464                 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1465                         if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1466                                 hci_dev_get_bd_addr_from_property(hdev);
1467
1468                         if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1469                             hdev->set_bdaddr) {
1470                                 ret = hdev->set_bdaddr(hdev,
1471                                                        &hdev->public_addr);
1472
1473                                 /* If setting of the BD_ADDR from the device
1474                                  * property succeeds, then treat the address
1475                                  * as valid even if the invalid BD_ADDR
1476                                  * quirk indicates otherwise.
1477                                  */
1478                                 if (!ret)
1479                                         invalid_bdaddr = false;
1480                         }
1481                 }
1482
1483 setup_failed:
1484                 /* The transport driver can set these quirks before
1485                  * creating the HCI device or in its setup callback.
1486                  *
1487                  * For the invalid BD_ADDR quirk it is possible that
1488                  * it becomes a valid address if the bootloader does
1489                  * provide it (see above).
1490                  *
1491                  * In case any of them is set, the controller has to
1492                  * start up as unconfigured.
1493                  */
1494                 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1495                     invalid_bdaddr)
1496                         hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1497
1498                 /* For an unconfigured controller it is required to
1499                  * read at least the version information provided by
1500                  * the Read Local Version Information command.
1501                  *
1502                  * If the set_bdaddr driver callback is provided, then
1503                  * also the original Bluetooth public device address
1504                  * will be read using the Read BD Address command.
1505                  */
1506                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1507                         ret = __hci_unconf_init(hdev);
1508         }
1509
1510         if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1511                 /* If public address change is configured, ensure that
1512                  * the address gets programmed. If the driver does not
1513                  * support changing the public address, fail the power
1514                  * on procedure.
1515                  */
1516                 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1517                     hdev->set_bdaddr)
1518                         ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1519                 else
1520                         ret = -EADDRNOTAVAIL;
1521         }
1522
1523         if (!ret) {
1524                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1525                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1526                         ret = __hci_init(hdev);
1527                         if (!ret && hdev->post_init)
1528                                 ret = hdev->post_init(hdev);
1529                 }
1530         }
1531
1532         /* If the HCI Reset command is clearing all diagnostic settings,
1533          * then they need to be reprogrammed after the init procedure
1534          * completed.
1535          */
1536         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1537             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1538             hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1539                 ret = hdev->set_diag(hdev, true);
1540
1541         clear_bit(HCI_INIT, &hdev->flags);
1542
1543         if (!ret) {
1544                 hci_dev_hold(hdev);
1545                 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1546                 hci_adv_instances_set_rpa_expired(hdev, true);
1547                 set_bit(HCI_UP, &hdev->flags);
1548                 hci_sock_dev_event(hdev, HCI_DEV_UP);
1549                 hci_leds_update_powered(hdev, true);
1550                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1551                     !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1552                     !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1553                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1554                     hci_dev_test_flag(hdev, HCI_MGMT) &&
1555                     hdev->dev_type == HCI_PRIMARY) {
1556                         ret = __hci_req_hci_power_on(hdev);
1557                         mgmt_power_on(hdev, ret);
1558                 }
1559         } else {
1560                 /* Init failed, cleanup */
1561                 flush_work(&hdev->tx_work);
1562                 flush_work(&hdev->cmd_work);
1563                 flush_work(&hdev->rx_work);
1564
1565                 skb_queue_purge(&hdev->cmd_q);
1566                 skb_queue_purge(&hdev->rx_q);
1567
1568                 if (hdev->flush)
1569                         hdev->flush(hdev);
1570
1571                 if (hdev->sent_cmd) {
1572                         kfree_skb(hdev->sent_cmd);
1573                         hdev->sent_cmd = NULL;
1574                 }
1575
1576                 clear_bit(HCI_RUNNING, &hdev->flags);
1577                 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1578
1579                 hdev->close(hdev);
1580                 hdev->flags &= BIT(HCI_RAW);
1581         }
1582
1583 done:
1584         hci_req_sync_unlock(hdev);
1585         return ret;
1586 }
1587
1588 /* ---- HCI ioctl helpers ---- */
1589
1590 int hci_dev_open(__u16 dev)
1591 {
1592         struct hci_dev *hdev;
1593         int err;
1594
1595         hdev = hci_dev_get(dev);
1596         if (!hdev)
1597                 return -ENODEV;
1598
1599         /* Devices that are marked as unconfigured can only be powered
1600          * up as user channel. Trying to bring them up as normal devices
1601          * will result into a failure. Only user channel operation is
1602          * possible.
1603          *
1604          * When this function is called for a user channel, the flag
1605          * HCI_USER_CHANNEL will be set first before attempting to
1606          * open the device.
1607          */
1608         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1609             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1610                 err = -EOPNOTSUPP;
1611                 goto done;
1612         }
1613
1614         /* We need to ensure that no other power on/off work is pending
1615          * before proceeding to call hci_dev_do_open. This is
1616          * particularly important if the setup procedure has not yet
1617          * completed.
1618          */
1619         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1620                 cancel_delayed_work(&hdev->power_off);
1621
1622         /* After this call it is guaranteed that the setup procedure
1623          * has finished. This means that error conditions like RFKILL
1624          * or no valid public or static random address apply.
1625          */
1626         flush_workqueue(hdev->req_workqueue);
1627
1628         /* For controllers not using the management interface and that
1629          * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1630          * so that pairing works for them. Once the management interface
1631          * is in use this bit will be cleared again and userspace has
1632          * to explicitly enable it.
1633          */
1634         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1635             !hci_dev_test_flag(hdev, HCI_MGMT))
1636                 hci_dev_set_flag(hdev, HCI_BONDABLE);
1637
1638         err = hci_dev_do_open(hdev);
1639
1640 done:
1641         hci_dev_put(hdev);
1642         return err;
1643 }
1644
1645 /* This function requires the caller holds hdev->lock */
1646 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1647 {
1648         struct hci_conn_params *p;
1649
1650         list_for_each_entry(p, &hdev->le_conn_params, list) {
1651                 if (p->conn) {
1652                         hci_conn_drop(p->conn);
1653                         hci_conn_put(p->conn);
1654                         p->conn = NULL;
1655                 }
1656                 list_del_init(&p->action);
1657         }
1658
1659         BT_DBG("All LE pending actions cleared");
1660 }
1661
1662 int hci_dev_do_close(struct hci_dev *hdev)
1663 {
1664         bool auto_off;
1665
1666         BT_DBG("%s %p", hdev->name, hdev);
1667
1668         if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1669             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1670             test_bit(HCI_UP, &hdev->flags)) {
1671                 /* Execute vendor specific shutdown routine */
1672                 if (hdev->shutdown)
1673                         hdev->shutdown(hdev);
1674         }
1675
1676         cancel_delayed_work(&hdev->power_off);
1677
1678         hci_request_cancel_all(hdev);
1679         hci_req_sync_lock(hdev);
1680
1681         if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1682                 cancel_delayed_work_sync(&hdev->cmd_timer);
1683                 hci_req_sync_unlock(hdev);
1684                 return 0;
1685         }
1686
1687         hci_leds_update_powered(hdev, false);
1688
1689         /* Flush RX and TX works */
1690         flush_work(&hdev->tx_work);
1691         flush_work(&hdev->rx_work);
1692
1693         if (hdev->discov_timeout > 0) {
1694                 hdev->discov_timeout = 0;
1695                 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1696                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1697         }
1698
1699         if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1700                 cancel_delayed_work(&hdev->service_cache);
1701
1702         if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1703                 struct adv_info *adv_instance;
1704
1705                 cancel_delayed_work_sync(&hdev->rpa_expired);
1706
1707                 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1708                         cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1709         }
1710
1711         /* Avoid potential lockdep warnings from the *_flush() calls by
1712          * ensuring the workqueue is empty up front.
1713          */
1714         drain_workqueue(hdev->workqueue);
1715
1716         hci_dev_lock(hdev);
1717
1718         hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1719
1720         auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1721
1722         if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1723             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1724             hci_dev_test_flag(hdev, HCI_MGMT))
1725                 __mgmt_power_off(hdev);
1726
1727         hci_inquiry_cache_flush(hdev);
1728         hci_pend_le_actions_clear(hdev);
1729         hci_conn_hash_flush(hdev);
1730         hci_dev_unlock(hdev);
1731
1732         smp_unregister(hdev);
1733
1734         hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1735
1736         if (hdev->flush)
1737                 hdev->flush(hdev);
1738
1739         /* Reset device */
1740         skb_queue_purge(&hdev->cmd_q);
1741         atomic_set(&hdev->cmd_cnt, 1);
1742         if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1743             !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1744                 set_bit(HCI_INIT, &hdev->flags);
1745                 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1746                 clear_bit(HCI_INIT, &hdev->flags);
1747         }
1748
1749         /* flush cmd  work */
1750         flush_work(&hdev->cmd_work);
1751
1752         /* Drop queues */
1753         skb_queue_purge(&hdev->rx_q);
1754         skb_queue_purge(&hdev->cmd_q);
1755         skb_queue_purge(&hdev->raw_q);
1756
1757         /* Drop last sent command */
1758         if (hdev->sent_cmd) {
1759                 cancel_delayed_work_sync(&hdev->cmd_timer);
1760                 kfree_skb(hdev->sent_cmd);
1761                 hdev->sent_cmd = NULL;
1762         }
1763
1764         clear_bit(HCI_RUNNING, &hdev->flags);
1765         hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1766
1767         /* After this point our queues are empty
1768          * and no tasks are scheduled. */
1769         hdev->close(hdev);
1770
1771         /* Clear flags */
1772         hdev->flags &= BIT(HCI_RAW);
1773         hci_dev_clear_volatile_flags(hdev);
1774
1775         /* Controller radio is available but is currently powered down */
1776         hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1777
1778         memset(hdev->eir, 0, sizeof(hdev->eir));
1779         memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1780         bacpy(&hdev->random_addr, BDADDR_ANY);
1781
1782         hci_req_sync_unlock(hdev);
1783
1784         hci_dev_put(hdev);
1785         return 0;
1786 }
1787
1788 int hci_dev_close(__u16 dev)
1789 {
1790         struct hci_dev *hdev;
1791         int err;
1792
1793         hdev = hci_dev_get(dev);
1794         if (!hdev)
1795                 return -ENODEV;
1796
1797         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1798                 err = -EBUSY;
1799                 goto done;
1800         }
1801
1802         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1803                 cancel_delayed_work(&hdev->power_off);
1804
1805         err = hci_dev_do_close(hdev);
1806
1807 done:
1808         hci_dev_put(hdev);
1809         return err;
1810 }
1811
1812 static int hci_dev_do_reset(struct hci_dev *hdev)
1813 {
1814         int ret;
1815
1816         BT_DBG("%s %p", hdev->name, hdev);
1817
1818         hci_req_sync_lock(hdev);
1819
1820         /* Drop queues */
1821         skb_queue_purge(&hdev->rx_q);
1822         skb_queue_purge(&hdev->cmd_q);
1823
1824         /* Avoid potential lockdep warnings from the *_flush() calls by
1825          * ensuring the workqueue is empty up front.
1826          */
1827         drain_workqueue(hdev->workqueue);
1828
1829         hci_dev_lock(hdev);
1830         hci_inquiry_cache_flush(hdev);
1831         hci_conn_hash_flush(hdev);
1832         hci_dev_unlock(hdev);
1833
1834         if (hdev->flush)
1835                 hdev->flush(hdev);
1836
1837         atomic_set(&hdev->cmd_cnt, 1);
1838         hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1839
1840         ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1841
1842         hci_req_sync_unlock(hdev);
1843         return ret;
1844 }
1845
1846 int hci_dev_reset(__u16 dev)
1847 {
1848         struct hci_dev *hdev;
1849         int err;
1850
1851         hdev = hci_dev_get(dev);
1852         if (!hdev)
1853                 return -ENODEV;
1854
1855         if (!test_bit(HCI_UP, &hdev->flags)) {
1856                 err = -ENETDOWN;
1857                 goto done;
1858         }
1859
1860         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1861                 err = -EBUSY;
1862                 goto done;
1863         }
1864
1865         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1866                 err = -EOPNOTSUPP;
1867                 goto done;
1868         }
1869
1870         err = hci_dev_do_reset(hdev);
1871
1872 done:
1873         hci_dev_put(hdev);
1874         return err;
1875 }
1876
1877 int hci_dev_reset_stat(__u16 dev)
1878 {
1879         struct hci_dev *hdev;
1880         int ret = 0;
1881
1882         hdev = hci_dev_get(dev);
1883         if (!hdev)
1884                 return -ENODEV;
1885
1886         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1887                 ret = -EBUSY;
1888                 goto done;
1889         }
1890
1891         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1892                 ret = -EOPNOTSUPP;
1893                 goto done;
1894         }
1895
1896         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1897
1898 done:
1899         hci_dev_put(hdev);
1900         return ret;
1901 }
1902
1903 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1904 {
1905         bool conn_changed, discov_changed;
1906
1907         BT_DBG("%s scan 0x%02x", hdev->name, scan);
1908
1909         if ((scan & SCAN_PAGE))
1910                 conn_changed = !hci_dev_test_and_set_flag(hdev,
1911                                                           HCI_CONNECTABLE);
1912         else
1913                 conn_changed = hci_dev_test_and_clear_flag(hdev,
1914                                                            HCI_CONNECTABLE);
1915
1916         if ((scan & SCAN_INQUIRY)) {
1917                 discov_changed = !hci_dev_test_and_set_flag(hdev,
1918                                                             HCI_DISCOVERABLE);
1919         } else {
1920                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1921                 discov_changed = hci_dev_test_and_clear_flag(hdev,
1922                                                              HCI_DISCOVERABLE);
1923         }
1924
1925         if (!hci_dev_test_flag(hdev, HCI_MGMT))
1926                 return;
1927
1928         if (conn_changed || discov_changed) {
1929                 /* In case this was disabled through mgmt */
1930                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1931
1932                 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1933                         hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1934
1935                 mgmt_new_settings(hdev);
1936         }
1937 }
1938
1939 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1940 {
1941         struct hci_dev *hdev;
1942         struct hci_dev_req dr;
1943         int err = 0;
1944
1945         if (copy_from_user(&dr, arg, sizeof(dr)))
1946                 return -EFAULT;
1947
1948         hdev = hci_dev_get(dr.dev_id);
1949         if (!hdev)
1950                 return -ENODEV;
1951
1952         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1953                 err = -EBUSY;
1954                 goto done;
1955         }
1956
1957         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1958                 err = -EOPNOTSUPP;
1959                 goto done;
1960         }
1961
1962         if (hdev->dev_type != HCI_PRIMARY) {
1963                 err = -EOPNOTSUPP;
1964                 goto done;
1965         }
1966
1967         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1968                 err = -EOPNOTSUPP;
1969                 goto done;
1970         }
1971
1972         switch (cmd) {
1973         case HCISETAUTH:
1974                 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1975                                    HCI_INIT_TIMEOUT, NULL);
1976                 break;
1977
1978         case HCISETENCRYPT:
1979                 if (!lmp_encrypt_capable(hdev)) {
1980                         err = -EOPNOTSUPP;
1981                         break;
1982                 }
1983
1984                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1985                         /* Auth must be enabled first */
1986                         err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1987                                            HCI_INIT_TIMEOUT, NULL);
1988                         if (err)
1989                                 break;
1990                 }
1991
1992                 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1993                                    HCI_INIT_TIMEOUT, NULL);
1994                 break;
1995
1996         case HCISETSCAN:
1997                 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1998                                    HCI_INIT_TIMEOUT, NULL);
1999
2000                 /* Ensure that the connectable and discoverable states
2001                  * get correctly modified as this was a non-mgmt change.
2002                  */
2003                 if (!err)
2004                         hci_update_scan_state(hdev, dr.dev_opt);
2005                 break;
2006
2007         case HCISETLINKPOL:
2008                 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2009                                    HCI_INIT_TIMEOUT, NULL);
2010                 break;
2011
2012         case HCISETLINKMODE:
2013                 hdev->link_mode = ((__u16) dr.dev_opt) &
2014                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
2015                 break;
2016
2017         case HCISETPTYPE:
2018                 if (hdev->pkt_type == (__u16) dr.dev_opt)
2019                         break;
2020
2021                 hdev->pkt_type = (__u16) dr.dev_opt;
2022                 mgmt_phy_configuration_changed(hdev, NULL);
2023                 break;
2024
2025         case HCISETACLMTU:
2026                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2027                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2028                 break;
2029
2030         case HCISETSCOMTU:
2031                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2032                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2033                 break;
2034
2035         default:
2036                 err = -EINVAL;
2037                 break;
2038         }
2039
2040 done:
2041         hci_dev_put(hdev);
2042         return err;
2043 }
2044
2045 int hci_get_dev_list(void __user *arg)
2046 {
2047         struct hci_dev *hdev;
2048         struct hci_dev_list_req *dl;
2049         struct hci_dev_req *dr;
2050         int n = 0, size, err;
2051         __u16 dev_num;
2052
2053         if (get_user(dev_num, (__u16 __user *) arg))
2054                 return -EFAULT;
2055
2056         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2057                 return -EINVAL;
2058
2059         size = sizeof(*dl) + dev_num * sizeof(*dr);
2060
2061         dl = kzalloc(size, GFP_KERNEL);
2062         if (!dl)
2063                 return -ENOMEM;
2064
2065         dr = dl->dev_req;
2066
2067         read_lock(&hci_dev_list_lock);
2068         list_for_each_entry(hdev, &hci_dev_list, list) {
2069                 unsigned long flags = hdev->flags;
2070
2071                 /* When the auto-off is configured it means the transport
2072                  * is running, but in that case still indicate that the
2073                  * device is actually down.
2074                  */
2075                 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2076                         flags &= ~BIT(HCI_UP);
2077
2078                 (dr + n)->dev_id  = hdev->id;
2079                 (dr + n)->dev_opt = flags;
2080
2081                 if (++n >= dev_num)
2082                         break;
2083         }
2084         read_unlock(&hci_dev_list_lock);
2085
2086         dl->dev_num = n;
2087         size = sizeof(*dl) + n * sizeof(*dr);
2088
2089         err = copy_to_user(arg, dl, size);
2090         kfree(dl);
2091
2092         return err ? -EFAULT : 0;
2093 }
2094
2095 int hci_get_dev_info(void __user *arg)
2096 {
2097         struct hci_dev *hdev;
2098         struct hci_dev_info di;
2099         unsigned long flags;
2100         int err = 0;
2101
2102         if (copy_from_user(&di, arg, sizeof(di)))
2103                 return -EFAULT;
2104
2105         hdev = hci_dev_get(di.dev_id);
2106         if (!hdev)
2107                 return -ENODEV;
2108
2109         /* When the auto-off is configured it means the transport
2110          * is running, but in that case still indicate that the
2111          * device is actually down.
2112          */
2113         if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2114                 flags = hdev->flags & ~BIT(HCI_UP);
2115         else
2116                 flags = hdev->flags;
2117
2118         strcpy(di.name, hdev->name);
2119         di.bdaddr   = hdev->bdaddr;
2120         di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2121         di.flags    = flags;
2122         di.pkt_type = hdev->pkt_type;
2123         if (lmp_bredr_capable(hdev)) {
2124                 di.acl_mtu  = hdev->acl_mtu;
2125                 di.acl_pkts = hdev->acl_pkts;
2126                 di.sco_mtu  = hdev->sco_mtu;
2127                 di.sco_pkts = hdev->sco_pkts;
2128         } else {
2129                 di.acl_mtu  = hdev->le_mtu;
2130                 di.acl_pkts = hdev->le_pkts;
2131                 di.sco_mtu  = 0;
2132                 di.sco_pkts = 0;
2133         }
2134         di.link_policy = hdev->link_policy;
2135         di.link_mode   = hdev->link_mode;
2136
2137         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2138         memcpy(&di.features, &hdev->features, sizeof(di.features));
2139
2140         if (copy_to_user(arg, &di, sizeof(di)))
2141                 err = -EFAULT;
2142
2143         hci_dev_put(hdev);
2144
2145         return err;
2146 }
2147
2148 /* ---- Interface to HCI drivers ---- */
2149
2150 static int hci_rfkill_set_block(void *data, bool blocked)
2151 {
2152         struct hci_dev *hdev = data;
2153
2154         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2155
2156         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2157                 return -EBUSY;
2158
2159         if (blocked) {
2160                 hci_dev_set_flag(hdev, HCI_RFKILLED);
2161                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2162                     !hci_dev_test_flag(hdev, HCI_CONFIG))
2163                         hci_dev_do_close(hdev);
2164         } else {
2165                 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2166         }
2167
2168         return 0;
2169 }
2170
2171 static const struct rfkill_ops hci_rfkill_ops = {
2172         .set_block = hci_rfkill_set_block,
2173 };
2174
2175 static void hci_power_on(struct work_struct *work)
2176 {
2177         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2178         int err;
2179
2180         BT_DBG("%s", hdev->name);
2181
2182         if (test_bit(HCI_UP, &hdev->flags) &&
2183             hci_dev_test_flag(hdev, HCI_MGMT) &&
2184             hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2185                 cancel_delayed_work(&hdev->power_off);
2186                 hci_req_sync_lock(hdev);
2187                 err = __hci_req_hci_power_on(hdev);
2188                 hci_req_sync_unlock(hdev);
2189                 mgmt_power_on(hdev, err);
2190                 return;
2191         }
2192
2193         err = hci_dev_do_open(hdev);
2194         if (err < 0) {
2195                 hci_dev_lock(hdev);
2196                 mgmt_set_powered_failed(hdev, err);
2197                 hci_dev_unlock(hdev);
2198                 return;
2199         }
2200
2201         /* During the HCI setup phase, a few error conditions are
2202          * ignored and they need to be checked now. If they are still
2203          * valid, it is important to turn the device back off.
2204          */
2205         if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2206             hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2207             (hdev->dev_type == HCI_PRIMARY &&
2208              !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2209              !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2210                 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2211                 hci_dev_do_close(hdev);
2212         } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2213                 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2214                                    HCI_AUTO_OFF_TIMEOUT);
2215         }
2216
2217         if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2218                 /* For unconfigured devices, set the HCI_RAW flag
2219                  * so that userspace can easily identify them.
2220                  */
2221                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2222                         set_bit(HCI_RAW, &hdev->flags);
2223
2224                 /* For fully configured devices, this will send
2225                  * the Index Added event. For unconfigured devices,
2226                  * it will send Unconfigued Index Added event.
2227                  *
2228                  * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2229                  * and no event will be send.
2230                  */
2231                 mgmt_index_added(hdev);
2232         } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2233                 /* When the controller is now configured, then it
2234                  * is important to clear the HCI_RAW flag.
2235                  */
2236                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2237                         clear_bit(HCI_RAW, &hdev->flags);
2238
2239                 /* Powering on the controller with HCI_CONFIG set only
2240                  * happens with the transition from unconfigured to
2241                  * configured. This will send the Index Added event.
2242                  */
2243                 mgmt_index_added(hdev);
2244         }
2245 }
2246
2247 static void hci_power_off(struct work_struct *work)
2248 {
2249         struct hci_dev *hdev = container_of(work, struct hci_dev,
2250                                             power_off.work);
2251
2252         BT_DBG("%s", hdev->name);
2253
2254         hci_dev_do_close(hdev);
2255 }
2256
2257 static void hci_error_reset(struct work_struct *work)
2258 {
2259         struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2260
2261         BT_DBG("%s", hdev->name);
2262
2263         if (hdev->hw_error)
2264                 hdev->hw_error(hdev, hdev->hw_error_code);
2265         else
2266                 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2267
2268         if (hci_dev_do_close(hdev))
2269                 return;
2270
2271         hci_dev_do_open(hdev);
2272 }
2273
2274 void hci_uuids_clear(struct hci_dev *hdev)
2275 {
2276         struct bt_uuid *uuid, *tmp;
2277
2278         list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2279                 list_del(&uuid->list);
2280                 kfree(uuid);
2281         }
2282 }
2283
2284 void hci_link_keys_clear(struct hci_dev *hdev)
2285 {
2286         struct link_key *key;
2287
2288         list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2289                 list_del_rcu(&key->list);
2290                 kfree_rcu(key, rcu);
2291         }
2292 }
2293
2294 void hci_smp_ltks_clear(struct hci_dev *hdev)
2295 {
2296         struct smp_ltk *k;
2297
2298         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2299                 list_del_rcu(&k->list);
2300                 kfree_rcu(k, rcu);
2301         }
2302 }
2303
2304 void hci_smp_irks_clear(struct hci_dev *hdev)
2305 {
2306         struct smp_irk *k;
2307
2308         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2309                 list_del_rcu(&k->list);
2310                 kfree_rcu(k, rcu);
2311         }
2312 }
2313
2314 void hci_blocked_keys_clear(struct hci_dev *hdev)
2315 {
2316         struct blocked_key *b;
2317
2318         list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2319                 list_del_rcu(&b->list);
2320                 kfree_rcu(b, rcu);
2321         }
2322 }
2323
2324 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2325 {
2326         bool blocked = false;
2327         struct blocked_key *b;
2328
2329         rcu_read_lock();
2330         list_for_each_entry(b, &hdev->blocked_keys, list) {
2331                 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2332                         blocked = true;
2333                         break;
2334                 }
2335         }
2336
2337         rcu_read_unlock();
2338         return blocked;
2339 }
2340
2341 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2342 {
2343         struct link_key *k;
2344
2345         rcu_read_lock();
2346         list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2347                 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2348                         rcu_read_unlock();
2349
2350                         if (hci_is_blocked_key(hdev,
2351                                                HCI_BLOCKED_KEY_TYPE_LINKKEY,
2352                                                k->val)) {
2353                                 bt_dev_warn_ratelimited(hdev,
2354                                                         "Link key blocked for %pMR",
2355                                                         &k->bdaddr);
2356                                 return NULL;
2357                         }
2358
2359                         return k;
2360                 }
2361         }
2362         rcu_read_unlock();
2363
2364         return NULL;
2365 }
2366
2367 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2368                                u8 key_type, u8 old_key_type)
2369 {
2370         /* Legacy key */
2371         if (key_type < 0x03)
2372                 return true;
2373
2374         /* Debug keys are insecure so don't store them persistently */
2375         if (key_type == HCI_LK_DEBUG_COMBINATION)
2376                 return false;
2377
2378         /* Changed combination key and there's no previous one */
2379         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2380                 return false;
2381
2382         /* Security mode 3 case */
2383         if (!conn)
2384                 return true;
2385
2386         /* BR/EDR key derived using SC from an LE link */
2387         if (conn->type == LE_LINK)
2388                 return true;
2389
2390         /* Neither local nor remote side had no-bonding as requirement */
2391         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2392                 return true;
2393
2394         /* Local side had dedicated bonding as requirement */
2395         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2396                 return true;
2397
2398         /* Remote side had dedicated bonding as requirement */
2399         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2400                 return true;
2401
2402         /* If none of the above criteria match, then don't store the key
2403          * persistently */
2404         return false;
2405 }
2406
2407 static u8 ltk_role(u8 type)
2408 {
2409         if (type == SMP_LTK)
2410                 return HCI_ROLE_MASTER;
2411
2412         return HCI_ROLE_SLAVE;
2413 }
2414
2415 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2416                              u8 addr_type, u8 role)
2417 {
2418         struct smp_ltk *k;
2419
2420         rcu_read_lock();
2421         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2422                 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2423                         continue;
2424
2425                 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2426                         rcu_read_unlock();
2427
2428                         if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2429                                                k->val)) {
2430                                 bt_dev_warn_ratelimited(hdev,
2431                                                         "LTK blocked for %pMR",
2432                                                         &k->bdaddr);
2433                                 return NULL;
2434                         }
2435
2436                         return k;
2437                 }
2438         }
2439         rcu_read_unlock();
2440
2441         return NULL;
2442 }
2443
2444 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2445 {
2446         struct smp_irk *irk_to_return = NULL;
2447         struct smp_irk *irk;
2448
2449         rcu_read_lock();
2450         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2451                 if (!bacmp(&irk->rpa, rpa)) {
2452                         irk_to_return = irk;
2453                         goto done;
2454                 }
2455         }
2456
2457         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2458                 if (smp_irk_matches(hdev, irk->val, rpa)) {
2459                         bacpy(&irk->rpa, rpa);
2460                         irk_to_return = irk;
2461                         goto done;
2462                 }
2463         }
2464
2465 done:
2466         if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2467                                                 irk_to_return->val)) {
2468                 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2469                                         &irk_to_return->bdaddr);
2470                 irk_to_return = NULL;
2471         }
2472
2473         rcu_read_unlock();
2474
2475         return irk_to_return;
2476 }
2477
2478 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2479                                      u8 addr_type)
2480 {
2481         struct smp_irk *irk_to_return = NULL;
2482         struct smp_irk *irk;
2483
2484         /* Identity Address must be public or static random */
2485         if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2486                 return NULL;
2487
2488         rcu_read_lock();
2489         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2490                 if (addr_type == irk->addr_type &&
2491                     bacmp(bdaddr, &irk->bdaddr) == 0) {
2492                         irk_to_return = irk;
2493                         goto done;
2494                 }
2495         }
2496
2497 done:
2498
2499         if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2500                                                 irk_to_return->val)) {
2501                 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2502                                         &irk_to_return->bdaddr);
2503                 irk_to_return = NULL;
2504         }
2505
2506         rcu_read_unlock();
2507
2508         return irk_to_return;
2509 }
2510
2511 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2512                                   bdaddr_t *bdaddr, u8 *val, u8 type,
2513                                   u8 pin_len, bool *persistent)
2514 {
2515         struct link_key *key, *old_key;
2516         u8 old_key_type;
2517
2518         old_key = hci_find_link_key(hdev, bdaddr);
2519         if (old_key) {
2520                 old_key_type = old_key->type;
2521                 key = old_key;
2522         } else {
2523                 old_key_type = conn ? conn->key_type : 0xff;
2524                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2525                 if (!key)
2526                         return NULL;
2527                 list_add_rcu(&key->list, &hdev->link_keys);
2528         }
2529
2530         BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2531
2532         /* Some buggy controller combinations generate a changed
2533          * combination key for legacy pairing even when there's no
2534          * previous key */
2535         if (type == HCI_LK_CHANGED_COMBINATION &&
2536             (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2537                 type = HCI_LK_COMBINATION;
2538                 if (conn)
2539                         conn->key_type = type;
2540         }
2541
2542         bacpy(&key->bdaddr, bdaddr);
2543         memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2544         key->pin_len = pin_len;
2545
2546         if (type == HCI_LK_CHANGED_COMBINATION)
2547                 key->type = old_key_type;
2548         else
2549                 key->type = type;
2550
2551         if (persistent)
2552                 *persistent = hci_persistent_key(hdev, conn, type,
2553                                                  old_key_type);
2554
2555         return key;
2556 }
2557
2558 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2559                             u8 addr_type, u8 type, u8 authenticated,
2560                             u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2561 {
2562         struct smp_ltk *key, *old_key;
2563         u8 role = ltk_role(type);
2564
2565         old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2566         if (old_key)
2567                 key = old_key;
2568         else {
2569                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2570                 if (!key)
2571                         return NULL;
2572                 list_add_rcu(&key->list, &hdev->long_term_keys);
2573         }
2574
2575         bacpy(&key->bdaddr, bdaddr);
2576         key->bdaddr_type = addr_type;
2577         memcpy(key->val, tk, sizeof(key->val));
2578         key->authenticated = authenticated;
2579         key->ediv = ediv;
2580         key->rand = rand;
2581         key->enc_size = enc_size;
2582         key->type = type;
2583
2584         return key;
2585 }
2586
2587 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2588                             u8 addr_type, u8 val[16], bdaddr_t *rpa)
2589 {
2590         struct smp_irk *irk;
2591
2592         irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2593         if (!irk) {
2594                 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2595                 if (!irk)
2596                         return NULL;
2597
2598                 bacpy(&irk->bdaddr, bdaddr);
2599                 irk->addr_type = addr_type;
2600
2601                 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2602         }
2603
2604         memcpy(irk->val, val, 16);
2605         bacpy(&irk->rpa, rpa);
2606
2607         return irk;
2608 }
2609
2610 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2611 {
2612         struct link_key *key;
2613
2614         key = hci_find_link_key(hdev, bdaddr);
2615         if (!key)
2616                 return -ENOENT;
2617
2618         BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2619
2620         list_del_rcu(&key->list);
2621         kfree_rcu(key, rcu);
2622
2623         return 0;
2624 }
2625
2626 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2627 {
2628         struct smp_ltk *k;
2629         int removed = 0;
2630
2631         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2632                 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2633                         continue;
2634
2635                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2636
2637                 list_del_rcu(&k->list);
2638                 kfree_rcu(k, rcu);
2639                 removed++;
2640         }
2641
2642         return removed ? 0 : -ENOENT;
2643 }
2644
2645 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2646 {
2647         struct smp_irk *k;
2648
2649         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2650                 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2651                         continue;
2652
2653                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2654
2655                 list_del_rcu(&k->list);
2656                 kfree_rcu(k, rcu);
2657         }
2658 }
2659
2660 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2661 {
2662         struct smp_ltk *k;
2663         struct smp_irk *irk;
2664         u8 addr_type;
2665
2666         if (type == BDADDR_BREDR) {
2667                 if (hci_find_link_key(hdev, bdaddr))
2668                         return true;
2669                 return false;
2670         }
2671
2672         /* Convert to HCI addr type which struct smp_ltk uses */
2673         if (type == BDADDR_LE_PUBLIC)
2674                 addr_type = ADDR_LE_DEV_PUBLIC;
2675         else
2676                 addr_type = ADDR_LE_DEV_RANDOM;
2677
2678         irk = hci_get_irk(hdev, bdaddr, addr_type);
2679         if (irk) {
2680                 bdaddr = &irk->bdaddr;
2681                 addr_type = irk->addr_type;
2682         }
2683
2684         rcu_read_lock();
2685         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2686                 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2687                         rcu_read_unlock();
2688                         return true;
2689                 }
2690         }
2691         rcu_read_unlock();
2692
2693         return false;
2694 }
2695
2696 /* HCI command timer function */
2697 static void hci_cmd_timeout(struct work_struct *work)
2698 {
2699         struct hci_dev *hdev = container_of(work, struct hci_dev,
2700                                             cmd_timer.work);
2701
2702         if (hdev->sent_cmd) {
2703                 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2704                 u16 opcode = __le16_to_cpu(sent->opcode);
2705
2706                 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2707         } else {
2708                 bt_dev_err(hdev, "command tx timeout");
2709         }
2710
2711         if (hdev->cmd_timeout)
2712                 hdev->cmd_timeout(hdev);
2713
2714         atomic_set(&hdev->cmd_cnt, 1);
2715         queue_work(hdev->workqueue, &hdev->cmd_work);
2716 }
2717
2718 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2719                                           bdaddr_t *bdaddr, u8 bdaddr_type)
2720 {
2721         struct oob_data *data;
2722
2723         list_for_each_entry(data, &hdev->remote_oob_data, list) {
2724                 if (bacmp(bdaddr, &data->bdaddr) != 0)
2725                         continue;
2726                 if (data->bdaddr_type != bdaddr_type)
2727                         continue;
2728                 return data;
2729         }
2730
2731         return NULL;
2732 }
2733
2734 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2735                                u8 bdaddr_type)
2736 {
2737         struct oob_data *data;
2738
2739         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2740         if (!data)
2741                 return -ENOENT;
2742
2743         BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2744
2745         list_del(&data->list);
2746         kfree(data);
2747
2748         return 0;
2749 }
2750
2751 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2752 {
2753         struct oob_data *data, *n;
2754
2755         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2756                 list_del(&data->list);
2757                 kfree(data);
2758         }
2759 }
2760
2761 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2762                             u8 bdaddr_type, u8 *hash192, u8 *rand192,
2763                             u8 *hash256, u8 *rand256)
2764 {
2765         struct oob_data *data;
2766
2767         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2768         if (!data) {
2769                 data = kmalloc(sizeof(*data), GFP_KERNEL);
2770                 if (!data)
2771                         return -ENOMEM;
2772
2773                 bacpy(&data->bdaddr, bdaddr);
2774                 data->bdaddr_type = bdaddr_type;
2775                 list_add(&data->list, &hdev->remote_oob_data);
2776         }
2777
2778         if (hash192 && rand192) {
2779                 memcpy(data->hash192, hash192, sizeof(data->hash192));
2780                 memcpy(data->rand192, rand192, sizeof(data->rand192));
2781                 if (hash256 && rand256)
2782                         data->present = 0x03;
2783         } else {
2784                 memset(data->hash192, 0, sizeof(data->hash192));
2785                 memset(data->rand192, 0, sizeof(data->rand192));
2786                 if (hash256 && rand256)
2787                         data->present = 0x02;
2788                 else
2789                         data->present = 0x00;
2790         }
2791
2792         if (hash256 && rand256) {
2793                 memcpy(data->hash256, hash256, sizeof(data->hash256));
2794                 memcpy(data->rand256, rand256, sizeof(data->rand256));
2795         } else {
2796                 memset(data->hash256, 0, sizeof(data->hash256));
2797                 memset(data->rand256, 0, sizeof(data->rand256));
2798                 if (hash192 && rand192)
2799                         data->present = 0x01;
2800         }
2801
2802         BT_DBG("%s for %pMR", hdev->name, bdaddr);
2803
2804         return 0;
2805 }
2806
2807 /* This function requires the caller holds hdev->lock */
2808 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2809 {
2810         struct adv_info *adv_instance;
2811
2812         list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2813                 if (adv_instance->instance == instance)
2814                         return adv_instance;
2815         }
2816
2817         return NULL;
2818 }
2819
2820 /* This function requires the caller holds hdev->lock */
2821 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2822 {
2823         struct adv_info *cur_instance;
2824
2825         cur_instance = hci_find_adv_instance(hdev, instance);
2826         if (!cur_instance)
2827                 return NULL;
2828
2829         if (cur_instance == list_last_entry(&hdev->adv_instances,
2830                                             struct adv_info, list))
2831                 return list_first_entry(&hdev->adv_instances,
2832                                                  struct adv_info, list);
2833         else
2834                 return list_next_entry(cur_instance, list);
2835 }
2836
2837 /* This function requires the caller holds hdev->lock */
2838 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2839 {
2840         struct adv_info *adv_instance;
2841
2842         adv_instance = hci_find_adv_instance(hdev, instance);
2843         if (!adv_instance)
2844                 return -ENOENT;
2845
2846         BT_DBG("%s removing %dMR", hdev->name, instance);
2847
2848         if (hdev->cur_adv_instance == instance) {
2849                 if (hdev->adv_instance_timeout) {
2850                         cancel_delayed_work(&hdev->adv_instance_expire);
2851                         hdev->adv_instance_timeout = 0;
2852                 }
2853                 hdev->cur_adv_instance = 0x00;
2854         }
2855
2856         cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2857
2858         list_del(&adv_instance->list);
2859         kfree(adv_instance);
2860
2861         hdev->adv_instance_cnt--;
2862
2863         return 0;
2864 }
2865
2866 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2867 {
2868         struct adv_info *adv_instance, *n;
2869
2870         list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2871                 adv_instance->rpa_expired = rpa_expired;
2872 }
2873
2874 /* This function requires the caller holds hdev->lock */
2875 void hci_adv_instances_clear(struct hci_dev *hdev)
2876 {
2877         struct adv_info *adv_instance, *n;
2878
2879         if (hdev->adv_instance_timeout) {
2880                 cancel_delayed_work(&hdev->adv_instance_expire);
2881                 hdev->adv_instance_timeout = 0;
2882         }
2883
2884         list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2885                 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2886                 list_del(&adv_instance->list);
2887                 kfree(adv_instance);
2888         }
2889
2890         hdev->adv_instance_cnt = 0;
2891         hdev->cur_adv_instance = 0x00;
2892 }
2893
2894 static void adv_instance_rpa_expired(struct work_struct *work)
2895 {
2896         struct adv_info *adv_instance = container_of(work, struct adv_info,
2897                                                      rpa_expired_cb.work);
2898
2899         BT_DBG("");
2900
2901         adv_instance->rpa_expired = true;
2902 }
2903
2904 /* This function requires the caller holds hdev->lock */
2905 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2906                          u16 adv_data_len, u8 *adv_data,
2907                          u16 scan_rsp_len, u8 *scan_rsp_data,
2908                          u16 timeout, u16 duration)
2909 {
2910         struct adv_info *adv_instance;
2911
2912         adv_instance = hci_find_adv_instance(hdev, instance);
2913         if (adv_instance) {
2914                 memset(adv_instance->adv_data, 0,
2915                        sizeof(adv_instance->adv_data));
2916                 memset(adv_instance->scan_rsp_data, 0,
2917                        sizeof(adv_instance->scan_rsp_data));
2918         } else {
2919                 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2920                     instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2921                         return -EOVERFLOW;
2922
2923                 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2924                 if (!adv_instance)
2925                         return -ENOMEM;
2926
2927                 adv_instance->pending = true;
2928                 adv_instance->instance = instance;
2929                 list_add(&adv_instance->list, &hdev->adv_instances);
2930                 hdev->adv_instance_cnt++;
2931         }
2932
2933         adv_instance->flags = flags;
2934         adv_instance->adv_data_len = adv_data_len;
2935         adv_instance->scan_rsp_len = scan_rsp_len;
2936
2937         if (adv_data_len)
2938                 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2939
2940         if (scan_rsp_len)
2941                 memcpy(adv_instance->scan_rsp_data,
2942                        scan_rsp_data, scan_rsp_len);
2943
2944         adv_instance->timeout = timeout;
2945         adv_instance->remaining_time = timeout;
2946
2947         if (duration == 0)
2948                 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2949         else
2950                 adv_instance->duration = duration;
2951
2952         adv_instance->tx_power = HCI_TX_POWER_INVALID;
2953
2954         INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
2955                           adv_instance_rpa_expired);
2956
2957         BT_DBG("%s for %dMR", hdev->name, instance);
2958
2959         return 0;
2960 }
2961
2962 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2963                                          bdaddr_t *bdaddr, u8 type)
2964 {
2965         struct bdaddr_list *b;
2966
2967         list_for_each_entry(b, bdaddr_list, list) {
2968                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2969                         return b;
2970         }
2971
2972         return NULL;
2973 }
2974
2975 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2976                                 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2977                                 u8 type)
2978 {
2979         struct bdaddr_list_with_irk *b;
2980
2981         list_for_each_entry(b, bdaddr_list, list) {
2982                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2983                         return b;
2984         }
2985
2986         return NULL;
2987 }
2988
2989 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2990 {
2991         struct bdaddr_list *b, *n;
2992
2993         list_for_each_entry_safe(b, n, bdaddr_list, list) {
2994                 list_del(&b->list);
2995                 kfree(b);
2996         }
2997 }
2998
2999 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3000 {
3001         struct bdaddr_list *entry;
3002
3003         if (!bacmp(bdaddr, BDADDR_ANY))
3004                 return -EBADF;
3005
3006         if (hci_bdaddr_list_lookup(list, bdaddr, type))
3007                 return -EEXIST;
3008
3009         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3010         if (!entry)
3011                 return -ENOMEM;
3012
3013         bacpy(&entry->bdaddr, bdaddr);
3014         entry->bdaddr_type = type;
3015
3016         list_add(&entry->list, list);
3017
3018         return 0;
3019 }
3020
3021 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3022                                         u8 type, u8 *peer_irk, u8 *local_irk)
3023 {
3024         struct bdaddr_list_with_irk *entry;
3025
3026         if (!bacmp(bdaddr, BDADDR_ANY))
3027                 return -EBADF;
3028
3029         if (hci_bdaddr_list_lookup(list, bdaddr, type))
3030                 return -EEXIST;
3031
3032         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3033         if (!entry)
3034                 return -ENOMEM;
3035
3036         bacpy(&entry->bdaddr, bdaddr);
3037         entry->bdaddr_type = type;
3038
3039         if (peer_irk)
3040                 memcpy(entry->peer_irk, peer_irk, 16);
3041
3042         if (local_irk)
3043                 memcpy(entry->local_irk, local_irk, 16);
3044
3045         list_add(&entry->list, list);
3046
3047         return 0;
3048 }
3049
3050 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3051 {
3052         struct bdaddr_list *entry;
3053
3054         if (!bacmp(bdaddr, BDADDR_ANY)) {
3055                 hci_bdaddr_list_clear(list);
3056                 return 0;
3057         }
3058
3059         entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3060         if (!entry)
3061                 return -ENOENT;
3062
3063         list_del(&entry->list);
3064         kfree(entry);
3065
3066         return 0;
3067 }
3068
3069 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3070                                                         u8 type)
3071 {
3072         struct bdaddr_list_with_irk *entry;
3073
3074         if (!bacmp(bdaddr, BDADDR_ANY)) {
3075                 hci_bdaddr_list_clear(list);
3076                 return 0;
3077         }
3078
3079         entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3080         if (!entry)
3081                 return -ENOENT;
3082
3083         list_del(&entry->list);
3084         kfree(entry);
3085
3086         return 0;
3087 }
3088
3089 /* This function requires the caller holds hdev->lock */
3090 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3091                                                bdaddr_t *addr, u8 addr_type)
3092 {
3093         struct hci_conn_params *params;
3094
3095         list_for_each_entry(params, &hdev->le_conn_params, list) {
3096                 if (bacmp(&params->addr, addr) == 0 &&
3097                     params->addr_type == addr_type) {
3098                         return params;
3099                 }
3100         }
3101
3102         return NULL;
3103 }
3104
3105 /* This function requires the caller holds hdev->lock */
3106 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3107                                                   bdaddr_t *addr, u8 addr_type)
3108 {
3109         struct hci_conn_params *param;
3110
3111         list_for_each_entry(param, list, action) {
3112                 if (bacmp(&param->addr, addr) == 0 &&
3113                     param->addr_type == addr_type)
3114                         return param;
3115         }
3116
3117         return NULL;
3118 }
3119
3120 /* This function requires the caller holds hdev->lock */
3121 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3122                                             bdaddr_t *addr, u8 addr_type)
3123 {
3124         struct hci_conn_params *params;
3125
3126         params = hci_conn_params_lookup(hdev, addr, addr_type);
3127         if (params)
3128                 return params;
3129
3130         params = kzalloc(sizeof(*params), GFP_KERNEL);
3131         if (!params) {
3132                 bt_dev_err(hdev, "out of memory");
3133                 return NULL;
3134         }
3135
3136         bacpy(&params->addr, addr);
3137         params->addr_type = addr_type;
3138
3139         list_add(&params->list, &hdev->le_conn_params);
3140         INIT_LIST_HEAD(&params->action);
3141
3142         params->conn_min_interval = hdev->le_conn_min_interval;
3143         params->conn_max_interval = hdev->le_conn_max_interval;
3144         params->conn_latency = hdev->le_conn_latency;
3145         params->supervision_timeout = hdev->le_supv_timeout;
3146         params->auto_connect = HCI_AUTO_CONN_DISABLED;
3147
3148         BT_DBG("addr %pMR (type %u)", addr, addr_type);
3149
3150         return params;
3151 }
3152
3153 static void hci_conn_params_free(struct hci_conn_params *params)
3154 {
3155         if (params->conn) {
3156                 hci_conn_drop(params->conn);
3157                 hci_conn_put(params->conn);
3158         }
3159
3160         list_del(&params->action);
3161         list_del(&params->list);
3162         kfree(params);
3163 }
3164
3165 /* This function requires the caller holds hdev->lock */
3166 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3167 {
3168         struct hci_conn_params *params;
3169
3170         params = hci_conn_params_lookup(hdev, addr, addr_type);
3171         if (!params)
3172                 return;
3173
3174         hci_conn_params_free(params);
3175
3176         hci_update_background_scan(hdev);
3177
3178         BT_DBG("addr %pMR (type %u)", addr, addr_type);
3179 }
3180
3181 /* This function requires the caller holds hdev->lock */
3182 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3183 {
3184         struct hci_conn_params *params, *tmp;
3185
3186         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3187                 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3188                         continue;
3189
3190                 /* If trying to estabilish one time connection to disabled
3191                  * device, leave the params, but mark them as just once.
3192                  */
3193                 if (params->explicit_connect) {
3194                         params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3195                         continue;
3196                 }
3197
3198                 list_del(&params->list);
3199                 kfree(params);
3200         }
3201
3202         BT_DBG("All LE disabled connection parameters were removed");
3203 }
3204
3205 /* This function requires the caller holds hdev->lock */
3206 static void hci_conn_params_clear_all(struct hci_dev *hdev)
3207 {
3208         struct hci_conn_params *params, *tmp;
3209
3210         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3211                 hci_conn_params_free(params);
3212
3213         BT_DBG("All LE connection parameters were removed");
3214 }
3215
3216 /* Copy the Identity Address of the controller.
3217  *
3218  * If the controller has a public BD_ADDR, then by default use that one.
3219  * If this is a LE only controller without a public address, default to
3220  * the static random address.
3221  *
3222  * For debugging purposes it is possible to force controllers with a
3223  * public address to use the static random address instead.
3224  *
3225  * In case BR/EDR has been disabled on a dual-mode controller and
3226  * userspace has configured a static address, then that address
3227  * becomes the identity address instead of the public BR/EDR address.
3228  */
3229 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3230                                u8 *bdaddr_type)
3231 {
3232         if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3233             !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3234             (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3235              bacmp(&hdev->static_addr, BDADDR_ANY))) {
3236                 bacpy(bdaddr, &hdev->static_addr);
3237                 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3238         } else {
3239                 bacpy(bdaddr, &hdev->bdaddr);
3240                 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3241         }
3242 }
3243
3244 /* Alloc HCI device */
3245 struct hci_dev *hci_alloc_dev(void)
3246 {
3247         struct hci_dev *hdev;
3248
3249         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3250         if (!hdev)
3251                 return NULL;
3252
3253         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3254         hdev->esco_type = (ESCO_HV1);
3255         hdev->link_mode = (HCI_LM_ACCEPT);
3256         hdev->num_iac = 0x01;           /* One IAC support is mandatory */
3257         hdev->io_capability = 0x03;     /* No Input No Output */
3258         hdev->manufacturer = 0xffff;    /* Default to internal use */
3259         hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3260         hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3261         hdev->adv_instance_cnt = 0;
3262         hdev->cur_adv_instance = 0x00;
3263         hdev->adv_instance_timeout = 0;
3264
3265         hdev->sniff_max_interval = 800;
3266         hdev->sniff_min_interval = 80;
3267
3268         hdev->le_adv_channel_map = 0x07;
3269         hdev->le_adv_min_interval = 0x0800;
3270         hdev->le_adv_max_interval = 0x0800;
3271         hdev->le_scan_interval = 0x0060;
3272         hdev->le_scan_window = 0x0030;
3273         hdev->le_conn_min_interval = 0x0018;
3274         hdev->le_conn_max_interval = 0x0028;
3275         hdev->le_conn_latency = 0x0000;
3276         hdev->le_supv_timeout = 0x002a;
3277         hdev->le_def_tx_len = 0x001b;
3278         hdev->le_def_tx_time = 0x0148;
3279         hdev->le_max_tx_len = 0x001b;
3280         hdev->le_max_tx_time = 0x0148;
3281         hdev->le_max_rx_len = 0x001b;
3282         hdev->le_max_rx_time = 0x0148;
3283         hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3284         hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3285         hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3286         hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3287         hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3288
3289         hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3290         hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3291         hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3292         hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3293         hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3294         hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3295
3296         mutex_init(&hdev->lock);
3297         mutex_init(&hdev->req_lock);
3298
3299         INIT_LIST_HEAD(&hdev->mgmt_pending);
3300         INIT_LIST_HEAD(&hdev->blacklist);
3301         INIT_LIST_HEAD(&hdev->whitelist);
3302         INIT_LIST_HEAD(&hdev->uuids);
3303         INIT_LIST_HEAD(&hdev->link_keys);
3304         INIT_LIST_HEAD(&hdev->long_term_keys);
3305         INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3306         INIT_LIST_HEAD(&hdev->remote_oob_data);
3307         INIT_LIST_HEAD(&hdev->le_white_list);
3308         INIT_LIST_HEAD(&hdev->le_resolv_list);
3309         INIT_LIST_HEAD(&hdev->le_conn_params);
3310         INIT_LIST_HEAD(&hdev->pend_le_conns);
3311         INIT_LIST_HEAD(&hdev->pend_le_reports);
3312         INIT_LIST_HEAD(&hdev->conn_hash.list);
3313         INIT_LIST_HEAD(&hdev->adv_instances);
3314         INIT_LIST_HEAD(&hdev->blocked_keys);
3315
3316         INIT_WORK(&hdev->rx_work, hci_rx_work);
3317         INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3318         INIT_WORK(&hdev->tx_work, hci_tx_work);
3319         INIT_WORK(&hdev->power_on, hci_power_on);
3320         INIT_WORK(&hdev->error_reset, hci_error_reset);
3321
3322         INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3323
3324         skb_queue_head_init(&hdev->rx_q);
3325         skb_queue_head_init(&hdev->cmd_q);
3326         skb_queue_head_init(&hdev->raw_q);
3327
3328         init_waitqueue_head(&hdev->req_wait_q);
3329
3330         INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3331
3332         hci_request_setup(hdev);
3333
3334         hci_init_sysfs(hdev);
3335         discovery_init(hdev);
3336
3337         return hdev;
3338 }
3339 EXPORT_SYMBOL(hci_alloc_dev);
3340
3341 /* Free HCI device */
3342 void hci_free_dev(struct hci_dev *hdev)
3343 {
3344         /* will free via device release */
3345         put_device(&hdev->dev);
3346 }
3347 EXPORT_SYMBOL(hci_free_dev);
3348
3349 /* Register HCI device */
3350 int hci_register_dev(struct hci_dev *hdev)
3351 {
3352         int id, error;
3353
3354         if (!hdev->open || !hdev->close || !hdev->send)
3355                 return -EINVAL;
3356
3357         /* Do not allow HCI_AMP devices to register at index 0,
3358          * so the index can be used as the AMP controller ID.
3359          */
3360         switch (hdev->dev_type) {
3361         case HCI_PRIMARY:
3362                 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3363                 break;
3364         case HCI_AMP:
3365                 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3366                 break;
3367         default:
3368                 return -EINVAL;
3369         }
3370
3371         if (id < 0)
3372                 return id;
3373
3374         sprintf(hdev->name, "hci%d", id);
3375         hdev->id = id;
3376
3377         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3378
3379         hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3380         if (!hdev->workqueue) {
3381                 error = -ENOMEM;
3382                 goto err;
3383         }
3384
3385         hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3386                                                       hdev->name);
3387         if (!hdev->req_workqueue) {
3388                 destroy_workqueue(hdev->workqueue);
3389                 error = -ENOMEM;
3390                 goto err;
3391         }
3392
3393         if (!IS_ERR_OR_NULL(bt_debugfs))
3394                 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3395
3396         dev_set_name(&hdev->dev, "%s", hdev->name);
3397
3398         error = device_add(&hdev->dev);
3399         if (error < 0)
3400                 goto err_wqueue;
3401
3402         hci_leds_init(hdev);
3403
3404         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3405                                     RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3406                                     hdev);
3407         if (hdev->rfkill) {
3408                 if (rfkill_register(hdev->rfkill) < 0) {
3409                         rfkill_destroy(hdev->rfkill);
3410                         hdev->rfkill = NULL;
3411                 }
3412         }
3413
3414         if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3415                 hci_dev_set_flag(hdev, HCI_RFKILLED);
3416
3417         hci_dev_set_flag(hdev, HCI_SETUP);
3418         hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3419
3420         if (hdev->dev_type == HCI_PRIMARY) {
3421                 /* Assume BR/EDR support until proven otherwise (such as
3422                  * through reading supported features during init.
3423                  */
3424                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3425         }
3426
3427         write_lock(&hci_dev_list_lock);
3428         list_add(&hdev->list, &hci_dev_list);
3429         write_unlock(&hci_dev_list_lock);
3430
3431         /* Devices that are marked for raw-only usage are unconfigured
3432          * and should not be included in normal operation.
3433          */
3434         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3435                 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3436
3437         hci_sock_dev_event(hdev, HCI_DEV_REG);
3438         hci_dev_hold(hdev);
3439
3440         queue_work(hdev->req_workqueue, &hdev->power_on);
3441
3442         return id;
3443
3444 err_wqueue:
3445         destroy_workqueue(hdev->workqueue);
3446         destroy_workqueue(hdev->req_workqueue);
3447 err:
3448         ida_simple_remove(&hci_index_ida, hdev->id);
3449
3450         return error;
3451 }
3452 EXPORT_SYMBOL(hci_register_dev);
3453
3454 /* Unregister HCI device */
3455 void hci_unregister_dev(struct hci_dev *hdev)
3456 {
3457         int id;
3458
3459         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3460
3461         hci_dev_set_flag(hdev, HCI_UNREGISTER);
3462
3463         id = hdev->id;
3464
3465         write_lock(&hci_dev_list_lock);
3466         list_del(&hdev->list);
3467         write_unlock(&hci_dev_list_lock);
3468
3469         cancel_work_sync(&hdev->power_on);
3470
3471         hci_dev_do_close(hdev);
3472
3473         if (!test_bit(HCI_INIT, &hdev->flags) &&
3474             !hci_dev_test_flag(hdev, HCI_SETUP) &&
3475             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3476                 hci_dev_lock(hdev);
3477                 mgmt_index_removed(hdev);
3478                 hci_dev_unlock(hdev);
3479         }
3480
3481         /* mgmt_index_removed should take care of emptying the
3482          * pending list */
3483         BUG_ON(!list_empty(&hdev->mgmt_pending));
3484
3485         hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3486
3487         if (hdev->rfkill) {
3488                 rfkill_unregister(hdev->rfkill);
3489                 rfkill_destroy(hdev->rfkill);
3490         }
3491
3492         device_del(&hdev->dev);
3493
3494         debugfs_remove_recursive(hdev->debugfs);
3495         kfree_const(hdev->hw_info);
3496         kfree_const(hdev->fw_info);
3497
3498         destroy_workqueue(hdev->workqueue);
3499         destroy_workqueue(hdev->req_workqueue);
3500
3501         hci_dev_lock(hdev);
3502         hci_bdaddr_list_clear(&hdev->blacklist);
3503         hci_bdaddr_list_clear(&hdev->whitelist);
3504         hci_uuids_clear(hdev);
3505         hci_link_keys_clear(hdev);
3506         hci_smp_ltks_clear(hdev);
3507         hci_smp_irks_clear(hdev);
3508         hci_remote_oob_data_clear(hdev);
3509         hci_adv_instances_clear(hdev);
3510         hci_bdaddr_list_clear(&hdev->le_white_list);
3511         hci_bdaddr_list_clear(&hdev->le_resolv_list);
3512         hci_conn_params_clear_all(hdev);
3513         hci_discovery_filter_clear(hdev);
3514         hci_blocked_keys_clear(hdev);
3515         hci_dev_unlock(hdev);
3516
3517         hci_dev_put(hdev);
3518
3519         ida_simple_remove(&hci_index_ida, id);
3520 }
3521 EXPORT_SYMBOL(hci_unregister_dev);
3522
3523 /* Suspend HCI device */
3524 int hci_suspend_dev(struct hci_dev *hdev)
3525 {
3526         hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3527         return 0;
3528 }
3529 EXPORT_SYMBOL(hci_suspend_dev);
3530
3531 /* Resume HCI device */
3532 int hci_resume_dev(struct hci_dev *hdev)
3533 {
3534         hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3535         return 0;
3536 }
3537 EXPORT_SYMBOL(hci_resume_dev);
3538
3539 /* Reset HCI device */
3540 int hci_reset_dev(struct hci_dev *hdev)
3541 {
3542         static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3543         struct sk_buff *skb;
3544
3545         skb = bt_skb_alloc(3, GFP_ATOMIC);
3546         if (!skb)
3547                 return -ENOMEM;
3548
3549         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3550         skb_put_data(skb, hw_err, 3);
3551
3552         /* Send Hardware Error to upper stack */
3553         return hci_recv_frame(hdev, skb);
3554 }
3555 EXPORT_SYMBOL(hci_reset_dev);
3556
3557 /* Receive frame from HCI drivers */
3558 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3559 {
3560         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3561                       && !test_bit(HCI_INIT, &hdev->flags))) {
3562                 kfree_skb(skb);
3563                 return -ENXIO;
3564         }
3565
3566         if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3567             hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3568             hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
3569             hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
3570                 kfree_skb(skb);
3571                 return -EINVAL;
3572         }
3573
3574         /* Incoming skb */
3575         bt_cb(skb)->incoming = 1;
3576
3577         /* Time stamp */
3578         __net_timestamp(skb);
3579
3580         skb_queue_tail(&hdev->rx_q, skb);
3581         queue_work(hdev->workqueue, &hdev->rx_work);
3582
3583         return 0;
3584 }
3585 EXPORT_SYMBOL(hci_recv_frame);
3586
3587 /* Receive diagnostic message from HCI drivers */
3588 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3589 {
3590         /* Mark as diagnostic packet */
3591         hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3592
3593         /* Time stamp */
3594         __net_timestamp(skb);
3595
3596         skb_queue_tail(&hdev->rx_q, skb);
3597         queue_work(hdev->workqueue, &hdev->rx_work);
3598
3599         return 0;
3600 }
3601 EXPORT_SYMBOL(hci_recv_diag);
3602
3603 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3604 {
3605         va_list vargs;
3606
3607         va_start(vargs, fmt);
3608         kfree_const(hdev->hw_info);
3609         hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3610         va_end(vargs);
3611 }
3612 EXPORT_SYMBOL(hci_set_hw_info);
3613
3614 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3615 {
3616         va_list vargs;
3617
3618         va_start(vargs, fmt);
3619         kfree_const(hdev->fw_info);
3620         hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3621         va_end(vargs);
3622 }
3623 EXPORT_SYMBOL(hci_set_fw_info);
3624
3625 /* ---- Interface to upper protocols ---- */
3626
3627 int hci_register_cb(struct hci_cb *cb)
3628 {
3629         BT_DBG("%p name %s", cb, cb->name);
3630
3631         mutex_lock(&hci_cb_list_lock);
3632         list_add_tail(&cb->list, &hci_cb_list);
3633         mutex_unlock(&hci_cb_list_lock);
3634
3635         return 0;
3636 }
3637 EXPORT_SYMBOL(hci_register_cb);
3638
3639 int hci_unregister_cb(struct hci_cb *cb)
3640 {
3641         BT_DBG("%p name %s", cb, cb->name);
3642
3643         mutex_lock(&hci_cb_list_lock);
3644         list_del(&cb->list);
3645         mutex_unlock(&hci_cb_list_lock);
3646
3647         return 0;
3648 }
3649 EXPORT_SYMBOL(hci_unregister_cb);
3650
3651 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3652 {
3653         int err;
3654
3655         BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3656                skb->len);
3657
3658         /* Time stamp */
3659         __net_timestamp(skb);
3660
3661         /* Send copy to monitor */
3662         hci_send_to_monitor(hdev, skb);
3663
3664         if (atomic_read(&hdev->promisc)) {
3665                 /* Send copy to the sockets */
3666                 hci_send_to_sock(hdev, skb);
3667         }
3668
3669         /* Get rid of skb owner, prior to sending to the driver. */
3670         skb_orphan(skb);
3671
3672         if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3673                 kfree_skb(skb);
3674                 return;
3675         }
3676
3677         err = hdev->send(hdev, skb);
3678         if (err < 0) {
3679                 bt_dev_err(hdev, "sending frame failed (%d)", err);
3680                 kfree_skb(skb);
3681         }
3682 }
3683
3684 /* Send HCI command */
3685 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3686                  const void *param)
3687 {
3688         struct sk_buff *skb;
3689
3690         BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3691
3692         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3693         if (!skb) {
3694                 bt_dev_err(hdev, "no memory for command");
3695                 return -ENOMEM;
3696         }
3697
3698         /* Stand-alone HCI commands must be flagged as
3699          * single-command requests.
3700          */
3701         bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3702
3703         skb_queue_tail(&hdev->cmd_q, skb);
3704         queue_work(hdev->workqueue, &hdev->cmd_work);
3705
3706         return 0;
3707 }
3708
3709 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3710                    const void *param)
3711 {
3712         struct sk_buff *skb;
3713
3714         if (hci_opcode_ogf(opcode) != 0x3f) {
3715                 /* A controller receiving a command shall respond with either
3716                  * a Command Status Event or a Command Complete Event.
3717                  * Therefore, all standard HCI commands must be sent via the
3718                  * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3719                  * Some vendors do not comply with this rule for vendor-specific
3720                  * commands and do not return any event. We want to support
3721                  * unresponded commands for such cases only.
3722                  */
3723                 bt_dev_err(hdev, "unresponded command not supported");
3724                 return -EINVAL;
3725         }
3726
3727         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3728         if (!skb) {
3729                 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3730                            opcode);
3731                 return -ENOMEM;
3732         }
3733
3734         hci_send_frame(hdev, skb);
3735
3736         return 0;
3737 }
3738 EXPORT_SYMBOL(__hci_cmd_send);
3739
3740 /* Get data from the previously sent command */
3741 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3742 {
3743         struct hci_command_hdr *hdr;
3744
3745         if (!hdev->sent_cmd)
3746                 return NULL;
3747
3748         hdr = (void *) hdev->sent_cmd->data;
3749
3750         if (hdr->opcode != cpu_to_le16(opcode))
3751                 return NULL;
3752
3753         BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3754
3755         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3756 }
3757
3758 /* Send HCI command and wait for command commplete event */
3759 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3760                              const void *param, u32 timeout)
3761 {
3762         struct sk_buff *skb;
3763
3764         if (!test_bit(HCI_UP, &hdev->flags))
3765                 return ERR_PTR(-ENETDOWN);
3766
3767         bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3768
3769         hci_req_sync_lock(hdev);
3770         skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3771         hci_req_sync_unlock(hdev);
3772
3773         return skb;
3774 }
3775 EXPORT_SYMBOL(hci_cmd_sync);
3776
3777 /* Send ACL data */
3778 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3779 {
3780         struct hci_acl_hdr *hdr;
3781         int len = skb->len;
3782
3783         skb_push(skb, HCI_ACL_HDR_SIZE);
3784         skb_reset_transport_header(skb);
3785         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3786         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3787         hdr->dlen   = cpu_to_le16(len);
3788 }
3789
3790 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3791                           struct sk_buff *skb, __u16 flags)
3792 {
3793         struct hci_conn *conn = chan->conn;
3794         struct hci_dev *hdev = conn->hdev;
3795         struct sk_buff *list;
3796
3797         skb->len = skb_headlen(skb);
3798         skb->data_len = 0;
3799
3800         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3801
3802         switch (hdev->dev_type) {
3803         case HCI_PRIMARY:
3804                 hci_add_acl_hdr(skb, conn->handle, flags);
3805                 break;
3806         case HCI_AMP:
3807                 hci_add_acl_hdr(skb, chan->handle, flags);
3808                 break;
3809         default:
3810                 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3811                 return;
3812         }
3813
3814         list = skb_shinfo(skb)->frag_list;
3815         if (!list) {
3816                 /* Non fragmented */
3817                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3818
3819                 skb_queue_tail(queue, skb);
3820         } else {
3821                 /* Fragmented */
3822                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3823
3824                 skb_shinfo(skb)->frag_list = NULL;
3825
3826                 /* Queue all fragments atomically. We need to use spin_lock_bh
3827                  * here because of 6LoWPAN links, as there this function is
3828                  * called from softirq and using normal spin lock could cause
3829                  * deadlocks.
3830                  */
3831                 spin_lock_bh(&queue->lock);
3832
3833                 __skb_queue_tail(queue, skb);
3834
3835                 flags &= ~ACL_START;
3836                 flags |= ACL_CONT;
3837                 do {
3838                         skb = list; list = list->next;
3839
3840                         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3841                         hci_add_acl_hdr(skb, conn->handle, flags);
3842
3843                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3844
3845                         __skb_queue_tail(queue, skb);
3846                 } while (list);
3847
3848                 spin_unlock_bh(&queue->lock);
3849         }
3850 }
3851
3852 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3853 {
3854         struct hci_dev *hdev = chan->conn->hdev;
3855
3856         BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3857
3858         hci_queue_acl(chan, &chan->data_q, skb, flags);
3859
3860         queue_work(hdev->workqueue, &hdev->tx_work);
3861 }
3862
3863 /* Send SCO data */
3864 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3865 {
3866         struct hci_dev *hdev = conn->hdev;
3867         struct hci_sco_hdr hdr;
3868
3869         BT_DBG("%s len %d", hdev->name, skb->len);
3870
3871         hdr.handle = cpu_to_le16(conn->handle);
3872         hdr.dlen   = skb->len;
3873
3874         skb_push(skb, HCI_SCO_HDR_SIZE);
3875         skb_reset_transport_header(skb);
3876         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3877
3878         hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3879
3880         skb_queue_tail(&conn->data_q, skb);
3881         queue_work(hdev->workqueue, &hdev->tx_work);
3882 }
3883
3884 /* ---- HCI TX task (outgoing data) ---- */
3885
3886 /* HCI Connection scheduler */
3887 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3888                                      int *quote)
3889 {
3890         struct hci_conn_hash *h = &hdev->conn_hash;
3891         struct hci_conn *conn = NULL, *c;
3892         unsigned int num = 0, min = ~0;
3893
3894         /* We don't have to lock device here. Connections are always
3895          * added and removed with TX task disabled. */
3896
3897         rcu_read_lock();
3898
3899         list_for_each_entry_rcu(c, &h->list, list) {
3900                 if (c->type != type || skb_queue_empty(&c->data_q))
3901                         continue;
3902
3903                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3904                         continue;
3905
3906                 num++;
3907
3908                 if (c->sent < min) {
3909                         min  = c->sent;
3910                         conn = c;
3911                 }
3912
3913                 if (hci_conn_num(hdev, type) == num)
3914                         break;
3915         }
3916
3917         rcu_read_unlock();
3918
3919         if (conn) {
3920                 int cnt, q;
3921
3922                 switch (conn->type) {
3923                 case ACL_LINK:
3924                         cnt = hdev->acl_cnt;
3925                         break;
3926                 case SCO_LINK:
3927                 case ESCO_LINK:
3928                         cnt = hdev->sco_cnt;
3929                         break;
3930                 case LE_LINK:
3931                         cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3932                         break;
3933                 default:
3934                         cnt = 0;
3935                         bt_dev_err(hdev, "unknown link type %d", conn->type);
3936                 }
3937
3938                 q = cnt / num;
3939                 *quote = q ? q : 1;
3940         } else
3941                 *quote = 0;
3942
3943         BT_DBG("conn %p quote %d", conn, *quote);
3944         return conn;
3945 }
3946
3947 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3948 {
3949         struct hci_conn_hash *h = &hdev->conn_hash;
3950         struct hci_conn *c;
3951
3952         bt_dev_err(hdev, "link tx timeout");
3953
3954         rcu_read_lock();
3955
3956         /* Kill stalled connections */
3957         list_for_each_entry_rcu(c, &h->list, list) {
3958                 if (c->type == type && c->sent) {
3959                         bt_dev_err(hdev, "killing stalled connection %pMR",
3960                                    &c->dst);
3961                         hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3962                 }
3963         }
3964
3965         rcu_read_unlock();
3966 }
3967
3968 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3969                                       int *quote)
3970 {
3971         struct hci_conn_hash *h = &hdev->conn_hash;
3972         struct hci_chan *chan = NULL;
3973         unsigned int num = 0, min = ~0, cur_prio = 0;
3974         struct hci_conn *conn;
3975         int cnt, q, conn_num = 0;
3976
3977         BT_DBG("%s", hdev->name);
3978
3979         rcu_read_lock();
3980
3981         list_for_each_entry_rcu(conn, &h->list, list) {
3982                 struct hci_chan *tmp;
3983
3984                 if (conn->type != type)
3985                         continue;
3986
3987                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3988                         continue;
3989
3990                 conn_num++;
3991
3992                 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3993                         struct sk_buff *skb;
3994
3995                         if (skb_queue_empty(&tmp->data_q))
3996                                 continue;
3997
3998                         skb = skb_peek(&tmp->data_q);
3999                         if (skb->priority < cur_prio)
4000                                 continue;
4001
4002                         if (skb->priority > cur_prio) {
4003                                 num = 0;
4004                                 min = ~0;
4005                                 cur_prio = skb->priority;
4006                         }
4007
4008                         num++;
4009
4010                         if (conn->sent < min) {
4011                                 min  = conn->sent;
4012                                 chan = tmp;
4013                         }
4014                 }
4015
4016                 if (hci_conn_num(hdev, type) == conn_num)
4017                         break;
4018         }
4019
4020         rcu_read_unlock();
4021
4022         if (!chan)
4023                 return NULL;
4024
4025         switch (chan->conn->type) {
4026         case ACL_LINK:
4027                 cnt = hdev->acl_cnt;
4028                 break;
4029         case AMP_LINK:
4030                 cnt = hdev->block_cnt;
4031                 break;
4032         case SCO_LINK:
4033         case ESCO_LINK:
4034                 cnt = hdev->sco_cnt;
4035                 break;
4036         case LE_LINK:
4037                 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4038                 break;
4039         default:
4040                 cnt = 0;
4041                 bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4042         }
4043
4044         q = cnt / num;
4045         *quote = q ? q : 1;
4046         BT_DBG("chan %p quote %d", chan, *quote);
4047         return chan;
4048 }
4049
4050 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4051 {
4052         struct hci_conn_hash *h = &hdev->conn_hash;
4053         struct hci_conn *conn;
4054         int num = 0;
4055
4056         BT_DBG("%s", hdev->name);
4057
4058         rcu_read_lock();
4059
4060         list_for_each_entry_rcu(conn, &h->list, list) {
4061                 struct hci_chan *chan;
4062
4063                 if (conn->type != type)
4064                         continue;
4065
4066                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4067                         continue;
4068
4069                 num++;
4070
4071                 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4072                         struct sk_buff *skb;
4073
4074                         if (chan->sent) {
4075                                 chan->sent = 0;
4076                                 continue;
4077                         }
4078
4079                         if (skb_queue_empty(&chan->data_q))
4080                                 continue;
4081
4082                         skb = skb_peek(&chan->data_q);
4083                         if (skb->priority >= HCI_PRIO_MAX - 1)
4084                                 continue;
4085
4086                         skb->priority = HCI_PRIO_MAX - 1;
4087
4088                         BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4089                                skb->priority);
4090                 }
4091
4092                 if (hci_conn_num(hdev, type) == num)
4093                         break;
4094         }
4095
4096         rcu_read_unlock();
4097
4098 }
4099
4100 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4101 {
4102         /* Calculate count of blocks used by this packet */
4103         return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4104 }
4105
4106 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4107 {
4108         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4109                 /* ACL tx timeout must be longer than maximum
4110                  * link supervision timeout (40.9 seconds) */
4111                 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4112                                        HCI_ACL_TX_TIMEOUT))
4113                         hci_link_tx_to(hdev, ACL_LINK);
4114         }
4115 }
4116
4117 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4118 {
4119         unsigned int cnt = hdev->acl_cnt;
4120         struct hci_chan *chan;
4121         struct sk_buff *skb;
4122         int quote;
4123
4124         __check_timeout(hdev, cnt);
4125
4126         while (hdev->acl_cnt &&
4127                (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4128                 u32 priority = (skb_peek(&chan->data_q))->priority;
4129                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4130                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4131                                skb->len, skb->priority);
4132
4133                         /* Stop if priority has changed */
4134                         if (skb->priority < priority)
4135                                 break;
4136
4137                         skb = skb_dequeue(&chan->data_q);
4138
4139                         hci_conn_enter_active_mode(chan->conn,
4140                                                    bt_cb(skb)->force_active);
4141
4142                         hci_send_frame(hdev, skb);
4143                         hdev->acl_last_tx = jiffies;
4144
4145                         hdev->acl_cnt--;
4146                         chan->sent++;
4147                         chan->conn->sent++;
4148                 }
4149         }
4150
4151         if (cnt != hdev->acl_cnt)
4152                 hci_prio_recalculate(hdev, ACL_LINK);
4153 }
4154
4155 static void hci_sched_acl_blk(struct hci_dev *hdev)
4156 {
4157         unsigned int cnt = hdev->block_cnt;
4158         struct hci_chan *chan;
4159         struct sk_buff *skb;
4160         int quote;
4161         u8 type;
4162
4163         __check_timeout(hdev, cnt);
4164
4165         BT_DBG("%s", hdev->name);
4166
4167         if (hdev->dev_type == HCI_AMP)
4168                 type = AMP_LINK;
4169         else
4170                 type = ACL_LINK;
4171
4172         while (hdev->block_cnt > 0 &&
4173                (chan = hci_chan_sent(hdev, type, &quote))) {
4174                 u32 priority = (skb_peek(&chan->data_q))->priority;
4175                 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4176                         int blocks;
4177
4178                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4179                                skb->len, skb->priority);
4180
4181                         /* Stop if priority has changed */
4182                         if (skb->priority < priority)
4183                                 break;
4184
4185                         skb = skb_dequeue(&chan->data_q);
4186
4187                         blocks = __get_blocks(hdev, skb);
4188                         if (blocks > hdev->block_cnt)
4189                                 return;
4190
4191                         hci_conn_enter_active_mode(chan->conn,
4192                                                    bt_cb(skb)->force_active);
4193
4194                         hci_send_frame(hdev, skb);
4195                         hdev->acl_last_tx = jiffies;
4196
4197                         hdev->block_cnt -= blocks;
4198                         quote -= blocks;
4199
4200                         chan->sent += blocks;
4201                         chan->conn->sent += blocks;
4202                 }
4203         }
4204
4205         if (cnt != hdev->block_cnt)
4206                 hci_prio_recalculate(hdev, type);
4207 }
4208
4209 static void hci_sched_acl(struct hci_dev *hdev)
4210 {
4211         BT_DBG("%s", hdev->name);
4212
4213         /* No ACL link over BR/EDR controller */
4214         if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4215                 return;
4216
4217         /* No AMP link over AMP controller */
4218         if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4219                 return;
4220
4221         switch (hdev->flow_ctl_mode) {
4222         case HCI_FLOW_CTL_MODE_PACKET_BASED:
4223                 hci_sched_acl_pkt(hdev);
4224                 break;
4225
4226         case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4227                 hci_sched_acl_blk(hdev);
4228                 break;
4229         }
4230 }
4231
4232 /* Schedule SCO */
4233 static void hci_sched_sco(struct hci_dev *hdev)
4234 {
4235         struct hci_conn *conn;
4236         struct sk_buff *skb;
4237         int quote;
4238
4239         BT_DBG("%s", hdev->name);
4240
4241         if (!hci_conn_num(hdev, SCO_LINK))
4242                 return;
4243
4244         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4245                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4246                         BT_DBG("skb %p len %d", skb, skb->len);
4247                         hci_send_frame(hdev, skb);
4248
4249                         conn->sent++;
4250                         if (conn->sent == ~0)
4251                                 conn->sent = 0;
4252                 }
4253         }
4254 }
4255
4256 static void hci_sched_esco(struct hci_dev *hdev)
4257 {
4258         struct hci_conn *conn;
4259         struct sk_buff *skb;
4260         int quote;
4261
4262         BT_DBG("%s", hdev->name);
4263
4264         if (!hci_conn_num(hdev, ESCO_LINK))
4265                 return;
4266
4267         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4268                                                      &quote))) {
4269                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4270                         BT_DBG("skb %p len %d", skb, skb->len);
4271                         hci_send_frame(hdev, skb);
4272
4273                         conn->sent++;
4274                         if (conn->sent == ~0)
4275                                 conn->sent = 0;
4276                 }
4277         }
4278 }
4279
4280 static void hci_sched_le(struct hci_dev *hdev)
4281 {
4282         struct hci_chan *chan;
4283         struct sk_buff *skb;
4284         int quote, cnt, tmp;
4285
4286         BT_DBG("%s", hdev->name);
4287
4288         if (!hci_conn_num(hdev, LE_LINK))
4289                 return;
4290
4291         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4292
4293         __check_timeout(hdev, cnt);
4294
4295         tmp = cnt;
4296         while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4297                 u32 priority = (skb_peek(&chan->data_q))->priority;
4298                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4299                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4300                                skb->len, skb->priority);
4301
4302                         /* Stop if priority has changed */
4303                         if (skb->priority < priority)
4304                                 break;
4305
4306                         skb = skb_dequeue(&chan->data_q);
4307
4308                         hci_send_frame(hdev, skb);
4309                         hdev->le_last_tx = jiffies;
4310
4311                         cnt--;
4312                         chan->sent++;
4313                         chan->conn->sent++;
4314                 }
4315         }
4316
4317         if (hdev->le_pkts)
4318                 hdev->le_cnt = cnt;
4319         else
4320                 hdev->acl_cnt = cnt;
4321
4322         if (cnt != tmp)
4323                 hci_prio_recalculate(hdev, LE_LINK);
4324 }
4325
4326 static void hci_tx_work(struct work_struct *work)
4327 {
4328         struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4329         struct sk_buff *skb;
4330
4331         BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4332                hdev->sco_cnt, hdev->le_cnt);
4333
4334         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4335                 /* Schedule queues and send stuff to HCI driver */
4336                 hci_sched_acl(hdev);
4337                 hci_sched_sco(hdev);
4338                 hci_sched_esco(hdev);
4339                 hci_sched_le(hdev);
4340         }
4341
4342         /* Send next queued raw (unknown type) packet */
4343         while ((skb = skb_dequeue(&hdev->raw_q)))
4344                 hci_send_frame(hdev, skb);
4345 }
4346
4347 /* ----- HCI RX task (incoming data processing) ----- */
4348
4349 /* ACL data packet */
4350 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4351 {
4352         struct hci_acl_hdr *hdr = (void *) skb->data;
4353         struct hci_conn *conn;
4354         __u16 handle, flags;
4355
4356         skb_pull(skb, HCI_ACL_HDR_SIZE);
4357
4358         handle = __le16_to_cpu(hdr->handle);
4359         flags  = hci_flags(handle);
4360         handle = hci_handle(handle);
4361
4362         BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4363                handle, flags);
4364
4365         hdev->stat.acl_rx++;
4366
4367         hci_dev_lock(hdev);
4368         conn = hci_conn_hash_lookup_handle(hdev, handle);
4369         hci_dev_unlock(hdev);
4370
4371         if (conn) {
4372                 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4373
4374                 /* Send to upper protocol */
4375                 l2cap_recv_acldata(conn, skb, flags);
4376                 return;
4377         } else {
4378                 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4379                            handle);
4380         }
4381
4382         kfree_skb(skb);
4383 }
4384
4385 /* SCO data packet */
4386 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4387 {
4388         struct hci_sco_hdr *hdr = (void *) skb->data;
4389         struct hci_conn *conn;
4390         __u16 handle;
4391
4392         skb_pull(skb, HCI_SCO_HDR_SIZE);
4393
4394         handle = __le16_to_cpu(hdr->handle);
4395
4396         BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4397
4398         hdev->stat.sco_rx++;
4399
4400         hci_dev_lock(hdev);
4401         conn = hci_conn_hash_lookup_handle(hdev, handle);
4402         hci_dev_unlock(hdev);
4403
4404         if (conn) {
4405                 /* Send to upper protocol */
4406                 sco_recv_scodata(conn, skb);
4407                 return;
4408         } else {
4409                 bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4410                            handle);
4411         }
4412
4413         kfree_skb(skb);
4414 }
4415
4416 static bool hci_req_is_complete(struct hci_dev *hdev)
4417 {
4418         struct sk_buff *skb;
4419
4420         skb = skb_peek(&hdev->cmd_q);
4421         if (!skb)
4422                 return true;
4423
4424         return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4425 }
4426
4427 static void hci_resend_last(struct hci_dev *hdev)
4428 {
4429         struct hci_command_hdr *sent;
4430         struct sk_buff *skb;
4431         u16 opcode;
4432
4433         if (!hdev->sent_cmd)
4434                 return;
4435
4436         sent = (void *) hdev->sent_cmd->data;
4437         opcode = __le16_to_cpu(sent->opcode);
4438         if (opcode == HCI_OP_RESET)
4439                 return;
4440
4441         skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4442         if (!skb)
4443                 return;
4444
4445         skb_queue_head(&hdev->cmd_q, skb);
4446         queue_work(hdev->workqueue, &hdev->cmd_work);
4447 }
4448
4449 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4450                           hci_req_complete_t *req_complete,
4451                           hci_req_complete_skb_t *req_complete_skb)
4452 {
4453         struct sk_buff *skb;
4454         unsigned long flags;
4455
4456         BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4457
4458         /* If the completed command doesn't match the last one that was
4459          * sent we need to do special handling of it.
4460          */
4461         if (!hci_sent_cmd_data(hdev, opcode)) {
4462                 /* Some CSR based controllers generate a spontaneous
4463                  * reset complete event during init and any pending
4464                  * command will never be completed. In such a case we
4465                  * need to resend whatever was the last sent
4466                  * command.
4467                  */
4468                 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4469                         hci_resend_last(hdev);
4470
4471                 return;
4472         }
4473
4474         /* If we reach this point this event matches the last command sent */
4475         hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4476
4477         /* If the command succeeded and there's still more commands in
4478          * this request the request is not yet complete.
4479          */
4480         if (!status && !hci_req_is_complete(hdev))
4481                 return;
4482
4483         /* If this was the last command in a request the complete
4484          * callback would be found in hdev->sent_cmd instead of the
4485          * command queue (hdev->cmd_q).
4486          */
4487         if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4488                 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4489                 return;
4490         }
4491
4492         if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4493                 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4494                 return;
4495         }
4496
4497         /* Remove all pending commands belonging to this request */
4498         spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4499         while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4500                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4501                         __skb_queue_head(&hdev->cmd_q, skb);
4502                         break;
4503                 }
4504
4505                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4506                         *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4507                 else
4508                         *req_complete = bt_cb(skb)->hci.req_complete;
4509                 kfree_skb(skb);
4510         }
4511         spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4512 }
4513
4514 static void hci_rx_work(struct work_struct *work)
4515 {
4516         struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4517         struct sk_buff *skb;
4518
4519         BT_DBG("%s", hdev->name);
4520
4521         while ((skb = skb_dequeue(&hdev->rx_q))) {
4522                 /* Send copy to monitor */
4523                 hci_send_to_monitor(hdev, skb);
4524
4525                 if (atomic_read(&hdev->promisc)) {
4526                         /* Send copy to the sockets */
4527                         hci_send_to_sock(hdev, skb);
4528                 }
4529
4530                 /* If the device has been opened in HCI_USER_CHANNEL,
4531                  * the userspace has exclusive access to device.
4532                  * When device is HCI_INIT, we still need to process
4533                  * the data packets to the driver in order
4534                  * to complete its setup().
4535                  */
4536                 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4537                     !test_bit(HCI_INIT, &hdev->flags)) {
4538                         kfree_skb(skb);
4539                         continue;
4540                 }
4541
4542                 if (test_bit(HCI_INIT, &hdev->flags)) {
4543                         /* Don't process data packets in this states. */
4544                         switch (hci_skb_pkt_type(skb)) {
4545                         case HCI_ACLDATA_PKT:
4546                         case HCI_SCODATA_PKT:
4547                         case HCI_ISODATA_PKT:
4548                                 kfree_skb(skb);
4549                                 continue;
4550                         }
4551                 }
4552
4553                 /* Process frame */
4554                 switch (hci_skb_pkt_type(skb)) {
4555                 case HCI_EVENT_PKT:
4556                         BT_DBG("%s Event packet", hdev->name);
4557                         hci_event_packet(hdev, skb);
4558                         break;
4559
4560                 case HCI_ACLDATA_PKT:
4561                         BT_DBG("%s ACL data packet", hdev->name);
4562                         hci_acldata_packet(hdev, skb);
4563                         break;
4564
4565                 case HCI_SCODATA_PKT:
4566                         BT_DBG("%s SCO data packet", hdev->name);
4567                         hci_scodata_packet(hdev, skb);
4568                         break;
4569
4570                 default:
4571                         kfree_skb(skb);
4572                         break;
4573                 }
4574         }
4575 }
4576
4577 static void hci_cmd_work(struct work_struct *work)
4578 {
4579         struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4580         struct sk_buff *skb;
4581
4582         BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4583                atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4584
4585         /* Send queued commands */
4586         if (atomic_read(&hdev->cmd_cnt)) {
4587                 skb = skb_dequeue(&hdev->cmd_q);
4588                 if (!skb)
4589                         return;
4590
4591                 kfree_skb(hdev->sent_cmd);
4592
4593                 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4594                 if (hdev->sent_cmd) {
4595                         if (hci_req_status_pend(hdev))
4596                                 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4597                         atomic_dec(&hdev->cmd_cnt);
4598                         hci_send_frame(hdev, skb);
4599                         if (test_bit(HCI_RESET, &hdev->flags))
4600                                 cancel_delayed_work(&hdev->cmd_timer);
4601                         else
4602                                 schedule_delayed_work(&hdev->cmd_timer,
4603                                                       HCI_CMD_TIMEOUT);
4604                 } else {
4605                         skb_queue_head(&hdev->cmd_q, skb);
4606                         queue_work(hdev->workqueue, &hdev->cmd_work);
4607                 }
4608         }
4609 }