]> asedeno.scripts.mit.edu Git - linux.git/blob - net/core/dev.c
0e7afefb5072db64c29d8730fe55f02172186bbf
[linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139
140 #include "net-sysfs.h"
141
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147
148 static DEFINE_SPINLOCK(ptype_lock);
149 static DEFINE_SPINLOCK(offload_lock);
150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151 struct list_head ptype_all __read_mostly;       /* Taps */
152 static struct list_head offload_base __read_mostly;
153
154 static int netif_rx_internal(struct sk_buff *skb);
155 static int call_netdevice_notifiers_info(unsigned long val,
156                                          struct net_device *dev,
157                                          struct netdev_notifier_info *info);
158
159 /*
160  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161  * semaphore.
162  *
163  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164  *
165  * Writers must hold the rtnl semaphore while they loop through the
166  * dev_base_head list, and hold dev_base_lock for writing when they do the
167  * actual updates.  This allows pure readers to access the list even
168  * while a writer is preparing to update it.
169  *
170  * To put it another way, dev_base_lock is held for writing only to
171  * protect against pure readers; the rtnl semaphore provides the
172  * protection against other writers.
173  *
174  * See, for example usages, register_netdevice() and
175  * unregister_netdevice(), which must be called with the rtnl
176  * semaphore held.
177  */
178 DEFINE_RWLOCK(dev_base_lock);
179 EXPORT_SYMBOL(dev_base_lock);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id;
185 static DEFINE_HASHTABLE(napi_hash, 8);
186
187 static seqcount_t devnet_rename_seq;
188
189 static inline void dev_base_seq_inc(struct net *net)
190 {
191         while (++net->dev_base_seq == 0);
192 }
193
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197
198         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 static inline void rps_lock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209         spin_lock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212
213 static inline void rps_unlock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216         spin_unlock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 /* Device list insertion */
221 static void list_netdevice(struct net_device *dev)
222 {
223         struct net *net = dev_net(dev);
224
225         ASSERT_RTNL();
226
227         write_lock_bh(&dev_base_lock);
228         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
229         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
230         hlist_add_head_rcu(&dev->index_hlist,
231                            dev_index_hash(net, dev->ifindex));
232         write_unlock_bh(&dev_base_lock);
233
234         dev_base_seq_inc(net);
235 }
236
237 /* Device list removal
238  * caller must respect a RCU grace period before freeing/reusing dev
239  */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242         ASSERT_RTNL();
243
244         /* Unlink dev from the device chain */
245         write_lock_bh(&dev_base_lock);
246         list_del_rcu(&dev->dev_list);
247         hlist_del_rcu(&dev->name_hlist);
248         hlist_del_rcu(&dev->index_hlist);
249         write_unlock_bh(&dev_base_lock);
250
251         dev_base_seq_inc(dev_net(dev));
252 }
253
254 /*
255  *      Our notifier list
256  */
257
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259
260 /*
261  *      Device drivers call our routines to queue packets here. We empty the
262  *      queue in the local softnet handler.
263  */
264
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267
268 #ifdef CONFIG_LOCKDEP
269 /*
270  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271  * according to dev->type
272  */
273 static const unsigned short netdev_lock_type[] =
274         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289
290 static const char *const netdev_lock_name[] =
291         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
303          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306
307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309
310 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 {
312         int i;
313
314         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315                 if (netdev_lock_type[i] == dev_type)
316                         return i;
317         /* the last key is used by default */
318         return ARRAY_SIZE(netdev_lock_type) - 1;
319 }
320
321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322                                                  unsigned short dev_type)
323 {
324         int i;
325
326         i = netdev_lock_pos(dev_type);
327         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328                                    netdev_lock_name[i]);
329 }
330
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333         int i;
334
335         i = netdev_lock_pos(dev->type);
336         lockdep_set_class_and_name(&dev->addr_list_lock,
337                                    &netdev_addr_lock_key[i],
338                                    netdev_lock_name[i]);
339 }
340 #else
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342                                                  unsigned short dev_type)
343 {
344 }
345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 {
347 }
348 #endif
349
350 /*******************************************************************************
351
352                 Protocol management and registration routines
353
354 *******************************************************************************/
355
356 /*
357  *      Add a protocol ID to the list. Now that the input handler is
358  *      smarter we can dispense with all the messy stuff that used to be
359  *      here.
360  *
361  *      BEWARE!!! Protocol handlers, mangling input packets,
362  *      MUST BE last in hash buckets and checking protocol handlers
363  *      MUST start from promiscuous ptype_all chain in net_bh.
364  *      It is true now, do not change it.
365  *      Explanation follows: if protocol handler, mangling packet, will
366  *      be the first on list, it is not able to sense, that packet
367  *      is cloned and should be copied-on-write, so that it will
368  *      change it and subsequent readers will get broken packet.
369  *                                                      --ANK (980803)
370  */
371
372 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 {
374         if (pt->type == htons(ETH_P_ALL))
375                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376         else
377                 return pt->dev ? &pt->dev->ptype_specific :
378                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
379 }
380
381 /**
382  *      dev_add_pack - add packet handler
383  *      @pt: packet type declaration
384  *
385  *      Add a protocol handler to the networking stack. The passed &packet_type
386  *      is linked into kernel lists and may not be freed until it has been
387  *      removed from the kernel lists.
388  *
389  *      This call does not sleep therefore it can not
390  *      guarantee all CPU's that are in middle of receiving packets
391  *      will see the new packet type (until the next received packet).
392  */
393
394 void dev_add_pack(struct packet_type *pt)
395 {
396         struct list_head *head = ptype_head(pt);
397
398         spin_lock(&ptype_lock);
399         list_add_rcu(&pt->list, head);
400         spin_unlock(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405  *      __dev_remove_pack        - remove packet handler
406  *      @pt: packet type declaration
407  *
408  *      Remove a protocol handler that was previously added to the kernel
409  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
410  *      from the kernel lists and can be freed or reused once this function
411  *      returns.
412  *
413  *      The packet type might still be in use by receivers
414  *      and must not be freed until after all the CPU's have gone
415  *      through a quiescent state.
416  */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419         struct list_head *head = ptype_head(pt);
420         struct packet_type *pt1;
421
422         spin_lock(&ptype_lock);
423
424         list_for_each_entry(pt1, head, list) {
425                 if (pt == pt1) {
426                         list_del_rcu(&pt->list);
427                         goto out;
428                 }
429         }
430
431         pr_warn("dev_remove_pack: %p not found\n", pt);
432 out:
433         spin_unlock(&ptype_lock);
434 }
435 EXPORT_SYMBOL(__dev_remove_pack);
436
437 /**
438  *      dev_remove_pack  - remove packet handler
439  *      @pt: packet type declaration
440  *
441  *      Remove a protocol handler that was previously added to the kernel
442  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
443  *      from the kernel lists and can be freed or reused once this function
444  *      returns.
445  *
446  *      This call sleeps to guarantee that no CPU is looking at the packet
447  *      type after return.
448  */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451         __dev_remove_pack(pt);
452
453         synchronize_net();
454 }
455 EXPORT_SYMBOL(dev_remove_pack);
456
457
458 /**
459  *      dev_add_offload - register offload handlers
460  *      @po: protocol offload declaration
461  *
462  *      Add protocol offload handlers to the networking stack. The passed
463  *      &proto_offload is linked into kernel lists and may not be freed until
464  *      it has been removed from the kernel lists.
465  *
466  *      This call does not sleep therefore it can not
467  *      guarantee all CPU's that are in middle of receiving packets
468  *      will see the new offload handlers (until the next received packet).
469  */
470 void dev_add_offload(struct packet_offload *po)
471 {
472         struct list_head *head = &offload_base;
473
474         spin_lock(&offload_lock);
475         list_add_rcu(&po->list, head);
476         spin_unlock(&offload_lock);
477 }
478 EXPORT_SYMBOL(dev_add_offload);
479
480 /**
481  *      __dev_remove_offload     - remove offload handler
482  *      @po: packet offload declaration
483  *
484  *      Remove a protocol offload handler that was previously added to the
485  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
486  *      is removed from the kernel lists and can be freed or reused once this
487  *      function returns.
488  *
489  *      The packet type might still be in use by receivers
490  *      and must not be freed until after all the CPU's have gone
491  *      through a quiescent state.
492  */
493 static void __dev_remove_offload(struct packet_offload *po)
494 {
495         struct list_head *head = &offload_base;
496         struct packet_offload *po1;
497
498         spin_lock(&offload_lock);
499
500         list_for_each_entry(po1, head, list) {
501                 if (po == po1) {
502                         list_del_rcu(&po->list);
503                         goto out;
504                 }
505         }
506
507         pr_warn("dev_remove_offload: %p not found\n", po);
508 out:
509         spin_unlock(&offload_lock);
510 }
511
512 /**
513  *      dev_remove_offload       - remove packet offload handler
514  *      @po: packet offload declaration
515  *
516  *      Remove a packet offload handler that was previously added to the kernel
517  *      offload handlers by dev_add_offload(). The passed &offload_type is
518  *      removed from the kernel lists and can be freed or reused once this
519  *      function returns.
520  *
521  *      This call sleeps to guarantee that no CPU is looking at the packet
522  *      type after return.
523  */
524 void dev_remove_offload(struct packet_offload *po)
525 {
526         __dev_remove_offload(po);
527
528         synchronize_net();
529 }
530 EXPORT_SYMBOL(dev_remove_offload);
531
532 /******************************************************************************
533
534                       Device Boot-time Settings Routines
535
536 *******************************************************************************/
537
538 /* Boot time configuration table */
539 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
540
541 /**
542  *      netdev_boot_setup_add   - add new setup entry
543  *      @name: name of the device
544  *      @map: configured settings for the device
545  *
546  *      Adds new setup entry to the dev_boot_setup list.  The function
547  *      returns 0 on error and 1 on success.  This is a generic routine to
548  *      all netdevices.
549  */
550 static int netdev_boot_setup_add(char *name, struct ifmap *map)
551 {
552         struct netdev_boot_setup *s;
553         int i;
554
555         s = dev_boot_setup;
556         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
557                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
558                         memset(s[i].name, 0, sizeof(s[i].name));
559                         strlcpy(s[i].name, name, IFNAMSIZ);
560                         memcpy(&s[i].map, map, sizeof(s[i].map));
561                         break;
562                 }
563         }
564
565         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
566 }
567
568 /**
569  *      netdev_boot_setup_check - check boot time settings
570  *      @dev: the netdevice
571  *
572  *      Check boot time settings for the device.
573  *      The found settings are set for the device to be used
574  *      later in the device probing.
575  *      Returns 0 if no settings found, 1 if they are.
576  */
577 int netdev_boot_setup_check(struct net_device *dev)
578 {
579         struct netdev_boot_setup *s = dev_boot_setup;
580         int i;
581
582         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
583                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
584                     !strcmp(dev->name, s[i].name)) {
585                         dev->irq        = s[i].map.irq;
586                         dev->base_addr  = s[i].map.base_addr;
587                         dev->mem_start  = s[i].map.mem_start;
588                         dev->mem_end    = s[i].map.mem_end;
589                         return 1;
590                 }
591         }
592         return 0;
593 }
594 EXPORT_SYMBOL(netdev_boot_setup_check);
595
596
597 /**
598  *      netdev_boot_base        - get address from boot time settings
599  *      @prefix: prefix for network device
600  *      @unit: id for network device
601  *
602  *      Check boot time settings for the base address of device.
603  *      The found settings are set for the device to be used
604  *      later in the device probing.
605  *      Returns 0 if no settings found.
606  */
607 unsigned long netdev_boot_base(const char *prefix, int unit)
608 {
609         const struct netdev_boot_setup *s = dev_boot_setup;
610         char name[IFNAMSIZ];
611         int i;
612
613         sprintf(name, "%s%d", prefix, unit);
614
615         /*
616          * If device already registered then return base of 1
617          * to indicate not to probe for this interface
618          */
619         if (__dev_get_by_name(&init_net, name))
620                 return 1;
621
622         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
623                 if (!strcmp(name, s[i].name))
624                         return s[i].map.base_addr;
625         return 0;
626 }
627
628 /*
629  * Saves at boot time configured settings for any netdevice.
630  */
631 int __init netdev_boot_setup(char *str)
632 {
633         int ints[5];
634         struct ifmap map;
635
636         str = get_options(str, ARRAY_SIZE(ints), ints);
637         if (!str || !*str)
638                 return 0;
639
640         /* Save settings */
641         memset(&map, 0, sizeof(map));
642         if (ints[0] > 0)
643                 map.irq = ints[1];
644         if (ints[0] > 1)
645                 map.base_addr = ints[2];
646         if (ints[0] > 2)
647                 map.mem_start = ints[3];
648         if (ints[0] > 3)
649                 map.mem_end = ints[4];
650
651         /* Add new entry to the list */
652         return netdev_boot_setup_add(str, &map);
653 }
654
655 __setup("netdev=", netdev_boot_setup);
656
657 /*******************************************************************************
658
659                             Device Interface Subroutines
660
661 *******************************************************************************/
662
663 /**
664  *      dev_get_iflink  - get 'iflink' value of a interface
665  *      @dev: targeted interface
666  *
667  *      Indicates the ifindex the interface is linked to.
668  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
669  */
670
671 int dev_get_iflink(const struct net_device *dev)
672 {
673         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674                 return dev->netdev_ops->ndo_get_iflink(dev);
675
676         /* If dev->rtnl_link_ops is set, it's a virtual interface. */
677         if (dev->rtnl_link_ops)
678                 return 0;
679
680         return dev->ifindex;
681 }
682 EXPORT_SYMBOL(dev_get_iflink);
683
684 /**
685  *      __dev_get_by_name       - find a device by its name
686  *      @net: the applicable net namespace
687  *      @name: name to find
688  *
689  *      Find an interface by name. Must be called under RTNL semaphore
690  *      or @dev_base_lock. If the name is found a pointer to the device
691  *      is returned. If the name is not found then %NULL is returned. The
692  *      reference counters are not incremented so the caller must be
693  *      careful with locks.
694  */
695
696 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 {
698         struct net_device *dev;
699         struct hlist_head *head = dev_name_hash(net, name);
700
701         hlist_for_each_entry(dev, head, name_hlist)
702                 if (!strncmp(dev->name, name, IFNAMSIZ))
703                         return dev;
704
705         return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_name);
708
709 /**
710  *      dev_get_by_name_rcu     - find a device by its name
711  *      @net: the applicable net namespace
712  *      @name: name to find
713  *
714  *      Find an interface by name.
715  *      If the name is found a pointer to the device is returned.
716  *      If the name is not found then %NULL is returned.
717  *      The reference counters are not incremented so the caller must be
718  *      careful with locks. The caller must hold RCU lock.
719  */
720
721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 {
723         struct net_device *dev;
724         struct hlist_head *head = dev_name_hash(net, name);
725
726         hlist_for_each_entry_rcu(dev, head, name_hlist)
727                 if (!strncmp(dev->name, name, IFNAMSIZ))
728                         return dev;
729
730         return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_name_rcu);
733
734 /**
735  *      dev_get_by_name         - find a device by its name
736  *      @net: the applicable net namespace
737  *      @name: name to find
738  *
739  *      Find an interface by name. This can be called from any
740  *      context and does its own locking. The returned handle has
741  *      the usage count incremented and the caller must use dev_put() to
742  *      release it when it is no longer needed. %NULL is returned if no
743  *      matching device is found.
744  */
745
746 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 {
748         struct net_device *dev;
749
750         rcu_read_lock();
751         dev = dev_get_by_name_rcu(net, name);
752         if (dev)
753                 dev_hold(dev);
754         rcu_read_unlock();
755         return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_name);
758
759 /**
760  *      __dev_get_by_index - find a device by its ifindex
761  *      @net: the applicable net namespace
762  *      @ifindex: index of device
763  *
764  *      Search for an interface by index. Returns %NULL if the device
765  *      is not found or a pointer to the device. The device has not
766  *      had its reference counter increased so the caller must be careful
767  *      about locking. The caller must hold either the RTNL semaphore
768  *      or @dev_base_lock.
769  */
770
771 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 {
773         struct net_device *dev;
774         struct hlist_head *head = dev_index_hash(net, ifindex);
775
776         hlist_for_each_entry(dev, head, index_hlist)
777                 if (dev->ifindex == ifindex)
778                         return dev;
779
780         return NULL;
781 }
782 EXPORT_SYMBOL(__dev_get_by_index);
783
784 /**
785  *      dev_get_by_index_rcu - find a device by its ifindex
786  *      @net: the applicable net namespace
787  *      @ifindex: index of device
788  *
789  *      Search for an interface by index. Returns %NULL if the device
790  *      is not found or a pointer to the device. The device has not
791  *      had its reference counter increased so the caller must be careful
792  *      about locking. The caller must hold RCU lock.
793  */
794
795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796 {
797         struct net_device *dev;
798         struct hlist_head *head = dev_index_hash(net, ifindex);
799
800         hlist_for_each_entry_rcu(dev, head, index_hlist)
801                 if (dev->ifindex == ifindex)
802                         return dev;
803
804         return NULL;
805 }
806 EXPORT_SYMBOL(dev_get_by_index_rcu);
807
808
809 /**
810  *      dev_get_by_index - find a device by its ifindex
811  *      @net: the applicable net namespace
812  *      @ifindex: index of device
813  *
814  *      Search for an interface by index. Returns NULL if the device
815  *      is not found or a pointer to the device. The device returned has
816  *      had a reference added and the pointer is safe until the user calls
817  *      dev_put to indicate they have finished with it.
818  */
819
820 struct net_device *dev_get_by_index(struct net *net, int ifindex)
821 {
822         struct net_device *dev;
823
824         rcu_read_lock();
825         dev = dev_get_by_index_rcu(net, ifindex);
826         if (dev)
827                 dev_hold(dev);
828         rcu_read_unlock();
829         return dev;
830 }
831 EXPORT_SYMBOL(dev_get_by_index);
832
833 /**
834  *      netdev_get_name - get a netdevice name, knowing its ifindex.
835  *      @net: network namespace
836  *      @name: a pointer to the buffer where the name will be stored.
837  *      @ifindex: the ifindex of the interface to get the name from.
838  *
839  *      The use of raw_seqcount_begin() and cond_resched() before
840  *      retrying is required as we want to give the writers a chance
841  *      to complete when CONFIG_PREEMPT is not set.
842  */
843 int netdev_get_name(struct net *net, char *name, int ifindex)
844 {
845         struct net_device *dev;
846         unsigned int seq;
847
848 retry:
849         seq = raw_seqcount_begin(&devnet_rename_seq);
850         rcu_read_lock();
851         dev = dev_get_by_index_rcu(net, ifindex);
852         if (!dev) {
853                 rcu_read_unlock();
854                 return -ENODEV;
855         }
856
857         strcpy(name, dev->name);
858         rcu_read_unlock();
859         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860                 cond_resched();
861                 goto retry;
862         }
863
864         return 0;
865 }
866
867 /**
868  *      dev_getbyhwaddr_rcu - find a device by its hardware address
869  *      @net: the applicable net namespace
870  *      @type: media type of device
871  *      @ha: hardware address
872  *
873  *      Search for an interface by MAC address. Returns NULL if the device
874  *      is not found or a pointer to the device.
875  *      The caller must hold RCU or RTNL.
876  *      The returned device has not had its ref count increased
877  *      and the caller must therefore be careful about locking
878  *
879  */
880
881 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
882                                        const char *ha)
883 {
884         struct net_device *dev;
885
886         for_each_netdev_rcu(net, dev)
887                 if (dev->type == type &&
888                     !memcmp(dev->dev_addr, ha, dev->addr_len))
889                         return dev;
890
891         return NULL;
892 }
893 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
894
895 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
896 {
897         struct net_device *dev;
898
899         ASSERT_RTNL();
900         for_each_netdev(net, dev)
901                 if (dev->type == type)
902                         return dev;
903
904         return NULL;
905 }
906 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907
908 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
909 {
910         struct net_device *dev, *ret = NULL;
911
912         rcu_read_lock();
913         for_each_netdev_rcu(net, dev)
914                 if (dev->type == type) {
915                         dev_hold(dev);
916                         ret = dev;
917                         break;
918                 }
919         rcu_read_unlock();
920         return ret;
921 }
922 EXPORT_SYMBOL(dev_getfirstbyhwtype);
923
924 /**
925  *      __dev_get_by_flags - find any device with given flags
926  *      @net: the applicable net namespace
927  *      @if_flags: IFF_* values
928  *      @mask: bitmask of bits in if_flags to check
929  *
930  *      Search for any interface with the given flags. Returns NULL if a device
931  *      is not found or a pointer to the device. Must be called inside
932  *      rtnl_lock(), and result refcount is unchanged.
933  */
934
935 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
936                                       unsigned short mask)
937 {
938         struct net_device *dev, *ret;
939
940         ASSERT_RTNL();
941
942         ret = NULL;
943         for_each_netdev(net, dev) {
944                 if (((dev->flags ^ if_flags) & mask) == 0) {
945                         ret = dev;
946                         break;
947                 }
948         }
949         return ret;
950 }
951 EXPORT_SYMBOL(__dev_get_by_flags);
952
953 /**
954  *      dev_valid_name - check if name is okay for network device
955  *      @name: name string
956  *
957  *      Network device names need to be valid file names to
958  *      to allow sysfs to work.  We also disallow any kind of
959  *      whitespace.
960  */
961 bool dev_valid_name(const char *name)
962 {
963         if (*name == '\0')
964                 return false;
965         if (strlen(name) >= IFNAMSIZ)
966                 return false;
967         if (!strcmp(name, ".") || !strcmp(name, ".."))
968                 return false;
969
970         while (*name) {
971                 if (*name == '/' || *name == ':' || isspace(*name))
972                         return false;
973                 name++;
974         }
975         return true;
976 }
977 EXPORT_SYMBOL(dev_valid_name);
978
979 /**
980  *      __dev_alloc_name - allocate a name for a device
981  *      @net: network namespace to allocate the device name in
982  *      @name: name format string
983  *      @buf:  scratch buffer and result name string
984  *
985  *      Passed a format string - eg "lt%d" it will try and find a suitable
986  *      id. It scans list of devices to build up a free map, then chooses
987  *      the first empty slot. The caller must hold the dev_base or rtnl lock
988  *      while allocating the name and adding the device in order to avoid
989  *      duplicates.
990  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
991  *      Returns the number of the unit assigned or a negative errno code.
992  */
993
994 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
995 {
996         int i = 0;
997         const char *p;
998         const int max_netdevices = 8*PAGE_SIZE;
999         unsigned long *inuse;
1000         struct net_device *d;
1001
1002         p = strnchr(name, IFNAMSIZ-1, '%');
1003         if (p) {
1004                 /*
1005                  * Verify the string as this thing may have come from
1006                  * the user.  There must be either one "%d" and no other "%"
1007                  * characters.
1008                  */
1009                 if (p[1] != 'd' || strchr(p + 2, '%'))
1010                         return -EINVAL;
1011
1012                 /* Use one page as a bit array of possible slots */
1013                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1014                 if (!inuse)
1015                         return -ENOMEM;
1016
1017                 for_each_netdev(net, d) {
1018                         if (!sscanf(d->name, name, &i))
1019                                 continue;
1020                         if (i < 0 || i >= max_netdevices)
1021                                 continue;
1022
1023                         /*  avoid cases where sscanf is not exact inverse of printf */
1024                         snprintf(buf, IFNAMSIZ, name, i);
1025                         if (!strncmp(buf, d->name, IFNAMSIZ))
1026                                 set_bit(i, inuse);
1027                 }
1028
1029                 i = find_first_zero_bit(inuse, max_netdevices);
1030                 free_page((unsigned long) inuse);
1031         }
1032
1033         if (buf != name)
1034                 snprintf(buf, IFNAMSIZ, name, i);
1035         if (!__dev_get_by_name(net, buf))
1036                 return i;
1037
1038         /* It is possible to run out of possible slots
1039          * when the name is long and there isn't enough space left
1040          * for the digits, or if all bits are used.
1041          */
1042         return -ENFILE;
1043 }
1044
1045 /**
1046  *      dev_alloc_name - allocate a name for a device
1047  *      @dev: device
1048  *      @name: name format string
1049  *
1050  *      Passed a format string - eg "lt%d" it will try and find a suitable
1051  *      id. It scans list of devices to build up a free map, then chooses
1052  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *      while allocating the name and adding the device in order to avoid
1054  *      duplicates.
1055  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *      Returns the number of the unit assigned or a negative errno code.
1057  */
1058
1059 int dev_alloc_name(struct net_device *dev, const char *name)
1060 {
1061         char buf[IFNAMSIZ];
1062         struct net *net;
1063         int ret;
1064
1065         BUG_ON(!dev_net(dev));
1066         net = dev_net(dev);
1067         ret = __dev_alloc_name(net, name, buf);
1068         if (ret >= 0)
1069                 strlcpy(dev->name, buf, IFNAMSIZ);
1070         return ret;
1071 }
1072 EXPORT_SYMBOL(dev_alloc_name);
1073
1074 static int dev_alloc_name_ns(struct net *net,
1075                              struct net_device *dev,
1076                              const char *name)
1077 {
1078         char buf[IFNAMSIZ];
1079         int ret;
1080
1081         ret = __dev_alloc_name(net, name, buf);
1082         if (ret >= 0)
1083                 strlcpy(dev->name, buf, IFNAMSIZ);
1084         return ret;
1085 }
1086
1087 static int dev_get_valid_name(struct net *net,
1088                               struct net_device *dev,
1089                               const char *name)
1090 {
1091         BUG_ON(!net);
1092
1093         if (!dev_valid_name(name))
1094                 return -EINVAL;
1095
1096         if (strchr(name, '%'))
1097                 return dev_alloc_name_ns(net, dev, name);
1098         else if (__dev_get_by_name(net, name))
1099                 return -EEXIST;
1100         else if (dev->name != name)
1101                 strlcpy(dev->name, name, IFNAMSIZ);
1102
1103         return 0;
1104 }
1105
1106 /**
1107  *      dev_change_name - change name of a device
1108  *      @dev: device
1109  *      @newname: name (or format string) must be at least IFNAMSIZ
1110  *
1111  *      Change name of a device, can pass format strings "eth%d".
1112  *      for wildcarding.
1113  */
1114 int dev_change_name(struct net_device *dev, const char *newname)
1115 {
1116         unsigned char old_assign_type;
1117         char oldname[IFNAMSIZ];
1118         int err = 0;
1119         int ret;
1120         struct net *net;
1121
1122         ASSERT_RTNL();
1123         BUG_ON(!dev_net(dev));
1124
1125         net = dev_net(dev);
1126         if (dev->flags & IFF_UP)
1127                 return -EBUSY;
1128
1129         write_seqcount_begin(&devnet_rename_seq);
1130
1131         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1132                 write_seqcount_end(&devnet_rename_seq);
1133                 return 0;
1134         }
1135
1136         memcpy(oldname, dev->name, IFNAMSIZ);
1137
1138         err = dev_get_valid_name(net, dev, newname);
1139         if (err < 0) {
1140                 write_seqcount_end(&devnet_rename_seq);
1141                 return err;
1142         }
1143
1144         if (oldname[0] && !strchr(oldname, '%'))
1145                 netdev_info(dev, "renamed from %s\n", oldname);
1146
1147         old_assign_type = dev->name_assign_type;
1148         dev->name_assign_type = NET_NAME_RENAMED;
1149
1150 rollback:
1151         ret = device_rename(&dev->dev, dev->name);
1152         if (ret) {
1153                 memcpy(dev->name, oldname, IFNAMSIZ);
1154                 dev->name_assign_type = old_assign_type;
1155                 write_seqcount_end(&devnet_rename_seq);
1156                 return ret;
1157         }
1158
1159         write_seqcount_end(&devnet_rename_seq);
1160
1161         netdev_adjacent_rename_links(dev, oldname);
1162
1163         write_lock_bh(&dev_base_lock);
1164         hlist_del_rcu(&dev->name_hlist);
1165         write_unlock_bh(&dev_base_lock);
1166
1167         synchronize_rcu();
1168
1169         write_lock_bh(&dev_base_lock);
1170         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1171         write_unlock_bh(&dev_base_lock);
1172
1173         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1174         ret = notifier_to_errno(ret);
1175
1176         if (ret) {
1177                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1178                 if (err >= 0) {
1179                         err = ret;
1180                         write_seqcount_begin(&devnet_rename_seq);
1181                         memcpy(dev->name, oldname, IFNAMSIZ);
1182                         memcpy(oldname, newname, IFNAMSIZ);
1183                         dev->name_assign_type = old_assign_type;
1184                         old_assign_type = NET_NAME_RENAMED;
1185                         goto rollback;
1186                 } else {
1187                         pr_err("%s: name change rollback failed: %d\n",
1188                                dev->name, ret);
1189                 }
1190         }
1191
1192         return err;
1193 }
1194
1195 /**
1196  *      dev_set_alias - change ifalias of a device
1197  *      @dev: device
1198  *      @alias: name up to IFALIASZ
1199  *      @len: limit of bytes to copy from info
1200  *
1201  *      Set ifalias for a device,
1202  */
1203 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1204 {
1205         char *new_ifalias;
1206
1207         ASSERT_RTNL();
1208
1209         if (len >= IFALIASZ)
1210                 return -EINVAL;
1211
1212         if (!len) {
1213                 kfree(dev->ifalias);
1214                 dev->ifalias = NULL;
1215                 return 0;
1216         }
1217
1218         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1219         if (!new_ifalias)
1220                 return -ENOMEM;
1221         dev->ifalias = new_ifalias;
1222
1223         strlcpy(dev->ifalias, alias, len+1);
1224         return len;
1225 }
1226
1227
1228 /**
1229  *      netdev_features_change - device changes features
1230  *      @dev: device to cause notification
1231  *
1232  *      Called to indicate a device has changed features.
1233  */
1234 void netdev_features_change(struct net_device *dev)
1235 {
1236         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1237 }
1238 EXPORT_SYMBOL(netdev_features_change);
1239
1240 /**
1241  *      netdev_state_change - device changes state
1242  *      @dev: device to cause notification
1243  *
1244  *      Called to indicate a device has changed state. This function calls
1245  *      the notifier chains for netdev_chain and sends a NEWLINK message
1246  *      to the routing socket.
1247  */
1248 void netdev_state_change(struct net_device *dev)
1249 {
1250         if (dev->flags & IFF_UP) {
1251                 struct netdev_notifier_change_info change_info;
1252
1253                 change_info.flags_changed = 0;
1254                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255                                               &change_info.info);
1256                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1257         }
1258 }
1259 EXPORT_SYMBOL(netdev_state_change);
1260
1261 /**
1262  *      netdev_notify_peers - notify network peers about existence of @dev
1263  *      @dev: network device
1264  *
1265  * Generate traffic such that interested network peers are aware of
1266  * @dev, such as by generating a gratuitous ARP. This may be used when
1267  * a device wants to inform the rest of the network about some sort of
1268  * reconfiguration such as a failover event or virtual machine
1269  * migration.
1270  */
1271 void netdev_notify_peers(struct net_device *dev)
1272 {
1273         rtnl_lock();
1274         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1275         rtnl_unlock();
1276 }
1277 EXPORT_SYMBOL(netdev_notify_peers);
1278
1279 static int __dev_open(struct net_device *dev)
1280 {
1281         const struct net_device_ops *ops = dev->netdev_ops;
1282         int ret;
1283
1284         ASSERT_RTNL();
1285
1286         if (!netif_device_present(dev))
1287                 return -ENODEV;
1288
1289         /* Block netpoll from trying to do any rx path servicing.
1290          * If we don't do this there is a chance ndo_poll_controller
1291          * or ndo_poll may be running while we open the device
1292          */
1293         netpoll_poll_disable(dev);
1294
1295         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1296         ret = notifier_to_errno(ret);
1297         if (ret)
1298                 return ret;
1299
1300         set_bit(__LINK_STATE_START, &dev->state);
1301
1302         if (ops->ndo_validate_addr)
1303                 ret = ops->ndo_validate_addr(dev);
1304
1305         if (!ret && ops->ndo_open)
1306                 ret = ops->ndo_open(dev);
1307
1308         netpoll_poll_enable(dev);
1309
1310         if (ret)
1311                 clear_bit(__LINK_STATE_START, &dev->state);
1312         else {
1313                 dev->flags |= IFF_UP;
1314                 dev_set_rx_mode(dev);
1315                 dev_activate(dev);
1316                 add_device_randomness(dev->dev_addr, dev->addr_len);
1317         }
1318
1319         return ret;
1320 }
1321
1322 /**
1323  *      dev_open        - prepare an interface for use.
1324  *      @dev:   device to open
1325  *
1326  *      Takes a device from down to up state. The device's private open
1327  *      function is invoked and then the multicast lists are loaded. Finally
1328  *      the device is moved into the up state and a %NETDEV_UP message is
1329  *      sent to the netdev notifier chain.
1330  *
1331  *      Calling this function on an active interface is a nop. On a failure
1332  *      a negative errno code is returned.
1333  */
1334 int dev_open(struct net_device *dev)
1335 {
1336         int ret;
1337
1338         if (dev->flags & IFF_UP)
1339                 return 0;
1340
1341         ret = __dev_open(dev);
1342         if (ret < 0)
1343                 return ret;
1344
1345         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1346         call_netdevice_notifiers(NETDEV_UP, dev);
1347
1348         return ret;
1349 }
1350 EXPORT_SYMBOL(dev_open);
1351
1352 static int __dev_close_many(struct list_head *head)
1353 {
1354         struct net_device *dev;
1355
1356         ASSERT_RTNL();
1357         might_sleep();
1358
1359         list_for_each_entry(dev, head, close_list) {
1360                 /* Temporarily disable netpoll until the interface is down */
1361                 netpoll_poll_disable(dev);
1362
1363                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1364
1365                 clear_bit(__LINK_STATE_START, &dev->state);
1366
1367                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1368                  * can be even on different cpu. So just clear netif_running().
1369                  *
1370                  * dev->stop() will invoke napi_disable() on all of it's
1371                  * napi_struct instances on this device.
1372                  */
1373                 smp_mb__after_atomic(); /* Commit netif_running(). */
1374         }
1375
1376         dev_deactivate_many(head);
1377
1378         list_for_each_entry(dev, head, close_list) {
1379                 const struct net_device_ops *ops = dev->netdev_ops;
1380
1381                 /*
1382                  *      Call the device specific close. This cannot fail.
1383                  *      Only if device is UP
1384                  *
1385                  *      We allow it to be called even after a DETACH hot-plug
1386                  *      event.
1387                  */
1388                 if (ops->ndo_stop)
1389                         ops->ndo_stop(dev);
1390
1391                 dev->flags &= ~IFF_UP;
1392                 netpoll_poll_enable(dev);
1393         }
1394
1395         return 0;
1396 }
1397
1398 static int __dev_close(struct net_device *dev)
1399 {
1400         int retval;
1401         LIST_HEAD(single);
1402
1403         list_add(&dev->close_list, &single);
1404         retval = __dev_close_many(&single);
1405         list_del(&single);
1406
1407         return retval;
1408 }
1409
1410 int dev_close_many(struct list_head *head, bool unlink)
1411 {
1412         struct net_device *dev, *tmp;
1413
1414         /* Remove the devices that don't need to be closed */
1415         list_for_each_entry_safe(dev, tmp, head, close_list)
1416                 if (!(dev->flags & IFF_UP))
1417                         list_del_init(&dev->close_list);
1418
1419         __dev_close_many(head);
1420
1421         list_for_each_entry_safe(dev, tmp, head, close_list) {
1422                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1423                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1424                 if (unlink)
1425                         list_del_init(&dev->close_list);
1426         }
1427
1428         return 0;
1429 }
1430 EXPORT_SYMBOL(dev_close_many);
1431
1432 /**
1433  *      dev_close - shutdown an interface.
1434  *      @dev: device to shutdown
1435  *
1436  *      This function moves an active device into down state. A
1437  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1438  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1439  *      chain.
1440  */
1441 int dev_close(struct net_device *dev)
1442 {
1443         if (dev->flags & IFF_UP) {
1444                 LIST_HEAD(single);
1445
1446                 list_add(&dev->close_list, &single);
1447                 dev_close_many(&single, true);
1448                 list_del(&single);
1449         }
1450         return 0;
1451 }
1452 EXPORT_SYMBOL(dev_close);
1453
1454
1455 /**
1456  *      dev_disable_lro - disable Large Receive Offload on a device
1457  *      @dev: device
1458  *
1459  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1460  *      called under RTNL.  This is needed if received packets may be
1461  *      forwarded to another interface.
1462  */
1463 void dev_disable_lro(struct net_device *dev)
1464 {
1465         struct net_device *lower_dev;
1466         struct list_head *iter;
1467
1468         dev->wanted_features &= ~NETIF_F_LRO;
1469         netdev_update_features(dev);
1470
1471         if (unlikely(dev->features & NETIF_F_LRO))
1472                 netdev_WARN(dev, "failed to disable LRO!\n");
1473
1474         netdev_for_each_lower_dev(dev, lower_dev, iter)
1475                 dev_disable_lro(lower_dev);
1476 }
1477 EXPORT_SYMBOL(dev_disable_lro);
1478
1479 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1480                                    struct net_device *dev)
1481 {
1482         struct netdev_notifier_info info;
1483
1484         netdev_notifier_info_init(&info, dev);
1485         return nb->notifier_call(nb, val, &info);
1486 }
1487
1488 static int dev_boot_phase = 1;
1489
1490 /**
1491  *      register_netdevice_notifier - register a network notifier block
1492  *      @nb: notifier
1493  *
1494  *      Register a notifier to be called when network device events occur.
1495  *      The notifier passed is linked into the kernel structures and must
1496  *      not be reused until it has been unregistered. A negative errno code
1497  *      is returned on a failure.
1498  *
1499  *      When registered all registration and up events are replayed
1500  *      to the new notifier to allow device to have a race free
1501  *      view of the network device list.
1502  */
1503
1504 int register_netdevice_notifier(struct notifier_block *nb)
1505 {
1506         struct net_device *dev;
1507         struct net_device *last;
1508         struct net *net;
1509         int err;
1510
1511         rtnl_lock();
1512         err = raw_notifier_chain_register(&netdev_chain, nb);
1513         if (err)
1514                 goto unlock;
1515         if (dev_boot_phase)
1516                 goto unlock;
1517         for_each_net(net) {
1518                 for_each_netdev(net, dev) {
1519                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1520                         err = notifier_to_errno(err);
1521                         if (err)
1522                                 goto rollback;
1523
1524                         if (!(dev->flags & IFF_UP))
1525                                 continue;
1526
1527                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1528                 }
1529         }
1530
1531 unlock:
1532         rtnl_unlock();
1533         return err;
1534
1535 rollback:
1536         last = dev;
1537         for_each_net(net) {
1538                 for_each_netdev(net, dev) {
1539                         if (dev == last)
1540                                 goto outroll;
1541
1542                         if (dev->flags & IFF_UP) {
1543                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544                                                         dev);
1545                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1546                         }
1547                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1548                 }
1549         }
1550
1551 outroll:
1552         raw_notifier_chain_unregister(&netdev_chain, nb);
1553         goto unlock;
1554 }
1555 EXPORT_SYMBOL(register_netdevice_notifier);
1556
1557 /**
1558  *      unregister_netdevice_notifier - unregister a network notifier block
1559  *      @nb: notifier
1560  *
1561  *      Unregister a notifier previously registered by
1562  *      register_netdevice_notifier(). The notifier is unlinked into the
1563  *      kernel structures and may then be reused. A negative errno code
1564  *      is returned on a failure.
1565  *
1566  *      After unregistering unregister and down device events are synthesized
1567  *      for all devices on the device list to the removed notifier to remove
1568  *      the need for special case cleanup code.
1569  */
1570
1571 int unregister_netdevice_notifier(struct notifier_block *nb)
1572 {
1573         struct net_device *dev;
1574         struct net *net;
1575         int err;
1576
1577         rtnl_lock();
1578         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1579         if (err)
1580                 goto unlock;
1581
1582         for_each_net(net) {
1583                 for_each_netdev(net, dev) {
1584                         if (dev->flags & IFF_UP) {
1585                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586                                                         dev);
1587                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1588                         }
1589                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1590                 }
1591         }
1592 unlock:
1593         rtnl_unlock();
1594         return err;
1595 }
1596 EXPORT_SYMBOL(unregister_netdevice_notifier);
1597
1598 /**
1599  *      call_netdevice_notifiers_info - call all network notifier blocks
1600  *      @val: value passed unmodified to notifier function
1601  *      @dev: net_device pointer passed unmodified to notifier function
1602  *      @info: notifier information data
1603  *
1604  *      Call all network notifier blocks.  Parameters and return value
1605  *      are as for raw_notifier_call_chain().
1606  */
1607
1608 static int call_netdevice_notifiers_info(unsigned long val,
1609                                          struct net_device *dev,
1610                                          struct netdev_notifier_info *info)
1611 {
1612         ASSERT_RTNL();
1613         netdev_notifier_info_init(info, dev);
1614         return raw_notifier_call_chain(&netdev_chain, val, info);
1615 }
1616
1617 /**
1618  *      call_netdevice_notifiers - call all network notifier blocks
1619  *      @val: value passed unmodified to notifier function
1620  *      @dev: net_device pointer passed unmodified to notifier function
1621  *
1622  *      Call all network notifier blocks.  Parameters and return value
1623  *      are as for raw_notifier_call_chain().
1624  */
1625
1626 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1627 {
1628         struct netdev_notifier_info info;
1629
1630         return call_netdevice_notifiers_info(val, dev, &info);
1631 }
1632 EXPORT_SYMBOL(call_netdevice_notifiers);
1633
1634 #ifdef CONFIG_NET_INGRESS
1635 static struct static_key ingress_needed __read_mostly;
1636
1637 void net_inc_ingress_queue(void)
1638 {
1639         static_key_slow_inc(&ingress_needed);
1640 }
1641 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642
1643 void net_dec_ingress_queue(void)
1644 {
1645         static_key_slow_dec(&ingress_needed);
1646 }
1647 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1648 #endif
1649
1650 static struct static_key netstamp_needed __read_mostly;
1651 #ifdef HAVE_JUMP_LABEL
1652 /* We are not allowed to call static_key_slow_dec() from irq context
1653  * If net_disable_timestamp() is called from irq context, defer the
1654  * static_key_slow_dec() calls.
1655  */
1656 static atomic_t netstamp_needed_deferred;
1657 #endif
1658
1659 void net_enable_timestamp(void)
1660 {
1661 #ifdef HAVE_JUMP_LABEL
1662         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1663
1664         if (deferred) {
1665                 while (--deferred)
1666                         static_key_slow_dec(&netstamp_needed);
1667                 return;
1668         }
1669 #endif
1670         static_key_slow_inc(&netstamp_needed);
1671 }
1672 EXPORT_SYMBOL(net_enable_timestamp);
1673
1674 void net_disable_timestamp(void)
1675 {
1676 #ifdef HAVE_JUMP_LABEL
1677         if (in_interrupt()) {
1678                 atomic_inc(&netstamp_needed_deferred);
1679                 return;
1680         }
1681 #endif
1682         static_key_slow_dec(&netstamp_needed);
1683 }
1684 EXPORT_SYMBOL(net_disable_timestamp);
1685
1686 static inline void net_timestamp_set(struct sk_buff *skb)
1687 {
1688         skb->tstamp.tv64 = 0;
1689         if (static_key_false(&netstamp_needed))
1690                 __net_timestamp(skb);
1691 }
1692
1693 #define net_timestamp_check(COND, SKB)                  \
1694         if (static_key_false(&netstamp_needed)) {               \
1695                 if ((COND) && !(SKB)->tstamp.tv64)      \
1696                         __net_timestamp(SKB);           \
1697         }                                               \
1698
1699 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1700 {
1701         unsigned int len;
1702
1703         if (!(dev->flags & IFF_UP))
1704                 return false;
1705
1706         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1707         if (skb->len <= len)
1708                 return true;
1709
1710         /* if TSO is enabled, we don't care about the length as the packet
1711          * could be forwarded without being segmented before
1712          */
1713         if (skb_is_gso(skb))
1714                 return true;
1715
1716         return false;
1717 }
1718 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1719
1720 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 {
1722         if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1723                 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1724                         atomic_long_inc(&dev->rx_dropped);
1725                         kfree_skb(skb);
1726                         return NET_RX_DROP;
1727                 }
1728         }
1729
1730         if (unlikely(!is_skb_forwardable(dev, skb))) {
1731                 atomic_long_inc(&dev->rx_dropped);
1732                 kfree_skb(skb);
1733                 return NET_RX_DROP;
1734         }
1735
1736         skb_scrub_packet(skb, true);
1737         skb->priority = 0;
1738         skb->protocol = eth_type_trans(skb, dev);
1739         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1740
1741         return 0;
1742 }
1743 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1744
1745 /**
1746  * dev_forward_skb - loopback an skb to another netif
1747  *
1748  * @dev: destination network device
1749  * @skb: buffer to forward
1750  *
1751  * return values:
1752  *      NET_RX_SUCCESS  (no congestion)
1753  *      NET_RX_DROP     (packet was dropped, but freed)
1754  *
1755  * dev_forward_skb can be used for injecting an skb from the
1756  * start_xmit function of one device into the receive queue
1757  * of another device.
1758  *
1759  * The receiving device may be in another namespace, so
1760  * we have to clear all information in the skb that could
1761  * impact namespace isolation.
1762  */
1763 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1764 {
1765         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1766 }
1767 EXPORT_SYMBOL_GPL(dev_forward_skb);
1768
1769 static inline int deliver_skb(struct sk_buff *skb,
1770                               struct packet_type *pt_prev,
1771                               struct net_device *orig_dev)
1772 {
1773         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1774                 return -ENOMEM;
1775         atomic_inc(&skb->users);
1776         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1777 }
1778
1779 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1780                                           struct packet_type **pt,
1781                                           struct net_device *orig_dev,
1782                                           __be16 type,
1783                                           struct list_head *ptype_list)
1784 {
1785         struct packet_type *ptype, *pt_prev = *pt;
1786
1787         list_for_each_entry_rcu(ptype, ptype_list, list) {
1788                 if (ptype->type != type)
1789                         continue;
1790                 if (pt_prev)
1791                         deliver_skb(skb, pt_prev, orig_dev);
1792                 pt_prev = ptype;
1793         }
1794         *pt = pt_prev;
1795 }
1796
1797 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1798 {
1799         if (!ptype->af_packet_priv || !skb->sk)
1800                 return false;
1801
1802         if (ptype->id_match)
1803                 return ptype->id_match(ptype, skb->sk);
1804         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1805                 return true;
1806
1807         return false;
1808 }
1809
1810 /*
1811  *      Support routine. Sends outgoing frames to any network
1812  *      taps currently in use.
1813  */
1814
1815 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1816 {
1817         struct packet_type *ptype;
1818         struct sk_buff *skb2 = NULL;
1819         struct packet_type *pt_prev = NULL;
1820         struct list_head *ptype_list = &ptype_all;
1821
1822         rcu_read_lock();
1823 again:
1824         list_for_each_entry_rcu(ptype, ptype_list, list) {
1825                 /* Never send packets back to the socket
1826                  * they originated from - MvS (miquels@drinkel.ow.org)
1827                  */
1828                 if (skb_loop_sk(ptype, skb))
1829                         continue;
1830
1831                 if (pt_prev) {
1832                         deliver_skb(skb2, pt_prev, skb->dev);
1833                         pt_prev = ptype;
1834                         continue;
1835                 }
1836
1837                 /* need to clone skb, done only once */
1838                 skb2 = skb_clone(skb, GFP_ATOMIC);
1839                 if (!skb2)
1840                         goto out_unlock;
1841
1842                 net_timestamp_set(skb2);
1843
1844                 /* skb->nh should be correctly
1845                  * set by sender, so that the second statement is
1846                  * just protection against buggy protocols.
1847                  */
1848                 skb_reset_mac_header(skb2);
1849
1850                 if (skb_network_header(skb2) < skb2->data ||
1851                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1852                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1853                                              ntohs(skb2->protocol),
1854                                              dev->name);
1855                         skb_reset_network_header(skb2);
1856                 }
1857
1858                 skb2->transport_header = skb2->network_header;
1859                 skb2->pkt_type = PACKET_OUTGOING;
1860                 pt_prev = ptype;
1861         }
1862
1863         if (ptype_list == &ptype_all) {
1864                 ptype_list = &dev->ptype_all;
1865                 goto again;
1866         }
1867 out_unlock:
1868         if (pt_prev)
1869                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1870         rcu_read_unlock();
1871 }
1872
1873 /**
1874  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1875  * @dev: Network device
1876  * @txq: number of queues available
1877  *
1878  * If real_num_tx_queues is changed the tc mappings may no longer be
1879  * valid. To resolve this verify the tc mapping remains valid and if
1880  * not NULL the mapping. With no priorities mapping to this
1881  * offset/count pair it will no longer be used. In the worst case TC0
1882  * is invalid nothing can be done so disable priority mappings. If is
1883  * expected that drivers will fix this mapping if they can before
1884  * calling netif_set_real_num_tx_queues.
1885  */
1886 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1887 {
1888         int i;
1889         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1890
1891         /* If TC0 is invalidated disable TC mapping */
1892         if (tc->offset + tc->count > txq) {
1893                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1894                 dev->num_tc = 0;
1895                 return;
1896         }
1897
1898         /* Invalidated prio to tc mappings set to TC0 */
1899         for (i = 1; i < TC_BITMASK + 1; i++) {
1900                 int q = netdev_get_prio_tc_map(dev, i);
1901
1902                 tc = &dev->tc_to_txq[q];
1903                 if (tc->offset + tc->count > txq) {
1904                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1905                                 i, q);
1906                         netdev_set_prio_tc_map(dev, i, 0);
1907                 }
1908         }
1909 }
1910
1911 #ifdef CONFIG_XPS
1912 static DEFINE_MUTEX(xps_map_mutex);
1913 #define xmap_dereference(P)             \
1914         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1915
1916 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1917                                         int cpu, u16 index)
1918 {
1919         struct xps_map *map = NULL;
1920         int pos;
1921
1922         if (dev_maps)
1923                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1924
1925         for (pos = 0; map && pos < map->len; pos++) {
1926                 if (map->queues[pos] == index) {
1927                         if (map->len > 1) {
1928                                 map->queues[pos] = map->queues[--map->len];
1929                         } else {
1930                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1931                                 kfree_rcu(map, rcu);
1932                                 map = NULL;
1933                         }
1934                         break;
1935                 }
1936         }
1937
1938         return map;
1939 }
1940
1941 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1942 {
1943         struct xps_dev_maps *dev_maps;
1944         int cpu, i;
1945         bool active = false;
1946
1947         mutex_lock(&xps_map_mutex);
1948         dev_maps = xmap_dereference(dev->xps_maps);
1949
1950         if (!dev_maps)
1951                 goto out_no_maps;
1952
1953         for_each_possible_cpu(cpu) {
1954                 for (i = index; i < dev->num_tx_queues; i++) {
1955                         if (!remove_xps_queue(dev_maps, cpu, i))
1956                                 break;
1957                 }
1958                 if (i == dev->num_tx_queues)
1959                         active = true;
1960         }
1961
1962         if (!active) {
1963                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1964                 kfree_rcu(dev_maps, rcu);
1965         }
1966
1967         for (i = index; i < dev->num_tx_queues; i++)
1968                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1969                                              NUMA_NO_NODE);
1970
1971 out_no_maps:
1972         mutex_unlock(&xps_map_mutex);
1973 }
1974
1975 static struct xps_map *expand_xps_map(struct xps_map *map,
1976                                       int cpu, u16 index)
1977 {
1978         struct xps_map *new_map;
1979         int alloc_len = XPS_MIN_MAP_ALLOC;
1980         int i, pos;
1981
1982         for (pos = 0; map && pos < map->len; pos++) {
1983                 if (map->queues[pos] != index)
1984                         continue;
1985                 return map;
1986         }
1987
1988         /* Need to add queue to this CPU's existing map */
1989         if (map) {
1990                 if (pos < map->alloc_len)
1991                         return map;
1992
1993                 alloc_len = map->alloc_len * 2;
1994         }
1995
1996         /* Need to allocate new map to store queue on this CPU's map */
1997         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1998                                cpu_to_node(cpu));
1999         if (!new_map)
2000                 return NULL;
2001
2002         for (i = 0; i < pos; i++)
2003                 new_map->queues[i] = map->queues[i];
2004         new_map->alloc_len = alloc_len;
2005         new_map->len = pos;
2006
2007         return new_map;
2008 }
2009
2010 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2011                         u16 index)
2012 {
2013         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2014         struct xps_map *map, *new_map;
2015         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2016         int cpu, numa_node_id = -2;
2017         bool active = false;
2018
2019         mutex_lock(&xps_map_mutex);
2020
2021         dev_maps = xmap_dereference(dev->xps_maps);
2022
2023         /* allocate memory for queue storage */
2024         for_each_online_cpu(cpu) {
2025                 if (!cpumask_test_cpu(cpu, mask))
2026                         continue;
2027
2028                 if (!new_dev_maps)
2029                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2030                 if (!new_dev_maps) {
2031                         mutex_unlock(&xps_map_mutex);
2032                         return -ENOMEM;
2033                 }
2034
2035                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2036                                  NULL;
2037
2038                 map = expand_xps_map(map, cpu, index);
2039                 if (!map)
2040                         goto error;
2041
2042                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2043         }
2044
2045         if (!new_dev_maps)
2046                 goto out_no_new_maps;
2047
2048         for_each_possible_cpu(cpu) {
2049                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2050                         /* add queue to CPU maps */
2051                         int pos = 0;
2052
2053                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2054                         while ((pos < map->len) && (map->queues[pos] != index))
2055                                 pos++;
2056
2057                         if (pos == map->len)
2058                                 map->queues[map->len++] = index;
2059 #ifdef CONFIG_NUMA
2060                         if (numa_node_id == -2)
2061                                 numa_node_id = cpu_to_node(cpu);
2062                         else if (numa_node_id != cpu_to_node(cpu))
2063                                 numa_node_id = -1;
2064 #endif
2065                 } else if (dev_maps) {
2066                         /* fill in the new device map from the old device map */
2067                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2068                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2069                 }
2070
2071         }
2072
2073         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2074
2075         /* Cleanup old maps */
2076         if (dev_maps) {
2077                 for_each_possible_cpu(cpu) {
2078                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2079                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2080                         if (map && map != new_map)
2081                                 kfree_rcu(map, rcu);
2082                 }
2083
2084                 kfree_rcu(dev_maps, rcu);
2085         }
2086
2087         dev_maps = new_dev_maps;
2088         active = true;
2089
2090 out_no_new_maps:
2091         /* update Tx queue numa node */
2092         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2093                                      (numa_node_id >= 0) ? numa_node_id :
2094                                      NUMA_NO_NODE);
2095
2096         if (!dev_maps)
2097                 goto out_no_maps;
2098
2099         /* removes queue from unused CPUs */
2100         for_each_possible_cpu(cpu) {
2101                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2102                         continue;
2103
2104                 if (remove_xps_queue(dev_maps, cpu, index))
2105                         active = true;
2106         }
2107
2108         /* free map if not active */
2109         if (!active) {
2110                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2111                 kfree_rcu(dev_maps, rcu);
2112         }
2113
2114 out_no_maps:
2115         mutex_unlock(&xps_map_mutex);
2116
2117         return 0;
2118 error:
2119         /* remove any maps that we added */
2120         for_each_possible_cpu(cpu) {
2121                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2122                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2123                                  NULL;
2124                 if (new_map && new_map != map)
2125                         kfree(new_map);
2126         }
2127
2128         mutex_unlock(&xps_map_mutex);
2129
2130         kfree(new_dev_maps);
2131         return -ENOMEM;
2132 }
2133 EXPORT_SYMBOL(netif_set_xps_queue);
2134
2135 #endif
2136 /*
2137  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2138  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2139  */
2140 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2141 {
2142         int rc;
2143
2144         if (txq < 1 || txq > dev->num_tx_queues)
2145                 return -EINVAL;
2146
2147         if (dev->reg_state == NETREG_REGISTERED ||
2148             dev->reg_state == NETREG_UNREGISTERING) {
2149                 ASSERT_RTNL();
2150
2151                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2152                                                   txq);
2153                 if (rc)
2154                         return rc;
2155
2156                 if (dev->num_tc)
2157                         netif_setup_tc(dev, txq);
2158
2159                 if (txq < dev->real_num_tx_queues) {
2160                         qdisc_reset_all_tx_gt(dev, txq);
2161 #ifdef CONFIG_XPS
2162                         netif_reset_xps_queues_gt(dev, txq);
2163 #endif
2164                 }
2165         }
2166
2167         dev->real_num_tx_queues = txq;
2168         return 0;
2169 }
2170 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2171
2172 #ifdef CONFIG_SYSFS
2173 /**
2174  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2175  *      @dev: Network device
2176  *      @rxq: Actual number of RX queues
2177  *
2178  *      This must be called either with the rtnl_lock held or before
2179  *      registration of the net device.  Returns 0 on success, or a
2180  *      negative error code.  If called before registration, it always
2181  *      succeeds.
2182  */
2183 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2184 {
2185         int rc;
2186
2187         if (rxq < 1 || rxq > dev->num_rx_queues)
2188                 return -EINVAL;
2189
2190         if (dev->reg_state == NETREG_REGISTERED) {
2191                 ASSERT_RTNL();
2192
2193                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2194                                                   rxq);
2195                 if (rc)
2196                         return rc;
2197         }
2198
2199         dev->real_num_rx_queues = rxq;
2200         return 0;
2201 }
2202 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2203 #endif
2204
2205 /**
2206  * netif_get_num_default_rss_queues - default number of RSS queues
2207  *
2208  * This routine should set an upper limit on the number of RSS queues
2209  * used by default by multiqueue devices.
2210  */
2211 int netif_get_num_default_rss_queues(void)
2212 {
2213         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2214 }
2215 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2216
2217 static inline void __netif_reschedule(struct Qdisc *q)
2218 {
2219         struct softnet_data *sd;
2220         unsigned long flags;
2221
2222         local_irq_save(flags);
2223         sd = this_cpu_ptr(&softnet_data);
2224         q->next_sched = NULL;
2225         *sd->output_queue_tailp = q;
2226         sd->output_queue_tailp = &q->next_sched;
2227         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2228         local_irq_restore(flags);
2229 }
2230
2231 void __netif_schedule(struct Qdisc *q)
2232 {
2233         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2234                 __netif_reschedule(q);
2235 }
2236 EXPORT_SYMBOL(__netif_schedule);
2237
2238 struct dev_kfree_skb_cb {
2239         enum skb_free_reason reason;
2240 };
2241
2242 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2243 {
2244         return (struct dev_kfree_skb_cb *)skb->cb;
2245 }
2246
2247 void netif_schedule_queue(struct netdev_queue *txq)
2248 {
2249         rcu_read_lock();
2250         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2251                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2252
2253                 __netif_schedule(q);
2254         }
2255         rcu_read_unlock();
2256 }
2257 EXPORT_SYMBOL(netif_schedule_queue);
2258
2259 /**
2260  *      netif_wake_subqueue - allow sending packets on subqueue
2261  *      @dev: network device
2262  *      @queue_index: sub queue index
2263  *
2264  * Resume individual transmit queue of a device with multiple transmit queues.
2265  */
2266 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2267 {
2268         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2269
2270         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2271                 struct Qdisc *q;
2272
2273                 rcu_read_lock();
2274                 q = rcu_dereference(txq->qdisc);
2275                 __netif_schedule(q);
2276                 rcu_read_unlock();
2277         }
2278 }
2279 EXPORT_SYMBOL(netif_wake_subqueue);
2280
2281 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2282 {
2283         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2284                 struct Qdisc *q;
2285
2286                 rcu_read_lock();
2287                 q = rcu_dereference(dev_queue->qdisc);
2288                 __netif_schedule(q);
2289                 rcu_read_unlock();
2290         }
2291 }
2292 EXPORT_SYMBOL(netif_tx_wake_queue);
2293
2294 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2295 {
2296         unsigned long flags;
2297
2298         if (likely(atomic_read(&skb->users) == 1)) {
2299                 smp_rmb();
2300                 atomic_set(&skb->users, 0);
2301         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2302                 return;
2303         }
2304         get_kfree_skb_cb(skb)->reason = reason;
2305         local_irq_save(flags);
2306         skb->next = __this_cpu_read(softnet_data.completion_queue);
2307         __this_cpu_write(softnet_data.completion_queue, skb);
2308         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2309         local_irq_restore(flags);
2310 }
2311 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2312
2313 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2314 {
2315         if (in_irq() || irqs_disabled())
2316                 __dev_kfree_skb_irq(skb, reason);
2317         else
2318                 dev_kfree_skb(skb);
2319 }
2320 EXPORT_SYMBOL(__dev_kfree_skb_any);
2321
2322
2323 /**
2324  * netif_device_detach - mark device as removed
2325  * @dev: network device
2326  *
2327  * Mark device as removed from system and therefore no longer available.
2328  */
2329 void netif_device_detach(struct net_device *dev)
2330 {
2331         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2332             netif_running(dev)) {
2333                 netif_tx_stop_all_queues(dev);
2334         }
2335 }
2336 EXPORT_SYMBOL(netif_device_detach);
2337
2338 /**
2339  * netif_device_attach - mark device as attached
2340  * @dev: network device
2341  *
2342  * Mark device as attached from system and restart if needed.
2343  */
2344 void netif_device_attach(struct net_device *dev)
2345 {
2346         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2347             netif_running(dev)) {
2348                 netif_tx_wake_all_queues(dev);
2349                 __netdev_watchdog_up(dev);
2350         }
2351 }
2352 EXPORT_SYMBOL(netif_device_attach);
2353
2354 /*
2355  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2356  * to be used as a distribution range.
2357  */
2358 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2359                   unsigned int num_tx_queues)
2360 {
2361         u32 hash;
2362         u16 qoffset = 0;
2363         u16 qcount = num_tx_queues;
2364
2365         if (skb_rx_queue_recorded(skb)) {
2366                 hash = skb_get_rx_queue(skb);
2367                 while (unlikely(hash >= num_tx_queues))
2368                         hash -= num_tx_queues;
2369                 return hash;
2370         }
2371
2372         if (dev->num_tc) {
2373                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2374                 qoffset = dev->tc_to_txq[tc].offset;
2375                 qcount = dev->tc_to_txq[tc].count;
2376         }
2377
2378         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2379 }
2380 EXPORT_SYMBOL(__skb_tx_hash);
2381
2382 static void skb_warn_bad_offload(const struct sk_buff *skb)
2383 {
2384         static const netdev_features_t null_features = 0;
2385         struct net_device *dev = skb->dev;
2386         const char *driver = "";
2387
2388         if (!net_ratelimit())
2389                 return;
2390
2391         if (dev && dev->dev.parent)
2392                 driver = dev_driver_string(dev->dev.parent);
2393
2394         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2395              "gso_type=%d ip_summed=%d\n",
2396              driver, dev ? &dev->features : &null_features,
2397              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2398              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2399              skb_shinfo(skb)->gso_type, skb->ip_summed);
2400 }
2401
2402 /*
2403  * Invalidate hardware checksum when packet is to be mangled, and
2404  * complete checksum manually on outgoing path.
2405  */
2406 int skb_checksum_help(struct sk_buff *skb)
2407 {
2408         __wsum csum;
2409         int ret = 0, offset;
2410
2411         if (skb->ip_summed == CHECKSUM_COMPLETE)
2412                 goto out_set_summed;
2413
2414         if (unlikely(skb_shinfo(skb)->gso_size)) {
2415                 skb_warn_bad_offload(skb);
2416                 return -EINVAL;
2417         }
2418
2419         /* Before computing a checksum, we should make sure no frag could
2420          * be modified by an external entity : checksum could be wrong.
2421          */
2422         if (skb_has_shared_frag(skb)) {
2423                 ret = __skb_linearize(skb);
2424                 if (ret)
2425                         goto out;
2426         }
2427
2428         offset = skb_checksum_start_offset(skb);
2429         BUG_ON(offset >= skb_headlen(skb));
2430         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2431
2432         offset += skb->csum_offset;
2433         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2434
2435         if (skb_cloned(skb) &&
2436             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2437                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2438                 if (ret)
2439                         goto out;
2440         }
2441
2442         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2443 out_set_summed:
2444         skb->ip_summed = CHECKSUM_NONE;
2445 out:
2446         return ret;
2447 }
2448 EXPORT_SYMBOL(skb_checksum_help);
2449
2450 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2451 {
2452         __be16 type = skb->protocol;
2453
2454         /* Tunnel gso handlers can set protocol to ethernet. */
2455         if (type == htons(ETH_P_TEB)) {
2456                 struct ethhdr *eth;
2457
2458                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2459                         return 0;
2460
2461                 eth = (struct ethhdr *)skb_mac_header(skb);
2462                 type = eth->h_proto;
2463         }
2464
2465         return __vlan_get_protocol(skb, type, depth);
2466 }
2467
2468 /**
2469  *      skb_mac_gso_segment - mac layer segmentation handler.
2470  *      @skb: buffer to segment
2471  *      @features: features for the output path (see dev->features)
2472  */
2473 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2474                                     netdev_features_t features)
2475 {
2476         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2477         struct packet_offload *ptype;
2478         int vlan_depth = skb->mac_len;
2479         __be16 type = skb_network_protocol(skb, &vlan_depth);
2480
2481         if (unlikely(!type))
2482                 return ERR_PTR(-EINVAL);
2483
2484         __skb_pull(skb, vlan_depth);
2485
2486         rcu_read_lock();
2487         list_for_each_entry_rcu(ptype, &offload_base, list) {
2488                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2489                         segs = ptype->callbacks.gso_segment(skb, features);
2490                         break;
2491                 }
2492         }
2493         rcu_read_unlock();
2494
2495         __skb_push(skb, skb->data - skb_mac_header(skb));
2496
2497         return segs;
2498 }
2499 EXPORT_SYMBOL(skb_mac_gso_segment);
2500
2501
2502 /* openvswitch calls this on rx path, so we need a different check.
2503  */
2504 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2505 {
2506         if (tx_path)
2507                 return skb->ip_summed != CHECKSUM_PARTIAL;
2508         else
2509                 return skb->ip_summed == CHECKSUM_NONE;
2510 }
2511
2512 /**
2513  *      __skb_gso_segment - Perform segmentation on skb.
2514  *      @skb: buffer to segment
2515  *      @features: features for the output path (see dev->features)
2516  *      @tx_path: whether it is called in TX path
2517  *
2518  *      This function segments the given skb and returns a list of segments.
2519  *
2520  *      It may return NULL if the skb requires no segmentation.  This is
2521  *      only possible when GSO is used for verifying header integrity.
2522  */
2523 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2524                                   netdev_features_t features, bool tx_path)
2525 {
2526         if (unlikely(skb_needs_check(skb, tx_path))) {
2527                 int err;
2528
2529                 skb_warn_bad_offload(skb);
2530
2531                 err = skb_cow_head(skb, 0);
2532                 if (err < 0)
2533                         return ERR_PTR(err);
2534         }
2535
2536         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2537         SKB_GSO_CB(skb)->encap_level = 0;
2538
2539         skb_reset_mac_header(skb);
2540         skb_reset_mac_len(skb);
2541
2542         return skb_mac_gso_segment(skb, features);
2543 }
2544 EXPORT_SYMBOL(__skb_gso_segment);
2545
2546 /* Take action when hardware reception checksum errors are detected. */
2547 #ifdef CONFIG_BUG
2548 void netdev_rx_csum_fault(struct net_device *dev)
2549 {
2550         if (net_ratelimit()) {
2551                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2552                 dump_stack();
2553         }
2554 }
2555 EXPORT_SYMBOL(netdev_rx_csum_fault);
2556 #endif
2557
2558 /* Actually, we should eliminate this check as soon as we know, that:
2559  * 1. IOMMU is present and allows to map all the memory.
2560  * 2. No high memory really exists on this machine.
2561  */
2562
2563 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2564 {
2565 #ifdef CONFIG_HIGHMEM
2566         int i;
2567         if (!(dev->features & NETIF_F_HIGHDMA)) {
2568                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2569                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2570                         if (PageHighMem(skb_frag_page(frag)))
2571                                 return 1;
2572                 }
2573         }
2574
2575         if (PCI_DMA_BUS_IS_PHYS) {
2576                 struct device *pdev = dev->dev.parent;
2577
2578                 if (!pdev)
2579                         return 0;
2580                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2581                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2582                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2583                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2584                                 return 1;
2585                 }
2586         }
2587 #endif
2588         return 0;
2589 }
2590
2591 /* If MPLS offload request, verify we are testing hardware MPLS features
2592  * instead of standard features for the netdev.
2593  */
2594 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2595 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2596                                            netdev_features_t features,
2597                                            __be16 type)
2598 {
2599         if (eth_p_mpls(type))
2600                 features &= skb->dev->mpls_features;
2601
2602         return features;
2603 }
2604 #else
2605 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2606                                            netdev_features_t features,
2607                                            __be16 type)
2608 {
2609         return features;
2610 }
2611 #endif
2612
2613 static netdev_features_t harmonize_features(struct sk_buff *skb,
2614         netdev_features_t features)
2615 {
2616         int tmp;
2617         __be16 type;
2618
2619         type = skb_network_protocol(skb, &tmp);
2620         features = net_mpls_features(skb, features, type);
2621
2622         if (skb->ip_summed != CHECKSUM_NONE &&
2623             !can_checksum_protocol(features, type)) {
2624                 features &= ~NETIF_F_ALL_CSUM;
2625         } else if (illegal_highdma(skb->dev, skb)) {
2626                 features &= ~NETIF_F_SG;
2627         }
2628
2629         return features;
2630 }
2631
2632 netdev_features_t passthru_features_check(struct sk_buff *skb,
2633                                           struct net_device *dev,
2634                                           netdev_features_t features)
2635 {
2636         return features;
2637 }
2638 EXPORT_SYMBOL(passthru_features_check);
2639
2640 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2641                                              struct net_device *dev,
2642                                              netdev_features_t features)
2643 {
2644         return vlan_features_check(skb, features);
2645 }
2646
2647 netdev_features_t netif_skb_features(struct sk_buff *skb)
2648 {
2649         struct net_device *dev = skb->dev;
2650         netdev_features_t features = dev->features;
2651         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2652
2653         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2654                 features &= ~NETIF_F_GSO_MASK;
2655
2656         /* If encapsulation offload request, verify we are testing
2657          * hardware encapsulation features instead of standard
2658          * features for the netdev
2659          */
2660         if (skb->encapsulation)
2661                 features &= dev->hw_enc_features;
2662
2663         if (skb_vlan_tagged(skb))
2664                 features = netdev_intersect_features(features,
2665                                                      dev->vlan_features |
2666                                                      NETIF_F_HW_VLAN_CTAG_TX |
2667                                                      NETIF_F_HW_VLAN_STAG_TX);
2668
2669         if (dev->netdev_ops->ndo_features_check)
2670                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2671                                                                 features);
2672         else
2673                 features &= dflt_features_check(skb, dev, features);
2674
2675         return harmonize_features(skb, features);
2676 }
2677 EXPORT_SYMBOL(netif_skb_features);
2678
2679 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2680                     struct netdev_queue *txq, bool more)
2681 {
2682         unsigned int len;
2683         int rc;
2684
2685         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2686                 dev_queue_xmit_nit(skb, dev);
2687
2688         len = skb->len;
2689         trace_net_dev_start_xmit(skb, dev);
2690         rc = netdev_start_xmit(skb, dev, txq, more);
2691         trace_net_dev_xmit(skb, rc, dev, len);
2692
2693         return rc;
2694 }
2695
2696 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2697                                     struct netdev_queue *txq, int *ret)
2698 {
2699         struct sk_buff *skb = first;
2700         int rc = NETDEV_TX_OK;
2701
2702         while (skb) {
2703                 struct sk_buff *next = skb->next;
2704
2705                 skb->next = NULL;
2706                 rc = xmit_one(skb, dev, txq, next != NULL);
2707                 if (unlikely(!dev_xmit_complete(rc))) {
2708                         skb->next = next;
2709                         goto out;
2710                 }
2711
2712                 skb = next;
2713                 if (netif_xmit_stopped(txq) && skb) {
2714                         rc = NETDEV_TX_BUSY;
2715                         break;
2716                 }
2717         }
2718
2719 out:
2720         *ret = rc;
2721         return skb;
2722 }
2723
2724 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2725                                           netdev_features_t features)
2726 {
2727         if (skb_vlan_tag_present(skb) &&
2728             !vlan_hw_offload_capable(features, skb->vlan_proto))
2729                 skb = __vlan_hwaccel_push_inside(skb);
2730         return skb;
2731 }
2732
2733 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2734 {
2735         netdev_features_t features;
2736
2737         if (skb->next)
2738                 return skb;
2739
2740         features = netif_skb_features(skb);
2741         skb = validate_xmit_vlan(skb, features);
2742         if (unlikely(!skb))
2743                 goto out_null;
2744
2745         if (netif_needs_gso(skb, features)) {
2746                 struct sk_buff *segs;
2747
2748                 segs = skb_gso_segment(skb, features);
2749                 if (IS_ERR(segs)) {
2750                         goto out_kfree_skb;
2751                 } else if (segs) {
2752                         consume_skb(skb);
2753                         skb = segs;
2754                 }
2755         } else {
2756                 if (skb_needs_linearize(skb, features) &&
2757                     __skb_linearize(skb))
2758                         goto out_kfree_skb;
2759
2760                 /* If packet is not checksummed and device does not
2761                  * support checksumming for this protocol, complete
2762                  * checksumming here.
2763                  */
2764                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2765                         if (skb->encapsulation)
2766                                 skb_set_inner_transport_header(skb,
2767                                                                skb_checksum_start_offset(skb));
2768                         else
2769                                 skb_set_transport_header(skb,
2770                                                          skb_checksum_start_offset(skb));
2771                         if (!(features & NETIF_F_ALL_CSUM) &&
2772                             skb_checksum_help(skb))
2773                                 goto out_kfree_skb;
2774                 }
2775         }
2776
2777         return skb;
2778
2779 out_kfree_skb:
2780         kfree_skb(skb);
2781 out_null:
2782         return NULL;
2783 }
2784
2785 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2786 {
2787         struct sk_buff *next, *head = NULL, *tail;
2788
2789         for (; skb != NULL; skb = next) {
2790                 next = skb->next;
2791                 skb->next = NULL;
2792
2793                 /* in case skb wont be segmented, point to itself */
2794                 skb->prev = skb;
2795
2796                 skb = validate_xmit_skb(skb, dev);
2797                 if (!skb)
2798                         continue;
2799
2800                 if (!head)
2801                         head = skb;
2802                 else
2803                         tail->next = skb;
2804                 /* If skb was segmented, skb->prev points to
2805                  * the last segment. If not, it still contains skb.
2806                  */
2807                 tail = skb->prev;
2808         }
2809         return head;
2810 }
2811
2812 static void qdisc_pkt_len_init(struct sk_buff *skb)
2813 {
2814         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2815
2816         qdisc_skb_cb(skb)->pkt_len = skb->len;
2817
2818         /* To get more precise estimation of bytes sent on wire,
2819          * we add to pkt_len the headers size of all segments
2820          */
2821         if (shinfo->gso_size)  {
2822                 unsigned int hdr_len;
2823                 u16 gso_segs = shinfo->gso_segs;
2824
2825                 /* mac layer + network layer */
2826                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2827
2828                 /* + transport layer */
2829                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2830                         hdr_len += tcp_hdrlen(skb);
2831                 else
2832                         hdr_len += sizeof(struct udphdr);
2833
2834                 if (shinfo->gso_type & SKB_GSO_DODGY)
2835                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2836                                                 shinfo->gso_size);
2837
2838                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2839         }
2840 }
2841
2842 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2843                                  struct net_device *dev,
2844                                  struct netdev_queue *txq)
2845 {
2846         spinlock_t *root_lock = qdisc_lock(q);
2847         bool contended;
2848         int rc;
2849
2850         qdisc_pkt_len_init(skb);
2851         qdisc_calculate_pkt_len(skb, q);
2852         /*
2853          * Heuristic to force contended enqueues to serialize on a
2854          * separate lock before trying to get qdisc main lock.
2855          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2856          * often and dequeue packets faster.
2857          */
2858         contended = qdisc_is_running(q);
2859         if (unlikely(contended))
2860                 spin_lock(&q->busylock);
2861
2862         spin_lock(root_lock);
2863         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2864                 kfree_skb(skb);
2865                 rc = NET_XMIT_DROP;
2866         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2867                    qdisc_run_begin(q)) {
2868                 /*
2869                  * This is a work-conserving queue; there are no old skbs
2870                  * waiting to be sent out; and the qdisc is not running -
2871                  * xmit the skb directly.
2872                  */
2873
2874                 qdisc_bstats_update(q, skb);
2875
2876                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2877                         if (unlikely(contended)) {
2878                                 spin_unlock(&q->busylock);
2879                                 contended = false;
2880                         }
2881                         __qdisc_run(q);
2882                 } else
2883                         qdisc_run_end(q);
2884
2885                 rc = NET_XMIT_SUCCESS;
2886         } else {
2887                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2888                 if (qdisc_run_begin(q)) {
2889                         if (unlikely(contended)) {
2890                                 spin_unlock(&q->busylock);
2891                                 contended = false;
2892                         }
2893                         __qdisc_run(q);
2894                 }
2895         }
2896         spin_unlock(root_lock);
2897         if (unlikely(contended))
2898                 spin_unlock(&q->busylock);
2899         return rc;
2900 }
2901
2902 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2903 static void skb_update_prio(struct sk_buff *skb)
2904 {
2905         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2906
2907         if (!skb->priority && skb->sk && map) {
2908                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2909
2910                 if (prioidx < map->priomap_len)
2911                         skb->priority = map->priomap[prioidx];
2912         }
2913 }
2914 #else
2915 #define skb_update_prio(skb)
2916 #endif
2917
2918 DEFINE_PER_CPU(int, xmit_recursion);
2919 EXPORT_SYMBOL(xmit_recursion);
2920
2921 #define RECURSION_LIMIT 10
2922
2923 /**
2924  *      dev_loopback_xmit - loop back @skb
2925  *      @skb: buffer to transmit
2926  */
2927 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2928 {
2929         skb_reset_mac_header(skb);
2930         __skb_pull(skb, skb_network_offset(skb));
2931         skb->pkt_type = PACKET_LOOPBACK;
2932         skb->ip_summed = CHECKSUM_UNNECESSARY;
2933         WARN_ON(!skb_dst(skb));
2934         skb_dst_force(skb);
2935         netif_rx_ni(skb);
2936         return 0;
2937 }
2938 EXPORT_SYMBOL(dev_loopback_xmit);
2939
2940 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2941 {
2942 #ifdef CONFIG_XPS
2943         struct xps_dev_maps *dev_maps;
2944         struct xps_map *map;
2945         int queue_index = -1;
2946
2947         rcu_read_lock();
2948         dev_maps = rcu_dereference(dev->xps_maps);
2949         if (dev_maps) {
2950                 map = rcu_dereference(
2951                     dev_maps->cpu_map[skb->sender_cpu - 1]);
2952                 if (map) {
2953                         if (map->len == 1)
2954                                 queue_index = map->queues[0];
2955                         else
2956                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2957                                                                            map->len)];
2958                         if (unlikely(queue_index >= dev->real_num_tx_queues))
2959                                 queue_index = -1;
2960                 }
2961         }
2962         rcu_read_unlock();
2963
2964         return queue_index;
2965 #else
2966         return -1;
2967 #endif
2968 }
2969
2970 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2971 {
2972         struct sock *sk = skb->sk;
2973         int queue_index = sk_tx_queue_get(sk);
2974
2975         if (queue_index < 0 || skb->ooo_okay ||
2976             queue_index >= dev->real_num_tx_queues) {
2977                 int new_index = get_xps_queue(dev, skb);
2978                 if (new_index < 0)
2979                         new_index = skb_tx_hash(dev, skb);
2980
2981                 if (queue_index != new_index && sk &&
2982                     rcu_access_pointer(sk->sk_dst_cache))
2983                         sk_tx_queue_set(sk, new_index);
2984
2985                 queue_index = new_index;
2986         }
2987
2988         return queue_index;
2989 }
2990
2991 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2992                                     struct sk_buff *skb,
2993                                     void *accel_priv)
2994 {
2995         int queue_index = 0;
2996
2997 #ifdef CONFIG_XPS
2998         if (skb->sender_cpu == 0)
2999                 skb->sender_cpu = raw_smp_processor_id() + 1;
3000 #endif
3001
3002         if (dev->real_num_tx_queues != 1) {
3003                 const struct net_device_ops *ops = dev->netdev_ops;
3004                 if (ops->ndo_select_queue)
3005                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3006                                                             __netdev_pick_tx);
3007                 else
3008                         queue_index = __netdev_pick_tx(dev, skb);
3009
3010                 if (!accel_priv)
3011                         queue_index = netdev_cap_txqueue(dev, queue_index);
3012         }
3013
3014         skb_set_queue_mapping(skb, queue_index);
3015         return netdev_get_tx_queue(dev, queue_index);
3016 }
3017
3018 /**
3019  *      __dev_queue_xmit - transmit a buffer
3020  *      @skb: buffer to transmit
3021  *      @accel_priv: private data used for L2 forwarding offload
3022  *
3023  *      Queue a buffer for transmission to a network device. The caller must
3024  *      have set the device and priority and built the buffer before calling
3025  *      this function. The function can be called from an interrupt.
3026  *
3027  *      A negative errno code is returned on a failure. A success does not
3028  *      guarantee the frame will be transmitted as it may be dropped due
3029  *      to congestion or traffic shaping.
3030  *
3031  * -----------------------------------------------------------------------------------
3032  *      I notice this method can also return errors from the queue disciplines,
3033  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3034  *      be positive.
3035  *
3036  *      Regardless of the return value, the skb is consumed, so it is currently
3037  *      difficult to retry a send to this method.  (You can bump the ref count
3038  *      before sending to hold a reference for retry if you are careful.)
3039  *
3040  *      When calling this method, interrupts MUST be enabled.  This is because
3041  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3042  *          --BLG
3043  */
3044 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3045 {
3046         struct net_device *dev = skb->dev;
3047         struct netdev_queue *txq;
3048         struct Qdisc *q;
3049         int rc = -ENOMEM;
3050
3051         skb_reset_mac_header(skb);
3052
3053         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3054                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3055
3056         /* Disable soft irqs for various locks below. Also
3057          * stops preemption for RCU.
3058          */
3059         rcu_read_lock_bh();
3060
3061         skb_update_prio(skb);
3062
3063         /* If device/qdisc don't need skb->dst, release it right now while
3064          * its hot in this cpu cache.
3065          */
3066         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3067                 skb_dst_drop(skb);
3068         else
3069                 skb_dst_force(skb);
3070
3071         txq = netdev_pick_tx(dev, skb, accel_priv);
3072         q = rcu_dereference_bh(txq->qdisc);
3073
3074 #ifdef CONFIG_NET_CLS_ACT
3075         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3076 #endif
3077         trace_net_dev_queue(skb);
3078         if (q->enqueue) {
3079                 rc = __dev_xmit_skb(skb, q, dev, txq);
3080                 goto out;
3081         }
3082
3083         /* The device has no queue. Common case for software devices:
3084            loopback, all the sorts of tunnels...
3085
3086            Really, it is unlikely that netif_tx_lock protection is necessary
3087            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3088            counters.)
3089            However, it is possible, that they rely on protection
3090            made by us here.
3091
3092            Check this and shot the lock. It is not prone from deadlocks.
3093            Either shot noqueue qdisc, it is even simpler 8)
3094          */
3095         if (dev->flags & IFF_UP) {
3096                 int cpu = smp_processor_id(); /* ok because BHs are off */
3097
3098                 if (txq->xmit_lock_owner != cpu) {
3099
3100                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3101                                 goto recursion_alert;
3102
3103                         skb = validate_xmit_skb(skb, dev);
3104                         if (!skb)
3105                                 goto drop;
3106
3107                         HARD_TX_LOCK(dev, txq, cpu);
3108
3109                         if (!netif_xmit_stopped(txq)) {
3110                                 __this_cpu_inc(xmit_recursion);
3111                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3112                                 __this_cpu_dec(xmit_recursion);
3113                                 if (dev_xmit_complete(rc)) {
3114                                         HARD_TX_UNLOCK(dev, txq);
3115                                         goto out;
3116                                 }
3117                         }
3118                         HARD_TX_UNLOCK(dev, txq);
3119                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3120                                              dev->name);
3121                 } else {
3122                         /* Recursion is detected! It is possible,
3123                          * unfortunately
3124                          */
3125 recursion_alert:
3126                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3127                                              dev->name);
3128                 }
3129         }
3130
3131         rc = -ENETDOWN;
3132 drop:
3133         rcu_read_unlock_bh();
3134
3135         atomic_long_inc(&dev->tx_dropped);
3136         kfree_skb_list(skb);
3137         return rc;
3138 out:
3139         rcu_read_unlock_bh();
3140         return rc;
3141 }
3142
3143 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3144 {
3145         return __dev_queue_xmit(skb, NULL);
3146 }
3147 EXPORT_SYMBOL(dev_queue_xmit_sk);
3148
3149 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3150 {
3151         return __dev_queue_xmit(skb, accel_priv);
3152 }
3153 EXPORT_SYMBOL(dev_queue_xmit_accel);
3154
3155
3156 /*=======================================================================
3157                         Receiver routines
3158   =======================================================================*/
3159
3160 int netdev_max_backlog __read_mostly = 1000;
3161 EXPORT_SYMBOL(netdev_max_backlog);
3162
3163 int netdev_tstamp_prequeue __read_mostly = 1;
3164 int netdev_budget __read_mostly = 300;
3165 int weight_p __read_mostly = 64;            /* old backlog weight */
3166
3167 /* Called with irq disabled */
3168 static inline void ____napi_schedule(struct softnet_data *sd,
3169                                      struct napi_struct *napi)
3170 {
3171         list_add_tail(&napi->poll_list, &sd->poll_list);
3172         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3173 }
3174
3175 #ifdef CONFIG_RPS
3176
3177 /* One global table that all flow-based protocols share. */
3178 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3179 EXPORT_SYMBOL(rps_sock_flow_table);
3180 u32 rps_cpu_mask __read_mostly;
3181 EXPORT_SYMBOL(rps_cpu_mask);
3182
3183 struct static_key rps_needed __read_mostly;
3184
3185 static struct rps_dev_flow *
3186 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3187             struct rps_dev_flow *rflow, u16 next_cpu)
3188 {
3189         if (next_cpu < nr_cpu_ids) {
3190 #ifdef CONFIG_RFS_ACCEL
3191                 struct netdev_rx_queue *rxqueue;
3192                 struct rps_dev_flow_table *flow_table;
3193                 struct rps_dev_flow *old_rflow;
3194                 u32 flow_id;
3195                 u16 rxq_index;
3196                 int rc;
3197
3198                 /* Should we steer this flow to a different hardware queue? */
3199                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3200                     !(dev->features & NETIF_F_NTUPLE))
3201                         goto out;
3202                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3203                 if (rxq_index == skb_get_rx_queue(skb))
3204                         goto out;
3205
3206                 rxqueue = dev->_rx + rxq_index;
3207                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3208                 if (!flow_table)
3209                         goto out;
3210                 flow_id = skb_get_hash(skb) & flow_table->mask;
3211                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3212                                                         rxq_index, flow_id);
3213                 if (rc < 0)
3214                         goto out;
3215                 old_rflow = rflow;
3216                 rflow = &flow_table->flows[flow_id];
3217                 rflow->filter = rc;
3218                 if (old_rflow->filter == rflow->filter)
3219                         old_rflow->filter = RPS_NO_FILTER;
3220         out:
3221 #endif
3222                 rflow->last_qtail =
3223                         per_cpu(softnet_data, next_cpu).input_queue_head;
3224         }
3225
3226         rflow->cpu = next_cpu;
3227         return rflow;
3228 }
3229
3230 /*
3231  * get_rps_cpu is called from netif_receive_skb and returns the target
3232  * CPU from the RPS map of the receiving queue for a given skb.
3233  * rcu_read_lock must be held on entry.
3234  */
3235 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3236                        struct rps_dev_flow **rflowp)
3237 {
3238         const struct rps_sock_flow_table *sock_flow_table;
3239         struct netdev_rx_queue *rxqueue = dev->_rx;
3240         struct rps_dev_flow_table *flow_table;
3241         struct rps_map *map;
3242         int cpu = -1;
3243         u32 tcpu;
3244         u32 hash;
3245
3246         if (skb_rx_queue_recorded(skb)) {
3247                 u16 index = skb_get_rx_queue(skb);
3248
3249                 if (unlikely(index >= dev->real_num_rx_queues)) {
3250                         WARN_ONCE(dev->real_num_rx_queues > 1,
3251                                   "%s received packet on queue %u, but number "
3252                                   "of RX queues is %u\n",
3253                                   dev->name, index, dev->real_num_rx_queues);
3254                         goto done;
3255                 }
3256                 rxqueue += index;
3257         }
3258
3259         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3260
3261         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3262         map = rcu_dereference(rxqueue->rps_map);
3263         if (!flow_table && !map)
3264                 goto done;
3265
3266         skb_reset_network_header(skb);
3267         hash = skb_get_hash(skb);
3268         if (!hash)
3269                 goto done;
3270
3271         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3272         if (flow_table && sock_flow_table) {
3273                 struct rps_dev_flow *rflow;
3274                 u32 next_cpu;
3275                 u32 ident;
3276
3277                 /* First check into global flow table if there is a match */
3278                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3279                 if ((ident ^ hash) & ~rps_cpu_mask)
3280                         goto try_rps;
3281
3282                 next_cpu = ident & rps_cpu_mask;
3283
3284                 /* OK, now we know there is a match,
3285                  * we can look at the local (per receive queue) flow table
3286                  */
3287                 rflow = &flow_table->flows[hash & flow_table->mask];
3288                 tcpu = rflow->cpu;
3289
3290                 /*
3291                  * If the desired CPU (where last recvmsg was done) is
3292                  * different from current CPU (one in the rx-queue flow
3293                  * table entry), switch if one of the following holds:
3294                  *   - Current CPU is unset (>= nr_cpu_ids).
3295                  *   - Current CPU is offline.
3296                  *   - The current CPU's queue tail has advanced beyond the
3297                  *     last packet that was enqueued using this table entry.
3298                  *     This guarantees that all previous packets for the flow
3299                  *     have been dequeued, thus preserving in order delivery.
3300                  */
3301                 if (unlikely(tcpu != next_cpu) &&
3302                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3303                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3304                       rflow->last_qtail)) >= 0)) {
3305                         tcpu = next_cpu;
3306                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3307                 }
3308
3309                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3310                         *rflowp = rflow;
3311                         cpu = tcpu;
3312                         goto done;
3313                 }
3314         }
3315
3316 try_rps:
3317
3318         if (map) {
3319                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3320                 if (cpu_online(tcpu)) {
3321                         cpu = tcpu;
3322                         goto done;
3323                 }
3324         }
3325
3326 done:
3327         return cpu;
3328 }
3329
3330 #ifdef CONFIG_RFS_ACCEL
3331
3332 /**
3333  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3334  * @dev: Device on which the filter was set
3335  * @rxq_index: RX queue index
3336  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3337  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3338  *
3339  * Drivers that implement ndo_rx_flow_steer() should periodically call
3340  * this function for each installed filter and remove the filters for
3341  * which it returns %true.
3342  */
3343 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3344                          u32 flow_id, u16 filter_id)
3345 {
3346         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3347         struct rps_dev_flow_table *flow_table;
3348         struct rps_dev_flow *rflow;
3349         bool expire = true;
3350         unsigned int cpu;
3351
3352         rcu_read_lock();
3353         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3354         if (flow_table && flow_id <= flow_table->mask) {
3355                 rflow = &flow_table->flows[flow_id];
3356                 cpu = ACCESS_ONCE(rflow->cpu);
3357                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3358                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3359                            rflow->last_qtail) <
3360                      (int)(10 * flow_table->mask)))
3361                         expire = false;
3362         }
3363         rcu_read_unlock();
3364         return expire;
3365 }
3366 EXPORT_SYMBOL(rps_may_expire_flow);
3367
3368 #endif /* CONFIG_RFS_ACCEL */
3369
3370 /* Called from hardirq (IPI) context */
3371 static void rps_trigger_softirq(void *data)
3372 {
3373         struct softnet_data *sd = data;
3374
3375         ____napi_schedule(sd, &sd->backlog);
3376         sd->received_rps++;
3377 }
3378
3379 #endif /* CONFIG_RPS */
3380
3381 /*
3382  * Check if this softnet_data structure is another cpu one
3383  * If yes, queue it to our IPI list and return 1
3384  * If no, return 0
3385  */
3386 static int rps_ipi_queued(struct softnet_data *sd)
3387 {
3388 #ifdef CONFIG_RPS
3389         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3390
3391         if (sd != mysd) {
3392                 sd->rps_ipi_next = mysd->rps_ipi_list;
3393                 mysd->rps_ipi_list = sd;
3394
3395                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3396                 return 1;
3397         }
3398 #endif /* CONFIG_RPS */
3399         return 0;
3400 }
3401
3402 #ifdef CONFIG_NET_FLOW_LIMIT
3403 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3404 #endif
3405
3406 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3407 {
3408 #ifdef CONFIG_NET_FLOW_LIMIT
3409         struct sd_flow_limit *fl;
3410         struct softnet_data *sd;
3411         unsigned int old_flow, new_flow;
3412
3413         if (qlen < (netdev_max_backlog >> 1))
3414                 return false;
3415
3416         sd = this_cpu_ptr(&softnet_data);
3417
3418         rcu_read_lock();
3419         fl = rcu_dereference(sd->flow_limit);
3420         if (fl) {
3421                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3422                 old_flow = fl->history[fl->history_head];
3423                 fl->history[fl->history_head] = new_flow;
3424
3425                 fl->history_head++;
3426                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3427
3428                 if (likely(fl->buckets[old_flow]))
3429                         fl->buckets[old_flow]--;
3430
3431                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3432                         fl->count++;
3433                         rcu_read_unlock();
3434                         return true;
3435                 }
3436         }
3437         rcu_read_unlock();
3438 #endif
3439         return false;
3440 }
3441
3442 /*
3443  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3444  * queue (may be a remote CPU queue).
3445  */
3446 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3447                               unsigned int *qtail)
3448 {
3449         struct softnet_data *sd;
3450         unsigned long flags;
3451         unsigned int qlen;
3452
3453         sd = &per_cpu(softnet_data, cpu);
3454
3455         local_irq_save(flags);
3456
3457         rps_lock(sd);
3458         qlen = skb_queue_len(&sd->input_pkt_queue);
3459         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3460                 if (qlen) {
3461 enqueue:
3462                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3463                         input_queue_tail_incr_save(sd, qtail);
3464                         rps_unlock(sd);
3465                         local_irq_restore(flags);
3466                         return NET_RX_SUCCESS;
3467                 }
3468
3469                 /* Schedule NAPI for backlog device
3470                  * We can use non atomic operation since we own the queue lock
3471                  */
3472                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3473                         if (!rps_ipi_queued(sd))
3474                                 ____napi_schedule(sd, &sd->backlog);
3475                 }
3476                 goto enqueue;
3477         }
3478
3479         sd->dropped++;
3480         rps_unlock(sd);
3481
3482         local_irq_restore(flags);
3483
3484         atomic_long_inc(&skb->dev->rx_dropped);
3485         kfree_skb(skb);
3486         return NET_RX_DROP;
3487 }
3488
3489 static int netif_rx_internal(struct sk_buff *skb)
3490 {
3491         int ret;
3492
3493         net_timestamp_check(netdev_tstamp_prequeue, skb);
3494
3495         trace_netif_rx(skb);
3496 #ifdef CONFIG_RPS
3497         if (static_key_false(&rps_needed)) {
3498                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3499                 int cpu;
3500
3501                 preempt_disable();
3502                 rcu_read_lock();
3503
3504                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3505                 if (cpu < 0)
3506                         cpu = smp_processor_id();
3507
3508                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3509
3510                 rcu_read_unlock();
3511                 preempt_enable();
3512         } else
3513 #endif
3514         {
3515                 unsigned int qtail;
3516                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3517                 put_cpu();
3518         }
3519         return ret;
3520 }
3521
3522 /**
3523  *      netif_rx        -       post buffer to the network code
3524  *      @skb: buffer to post
3525  *
3526  *      This function receives a packet from a device driver and queues it for
3527  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3528  *      may be dropped during processing for congestion control or by the
3529  *      protocol layers.
3530  *
3531  *      return values:
3532  *      NET_RX_SUCCESS  (no congestion)
3533  *      NET_RX_DROP     (packet was dropped)
3534  *
3535  */
3536
3537 int netif_rx(struct sk_buff *skb)
3538 {
3539         trace_netif_rx_entry(skb);
3540
3541         return netif_rx_internal(skb);
3542 }
3543 EXPORT_SYMBOL(netif_rx);
3544
3545 int netif_rx_ni(struct sk_buff *skb)
3546 {
3547         int err;
3548
3549         trace_netif_rx_ni_entry(skb);
3550
3551         preempt_disable();
3552         err = netif_rx_internal(skb);
3553         if (local_softirq_pending())
3554                 do_softirq();
3555         preempt_enable();
3556
3557         return err;
3558 }
3559 EXPORT_SYMBOL(netif_rx_ni);
3560
3561 static void net_tx_action(struct softirq_action *h)
3562 {
3563         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3564
3565         if (sd->completion_queue) {
3566                 struct sk_buff *clist;
3567
3568                 local_irq_disable();
3569                 clist = sd->completion_queue;
3570                 sd->completion_queue = NULL;
3571                 local_irq_enable();
3572
3573                 while (clist) {
3574                         struct sk_buff *skb = clist;
3575                         clist = clist->next;
3576
3577                         WARN_ON(atomic_read(&skb->users));
3578                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3579                                 trace_consume_skb(skb);
3580                         else
3581                                 trace_kfree_skb(skb, net_tx_action);
3582                         __kfree_skb(skb);
3583                 }
3584         }
3585
3586         if (sd->output_queue) {
3587                 struct Qdisc *head;
3588
3589                 local_irq_disable();
3590                 head = sd->output_queue;
3591                 sd->output_queue = NULL;
3592                 sd->output_queue_tailp = &sd->output_queue;
3593                 local_irq_enable();
3594
3595                 while (head) {
3596                         struct Qdisc *q = head;
3597                         spinlock_t *root_lock;
3598
3599                         head = head->next_sched;
3600
3601                         root_lock = qdisc_lock(q);
3602                         if (spin_trylock(root_lock)) {
3603                                 smp_mb__before_atomic();
3604                                 clear_bit(__QDISC_STATE_SCHED,
3605                                           &q->state);
3606                                 qdisc_run(q);
3607                                 spin_unlock(root_lock);
3608                         } else {
3609                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3610                                               &q->state)) {
3611                                         __netif_reschedule(q);
3612                                 } else {
3613                                         smp_mb__before_atomic();
3614                                         clear_bit(__QDISC_STATE_SCHED,
3615                                                   &q->state);
3616                                 }
3617                         }
3618                 }
3619         }
3620 }
3621
3622 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3623     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3624 /* This hook is defined here for ATM LANE */
3625 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3626                              unsigned char *addr) __read_mostly;
3627 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3628 #endif
3629
3630 #ifdef CONFIG_NET_CLS_ACT
3631 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3632                                          struct packet_type **pt_prev,
3633                                          int *ret, struct net_device *orig_dev)
3634 {
3635         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3636         struct tcf_result cl_res;
3637
3638         /* If there's at least one ingress present somewhere (so
3639          * we get here via enabled static key), remaining devices
3640          * that are not configured with an ingress qdisc will bail
3641          * out here.
3642          */
3643         if (!cl)
3644                 return skb;
3645         if (*pt_prev) {
3646                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3647                 *pt_prev = NULL;
3648         }
3649
3650         qdisc_skb_cb(skb)->pkt_len = skb->len;
3651         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3652         qdisc_bstats_update_cpu(cl->q, skb);
3653
3654         switch (tc_classify(skb, cl, &cl_res)) {
3655         case TC_ACT_OK:
3656         case TC_ACT_RECLASSIFY:
3657                 skb->tc_index = TC_H_MIN(cl_res.classid);
3658                 break;
3659         case TC_ACT_SHOT:
3660                 qdisc_qstats_drop_cpu(cl->q);
3661         case TC_ACT_STOLEN:
3662         case TC_ACT_QUEUED:
3663                 kfree_skb(skb);
3664                 return NULL;
3665         default:
3666                 break;
3667         }
3668
3669         return skb;
3670 }
3671 #else
3672 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3673                                          struct packet_type **pt_prev,
3674                                          int *ret, struct net_device *orig_dev)
3675 {
3676         return skb;
3677 }
3678 #endif
3679
3680 /**
3681  *      netdev_rx_handler_register - register receive handler
3682  *      @dev: device to register a handler for
3683  *      @rx_handler: receive handler to register
3684  *      @rx_handler_data: data pointer that is used by rx handler
3685  *
3686  *      Register a receive handler for a device. This handler will then be
3687  *      called from __netif_receive_skb. A negative errno code is returned
3688  *      on a failure.
3689  *
3690  *      The caller must hold the rtnl_mutex.
3691  *
3692  *      For a general description of rx_handler, see enum rx_handler_result.
3693  */
3694 int netdev_rx_handler_register(struct net_device *dev,
3695                                rx_handler_func_t *rx_handler,
3696                                void *rx_handler_data)
3697 {
3698         ASSERT_RTNL();
3699
3700         if (dev->rx_handler)
3701                 return -EBUSY;
3702
3703         /* Note: rx_handler_data must be set before rx_handler */
3704         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3705         rcu_assign_pointer(dev->rx_handler, rx_handler);
3706
3707         return 0;
3708 }
3709 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3710
3711 /**
3712  *      netdev_rx_handler_unregister - unregister receive handler
3713  *      @dev: device to unregister a handler from
3714  *
3715  *      Unregister a receive handler from a device.
3716  *
3717  *      The caller must hold the rtnl_mutex.
3718  */
3719 void netdev_rx_handler_unregister(struct net_device *dev)
3720 {
3721
3722         ASSERT_RTNL();
3723         RCU_INIT_POINTER(dev->rx_handler, NULL);
3724         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3725          * section has a guarantee to see a non NULL rx_handler_data
3726          * as well.
3727          */
3728         synchronize_net();
3729         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3730 }
3731 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3732
3733 /*
3734  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3735  * the special handling of PFMEMALLOC skbs.
3736  */
3737 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3738 {
3739         switch (skb->protocol) {
3740         case htons(ETH_P_ARP):
3741         case htons(ETH_P_IP):
3742         case htons(ETH_P_IPV6):
3743         case htons(ETH_P_8021Q):
3744         case htons(ETH_P_8021AD):
3745                 return true;
3746         default:
3747                 return false;
3748         }
3749 }
3750
3751 #ifdef CONFIG_NETFILTER_INGRESS
3752 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3753                              int *ret, struct net_device *orig_dev)
3754 {
3755         if (nf_hook_ingress_active(skb)) {
3756                 if (*pt_prev) {
3757                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
3758                         *pt_prev = NULL;
3759                 }
3760
3761                 return nf_hook_ingress(skb);
3762         }
3763         return 0;
3764 }
3765 #else
3766 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3767                              int *ret, struct net_device *orig_dev)
3768 {
3769         return 0;
3770 }
3771 #endif
3772
3773 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3774 {
3775         struct packet_type *ptype, *pt_prev;
3776         rx_handler_func_t *rx_handler;
3777         struct net_device *orig_dev;
3778         bool deliver_exact = false;
3779         int ret = NET_RX_DROP;
3780         __be16 type;
3781
3782         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3783
3784         trace_netif_receive_skb(skb);
3785
3786         orig_dev = skb->dev;
3787
3788         skb_reset_network_header(skb);
3789         if (!skb_transport_header_was_set(skb))
3790                 skb_reset_transport_header(skb);
3791         skb_reset_mac_len(skb);
3792
3793         pt_prev = NULL;
3794
3795         rcu_read_lock();
3796
3797 another_round:
3798         skb->skb_iif = skb->dev->ifindex;
3799
3800         __this_cpu_inc(softnet_data.processed);
3801
3802         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3803             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3804                 skb = skb_vlan_untag(skb);
3805                 if (unlikely(!skb))
3806                         goto unlock;
3807         }
3808
3809 #ifdef CONFIG_NET_CLS_ACT
3810         if (skb->tc_verd & TC_NCLS) {
3811                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3812                 goto ncls;
3813         }
3814 #endif
3815
3816         if (pfmemalloc)
3817                 goto skip_taps;
3818
3819         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3820                 if (pt_prev)
3821                         ret = deliver_skb(skb, pt_prev, orig_dev);
3822                 pt_prev = ptype;
3823         }
3824
3825         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3826                 if (pt_prev)
3827                         ret = deliver_skb(skb, pt_prev, orig_dev);
3828                 pt_prev = ptype;
3829         }
3830
3831 skip_taps:
3832 #ifdef CONFIG_NET_INGRESS
3833         if (static_key_false(&ingress_needed)) {
3834                 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3835                 if (!skb)
3836                         goto unlock;
3837
3838                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3839                         goto unlock;
3840         }
3841 #endif
3842 #ifdef CONFIG_NET_CLS_ACT
3843         skb->tc_verd = 0;
3844 ncls:
3845 #endif
3846         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3847                 goto drop;
3848
3849         if (skb_vlan_tag_present(skb)) {
3850                 if (pt_prev) {
3851                         ret = deliver_skb(skb, pt_prev, orig_dev);
3852                         pt_prev = NULL;
3853                 }
3854                 if (vlan_do_receive(&skb))
3855                         goto another_round;
3856                 else if (unlikely(!skb))
3857                         goto unlock;
3858         }
3859
3860         rx_handler = rcu_dereference(skb->dev->rx_handler);
3861         if (rx_handler) {
3862                 if (pt_prev) {
3863                         ret = deliver_skb(skb, pt_prev, orig_dev);
3864                         pt_prev = NULL;
3865                 }
3866                 switch (rx_handler(&skb)) {
3867                 case RX_HANDLER_CONSUMED:
3868                         ret = NET_RX_SUCCESS;
3869                         goto unlock;
3870                 case RX_HANDLER_ANOTHER:
3871                         goto another_round;
3872                 case RX_HANDLER_EXACT:
3873                         deliver_exact = true;
3874                 case RX_HANDLER_PASS:
3875                         break;
3876                 default:
3877                         BUG();
3878                 }
3879         }
3880
3881         if (unlikely(skb_vlan_tag_present(skb))) {
3882                 if (skb_vlan_tag_get_id(skb))
3883                         skb->pkt_type = PACKET_OTHERHOST;
3884                 /* Note: we might in the future use prio bits
3885                  * and set skb->priority like in vlan_do_receive()
3886                  * For the time being, just ignore Priority Code Point
3887                  */
3888                 skb->vlan_tci = 0;
3889         }
3890
3891         type = skb->protocol;
3892
3893         /* deliver only exact match when indicated */
3894         if (likely(!deliver_exact)) {
3895                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3896                                        &ptype_base[ntohs(type) &
3897                                                    PTYPE_HASH_MASK]);
3898         }
3899
3900         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3901                                &orig_dev->ptype_specific);
3902
3903         if (unlikely(skb->dev != orig_dev)) {
3904                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3905                                        &skb->dev->ptype_specific);
3906         }
3907
3908         if (pt_prev) {
3909                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3910                         goto drop;
3911                 else
3912                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3913         } else {
3914 drop:
3915                 atomic_long_inc(&skb->dev->rx_dropped);
3916                 kfree_skb(skb);
3917                 /* Jamal, now you will not able to escape explaining
3918                  * me how you were going to use this. :-)
3919                  */
3920                 ret = NET_RX_DROP;
3921         }
3922
3923 unlock:
3924         rcu_read_unlock();
3925         return ret;
3926 }
3927
3928 static int __netif_receive_skb(struct sk_buff *skb)
3929 {
3930         int ret;
3931
3932         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3933                 unsigned long pflags = current->flags;
3934
3935                 /*
3936                  * PFMEMALLOC skbs are special, they should
3937                  * - be delivered to SOCK_MEMALLOC sockets only
3938                  * - stay away from userspace
3939                  * - have bounded memory usage
3940                  *
3941                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3942                  * context down to all allocation sites.
3943                  */
3944                 current->flags |= PF_MEMALLOC;
3945                 ret = __netif_receive_skb_core(skb, true);
3946                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3947         } else
3948                 ret = __netif_receive_skb_core(skb, false);
3949
3950         return ret;
3951 }
3952
3953 static int netif_receive_skb_internal(struct sk_buff *skb)
3954 {
3955         net_timestamp_check(netdev_tstamp_prequeue, skb);
3956
3957         if (skb_defer_rx_timestamp(skb))
3958                 return NET_RX_SUCCESS;
3959
3960 #ifdef CONFIG_RPS
3961         if (static_key_false(&rps_needed)) {
3962                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3963                 int cpu, ret;
3964
3965                 rcu_read_lock();
3966
3967                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3968
3969                 if (cpu >= 0) {
3970                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3971                         rcu_read_unlock();
3972                         return ret;
3973                 }
3974                 rcu_read_unlock();
3975         }
3976 #endif
3977         return __netif_receive_skb(skb);
3978 }
3979
3980 /**
3981  *      netif_receive_skb - process receive buffer from network
3982  *      @skb: buffer to process
3983  *
3984  *      netif_receive_skb() is the main receive data processing function.
3985  *      It always succeeds. The buffer may be dropped during processing
3986  *      for congestion control or by the protocol layers.
3987  *
3988  *      This function may only be called from softirq context and interrupts
3989  *      should be enabled.
3990  *
3991  *      Return values (usually ignored):
3992  *      NET_RX_SUCCESS: no congestion
3993  *      NET_RX_DROP: packet was dropped
3994  */
3995 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3996 {
3997         trace_netif_receive_skb_entry(skb);
3998
3999         return netif_receive_skb_internal(skb);
4000 }
4001 EXPORT_SYMBOL(netif_receive_skb_sk);
4002
4003 /* Network device is going away, flush any packets still pending
4004  * Called with irqs disabled.
4005  */
4006 static void flush_backlog(void *arg)
4007 {
4008         struct net_device *dev = arg;
4009         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4010         struct sk_buff *skb, *tmp;
4011
4012         rps_lock(sd);
4013         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4014                 if (skb->dev == dev) {
4015                         __skb_unlink(skb, &sd->input_pkt_queue);
4016                         kfree_skb(skb);
4017                         input_queue_head_incr(sd);
4018                 }
4019         }
4020         rps_unlock(sd);
4021
4022         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4023                 if (skb->dev == dev) {
4024                         __skb_unlink(skb, &sd->process_queue);
4025                         kfree_skb(skb);
4026                         input_queue_head_incr(sd);
4027                 }
4028         }
4029 }
4030
4031 static int napi_gro_complete(struct sk_buff *skb)
4032 {
4033         struct packet_offload *ptype;
4034         __be16 type = skb->protocol;
4035         struct list_head *head = &offload_base;
4036         int err = -ENOENT;
4037
4038         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4039
4040         if (NAPI_GRO_CB(skb)->count == 1) {
4041                 skb_shinfo(skb)->gso_size = 0;
4042                 goto out;
4043         }
4044
4045         rcu_read_lock();
4046         list_for_each_entry_rcu(ptype, head, list) {
4047                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4048                         continue;
4049
4050                 err = ptype->callbacks.gro_complete(skb, 0);
4051                 break;
4052         }
4053         rcu_read_unlock();
4054
4055         if (err) {
4056                 WARN_ON(&ptype->list == head);
4057                 kfree_skb(skb);
4058                 return NET_RX_SUCCESS;
4059         }
4060
4061 out:
4062         return netif_receive_skb_internal(skb);
4063 }
4064
4065 /* napi->gro_list contains packets ordered by age.
4066  * youngest packets at the head of it.
4067  * Complete skbs in reverse order to reduce latencies.
4068  */
4069 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4070 {
4071         struct sk_buff *skb, *prev = NULL;
4072
4073         /* scan list and build reverse chain */
4074         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4075                 skb->prev = prev;
4076                 prev = skb;
4077         }
4078
4079         for (skb = prev; skb; skb = prev) {
4080                 skb->next = NULL;
4081
4082                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4083                         return;
4084
4085                 prev = skb->prev;
4086                 napi_gro_complete(skb);
4087                 napi->gro_count--;
4088         }
4089
4090         napi->gro_list = NULL;
4091 }
4092 EXPORT_SYMBOL(napi_gro_flush);
4093
4094 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4095 {
4096         struct sk_buff *p;
4097         unsigned int maclen = skb->dev->hard_header_len;
4098         u32 hash = skb_get_hash_raw(skb);
4099
4100         for (p = napi->gro_list; p; p = p->next) {
4101                 unsigned long diffs;
4102
4103                 NAPI_GRO_CB(p)->flush = 0;
4104
4105                 if (hash != skb_get_hash_raw(p)) {
4106                         NAPI_GRO_CB(p)->same_flow = 0;
4107                         continue;
4108                 }
4109
4110                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4111                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4112                 if (maclen == ETH_HLEN)
4113                         diffs |= compare_ether_header(skb_mac_header(p),
4114                                                       skb_mac_header(skb));
4115                 else if (!diffs)
4116                         diffs = memcmp(skb_mac_header(p),
4117                                        skb_mac_header(skb),
4118                                        maclen);
4119                 NAPI_GRO_CB(p)->same_flow = !diffs;
4120         }
4121 }
4122
4123 static void skb_gro_reset_offset(struct sk_buff *skb)
4124 {
4125         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4126         const skb_frag_t *frag0 = &pinfo->frags[0];
4127
4128         NAPI_GRO_CB(skb)->data_offset = 0;
4129         NAPI_GRO_CB(skb)->frag0 = NULL;
4130         NAPI_GRO_CB(skb)->frag0_len = 0;
4131
4132         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4133             pinfo->nr_frags &&
4134             !PageHighMem(skb_frag_page(frag0))) {
4135                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4136                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4137         }
4138 }
4139
4140 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4141 {
4142         struct skb_shared_info *pinfo = skb_shinfo(skb);
4143
4144         BUG_ON(skb->end - skb->tail < grow);
4145
4146         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4147
4148         skb->data_len -= grow;
4149         skb->tail += grow;
4150
4151         pinfo->frags[0].page_offset += grow;
4152         skb_frag_size_sub(&pinfo->frags[0], grow);
4153
4154         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4155                 skb_frag_unref(skb, 0);
4156                 memmove(pinfo->frags, pinfo->frags + 1,
4157                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4158         }
4159 }
4160
4161 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4162 {
4163         struct sk_buff **pp = NULL;
4164         struct packet_offload *ptype;
4165         __be16 type = skb->protocol;
4166         struct list_head *head = &offload_base;
4167         int same_flow;
4168         enum gro_result ret;
4169         int grow;
4170
4171         if (!(skb->dev->features & NETIF_F_GRO))
4172                 goto normal;
4173
4174         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4175                 goto normal;
4176
4177         gro_list_prepare(napi, skb);
4178
4179         rcu_read_lock();
4180         list_for_each_entry_rcu(ptype, head, list) {
4181                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4182                         continue;
4183
4184                 skb_set_network_header(skb, skb_gro_offset(skb));
4185                 skb_reset_mac_len(skb);
4186                 NAPI_GRO_CB(skb)->same_flow = 0;
4187                 NAPI_GRO_CB(skb)->flush = 0;
4188                 NAPI_GRO_CB(skb)->free = 0;
4189                 NAPI_GRO_CB(skb)->udp_mark = 0;
4190                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4191
4192                 /* Setup for GRO checksum validation */
4193                 switch (skb->ip_summed) {
4194                 case CHECKSUM_COMPLETE:
4195                         NAPI_GRO_CB(skb)->csum = skb->csum;
4196                         NAPI_GRO_CB(skb)->csum_valid = 1;
4197                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4198                         break;
4199                 case CHECKSUM_UNNECESSARY:
4200                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4201                         NAPI_GRO_CB(skb)->csum_valid = 0;
4202                         break;
4203                 default:
4204                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4205                         NAPI_GRO_CB(skb)->csum_valid = 0;
4206                 }
4207
4208                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4209                 break;
4210         }
4211         rcu_read_unlock();
4212
4213         if (&ptype->list == head)
4214                 goto normal;
4215
4216         same_flow = NAPI_GRO_CB(skb)->same_flow;
4217         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4218
4219         if (pp) {
4220                 struct sk_buff *nskb = *pp;
4221
4222                 *pp = nskb->next;
4223                 nskb->next = NULL;
4224                 napi_gro_complete(nskb);
4225                 napi->gro_count--;
4226         }
4227
4228         if (same_flow)
4229                 goto ok;
4230
4231         if (NAPI_GRO_CB(skb)->flush)
4232                 goto normal;
4233
4234         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4235                 struct sk_buff *nskb = napi->gro_list;
4236
4237                 /* locate the end of the list to select the 'oldest' flow */
4238                 while (nskb->next) {
4239                         pp = &nskb->next;
4240                         nskb = *pp;
4241                 }
4242                 *pp = NULL;
4243                 nskb->next = NULL;
4244                 napi_gro_complete(nskb);
4245         } else {
4246                 napi->gro_count++;
4247         }
4248         NAPI_GRO_CB(skb)->count = 1;
4249         NAPI_GRO_CB(skb)->age = jiffies;
4250         NAPI_GRO_CB(skb)->last = skb;
4251         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4252         skb->next = napi->gro_list;
4253         napi->gro_list = skb;
4254         ret = GRO_HELD;
4255
4256 pull:
4257         grow = skb_gro_offset(skb) - skb_headlen(skb);
4258         if (grow > 0)
4259                 gro_pull_from_frag0(skb, grow);
4260 ok:
4261         return ret;
4262
4263 normal:
4264         ret = GRO_NORMAL;
4265         goto pull;
4266 }
4267
4268 struct packet_offload *gro_find_receive_by_type(__be16 type)
4269 {
4270         struct list_head *offload_head = &offload_base;
4271         struct packet_offload *ptype;
4272
4273         list_for_each_entry_rcu(ptype, offload_head, list) {
4274                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4275                         continue;
4276                 return ptype;
4277         }
4278         return NULL;
4279 }
4280 EXPORT_SYMBOL(gro_find_receive_by_type);
4281
4282 struct packet_offload *gro_find_complete_by_type(__be16 type)
4283 {
4284         struct list_head *offload_head = &offload_base;
4285         struct packet_offload *ptype;
4286
4287         list_for_each_entry_rcu(ptype, offload_head, list) {
4288                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4289                         continue;
4290                 return ptype;
4291         }
4292         return NULL;
4293 }
4294 EXPORT_SYMBOL(gro_find_complete_by_type);
4295
4296 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4297 {
4298         switch (ret) {
4299         case GRO_NORMAL:
4300                 if (netif_receive_skb_internal(skb))
4301                         ret = GRO_DROP;
4302                 break;
4303
4304         case GRO_DROP:
4305                 kfree_skb(skb);
4306                 break;
4307
4308         case GRO_MERGED_FREE:
4309                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4310                         kmem_cache_free(skbuff_head_cache, skb);
4311                 else
4312                         __kfree_skb(skb);
4313                 break;
4314
4315         case GRO_HELD:
4316         case GRO_MERGED:
4317                 break;
4318         }
4319
4320         return ret;
4321 }
4322
4323 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4324 {
4325         trace_napi_gro_receive_entry(skb);
4326
4327         skb_gro_reset_offset(skb);
4328
4329         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4330 }
4331 EXPORT_SYMBOL(napi_gro_receive);
4332
4333 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4334 {
4335         if (unlikely(skb->pfmemalloc)) {
4336                 consume_skb(skb);
4337                 return;
4338         }
4339         __skb_pull(skb, skb_headlen(skb));
4340         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4341         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4342         skb->vlan_tci = 0;
4343         skb->dev = napi->dev;
4344         skb->skb_iif = 0;
4345         skb->encapsulation = 0;
4346         skb_shinfo(skb)->gso_type = 0;
4347         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4348
4349         napi->skb = skb;
4350 }
4351
4352 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4353 {
4354         struct sk_buff *skb = napi->skb;
4355
4356         if (!skb) {
4357                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4358                 napi->skb = skb;
4359         }
4360         return skb;
4361 }
4362 EXPORT_SYMBOL(napi_get_frags);
4363
4364 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4365                                       struct sk_buff *skb,
4366                                       gro_result_t ret)
4367 {
4368         switch (ret) {
4369         case GRO_NORMAL:
4370         case GRO_HELD:
4371                 __skb_push(skb, ETH_HLEN);
4372                 skb->protocol = eth_type_trans(skb, skb->dev);
4373                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4374                         ret = GRO_DROP;
4375                 break;
4376
4377         case GRO_DROP:
4378         case GRO_MERGED_FREE:
4379                 napi_reuse_skb(napi, skb);
4380                 break;
4381
4382         case GRO_MERGED:
4383                 break;
4384         }
4385
4386         return ret;
4387 }
4388
4389 /* Upper GRO stack assumes network header starts at gro_offset=0
4390  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4391  * We copy ethernet header into skb->data to have a common layout.
4392  */
4393 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4394 {
4395         struct sk_buff *skb = napi->skb;
4396         const struct ethhdr *eth;
4397         unsigned int hlen = sizeof(*eth);
4398
4399         napi->skb = NULL;
4400
4401         skb_reset_mac_header(skb);
4402         skb_gro_reset_offset(skb);
4403
4404         eth = skb_gro_header_fast(skb, 0);
4405         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4406                 eth = skb_gro_header_slow(skb, hlen, 0);
4407                 if (unlikely(!eth)) {
4408                         napi_reuse_skb(napi, skb);
4409                         return NULL;
4410                 }
4411         } else {
4412                 gro_pull_from_frag0(skb, hlen);
4413                 NAPI_GRO_CB(skb)->frag0 += hlen;
4414                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4415         }
4416         __skb_pull(skb, hlen);
4417
4418         /*
4419          * This works because the only protocols we care about don't require
4420          * special handling.
4421          * We'll fix it up properly in napi_frags_finish()
4422          */
4423         skb->protocol = eth->h_proto;
4424
4425         return skb;
4426 }
4427
4428 gro_result_t napi_gro_frags(struct napi_struct *napi)
4429 {
4430         struct sk_buff *skb = napi_frags_skb(napi);
4431
4432         if (!skb)
4433                 return GRO_DROP;
4434
4435         trace_napi_gro_frags_entry(skb);
4436
4437         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4438 }
4439 EXPORT_SYMBOL(napi_gro_frags);
4440
4441 /* Compute the checksum from gro_offset and return the folded value
4442  * after adding in any pseudo checksum.
4443  */
4444 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4445 {
4446         __wsum wsum;
4447         __sum16 sum;
4448
4449         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4450
4451         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4452         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4453         if (likely(!sum)) {
4454                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4455                     !skb->csum_complete_sw)
4456                         netdev_rx_csum_fault(skb->dev);
4457         }
4458
4459         NAPI_GRO_CB(skb)->csum = wsum;
4460         NAPI_GRO_CB(skb)->csum_valid = 1;
4461
4462         return sum;
4463 }
4464 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4465
4466 /*
4467  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4468  * Note: called with local irq disabled, but exits with local irq enabled.
4469  */
4470 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4471 {
4472 #ifdef CONFIG_RPS
4473         struct softnet_data *remsd = sd->rps_ipi_list;
4474
4475         if (remsd) {
4476                 sd->rps_ipi_list = NULL;
4477
4478                 local_irq_enable();
4479
4480                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4481                 while (remsd) {
4482                         struct softnet_data *next = remsd->rps_ipi_next;
4483
4484                         if (cpu_online(remsd->cpu))
4485                                 smp_call_function_single_async(remsd->cpu,
4486                                                            &remsd->csd);
4487                         remsd = next;
4488                 }
4489         } else
4490 #endif
4491                 local_irq_enable();
4492 }
4493
4494 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4495 {
4496 #ifdef CONFIG_RPS
4497         return sd->rps_ipi_list != NULL;
4498 #else
4499         return false;
4500 #endif
4501 }
4502
4503 static int process_backlog(struct napi_struct *napi, int quota)
4504 {
4505         int work = 0;
4506         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4507
4508         /* Check if we have pending ipi, its better to send them now,
4509          * not waiting net_rx_action() end.
4510          */
4511         if (sd_has_rps_ipi_waiting(sd)) {
4512                 local_irq_disable();
4513                 net_rps_action_and_irq_enable(sd);
4514         }
4515
4516         napi->weight = weight_p;
4517         local_irq_disable();
4518         while (1) {
4519                 struct sk_buff *skb;
4520
4521                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4522                         local_irq_enable();
4523                         __netif_receive_skb(skb);
4524                         local_irq_disable();
4525                         input_queue_head_incr(sd);
4526                         if (++work >= quota) {
4527                                 local_irq_enable();
4528                                 return work;
4529                         }
4530                 }
4531
4532                 rps_lock(sd);
4533                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4534                         /*
4535                          * Inline a custom version of __napi_complete().
4536                          * only current cpu owns and manipulates this napi,
4537                          * and NAPI_STATE_SCHED is the only possible flag set
4538                          * on backlog.
4539                          * We can use a plain write instead of clear_bit(),
4540                          * and we dont need an smp_mb() memory barrier.
4541                          */
4542                         napi->state = 0;
4543                         rps_unlock(sd);
4544
4545                         break;
4546                 }
4547
4548                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4549                                            &sd->process_queue);
4550                 rps_unlock(sd);
4551         }
4552         local_irq_enable();
4553
4554         return work;
4555 }
4556
4557 /**
4558  * __napi_schedule - schedule for receive
4559  * @n: entry to schedule
4560  *
4561  * The entry's receive function will be scheduled to run.
4562  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4563  */
4564 void __napi_schedule(struct napi_struct *n)
4565 {
4566         unsigned long flags;
4567
4568         local_irq_save(flags);
4569         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4570         local_irq_restore(flags);
4571 }
4572 EXPORT_SYMBOL(__napi_schedule);
4573
4574 /**
4575  * __napi_schedule_irqoff - schedule for receive
4576  * @n: entry to schedule
4577  *
4578  * Variant of __napi_schedule() assuming hard irqs are masked
4579  */
4580 void __napi_schedule_irqoff(struct napi_struct *n)
4581 {
4582         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4583 }
4584 EXPORT_SYMBOL(__napi_schedule_irqoff);
4585
4586 void __napi_complete(struct napi_struct *n)
4587 {
4588         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4589
4590         list_del_init(&n->poll_list);
4591         smp_mb__before_atomic();
4592         clear_bit(NAPI_STATE_SCHED, &n->state);
4593 }
4594 EXPORT_SYMBOL(__napi_complete);
4595
4596 void napi_complete_done(struct napi_struct *n, int work_done)
4597 {
4598         unsigned long flags;
4599
4600         /*
4601          * don't let napi dequeue from the cpu poll list
4602          * just in case its running on a different cpu
4603          */
4604         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4605                 return;
4606
4607         if (n->gro_list) {
4608                 unsigned long timeout = 0;
4609
4610                 if (work_done)
4611                         timeout = n->dev->gro_flush_timeout;
4612
4613                 if (timeout)
4614                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4615                                       HRTIMER_MODE_REL_PINNED);
4616                 else
4617                         napi_gro_flush(n, false);
4618         }
4619         if (likely(list_empty(&n->poll_list))) {
4620                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4621         } else {
4622                 /* If n->poll_list is not empty, we need to mask irqs */
4623                 local_irq_save(flags);
4624                 __napi_complete(n);
4625                 local_irq_restore(flags);
4626         }
4627 }
4628 EXPORT_SYMBOL(napi_complete_done);
4629
4630 /* must be called under rcu_read_lock(), as we dont take a reference */
4631 struct napi_struct *napi_by_id(unsigned int napi_id)
4632 {
4633         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4634         struct napi_struct *napi;
4635
4636         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4637                 if (napi->napi_id == napi_id)
4638                         return napi;
4639
4640         return NULL;
4641 }
4642 EXPORT_SYMBOL_GPL(napi_by_id);
4643
4644 void napi_hash_add(struct napi_struct *napi)
4645 {
4646         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4647
4648                 spin_lock(&napi_hash_lock);
4649
4650                 /* 0 is not a valid id, we also skip an id that is taken
4651                  * we expect both events to be extremely rare
4652                  */
4653                 napi->napi_id = 0;
4654                 while (!napi->napi_id) {
4655                         napi->napi_id = ++napi_gen_id;
4656                         if (napi_by_id(napi->napi_id))
4657                                 napi->napi_id = 0;
4658                 }
4659
4660                 hlist_add_head_rcu(&napi->napi_hash_node,
4661                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4662
4663                 spin_unlock(&napi_hash_lock);
4664         }
4665 }
4666 EXPORT_SYMBOL_GPL(napi_hash_add);
4667
4668 /* Warning : caller is responsible to make sure rcu grace period
4669  * is respected before freeing memory containing @napi
4670  */
4671 void napi_hash_del(struct napi_struct *napi)
4672 {
4673         spin_lock(&napi_hash_lock);
4674
4675         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4676                 hlist_del_rcu(&napi->napi_hash_node);
4677
4678         spin_unlock(&napi_hash_lock);
4679 }
4680 EXPORT_SYMBOL_GPL(napi_hash_del);
4681
4682 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4683 {
4684         struct napi_struct *napi;
4685
4686         napi = container_of(timer, struct napi_struct, timer);
4687         if (napi->gro_list)
4688                 napi_schedule(napi);
4689
4690         return HRTIMER_NORESTART;
4691 }
4692
4693 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4694                     int (*poll)(struct napi_struct *, int), int weight)
4695 {
4696         INIT_LIST_HEAD(&napi->poll_list);
4697         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4698         napi->timer.function = napi_watchdog;
4699         napi->gro_count = 0;
4700         napi->gro_list = NULL;
4701         napi->skb = NULL;
4702         napi->poll = poll;
4703         if (weight > NAPI_POLL_WEIGHT)
4704                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4705                             weight, dev->name);
4706         napi->weight = weight;
4707         list_add(&napi->dev_list, &dev->napi_list);
4708         napi->dev = dev;
4709 #ifdef CONFIG_NETPOLL
4710         spin_lock_init(&napi->poll_lock);
4711         napi->poll_owner = -1;
4712 #endif
4713         set_bit(NAPI_STATE_SCHED, &napi->state);
4714 }
4715 EXPORT_SYMBOL(netif_napi_add);
4716
4717 void napi_disable(struct napi_struct *n)
4718 {
4719         might_sleep();
4720         set_bit(NAPI_STATE_DISABLE, &n->state);
4721
4722         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4723                 msleep(1);
4724
4725         hrtimer_cancel(&n->timer);
4726
4727         clear_bit(NAPI_STATE_DISABLE, &n->state);
4728 }
4729 EXPORT_SYMBOL(napi_disable);
4730
4731 void netif_napi_del(struct napi_struct *napi)
4732 {
4733         list_del_init(&napi->dev_list);
4734         napi_free_frags(napi);
4735
4736         kfree_skb_list(napi->gro_list);
4737         napi->gro_list = NULL;
4738         napi->gro_count = 0;
4739 }
4740 EXPORT_SYMBOL(netif_napi_del);
4741
4742 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4743 {
4744         void *have;
4745         int work, weight;
4746
4747         list_del_init(&n->poll_list);
4748
4749         have = netpoll_poll_lock(n);
4750
4751         weight = n->weight;
4752
4753         /* This NAPI_STATE_SCHED test is for avoiding a race
4754          * with netpoll's poll_napi().  Only the entity which
4755          * obtains the lock and sees NAPI_STATE_SCHED set will
4756          * actually make the ->poll() call.  Therefore we avoid
4757          * accidentally calling ->poll() when NAPI is not scheduled.
4758          */
4759         work = 0;
4760         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4761                 work = n->poll(n, weight);
4762                 trace_napi_poll(n);
4763         }
4764
4765         WARN_ON_ONCE(work > weight);
4766
4767         if (likely(work < weight))
4768                 goto out_unlock;
4769
4770         /* Drivers must not modify the NAPI state if they
4771          * consume the entire weight.  In such cases this code
4772          * still "owns" the NAPI instance and therefore can
4773          * move the instance around on the list at-will.
4774          */
4775         if (unlikely(napi_disable_pending(n))) {
4776                 napi_complete(n);
4777                 goto out_unlock;
4778         }
4779
4780         if (n->gro_list) {
4781                 /* flush too old packets
4782                  * If HZ < 1000, flush all packets.
4783                  */
4784                 napi_gro_flush(n, HZ >= 1000);
4785         }
4786
4787         /* Some drivers may have called napi_schedule
4788          * prior to exhausting their budget.
4789          */
4790         if (unlikely(!list_empty(&n->poll_list))) {
4791                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4792                              n->dev ? n->dev->name : "backlog");
4793                 goto out_unlock;
4794         }
4795
4796         list_add_tail(&n->poll_list, repoll);
4797
4798 out_unlock:
4799         netpoll_poll_unlock(have);
4800
4801         return work;
4802 }
4803
4804 static void net_rx_action(struct softirq_action *h)
4805 {
4806         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4807         unsigned long time_limit = jiffies + 2;
4808         int budget = netdev_budget;
4809         LIST_HEAD(list);
4810         LIST_HEAD(repoll);
4811
4812         local_irq_disable();
4813         list_splice_init(&sd->poll_list, &list);
4814         local_irq_enable();
4815
4816         for (;;) {
4817                 struct napi_struct *n;
4818
4819                 if (list_empty(&list)) {
4820                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4821                                 return;
4822                         break;
4823                 }
4824
4825                 n = list_first_entry(&list, struct napi_struct, poll_list);
4826                 budget -= napi_poll(n, &repoll);
4827
4828                 /* If softirq window is exhausted then punt.
4829                  * Allow this to run for 2 jiffies since which will allow
4830                  * an average latency of 1.5/HZ.
4831                  */
4832                 if (unlikely(budget <= 0 ||
4833                              time_after_eq(jiffies, time_limit))) {
4834                         sd->time_squeeze++;
4835                         break;
4836                 }
4837         }
4838
4839         local_irq_disable();
4840
4841         list_splice_tail_init(&sd->poll_list, &list);
4842         list_splice_tail(&repoll, &list);
4843         list_splice(&list, &sd->poll_list);
4844         if (!list_empty(&sd->poll_list))
4845                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4846
4847         net_rps_action_and_irq_enable(sd);
4848 }
4849
4850 struct netdev_adjacent {
4851         struct net_device *dev;
4852
4853         /* upper master flag, there can only be one master device per list */
4854         bool master;
4855
4856         /* counter for the number of times this device was added to us */
4857         u16 ref_nr;
4858
4859         /* private field for the users */
4860         void *private;
4861
4862         struct list_head list;
4863         struct rcu_head rcu;
4864 };
4865
4866 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4867                                                  struct net_device *adj_dev,
4868                                                  struct list_head *adj_list)
4869 {
4870         struct netdev_adjacent *adj;
4871
4872         list_for_each_entry(adj, adj_list, list) {
4873                 if (adj->dev == adj_dev)
4874                         return adj;
4875         }
4876         return NULL;
4877 }
4878
4879 /**
4880  * netdev_has_upper_dev - Check if device is linked to an upper device
4881  * @dev: device
4882  * @upper_dev: upper device to check
4883  *
4884  * Find out if a device is linked to specified upper device and return true
4885  * in case it is. Note that this checks only immediate upper device,
4886  * not through a complete stack of devices. The caller must hold the RTNL lock.
4887  */
4888 bool netdev_has_upper_dev(struct net_device *dev,
4889                           struct net_device *upper_dev)
4890 {
4891         ASSERT_RTNL();
4892
4893         return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4894 }
4895 EXPORT_SYMBOL(netdev_has_upper_dev);
4896
4897 /**
4898  * netdev_has_any_upper_dev - Check if device is linked to some device
4899  * @dev: device
4900  *
4901  * Find out if a device is linked to an upper device and return true in case
4902  * it is. The caller must hold the RTNL lock.
4903  */
4904 static bool netdev_has_any_upper_dev(struct net_device *dev)
4905 {
4906         ASSERT_RTNL();
4907
4908         return !list_empty(&dev->all_adj_list.upper);
4909 }
4910
4911 /**
4912  * netdev_master_upper_dev_get - Get master upper device
4913  * @dev: device
4914  *
4915  * Find a master upper device and return pointer to it or NULL in case
4916  * it's not there. The caller must hold the RTNL lock.
4917  */
4918 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4919 {
4920         struct netdev_adjacent *upper;
4921
4922         ASSERT_RTNL();
4923
4924         if (list_empty(&dev->adj_list.upper))
4925                 return NULL;
4926
4927         upper = list_first_entry(&dev->adj_list.upper,
4928                                  struct netdev_adjacent, list);
4929         if (likely(upper->master))
4930                 return upper->dev;
4931         return NULL;
4932 }
4933 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4934
4935 void *netdev_adjacent_get_private(struct list_head *adj_list)
4936 {
4937         struct netdev_adjacent *adj;
4938
4939         adj = list_entry(adj_list, struct netdev_adjacent, list);
4940
4941         return adj->private;
4942 }
4943 EXPORT_SYMBOL(netdev_adjacent_get_private);
4944
4945 /**
4946  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4947  * @dev: device
4948  * @iter: list_head ** of the current position
4949  *
4950  * Gets the next device from the dev's upper list, starting from iter
4951  * position. The caller must hold RCU read lock.
4952  */
4953 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4954                                                  struct list_head **iter)
4955 {
4956         struct netdev_adjacent *upper;
4957
4958         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4959
4960         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4961
4962         if (&upper->list == &dev->adj_list.upper)
4963                 return NULL;
4964
4965         *iter = &upper->list;
4966
4967         return upper->dev;
4968 }
4969 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4970
4971 /**
4972  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4973  * @dev: device
4974  * @iter: list_head ** of the current position
4975  *
4976  * Gets the next device from the dev's upper list, starting from iter
4977  * position. The caller must hold RCU read lock.
4978  */
4979 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4980                                                      struct list_head **iter)
4981 {
4982         struct netdev_adjacent *upper;
4983
4984         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4985
4986         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4987
4988         if (&upper->list == &dev->all_adj_list.upper)
4989                 return NULL;
4990
4991         *iter = &upper->list;
4992
4993         return upper->dev;
4994 }
4995 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4996
4997 /**
4998  * netdev_lower_get_next_private - Get the next ->private from the
4999  *                                 lower neighbour list
5000  * @dev: device
5001  * @iter: list_head ** of the current position
5002  *
5003  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5004  * list, starting from iter position. The caller must hold either hold the
5005  * RTNL lock or its own locking that guarantees that the neighbour lower
5006  * list will remain unchainged.
5007  */
5008 void *netdev_lower_get_next_private(struct net_device *dev,
5009                                     struct list_head **iter)
5010 {
5011         struct netdev_adjacent *lower;
5012
5013         lower = list_entry(*iter, struct netdev_adjacent, list);
5014
5015         if (&lower->list == &dev->adj_list.lower)
5016                 return NULL;
5017
5018         *iter = lower->list.next;
5019
5020         return lower->private;
5021 }
5022 EXPORT_SYMBOL(netdev_lower_get_next_private);
5023
5024 /**
5025  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5026  *                                     lower neighbour list, RCU
5027  *                                     variant
5028  * @dev: device
5029  * @iter: list_head ** of the current position
5030  *
5031  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5032  * list, starting from iter position. The caller must hold RCU read lock.
5033  */
5034 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5035                                         struct list_head **iter)
5036 {
5037         struct netdev_adjacent *lower;
5038
5039         WARN_ON_ONCE(!rcu_read_lock_held());
5040
5041         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5042
5043         if (&lower->list == &dev->adj_list.lower)
5044                 return NULL;
5045
5046         *iter = &lower->list;
5047
5048         return lower->private;
5049 }
5050 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5051
5052 /**
5053  * netdev_lower_get_next - Get the next device from the lower neighbour
5054  *                         list
5055  * @dev: device
5056  * @iter: list_head ** of the current position
5057  *
5058  * Gets the next netdev_adjacent from the dev's lower neighbour
5059  * list, starting from iter position. The caller must hold RTNL lock or
5060  * its own locking that guarantees that the neighbour lower
5061  * list will remain unchainged.
5062  */
5063 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5064 {
5065         struct netdev_adjacent *lower;
5066
5067         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5068
5069         if (&lower->list == &dev->adj_list.lower)
5070                 return NULL;
5071
5072         *iter = &lower->list;
5073
5074         return lower->dev;
5075 }
5076 EXPORT_SYMBOL(netdev_lower_get_next);
5077
5078 /**
5079  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5080  *                                     lower neighbour list, RCU
5081  *                                     variant
5082  * @dev: device
5083  *
5084  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5085  * list. The caller must hold RCU read lock.
5086  */
5087 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5088 {
5089         struct netdev_adjacent *lower;
5090
5091         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5092                         struct netdev_adjacent, list);
5093         if (lower)
5094                 return lower->private;
5095         return NULL;
5096 }
5097 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5098
5099 /**
5100  * netdev_master_upper_dev_get_rcu - Get master upper device
5101  * @dev: device
5102  *
5103  * Find a master upper device and return pointer to it or NULL in case
5104  * it's not there. The caller must hold the RCU read lock.
5105  */
5106 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5107 {
5108         struct netdev_adjacent *upper;
5109
5110         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5111                                        struct netdev_adjacent, list);
5112         if (upper && likely(upper->master))
5113                 return upper->dev;
5114         return NULL;
5115 }
5116 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5117
5118 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5119                               struct net_device *adj_dev,
5120                               struct list_head *dev_list)
5121 {
5122         char linkname[IFNAMSIZ+7];
5123         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5124                 "upper_%s" : "lower_%s", adj_dev->name);
5125         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5126                                  linkname);
5127 }
5128 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5129                                char *name,
5130                                struct list_head *dev_list)
5131 {
5132         char linkname[IFNAMSIZ+7];
5133         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5134                 "upper_%s" : "lower_%s", name);
5135         sysfs_remove_link(&(dev->dev.kobj), linkname);
5136 }
5137
5138 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5139                                                  struct net_device *adj_dev,
5140                                                  struct list_head *dev_list)
5141 {
5142         return (dev_list == &dev->adj_list.upper ||
5143                 dev_list == &dev->adj_list.lower) &&
5144                 net_eq(dev_net(dev), dev_net(adj_dev));
5145 }
5146
5147 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5148                                         struct net_device *adj_dev,
5149                                         struct list_head *dev_list,
5150                                         void *private, bool master)
5151 {
5152         struct netdev_adjacent *adj;
5153         int ret;
5154
5155         adj = __netdev_find_adj(dev, adj_dev, dev_list);
5156
5157         if (adj) {
5158                 adj->ref_nr++;
5159                 return 0;
5160         }
5161
5162         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5163         if (!adj)
5164                 return -ENOMEM;
5165
5166         adj->dev = adj_dev;
5167         adj->master = master;
5168         adj->ref_nr = 1;
5169         adj->private = private;
5170         dev_hold(adj_dev);
5171
5172         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5173                  adj_dev->name, dev->name, adj_dev->name);
5174
5175         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5176                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5177                 if (ret)
5178                         goto free_adj;
5179         }
5180
5181         /* Ensure that master link is always the first item in list. */
5182         if (master) {
5183                 ret = sysfs_create_link(&(dev->dev.kobj),
5184                                         &(adj_dev->dev.kobj), "master");
5185                 if (ret)
5186                         goto remove_symlinks;
5187
5188                 list_add_rcu(&adj->list, dev_list);
5189         } else {
5190                 list_add_tail_rcu(&adj->list, dev_list);
5191         }
5192
5193         return 0;
5194
5195 remove_symlinks:
5196         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5197                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5198 free_adj:
5199         kfree(adj);
5200         dev_put(adj_dev);
5201
5202         return ret;
5203 }
5204
5205 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5206                                          struct net_device *adj_dev,
5207                                          struct list_head *dev_list)
5208 {
5209         struct netdev_adjacent *adj;
5210
5211         adj = __netdev_find_adj(dev, adj_dev, dev_list);
5212
5213         if (!adj) {
5214                 pr_err("tried to remove device %s from %s\n",
5215                        dev->name, adj_dev->name);
5216                 BUG();
5217         }
5218
5219         if (adj->ref_nr > 1) {
5220                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5221                          adj->ref_nr-1);
5222                 adj->ref_nr--;
5223                 return;
5224         }
5225
5226         if (adj->master)
5227                 sysfs_remove_link(&(dev->dev.kobj), "master");
5228
5229         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5230                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5231
5232         list_del_rcu(&adj->list);
5233         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5234                  adj_dev->name, dev->name, adj_dev->name);
5235         dev_put(adj_dev);
5236         kfree_rcu(adj, rcu);
5237 }
5238
5239 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5240                                             struct net_device *upper_dev,
5241                                             struct list_head *up_list,
5242                                             struct list_head *down_list,
5243                                             void *private, bool master)
5244 {
5245         int ret;
5246
5247         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5248                                            master);
5249         if (ret)
5250                 return ret;
5251
5252         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5253                                            false);
5254         if (ret) {
5255                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5256                 return ret;
5257         }
5258
5259         return 0;
5260 }
5261
5262 static int __netdev_adjacent_dev_link(struct net_device *dev,
5263                                       struct net_device *upper_dev)
5264 {
5265         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5266                                                 &dev->all_adj_list.upper,
5267                                                 &upper_dev->all_adj_list.lower,
5268                                                 NULL, false);
5269 }
5270
5271 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5272                                                struct net_device *upper_dev,
5273                                                struct list_head *up_list,
5274                                                struct list_head *down_list)
5275 {
5276         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5277         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5278 }
5279
5280 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5281                                          struct net_device *upper_dev)
5282 {
5283         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5284                                            &dev->all_adj_list.upper,
5285                                            &upper_dev->all_adj_list.lower);
5286 }
5287
5288 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5289                                                 struct net_device *upper_dev,
5290                                                 void *private, bool master)
5291 {
5292         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5293
5294         if (ret)
5295                 return ret;
5296
5297         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5298                                                &dev->adj_list.upper,
5299                                                &upper_dev->adj_list.lower,
5300                                                private, master);
5301         if (ret) {
5302                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5303                 return ret;
5304         }
5305
5306         return 0;
5307 }
5308
5309 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5310                                                    struct net_device *upper_dev)
5311 {
5312         __netdev_adjacent_dev_unlink(dev, upper_dev);
5313         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5314                                            &dev->adj_list.upper,
5315                                            &upper_dev->adj_list.lower);
5316 }
5317
5318 static int __netdev_upper_dev_link(struct net_device *dev,
5319                                    struct net_device *upper_dev, bool master,
5320                                    void *private)
5321 {
5322         struct netdev_adjacent *i, *j, *to_i, *to_j;
5323         int ret = 0;
5324
5325         ASSERT_RTNL();
5326
5327         if (dev == upper_dev)
5328                 return -EBUSY;
5329
5330         /* To prevent loops, check if dev is not upper device to upper_dev. */
5331         if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5332                 return -EBUSY;
5333
5334         if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5335                 return -EEXIST;
5336
5337         if (master && netdev_master_upper_dev_get(dev))
5338                 return -EBUSY;
5339
5340         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5341                                                    master);
5342         if (ret)
5343                 return ret;
5344
5345         /* Now that we linked these devs, make all the upper_dev's
5346          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5347          * versa, and don't forget the devices itself. All of these
5348          * links are non-neighbours.
5349          */
5350         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5351                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5352                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5353                                  i->dev->name, j->dev->name);
5354                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5355                         if (ret)
5356                                 goto rollback_mesh;
5357                 }
5358         }
5359
5360         /* add dev to every upper_dev's upper device */
5361         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5362                 pr_debug("linking %s's upper device %s with %s\n",
5363                          upper_dev->name, i->dev->name, dev->name);
5364                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5365                 if (ret)
5366                         goto rollback_upper_mesh;
5367         }
5368
5369         /* add upper_dev to every dev's lower device */
5370         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5371                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5372                          i->dev->name, upper_dev->name);
5373                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5374                 if (ret)
5375                         goto rollback_lower_mesh;
5376         }
5377
5378         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5379         return 0;
5380
5381 rollback_lower_mesh:
5382         to_i = i;
5383         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5384                 if (i == to_i)
5385                         break;
5386                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5387         }
5388
5389         i = NULL;
5390
5391 rollback_upper_mesh:
5392         to_i = i;
5393         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5394                 if (i == to_i)
5395                         break;
5396                 __netdev_adjacent_dev_unlink(dev, i->dev);
5397         }
5398
5399         i = j = NULL;
5400
5401 rollback_mesh:
5402         to_i = i;
5403         to_j = j;
5404         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5405                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5406                         if (i == to_i && j == to_j)
5407                                 break;
5408                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5409                 }
5410                 if (i == to_i)
5411                         break;
5412         }
5413
5414         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5415
5416         return ret;
5417 }
5418
5419 /**
5420  * netdev_upper_dev_link - Add a link to the upper device
5421  * @dev: device
5422  * @upper_dev: new upper device
5423  *
5424  * Adds a link to device which is upper to this one. The caller must hold
5425  * the RTNL lock. On a failure a negative errno code is returned.
5426  * On success the reference counts are adjusted and the function
5427  * returns zero.
5428  */
5429 int netdev_upper_dev_link(struct net_device *dev,
5430                           struct net_device *upper_dev)
5431 {
5432         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5433 }
5434 EXPORT_SYMBOL(netdev_upper_dev_link);
5435
5436 /**
5437  * netdev_master_upper_dev_link - Add a master link to the upper device
5438  * @dev: device
5439  * @upper_dev: new upper device
5440  *
5441  * Adds a link to device which is upper to this one. In this case, only
5442  * one master upper device can be linked, although other non-master devices
5443  * might be linked as well. The caller must hold the RTNL lock.
5444  * On a failure a negative errno code is returned. On success the reference
5445  * counts are adjusted and the function returns zero.
5446  */
5447 int netdev_master_upper_dev_link(struct net_device *dev,
5448                                  struct net_device *upper_dev)
5449 {
5450         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5451 }
5452 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5453
5454 int netdev_master_upper_dev_link_private(struct net_device *dev,
5455                                          struct net_device *upper_dev,
5456                                          void *private)
5457 {
5458         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5459 }
5460 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5461
5462 /**
5463  * netdev_upper_dev_unlink - Removes a link to upper device
5464  * @dev: device
5465  * @upper_dev: new upper device
5466  *
5467  * Removes a link to device which is upper to this one. The caller must hold
5468  * the RTNL lock.
5469  */
5470 void netdev_upper_dev_unlink(struct net_device *dev,
5471                              struct net_device *upper_dev)
5472 {
5473         struct netdev_adjacent *i, *j;
5474         ASSERT_RTNL();
5475
5476         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5477
5478         /* Here is the tricky part. We must remove all dev's lower
5479          * devices from all upper_dev's upper devices and vice
5480          * versa, to maintain the graph relationship.
5481          */
5482         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5483                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5484                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5485
5486         /* remove also the devices itself from lower/upper device
5487          * list
5488          */
5489         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5490                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5491
5492         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5493                 __netdev_adjacent_dev_unlink(dev, i->dev);
5494
5495         call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5496 }
5497 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5498
5499 /**
5500  * netdev_bonding_info_change - Dispatch event about slave change
5501  * @dev: device
5502  * @bonding_info: info to dispatch
5503  *
5504  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5505  * The caller must hold the RTNL lock.
5506  */
5507 void netdev_bonding_info_change(struct net_device *dev,
5508                                 struct netdev_bonding_info *bonding_info)
5509 {
5510         struct netdev_notifier_bonding_info     info;
5511
5512         memcpy(&info.bonding_info, bonding_info,
5513                sizeof(struct netdev_bonding_info));
5514         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5515                                       &info.info);
5516 }
5517 EXPORT_SYMBOL(netdev_bonding_info_change);
5518
5519 static void netdev_adjacent_add_links(struct net_device *dev)
5520 {
5521         struct netdev_adjacent *iter;
5522
5523         struct net *net = dev_net(dev);
5524
5525         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5526                 if (!net_eq(net,dev_net(iter->dev)))
5527                         continue;
5528                 netdev_adjacent_sysfs_add(iter->dev, dev,
5529                                           &iter->dev->adj_list.lower);
5530                 netdev_adjacent_sysfs_add(dev, iter->dev,
5531                                           &dev->adj_list.upper);
5532         }
5533
5534         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5535                 if (!net_eq(net,dev_net(iter->dev)))
5536                         continue;
5537                 netdev_adjacent_sysfs_add(iter->dev, dev,
5538                                           &iter->dev->adj_list.upper);
5539                 netdev_adjacent_sysfs_add(dev, iter->dev,
5540                                           &dev->adj_list.lower);
5541         }
5542 }
5543
5544 static void netdev_adjacent_del_links(struct net_device *dev)
5545 {
5546         struct netdev_adjacent *iter;
5547
5548         struct net *net = dev_net(dev);
5549
5550         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5551                 if (!net_eq(net,dev_net(iter->dev)))
5552                         continue;
5553                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5554                                           &iter->dev->adj_list.lower);
5555                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5556                                           &dev->adj_list.upper);
5557         }
5558
5559         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5560                 if (!net_eq(net,dev_net(iter->dev)))
5561                         continue;
5562                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5563                                           &iter->dev->adj_list.upper);
5564                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5565                                           &dev->adj_list.lower);
5566         }
5567 }
5568
5569 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5570 {
5571         struct netdev_adjacent *iter;
5572
5573         struct net *net = dev_net(dev);
5574
5575         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5576                 if (!net_eq(net,dev_net(iter->dev)))
5577                         continue;
5578                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5579                                           &iter->dev->adj_list.lower);
5580                 netdev_adjacent_sysfs_add(iter->dev, dev,
5581                                           &iter->dev->adj_list.lower);
5582         }
5583
5584         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5585                 if (!net_eq(net,dev_net(iter->dev)))
5586                         continue;
5587                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5588                                           &iter->dev->adj_list.upper);
5589                 netdev_adjacent_sysfs_add(iter->dev, dev,
5590                                           &iter->dev->adj_list.upper);
5591         }
5592 }
5593
5594 void *netdev_lower_dev_get_private(struct net_device *dev,
5595                                    struct net_device *lower_dev)
5596 {
5597         struct netdev_adjacent *lower;
5598
5599         if (!lower_dev)
5600                 return NULL;
5601         lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5602         if (!lower)
5603                 return NULL;
5604
5605         return lower->private;
5606 }
5607 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5608
5609
5610 int dev_get_nest_level(struct net_device *dev,
5611                        bool (*type_check)(struct net_device *dev))
5612 {
5613         struct net_device *lower = NULL;
5614         struct list_head *iter;
5615         int max_nest = -1;
5616         int nest;
5617
5618         ASSERT_RTNL();
5619
5620         netdev_for_each_lower_dev(dev, lower, iter) {
5621                 nest = dev_get_nest_level(lower, type_check);
5622                 if (max_nest < nest)
5623                         max_nest = nest;
5624         }
5625
5626         if (type_check(dev))
5627                 max_nest++;
5628
5629         return max_nest;
5630 }
5631 EXPORT_SYMBOL(dev_get_nest_level);
5632
5633 static void dev_change_rx_flags(struct net_device *dev, int flags)
5634 {
5635         const struct net_device_ops *ops = dev->netdev_ops;
5636
5637         if (ops->ndo_change_rx_flags)
5638                 ops->ndo_change_rx_flags(dev, flags);
5639 }
5640
5641 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5642 {
5643         unsigned int old_flags = dev->flags;
5644         kuid_t uid;
5645         kgid_t gid;
5646
5647         ASSERT_RTNL();
5648
5649         dev->flags |= IFF_PROMISC;
5650         dev->promiscuity += inc;
5651         if (dev->promiscuity == 0) {
5652                 /*
5653                  * Avoid overflow.
5654                  * If inc causes overflow, untouch promisc and return error.
5655                  */
5656                 if (inc < 0)
5657                         dev->flags &= ~IFF_PROMISC;
5658                 else {
5659                         dev->promiscuity -= inc;
5660                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5661                                 dev->name);
5662                         return -EOVERFLOW;
5663                 }
5664         }
5665         if (dev->flags != old_flags) {
5666                 pr_info("device %s %s promiscuous mode\n",
5667                         dev->name,
5668                         dev->flags & IFF_PROMISC ? "entered" : "left");
5669                 if (audit_enabled) {
5670                         current_uid_gid(&uid, &gid);
5671                         audit_log(current->audit_context, GFP_ATOMIC,
5672                                 AUDIT_ANOM_PROMISCUOUS,
5673                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5674                                 dev->name, (dev->flags & IFF_PROMISC),
5675                                 (old_flags & IFF_PROMISC),
5676                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5677                                 from_kuid(&init_user_ns, uid),
5678                                 from_kgid(&init_user_ns, gid),
5679                                 audit_get_sessionid(current));
5680                 }
5681
5682                 dev_change_rx_flags(dev, IFF_PROMISC);
5683         }
5684         if (notify)
5685                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5686         return 0;
5687 }
5688
5689 /**
5690  *      dev_set_promiscuity     - update promiscuity count on a device
5691  *      @dev: device
5692  *      @inc: modifier
5693  *
5694  *      Add or remove promiscuity from a device. While the count in the device
5695  *      remains above zero the interface remains promiscuous. Once it hits zero
5696  *      the device reverts back to normal filtering operation. A negative inc
5697  *      value is used to drop promiscuity on the device.
5698  *      Return 0 if successful or a negative errno code on error.
5699  */
5700 int dev_set_promiscuity(struct net_device *dev, int inc)
5701 {
5702         unsigned int old_flags = dev->flags;
5703         int err;
5704
5705         err = __dev_set_promiscuity(dev, inc, true);
5706         if (err < 0)
5707                 return err;
5708         if (dev->flags != old_flags)
5709                 dev_set_rx_mode(dev);
5710         return err;
5711 }
5712 EXPORT_SYMBOL(dev_set_promiscuity);
5713
5714 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5715 {
5716         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5717
5718         ASSERT_RTNL();
5719
5720         dev->flags |= IFF_ALLMULTI;
5721         dev->allmulti += inc;
5722         if (dev->allmulti == 0) {
5723                 /*
5724                  * Avoid overflow.
5725                  * If inc causes overflow, untouch allmulti and return error.
5726                  */
5727                 if (inc < 0)
5728                         dev->flags &= ~IFF_ALLMULTI;
5729                 else {
5730                         dev->allmulti -= inc;
5731                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5732                                 dev->name);
5733                         return -EOVERFLOW;
5734                 }
5735         }
5736         if (dev->flags ^ old_flags) {
5737                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5738                 dev_set_rx_mode(dev);
5739                 if (notify)
5740                         __dev_notify_flags(dev, old_flags,
5741                                            dev->gflags ^ old_gflags);
5742         }
5743         return 0;
5744 }
5745
5746 /**
5747  *      dev_set_allmulti        - update allmulti count on a device
5748  *      @dev: device
5749  *      @inc: modifier
5750  *
5751  *      Add or remove reception of all multicast frames to a device. While the
5752  *      count in the device remains above zero the interface remains listening
5753  *      to all interfaces. Once it hits zero the device reverts back to normal
5754  *      filtering operation. A negative @inc value is used to drop the counter
5755  *      when releasing a resource needing all multicasts.
5756  *      Return 0 if successful or a negative errno code on error.
5757  */
5758
5759 int dev_set_allmulti(struct net_device *dev, int inc)
5760 {
5761         return __dev_set_allmulti(dev, inc, true);
5762 }
5763 EXPORT_SYMBOL(dev_set_allmulti);
5764
5765 /*
5766  *      Upload unicast and multicast address lists to device and
5767  *      configure RX filtering. When the device doesn't support unicast
5768  *      filtering it is put in promiscuous mode while unicast addresses
5769  *      are present.
5770  */
5771 void __dev_set_rx_mode(struct net_device *dev)
5772 {
5773         const struct net_device_ops *ops = dev->netdev_ops;
5774
5775         /* dev_open will call this function so the list will stay sane. */
5776         if (!(dev->flags&IFF_UP))
5777                 return;
5778
5779         if (!netif_device_present(dev))
5780                 return;
5781
5782         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5783                 /* Unicast addresses changes may only happen under the rtnl,
5784                  * therefore calling __dev_set_promiscuity here is safe.
5785                  */
5786                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5787                         __dev_set_promiscuity(dev, 1, false);
5788                         dev->uc_promisc = true;
5789                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5790                         __dev_set_promiscuity(dev, -1, false);
5791                         dev->uc_promisc = false;
5792                 }
5793         }
5794
5795         if (ops->ndo_set_rx_mode)
5796                 ops->ndo_set_rx_mode(dev);
5797 }
5798
5799 void dev_set_rx_mode(struct net_device *dev)
5800 {
5801         netif_addr_lock_bh(dev);
5802         __dev_set_rx_mode(dev);
5803         netif_addr_unlock_bh(dev);
5804 }
5805
5806 /**
5807  *      dev_get_flags - get flags reported to userspace
5808  *      @dev: device
5809  *
5810  *      Get the combination of flag bits exported through APIs to userspace.
5811  */
5812 unsigned int dev_get_flags(const struct net_device *dev)
5813 {
5814         unsigned int flags;
5815
5816         flags = (dev->flags & ~(IFF_PROMISC |
5817                                 IFF_ALLMULTI |
5818                                 IFF_RUNNING |
5819                                 IFF_LOWER_UP |
5820                                 IFF_DORMANT)) |
5821                 (dev->gflags & (IFF_PROMISC |
5822                                 IFF_ALLMULTI));
5823
5824         if (netif_running(dev)) {
5825                 if (netif_oper_up(dev))
5826                         flags |= IFF_RUNNING;
5827                 if (netif_carrier_ok(dev))
5828                         flags |= IFF_LOWER_UP;
5829                 if (netif_dormant(dev))
5830                         flags |= IFF_DORMANT;
5831         }
5832
5833         return flags;
5834 }
5835 EXPORT_SYMBOL(dev_get_flags);
5836
5837 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5838 {
5839         unsigned int old_flags = dev->flags;
5840         int ret;
5841
5842         ASSERT_RTNL();
5843
5844         /*
5845          *      Set the flags on our device.
5846          */
5847
5848         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5849                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5850                                IFF_AUTOMEDIA)) |
5851                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5852                                     IFF_ALLMULTI));
5853
5854         /*
5855          *      Load in the correct multicast list now the flags have changed.
5856          */
5857
5858         if ((old_flags ^ flags) & IFF_MULTICAST)
5859                 dev_change_rx_flags(dev, IFF_MULTICAST);
5860
5861         dev_set_rx_mode(dev);
5862
5863         /*
5864          *      Have we downed the interface. We handle IFF_UP ourselves
5865          *      according to user attempts to set it, rather than blindly
5866          *      setting it.
5867          */
5868
5869         ret = 0;
5870         if ((old_flags ^ flags) & IFF_UP)
5871                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5872
5873         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5874                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5875                 unsigned int old_flags = dev->flags;
5876
5877                 dev->gflags ^= IFF_PROMISC;
5878
5879                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5880                         if (dev->flags != old_flags)
5881                                 dev_set_rx_mode(dev);
5882         }
5883
5884         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5885            is important. Some (broken) drivers set IFF_PROMISC, when
5886            IFF_ALLMULTI is requested not asking us and not reporting.
5887          */
5888         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5889                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5890
5891                 dev->gflags ^= IFF_ALLMULTI;
5892                 __dev_set_allmulti(dev, inc, false);
5893         }
5894
5895         return ret;
5896 }
5897
5898 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5899                         unsigned int gchanges)
5900 {
5901         unsigned int changes = dev->flags ^ old_flags;
5902
5903         if (gchanges)
5904                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5905
5906         if (changes & IFF_UP) {
5907                 if (dev->flags & IFF_UP)
5908                         call_netdevice_notifiers(NETDEV_UP, dev);
5909                 else
5910                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5911         }
5912
5913         if (dev->flags & IFF_UP &&
5914             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5915                 struct netdev_notifier_change_info change_info;
5916
5917                 change_info.flags_changed = changes;
5918                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5919                                               &change_info.info);
5920         }
5921 }
5922
5923 /**
5924  *      dev_change_flags - change device settings
5925  *      @dev: device
5926  *      @flags: device state flags
5927  *
5928  *      Change settings on device based state flags. The flags are
5929  *      in the userspace exported format.
5930  */
5931 int dev_change_flags(struct net_device *dev, unsigned int flags)
5932 {
5933         int ret;
5934         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5935
5936         ret = __dev_change_flags(dev, flags);
5937         if (ret < 0)
5938                 return ret;
5939
5940         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5941         __dev_notify_flags(dev, old_flags, changes);
5942         return ret;
5943 }
5944 EXPORT_SYMBOL(dev_change_flags);
5945
5946 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5947 {
5948         const struct net_device_ops *ops = dev->netdev_ops;
5949
5950         if (ops->ndo_change_mtu)
5951                 return ops->ndo_change_mtu(dev, new_mtu);
5952
5953         dev->mtu = new_mtu;
5954         return 0;
5955 }
5956
5957 /**
5958  *      dev_set_mtu - Change maximum transfer unit
5959  *      @dev: device
5960  *      @new_mtu: new transfer unit
5961  *
5962  *      Change the maximum transfer size of the network device.
5963  */
5964 int dev_set_mtu(struct net_device *dev, int new_mtu)
5965 {
5966         int err, orig_mtu;
5967
5968         if (new_mtu == dev->mtu)
5969                 return 0;
5970
5971         /*      MTU must be positive.    */
5972         if (new_mtu < 0)
5973                 return -EINVAL;
5974
5975         if (!netif_device_present(dev))
5976                 return -ENODEV;
5977
5978         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5979         err = notifier_to_errno(err);
5980         if (err)
5981                 return err;
5982
5983         orig_mtu = dev->mtu;
5984         err = __dev_set_mtu(dev, new_mtu);
5985
5986         if (!err) {
5987                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5988                 err = notifier_to_errno(err);
5989                 if (err) {
5990                         /* setting mtu back and notifying everyone again,
5991                          * so that they have a chance to revert changes.
5992                          */
5993                         __dev_set_mtu(dev, orig_mtu);
5994                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5995                 }
5996         }
5997         return err;
5998 }
5999 EXPORT_SYMBOL(dev_set_mtu);
6000
6001 /**
6002  *      dev_set_group - Change group this device belongs to
6003  *      @dev: device
6004  *      @new_group: group this device should belong to
6005  */
6006 void dev_set_group(struct net_device *dev, int new_group)
6007 {
6008         dev->group = new_group;
6009 }
6010 EXPORT_SYMBOL(dev_set_group);
6011
6012 /**
6013  *      dev_set_mac_address - Change Media Access Control Address
6014  *      @dev: device
6015  *      @sa: new address
6016  *
6017  *      Change the hardware (MAC) address of the device
6018  */
6019 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6020 {
6021         const struct net_device_ops *ops = dev->netdev_ops;
6022         int err;
6023
6024         if (!ops->ndo_set_mac_address)
6025                 return -EOPNOTSUPP;
6026         if (sa->sa_family != dev->type)
6027                 return -EINVAL;
6028         if (!netif_device_present(dev))
6029                 return -ENODEV;
6030         err = ops->ndo_set_mac_address(dev, sa);
6031         if (err)
6032                 return err;
6033         dev->addr_assign_type = NET_ADDR_SET;
6034         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6035         add_device_randomness(dev->dev_addr, dev->addr_len);
6036         return 0;
6037 }
6038 EXPORT_SYMBOL(dev_set_mac_address);
6039
6040 /**
6041  *      dev_change_carrier - Change device carrier
6042  *      @dev: device
6043  *      @new_carrier: new value
6044  *
6045  *      Change device carrier
6046  */
6047 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6048 {
6049         const struct net_device_ops *ops = dev->netdev_ops;
6050
6051         if (!ops->ndo_change_carrier)
6052                 return -EOPNOTSUPP;
6053         if (!netif_device_present(dev))
6054                 return -ENODEV;
6055         return ops->ndo_change_carrier(dev, new_carrier);
6056 }
6057 EXPORT_SYMBOL(dev_change_carrier);
6058
6059 /**
6060  *      dev_get_phys_port_id - Get device physical port ID
6061  *      @dev: device
6062  *      @ppid: port ID
6063  *
6064  *      Get device physical port ID
6065  */
6066 int dev_get_phys_port_id(struct net_device *dev,
6067                          struct netdev_phys_item_id *ppid)
6068 {
6069         const struct net_device_ops *ops = dev->netdev_ops;
6070
6071         if (!ops->ndo_get_phys_port_id)
6072                 return -EOPNOTSUPP;
6073         return ops->ndo_get_phys_port_id(dev, ppid);
6074 }
6075 EXPORT_SYMBOL(dev_get_phys_port_id);
6076
6077 /**
6078  *      dev_get_phys_port_name - Get device physical port name
6079  *      @dev: device
6080  *      @name: port name
6081  *
6082  *      Get device physical port name
6083  */
6084 int dev_get_phys_port_name(struct net_device *dev,
6085                            char *name, size_t len)
6086 {
6087         const struct net_device_ops *ops = dev->netdev_ops;
6088
6089         if (!ops->ndo_get_phys_port_name)
6090                 return -EOPNOTSUPP;
6091         return ops->ndo_get_phys_port_name(dev, name, len);
6092 }
6093 EXPORT_SYMBOL(dev_get_phys_port_name);
6094
6095 /**
6096  *      dev_new_index   -       allocate an ifindex
6097  *      @net: the applicable net namespace
6098  *
6099  *      Returns a suitable unique value for a new device interface
6100  *      number.  The caller must hold the rtnl semaphore or the
6101  *      dev_base_lock to be sure it remains unique.
6102  */
6103 static int dev_new_index(struct net *net)
6104 {
6105         int ifindex = net->ifindex;
6106         for (;;) {
6107                 if (++ifindex <= 0)
6108                         ifindex = 1;
6109                 if (!__dev_get_by_index(net, ifindex))
6110                         return net->ifindex = ifindex;
6111         }
6112 }
6113
6114 /* Delayed registration/unregisteration */
6115 static LIST_HEAD(net_todo_list);
6116 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6117
6118 static void net_set_todo(struct net_device *dev)
6119 {
6120         list_add_tail(&dev->todo_list, &net_todo_list);
6121         dev_net(dev)->dev_unreg_count++;
6122 }
6123
6124 static void rollback_registered_many(struct list_head *head)
6125 {
6126         struct net_device *dev, *tmp;
6127         LIST_HEAD(close_head);
6128
6129         BUG_ON(dev_boot_phase);
6130         ASSERT_RTNL();
6131
6132         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6133                 /* Some devices call without registering
6134                  * for initialization unwind. Remove those
6135                  * devices and proceed with the remaining.
6136                  */
6137                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6138                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6139                                  dev->name, dev);
6140
6141                         WARN_ON(1);
6142                         list_del(&dev->unreg_list);
6143                         continue;
6144                 }
6145                 dev->dismantle = true;
6146                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6147         }
6148
6149         /* If device is running, close it first. */
6150         list_for_each_entry(dev, head, unreg_list)
6151                 list_add_tail(&dev->close_list, &close_head);
6152         dev_close_many(&close_head, true);
6153
6154         list_for_each_entry(dev, head, unreg_list) {
6155                 /* And unlink it from device chain. */
6156                 unlist_netdevice(dev);
6157
6158                 dev->reg_state = NETREG_UNREGISTERING;
6159         }
6160
6161         synchronize_net();
6162
6163         list_for_each_entry(dev, head, unreg_list) {
6164                 struct sk_buff *skb = NULL;
6165
6166                 /* Shutdown queueing discipline. */
6167                 dev_shutdown(dev);
6168
6169
6170                 /* Notify protocols, that we are about to destroy
6171                    this device. They should clean all the things.
6172                 */
6173                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6174
6175                 if (!dev->rtnl_link_ops ||
6176                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6177                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6178                                                      GFP_KERNEL);
6179
6180                 /*
6181                  *      Flush the unicast and multicast chains
6182                  */
6183                 dev_uc_flush(dev);
6184                 dev_mc_flush(dev);
6185
6186                 if (dev->netdev_ops->ndo_uninit)
6187                         dev->netdev_ops->ndo_uninit(dev);
6188
6189                 if (skb)
6190                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6191
6192                 /* Notifier chain MUST detach us all upper devices. */
6193                 WARN_ON(netdev_has_any_upper_dev(dev));
6194
6195                 /* Remove entries from kobject tree */
6196                 netdev_unregister_kobject(dev);
6197 #ifdef CONFIG_XPS
6198                 /* Remove XPS queueing entries */
6199                 netif_reset_xps_queues_gt(dev, 0);
6200 #endif
6201         }
6202
6203         synchronize_net();
6204
6205         list_for_each_entry(dev, head, unreg_list)
6206                 dev_put(dev);
6207 }
6208
6209 static void rollback_registered(struct net_device *dev)
6210 {
6211         LIST_HEAD(single);
6212
6213         list_add(&dev->unreg_list, &single);
6214         rollback_registered_many(&single);
6215         list_del(&single);
6216 }
6217
6218 static netdev_features_t netdev_fix_features(struct net_device *dev,
6219         netdev_features_t features)
6220 {
6221         /* Fix illegal checksum combinations */
6222         if ((features & NETIF_F_HW_CSUM) &&
6223             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6224                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6225                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6226         }
6227
6228         /* TSO requires that SG is present as well. */
6229         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6230                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6231                 features &= ~NETIF_F_ALL_TSO;
6232         }
6233
6234         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6235                                         !(features & NETIF_F_IP_CSUM)) {
6236                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6237                 features &= ~NETIF_F_TSO;
6238                 features &= ~NETIF_F_TSO_ECN;
6239         }
6240
6241         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6242                                          !(features & NETIF_F_IPV6_CSUM)) {
6243                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6244                 features &= ~NETIF_F_TSO6;
6245         }
6246
6247         /* TSO ECN requires that TSO is present as well. */
6248         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6249                 features &= ~NETIF_F_TSO_ECN;
6250
6251         /* Software GSO depends on SG. */
6252         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6253                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6254                 features &= ~NETIF_F_GSO;
6255         }
6256
6257         /* UFO needs SG and checksumming */
6258         if (features & NETIF_F_UFO) {
6259                 /* maybe split UFO into V4 and V6? */
6260                 if (!((features & NETIF_F_GEN_CSUM) ||
6261                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6262                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6263                         netdev_dbg(dev,
6264                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6265                         features &= ~NETIF_F_UFO;
6266                 }
6267
6268                 if (!(features & NETIF_F_SG)) {
6269                         netdev_dbg(dev,
6270                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6271                         features &= ~NETIF_F_UFO;
6272                 }
6273         }
6274
6275 #ifdef CONFIG_NET_RX_BUSY_POLL
6276         if (dev->netdev_ops->ndo_busy_poll)
6277                 features |= NETIF_F_BUSY_POLL;
6278         else
6279 #endif
6280                 features &= ~NETIF_F_BUSY_POLL;
6281
6282         return features;
6283 }
6284
6285 int __netdev_update_features(struct net_device *dev)
6286 {
6287         netdev_features_t features;
6288         int err = 0;
6289
6290         ASSERT_RTNL();
6291
6292         features = netdev_get_wanted_features(dev);
6293
6294         if (dev->netdev_ops->ndo_fix_features)
6295                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6296
6297         /* driver might be less strict about feature dependencies */
6298         features = netdev_fix_features(dev, features);
6299
6300         if (dev->features == features)
6301                 return 0;
6302
6303         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6304                 &dev->features, &features);
6305
6306         if (dev->netdev_ops->ndo_set_features)
6307                 err = dev->netdev_ops->ndo_set_features(dev, features);
6308
6309         if (unlikely(err < 0)) {
6310                 netdev_err(dev,
6311                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6312                         err, &features, &dev->features);
6313                 return -1;
6314         }
6315
6316         if (!err)
6317                 dev->features = features;
6318
6319         return 1;
6320 }
6321
6322 /**
6323  *      netdev_update_features - recalculate device features
6324  *      @dev: the device to check
6325  *
6326  *      Recalculate dev->features set and send notifications if it
6327  *      has changed. Should be called after driver or hardware dependent
6328  *      conditions might have changed that influence the features.
6329  */
6330 void netdev_update_features(struct net_device *dev)
6331 {
6332         if (__netdev_update_features(dev))
6333                 netdev_features_change(dev);
6334 }
6335 EXPORT_SYMBOL(netdev_update_features);
6336
6337 /**
6338  *      netdev_change_features - recalculate device features
6339  *      @dev: the device to check
6340  *
6341  *      Recalculate dev->features set and send notifications even
6342  *      if they have not changed. Should be called instead of
6343  *      netdev_update_features() if also dev->vlan_features might
6344  *      have changed to allow the changes to be propagated to stacked
6345  *      VLAN devices.
6346  */
6347 void netdev_change_features(struct net_device *dev)
6348 {
6349         __netdev_update_features(dev);
6350         netdev_features_change(dev);
6351 }
6352 EXPORT_SYMBOL(netdev_change_features);
6353
6354 /**
6355  *      netif_stacked_transfer_operstate -      transfer operstate
6356  *      @rootdev: the root or lower level device to transfer state from
6357  *      @dev: the device to transfer operstate to
6358  *
6359  *      Transfer operational state from root to device. This is normally
6360  *      called when a stacking relationship exists between the root
6361  *      device and the device(a leaf device).
6362  */
6363 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6364                                         struct net_device *dev)
6365 {
6366         if (rootdev->operstate == IF_OPER_DORMANT)
6367                 netif_dormant_on(dev);
6368         else
6369                 netif_dormant_off(dev);
6370
6371         if (netif_carrier_ok(rootdev)) {
6372                 if (!netif_carrier_ok(dev))
6373                         netif_carrier_on(dev);
6374         } else {
6375                 if (netif_carrier_ok(dev))
6376                         netif_carrier_off(dev);
6377         }
6378 }
6379 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6380
6381 #ifdef CONFIG_SYSFS
6382 static int netif_alloc_rx_queues(struct net_device *dev)
6383 {
6384         unsigned int i, count = dev->num_rx_queues;
6385         struct netdev_rx_queue *rx;
6386         size_t sz = count * sizeof(*rx);
6387
6388         BUG_ON(count < 1);
6389
6390         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6391         if (!rx) {
6392                 rx = vzalloc(sz);
6393                 if (!rx)
6394                         return -ENOMEM;
6395         }
6396         dev->_rx = rx;
6397
6398         for (i = 0; i < count; i++)
6399                 rx[i].dev = dev;
6400         return 0;
6401 }
6402 #endif
6403
6404 static void netdev_init_one_queue(struct net_device *dev,
6405                                   struct netdev_queue *queue, void *_unused)
6406 {
6407         /* Initialize queue lock */
6408         spin_lock_init(&queue->_xmit_lock);
6409         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6410         queue->xmit_lock_owner = -1;
6411         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6412         queue->dev = dev;
6413 #ifdef CONFIG_BQL
6414         dql_init(&queue->dql, HZ);
6415 #endif
6416 }
6417
6418 static void netif_free_tx_queues(struct net_device *dev)
6419 {
6420         kvfree(dev->_tx);
6421 }
6422
6423 static int netif_alloc_netdev_queues(struct net_device *dev)
6424 {
6425         unsigned int count = dev->num_tx_queues;
6426         struct netdev_queue *tx;
6427         size_t sz = count * sizeof(*tx);
6428
6429         BUG_ON(count < 1 || count > 0xffff);
6430
6431         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6432         if (!tx) {
6433                 tx = vzalloc(sz);
6434                 if (!tx)
6435                         return -ENOMEM;
6436         }
6437         dev->_tx = tx;
6438
6439         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6440         spin_lock_init(&dev->tx_global_lock);
6441
6442         return 0;
6443 }
6444
6445 void netif_tx_stop_all_queues(struct net_device *dev)
6446 {
6447         unsigned int i;
6448
6449         for (i = 0; i < dev->num_tx_queues; i++) {
6450                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6451                 netif_tx_stop_queue(txq);
6452         }
6453 }
6454 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6455
6456 /**
6457  *      register_netdevice      - register a network device
6458  *      @dev: device to register
6459  *
6460  *      Take a completed network device structure and add it to the kernel
6461  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6462  *      chain. 0 is returned on success. A negative errno code is returned
6463  *      on a failure to set up the device, or if the name is a duplicate.
6464  *
6465  *      Callers must hold the rtnl semaphore. You may want
6466  *      register_netdev() instead of this.
6467  *
6468  *      BUGS:
6469  *      The locking appears insufficient to guarantee two parallel registers
6470  *      will not get the same name.
6471  */
6472
6473 int register_netdevice(struct net_device *dev)
6474 {
6475         int ret;
6476         struct net *net = dev_net(dev);
6477
6478         BUG_ON(dev_boot_phase);
6479         ASSERT_RTNL();
6480
6481         might_sleep();
6482
6483         /* When net_device's are persistent, this will be fatal. */
6484         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6485         BUG_ON(!net);
6486
6487         spin_lock_init(&dev->addr_list_lock);
6488         netdev_set_addr_lockdep_class(dev);
6489
6490         ret = dev_get_valid_name(net, dev, dev->name);
6491         if (ret < 0)
6492                 goto out;
6493
6494         /* Init, if this function is available */
6495         if (dev->netdev_ops->ndo_init) {
6496                 ret = dev->netdev_ops->ndo_init(dev);
6497                 if (ret) {
6498                         if (ret > 0)
6499                                 ret = -EIO;
6500                         goto out;
6501                 }
6502         }
6503
6504         if (((dev->hw_features | dev->features) &
6505              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6506             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6507              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6508                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6509                 ret = -EINVAL;
6510                 goto err_uninit;
6511         }
6512
6513         ret = -EBUSY;
6514         if (!dev->ifindex)
6515                 dev->ifindex = dev_new_index(net);
6516         else if (__dev_get_by_index(net, dev->ifindex))
6517                 goto err_uninit;
6518
6519         /* Transfer changeable features to wanted_features and enable
6520          * software offloads (GSO and GRO).
6521          */
6522         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6523         dev->features |= NETIF_F_SOFT_FEATURES;
6524         dev->wanted_features = dev->features & dev->hw_features;
6525
6526         if (!(dev->flags & IFF_LOOPBACK)) {
6527                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6528         }
6529
6530         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6531          */
6532         dev->vlan_features |= NETIF_F_HIGHDMA;
6533
6534         /* Make NETIF_F_SG inheritable to tunnel devices.
6535          */
6536         dev->hw_enc_features |= NETIF_F_SG;
6537
6538         /* Make NETIF_F_SG inheritable to MPLS.
6539          */
6540         dev->mpls_features |= NETIF_F_SG;
6541
6542         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6543         ret = notifier_to_errno(ret);
6544         if (ret)
6545                 goto err_uninit;
6546
6547         ret = netdev_register_kobject(dev);
6548         if (ret)
6549                 goto err_uninit;
6550         dev->reg_state = NETREG_REGISTERED;
6551
6552         __netdev_update_features(dev);
6553
6554         /*
6555          *      Default initial state at registry is that the
6556          *      device is present.
6557          */
6558
6559         set_bit(__LINK_STATE_PRESENT, &dev->state);
6560
6561         linkwatch_init_dev(dev);
6562
6563         dev_init_scheduler(dev);
6564         dev_hold(dev);
6565         list_netdevice(dev);
6566         add_device_randomness(dev->dev_addr, dev->addr_len);
6567
6568         /* If the device has permanent device address, driver should
6569          * set dev_addr and also addr_assign_type should be set to
6570          * NET_ADDR_PERM (default value).
6571          */
6572         if (dev->addr_assign_type == NET_ADDR_PERM)
6573                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6574
6575         /* Notify protocols, that a new device appeared. */
6576         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6577         ret = notifier_to_errno(ret);
6578         if (ret) {
6579                 rollback_registered(dev);
6580                 dev->reg_state = NETREG_UNREGISTERED;
6581         }
6582         /*
6583          *      Prevent userspace races by waiting until the network
6584          *      device is fully setup before sending notifications.
6585          */
6586         if (!dev->rtnl_link_ops ||
6587             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6588                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6589
6590 out:
6591         return ret;
6592
6593 err_uninit:
6594         if (dev->netdev_ops->ndo_uninit)
6595                 dev->netdev_ops->ndo_uninit(dev);
6596         goto out;
6597 }
6598 EXPORT_SYMBOL(register_netdevice);
6599
6600 /**
6601  *      init_dummy_netdev       - init a dummy network device for NAPI
6602  *      @dev: device to init
6603  *
6604  *      This takes a network device structure and initialize the minimum
6605  *      amount of fields so it can be used to schedule NAPI polls without
6606  *      registering a full blown interface. This is to be used by drivers
6607  *      that need to tie several hardware interfaces to a single NAPI
6608  *      poll scheduler due to HW limitations.
6609  */
6610 int init_dummy_netdev(struct net_device *dev)
6611 {
6612         /* Clear everything. Note we don't initialize spinlocks
6613          * are they aren't supposed to be taken by any of the
6614          * NAPI code and this dummy netdev is supposed to be
6615          * only ever used for NAPI polls
6616          */
6617         memset(dev, 0, sizeof(struct net_device));
6618
6619         /* make sure we BUG if trying to hit standard
6620          * register/unregister code path
6621          */
6622         dev->reg_state = NETREG_DUMMY;
6623
6624         /* NAPI wants this */
6625         INIT_LIST_HEAD(&dev->napi_list);
6626
6627         /* a dummy interface is started by default */
6628         set_bit(__LINK_STATE_PRESENT, &dev->state);
6629         set_bit(__LINK_STATE_START, &dev->state);
6630
6631         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6632          * because users of this 'device' dont need to change
6633          * its refcount.
6634          */
6635
6636         return 0;
6637 }
6638 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6639
6640
6641 /**
6642  *      register_netdev - register a network device
6643  *      @dev: device to register
6644  *
6645  *      Take a completed network device structure and add it to the kernel
6646  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6647  *      chain. 0 is returned on success. A negative errno code is returned
6648  *      on a failure to set up the device, or if the name is a duplicate.
6649  *
6650  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6651  *      and expands the device name if you passed a format string to
6652  *      alloc_netdev.
6653  */
6654 int register_netdev(struct net_device *dev)
6655 {
6656         int err;
6657
6658         rtnl_lock();
6659         err = register_netdevice(dev);
6660         rtnl_unlock();
6661         return err;
6662 }
6663 EXPORT_SYMBOL(register_netdev);
6664
6665 int netdev_refcnt_read(const struct net_device *dev)
6666 {
6667         int i, refcnt = 0;
6668
6669         for_each_possible_cpu(i)
6670                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6671         return refcnt;
6672 }
6673 EXPORT_SYMBOL(netdev_refcnt_read);
6674
6675 /**
6676  * netdev_wait_allrefs - wait until all references are gone.
6677  * @dev: target net_device
6678  *
6679  * This is called when unregistering network devices.
6680  *
6681  * Any protocol or device that holds a reference should register
6682  * for netdevice notification, and cleanup and put back the
6683  * reference if they receive an UNREGISTER event.
6684  * We can get stuck here if buggy protocols don't correctly
6685  * call dev_put.
6686  */
6687 static void netdev_wait_allrefs(struct net_device *dev)
6688 {
6689         unsigned long rebroadcast_time, warning_time;
6690         int refcnt;
6691
6692         linkwatch_forget_dev(dev);
6693
6694         rebroadcast_time = warning_time = jiffies;
6695         refcnt = netdev_refcnt_read(dev);
6696
6697         while (refcnt != 0) {
6698                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6699                         rtnl_lock();
6700
6701                         /* Rebroadcast unregister notification */
6702                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6703
6704                         __rtnl_unlock();
6705                         rcu_barrier();
6706                         rtnl_lock();
6707
6708                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6709                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6710                                      &dev->state)) {
6711                                 /* We must not have linkwatch events
6712                                  * pending on unregister. If this
6713                                  * happens, we simply run the queue
6714                                  * unscheduled, resulting in a noop
6715                                  * for this device.
6716                                  */
6717                                 linkwatch_run_queue();
6718                         }
6719
6720                         __rtnl_unlock();
6721
6722                         rebroadcast_time = jiffies;
6723                 }
6724
6725                 msleep(250);
6726
6727                 refcnt = netdev_refcnt_read(dev);
6728
6729                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6730                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6731                                  dev->name, refcnt);
6732                         warning_time = jiffies;
6733                 }
6734         }
6735 }
6736
6737 /* The sequence is:
6738  *
6739  *      rtnl_lock();
6740  *      ...
6741  *      register_netdevice(x1);
6742  *      register_netdevice(x2);
6743  *      ...
6744  *      unregister_netdevice(y1);
6745  *      unregister_netdevice(y2);
6746  *      ...
6747  *      rtnl_unlock();
6748  *      free_netdev(y1);
6749  *      free_netdev(y2);
6750  *
6751  * We are invoked by rtnl_unlock().
6752  * This allows us to deal with problems:
6753  * 1) We can delete sysfs objects which invoke hotplug
6754  *    without deadlocking with linkwatch via keventd.
6755  * 2) Since we run with the RTNL semaphore not held, we can sleep
6756  *    safely in order to wait for the netdev refcnt to drop to zero.
6757  *
6758  * We must not return until all unregister events added during
6759  * the interval the lock was held have been completed.
6760  */
6761 void netdev_run_todo(void)
6762 {
6763         struct list_head list;
6764
6765         /* Snapshot list, allow later requests */
6766         list_replace_init(&net_todo_list, &list);
6767
6768         __rtnl_unlock();
6769
6770
6771         /* Wait for rcu callbacks to finish before next phase */
6772         if (!list_empty(&list))
6773                 rcu_barrier();
6774
6775         while (!list_empty(&list)) {
6776                 struct net_device *dev
6777                         = list_first_entry(&list, struct net_device, todo_list);
6778                 list_del(&dev->todo_list);
6779
6780                 rtnl_lock();
6781                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6782                 __rtnl_unlock();
6783
6784                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6785                         pr_err("network todo '%s' but state %d\n",
6786                                dev->name, dev->reg_state);
6787                         dump_stack();
6788                         continue;
6789                 }
6790
6791                 dev->reg_state = NETREG_UNREGISTERED;
6792
6793                 on_each_cpu(flush_backlog, dev, 1);
6794
6795                 netdev_wait_allrefs(dev);
6796
6797                 /* paranoia */
6798                 BUG_ON(netdev_refcnt_read(dev));
6799                 BUG_ON(!list_empty(&dev->ptype_all));
6800                 BUG_ON(!list_empty(&dev->ptype_specific));
6801                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6802                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6803                 WARN_ON(dev->dn_ptr);
6804
6805                 if (dev->destructor)
6806                         dev->destructor(dev);
6807
6808                 /* Report a network device has been unregistered */
6809                 rtnl_lock();
6810                 dev_net(dev)->dev_unreg_count--;
6811                 __rtnl_unlock();
6812                 wake_up(&netdev_unregistering_wq);
6813
6814                 /* Free network device */
6815                 kobject_put(&dev->dev.kobj);
6816         }
6817 }
6818
6819 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6820  * fields in the same order, with only the type differing.
6821  */
6822 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6823                              const struct net_device_stats *netdev_stats)
6824 {
6825 #if BITS_PER_LONG == 64
6826         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6827         memcpy(stats64, netdev_stats, sizeof(*stats64));
6828 #else
6829         size_t i, n = sizeof(*stats64) / sizeof(u64);
6830         const unsigned long *src = (const unsigned long *)netdev_stats;
6831         u64 *dst = (u64 *)stats64;
6832
6833         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6834                      sizeof(*stats64) / sizeof(u64));
6835         for (i = 0; i < n; i++)
6836                 dst[i] = src[i];
6837 #endif
6838 }
6839 EXPORT_SYMBOL(netdev_stats_to_stats64);
6840
6841 /**
6842  *      dev_get_stats   - get network device statistics
6843  *      @dev: device to get statistics from
6844  *      @storage: place to store stats
6845  *
6846  *      Get network statistics from device. Return @storage.
6847  *      The device driver may provide its own method by setting
6848  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6849  *      otherwise the internal statistics structure is used.
6850  */
6851 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6852                                         struct rtnl_link_stats64 *storage)
6853 {
6854         const struct net_device_ops *ops = dev->netdev_ops;
6855
6856         if (ops->ndo_get_stats64) {
6857                 memset(storage, 0, sizeof(*storage));
6858                 ops->ndo_get_stats64(dev, storage);
6859         } else if (ops->ndo_get_stats) {
6860                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6861         } else {
6862                 netdev_stats_to_stats64(storage, &dev->stats);
6863         }
6864         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6865         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6866         return storage;
6867 }
6868 EXPORT_SYMBOL(dev_get_stats);
6869
6870 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6871 {
6872         struct netdev_queue *queue = dev_ingress_queue(dev);
6873
6874 #ifdef CONFIG_NET_CLS_ACT
6875         if (queue)
6876                 return queue;
6877         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6878         if (!queue)
6879                 return NULL;
6880         netdev_init_one_queue(dev, queue, NULL);
6881         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6882         queue->qdisc_sleeping = &noop_qdisc;
6883         rcu_assign_pointer(dev->ingress_queue, queue);
6884 #endif
6885         return queue;
6886 }
6887
6888 static const struct ethtool_ops default_ethtool_ops;
6889
6890 void netdev_set_default_ethtool_ops(struct net_device *dev,
6891                                     const struct ethtool_ops *ops)
6892 {
6893         if (dev->ethtool_ops == &default_ethtool_ops)
6894                 dev->ethtool_ops = ops;
6895 }
6896 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6897
6898 void netdev_freemem(struct net_device *dev)
6899 {
6900         char *addr = (char *)dev - dev->padded;
6901
6902         kvfree(addr);
6903 }
6904
6905 /**
6906  *      alloc_netdev_mqs - allocate network device
6907  *      @sizeof_priv:           size of private data to allocate space for
6908  *      @name:                  device name format string
6909  *      @name_assign_type:      origin of device name
6910  *      @setup:                 callback to initialize device
6911  *      @txqs:                  the number of TX subqueues to allocate
6912  *      @rxqs:                  the number of RX subqueues to allocate
6913  *
6914  *      Allocates a struct net_device with private data area for driver use
6915  *      and performs basic initialization.  Also allocates subqueue structs
6916  *      for each queue on the device.
6917  */
6918 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6919                 unsigned char name_assign_type,
6920                 void (*setup)(struct net_device *),
6921                 unsigned int txqs, unsigned int rxqs)
6922 {
6923         struct net_device *dev;
6924         size_t alloc_size;
6925         struct net_device *p;
6926
6927         BUG_ON(strlen(name) >= sizeof(dev->name));
6928
6929         if (txqs < 1) {
6930                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6931                 return NULL;
6932         }
6933
6934 #ifdef CONFIG_SYSFS
6935         if (rxqs < 1) {
6936                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6937                 return NULL;
6938         }
6939 #endif
6940
6941         alloc_size = sizeof(struct net_device);
6942         if (sizeof_priv) {
6943                 /* ensure 32-byte alignment of private area */
6944                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6945                 alloc_size += sizeof_priv;
6946         }
6947         /* ensure 32-byte alignment of whole construct */
6948         alloc_size += NETDEV_ALIGN - 1;
6949
6950         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6951         if (!p)
6952                 p = vzalloc(alloc_size);
6953         if (!p)
6954                 return NULL;
6955
6956         dev = PTR_ALIGN(p, NETDEV_ALIGN);
6957         dev->padded = (char *)dev - (char *)p;
6958
6959         dev->pcpu_refcnt = alloc_percpu(int);
6960         if (!dev->pcpu_refcnt)
6961                 goto free_dev;
6962
6963         if (dev_addr_init(dev))
6964                 goto free_pcpu;
6965
6966         dev_mc_init(dev);
6967         dev_uc_init(dev);
6968
6969         dev_net_set(dev, &init_net);
6970
6971         dev->gso_max_size = GSO_MAX_SIZE;
6972         dev->gso_max_segs = GSO_MAX_SEGS;
6973         dev->gso_min_segs = 0;
6974
6975         INIT_LIST_HEAD(&dev->napi_list);
6976         INIT_LIST_HEAD(&dev->unreg_list);
6977         INIT_LIST_HEAD(&dev->close_list);
6978         INIT_LIST_HEAD(&dev->link_watch_list);
6979         INIT_LIST_HEAD(&dev->adj_list.upper);
6980         INIT_LIST_HEAD(&dev->adj_list.lower);
6981         INIT_LIST_HEAD(&dev->all_adj_list.upper);
6982         INIT_LIST_HEAD(&dev->all_adj_list.lower);
6983         INIT_LIST_HEAD(&dev->ptype_all);
6984         INIT_LIST_HEAD(&dev->ptype_specific);
6985         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6986         setup(dev);
6987
6988         dev->num_tx_queues = txqs;
6989         dev->real_num_tx_queues = txqs;
6990         if (netif_alloc_netdev_queues(dev))
6991                 goto free_all;
6992
6993 #ifdef CONFIG_SYSFS
6994         dev->num_rx_queues = rxqs;
6995         dev->real_num_rx_queues = rxqs;
6996         if (netif_alloc_rx_queues(dev))
6997                 goto free_all;
6998 #endif
6999
7000         strcpy(dev->name, name);
7001         dev->name_assign_type = name_assign_type;
7002         dev->group = INIT_NETDEV_GROUP;
7003         if (!dev->ethtool_ops)
7004                 dev->ethtool_ops = &default_ethtool_ops;
7005
7006         nf_hook_ingress_init(dev);
7007
7008         return dev;
7009
7010 free_all:
7011         free_netdev(dev);
7012         return NULL;
7013
7014 free_pcpu:
7015         free_percpu(dev->pcpu_refcnt);
7016 free_dev:
7017         netdev_freemem(dev);
7018         return NULL;
7019 }
7020 EXPORT_SYMBOL(alloc_netdev_mqs);
7021
7022 /**
7023  *      free_netdev - free network device
7024  *      @dev: device
7025  *
7026  *      This function does the last stage of destroying an allocated device
7027  *      interface. The reference to the device object is released.
7028  *      If this is the last reference then it will be freed.
7029  */
7030 void free_netdev(struct net_device *dev)
7031 {
7032         struct napi_struct *p, *n;
7033
7034         netif_free_tx_queues(dev);
7035 #ifdef CONFIG_SYSFS
7036         kvfree(dev->_rx);
7037 #endif
7038
7039         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7040
7041         /* Flush device addresses */
7042         dev_addr_flush(dev);
7043
7044         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7045                 netif_napi_del(p);
7046
7047         free_percpu(dev->pcpu_refcnt);
7048         dev->pcpu_refcnt = NULL;
7049
7050         /*  Compatibility with error handling in drivers */
7051         if (dev->reg_state == NETREG_UNINITIALIZED) {
7052                 netdev_freemem(dev);
7053                 return;
7054         }
7055
7056         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7057         dev->reg_state = NETREG_RELEASED;
7058
7059         /* will free via device release */
7060         put_device(&dev->dev);
7061 }
7062 EXPORT_SYMBOL(free_netdev);
7063
7064 /**
7065  *      synchronize_net -  Synchronize with packet receive processing
7066  *
7067  *      Wait for packets currently being received to be done.
7068  *      Does not block later packets from starting.
7069  */
7070 void synchronize_net(void)
7071 {
7072         might_sleep();
7073         if (rtnl_is_locked())
7074                 synchronize_rcu_expedited();
7075         else
7076                 synchronize_rcu();
7077 }
7078 EXPORT_SYMBOL(synchronize_net);
7079
7080 /**
7081  *      unregister_netdevice_queue - remove device from the kernel
7082  *      @dev: device
7083  *      @head: list
7084  *
7085  *      This function shuts down a device interface and removes it
7086  *      from the kernel tables.
7087  *      If head not NULL, device is queued to be unregistered later.
7088  *
7089  *      Callers must hold the rtnl semaphore.  You may want
7090  *      unregister_netdev() instead of this.
7091  */
7092
7093 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7094 {
7095         ASSERT_RTNL();
7096
7097         if (head) {
7098                 list_move_tail(&dev->unreg_list, head);
7099         } else {
7100                 rollback_registered(dev);
7101                 /* Finish processing unregister after unlock */
7102                 net_set_todo(dev);
7103         }
7104 }
7105 EXPORT_SYMBOL(unregister_netdevice_queue);
7106
7107 /**
7108  *      unregister_netdevice_many - unregister many devices
7109  *      @head: list of devices
7110  *
7111  *  Note: As most callers use a stack allocated list_head,
7112  *  we force a list_del() to make sure stack wont be corrupted later.
7113  */
7114 void unregister_netdevice_many(struct list_head *head)
7115 {
7116         struct net_device *dev;
7117
7118         if (!list_empty(head)) {
7119                 rollback_registered_many(head);
7120                 list_for_each_entry(dev, head, unreg_list)
7121                         net_set_todo(dev);
7122                 list_del(head);
7123         }
7124 }
7125 EXPORT_SYMBOL(unregister_netdevice_many);
7126
7127 /**
7128  *      unregister_netdev - remove device from the kernel
7129  *      @dev: device
7130  *
7131  *      This function shuts down a device interface and removes it
7132  *      from the kernel tables.
7133  *
7134  *      This is just a wrapper for unregister_netdevice that takes
7135  *      the rtnl semaphore.  In general you want to use this and not
7136  *      unregister_netdevice.
7137  */
7138 void unregister_netdev(struct net_device *dev)
7139 {
7140         rtnl_lock();
7141         unregister_netdevice(dev);
7142         rtnl_unlock();
7143 }
7144 EXPORT_SYMBOL(unregister_netdev);
7145
7146 /**
7147  *      dev_change_net_namespace - move device to different nethost namespace
7148  *      @dev: device
7149  *      @net: network namespace
7150  *      @pat: If not NULL name pattern to try if the current device name
7151  *            is already taken in the destination network namespace.
7152  *
7153  *      This function shuts down a device interface and moves it
7154  *      to a new network namespace. On success 0 is returned, on
7155  *      a failure a netagive errno code is returned.
7156  *
7157  *      Callers must hold the rtnl semaphore.
7158  */
7159
7160 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7161 {
7162         int err;
7163
7164         ASSERT_RTNL();
7165
7166         /* Don't allow namespace local devices to be moved. */
7167         err = -EINVAL;
7168         if (dev->features & NETIF_F_NETNS_LOCAL)
7169                 goto out;
7170
7171         /* Ensure the device has been registrered */
7172         if (dev->reg_state != NETREG_REGISTERED)
7173                 goto out;
7174
7175         /* Get out if there is nothing todo */
7176         err = 0;
7177         if (net_eq(dev_net(dev), net))
7178                 goto out;
7179
7180         /* Pick the destination device name, and ensure
7181          * we can use it in the destination network namespace.
7182          */
7183         err = -EEXIST;
7184         if (__dev_get_by_name(net, dev->name)) {
7185                 /* We get here if we can't use the current device name */
7186                 if (!pat)
7187                         goto out;
7188                 if (dev_get_valid_name(net, dev, pat) < 0)
7189                         goto out;
7190         }
7191
7192         /*
7193          * And now a mini version of register_netdevice unregister_netdevice.
7194          */
7195
7196         /* If device is running close it first. */
7197         dev_close(dev);
7198
7199         /* And unlink it from device chain */
7200         err = -ENODEV;
7201         unlist_netdevice(dev);
7202
7203         synchronize_net();
7204
7205         /* Shutdown queueing discipline. */
7206         dev_shutdown(dev);
7207
7208         /* Notify protocols, that we are about to destroy
7209            this device. They should clean all the things.
7210
7211            Note that dev->reg_state stays at NETREG_REGISTERED.
7212            This is wanted because this way 8021q and macvlan know
7213            the device is just moving and can keep their slaves up.
7214         */
7215         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7216         rcu_barrier();
7217         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7218         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7219
7220         /*
7221          *      Flush the unicast and multicast chains
7222          */
7223         dev_uc_flush(dev);
7224         dev_mc_flush(dev);
7225
7226         /* Send a netdev-removed uevent to the old namespace */
7227         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7228         netdev_adjacent_del_links(dev);
7229
7230         /* Actually switch the network namespace */
7231         dev_net_set(dev, net);
7232
7233         /* If there is an ifindex conflict assign a new one */
7234         if (__dev_get_by_index(net, dev->ifindex))
7235                 dev->ifindex = dev_new_index(net);
7236
7237         /* Send a netdev-add uevent to the new namespace */
7238         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7239         netdev_adjacent_add_links(dev);
7240
7241         /* Fixup kobjects */
7242         err = device_rename(&dev->dev, dev->name);
7243         WARN_ON(err);
7244
7245         /* Add the device back in the hashes */
7246         list_netdevice(dev);
7247
7248         /* Notify protocols, that a new device appeared. */
7249         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7250
7251         /*
7252          *      Prevent userspace races by waiting until the network
7253          *      device is fully setup before sending notifications.
7254          */
7255         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7256
7257         synchronize_net();
7258         err = 0;
7259 out:
7260         return err;
7261 }
7262 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7263
7264 static int dev_cpu_callback(struct notifier_block *nfb,
7265                             unsigned long action,
7266                             void *ocpu)
7267 {
7268         struct sk_buff **list_skb;
7269         struct sk_buff *skb;
7270         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7271         struct softnet_data *sd, *oldsd;
7272
7273         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7274                 return NOTIFY_OK;
7275
7276         local_irq_disable();
7277         cpu = smp_processor_id();
7278         sd = &per_cpu(softnet_data, cpu);
7279         oldsd = &per_cpu(softnet_data, oldcpu);
7280
7281         /* Find end of our completion_queue. */
7282         list_skb = &sd->completion_queue;
7283         while (*list_skb)
7284                 list_skb = &(*list_skb)->next;
7285         /* Append completion queue from offline CPU. */
7286         *list_skb = oldsd->completion_queue;
7287         oldsd->completion_queue = NULL;
7288
7289         /* Append output queue from offline CPU. */
7290         if (oldsd->output_queue) {
7291                 *sd->output_queue_tailp = oldsd->output_queue;
7292                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7293                 oldsd->output_queue = NULL;
7294                 oldsd->output_queue_tailp = &oldsd->output_queue;
7295         }
7296         /* Append NAPI poll list from offline CPU, with one exception :
7297          * process_backlog() must be called by cpu owning percpu backlog.
7298          * We properly handle process_queue & input_pkt_queue later.
7299          */
7300         while (!list_empty(&oldsd->poll_list)) {
7301                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7302                                                             struct napi_struct,
7303                                                             poll_list);
7304
7305                 list_del_init(&napi->poll_list);
7306                 if (napi->poll == process_backlog)
7307                         napi->state = 0;
7308                 else
7309                         ____napi_schedule(sd, napi);
7310         }
7311
7312         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7313         local_irq_enable();
7314
7315         /* Process offline CPU's input_pkt_queue */
7316         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7317                 netif_rx_ni(skb);
7318                 input_queue_head_incr(oldsd);
7319         }
7320         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7321                 netif_rx_ni(skb);
7322                 input_queue_head_incr(oldsd);
7323         }
7324
7325         return NOTIFY_OK;
7326 }
7327
7328
7329 /**
7330  *      netdev_increment_features - increment feature set by one
7331  *      @all: current feature set
7332  *      @one: new feature set
7333  *      @mask: mask feature set
7334  *
7335  *      Computes a new feature set after adding a device with feature set
7336  *      @one to the master device with current feature set @all.  Will not
7337  *      enable anything that is off in @mask. Returns the new feature set.
7338  */
7339 netdev_features_t netdev_increment_features(netdev_features_t all,
7340         netdev_features_t one, netdev_features_t mask)
7341 {
7342         if (mask & NETIF_F_GEN_CSUM)
7343                 mask |= NETIF_F_ALL_CSUM;
7344         mask |= NETIF_F_VLAN_CHALLENGED;
7345
7346         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7347         all &= one | ~NETIF_F_ALL_FOR_ALL;
7348
7349         /* If one device supports hw checksumming, set for all. */
7350         if (all & NETIF_F_GEN_CSUM)
7351                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7352
7353         return all;
7354 }
7355 EXPORT_SYMBOL(netdev_increment_features);
7356
7357 static struct hlist_head * __net_init netdev_create_hash(void)
7358 {
7359         int i;
7360         struct hlist_head *hash;
7361
7362         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7363         if (hash != NULL)
7364                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7365                         INIT_HLIST_HEAD(&hash[i]);
7366
7367         return hash;
7368 }
7369
7370 /* Initialize per network namespace state */
7371 static int __net_init netdev_init(struct net *net)
7372 {
7373         if (net != &init_net)
7374                 INIT_LIST_HEAD(&net->dev_base_head);
7375
7376         net->dev_name_head = netdev_create_hash();
7377         if (net->dev_name_head == NULL)
7378                 goto err_name;
7379
7380         net->dev_index_head = netdev_create_hash();
7381         if (net->dev_index_head == NULL)
7382                 goto err_idx;
7383
7384         return 0;
7385
7386 err_idx:
7387         kfree(net->dev_name_head);
7388 err_name:
7389         return -ENOMEM;
7390 }
7391
7392 /**
7393  *      netdev_drivername - network driver for the device
7394  *      @dev: network device
7395  *
7396  *      Determine network driver for device.
7397  */
7398 const char *netdev_drivername(const struct net_device *dev)
7399 {
7400         const struct device_driver *driver;
7401         const struct device *parent;
7402         const char *empty = "";
7403
7404         parent = dev->dev.parent;
7405         if (!parent)
7406                 return empty;
7407
7408         driver = parent->driver;
7409         if (driver && driver->name)
7410                 return driver->name;
7411         return empty;
7412 }
7413
7414 static void __netdev_printk(const char *level, const struct net_device *dev,
7415                             struct va_format *vaf)
7416 {
7417         if (dev && dev->dev.parent) {
7418                 dev_printk_emit(level[1] - '0',
7419                                 dev->dev.parent,
7420                                 "%s %s %s%s: %pV",
7421                                 dev_driver_string(dev->dev.parent),
7422                                 dev_name(dev->dev.parent),
7423                                 netdev_name(dev), netdev_reg_state(dev),
7424                                 vaf);
7425         } else if (dev) {
7426                 printk("%s%s%s: %pV",
7427                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7428         } else {
7429                 printk("%s(NULL net_device): %pV", level, vaf);
7430         }
7431 }
7432
7433 void netdev_printk(const char *level, const struct net_device *dev,
7434                    const char *format, ...)
7435 {
7436         struct va_format vaf;
7437         va_list args;
7438
7439         va_start(args, format);
7440
7441         vaf.fmt = format;
7442         vaf.va = &args;
7443
7444         __netdev_printk(level, dev, &vaf);
7445
7446         va_end(args);
7447 }
7448 EXPORT_SYMBOL(netdev_printk);
7449
7450 #define define_netdev_printk_level(func, level)                 \
7451 void func(const struct net_device *dev, const char *fmt, ...)   \
7452 {                                                               \
7453         struct va_format vaf;                                   \
7454         va_list args;                                           \
7455                                                                 \
7456         va_start(args, fmt);                                    \
7457                                                                 \
7458         vaf.fmt = fmt;                                          \
7459         vaf.va = &args;                                         \
7460                                                                 \
7461         __netdev_printk(level, dev, &vaf);                      \
7462                                                                 \
7463         va_end(args);                                           \
7464 }                                                               \
7465 EXPORT_SYMBOL(func);
7466
7467 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7468 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7469 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7470 define_netdev_printk_level(netdev_err, KERN_ERR);
7471 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7472 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7473 define_netdev_printk_level(netdev_info, KERN_INFO);
7474
7475 static void __net_exit netdev_exit(struct net *net)
7476 {
7477         kfree(net->dev_name_head);
7478         kfree(net->dev_index_head);
7479 }
7480
7481 static struct pernet_operations __net_initdata netdev_net_ops = {
7482         .init = netdev_init,
7483         .exit = netdev_exit,
7484 };
7485
7486 static void __net_exit default_device_exit(struct net *net)
7487 {
7488         struct net_device *dev, *aux;
7489         /*
7490          * Push all migratable network devices back to the
7491          * initial network namespace
7492          */
7493         rtnl_lock();
7494         for_each_netdev_safe(net, dev, aux) {
7495                 int err;
7496                 char fb_name[IFNAMSIZ];
7497
7498                 /* Ignore unmoveable devices (i.e. loopback) */
7499                 if (dev->features & NETIF_F_NETNS_LOCAL)
7500                         continue;
7501
7502                 /* Leave virtual devices for the generic cleanup */
7503                 if (dev->rtnl_link_ops)
7504                         continue;
7505
7506                 /* Push remaining network devices to init_net */
7507                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7508                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7509                 if (err) {
7510                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7511                                  __func__, dev->name, err);
7512                         BUG();
7513                 }
7514         }
7515         rtnl_unlock();
7516 }
7517
7518 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7519 {
7520         /* Return with the rtnl_lock held when there are no network
7521          * devices unregistering in any network namespace in net_list.
7522          */
7523         struct net *net;
7524         bool unregistering;
7525         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7526
7527         add_wait_queue(&netdev_unregistering_wq, &wait);
7528         for (;;) {
7529                 unregistering = false;
7530                 rtnl_lock();
7531                 list_for_each_entry(net, net_list, exit_list) {
7532                         if (net->dev_unreg_count > 0) {
7533                                 unregistering = true;
7534                                 break;
7535                         }
7536                 }
7537                 if (!unregistering)
7538                         break;
7539                 __rtnl_unlock();
7540
7541                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7542         }
7543         remove_wait_queue(&netdev_unregistering_wq, &wait);
7544 }
7545
7546 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7547 {
7548         /* At exit all network devices most be removed from a network
7549          * namespace.  Do this in the reverse order of registration.
7550          * Do this across as many network namespaces as possible to
7551          * improve batching efficiency.
7552          */
7553         struct net_device *dev;
7554         struct net *net;
7555         LIST_HEAD(dev_kill_list);
7556
7557         /* To prevent network device cleanup code from dereferencing
7558          * loopback devices or network devices that have been freed
7559          * wait here for all pending unregistrations to complete,
7560          * before unregistring the loopback device and allowing the
7561          * network namespace be freed.
7562          *
7563          * The netdev todo list containing all network devices
7564          * unregistrations that happen in default_device_exit_batch
7565          * will run in the rtnl_unlock() at the end of
7566          * default_device_exit_batch.
7567          */
7568         rtnl_lock_unregistering(net_list);
7569         list_for_each_entry(net, net_list, exit_list) {
7570                 for_each_netdev_reverse(net, dev) {
7571                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7572                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7573                         else
7574                                 unregister_netdevice_queue(dev, &dev_kill_list);
7575                 }
7576         }
7577         unregister_netdevice_many(&dev_kill_list);
7578         rtnl_unlock();
7579 }
7580
7581 static struct pernet_operations __net_initdata default_device_ops = {
7582         .exit = default_device_exit,
7583         .exit_batch = default_device_exit_batch,
7584 };
7585
7586 /*
7587  *      Initialize the DEV module. At boot time this walks the device list and
7588  *      unhooks any devices that fail to initialise (normally hardware not
7589  *      present) and leaves us with a valid list of present and active devices.
7590  *
7591  */
7592
7593 /*
7594  *       This is called single threaded during boot, so no need
7595  *       to take the rtnl semaphore.
7596  */
7597 static int __init net_dev_init(void)
7598 {
7599         int i, rc = -ENOMEM;
7600
7601         BUG_ON(!dev_boot_phase);
7602
7603         if (dev_proc_init())
7604                 goto out;
7605
7606         if (netdev_kobject_init())
7607                 goto out;
7608
7609         INIT_LIST_HEAD(&ptype_all);
7610         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7611                 INIT_LIST_HEAD(&ptype_base[i]);
7612
7613         INIT_LIST_HEAD(&offload_base);
7614
7615         if (register_pernet_subsys(&netdev_net_ops))
7616                 goto out;
7617
7618         /*
7619          *      Initialise the packet receive queues.
7620          */
7621
7622         for_each_possible_cpu(i) {
7623                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7624
7625                 skb_queue_head_init(&sd->input_pkt_queue);
7626                 skb_queue_head_init(&sd->process_queue);
7627                 INIT_LIST_HEAD(&sd->poll_list);
7628                 sd->output_queue_tailp = &sd->output_queue;
7629 #ifdef CONFIG_RPS
7630                 sd->csd.func = rps_trigger_softirq;
7631                 sd->csd.info = sd;
7632                 sd->cpu = i;
7633 #endif
7634
7635                 sd->backlog.poll = process_backlog;
7636                 sd->backlog.weight = weight_p;
7637         }
7638
7639         dev_boot_phase = 0;
7640
7641         /* The loopback device is special if any other network devices
7642          * is present in a network namespace the loopback device must
7643          * be present. Since we now dynamically allocate and free the
7644          * loopback device ensure this invariant is maintained by
7645          * keeping the loopback device as the first device on the
7646          * list of network devices.  Ensuring the loopback devices
7647          * is the first device that appears and the last network device
7648          * that disappears.
7649          */
7650         if (register_pernet_device(&loopback_net_ops))
7651                 goto out;
7652
7653         if (register_pernet_device(&default_device_ops))
7654                 goto out;
7655
7656         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7657         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7658
7659         hotcpu_notifier(dev_cpu_callback, 0);
7660         dst_init();
7661         rc = 0;
7662 out:
7663         return rc;
7664 }
7665
7666 subsys_initcall(net_dev_init);