]> asedeno.scripts.mit.edu Git - linux.git/blob - net/core/dev.c
net: bpf: rename ndo_xdp to ndo_bpf
[linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;       /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166                                          struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static seqcount_t devnet_rename_seq;
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222         spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229         spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236         struct net *net = dev_net(dev);
237
238         ASSERT_RTNL();
239
240         write_lock_bh(&dev_base_lock);
241         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243         hlist_add_head_rcu(&dev->index_hlist,
244                            dev_index_hash(net, dev->ifindex));
245         write_unlock_bh(&dev_base_lock);
246
247         dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255         ASSERT_RTNL();
256
257         /* Unlink dev from the device chain */
258         write_lock_bh(&dev_base_lock);
259         list_del_rcu(&dev->dev_list);
260         hlist_del_rcu(&dev->name_hlist);
261         hlist_del_rcu(&dev->index_hlist);
262         write_unlock_bh(&dev_base_lock);
263
264         dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268  *      Our notifier list
269  */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274  *      Device drivers call our routines to queue packets here. We empty the
275  *      queue in the local softnet handler.
276  */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303 static const char *const netdev_lock_name[] = {
304         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325         int i;
326
327         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328                 if (netdev_lock_type[i] == dev_type)
329                         return i;
330         /* the last key is used by default */
331         return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335                                                  unsigned short dev_type)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev_type);
340         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341                                    netdev_lock_name[i]);
342 }
343
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346         int i;
347
348         i = netdev_lock_pos(dev->type);
349         lockdep_set_class_and_name(&dev->addr_list_lock,
350                                    &netdev_addr_lock_key[i],
351                                    netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355                                                  unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362
363 /*******************************************************************************
364  *
365  *              Protocol management and registration routines
366  *
367  *******************************************************************************/
368
369
370 /*
371  *      Add a protocol ID to the list. Now that the input handler is
372  *      smarter we can dispense with all the messy stuff that used to be
373  *      here.
374  *
375  *      BEWARE!!! Protocol handlers, mangling input packets,
376  *      MUST BE last in hash buckets and checking protocol handlers
377  *      MUST start from promiscuous ptype_all chain in net_bh.
378  *      It is true now, do not change it.
379  *      Explanation follows: if protocol handler, mangling packet, will
380  *      be the first on list, it is not able to sense, that packet
381  *      is cloned and should be copied-on-write, so that it will
382  *      change it and subsequent readers will get broken packet.
383  *                                                      --ANK (980803)
384  */
385
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388         if (pt->type == htons(ETH_P_ALL))
389                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390         else
391                 return pt->dev ? &pt->dev->ptype_specific :
392                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394
395 /**
396  *      dev_add_pack - add packet handler
397  *      @pt: packet type declaration
398  *
399  *      Add a protocol handler to the networking stack. The passed &packet_type
400  *      is linked into kernel lists and may not be freed until it has been
401  *      removed from the kernel lists.
402  *
403  *      This call does not sleep therefore it can not
404  *      guarantee all CPU's that are in middle of receiving packets
405  *      will see the new packet type (until the next received packet).
406  */
407
408 void dev_add_pack(struct packet_type *pt)
409 {
410         struct list_head *head = ptype_head(pt);
411
412         spin_lock(&ptype_lock);
413         list_add_rcu(&pt->list, head);
414         spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417
418 /**
419  *      __dev_remove_pack        - remove packet handler
420  *      @pt: packet type declaration
421  *
422  *      Remove a protocol handler that was previously added to the kernel
423  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *      from the kernel lists and can be freed or reused once this function
425  *      returns.
426  *
427  *      The packet type might still be in use by receivers
428  *      and must not be freed until after all the CPU's have gone
429  *      through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433         struct list_head *head = ptype_head(pt);
434         struct packet_type *pt1;
435
436         spin_lock(&ptype_lock);
437
438         list_for_each_entry(pt1, head, list) {
439                 if (pt == pt1) {
440                         list_del_rcu(&pt->list);
441                         goto out;
442                 }
443         }
444
445         pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447         spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450
451 /**
452  *      dev_remove_pack  - remove packet handler
453  *      @pt: packet type declaration
454  *
455  *      Remove a protocol handler that was previously added to the kernel
456  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *      from the kernel lists and can be freed or reused once this function
458  *      returns.
459  *
460  *      This call sleeps to guarantee that no CPU is looking at the packet
461  *      type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465         __dev_remove_pack(pt);
466
467         synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470
471
472 /**
473  *      dev_add_offload - register offload handlers
474  *      @po: protocol offload declaration
475  *
476  *      Add protocol offload handlers to the networking stack. The passed
477  *      &proto_offload is linked into kernel lists and may not be freed until
478  *      it has been removed from the kernel lists.
479  *
480  *      This call does not sleep therefore it can not
481  *      guarantee all CPU's that are in middle of receiving packets
482  *      will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486         struct packet_offload *elem;
487
488         spin_lock(&offload_lock);
489         list_for_each_entry(elem, &offload_base, list) {
490                 if (po->priority < elem->priority)
491                         break;
492         }
493         list_add_rcu(&po->list, elem->list.prev);
494         spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499  *      __dev_remove_offload     - remove offload handler
500  *      @po: packet offload declaration
501  *
502  *      Remove a protocol offload handler that was previously added to the
503  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *      is removed from the kernel lists and can be freed or reused once this
505  *      function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *      and must not be freed until after all the CPU's have gone
509  *      through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513         struct list_head *head = &offload_base;
514         struct packet_offload *po1;
515
516         spin_lock(&offload_lock);
517
518         list_for_each_entry(po1, head, list) {
519                 if (po == po1) {
520                         list_del_rcu(&po->list);
521                         goto out;
522                 }
523         }
524
525         pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527         spin_unlock(&offload_lock);
528 }
529
530 /**
531  *      dev_remove_offload       - remove packet offload handler
532  *      @po: packet offload declaration
533  *
534  *      Remove a packet offload handler that was previously added to the kernel
535  *      offload handlers by dev_add_offload(). The passed &offload_type is
536  *      removed from the kernel lists and can be freed or reused once this
537  *      function returns.
538  *
539  *      This call sleeps to guarantee that no CPU is looking at the packet
540  *      type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544         __dev_remove_offload(po);
545
546         synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549
550 /******************************************************************************
551  *
552  *                    Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559 /**
560  *      netdev_boot_setup_add   - add new setup entry
561  *      @name: name of the device
562  *      @map: configured settings for the device
563  *
564  *      Adds new setup entry to the dev_boot_setup list.  The function
565  *      returns 0 on error and 1 on success.  This is a generic routine to
566  *      all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570         struct netdev_boot_setup *s;
571         int i;
572
573         s = dev_boot_setup;
574         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576                         memset(s[i].name, 0, sizeof(s[i].name));
577                         strlcpy(s[i].name, name, IFNAMSIZ);
578                         memcpy(&s[i].map, map, sizeof(s[i].map));
579                         break;
580                 }
581         }
582
583         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585
586 /**
587  * netdev_boot_setup_check      - check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597         struct netdev_boot_setup *s = dev_boot_setup;
598         int i;
599
600         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602                     !strcmp(dev->name, s[i].name)) {
603                         dev->irq = s[i].map.irq;
604                         dev->base_addr = s[i].map.base_addr;
605                         dev->mem_start = s[i].map.mem_start;
606                         dev->mem_end = s[i].map.mem_end;
607                         return 1;
608                 }
609         }
610         return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615 /**
616  * netdev_boot_base     - get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627         const struct netdev_boot_setup *s = dev_boot_setup;
628         char name[IFNAMSIZ];
629         int i;
630
631         sprintf(name, "%s%d", prefix, unit);
632
633         /*
634          * If device already registered then return base of 1
635          * to indicate not to probe for this interface
636          */
637         if (__dev_get_by_name(&init_net, name))
638                 return 1;
639
640         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641                 if (!strcmp(name, s[i].name))
642                         return s[i].map.base_addr;
643         return 0;
644 }
645
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651         int ints[5];
652         struct ifmap map;
653
654         str = get_options(str, ARRAY_SIZE(ints), ints);
655         if (!str || !*str)
656                 return 0;
657
658         /* Save settings */
659         memset(&map, 0, sizeof(map));
660         if (ints[0] > 0)
661                 map.irq = ints[1];
662         if (ints[0] > 1)
663                 map.base_addr = ints[2];
664         if (ints[0] > 2)
665                 map.mem_start = ints[3];
666         if (ints[0] > 3)
667                 map.mem_end = ints[4];
668
669         /* Add new entry to the list */
670         return netdev_boot_setup_add(str, &map);
671 }
672
673 __setup("netdev=", netdev_boot_setup);
674
675 /*******************************************************************************
676  *
677  *                          Device Interface Subroutines
678  *
679  *******************************************************************************/
680
681 /**
682  *      dev_get_iflink  - get 'iflink' value of a interface
683  *      @dev: targeted interface
684  *
685  *      Indicates the ifindex the interface is linked to.
686  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688
689 int dev_get_iflink(const struct net_device *dev)
690 {
691         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692                 return dev->netdev_ops->ndo_get_iflink(dev);
693
694         return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *      @dev: targeted interface
701  *      @skb: The packet.
702  *
703  *      For better visibility of tunnel traffic OVS needs to retrieve
704  *      egress tunnel information for a packet. Following API allows
705  *      user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709         struct ip_tunnel_info *info;
710
711         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712                 return -EINVAL;
713
714         info = skb_tunnel_info_unclone(skb);
715         if (!info)
716                 return -ENOMEM;
717         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718                 return -EINVAL;
719
720         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724 /**
725  *      __dev_get_by_name       - find a device by its name
726  *      @net: the applicable net namespace
727  *      @name: name to find
728  *
729  *      Find an interface by name. Must be called under RTNL semaphore
730  *      or @dev_base_lock. If the name is found a pointer to the device
731  *      is returned. If the name is not found then %NULL is returned. The
732  *      reference counters are not incremented so the caller must be
733  *      careful with locks.
734  */
735
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738         struct net_device *dev;
739         struct hlist_head *head = dev_name_hash(net, name);
740
741         hlist_for_each_entry(dev, head, name_hlist)
742                 if (!strncmp(dev->name, name, IFNAMSIZ))
743                         return dev;
744
745         return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748
749 /**
750  * dev_get_by_name_rcu  - find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763         struct net_device *dev;
764         struct hlist_head *head = dev_name_hash(net, name);
765
766         hlist_for_each_entry_rcu(dev, head, name_hlist)
767                 if (!strncmp(dev->name, name, IFNAMSIZ))
768                         return dev;
769
770         return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774 /**
775  *      dev_get_by_name         - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. This can be called from any
780  *      context and does its own locking. The returned handle has
781  *      the usage count incremented and the caller must use dev_put() to
782  *      release it when it is no longer needed. %NULL is returned if no
783  *      matching device is found.
784  */
785
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788         struct net_device *dev;
789
790         rcu_read_lock();
791         dev = dev_get_by_name_rcu(net, name);
792         if (dev)
793                 dev_hold(dev);
794         rcu_read_unlock();
795         return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800  *      __dev_get_by_index - find a device by its ifindex
801  *      @net: the applicable net namespace
802  *      @ifindex: index of device
803  *
804  *      Search for an interface by index. Returns %NULL if the device
805  *      is not found or a pointer to the device. The device has not
806  *      had its reference counter increased so the caller must be careful
807  *      about locking. The caller must hold either the RTNL semaphore
808  *      or @dev_base_lock.
809  */
810
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813         struct net_device *dev;
814         struct hlist_head *head = dev_index_hash(net, ifindex);
815
816         hlist_for_each_entry(dev, head, index_hlist)
817                 if (dev->ifindex == ifindex)
818                         return dev;
819
820         return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825  *      dev_get_by_index_rcu - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold RCU lock.
833  */
834
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837         struct net_device *dev;
838         struct hlist_head *head = dev_index_hash(net, ifindex);
839
840         hlist_for_each_entry_rcu(dev, head, index_hlist)
841                 if (dev->ifindex == ifindex)
842                         return dev;
843
844         return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849 /**
850  *      dev_get_by_index - find a device by its ifindex
851  *      @net: the applicable net namespace
852  *      @ifindex: index of device
853  *
854  *      Search for an interface by index. Returns NULL if the device
855  *      is not found or a pointer to the device. The device returned has
856  *      had a reference added and the pointer is safe until the user calls
857  *      dev_put to indicate they have finished with it.
858  */
859
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863
864         rcu_read_lock();
865         dev = dev_get_by_index_rcu(net, ifindex);
866         if (dev)
867                 dev_hold(dev);
868         rcu_read_unlock();
869         return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872
873 /**
874  *      dev_get_by_napi_id - find a device by napi_id
875  *      @napi_id: ID of the NAPI struct
876  *
877  *      Search for an interface by NAPI ID. Returns %NULL if the device
878  *      is not found or a pointer to the device. The device has not had
879  *      its reference counter increased so the caller must be careful
880  *      about locking. The caller must hold RCU lock.
881  */
882
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885         struct napi_struct *napi;
886
887         WARN_ON_ONCE(!rcu_read_lock_held());
888
889         if (napi_id < MIN_NAPI_ID)
890                 return NULL;
891
892         napi = napi_by_id(napi_id);
893
894         return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897
898 /**
899  *      netdev_get_name - get a netdevice name, knowing its ifindex.
900  *      @net: network namespace
901  *      @name: a pointer to the buffer where the name will be stored.
902  *      @ifindex: the ifindex of the interface to get the name from.
903  *
904  *      The use of raw_seqcount_begin() and cond_resched() before
905  *      retrying is required as we want to give the writers a chance
906  *      to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910         struct net_device *dev;
911         unsigned int seq;
912
913 retry:
914         seq = raw_seqcount_begin(&devnet_rename_seq);
915         rcu_read_lock();
916         dev = dev_get_by_index_rcu(net, ifindex);
917         if (!dev) {
918                 rcu_read_unlock();
919                 return -ENODEV;
920         }
921
922         strcpy(name, dev->name);
923         rcu_read_unlock();
924         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925                 cond_resched();
926                 goto retry;
927         }
928
929         return 0;
930 }
931
932 /**
933  *      dev_getbyhwaddr_rcu - find a device by its hardware address
934  *      @net: the applicable net namespace
935  *      @type: media type of device
936  *      @ha: hardware address
937  *
938  *      Search for an interface by MAC address. Returns NULL if the device
939  *      is not found or a pointer to the device.
940  *      The caller must hold RCU or RTNL.
941  *      The returned device has not had its ref count increased
942  *      and the caller must therefore be careful about locking
943  *
944  */
945
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947                                        const char *ha)
948 {
949         struct net_device *dev;
950
951         for_each_netdev_rcu(net, dev)
952                 if (dev->type == type &&
953                     !memcmp(dev->dev_addr, ha, dev->addr_len))
954                         return dev;
955
956         return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962         struct net_device *dev;
963
964         ASSERT_RTNL();
965         for_each_netdev(net, dev)
966                 if (dev->type == type)
967                         return dev;
968
969         return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975         struct net_device *dev, *ret = NULL;
976
977         rcu_read_lock();
978         for_each_netdev_rcu(net, dev)
979                 if (dev->type == type) {
980                         dev_hold(dev);
981                         ret = dev;
982                         break;
983                 }
984         rcu_read_unlock();
985         return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989 /**
990  *      __dev_get_by_flags - find any device with given flags
991  *      @net: the applicable net namespace
992  *      @if_flags: IFF_* values
993  *      @mask: bitmask of bits in if_flags to check
994  *
995  *      Search for any interface with the given flags. Returns NULL if a device
996  *      is not found or a pointer to the device. Must be called inside
997  *      rtnl_lock(), and result refcount is unchanged.
998  */
999
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001                                       unsigned short mask)
1002 {
1003         struct net_device *dev, *ret;
1004
1005         ASSERT_RTNL();
1006
1007         ret = NULL;
1008         for_each_netdev(net, dev) {
1009                 if (((dev->flags ^ if_flags) & mask) == 0) {
1010                         ret = dev;
1011                         break;
1012                 }
1013         }
1014         return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018 /**
1019  *      dev_valid_name - check if name is okay for network device
1020  *      @name: name string
1021  *
1022  *      Network device names need to be valid file names to
1023  *      to allow sysfs to work.  We also disallow any kind of
1024  *      whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028         if (*name == '\0')
1029                 return false;
1030         if (strlen(name) >= IFNAMSIZ)
1031                 return false;
1032         if (!strcmp(name, ".") || !strcmp(name, ".."))
1033                 return false;
1034
1035         while (*name) {
1036                 if (*name == '/' || *name == ':' || isspace(*name))
1037                         return false;
1038                 name++;
1039         }
1040         return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043
1044 /**
1045  *      __dev_alloc_name - allocate a name for a device
1046  *      @net: network namespace to allocate the device name in
1047  *      @name: name format string
1048  *      @buf:  scratch buffer and result name string
1049  *
1050  *      Passed a format string - eg "lt%d" it will try and find a suitable
1051  *      id. It scans list of devices to build up a free map, then chooses
1052  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *      while allocating the name and adding the device in order to avoid
1054  *      duplicates.
1055  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *      Returns the number of the unit assigned or a negative errno code.
1057  */
1058
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061         int i = 0;
1062         const char *p;
1063         const int max_netdevices = 8*PAGE_SIZE;
1064         unsigned long *inuse;
1065         struct net_device *d;
1066
1067         p = strnchr(name, IFNAMSIZ-1, '%');
1068         if (p) {
1069                 /*
1070                  * Verify the string as this thing may have come from
1071                  * the user.  There must be either one "%d" and no other "%"
1072                  * characters.
1073                  */
1074                 if (p[1] != 'd' || strchr(p + 2, '%'))
1075                         return -EINVAL;
1076
1077                 /* Use one page as a bit array of possible slots */
1078                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1079                 if (!inuse)
1080                         return -ENOMEM;
1081
1082                 for_each_netdev(net, d) {
1083                         if (!sscanf(d->name, name, &i))
1084                                 continue;
1085                         if (i < 0 || i >= max_netdevices)
1086                                 continue;
1087
1088                         /*  avoid cases where sscanf is not exact inverse of printf */
1089                         snprintf(buf, IFNAMSIZ, name, i);
1090                         if (!strncmp(buf, d->name, IFNAMSIZ))
1091                                 set_bit(i, inuse);
1092                 }
1093
1094                 i = find_first_zero_bit(inuse, max_netdevices);
1095                 free_page((unsigned long) inuse);
1096         }
1097
1098         if (buf != name)
1099                 snprintf(buf, IFNAMSIZ, name, i);
1100         if (!__dev_get_by_name(net, buf))
1101                 return i;
1102
1103         /* It is possible to run out of possible slots
1104          * when the name is long and there isn't enough space left
1105          * for the digits, or if all bits are used.
1106          */
1107         return -ENFILE;
1108 }
1109
1110 /**
1111  *      dev_alloc_name - allocate a name for a device
1112  *      @dev: device
1113  *      @name: name format string
1114  *
1115  *      Passed a format string - eg "lt%d" it will try and find a suitable
1116  *      id. It scans list of devices to build up a free map, then chooses
1117  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1118  *      while allocating the name and adding the device in order to avoid
1119  *      duplicates.
1120  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1121  *      Returns the number of the unit assigned or a negative errno code.
1122  */
1123
1124 int dev_alloc_name(struct net_device *dev, const char *name)
1125 {
1126         char buf[IFNAMSIZ];
1127         struct net *net;
1128         int ret;
1129
1130         BUG_ON(!dev_net(dev));
1131         net = dev_net(dev);
1132         ret = __dev_alloc_name(net, name, buf);
1133         if (ret >= 0)
1134                 strlcpy(dev->name, buf, IFNAMSIZ);
1135         return ret;
1136 }
1137 EXPORT_SYMBOL(dev_alloc_name);
1138
1139 static int dev_alloc_name_ns(struct net *net,
1140                              struct net_device *dev,
1141                              const char *name)
1142 {
1143         char buf[IFNAMSIZ];
1144         int ret;
1145
1146         ret = __dev_alloc_name(net, name, buf);
1147         if (ret >= 0)
1148                 strlcpy(dev->name, buf, IFNAMSIZ);
1149         return ret;
1150 }
1151
1152 int dev_get_valid_name(struct net *net, struct net_device *dev,
1153                        const char *name)
1154 {
1155         BUG_ON(!net);
1156
1157         if (!dev_valid_name(name))
1158                 return -EINVAL;
1159
1160         if (strchr(name, '%'))
1161                 return dev_alloc_name_ns(net, dev, name);
1162         else if (__dev_get_by_name(net, name))
1163                 return -EEXIST;
1164         else if (dev->name != name)
1165                 strlcpy(dev->name, name, IFNAMSIZ);
1166
1167         return 0;
1168 }
1169 EXPORT_SYMBOL(dev_get_valid_name);
1170
1171 /**
1172  *      dev_change_name - change name of a device
1173  *      @dev: device
1174  *      @newname: name (or format string) must be at least IFNAMSIZ
1175  *
1176  *      Change name of a device, can pass format strings "eth%d".
1177  *      for wildcarding.
1178  */
1179 int dev_change_name(struct net_device *dev, const char *newname)
1180 {
1181         unsigned char old_assign_type;
1182         char oldname[IFNAMSIZ];
1183         int err = 0;
1184         int ret;
1185         struct net *net;
1186
1187         ASSERT_RTNL();
1188         BUG_ON(!dev_net(dev));
1189
1190         net = dev_net(dev);
1191         if (dev->flags & IFF_UP)
1192                 return -EBUSY;
1193
1194         write_seqcount_begin(&devnet_rename_seq);
1195
1196         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1197                 write_seqcount_end(&devnet_rename_seq);
1198                 return 0;
1199         }
1200
1201         memcpy(oldname, dev->name, IFNAMSIZ);
1202
1203         err = dev_get_valid_name(net, dev, newname);
1204         if (err < 0) {
1205                 write_seqcount_end(&devnet_rename_seq);
1206                 return err;
1207         }
1208
1209         if (oldname[0] && !strchr(oldname, '%'))
1210                 netdev_info(dev, "renamed from %s\n", oldname);
1211
1212         old_assign_type = dev->name_assign_type;
1213         dev->name_assign_type = NET_NAME_RENAMED;
1214
1215 rollback:
1216         ret = device_rename(&dev->dev, dev->name);
1217         if (ret) {
1218                 memcpy(dev->name, oldname, IFNAMSIZ);
1219                 dev->name_assign_type = old_assign_type;
1220                 write_seqcount_end(&devnet_rename_seq);
1221                 return ret;
1222         }
1223
1224         write_seqcount_end(&devnet_rename_seq);
1225
1226         netdev_adjacent_rename_links(dev, oldname);
1227
1228         write_lock_bh(&dev_base_lock);
1229         hlist_del_rcu(&dev->name_hlist);
1230         write_unlock_bh(&dev_base_lock);
1231
1232         synchronize_rcu();
1233
1234         write_lock_bh(&dev_base_lock);
1235         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1236         write_unlock_bh(&dev_base_lock);
1237
1238         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1239         ret = notifier_to_errno(ret);
1240
1241         if (ret) {
1242                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1243                 if (err >= 0) {
1244                         err = ret;
1245                         write_seqcount_begin(&devnet_rename_seq);
1246                         memcpy(dev->name, oldname, IFNAMSIZ);
1247                         memcpy(oldname, newname, IFNAMSIZ);
1248                         dev->name_assign_type = old_assign_type;
1249                         old_assign_type = NET_NAME_RENAMED;
1250                         goto rollback;
1251                 } else {
1252                         pr_err("%s: name change rollback failed: %d\n",
1253                                dev->name, ret);
1254                 }
1255         }
1256
1257         return err;
1258 }
1259
1260 /**
1261  *      dev_set_alias - change ifalias of a device
1262  *      @dev: device
1263  *      @alias: name up to IFALIASZ
1264  *      @len: limit of bytes to copy from info
1265  *
1266  *      Set ifalias for a device,
1267  */
1268 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1269 {
1270         struct dev_ifalias *new_alias = NULL;
1271
1272         if (len >= IFALIASZ)
1273                 return -EINVAL;
1274
1275         if (len) {
1276                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1277                 if (!new_alias)
1278                         return -ENOMEM;
1279
1280                 memcpy(new_alias->ifalias, alias, len);
1281                 new_alias->ifalias[len] = 0;
1282         }
1283
1284         mutex_lock(&ifalias_mutex);
1285         rcu_swap_protected(dev->ifalias, new_alias,
1286                            mutex_is_locked(&ifalias_mutex));
1287         mutex_unlock(&ifalias_mutex);
1288
1289         if (new_alias)
1290                 kfree_rcu(new_alias, rcuhead);
1291
1292         return len;
1293 }
1294
1295 /**
1296  *      dev_get_alias - get ifalias of a device
1297  *      @dev: device
1298  *      @name: buffer to store name of ifalias
1299  *      @len: size of buffer
1300  *
1301  *      get ifalias for a device.  Caller must make sure dev cannot go
1302  *      away,  e.g. rcu read lock or own a reference count to device.
1303  */
1304 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1305 {
1306         const struct dev_ifalias *alias;
1307         int ret = 0;
1308
1309         rcu_read_lock();
1310         alias = rcu_dereference(dev->ifalias);
1311         if (alias)
1312                 ret = snprintf(name, len, "%s", alias->ifalias);
1313         rcu_read_unlock();
1314
1315         return ret;
1316 }
1317
1318 /**
1319  *      netdev_features_change - device changes features
1320  *      @dev: device to cause notification
1321  *
1322  *      Called to indicate a device has changed features.
1323  */
1324 void netdev_features_change(struct net_device *dev)
1325 {
1326         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1327 }
1328 EXPORT_SYMBOL(netdev_features_change);
1329
1330 /**
1331  *      netdev_state_change - device changes state
1332  *      @dev: device to cause notification
1333  *
1334  *      Called to indicate a device has changed state. This function calls
1335  *      the notifier chains for netdev_chain and sends a NEWLINK message
1336  *      to the routing socket.
1337  */
1338 void netdev_state_change(struct net_device *dev)
1339 {
1340         if (dev->flags & IFF_UP) {
1341                 struct netdev_notifier_change_info change_info = {
1342                         .info.dev = dev,
1343                 };
1344
1345                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1346                                               &change_info.info);
1347                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1348         }
1349 }
1350 EXPORT_SYMBOL(netdev_state_change);
1351
1352 /**
1353  * netdev_notify_peers - notify network peers about existence of @dev
1354  * @dev: network device
1355  *
1356  * Generate traffic such that interested network peers are aware of
1357  * @dev, such as by generating a gratuitous ARP. This may be used when
1358  * a device wants to inform the rest of the network about some sort of
1359  * reconfiguration such as a failover event or virtual machine
1360  * migration.
1361  */
1362 void netdev_notify_peers(struct net_device *dev)
1363 {
1364         rtnl_lock();
1365         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1366         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1367         rtnl_unlock();
1368 }
1369 EXPORT_SYMBOL(netdev_notify_peers);
1370
1371 static int __dev_open(struct net_device *dev)
1372 {
1373         const struct net_device_ops *ops = dev->netdev_ops;
1374         int ret;
1375
1376         ASSERT_RTNL();
1377
1378         if (!netif_device_present(dev))
1379                 return -ENODEV;
1380
1381         /* Block netpoll from trying to do any rx path servicing.
1382          * If we don't do this there is a chance ndo_poll_controller
1383          * or ndo_poll may be running while we open the device
1384          */
1385         netpoll_poll_disable(dev);
1386
1387         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1388         ret = notifier_to_errno(ret);
1389         if (ret)
1390                 return ret;
1391
1392         set_bit(__LINK_STATE_START, &dev->state);
1393
1394         if (ops->ndo_validate_addr)
1395                 ret = ops->ndo_validate_addr(dev);
1396
1397         if (!ret && ops->ndo_open)
1398                 ret = ops->ndo_open(dev);
1399
1400         netpoll_poll_enable(dev);
1401
1402         if (ret)
1403                 clear_bit(__LINK_STATE_START, &dev->state);
1404         else {
1405                 dev->flags |= IFF_UP;
1406                 dev_set_rx_mode(dev);
1407                 dev_activate(dev);
1408                 add_device_randomness(dev->dev_addr, dev->addr_len);
1409         }
1410
1411         return ret;
1412 }
1413
1414 /**
1415  *      dev_open        - prepare an interface for use.
1416  *      @dev:   device to open
1417  *
1418  *      Takes a device from down to up state. The device's private open
1419  *      function is invoked and then the multicast lists are loaded. Finally
1420  *      the device is moved into the up state and a %NETDEV_UP message is
1421  *      sent to the netdev notifier chain.
1422  *
1423  *      Calling this function on an active interface is a nop. On a failure
1424  *      a negative errno code is returned.
1425  */
1426 int dev_open(struct net_device *dev)
1427 {
1428         int ret;
1429
1430         if (dev->flags & IFF_UP)
1431                 return 0;
1432
1433         ret = __dev_open(dev);
1434         if (ret < 0)
1435                 return ret;
1436
1437         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1438         call_netdevice_notifiers(NETDEV_UP, dev);
1439
1440         return ret;
1441 }
1442 EXPORT_SYMBOL(dev_open);
1443
1444 static void __dev_close_many(struct list_head *head)
1445 {
1446         struct net_device *dev;
1447
1448         ASSERT_RTNL();
1449         might_sleep();
1450
1451         list_for_each_entry(dev, head, close_list) {
1452                 /* Temporarily disable netpoll until the interface is down */
1453                 netpoll_poll_disable(dev);
1454
1455                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1456
1457                 clear_bit(__LINK_STATE_START, &dev->state);
1458
1459                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1460                  * can be even on different cpu. So just clear netif_running().
1461                  *
1462                  * dev->stop() will invoke napi_disable() on all of it's
1463                  * napi_struct instances on this device.
1464                  */
1465                 smp_mb__after_atomic(); /* Commit netif_running(). */
1466         }
1467
1468         dev_deactivate_many(head);
1469
1470         list_for_each_entry(dev, head, close_list) {
1471                 const struct net_device_ops *ops = dev->netdev_ops;
1472
1473                 /*
1474                  *      Call the device specific close. This cannot fail.
1475                  *      Only if device is UP
1476                  *
1477                  *      We allow it to be called even after a DETACH hot-plug
1478                  *      event.
1479                  */
1480                 if (ops->ndo_stop)
1481                         ops->ndo_stop(dev);
1482
1483                 dev->flags &= ~IFF_UP;
1484                 netpoll_poll_enable(dev);
1485         }
1486 }
1487
1488 static void __dev_close(struct net_device *dev)
1489 {
1490         LIST_HEAD(single);
1491
1492         list_add(&dev->close_list, &single);
1493         __dev_close_many(&single);
1494         list_del(&single);
1495 }
1496
1497 void dev_close_many(struct list_head *head, bool unlink)
1498 {
1499         struct net_device *dev, *tmp;
1500
1501         /* Remove the devices that don't need to be closed */
1502         list_for_each_entry_safe(dev, tmp, head, close_list)
1503                 if (!(dev->flags & IFF_UP))
1504                         list_del_init(&dev->close_list);
1505
1506         __dev_close_many(head);
1507
1508         list_for_each_entry_safe(dev, tmp, head, close_list) {
1509                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1510                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1511                 if (unlink)
1512                         list_del_init(&dev->close_list);
1513         }
1514 }
1515 EXPORT_SYMBOL(dev_close_many);
1516
1517 /**
1518  *      dev_close - shutdown an interface.
1519  *      @dev: device to shutdown
1520  *
1521  *      This function moves an active device into down state. A
1522  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1523  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1524  *      chain.
1525  */
1526 void dev_close(struct net_device *dev)
1527 {
1528         if (dev->flags & IFF_UP) {
1529                 LIST_HEAD(single);
1530
1531                 list_add(&dev->close_list, &single);
1532                 dev_close_many(&single, true);
1533                 list_del(&single);
1534         }
1535 }
1536 EXPORT_SYMBOL(dev_close);
1537
1538
1539 /**
1540  *      dev_disable_lro - disable Large Receive Offload on a device
1541  *      @dev: device
1542  *
1543  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1544  *      called under RTNL.  This is needed if received packets may be
1545  *      forwarded to another interface.
1546  */
1547 void dev_disable_lro(struct net_device *dev)
1548 {
1549         struct net_device *lower_dev;
1550         struct list_head *iter;
1551
1552         dev->wanted_features &= ~NETIF_F_LRO;
1553         netdev_update_features(dev);
1554
1555         if (unlikely(dev->features & NETIF_F_LRO))
1556                 netdev_WARN(dev, "failed to disable LRO!\n");
1557
1558         netdev_for_each_lower_dev(dev, lower_dev, iter)
1559                 dev_disable_lro(lower_dev);
1560 }
1561 EXPORT_SYMBOL(dev_disable_lro);
1562
1563 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1564                                    struct net_device *dev)
1565 {
1566         struct netdev_notifier_info info = {
1567                 .dev = dev,
1568         };
1569
1570         return nb->notifier_call(nb, val, &info);
1571 }
1572
1573 static int dev_boot_phase = 1;
1574
1575 /**
1576  * register_netdevice_notifier - register a network notifier block
1577  * @nb: notifier
1578  *
1579  * Register a notifier to be called when network device events occur.
1580  * The notifier passed is linked into the kernel structures and must
1581  * not be reused until it has been unregistered. A negative errno code
1582  * is returned on a failure.
1583  *
1584  * When registered all registration and up events are replayed
1585  * to the new notifier to allow device to have a race free
1586  * view of the network device list.
1587  */
1588
1589 int register_netdevice_notifier(struct notifier_block *nb)
1590 {
1591         struct net_device *dev;
1592         struct net_device *last;
1593         struct net *net;
1594         int err;
1595
1596         rtnl_lock();
1597         err = raw_notifier_chain_register(&netdev_chain, nb);
1598         if (err)
1599                 goto unlock;
1600         if (dev_boot_phase)
1601                 goto unlock;
1602         for_each_net(net) {
1603                 for_each_netdev(net, dev) {
1604                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1605                         err = notifier_to_errno(err);
1606                         if (err)
1607                                 goto rollback;
1608
1609                         if (!(dev->flags & IFF_UP))
1610                                 continue;
1611
1612                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1613                 }
1614         }
1615
1616 unlock:
1617         rtnl_unlock();
1618         return err;
1619
1620 rollback:
1621         last = dev;
1622         for_each_net(net) {
1623                 for_each_netdev(net, dev) {
1624                         if (dev == last)
1625                                 goto outroll;
1626
1627                         if (dev->flags & IFF_UP) {
1628                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1629                                                         dev);
1630                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1631                         }
1632                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1633                 }
1634         }
1635
1636 outroll:
1637         raw_notifier_chain_unregister(&netdev_chain, nb);
1638         goto unlock;
1639 }
1640 EXPORT_SYMBOL(register_netdevice_notifier);
1641
1642 /**
1643  * unregister_netdevice_notifier - unregister a network notifier block
1644  * @nb: notifier
1645  *
1646  * Unregister a notifier previously registered by
1647  * register_netdevice_notifier(). The notifier is unlinked into the
1648  * kernel structures and may then be reused. A negative errno code
1649  * is returned on a failure.
1650  *
1651  * After unregistering unregister and down device events are synthesized
1652  * for all devices on the device list to the removed notifier to remove
1653  * the need for special case cleanup code.
1654  */
1655
1656 int unregister_netdevice_notifier(struct notifier_block *nb)
1657 {
1658         struct net_device *dev;
1659         struct net *net;
1660         int err;
1661
1662         rtnl_lock();
1663         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1664         if (err)
1665                 goto unlock;
1666
1667         for_each_net(net) {
1668                 for_each_netdev(net, dev) {
1669                         if (dev->flags & IFF_UP) {
1670                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1671                                                         dev);
1672                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1673                         }
1674                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1675                 }
1676         }
1677 unlock:
1678         rtnl_unlock();
1679         return err;
1680 }
1681 EXPORT_SYMBOL(unregister_netdevice_notifier);
1682
1683 /**
1684  *      call_netdevice_notifiers_info - call all network notifier blocks
1685  *      @val: value passed unmodified to notifier function
1686  *      @dev: net_device pointer passed unmodified to notifier function
1687  *      @info: notifier information data
1688  *
1689  *      Call all network notifier blocks.  Parameters and return value
1690  *      are as for raw_notifier_call_chain().
1691  */
1692
1693 static int call_netdevice_notifiers_info(unsigned long val,
1694                                          struct netdev_notifier_info *info)
1695 {
1696         ASSERT_RTNL();
1697         return raw_notifier_call_chain(&netdev_chain, val, info);
1698 }
1699
1700 /**
1701  *      call_netdevice_notifiers - call all network notifier blocks
1702  *      @val: value passed unmodified to notifier function
1703  *      @dev: net_device pointer passed unmodified to notifier function
1704  *
1705  *      Call all network notifier blocks.  Parameters and return value
1706  *      are as for raw_notifier_call_chain().
1707  */
1708
1709 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1710 {
1711         struct netdev_notifier_info info = {
1712                 .dev = dev,
1713         };
1714
1715         return call_netdevice_notifiers_info(val, &info);
1716 }
1717 EXPORT_SYMBOL(call_netdevice_notifiers);
1718
1719 #ifdef CONFIG_NET_INGRESS
1720 static struct static_key ingress_needed __read_mostly;
1721
1722 void net_inc_ingress_queue(void)
1723 {
1724         static_key_slow_inc(&ingress_needed);
1725 }
1726 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1727
1728 void net_dec_ingress_queue(void)
1729 {
1730         static_key_slow_dec(&ingress_needed);
1731 }
1732 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1733 #endif
1734
1735 #ifdef CONFIG_NET_EGRESS
1736 static struct static_key egress_needed __read_mostly;
1737
1738 void net_inc_egress_queue(void)
1739 {
1740         static_key_slow_inc(&egress_needed);
1741 }
1742 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1743
1744 void net_dec_egress_queue(void)
1745 {
1746         static_key_slow_dec(&egress_needed);
1747 }
1748 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1749 #endif
1750
1751 static struct static_key netstamp_needed __read_mostly;
1752 #ifdef HAVE_JUMP_LABEL
1753 static atomic_t netstamp_needed_deferred;
1754 static atomic_t netstamp_wanted;
1755 static void netstamp_clear(struct work_struct *work)
1756 {
1757         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1758         int wanted;
1759
1760         wanted = atomic_add_return(deferred, &netstamp_wanted);
1761         if (wanted > 0)
1762                 static_key_enable(&netstamp_needed);
1763         else
1764                 static_key_disable(&netstamp_needed);
1765 }
1766 static DECLARE_WORK(netstamp_work, netstamp_clear);
1767 #endif
1768
1769 void net_enable_timestamp(void)
1770 {
1771 #ifdef HAVE_JUMP_LABEL
1772         int wanted;
1773
1774         while (1) {
1775                 wanted = atomic_read(&netstamp_wanted);
1776                 if (wanted <= 0)
1777                         break;
1778                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1779                         return;
1780         }
1781         atomic_inc(&netstamp_needed_deferred);
1782         schedule_work(&netstamp_work);
1783 #else
1784         static_key_slow_inc(&netstamp_needed);
1785 #endif
1786 }
1787 EXPORT_SYMBOL(net_enable_timestamp);
1788
1789 void net_disable_timestamp(void)
1790 {
1791 #ifdef HAVE_JUMP_LABEL
1792         int wanted;
1793
1794         while (1) {
1795                 wanted = atomic_read(&netstamp_wanted);
1796                 if (wanted <= 1)
1797                         break;
1798                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1799                         return;
1800         }
1801         atomic_dec(&netstamp_needed_deferred);
1802         schedule_work(&netstamp_work);
1803 #else
1804         static_key_slow_dec(&netstamp_needed);
1805 #endif
1806 }
1807 EXPORT_SYMBOL(net_disable_timestamp);
1808
1809 static inline void net_timestamp_set(struct sk_buff *skb)
1810 {
1811         skb->tstamp = 0;
1812         if (static_key_false(&netstamp_needed))
1813                 __net_timestamp(skb);
1814 }
1815
1816 #define net_timestamp_check(COND, SKB)                  \
1817         if (static_key_false(&netstamp_needed)) {               \
1818                 if ((COND) && !(SKB)->tstamp)   \
1819                         __net_timestamp(SKB);           \
1820         }                                               \
1821
1822 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1823 {
1824         unsigned int len;
1825
1826         if (!(dev->flags & IFF_UP))
1827                 return false;
1828
1829         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1830         if (skb->len <= len)
1831                 return true;
1832
1833         /* if TSO is enabled, we don't care about the length as the packet
1834          * could be forwarded without being segmented before
1835          */
1836         if (skb_is_gso(skb))
1837                 return true;
1838
1839         return false;
1840 }
1841 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1842
1843 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1844 {
1845         int ret = ____dev_forward_skb(dev, skb);
1846
1847         if (likely(!ret)) {
1848                 skb->protocol = eth_type_trans(skb, dev);
1849                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1850         }
1851
1852         return ret;
1853 }
1854 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1855
1856 /**
1857  * dev_forward_skb - loopback an skb to another netif
1858  *
1859  * @dev: destination network device
1860  * @skb: buffer to forward
1861  *
1862  * return values:
1863  *      NET_RX_SUCCESS  (no congestion)
1864  *      NET_RX_DROP     (packet was dropped, but freed)
1865  *
1866  * dev_forward_skb can be used for injecting an skb from the
1867  * start_xmit function of one device into the receive queue
1868  * of another device.
1869  *
1870  * The receiving device may be in another namespace, so
1871  * we have to clear all information in the skb that could
1872  * impact namespace isolation.
1873  */
1874 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1875 {
1876         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1877 }
1878 EXPORT_SYMBOL_GPL(dev_forward_skb);
1879
1880 static inline int deliver_skb(struct sk_buff *skb,
1881                               struct packet_type *pt_prev,
1882                               struct net_device *orig_dev)
1883 {
1884         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1885                 return -ENOMEM;
1886         refcount_inc(&skb->users);
1887         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1888 }
1889
1890 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1891                                           struct packet_type **pt,
1892                                           struct net_device *orig_dev,
1893                                           __be16 type,
1894                                           struct list_head *ptype_list)
1895 {
1896         struct packet_type *ptype, *pt_prev = *pt;
1897
1898         list_for_each_entry_rcu(ptype, ptype_list, list) {
1899                 if (ptype->type != type)
1900                         continue;
1901                 if (pt_prev)
1902                         deliver_skb(skb, pt_prev, orig_dev);
1903                 pt_prev = ptype;
1904         }
1905         *pt = pt_prev;
1906 }
1907
1908 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1909 {
1910         if (!ptype->af_packet_priv || !skb->sk)
1911                 return false;
1912
1913         if (ptype->id_match)
1914                 return ptype->id_match(ptype, skb->sk);
1915         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1916                 return true;
1917
1918         return false;
1919 }
1920
1921 /*
1922  *      Support routine. Sends outgoing frames to any network
1923  *      taps currently in use.
1924  */
1925
1926 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1927 {
1928         struct packet_type *ptype;
1929         struct sk_buff *skb2 = NULL;
1930         struct packet_type *pt_prev = NULL;
1931         struct list_head *ptype_list = &ptype_all;
1932
1933         rcu_read_lock();
1934 again:
1935         list_for_each_entry_rcu(ptype, ptype_list, list) {
1936                 /* Never send packets back to the socket
1937                  * they originated from - MvS (miquels@drinkel.ow.org)
1938                  */
1939                 if (skb_loop_sk(ptype, skb))
1940                         continue;
1941
1942                 if (pt_prev) {
1943                         deliver_skb(skb2, pt_prev, skb->dev);
1944                         pt_prev = ptype;
1945                         continue;
1946                 }
1947
1948                 /* need to clone skb, done only once */
1949                 skb2 = skb_clone(skb, GFP_ATOMIC);
1950                 if (!skb2)
1951                         goto out_unlock;
1952
1953                 net_timestamp_set(skb2);
1954
1955                 /* skb->nh should be correctly
1956                  * set by sender, so that the second statement is
1957                  * just protection against buggy protocols.
1958                  */
1959                 skb_reset_mac_header(skb2);
1960
1961                 if (skb_network_header(skb2) < skb2->data ||
1962                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1963                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1964                                              ntohs(skb2->protocol),
1965                                              dev->name);
1966                         skb_reset_network_header(skb2);
1967                 }
1968
1969                 skb2->transport_header = skb2->network_header;
1970                 skb2->pkt_type = PACKET_OUTGOING;
1971                 pt_prev = ptype;
1972         }
1973
1974         if (ptype_list == &ptype_all) {
1975                 ptype_list = &dev->ptype_all;
1976                 goto again;
1977         }
1978 out_unlock:
1979         if (pt_prev) {
1980                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1981                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1982                 else
1983                         kfree_skb(skb2);
1984         }
1985         rcu_read_unlock();
1986 }
1987 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1988
1989 /**
1990  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1991  * @dev: Network device
1992  * @txq: number of queues available
1993  *
1994  * If real_num_tx_queues is changed the tc mappings may no longer be
1995  * valid. To resolve this verify the tc mapping remains valid and if
1996  * not NULL the mapping. With no priorities mapping to this
1997  * offset/count pair it will no longer be used. In the worst case TC0
1998  * is invalid nothing can be done so disable priority mappings. If is
1999  * expected that drivers will fix this mapping if they can before
2000  * calling netif_set_real_num_tx_queues.
2001  */
2002 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2003 {
2004         int i;
2005         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2006
2007         /* If TC0 is invalidated disable TC mapping */
2008         if (tc->offset + tc->count > txq) {
2009                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2010                 dev->num_tc = 0;
2011                 return;
2012         }
2013
2014         /* Invalidated prio to tc mappings set to TC0 */
2015         for (i = 1; i < TC_BITMASK + 1; i++) {
2016                 int q = netdev_get_prio_tc_map(dev, i);
2017
2018                 tc = &dev->tc_to_txq[q];
2019                 if (tc->offset + tc->count > txq) {
2020                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2021                                 i, q);
2022                         netdev_set_prio_tc_map(dev, i, 0);
2023                 }
2024         }
2025 }
2026
2027 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2028 {
2029         if (dev->num_tc) {
2030                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2031                 int i;
2032
2033                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2034                         if ((txq - tc->offset) < tc->count)
2035                                 return i;
2036                 }
2037
2038                 return -1;
2039         }
2040
2041         return 0;
2042 }
2043 EXPORT_SYMBOL(netdev_txq_to_tc);
2044
2045 #ifdef CONFIG_XPS
2046 static DEFINE_MUTEX(xps_map_mutex);
2047 #define xmap_dereference(P)             \
2048         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2049
2050 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2051                              int tci, u16 index)
2052 {
2053         struct xps_map *map = NULL;
2054         int pos;
2055
2056         if (dev_maps)
2057                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2058         if (!map)
2059                 return false;
2060
2061         for (pos = map->len; pos--;) {
2062                 if (map->queues[pos] != index)
2063                         continue;
2064
2065                 if (map->len > 1) {
2066                         map->queues[pos] = map->queues[--map->len];
2067                         break;
2068                 }
2069
2070                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2071                 kfree_rcu(map, rcu);
2072                 return false;
2073         }
2074
2075         return true;
2076 }
2077
2078 static bool remove_xps_queue_cpu(struct net_device *dev,
2079                                  struct xps_dev_maps *dev_maps,
2080                                  int cpu, u16 offset, u16 count)
2081 {
2082         int num_tc = dev->num_tc ? : 1;
2083         bool active = false;
2084         int tci;
2085
2086         for (tci = cpu * num_tc; num_tc--; tci++) {
2087                 int i, j;
2088
2089                 for (i = count, j = offset; i--; j++) {
2090                         if (!remove_xps_queue(dev_maps, cpu, j))
2091                                 break;
2092                 }
2093
2094                 active |= i < 0;
2095         }
2096
2097         return active;
2098 }
2099
2100 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2101                                    u16 count)
2102 {
2103         struct xps_dev_maps *dev_maps;
2104         int cpu, i;
2105         bool active = false;
2106
2107         mutex_lock(&xps_map_mutex);
2108         dev_maps = xmap_dereference(dev->xps_maps);
2109
2110         if (!dev_maps)
2111                 goto out_no_maps;
2112
2113         for_each_possible_cpu(cpu)
2114                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2115                                                offset, count);
2116
2117         if (!active) {
2118                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2119                 kfree_rcu(dev_maps, rcu);
2120         }
2121
2122         for (i = offset + (count - 1); count--; i--)
2123                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2124                                              NUMA_NO_NODE);
2125
2126 out_no_maps:
2127         mutex_unlock(&xps_map_mutex);
2128 }
2129
2130 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2131 {
2132         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2133 }
2134
2135 static struct xps_map *expand_xps_map(struct xps_map *map,
2136                                       int cpu, u16 index)
2137 {
2138         struct xps_map *new_map;
2139         int alloc_len = XPS_MIN_MAP_ALLOC;
2140         int i, pos;
2141
2142         for (pos = 0; map && pos < map->len; pos++) {
2143                 if (map->queues[pos] != index)
2144                         continue;
2145                 return map;
2146         }
2147
2148         /* Need to add queue to this CPU's existing map */
2149         if (map) {
2150                 if (pos < map->alloc_len)
2151                         return map;
2152
2153                 alloc_len = map->alloc_len * 2;
2154         }
2155
2156         /* Need to allocate new map to store queue on this CPU's map */
2157         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2158                                cpu_to_node(cpu));
2159         if (!new_map)
2160                 return NULL;
2161
2162         for (i = 0; i < pos; i++)
2163                 new_map->queues[i] = map->queues[i];
2164         new_map->alloc_len = alloc_len;
2165         new_map->len = pos;
2166
2167         return new_map;
2168 }
2169
2170 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2171                         u16 index)
2172 {
2173         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2174         int i, cpu, tci, numa_node_id = -2;
2175         int maps_sz, num_tc = 1, tc = 0;
2176         struct xps_map *map, *new_map;
2177         bool active = false;
2178
2179         if (dev->num_tc) {
2180                 num_tc = dev->num_tc;
2181                 tc = netdev_txq_to_tc(dev, index);
2182                 if (tc < 0)
2183                         return -EINVAL;
2184         }
2185
2186         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2187         if (maps_sz < L1_CACHE_BYTES)
2188                 maps_sz = L1_CACHE_BYTES;
2189
2190         mutex_lock(&xps_map_mutex);
2191
2192         dev_maps = xmap_dereference(dev->xps_maps);
2193
2194         /* allocate memory for queue storage */
2195         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2196                 if (!new_dev_maps)
2197                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2198                 if (!new_dev_maps) {
2199                         mutex_unlock(&xps_map_mutex);
2200                         return -ENOMEM;
2201                 }
2202
2203                 tci = cpu * num_tc + tc;
2204                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2205                                  NULL;
2206
2207                 map = expand_xps_map(map, cpu, index);
2208                 if (!map)
2209                         goto error;
2210
2211                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2212         }
2213
2214         if (!new_dev_maps)
2215                 goto out_no_new_maps;
2216
2217         for_each_possible_cpu(cpu) {
2218                 /* copy maps belonging to foreign traffic classes */
2219                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2220                         /* fill in the new device map from the old device map */
2221                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2222                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2223                 }
2224
2225                 /* We need to explicitly update tci as prevous loop
2226                  * could break out early if dev_maps is NULL.
2227                  */
2228                 tci = cpu * num_tc + tc;
2229
2230                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2231                         /* add queue to CPU maps */
2232                         int pos = 0;
2233
2234                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2235                         while ((pos < map->len) && (map->queues[pos] != index))
2236                                 pos++;
2237
2238                         if (pos == map->len)
2239                                 map->queues[map->len++] = index;
2240 #ifdef CONFIG_NUMA
2241                         if (numa_node_id == -2)
2242                                 numa_node_id = cpu_to_node(cpu);
2243                         else if (numa_node_id != cpu_to_node(cpu))
2244                                 numa_node_id = -1;
2245 #endif
2246                 } else if (dev_maps) {
2247                         /* fill in the new device map from the old device map */
2248                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2249                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2250                 }
2251
2252                 /* copy maps belonging to foreign traffic classes */
2253                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2254                         /* fill in the new device map from the old device map */
2255                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2256                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2257                 }
2258         }
2259
2260         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2261
2262         /* Cleanup old maps */
2263         if (!dev_maps)
2264                 goto out_no_old_maps;
2265
2266         for_each_possible_cpu(cpu) {
2267                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2268                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2269                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2270                         if (map && map != new_map)
2271                                 kfree_rcu(map, rcu);
2272                 }
2273         }
2274
2275         kfree_rcu(dev_maps, rcu);
2276
2277 out_no_old_maps:
2278         dev_maps = new_dev_maps;
2279         active = true;
2280
2281 out_no_new_maps:
2282         /* update Tx queue numa node */
2283         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2284                                      (numa_node_id >= 0) ? numa_node_id :
2285                                      NUMA_NO_NODE);
2286
2287         if (!dev_maps)
2288                 goto out_no_maps;
2289
2290         /* removes queue from unused CPUs */
2291         for_each_possible_cpu(cpu) {
2292                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2293                         active |= remove_xps_queue(dev_maps, tci, index);
2294                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2295                         active |= remove_xps_queue(dev_maps, tci, index);
2296                 for (i = num_tc - tc, tci++; --i; tci++)
2297                         active |= remove_xps_queue(dev_maps, tci, index);
2298         }
2299
2300         /* free map if not active */
2301         if (!active) {
2302                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2303                 kfree_rcu(dev_maps, rcu);
2304         }
2305
2306 out_no_maps:
2307         mutex_unlock(&xps_map_mutex);
2308
2309         return 0;
2310 error:
2311         /* remove any maps that we added */
2312         for_each_possible_cpu(cpu) {
2313                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2314                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2315                         map = dev_maps ?
2316                               xmap_dereference(dev_maps->cpu_map[tci]) :
2317                               NULL;
2318                         if (new_map && new_map != map)
2319                                 kfree(new_map);
2320                 }
2321         }
2322
2323         mutex_unlock(&xps_map_mutex);
2324
2325         kfree(new_dev_maps);
2326         return -ENOMEM;
2327 }
2328 EXPORT_SYMBOL(netif_set_xps_queue);
2329
2330 #endif
2331 void netdev_reset_tc(struct net_device *dev)
2332 {
2333 #ifdef CONFIG_XPS
2334         netif_reset_xps_queues_gt(dev, 0);
2335 #endif
2336         dev->num_tc = 0;
2337         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2338         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2339 }
2340 EXPORT_SYMBOL(netdev_reset_tc);
2341
2342 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2343 {
2344         if (tc >= dev->num_tc)
2345                 return -EINVAL;
2346
2347 #ifdef CONFIG_XPS
2348         netif_reset_xps_queues(dev, offset, count);
2349 #endif
2350         dev->tc_to_txq[tc].count = count;
2351         dev->tc_to_txq[tc].offset = offset;
2352         return 0;
2353 }
2354 EXPORT_SYMBOL(netdev_set_tc_queue);
2355
2356 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2357 {
2358         if (num_tc > TC_MAX_QUEUE)
2359                 return -EINVAL;
2360
2361 #ifdef CONFIG_XPS
2362         netif_reset_xps_queues_gt(dev, 0);
2363 #endif
2364         dev->num_tc = num_tc;
2365         return 0;
2366 }
2367 EXPORT_SYMBOL(netdev_set_num_tc);
2368
2369 /*
2370  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2371  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2372  */
2373 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2374 {
2375         int rc;
2376
2377         if (txq < 1 || txq > dev->num_tx_queues)
2378                 return -EINVAL;
2379
2380         if (dev->reg_state == NETREG_REGISTERED ||
2381             dev->reg_state == NETREG_UNREGISTERING) {
2382                 ASSERT_RTNL();
2383
2384                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2385                                                   txq);
2386                 if (rc)
2387                         return rc;
2388
2389                 if (dev->num_tc)
2390                         netif_setup_tc(dev, txq);
2391
2392                 if (txq < dev->real_num_tx_queues) {
2393                         qdisc_reset_all_tx_gt(dev, txq);
2394 #ifdef CONFIG_XPS
2395                         netif_reset_xps_queues_gt(dev, txq);
2396 #endif
2397                 }
2398         }
2399
2400         dev->real_num_tx_queues = txq;
2401         return 0;
2402 }
2403 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2404
2405 #ifdef CONFIG_SYSFS
2406 /**
2407  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2408  *      @dev: Network device
2409  *      @rxq: Actual number of RX queues
2410  *
2411  *      This must be called either with the rtnl_lock held or before
2412  *      registration of the net device.  Returns 0 on success, or a
2413  *      negative error code.  If called before registration, it always
2414  *      succeeds.
2415  */
2416 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2417 {
2418         int rc;
2419
2420         if (rxq < 1 || rxq > dev->num_rx_queues)
2421                 return -EINVAL;
2422
2423         if (dev->reg_state == NETREG_REGISTERED) {
2424                 ASSERT_RTNL();
2425
2426                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2427                                                   rxq);
2428                 if (rc)
2429                         return rc;
2430         }
2431
2432         dev->real_num_rx_queues = rxq;
2433         return 0;
2434 }
2435 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2436 #endif
2437
2438 /**
2439  * netif_get_num_default_rss_queues - default number of RSS queues
2440  *
2441  * This routine should set an upper limit on the number of RSS queues
2442  * used by default by multiqueue devices.
2443  */
2444 int netif_get_num_default_rss_queues(void)
2445 {
2446         return is_kdump_kernel() ?
2447                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2448 }
2449 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2450
2451 static void __netif_reschedule(struct Qdisc *q)
2452 {
2453         struct softnet_data *sd;
2454         unsigned long flags;
2455
2456         local_irq_save(flags);
2457         sd = this_cpu_ptr(&softnet_data);
2458         q->next_sched = NULL;
2459         *sd->output_queue_tailp = q;
2460         sd->output_queue_tailp = &q->next_sched;
2461         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2462         local_irq_restore(flags);
2463 }
2464
2465 void __netif_schedule(struct Qdisc *q)
2466 {
2467         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2468                 __netif_reschedule(q);
2469 }
2470 EXPORT_SYMBOL(__netif_schedule);
2471
2472 struct dev_kfree_skb_cb {
2473         enum skb_free_reason reason;
2474 };
2475
2476 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2477 {
2478         return (struct dev_kfree_skb_cb *)skb->cb;
2479 }
2480
2481 void netif_schedule_queue(struct netdev_queue *txq)
2482 {
2483         rcu_read_lock();
2484         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2485                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2486
2487                 __netif_schedule(q);
2488         }
2489         rcu_read_unlock();
2490 }
2491 EXPORT_SYMBOL(netif_schedule_queue);
2492
2493 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2494 {
2495         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2496                 struct Qdisc *q;
2497
2498                 rcu_read_lock();
2499                 q = rcu_dereference(dev_queue->qdisc);
2500                 __netif_schedule(q);
2501                 rcu_read_unlock();
2502         }
2503 }
2504 EXPORT_SYMBOL(netif_tx_wake_queue);
2505
2506 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2507 {
2508         unsigned long flags;
2509
2510         if (unlikely(!skb))
2511                 return;
2512
2513         if (likely(refcount_read(&skb->users) == 1)) {
2514                 smp_rmb();
2515                 refcount_set(&skb->users, 0);
2516         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2517                 return;
2518         }
2519         get_kfree_skb_cb(skb)->reason = reason;
2520         local_irq_save(flags);
2521         skb->next = __this_cpu_read(softnet_data.completion_queue);
2522         __this_cpu_write(softnet_data.completion_queue, skb);
2523         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2524         local_irq_restore(flags);
2525 }
2526 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2527
2528 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2529 {
2530         if (in_irq() || irqs_disabled())
2531                 __dev_kfree_skb_irq(skb, reason);
2532         else
2533                 dev_kfree_skb(skb);
2534 }
2535 EXPORT_SYMBOL(__dev_kfree_skb_any);
2536
2537
2538 /**
2539  * netif_device_detach - mark device as removed
2540  * @dev: network device
2541  *
2542  * Mark device as removed from system and therefore no longer available.
2543  */
2544 void netif_device_detach(struct net_device *dev)
2545 {
2546         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2547             netif_running(dev)) {
2548                 netif_tx_stop_all_queues(dev);
2549         }
2550 }
2551 EXPORT_SYMBOL(netif_device_detach);
2552
2553 /**
2554  * netif_device_attach - mark device as attached
2555  * @dev: network device
2556  *
2557  * Mark device as attached from system and restart if needed.
2558  */
2559 void netif_device_attach(struct net_device *dev)
2560 {
2561         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2562             netif_running(dev)) {
2563                 netif_tx_wake_all_queues(dev);
2564                 __netdev_watchdog_up(dev);
2565         }
2566 }
2567 EXPORT_SYMBOL(netif_device_attach);
2568
2569 /*
2570  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2571  * to be used as a distribution range.
2572  */
2573 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2574                   unsigned int num_tx_queues)
2575 {
2576         u32 hash;
2577         u16 qoffset = 0;
2578         u16 qcount = num_tx_queues;
2579
2580         if (skb_rx_queue_recorded(skb)) {
2581                 hash = skb_get_rx_queue(skb);
2582                 while (unlikely(hash >= num_tx_queues))
2583                         hash -= num_tx_queues;
2584                 return hash;
2585         }
2586
2587         if (dev->num_tc) {
2588                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2589
2590                 qoffset = dev->tc_to_txq[tc].offset;
2591                 qcount = dev->tc_to_txq[tc].count;
2592         }
2593
2594         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2595 }
2596 EXPORT_SYMBOL(__skb_tx_hash);
2597
2598 static void skb_warn_bad_offload(const struct sk_buff *skb)
2599 {
2600         static const netdev_features_t null_features;
2601         struct net_device *dev = skb->dev;
2602         const char *name = "";
2603
2604         if (!net_ratelimit())
2605                 return;
2606
2607         if (dev) {
2608                 if (dev->dev.parent)
2609                         name = dev_driver_string(dev->dev.parent);
2610                 else
2611                         name = netdev_name(dev);
2612         }
2613         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2614              "gso_type=%d ip_summed=%d\n",
2615              name, dev ? &dev->features : &null_features,
2616              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2617              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2618              skb_shinfo(skb)->gso_type, skb->ip_summed);
2619 }
2620
2621 /*
2622  * Invalidate hardware checksum when packet is to be mangled, and
2623  * complete checksum manually on outgoing path.
2624  */
2625 int skb_checksum_help(struct sk_buff *skb)
2626 {
2627         __wsum csum;
2628         int ret = 0, offset;
2629
2630         if (skb->ip_summed == CHECKSUM_COMPLETE)
2631                 goto out_set_summed;
2632
2633         if (unlikely(skb_shinfo(skb)->gso_size)) {
2634                 skb_warn_bad_offload(skb);
2635                 return -EINVAL;
2636         }
2637
2638         /* Before computing a checksum, we should make sure no frag could
2639          * be modified by an external entity : checksum could be wrong.
2640          */
2641         if (skb_has_shared_frag(skb)) {
2642                 ret = __skb_linearize(skb);
2643                 if (ret)
2644                         goto out;
2645         }
2646
2647         offset = skb_checksum_start_offset(skb);
2648         BUG_ON(offset >= skb_headlen(skb));
2649         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2650
2651         offset += skb->csum_offset;
2652         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2653
2654         if (skb_cloned(skb) &&
2655             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2656                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2657                 if (ret)
2658                         goto out;
2659         }
2660
2661         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2662 out_set_summed:
2663         skb->ip_summed = CHECKSUM_NONE;
2664 out:
2665         return ret;
2666 }
2667 EXPORT_SYMBOL(skb_checksum_help);
2668
2669 int skb_crc32c_csum_help(struct sk_buff *skb)
2670 {
2671         __le32 crc32c_csum;
2672         int ret = 0, offset, start;
2673
2674         if (skb->ip_summed != CHECKSUM_PARTIAL)
2675                 goto out;
2676
2677         if (unlikely(skb_is_gso(skb)))
2678                 goto out;
2679
2680         /* Before computing a checksum, we should make sure no frag could
2681          * be modified by an external entity : checksum could be wrong.
2682          */
2683         if (unlikely(skb_has_shared_frag(skb))) {
2684                 ret = __skb_linearize(skb);
2685                 if (ret)
2686                         goto out;
2687         }
2688         start = skb_checksum_start_offset(skb);
2689         offset = start + offsetof(struct sctphdr, checksum);
2690         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2691                 ret = -EINVAL;
2692                 goto out;
2693         }
2694         if (skb_cloned(skb) &&
2695             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2696                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2697                 if (ret)
2698                         goto out;
2699         }
2700         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2701                                                   skb->len - start, ~(__u32)0,
2702                                                   crc32c_csum_stub));
2703         *(__le32 *)(skb->data + offset) = crc32c_csum;
2704         skb->ip_summed = CHECKSUM_NONE;
2705         skb->csum_not_inet = 0;
2706 out:
2707         return ret;
2708 }
2709
2710 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2711 {
2712         __be16 type = skb->protocol;
2713
2714         /* Tunnel gso handlers can set protocol to ethernet. */
2715         if (type == htons(ETH_P_TEB)) {
2716                 struct ethhdr *eth;
2717
2718                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2719                         return 0;
2720
2721                 eth = (struct ethhdr *)skb_mac_header(skb);
2722                 type = eth->h_proto;
2723         }
2724
2725         return __vlan_get_protocol(skb, type, depth);
2726 }
2727
2728 /**
2729  *      skb_mac_gso_segment - mac layer segmentation handler.
2730  *      @skb: buffer to segment
2731  *      @features: features for the output path (see dev->features)
2732  */
2733 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2734                                     netdev_features_t features)
2735 {
2736         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2737         struct packet_offload *ptype;
2738         int vlan_depth = skb->mac_len;
2739         __be16 type = skb_network_protocol(skb, &vlan_depth);
2740
2741         if (unlikely(!type))
2742                 return ERR_PTR(-EINVAL);
2743
2744         __skb_pull(skb, vlan_depth);
2745
2746         rcu_read_lock();
2747         list_for_each_entry_rcu(ptype, &offload_base, list) {
2748                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2749                         segs = ptype->callbacks.gso_segment(skb, features);
2750                         break;
2751                 }
2752         }
2753         rcu_read_unlock();
2754
2755         __skb_push(skb, skb->data - skb_mac_header(skb));
2756
2757         return segs;
2758 }
2759 EXPORT_SYMBOL(skb_mac_gso_segment);
2760
2761
2762 /* openvswitch calls this on rx path, so we need a different check.
2763  */
2764 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2765 {
2766         if (tx_path)
2767                 return skb->ip_summed != CHECKSUM_PARTIAL;
2768
2769         return skb->ip_summed == CHECKSUM_NONE;
2770 }
2771
2772 /**
2773  *      __skb_gso_segment - Perform segmentation on skb.
2774  *      @skb: buffer to segment
2775  *      @features: features for the output path (see dev->features)
2776  *      @tx_path: whether it is called in TX path
2777  *
2778  *      This function segments the given skb and returns a list of segments.
2779  *
2780  *      It may return NULL if the skb requires no segmentation.  This is
2781  *      only possible when GSO is used for verifying header integrity.
2782  *
2783  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2784  */
2785 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2786                                   netdev_features_t features, bool tx_path)
2787 {
2788         struct sk_buff *segs;
2789
2790         if (unlikely(skb_needs_check(skb, tx_path))) {
2791                 int err;
2792
2793                 /* We're going to init ->check field in TCP or UDP header */
2794                 err = skb_cow_head(skb, 0);
2795                 if (err < 0)
2796                         return ERR_PTR(err);
2797         }
2798
2799         /* Only report GSO partial support if it will enable us to
2800          * support segmentation on this frame without needing additional
2801          * work.
2802          */
2803         if (features & NETIF_F_GSO_PARTIAL) {
2804                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2805                 struct net_device *dev = skb->dev;
2806
2807                 partial_features |= dev->features & dev->gso_partial_features;
2808                 if (!skb_gso_ok(skb, features | partial_features))
2809                         features &= ~NETIF_F_GSO_PARTIAL;
2810         }
2811
2812         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2813                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2814
2815         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2816         SKB_GSO_CB(skb)->encap_level = 0;
2817
2818         skb_reset_mac_header(skb);
2819         skb_reset_mac_len(skb);
2820
2821         segs = skb_mac_gso_segment(skb, features);
2822
2823         if (unlikely(skb_needs_check(skb, tx_path)))
2824                 skb_warn_bad_offload(skb);
2825
2826         return segs;
2827 }
2828 EXPORT_SYMBOL(__skb_gso_segment);
2829
2830 /* Take action when hardware reception checksum errors are detected. */
2831 #ifdef CONFIG_BUG
2832 void netdev_rx_csum_fault(struct net_device *dev)
2833 {
2834         if (net_ratelimit()) {
2835                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2836                 dump_stack();
2837         }
2838 }
2839 EXPORT_SYMBOL(netdev_rx_csum_fault);
2840 #endif
2841
2842 /* Actually, we should eliminate this check as soon as we know, that:
2843  * 1. IOMMU is present and allows to map all the memory.
2844  * 2. No high memory really exists on this machine.
2845  */
2846
2847 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2848 {
2849 #ifdef CONFIG_HIGHMEM
2850         int i;
2851
2852         if (!(dev->features & NETIF_F_HIGHDMA)) {
2853                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2854                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2855
2856                         if (PageHighMem(skb_frag_page(frag)))
2857                                 return 1;
2858                 }
2859         }
2860
2861         if (PCI_DMA_BUS_IS_PHYS) {
2862                 struct device *pdev = dev->dev.parent;
2863
2864                 if (!pdev)
2865                         return 0;
2866                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2867                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2868                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2869
2870                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2871                                 return 1;
2872                 }
2873         }
2874 #endif
2875         return 0;
2876 }
2877
2878 /* If MPLS offload request, verify we are testing hardware MPLS features
2879  * instead of standard features for the netdev.
2880  */
2881 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2882 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2883                                            netdev_features_t features,
2884                                            __be16 type)
2885 {
2886         if (eth_p_mpls(type))
2887                 features &= skb->dev->mpls_features;
2888
2889         return features;
2890 }
2891 #else
2892 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2893                                            netdev_features_t features,
2894                                            __be16 type)
2895 {
2896         return features;
2897 }
2898 #endif
2899
2900 static netdev_features_t harmonize_features(struct sk_buff *skb,
2901         netdev_features_t features)
2902 {
2903         int tmp;
2904         __be16 type;
2905
2906         type = skb_network_protocol(skb, &tmp);
2907         features = net_mpls_features(skb, features, type);
2908
2909         if (skb->ip_summed != CHECKSUM_NONE &&
2910             !can_checksum_protocol(features, type)) {
2911                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2912         }
2913         if (illegal_highdma(skb->dev, skb))
2914                 features &= ~NETIF_F_SG;
2915
2916         return features;
2917 }
2918
2919 netdev_features_t passthru_features_check(struct sk_buff *skb,
2920                                           struct net_device *dev,
2921                                           netdev_features_t features)
2922 {
2923         return features;
2924 }
2925 EXPORT_SYMBOL(passthru_features_check);
2926
2927 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2928                                              struct net_device *dev,
2929                                              netdev_features_t features)
2930 {
2931         return vlan_features_check(skb, features);
2932 }
2933
2934 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2935                                             struct net_device *dev,
2936                                             netdev_features_t features)
2937 {
2938         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2939
2940         if (gso_segs > dev->gso_max_segs)
2941                 return features & ~NETIF_F_GSO_MASK;
2942
2943         /* Support for GSO partial features requires software
2944          * intervention before we can actually process the packets
2945          * so we need to strip support for any partial features now
2946          * and we can pull them back in after we have partially
2947          * segmented the frame.
2948          */
2949         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2950                 features &= ~dev->gso_partial_features;
2951
2952         /* Make sure to clear the IPv4 ID mangling feature if the
2953          * IPv4 header has the potential to be fragmented.
2954          */
2955         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2956                 struct iphdr *iph = skb->encapsulation ?
2957                                     inner_ip_hdr(skb) : ip_hdr(skb);
2958
2959                 if (!(iph->frag_off & htons(IP_DF)))
2960                         features &= ~NETIF_F_TSO_MANGLEID;
2961         }
2962
2963         return features;
2964 }
2965
2966 netdev_features_t netif_skb_features(struct sk_buff *skb)
2967 {
2968         struct net_device *dev = skb->dev;
2969         netdev_features_t features = dev->features;
2970
2971         if (skb_is_gso(skb))
2972                 features = gso_features_check(skb, dev, features);
2973
2974         /* If encapsulation offload request, verify we are testing
2975          * hardware encapsulation features instead of standard
2976          * features for the netdev
2977          */
2978         if (skb->encapsulation)
2979                 features &= dev->hw_enc_features;
2980
2981         if (skb_vlan_tagged(skb))
2982                 features = netdev_intersect_features(features,
2983                                                      dev->vlan_features |
2984                                                      NETIF_F_HW_VLAN_CTAG_TX |
2985                                                      NETIF_F_HW_VLAN_STAG_TX);
2986
2987         if (dev->netdev_ops->ndo_features_check)
2988                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2989                                                                 features);
2990         else
2991                 features &= dflt_features_check(skb, dev, features);
2992
2993         return harmonize_features(skb, features);
2994 }
2995 EXPORT_SYMBOL(netif_skb_features);
2996
2997 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2998                     struct netdev_queue *txq, bool more)
2999 {
3000         unsigned int len;
3001         int rc;
3002
3003         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3004                 dev_queue_xmit_nit(skb, dev);
3005
3006         len = skb->len;
3007         trace_net_dev_start_xmit(skb, dev);
3008         rc = netdev_start_xmit(skb, dev, txq, more);
3009         trace_net_dev_xmit(skb, rc, dev, len);
3010
3011         return rc;
3012 }
3013
3014 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3015                                     struct netdev_queue *txq, int *ret)
3016 {
3017         struct sk_buff *skb = first;
3018         int rc = NETDEV_TX_OK;
3019
3020         while (skb) {
3021                 struct sk_buff *next = skb->next;
3022
3023                 skb->next = NULL;
3024                 rc = xmit_one(skb, dev, txq, next != NULL);
3025                 if (unlikely(!dev_xmit_complete(rc))) {
3026                         skb->next = next;
3027                         goto out;
3028                 }
3029
3030                 skb = next;
3031                 if (netif_xmit_stopped(txq) && skb) {
3032                         rc = NETDEV_TX_BUSY;
3033                         break;
3034                 }
3035         }
3036
3037 out:
3038         *ret = rc;
3039         return skb;
3040 }
3041
3042 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3043                                           netdev_features_t features)
3044 {
3045         if (skb_vlan_tag_present(skb) &&
3046             !vlan_hw_offload_capable(features, skb->vlan_proto))
3047                 skb = __vlan_hwaccel_push_inside(skb);
3048         return skb;
3049 }
3050
3051 int skb_csum_hwoffload_help(struct sk_buff *skb,
3052                             const netdev_features_t features)
3053 {
3054         if (unlikely(skb->csum_not_inet))
3055                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3056                         skb_crc32c_csum_help(skb);
3057
3058         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3059 }
3060 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3061
3062 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3063 {
3064         netdev_features_t features;
3065
3066         features = netif_skb_features(skb);
3067         skb = validate_xmit_vlan(skb, features);
3068         if (unlikely(!skb))
3069                 goto out_null;
3070
3071         if (netif_needs_gso(skb, features)) {
3072                 struct sk_buff *segs;
3073
3074                 segs = skb_gso_segment(skb, features);
3075                 if (IS_ERR(segs)) {
3076                         goto out_kfree_skb;
3077                 } else if (segs) {
3078                         consume_skb(skb);
3079                         skb = segs;
3080                 }
3081         } else {
3082                 if (skb_needs_linearize(skb, features) &&
3083                     __skb_linearize(skb))
3084                         goto out_kfree_skb;
3085
3086                 if (validate_xmit_xfrm(skb, features))
3087                         goto out_kfree_skb;
3088
3089                 /* If packet is not checksummed and device does not
3090                  * support checksumming for this protocol, complete
3091                  * checksumming here.
3092                  */
3093                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3094                         if (skb->encapsulation)
3095                                 skb_set_inner_transport_header(skb,
3096                                                                skb_checksum_start_offset(skb));
3097                         else
3098                                 skb_set_transport_header(skb,
3099                                                          skb_checksum_start_offset(skb));
3100                         if (skb_csum_hwoffload_help(skb, features))
3101                                 goto out_kfree_skb;
3102                 }
3103         }
3104
3105         return skb;
3106
3107 out_kfree_skb:
3108         kfree_skb(skb);
3109 out_null:
3110         atomic_long_inc(&dev->tx_dropped);
3111         return NULL;
3112 }
3113
3114 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3115 {
3116         struct sk_buff *next, *head = NULL, *tail;
3117
3118         for (; skb != NULL; skb = next) {
3119                 next = skb->next;
3120                 skb->next = NULL;
3121
3122                 /* in case skb wont be segmented, point to itself */
3123                 skb->prev = skb;
3124
3125                 skb = validate_xmit_skb(skb, dev);
3126                 if (!skb)
3127                         continue;
3128
3129                 if (!head)
3130                         head = skb;
3131                 else
3132                         tail->next = skb;
3133                 /* If skb was segmented, skb->prev points to
3134                  * the last segment. If not, it still contains skb.
3135                  */
3136                 tail = skb->prev;
3137         }
3138         return head;
3139 }
3140 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3141
3142 static void qdisc_pkt_len_init(struct sk_buff *skb)
3143 {
3144         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3145
3146         qdisc_skb_cb(skb)->pkt_len = skb->len;
3147
3148         /* To get more precise estimation of bytes sent on wire,
3149          * we add to pkt_len the headers size of all segments
3150          */
3151         if (shinfo->gso_size)  {
3152                 unsigned int hdr_len;
3153                 u16 gso_segs = shinfo->gso_segs;
3154
3155                 /* mac layer + network layer */
3156                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3157
3158                 /* + transport layer */
3159                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3160                         hdr_len += tcp_hdrlen(skb);
3161                 else
3162                         hdr_len += sizeof(struct udphdr);
3163
3164                 if (shinfo->gso_type & SKB_GSO_DODGY)
3165                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3166                                                 shinfo->gso_size);
3167
3168                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3169         }
3170 }
3171
3172 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3173                                  struct net_device *dev,
3174                                  struct netdev_queue *txq)
3175 {
3176         spinlock_t *root_lock = qdisc_lock(q);
3177         struct sk_buff *to_free = NULL;
3178         bool contended;
3179         int rc;
3180
3181         qdisc_calculate_pkt_len(skb, q);
3182         /*
3183          * Heuristic to force contended enqueues to serialize on a
3184          * separate lock before trying to get qdisc main lock.
3185          * This permits qdisc->running owner to get the lock more
3186          * often and dequeue packets faster.
3187          */
3188         contended = qdisc_is_running(q);
3189         if (unlikely(contended))
3190                 spin_lock(&q->busylock);
3191
3192         spin_lock(root_lock);
3193         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3194                 __qdisc_drop(skb, &to_free);
3195                 rc = NET_XMIT_DROP;
3196         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3197                    qdisc_run_begin(q)) {
3198                 /*
3199                  * This is a work-conserving queue; there are no old skbs
3200                  * waiting to be sent out; and the qdisc is not running -
3201                  * xmit the skb directly.
3202                  */
3203
3204                 qdisc_bstats_update(q, skb);
3205
3206                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3207                         if (unlikely(contended)) {
3208                                 spin_unlock(&q->busylock);
3209                                 contended = false;
3210                         }
3211                         __qdisc_run(q);
3212                 } else
3213                         qdisc_run_end(q);
3214
3215                 rc = NET_XMIT_SUCCESS;
3216         } else {
3217                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3218                 if (qdisc_run_begin(q)) {
3219                         if (unlikely(contended)) {
3220                                 spin_unlock(&q->busylock);
3221                                 contended = false;
3222                         }
3223                         __qdisc_run(q);
3224                 }
3225         }
3226         spin_unlock(root_lock);
3227         if (unlikely(to_free))
3228                 kfree_skb_list(to_free);
3229         if (unlikely(contended))
3230                 spin_unlock(&q->busylock);
3231         return rc;
3232 }
3233
3234 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3235 static void skb_update_prio(struct sk_buff *skb)
3236 {
3237         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3238
3239         if (!skb->priority && skb->sk && map) {
3240                 unsigned int prioidx =
3241                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3242
3243                 if (prioidx < map->priomap_len)
3244                         skb->priority = map->priomap[prioidx];
3245         }
3246 }
3247 #else
3248 #define skb_update_prio(skb)
3249 #endif
3250
3251 DEFINE_PER_CPU(int, xmit_recursion);
3252 EXPORT_SYMBOL(xmit_recursion);
3253
3254 /**
3255  *      dev_loopback_xmit - loop back @skb
3256  *      @net: network namespace this loopback is happening in
3257  *      @sk:  sk needed to be a netfilter okfn
3258  *      @skb: buffer to transmit
3259  */
3260 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3261 {
3262         skb_reset_mac_header(skb);
3263         __skb_pull(skb, skb_network_offset(skb));
3264         skb->pkt_type = PACKET_LOOPBACK;
3265         skb->ip_summed = CHECKSUM_UNNECESSARY;
3266         WARN_ON(!skb_dst(skb));
3267         skb_dst_force(skb);
3268         netif_rx_ni(skb);
3269         return 0;
3270 }
3271 EXPORT_SYMBOL(dev_loopback_xmit);
3272
3273 #ifdef CONFIG_NET_EGRESS
3274 static struct sk_buff *
3275 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3276 {
3277         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3278         struct tcf_result cl_res;
3279
3280         if (!miniq)
3281                 return skb;
3282
3283         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3284         mini_qdisc_bstats_cpu_update(miniq, skb);
3285
3286         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3287         case TC_ACT_OK:
3288         case TC_ACT_RECLASSIFY:
3289                 skb->tc_index = TC_H_MIN(cl_res.classid);
3290                 break;
3291         case TC_ACT_SHOT:
3292                 mini_qdisc_qstats_cpu_drop(miniq);
3293                 *ret = NET_XMIT_DROP;
3294                 kfree_skb(skb);
3295                 return NULL;
3296         case TC_ACT_STOLEN:
3297         case TC_ACT_QUEUED:
3298         case TC_ACT_TRAP:
3299                 *ret = NET_XMIT_SUCCESS;
3300                 consume_skb(skb);
3301                 return NULL;
3302         case TC_ACT_REDIRECT:
3303                 /* No need to push/pop skb's mac_header here on egress! */
3304                 skb_do_redirect(skb);
3305                 *ret = NET_XMIT_SUCCESS;
3306                 return NULL;
3307         default:
3308                 break;
3309         }
3310
3311         return skb;
3312 }
3313 #endif /* CONFIG_NET_EGRESS */
3314
3315 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3316 {
3317 #ifdef CONFIG_XPS
3318         struct xps_dev_maps *dev_maps;
3319         struct xps_map *map;
3320         int queue_index = -1;
3321
3322         rcu_read_lock();
3323         dev_maps = rcu_dereference(dev->xps_maps);
3324         if (dev_maps) {
3325                 unsigned int tci = skb->sender_cpu - 1;
3326
3327                 if (dev->num_tc) {
3328                         tci *= dev->num_tc;
3329                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3330                 }
3331
3332                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3333                 if (map) {
3334                         if (map->len == 1)
3335                                 queue_index = map->queues[0];
3336                         else
3337                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3338                                                                            map->len)];
3339                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3340                                 queue_index = -1;
3341                 }
3342         }
3343         rcu_read_unlock();
3344
3345         return queue_index;
3346 #else
3347         return -1;
3348 #endif
3349 }
3350
3351 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3352 {
3353         struct sock *sk = skb->sk;
3354         int queue_index = sk_tx_queue_get(sk);
3355
3356         if (queue_index < 0 || skb->ooo_okay ||
3357             queue_index >= dev->real_num_tx_queues) {
3358                 int new_index = get_xps_queue(dev, skb);
3359
3360                 if (new_index < 0)
3361                         new_index = skb_tx_hash(dev, skb);
3362
3363                 if (queue_index != new_index && sk &&
3364                     sk_fullsock(sk) &&
3365                     rcu_access_pointer(sk->sk_dst_cache))
3366                         sk_tx_queue_set(sk, new_index);
3367
3368                 queue_index = new_index;
3369         }
3370
3371         return queue_index;
3372 }
3373
3374 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3375                                     struct sk_buff *skb,
3376                                     void *accel_priv)
3377 {
3378         int queue_index = 0;
3379
3380 #ifdef CONFIG_XPS
3381         u32 sender_cpu = skb->sender_cpu - 1;
3382
3383         if (sender_cpu >= (u32)NR_CPUS)
3384                 skb->sender_cpu = raw_smp_processor_id() + 1;
3385 #endif
3386
3387         if (dev->real_num_tx_queues != 1) {
3388                 const struct net_device_ops *ops = dev->netdev_ops;
3389
3390                 if (ops->ndo_select_queue)
3391                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3392                                                             __netdev_pick_tx);
3393                 else
3394                         queue_index = __netdev_pick_tx(dev, skb);
3395
3396                 if (!accel_priv)
3397                         queue_index = netdev_cap_txqueue(dev, queue_index);
3398         }
3399
3400         skb_set_queue_mapping(skb, queue_index);
3401         return netdev_get_tx_queue(dev, queue_index);
3402 }
3403
3404 /**
3405  *      __dev_queue_xmit - transmit a buffer
3406  *      @skb: buffer to transmit
3407  *      @accel_priv: private data used for L2 forwarding offload
3408  *
3409  *      Queue a buffer for transmission to a network device. The caller must
3410  *      have set the device and priority and built the buffer before calling
3411  *      this function. The function can be called from an interrupt.
3412  *
3413  *      A negative errno code is returned on a failure. A success does not
3414  *      guarantee the frame will be transmitted as it may be dropped due
3415  *      to congestion or traffic shaping.
3416  *
3417  * -----------------------------------------------------------------------------------
3418  *      I notice this method can also return errors from the queue disciplines,
3419  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3420  *      be positive.
3421  *
3422  *      Regardless of the return value, the skb is consumed, so it is currently
3423  *      difficult to retry a send to this method.  (You can bump the ref count
3424  *      before sending to hold a reference for retry if you are careful.)
3425  *
3426  *      When calling this method, interrupts MUST be enabled.  This is because
3427  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3428  *          --BLG
3429  */
3430 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3431 {
3432         struct net_device *dev = skb->dev;
3433         struct netdev_queue *txq;
3434         struct Qdisc *q;
3435         int rc = -ENOMEM;
3436
3437         skb_reset_mac_header(skb);
3438
3439         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3440                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3441
3442         /* Disable soft irqs for various locks below. Also
3443          * stops preemption for RCU.
3444          */
3445         rcu_read_lock_bh();
3446
3447         skb_update_prio(skb);
3448
3449         qdisc_pkt_len_init(skb);
3450 #ifdef CONFIG_NET_CLS_ACT
3451         skb->tc_at_ingress = 0;
3452 # ifdef CONFIG_NET_EGRESS
3453         if (static_key_false(&egress_needed)) {
3454                 skb = sch_handle_egress(skb, &rc, dev);
3455                 if (!skb)
3456                         goto out;
3457         }
3458 # endif
3459 #endif
3460         /* If device/qdisc don't need skb->dst, release it right now while
3461          * its hot in this cpu cache.
3462          */
3463         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3464                 skb_dst_drop(skb);
3465         else
3466                 skb_dst_force(skb);
3467
3468         txq = netdev_pick_tx(dev, skb, accel_priv);
3469         q = rcu_dereference_bh(txq->qdisc);
3470
3471         trace_net_dev_queue(skb);
3472         if (q->enqueue) {
3473                 rc = __dev_xmit_skb(skb, q, dev, txq);
3474                 goto out;
3475         }
3476
3477         /* The device has no queue. Common case for software devices:
3478          * loopback, all the sorts of tunnels...
3479
3480          * Really, it is unlikely that netif_tx_lock protection is necessary
3481          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3482          * counters.)
3483          * However, it is possible, that they rely on protection
3484          * made by us here.
3485
3486          * Check this and shot the lock. It is not prone from deadlocks.
3487          *Either shot noqueue qdisc, it is even simpler 8)
3488          */
3489         if (dev->flags & IFF_UP) {
3490                 int cpu = smp_processor_id(); /* ok because BHs are off */
3491
3492                 if (txq->xmit_lock_owner != cpu) {
3493                         if (unlikely(__this_cpu_read(xmit_recursion) >
3494                                      XMIT_RECURSION_LIMIT))
3495                                 goto recursion_alert;
3496
3497                         skb = validate_xmit_skb(skb, dev);
3498                         if (!skb)
3499                                 goto out;
3500
3501                         HARD_TX_LOCK(dev, txq, cpu);
3502
3503                         if (!netif_xmit_stopped(txq)) {
3504                                 __this_cpu_inc(xmit_recursion);
3505                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3506                                 __this_cpu_dec(xmit_recursion);
3507                                 if (dev_xmit_complete(rc)) {
3508                                         HARD_TX_UNLOCK(dev, txq);
3509                                         goto out;
3510                                 }
3511                         }
3512                         HARD_TX_UNLOCK(dev, txq);
3513                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3514                                              dev->name);
3515                 } else {
3516                         /* Recursion is detected! It is possible,
3517                          * unfortunately
3518                          */
3519 recursion_alert:
3520                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3521                                              dev->name);
3522                 }
3523         }
3524
3525         rc = -ENETDOWN;
3526         rcu_read_unlock_bh();
3527
3528         atomic_long_inc(&dev->tx_dropped);
3529         kfree_skb_list(skb);
3530         return rc;
3531 out:
3532         rcu_read_unlock_bh();
3533         return rc;
3534 }
3535
3536 int dev_queue_xmit(struct sk_buff *skb)
3537 {
3538         return __dev_queue_xmit(skb, NULL);
3539 }
3540 EXPORT_SYMBOL(dev_queue_xmit);
3541
3542 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3543 {
3544         return __dev_queue_xmit(skb, accel_priv);
3545 }
3546 EXPORT_SYMBOL(dev_queue_xmit_accel);
3547
3548
3549 /*************************************************************************
3550  *                      Receiver routines
3551  *************************************************************************/
3552
3553 int netdev_max_backlog __read_mostly = 1000;
3554 EXPORT_SYMBOL(netdev_max_backlog);
3555
3556 int netdev_tstamp_prequeue __read_mostly = 1;
3557 int netdev_budget __read_mostly = 300;
3558 unsigned int __read_mostly netdev_budget_usecs = 2000;
3559 int weight_p __read_mostly = 64;           /* old backlog weight */
3560 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3561 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3562 int dev_rx_weight __read_mostly = 64;
3563 int dev_tx_weight __read_mostly = 64;
3564
3565 /* Called with irq disabled */
3566 static inline void ____napi_schedule(struct softnet_data *sd,
3567                                      struct napi_struct *napi)
3568 {
3569         list_add_tail(&napi->poll_list, &sd->poll_list);
3570         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3571 }
3572
3573 #ifdef CONFIG_RPS
3574
3575 /* One global table that all flow-based protocols share. */
3576 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3577 EXPORT_SYMBOL(rps_sock_flow_table);
3578 u32 rps_cpu_mask __read_mostly;
3579 EXPORT_SYMBOL(rps_cpu_mask);
3580
3581 struct static_key rps_needed __read_mostly;
3582 EXPORT_SYMBOL(rps_needed);
3583 struct static_key rfs_needed __read_mostly;
3584 EXPORT_SYMBOL(rfs_needed);
3585
3586 static struct rps_dev_flow *
3587 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3588             struct rps_dev_flow *rflow, u16 next_cpu)
3589 {
3590         if (next_cpu < nr_cpu_ids) {
3591 #ifdef CONFIG_RFS_ACCEL
3592                 struct netdev_rx_queue *rxqueue;
3593                 struct rps_dev_flow_table *flow_table;
3594                 struct rps_dev_flow *old_rflow;
3595                 u32 flow_id;
3596                 u16 rxq_index;
3597                 int rc;
3598
3599                 /* Should we steer this flow to a different hardware queue? */
3600                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3601                     !(dev->features & NETIF_F_NTUPLE))
3602                         goto out;
3603                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3604                 if (rxq_index == skb_get_rx_queue(skb))
3605                         goto out;
3606
3607                 rxqueue = dev->_rx + rxq_index;
3608                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3609                 if (!flow_table)
3610                         goto out;
3611                 flow_id = skb_get_hash(skb) & flow_table->mask;
3612                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3613                                                         rxq_index, flow_id);
3614                 if (rc < 0)
3615                         goto out;
3616                 old_rflow = rflow;
3617                 rflow = &flow_table->flows[flow_id];
3618                 rflow->filter = rc;
3619                 if (old_rflow->filter == rflow->filter)
3620                         old_rflow->filter = RPS_NO_FILTER;
3621         out:
3622 #endif
3623                 rflow->last_qtail =
3624                         per_cpu(softnet_data, next_cpu).input_queue_head;
3625         }
3626
3627         rflow->cpu = next_cpu;
3628         return rflow;
3629 }
3630
3631 /*
3632  * get_rps_cpu is called from netif_receive_skb and returns the target
3633  * CPU from the RPS map of the receiving queue for a given skb.
3634  * rcu_read_lock must be held on entry.
3635  */
3636 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3637                        struct rps_dev_flow **rflowp)
3638 {
3639         const struct rps_sock_flow_table *sock_flow_table;
3640         struct netdev_rx_queue *rxqueue = dev->_rx;
3641         struct rps_dev_flow_table *flow_table;
3642         struct rps_map *map;
3643         int cpu = -1;
3644         u32 tcpu;
3645         u32 hash;
3646
3647         if (skb_rx_queue_recorded(skb)) {
3648                 u16 index = skb_get_rx_queue(skb);
3649
3650                 if (unlikely(index >= dev->real_num_rx_queues)) {
3651                         WARN_ONCE(dev->real_num_rx_queues > 1,
3652                                   "%s received packet on queue %u, but number "
3653                                   "of RX queues is %u\n",
3654                                   dev->name, index, dev->real_num_rx_queues);
3655                         goto done;
3656                 }
3657                 rxqueue += index;
3658         }
3659
3660         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3661
3662         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3663         map = rcu_dereference(rxqueue->rps_map);
3664         if (!flow_table && !map)
3665                 goto done;
3666
3667         skb_reset_network_header(skb);
3668         hash = skb_get_hash(skb);
3669         if (!hash)
3670                 goto done;
3671
3672         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3673         if (flow_table && sock_flow_table) {
3674                 struct rps_dev_flow *rflow;
3675                 u32 next_cpu;
3676                 u32 ident;
3677
3678                 /* First check into global flow table if there is a match */
3679                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3680                 if ((ident ^ hash) & ~rps_cpu_mask)
3681                         goto try_rps;
3682
3683                 next_cpu = ident & rps_cpu_mask;
3684
3685                 /* OK, now we know there is a match,
3686                  * we can look at the local (per receive queue) flow table
3687                  */
3688                 rflow = &flow_table->flows[hash & flow_table->mask];
3689                 tcpu = rflow->cpu;
3690
3691                 /*
3692                  * If the desired CPU (where last recvmsg was done) is
3693                  * different from current CPU (one in the rx-queue flow
3694                  * table entry), switch if one of the following holds:
3695                  *   - Current CPU is unset (>= nr_cpu_ids).
3696                  *   - Current CPU is offline.
3697                  *   - The current CPU's queue tail has advanced beyond the
3698                  *     last packet that was enqueued using this table entry.
3699                  *     This guarantees that all previous packets for the flow
3700                  *     have been dequeued, thus preserving in order delivery.
3701                  */
3702                 if (unlikely(tcpu != next_cpu) &&
3703                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3704                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3705                       rflow->last_qtail)) >= 0)) {
3706                         tcpu = next_cpu;
3707                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3708                 }
3709
3710                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3711                         *rflowp = rflow;
3712                         cpu = tcpu;
3713                         goto done;
3714                 }
3715         }
3716
3717 try_rps:
3718
3719         if (map) {
3720                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3721                 if (cpu_online(tcpu)) {
3722                         cpu = tcpu;
3723                         goto done;
3724                 }
3725         }
3726
3727 done:
3728         return cpu;
3729 }
3730
3731 #ifdef CONFIG_RFS_ACCEL
3732
3733 /**
3734  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3735  * @dev: Device on which the filter was set
3736  * @rxq_index: RX queue index
3737  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3738  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3739  *
3740  * Drivers that implement ndo_rx_flow_steer() should periodically call
3741  * this function for each installed filter and remove the filters for
3742  * which it returns %true.
3743  */
3744 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3745                          u32 flow_id, u16 filter_id)
3746 {
3747         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3748         struct rps_dev_flow_table *flow_table;
3749         struct rps_dev_flow *rflow;
3750         bool expire = true;
3751         unsigned int cpu;
3752
3753         rcu_read_lock();
3754         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3755         if (flow_table && flow_id <= flow_table->mask) {
3756                 rflow = &flow_table->flows[flow_id];
3757                 cpu = ACCESS_ONCE(rflow->cpu);
3758                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3759                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3760                            rflow->last_qtail) <
3761                      (int)(10 * flow_table->mask)))
3762                         expire = false;
3763         }
3764         rcu_read_unlock();
3765         return expire;
3766 }
3767 EXPORT_SYMBOL(rps_may_expire_flow);
3768
3769 #endif /* CONFIG_RFS_ACCEL */
3770
3771 /* Called from hardirq (IPI) context */
3772 static void rps_trigger_softirq(void *data)
3773 {
3774         struct softnet_data *sd = data;
3775
3776         ____napi_schedule(sd, &sd->backlog);
3777         sd->received_rps++;
3778 }
3779
3780 #endif /* CONFIG_RPS */
3781
3782 /*
3783  * Check if this softnet_data structure is another cpu one
3784  * If yes, queue it to our IPI list and return 1
3785  * If no, return 0
3786  */
3787 static int rps_ipi_queued(struct softnet_data *sd)
3788 {
3789 #ifdef CONFIG_RPS
3790         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3791
3792         if (sd != mysd) {
3793                 sd->rps_ipi_next = mysd->rps_ipi_list;
3794                 mysd->rps_ipi_list = sd;
3795
3796                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3797                 return 1;
3798         }
3799 #endif /* CONFIG_RPS */
3800         return 0;
3801 }
3802
3803 #ifdef CONFIG_NET_FLOW_LIMIT
3804 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3805 #endif
3806
3807 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3808 {
3809 #ifdef CONFIG_NET_FLOW_LIMIT
3810         struct sd_flow_limit *fl;
3811         struct softnet_data *sd;
3812         unsigned int old_flow, new_flow;
3813
3814         if (qlen < (netdev_max_backlog >> 1))
3815                 return false;
3816
3817         sd = this_cpu_ptr(&softnet_data);
3818
3819         rcu_read_lock();
3820         fl = rcu_dereference(sd->flow_limit);
3821         if (fl) {
3822                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3823                 old_flow = fl->history[fl->history_head];
3824                 fl->history[fl->history_head] = new_flow;
3825
3826                 fl->history_head++;
3827                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3828
3829                 if (likely(fl->buckets[old_flow]))
3830                         fl->buckets[old_flow]--;
3831
3832                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3833                         fl->count++;
3834                         rcu_read_unlock();
3835                         return true;
3836                 }
3837         }
3838         rcu_read_unlock();
3839 #endif
3840         return false;
3841 }
3842
3843 /*
3844  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3845  * queue (may be a remote CPU queue).
3846  */
3847 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3848                               unsigned int *qtail)
3849 {
3850         struct softnet_data *sd;
3851         unsigned long flags;
3852         unsigned int qlen;
3853
3854         sd = &per_cpu(softnet_data, cpu);
3855
3856         local_irq_save(flags);
3857
3858         rps_lock(sd);
3859         if (!netif_running(skb->dev))
3860                 goto drop;
3861         qlen = skb_queue_len(&sd->input_pkt_queue);
3862         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3863                 if (qlen) {
3864 enqueue:
3865                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3866                         input_queue_tail_incr_save(sd, qtail);
3867                         rps_unlock(sd);
3868                         local_irq_restore(flags);
3869                         return NET_RX_SUCCESS;
3870                 }
3871
3872                 /* Schedule NAPI for backlog device
3873                  * We can use non atomic operation since we own the queue lock
3874                  */
3875                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3876                         if (!rps_ipi_queued(sd))
3877                                 ____napi_schedule(sd, &sd->backlog);
3878                 }
3879                 goto enqueue;
3880         }
3881
3882 drop:
3883         sd->dropped++;
3884         rps_unlock(sd);
3885
3886         local_irq_restore(flags);
3887
3888         atomic_long_inc(&skb->dev->rx_dropped);
3889         kfree_skb(skb);
3890         return NET_RX_DROP;
3891 }
3892
3893 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3894                                      struct bpf_prog *xdp_prog)
3895 {
3896         u32 metalen, act = XDP_DROP;
3897         struct xdp_buff xdp;
3898         void *orig_data;
3899         int hlen, off;
3900         u32 mac_len;
3901
3902         /* Reinjected packets coming from act_mirred or similar should
3903          * not get XDP generic processing.
3904          */
3905         if (skb_cloned(skb))
3906                 return XDP_PASS;
3907
3908         /* XDP packets must be linear and must have sufficient headroom
3909          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3910          * native XDP provides, thus we need to do it here as well.
3911          */
3912         if (skb_is_nonlinear(skb) ||
3913             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3914                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3915                 int troom = skb->tail + skb->data_len - skb->end;
3916
3917                 /* In case we have to go down the path and also linearize,
3918                  * then lets do the pskb_expand_head() work just once here.
3919                  */
3920                 if (pskb_expand_head(skb,
3921                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3922                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3923                         goto do_drop;
3924                 if (troom > 0 && __skb_linearize(skb))
3925                         goto do_drop;
3926         }
3927
3928         /* The XDP program wants to see the packet starting at the MAC
3929          * header.
3930          */
3931         mac_len = skb->data - skb_mac_header(skb);
3932         hlen = skb_headlen(skb) + mac_len;
3933         xdp.data = skb->data - mac_len;
3934         xdp.data_meta = xdp.data;
3935         xdp.data_end = xdp.data + hlen;
3936         xdp.data_hard_start = skb->data - skb_headroom(skb);
3937         orig_data = xdp.data;
3938
3939         act = bpf_prog_run_xdp(xdp_prog, &xdp);
3940
3941         off = xdp.data - orig_data;
3942         if (off > 0)
3943                 __skb_pull(skb, off);
3944         else if (off < 0)
3945                 __skb_push(skb, -off);
3946         skb->mac_header += off;
3947
3948         switch (act) {
3949         case XDP_REDIRECT:
3950         case XDP_TX:
3951                 __skb_push(skb, mac_len);
3952                 break;
3953         case XDP_PASS:
3954                 metalen = xdp.data - xdp.data_meta;
3955                 if (metalen)
3956                         skb_metadata_set(skb, metalen);
3957                 break;
3958         default:
3959                 bpf_warn_invalid_xdp_action(act);
3960                 /* fall through */
3961         case XDP_ABORTED:
3962                 trace_xdp_exception(skb->dev, xdp_prog, act);
3963                 /* fall through */
3964         case XDP_DROP:
3965         do_drop:
3966                 kfree_skb(skb);
3967                 break;
3968         }
3969
3970         return act;
3971 }
3972
3973 /* When doing generic XDP we have to bypass the qdisc layer and the
3974  * network taps in order to match in-driver-XDP behavior.
3975  */
3976 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3977 {
3978         struct net_device *dev = skb->dev;
3979         struct netdev_queue *txq;
3980         bool free_skb = true;
3981         int cpu, rc;
3982
3983         txq = netdev_pick_tx(dev, skb, NULL);
3984         cpu = smp_processor_id();
3985         HARD_TX_LOCK(dev, txq, cpu);
3986         if (!netif_xmit_stopped(txq)) {
3987                 rc = netdev_start_xmit(skb, dev, txq, 0);
3988                 if (dev_xmit_complete(rc))
3989                         free_skb = false;
3990         }
3991         HARD_TX_UNLOCK(dev, txq);
3992         if (free_skb) {
3993                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3994                 kfree_skb(skb);
3995         }
3996 }
3997 EXPORT_SYMBOL_GPL(generic_xdp_tx);
3998
3999 static struct static_key generic_xdp_needed __read_mostly;
4000
4001 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4002 {
4003         if (xdp_prog) {
4004                 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4005                 int err;
4006
4007                 if (act != XDP_PASS) {
4008                         switch (act) {
4009                         case XDP_REDIRECT:
4010                                 err = xdp_do_generic_redirect(skb->dev, skb,
4011                                                               xdp_prog);
4012                                 if (err)
4013                                         goto out_redir;
4014                         /* fallthru to submit skb */
4015                         case XDP_TX:
4016                                 generic_xdp_tx(skb, xdp_prog);
4017                                 break;
4018                         }
4019                         return XDP_DROP;
4020                 }
4021         }
4022         return XDP_PASS;
4023 out_redir:
4024         kfree_skb(skb);
4025         return XDP_DROP;
4026 }
4027 EXPORT_SYMBOL_GPL(do_xdp_generic);
4028
4029 static int netif_rx_internal(struct sk_buff *skb)
4030 {
4031         int ret;
4032
4033         net_timestamp_check(netdev_tstamp_prequeue, skb);
4034
4035         trace_netif_rx(skb);
4036
4037         if (static_key_false(&generic_xdp_needed)) {
4038                 int ret;
4039
4040                 preempt_disable();
4041                 rcu_read_lock();
4042                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4043                 rcu_read_unlock();
4044                 preempt_enable();
4045
4046                 /* Consider XDP consuming the packet a success from
4047                  * the netdev point of view we do not want to count
4048                  * this as an error.
4049                  */
4050                 if (ret != XDP_PASS)
4051                         return NET_RX_SUCCESS;
4052         }
4053
4054 #ifdef CONFIG_RPS
4055         if (static_key_false(&rps_needed)) {
4056                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4057                 int cpu;
4058
4059                 preempt_disable();
4060                 rcu_read_lock();
4061
4062                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4063                 if (cpu < 0)
4064                         cpu = smp_processor_id();
4065
4066                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4067
4068                 rcu_read_unlock();
4069                 preempt_enable();
4070         } else
4071 #endif
4072         {
4073                 unsigned int qtail;
4074
4075                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4076                 put_cpu();
4077         }
4078         return ret;
4079 }
4080
4081 /**
4082  *      netif_rx        -       post buffer to the network code
4083  *      @skb: buffer to post
4084  *
4085  *      This function receives a packet from a device driver and queues it for
4086  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4087  *      may be dropped during processing for congestion control or by the
4088  *      protocol layers.
4089  *
4090  *      return values:
4091  *      NET_RX_SUCCESS  (no congestion)
4092  *      NET_RX_DROP     (packet was dropped)
4093  *
4094  */
4095
4096 int netif_rx(struct sk_buff *skb)
4097 {
4098         trace_netif_rx_entry(skb);
4099
4100         return netif_rx_internal(skb);
4101 }
4102 EXPORT_SYMBOL(netif_rx);
4103
4104 int netif_rx_ni(struct sk_buff *skb)
4105 {
4106         int err;
4107
4108         trace_netif_rx_ni_entry(skb);
4109
4110         preempt_disable();
4111         err = netif_rx_internal(skb);
4112         if (local_softirq_pending())
4113                 do_softirq();
4114         preempt_enable();
4115
4116         return err;
4117 }
4118 EXPORT_SYMBOL(netif_rx_ni);
4119
4120 static __latent_entropy void net_tx_action(struct softirq_action *h)
4121 {
4122         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4123
4124         if (sd->completion_queue) {
4125                 struct sk_buff *clist;
4126
4127                 local_irq_disable();
4128                 clist = sd->completion_queue;
4129                 sd->completion_queue = NULL;
4130                 local_irq_enable();
4131
4132                 while (clist) {
4133                         struct sk_buff *skb = clist;
4134
4135                         clist = clist->next;
4136
4137                         WARN_ON(refcount_read(&skb->users));
4138                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4139                                 trace_consume_skb(skb);
4140                         else
4141                                 trace_kfree_skb(skb, net_tx_action);
4142
4143                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4144                                 __kfree_skb(skb);
4145                         else
4146                                 __kfree_skb_defer(skb);
4147                 }
4148
4149                 __kfree_skb_flush();
4150         }
4151
4152         if (sd->output_queue) {
4153                 struct Qdisc *head;
4154
4155                 local_irq_disable();
4156                 head = sd->output_queue;
4157                 sd->output_queue = NULL;
4158                 sd->output_queue_tailp = &sd->output_queue;
4159                 local_irq_enable();
4160
4161                 while (head) {
4162                         struct Qdisc *q = head;
4163                         spinlock_t *root_lock;
4164
4165                         head = head->next_sched;
4166
4167                         root_lock = qdisc_lock(q);
4168                         spin_lock(root_lock);
4169                         /* We need to make sure head->next_sched is read
4170                          * before clearing __QDISC_STATE_SCHED
4171                          */
4172                         smp_mb__before_atomic();
4173                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4174                         qdisc_run(q);
4175                         spin_unlock(root_lock);
4176                 }
4177         }
4178 }
4179
4180 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4181 /* This hook is defined here for ATM LANE */
4182 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4183                              unsigned char *addr) __read_mostly;
4184 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4185 #endif
4186
4187 static inline struct sk_buff *
4188 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4189                    struct net_device *orig_dev)
4190 {
4191 #ifdef CONFIG_NET_CLS_ACT
4192         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4193         struct tcf_result cl_res;
4194
4195         /* If there's at least one ingress present somewhere (so
4196          * we get here via enabled static key), remaining devices
4197          * that are not configured with an ingress qdisc will bail
4198          * out here.
4199          */
4200         if (!miniq)
4201                 return skb;
4202
4203         if (*pt_prev) {
4204                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4205                 *pt_prev = NULL;
4206         }
4207
4208         qdisc_skb_cb(skb)->pkt_len = skb->len;
4209         skb->tc_at_ingress = 1;
4210         mini_qdisc_bstats_cpu_update(miniq, skb);
4211
4212         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4213         case TC_ACT_OK:
4214         case TC_ACT_RECLASSIFY:
4215                 skb->tc_index = TC_H_MIN(cl_res.classid);
4216                 break;
4217         case TC_ACT_SHOT:
4218                 mini_qdisc_qstats_cpu_drop(miniq);
4219                 kfree_skb(skb);
4220                 return NULL;
4221         case TC_ACT_STOLEN:
4222         case TC_ACT_QUEUED:
4223         case TC_ACT_TRAP:
4224                 consume_skb(skb);
4225                 return NULL;
4226         case TC_ACT_REDIRECT:
4227                 /* skb_mac_header check was done by cls/act_bpf, so
4228                  * we can safely push the L2 header back before
4229                  * redirecting to another netdev
4230                  */
4231                 __skb_push(skb, skb->mac_len);
4232                 skb_do_redirect(skb);
4233                 return NULL;
4234         default:
4235                 break;
4236         }
4237 #endif /* CONFIG_NET_CLS_ACT */
4238         return skb;
4239 }
4240
4241 /**
4242  *      netdev_is_rx_handler_busy - check if receive handler is registered
4243  *      @dev: device to check
4244  *
4245  *      Check if a receive handler is already registered for a given device.
4246  *      Return true if there one.
4247  *
4248  *      The caller must hold the rtnl_mutex.
4249  */
4250 bool netdev_is_rx_handler_busy(struct net_device *dev)
4251 {
4252         ASSERT_RTNL();
4253         return dev && rtnl_dereference(dev->rx_handler);
4254 }
4255 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4256
4257 /**
4258  *      netdev_rx_handler_register - register receive handler
4259  *      @dev: device to register a handler for
4260  *      @rx_handler: receive handler to register
4261  *      @rx_handler_data: data pointer that is used by rx handler
4262  *
4263  *      Register a receive handler for a device. This handler will then be
4264  *      called from __netif_receive_skb. A negative errno code is returned
4265  *      on a failure.
4266  *
4267  *      The caller must hold the rtnl_mutex.
4268  *
4269  *      For a general description of rx_handler, see enum rx_handler_result.
4270  */
4271 int netdev_rx_handler_register(struct net_device *dev,
4272                                rx_handler_func_t *rx_handler,
4273                                void *rx_handler_data)
4274 {
4275         if (netdev_is_rx_handler_busy(dev))
4276                 return -EBUSY;
4277
4278         /* Note: rx_handler_data must be set before rx_handler */
4279         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4280         rcu_assign_pointer(dev->rx_handler, rx_handler);
4281
4282         return 0;
4283 }
4284 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4285
4286 /**
4287  *      netdev_rx_handler_unregister - unregister receive handler
4288  *      @dev: device to unregister a handler from
4289  *
4290  *      Unregister a receive handler from a device.
4291  *
4292  *      The caller must hold the rtnl_mutex.
4293  */
4294 void netdev_rx_handler_unregister(struct net_device *dev)
4295 {
4296
4297         ASSERT_RTNL();
4298         RCU_INIT_POINTER(dev->rx_handler, NULL);
4299         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4300          * section has a guarantee to see a non NULL rx_handler_data
4301          * as well.
4302          */
4303         synchronize_net();
4304         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4305 }
4306 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4307
4308 /*
4309  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4310  * the special handling of PFMEMALLOC skbs.
4311  */
4312 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4313 {
4314         switch (skb->protocol) {
4315         case htons(ETH_P_ARP):
4316         case htons(ETH_P_IP):
4317         case htons(ETH_P_IPV6):
4318         case htons(ETH_P_8021Q):
4319         case htons(ETH_P_8021AD):
4320                 return true;
4321         default:
4322                 return false;
4323         }
4324 }
4325
4326 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4327                              int *ret, struct net_device *orig_dev)
4328 {
4329 #ifdef CONFIG_NETFILTER_INGRESS
4330         if (nf_hook_ingress_active(skb)) {
4331                 int ingress_retval;
4332
4333                 if (*pt_prev) {
4334                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4335                         *pt_prev = NULL;
4336                 }
4337
4338                 rcu_read_lock();
4339                 ingress_retval = nf_hook_ingress(skb);
4340                 rcu_read_unlock();
4341                 return ingress_retval;
4342         }
4343 #endif /* CONFIG_NETFILTER_INGRESS */
4344         return 0;
4345 }
4346
4347 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4348 {
4349         struct packet_type *ptype, *pt_prev;
4350         rx_handler_func_t *rx_handler;
4351         struct net_device *orig_dev;
4352         bool deliver_exact = false;
4353         int ret = NET_RX_DROP;
4354         __be16 type;
4355
4356         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4357
4358         trace_netif_receive_skb(skb);
4359
4360         orig_dev = skb->dev;
4361
4362         skb_reset_network_header(skb);
4363         if (!skb_transport_header_was_set(skb))
4364                 skb_reset_transport_header(skb);
4365         skb_reset_mac_len(skb);
4366
4367         pt_prev = NULL;
4368
4369 another_round:
4370         skb->skb_iif = skb->dev->ifindex;
4371
4372         __this_cpu_inc(softnet_data.processed);
4373
4374         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4375             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4376                 skb = skb_vlan_untag(skb);
4377                 if (unlikely(!skb))
4378                         goto out;
4379         }
4380
4381         if (skb_skip_tc_classify(skb))
4382                 goto skip_classify;
4383
4384         if (pfmemalloc)
4385                 goto skip_taps;
4386
4387         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4388                 if (pt_prev)
4389                         ret = deliver_skb(skb, pt_prev, orig_dev);
4390                 pt_prev = ptype;
4391         }
4392
4393         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4394                 if (pt_prev)
4395                         ret = deliver_skb(skb, pt_prev, orig_dev);
4396                 pt_prev = ptype;
4397         }
4398
4399 skip_taps:
4400 #ifdef CONFIG_NET_INGRESS
4401         if (static_key_false(&ingress_needed)) {
4402                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4403                 if (!skb)
4404                         goto out;
4405
4406                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4407                         goto out;
4408         }
4409 #endif
4410         skb_reset_tc(skb);
4411 skip_classify:
4412         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4413                 goto drop;
4414
4415         if (skb_vlan_tag_present(skb)) {
4416                 if (pt_prev) {
4417                         ret = deliver_skb(skb, pt_prev, orig_dev);
4418                         pt_prev = NULL;
4419                 }
4420                 if (vlan_do_receive(&skb))
4421                         goto another_round;
4422                 else if (unlikely(!skb))
4423                         goto out;
4424         }
4425
4426         rx_handler = rcu_dereference(skb->dev->rx_handler);
4427         if (rx_handler) {
4428                 if (pt_prev) {
4429                         ret = deliver_skb(skb, pt_prev, orig_dev);
4430                         pt_prev = NULL;
4431                 }
4432                 switch (rx_handler(&skb)) {
4433                 case RX_HANDLER_CONSUMED:
4434                         ret = NET_RX_SUCCESS;
4435                         goto out;
4436                 case RX_HANDLER_ANOTHER:
4437                         goto another_round;
4438                 case RX_HANDLER_EXACT:
4439                         deliver_exact = true;
4440                 case RX_HANDLER_PASS:
4441                         break;
4442                 default:
4443                         BUG();
4444                 }
4445         }
4446
4447         if (unlikely(skb_vlan_tag_present(skb))) {
4448                 if (skb_vlan_tag_get_id(skb))
4449                         skb->pkt_type = PACKET_OTHERHOST;
4450                 /* Note: we might in the future use prio bits
4451                  * and set skb->priority like in vlan_do_receive()
4452                  * For the time being, just ignore Priority Code Point
4453                  */
4454                 skb->vlan_tci = 0;
4455         }
4456
4457         type = skb->protocol;
4458
4459         /* deliver only exact match when indicated */
4460         if (likely(!deliver_exact)) {
4461                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4462                                        &ptype_base[ntohs(type) &
4463                                                    PTYPE_HASH_MASK]);
4464         }
4465
4466         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4467                                &orig_dev->ptype_specific);
4468
4469         if (unlikely(skb->dev != orig_dev)) {
4470                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4471                                        &skb->dev->ptype_specific);
4472         }
4473
4474         if (pt_prev) {
4475                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4476                         goto drop;
4477                 else
4478                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4479         } else {
4480 drop:
4481                 if (!deliver_exact)
4482                         atomic_long_inc(&skb->dev->rx_dropped);
4483                 else
4484                         atomic_long_inc(&skb->dev->rx_nohandler);
4485                 kfree_skb(skb);
4486                 /* Jamal, now you will not able to escape explaining
4487                  * me how you were going to use this. :-)
4488                  */
4489                 ret = NET_RX_DROP;
4490         }
4491
4492 out:
4493         return ret;
4494 }
4495
4496 /**
4497  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4498  *      @skb: buffer to process
4499  *
4500  *      More direct receive version of netif_receive_skb().  It should
4501  *      only be used by callers that have a need to skip RPS and Generic XDP.
4502  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4503  *
4504  *      This function may only be called from softirq context and interrupts
4505  *      should be enabled.
4506  *
4507  *      Return values (usually ignored):
4508  *      NET_RX_SUCCESS: no congestion
4509  *      NET_RX_DROP: packet was dropped
4510  */
4511 int netif_receive_skb_core(struct sk_buff *skb)
4512 {
4513         int ret;
4514
4515         rcu_read_lock();
4516         ret = __netif_receive_skb_core(skb, false);
4517         rcu_read_unlock();
4518
4519         return ret;
4520 }
4521 EXPORT_SYMBOL(netif_receive_skb_core);
4522
4523 static int __netif_receive_skb(struct sk_buff *skb)
4524 {
4525         int ret;
4526
4527         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4528                 unsigned int noreclaim_flag;
4529
4530                 /*
4531                  * PFMEMALLOC skbs are special, they should
4532                  * - be delivered to SOCK_MEMALLOC sockets only
4533                  * - stay away from userspace
4534                  * - have bounded memory usage
4535                  *
4536                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4537                  * context down to all allocation sites.
4538                  */
4539                 noreclaim_flag = memalloc_noreclaim_save();
4540                 ret = __netif_receive_skb_core(skb, true);
4541                 memalloc_noreclaim_restore(noreclaim_flag);
4542         } else
4543                 ret = __netif_receive_skb_core(skb, false);
4544
4545         return ret;
4546 }
4547
4548 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4549 {
4550         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4551         struct bpf_prog *new = xdp->prog;
4552         int ret = 0;
4553
4554         switch (xdp->command) {
4555         case XDP_SETUP_PROG:
4556                 rcu_assign_pointer(dev->xdp_prog, new);
4557                 if (old)
4558                         bpf_prog_put(old);
4559
4560                 if (old && !new) {
4561                         static_key_slow_dec(&generic_xdp_needed);
4562                 } else if (new && !old) {
4563                         static_key_slow_inc(&generic_xdp_needed);
4564                         dev_disable_lro(dev);
4565                 }
4566                 break;
4567
4568         case XDP_QUERY_PROG:
4569                 xdp->prog_attached = !!old;
4570                 xdp->prog_id = old ? old->aux->id : 0;
4571                 break;
4572
4573         default:
4574                 ret = -EINVAL;
4575                 break;
4576         }
4577
4578         return ret;
4579 }
4580
4581 static int netif_receive_skb_internal(struct sk_buff *skb)
4582 {
4583         int ret;
4584
4585         net_timestamp_check(netdev_tstamp_prequeue, skb);
4586
4587         if (skb_defer_rx_timestamp(skb))
4588                 return NET_RX_SUCCESS;
4589
4590         if (static_key_false(&generic_xdp_needed)) {
4591                 int ret;
4592
4593                 preempt_disable();
4594                 rcu_read_lock();
4595                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4596                 rcu_read_unlock();
4597                 preempt_enable();
4598
4599                 if (ret != XDP_PASS)
4600                         return NET_RX_DROP;
4601         }
4602
4603         rcu_read_lock();
4604 #ifdef CONFIG_RPS
4605         if (static_key_false(&rps_needed)) {
4606                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4607                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4608
4609                 if (cpu >= 0) {
4610                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4611                         rcu_read_unlock();
4612                         return ret;
4613                 }
4614         }
4615 #endif
4616         ret = __netif_receive_skb(skb);
4617         rcu_read_unlock();
4618         return ret;
4619 }
4620
4621 /**
4622  *      netif_receive_skb - process receive buffer from network
4623  *      @skb: buffer to process
4624  *
4625  *      netif_receive_skb() is the main receive data processing function.
4626  *      It always succeeds. The buffer may be dropped during processing
4627  *      for congestion control or by the protocol layers.
4628  *
4629  *      This function may only be called from softirq context and interrupts
4630  *      should be enabled.
4631  *
4632  *      Return values (usually ignored):
4633  *      NET_RX_SUCCESS: no congestion
4634  *      NET_RX_DROP: packet was dropped
4635  */
4636 int netif_receive_skb(struct sk_buff *skb)
4637 {
4638         trace_netif_receive_skb_entry(skb);
4639
4640         return netif_receive_skb_internal(skb);
4641 }
4642 EXPORT_SYMBOL(netif_receive_skb);
4643
4644 DEFINE_PER_CPU(struct work_struct, flush_works);
4645
4646 /* Network device is going away, flush any packets still pending */
4647 static void flush_backlog(struct work_struct *work)
4648 {
4649         struct sk_buff *skb, *tmp;
4650         struct softnet_data *sd;
4651
4652         local_bh_disable();
4653         sd = this_cpu_ptr(&softnet_data);
4654
4655         local_irq_disable();
4656         rps_lock(sd);
4657         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4658                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4659                         __skb_unlink(skb, &sd->input_pkt_queue);
4660                         kfree_skb(skb);
4661                         input_queue_head_incr(sd);
4662                 }
4663         }
4664         rps_unlock(sd);
4665         local_irq_enable();
4666
4667         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4668                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4669                         __skb_unlink(skb, &sd->process_queue);
4670                         kfree_skb(skb);
4671                         input_queue_head_incr(sd);
4672                 }
4673         }
4674         local_bh_enable();
4675 }
4676
4677 static void flush_all_backlogs(void)
4678 {
4679         unsigned int cpu;
4680
4681         get_online_cpus();
4682
4683         for_each_online_cpu(cpu)
4684                 queue_work_on(cpu, system_highpri_wq,
4685                               per_cpu_ptr(&flush_works, cpu));
4686
4687         for_each_online_cpu(cpu)
4688                 flush_work(per_cpu_ptr(&flush_works, cpu));
4689
4690         put_online_cpus();
4691 }
4692
4693 static int napi_gro_complete(struct sk_buff *skb)
4694 {
4695         struct packet_offload *ptype;
4696         __be16 type = skb->protocol;
4697         struct list_head *head = &offload_base;
4698         int err = -ENOENT;
4699
4700         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4701
4702         if (NAPI_GRO_CB(skb)->count == 1) {
4703                 skb_shinfo(skb)->gso_size = 0;
4704                 goto out;
4705         }
4706
4707         rcu_read_lock();
4708         list_for_each_entry_rcu(ptype, head, list) {
4709                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4710                         continue;
4711
4712                 err = ptype->callbacks.gro_complete(skb, 0);
4713                 break;
4714         }
4715         rcu_read_unlock();
4716
4717         if (err) {
4718                 WARN_ON(&ptype->list == head);
4719                 kfree_skb(skb);
4720                 return NET_RX_SUCCESS;
4721         }
4722
4723 out:
4724         return netif_receive_skb_internal(skb);
4725 }
4726
4727 /* napi->gro_list contains packets ordered by age.
4728  * youngest packets at the head of it.
4729  * Complete skbs in reverse order to reduce latencies.
4730  */
4731 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4732 {
4733         struct sk_buff *skb, *prev = NULL;
4734
4735         /* scan list and build reverse chain */
4736         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4737                 skb->prev = prev;
4738                 prev = skb;
4739         }
4740
4741         for (skb = prev; skb; skb = prev) {
4742                 skb->next = NULL;
4743
4744                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4745                         return;
4746
4747                 prev = skb->prev;
4748                 napi_gro_complete(skb);
4749                 napi->gro_count--;
4750         }
4751
4752         napi->gro_list = NULL;
4753 }
4754 EXPORT_SYMBOL(napi_gro_flush);
4755
4756 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4757 {
4758         struct sk_buff *p;
4759         unsigned int maclen = skb->dev->hard_header_len;
4760         u32 hash = skb_get_hash_raw(skb);
4761
4762         for (p = napi->gro_list; p; p = p->next) {
4763                 unsigned long diffs;
4764
4765                 NAPI_GRO_CB(p)->flush = 0;
4766
4767                 if (hash != skb_get_hash_raw(p)) {
4768                         NAPI_GRO_CB(p)->same_flow = 0;
4769                         continue;
4770                 }
4771
4772                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4773                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4774                 diffs |= skb_metadata_dst_cmp(p, skb);
4775                 diffs |= skb_metadata_differs(p, skb);
4776                 if (maclen == ETH_HLEN)
4777                         diffs |= compare_ether_header(skb_mac_header(p),
4778                                                       skb_mac_header(skb));
4779                 else if (!diffs)
4780                         diffs = memcmp(skb_mac_header(p),
4781                                        skb_mac_header(skb),
4782                                        maclen);
4783                 NAPI_GRO_CB(p)->same_flow = !diffs;
4784         }
4785 }
4786
4787 static void skb_gro_reset_offset(struct sk_buff *skb)
4788 {
4789         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4790         const skb_frag_t *frag0 = &pinfo->frags[0];
4791
4792         NAPI_GRO_CB(skb)->data_offset = 0;
4793         NAPI_GRO_CB(skb)->frag0 = NULL;
4794         NAPI_GRO_CB(skb)->frag0_len = 0;
4795
4796         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4797             pinfo->nr_frags &&
4798             !PageHighMem(skb_frag_page(frag0))) {
4799                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4800                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4801                                                     skb_frag_size(frag0),
4802                                                     skb->end - skb->tail);
4803         }
4804 }
4805
4806 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4807 {
4808         struct skb_shared_info *pinfo = skb_shinfo(skb);
4809
4810         BUG_ON(skb->end - skb->tail < grow);
4811
4812         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4813
4814         skb->data_len -= grow;
4815         skb->tail += grow;
4816
4817         pinfo->frags[0].page_offset += grow;
4818         skb_frag_size_sub(&pinfo->frags[0], grow);
4819
4820         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4821                 skb_frag_unref(skb, 0);
4822                 memmove(pinfo->frags, pinfo->frags + 1,
4823                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4824         }
4825 }
4826
4827 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4828 {
4829         struct sk_buff **pp = NULL;
4830         struct packet_offload *ptype;
4831         __be16 type = skb->protocol;
4832         struct list_head *head = &offload_base;
4833         int same_flow;
4834         enum gro_result ret;
4835         int grow;
4836
4837         if (netif_elide_gro(skb->dev))
4838                 goto normal;
4839
4840         gro_list_prepare(napi, skb);
4841
4842         rcu_read_lock();
4843         list_for_each_entry_rcu(ptype, head, list) {
4844                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4845                         continue;
4846
4847                 skb_set_network_header(skb, skb_gro_offset(skb));
4848                 skb_reset_mac_len(skb);
4849                 NAPI_GRO_CB(skb)->same_flow = 0;
4850                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4851                 NAPI_GRO_CB(skb)->free = 0;
4852                 NAPI_GRO_CB(skb)->encap_mark = 0;
4853                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4854                 NAPI_GRO_CB(skb)->is_fou = 0;
4855                 NAPI_GRO_CB(skb)->is_atomic = 1;
4856                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4857
4858                 /* Setup for GRO checksum validation */
4859                 switch (skb->ip_summed) {
4860                 case CHECKSUM_COMPLETE:
4861                         NAPI_GRO_CB(skb)->csum = skb->csum;
4862                         NAPI_GRO_CB(skb)->csum_valid = 1;
4863                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4864                         break;
4865                 case CHECKSUM_UNNECESSARY:
4866                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4867                         NAPI_GRO_CB(skb)->csum_valid = 0;
4868                         break;
4869                 default:
4870                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4871                         NAPI_GRO_CB(skb)->csum_valid = 0;
4872                 }
4873
4874                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4875                 break;
4876         }
4877         rcu_read_unlock();
4878
4879         if (&ptype->list == head)
4880                 goto normal;
4881
4882         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4883                 ret = GRO_CONSUMED;
4884                 goto ok;
4885         }
4886
4887         same_flow = NAPI_GRO_CB(skb)->same_flow;
4888         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4889
4890         if (pp) {
4891                 struct sk_buff *nskb = *pp;
4892
4893                 *pp = nskb->next;
4894                 nskb->next = NULL;
4895                 napi_gro_complete(nskb);
4896                 napi->gro_count--;
4897         }
4898
4899         if (same_flow)
4900                 goto ok;
4901
4902         if (NAPI_GRO_CB(skb)->flush)
4903                 goto normal;
4904
4905         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4906                 struct sk_buff *nskb = napi->gro_list;
4907
4908                 /* locate the end of the list to select the 'oldest' flow */
4909                 while (nskb->next) {
4910                         pp = &nskb->next;
4911                         nskb = *pp;
4912                 }
4913                 *pp = NULL;
4914                 nskb->next = NULL;
4915                 napi_gro_complete(nskb);
4916         } else {
4917                 napi->gro_count++;
4918         }
4919         NAPI_GRO_CB(skb)->count = 1;
4920         NAPI_GRO_CB(skb)->age = jiffies;
4921         NAPI_GRO_CB(skb)->last = skb;
4922         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4923         skb->next = napi->gro_list;
4924         napi->gro_list = skb;
4925         ret = GRO_HELD;
4926
4927 pull:
4928         grow = skb_gro_offset(skb) - skb_headlen(skb);
4929         if (grow > 0)
4930                 gro_pull_from_frag0(skb, grow);
4931 ok:
4932         return ret;
4933
4934 normal:
4935         ret = GRO_NORMAL;
4936         goto pull;
4937 }
4938
4939 struct packet_offload *gro_find_receive_by_type(__be16 type)
4940 {
4941         struct list_head *offload_head = &offload_base;
4942         struct packet_offload *ptype;
4943
4944         list_for_each_entry_rcu(ptype, offload_head, list) {
4945                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4946                         continue;
4947                 return ptype;
4948         }
4949         return NULL;
4950 }
4951 EXPORT_SYMBOL(gro_find_receive_by_type);
4952
4953 struct packet_offload *gro_find_complete_by_type(__be16 type)
4954 {
4955         struct list_head *offload_head = &offload_base;
4956         struct packet_offload *ptype;
4957
4958         list_for_each_entry_rcu(ptype, offload_head, list) {
4959                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4960                         continue;
4961                 return ptype;
4962         }
4963         return NULL;
4964 }
4965 EXPORT_SYMBOL(gro_find_complete_by_type);
4966
4967 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4968 {
4969         skb_dst_drop(skb);
4970         secpath_reset(skb);
4971         kmem_cache_free(skbuff_head_cache, skb);
4972 }
4973
4974 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4975 {
4976         switch (ret) {
4977         case GRO_NORMAL:
4978                 if (netif_receive_skb_internal(skb))
4979                         ret = GRO_DROP;
4980                 break;
4981
4982         case GRO_DROP:
4983                 kfree_skb(skb);
4984                 break;
4985
4986         case GRO_MERGED_FREE:
4987                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4988                         napi_skb_free_stolen_head(skb);
4989                 else
4990                         __kfree_skb(skb);
4991                 break;
4992
4993         case GRO_HELD:
4994         case GRO_MERGED:
4995         case GRO_CONSUMED:
4996                 break;
4997         }
4998
4999         return ret;
5000 }
5001
5002 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5003 {
5004         skb_mark_napi_id(skb, napi);
5005         trace_napi_gro_receive_entry(skb);
5006
5007         skb_gro_reset_offset(skb);
5008
5009         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5010 }
5011 EXPORT_SYMBOL(napi_gro_receive);
5012
5013 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5014 {
5015         if (unlikely(skb->pfmemalloc)) {
5016                 consume_skb(skb);
5017                 return;
5018         }
5019         __skb_pull(skb, skb_headlen(skb));
5020         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5021         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5022         skb->vlan_tci = 0;
5023         skb->dev = napi->dev;
5024         skb->skb_iif = 0;
5025         skb->encapsulation = 0;
5026         skb_shinfo(skb)->gso_type = 0;
5027         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5028         secpath_reset(skb);
5029
5030         napi->skb = skb;
5031 }
5032
5033 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5034 {
5035         struct sk_buff *skb = napi->skb;
5036
5037         if (!skb) {
5038                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5039                 if (skb) {
5040                         napi->skb = skb;
5041                         skb_mark_napi_id(skb, napi);
5042                 }
5043         }
5044         return skb;
5045 }
5046 EXPORT_SYMBOL(napi_get_frags);
5047
5048 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5049                                       struct sk_buff *skb,
5050                                       gro_result_t ret)
5051 {
5052         switch (ret) {
5053         case GRO_NORMAL:
5054         case GRO_HELD:
5055                 __skb_push(skb, ETH_HLEN);
5056                 skb->protocol = eth_type_trans(skb, skb->dev);
5057                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5058                         ret = GRO_DROP;
5059                 break;
5060
5061         case GRO_DROP:
5062                 napi_reuse_skb(napi, skb);
5063                 break;
5064
5065         case GRO_MERGED_FREE:
5066                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5067                         napi_skb_free_stolen_head(skb);
5068                 else
5069                         napi_reuse_skb(napi, skb);
5070                 break;
5071
5072         case GRO_MERGED:
5073         case GRO_CONSUMED:
5074                 break;
5075         }
5076
5077         return ret;
5078 }
5079
5080 /* Upper GRO stack assumes network header starts at gro_offset=0
5081  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5082  * We copy ethernet header into skb->data to have a common layout.
5083  */
5084 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5085 {
5086         struct sk_buff *skb = napi->skb;
5087         const struct ethhdr *eth;
5088         unsigned int hlen = sizeof(*eth);
5089
5090         napi->skb = NULL;
5091
5092         skb_reset_mac_header(skb);
5093         skb_gro_reset_offset(skb);
5094
5095         eth = skb_gro_header_fast(skb, 0);
5096         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5097                 eth = skb_gro_header_slow(skb, hlen, 0);
5098                 if (unlikely(!eth)) {
5099                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5100                                              __func__, napi->dev->name);
5101                         napi_reuse_skb(napi, skb);
5102                         return NULL;
5103                 }
5104         } else {
5105                 gro_pull_from_frag0(skb, hlen);
5106                 NAPI_GRO_CB(skb)->frag0 += hlen;
5107                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5108         }
5109         __skb_pull(skb, hlen);
5110
5111         /*
5112          * This works because the only protocols we care about don't require
5113          * special handling.
5114          * We'll fix it up properly in napi_frags_finish()
5115          */
5116         skb->protocol = eth->h_proto;
5117
5118         return skb;
5119 }
5120
5121 gro_result_t napi_gro_frags(struct napi_struct *napi)
5122 {
5123         struct sk_buff *skb = napi_frags_skb(napi);
5124
5125         if (!skb)
5126                 return GRO_DROP;
5127
5128         trace_napi_gro_frags_entry(skb);
5129
5130         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5131 }
5132 EXPORT_SYMBOL(napi_gro_frags);
5133
5134 /* Compute the checksum from gro_offset and return the folded value
5135  * after adding in any pseudo checksum.
5136  */
5137 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5138 {
5139         __wsum wsum;
5140         __sum16 sum;
5141
5142         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5143
5144         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5145         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5146         if (likely(!sum)) {
5147                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5148                     !skb->csum_complete_sw)
5149                         netdev_rx_csum_fault(skb->dev);
5150         }
5151
5152         NAPI_GRO_CB(skb)->csum = wsum;
5153         NAPI_GRO_CB(skb)->csum_valid = 1;
5154
5155         return sum;
5156 }
5157 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5158
5159 static void net_rps_send_ipi(struct softnet_data *remsd)
5160 {
5161 #ifdef CONFIG_RPS
5162         while (remsd) {
5163                 struct softnet_data *next = remsd->rps_ipi_next;
5164
5165                 if (cpu_online(remsd->cpu))
5166                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5167                 remsd = next;
5168         }
5169 #endif
5170 }
5171
5172 /*
5173  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5174  * Note: called with local irq disabled, but exits with local irq enabled.
5175  */
5176 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5177 {
5178 #ifdef CONFIG_RPS
5179         struct softnet_data *remsd = sd->rps_ipi_list;
5180
5181         if (remsd) {
5182                 sd->rps_ipi_list = NULL;
5183
5184                 local_irq_enable();
5185
5186                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5187                 net_rps_send_ipi(remsd);
5188         } else
5189 #endif
5190                 local_irq_enable();
5191 }
5192
5193 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5194 {
5195 #ifdef CONFIG_RPS
5196         return sd->rps_ipi_list != NULL;
5197 #else
5198         return false;
5199 #endif
5200 }
5201
5202 static int process_backlog(struct napi_struct *napi, int quota)
5203 {
5204         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5205         bool again = true;
5206         int work = 0;
5207
5208         /* Check if we have pending ipi, its better to send them now,
5209          * not waiting net_rx_action() end.
5210          */
5211         if (sd_has_rps_ipi_waiting(sd)) {
5212                 local_irq_disable();
5213                 net_rps_action_and_irq_enable(sd);
5214         }
5215
5216         napi->weight = dev_rx_weight;
5217         while (again) {
5218                 struct sk_buff *skb;
5219
5220                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5221                         rcu_read_lock();
5222                         __netif_receive_skb(skb);
5223                         rcu_read_unlock();
5224                         input_queue_head_incr(sd);
5225                         if (++work >= quota)
5226                                 return work;
5227
5228                 }
5229
5230                 local_irq_disable();
5231                 rps_lock(sd);
5232                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5233                         /*
5234                          * Inline a custom version of __napi_complete().
5235                          * only current cpu owns and manipulates this napi,
5236                          * and NAPI_STATE_SCHED is the only possible flag set
5237                          * on backlog.
5238                          * We can use a plain write instead of clear_bit(),
5239                          * and we dont need an smp_mb() memory barrier.
5240                          */
5241                         napi->state = 0;
5242                         again = false;
5243                 } else {
5244                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5245                                                    &sd->process_queue);
5246                 }
5247                 rps_unlock(sd);
5248                 local_irq_enable();
5249         }
5250
5251         return work;
5252 }
5253
5254 /**
5255  * __napi_schedule - schedule for receive
5256  * @n: entry to schedule
5257  *
5258  * The entry's receive function will be scheduled to run.
5259  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5260  */
5261 void __napi_schedule(struct napi_struct *n)
5262 {
5263         unsigned long flags;
5264
5265         local_irq_save(flags);
5266         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5267         local_irq_restore(flags);
5268 }
5269 EXPORT_SYMBOL(__napi_schedule);
5270
5271 /**
5272  *      napi_schedule_prep - check if napi can be scheduled
5273  *      @n: napi context
5274  *
5275  * Test if NAPI routine is already running, and if not mark
5276  * it as running.  This is used as a condition variable
5277  * insure only one NAPI poll instance runs.  We also make
5278  * sure there is no pending NAPI disable.
5279  */
5280 bool napi_schedule_prep(struct napi_struct *n)
5281 {
5282         unsigned long val, new;
5283
5284         do {
5285                 val = READ_ONCE(n->state);
5286                 if (unlikely(val & NAPIF_STATE_DISABLE))
5287                         return false;
5288                 new = val | NAPIF_STATE_SCHED;
5289
5290                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5291                  * This was suggested by Alexander Duyck, as compiler
5292                  * emits better code than :
5293                  * if (val & NAPIF_STATE_SCHED)
5294                  *     new |= NAPIF_STATE_MISSED;
5295                  */
5296                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5297                                                    NAPIF_STATE_MISSED;
5298         } while (cmpxchg(&n->state, val, new) != val);
5299
5300         return !(val & NAPIF_STATE_SCHED);
5301 }
5302 EXPORT_SYMBOL(napi_schedule_prep);
5303
5304 /**
5305  * __napi_schedule_irqoff - schedule for receive
5306  * @n: entry to schedule
5307  *
5308  * Variant of __napi_schedule() assuming hard irqs are masked
5309  */
5310 void __napi_schedule_irqoff(struct napi_struct *n)
5311 {
5312         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5313 }
5314 EXPORT_SYMBOL(__napi_schedule_irqoff);
5315
5316 bool napi_complete_done(struct napi_struct *n, int work_done)
5317 {
5318         unsigned long flags, val, new;
5319
5320         /*
5321          * 1) Don't let napi dequeue from the cpu poll list
5322          *    just in case its running on a different cpu.
5323          * 2) If we are busy polling, do nothing here, we have
5324          *    the guarantee we will be called later.
5325          */
5326         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5327                                  NAPIF_STATE_IN_BUSY_POLL)))
5328                 return false;
5329
5330         if (n->gro_list) {
5331                 unsigned long timeout = 0;
5332
5333                 if (work_done)
5334                         timeout = n->dev->gro_flush_timeout;
5335
5336                 if (timeout)
5337                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5338                                       HRTIMER_MODE_REL_PINNED);
5339                 else
5340                         napi_gro_flush(n, false);
5341         }
5342         if (unlikely(!list_empty(&n->poll_list))) {
5343                 /* If n->poll_list is not empty, we need to mask irqs */
5344                 local_irq_save(flags);
5345                 list_del_init(&n->poll_list);
5346                 local_irq_restore(flags);
5347         }
5348
5349         do {
5350                 val = READ_ONCE(n->state);
5351
5352                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5353
5354                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5355
5356                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5357                  * because we will call napi->poll() one more time.
5358                  * This C code was suggested by Alexander Duyck to help gcc.
5359                  */
5360                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5361                                                     NAPIF_STATE_SCHED;
5362         } while (cmpxchg(&n->state, val, new) != val);
5363
5364         if (unlikely(val & NAPIF_STATE_MISSED)) {
5365                 __napi_schedule(n);
5366                 return false;
5367         }
5368
5369         return true;
5370 }
5371 EXPORT_SYMBOL(napi_complete_done);
5372
5373 /* must be called under rcu_read_lock(), as we dont take a reference */
5374 static struct napi_struct *napi_by_id(unsigned int napi_id)
5375 {
5376         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5377         struct napi_struct *napi;
5378
5379         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5380                 if (napi->napi_id == napi_id)
5381                         return napi;
5382
5383         return NULL;
5384 }
5385
5386 #if defined(CONFIG_NET_RX_BUSY_POLL)
5387
5388 #define BUSY_POLL_BUDGET 8
5389
5390 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5391 {
5392         int rc;
5393
5394         /* Busy polling means there is a high chance device driver hard irq
5395          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5396          * set in napi_schedule_prep().
5397          * Since we are about to call napi->poll() once more, we can safely
5398          * clear NAPI_STATE_MISSED.
5399          *
5400          * Note: x86 could use a single "lock and ..." instruction
5401          * to perform these two clear_bit()
5402          */
5403         clear_bit(NAPI_STATE_MISSED, &napi->state);
5404         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5405
5406         local_bh_disable();
5407
5408         /* All we really want here is to re-enable device interrupts.
5409          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5410          */
5411         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5412         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5413         netpoll_poll_unlock(have_poll_lock);
5414         if (rc == BUSY_POLL_BUDGET)
5415                 __napi_schedule(napi);
5416         local_bh_enable();
5417 }
5418
5419 void napi_busy_loop(unsigned int napi_id,
5420                     bool (*loop_end)(void *, unsigned long),
5421                     void *loop_end_arg)
5422 {
5423         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5424         int (*napi_poll)(struct napi_struct *napi, int budget);
5425         void *have_poll_lock = NULL;
5426         struct napi_struct *napi;
5427
5428 restart:
5429         napi_poll = NULL;
5430
5431         rcu_read_lock();
5432
5433         napi = napi_by_id(napi_id);
5434         if (!napi)
5435                 goto out;
5436
5437         preempt_disable();
5438         for (;;) {
5439                 int work = 0;
5440
5441                 local_bh_disable();
5442                 if (!napi_poll) {
5443                         unsigned long val = READ_ONCE(napi->state);
5444
5445                         /* If multiple threads are competing for this napi,
5446                          * we avoid dirtying napi->state as much as we can.
5447                          */
5448                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5449                                    NAPIF_STATE_IN_BUSY_POLL))
5450                                 goto count;
5451                         if (cmpxchg(&napi->state, val,
5452                                     val | NAPIF_STATE_IN_BUSY_POLL |
5453                                           NAPIF_STATE_SCHED) != val)
5454                                 goto count;
5455                         have_poll_lock = netpoll_poll_lock(napi);
5456                         napi_poll = napi->poll;
5457                 }
5458                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5459                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5460 count:
5461                 if (work > 0)
5462                         __NET_ADD_STATS(dev_net(napi->dev),
5463                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5464                 local_bh_enable();
5465
5466                 if (!loop_end || loop_end(loop_end_arg, start_time))
5467                         break;
5468
5469                 if (unlikely(need_resched())) {
5470                         if (napi_poll)
5471                                 busy_poll_stop(napi, have_poll_lock);
5472                         preempt_enable();
5473                         rcu_read_unlock();
5474                         cond_resched();
5475                         if (loop_end(loop_end_arg, start_time))
5476                                 return;
5477                         goto restart;
5478                 }
5479                 cpu_relax();
5480         }
5481         if (napi_poll)
5482                 busy_poll_stop(napi, have_poll_lock);
5483         preempt_enable();
5484 out:
5485         rcu_read_unlock();
5486 }
5487 EXPORT_SYMBOL(napi_busy_loop);
5488
5489 #endif /* CONFIG_NET_RX_BUSY_POLL */
5490
5491 static void napi_hash_add(struct napi_struct *napi)
5492 {
5493         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5494             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5495                 return;
5496
5497         spin_lock(&napi_hash_lock);
5498
5499         /* 0..NR_CPUS range is reserved for sender_cpu use */
5500         do {
5501                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5502                         napi_gen_id = MIN_NAPI_ID;
5503         } while (napi_by_id(napi_gen_id));
5504         napi->napi_id = napi_gen_id;
5505
5506         hlist_add_head_rcu(&napi->napi_hash_node,
5507                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5508
5509         spin_unlock(&napi_hash_lock);
5510 }
5511
5512 /* Warning : caller is responsible to make sure rcu grace period
5513  * is respected before freeing memory containing @napi
5514  */
5515 bool napi_hash_del(struct napi_struct *napi)
5516 {
5517         bool rcu_sync_needed = false;
5518
5519         spin_lock(&napi_hash_lock);
5520
5521         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5522                 rcu_sync_needed = true;
5523                 hlist_del_rcu(&napi->napi_hash_node);
5524         }
5525         spin_unlock(&napi_hash_lock);
5526         return rcu_sync_needed;
5527 }
5528 EXPORT_SYMBOL_GPL(napi_hash_del);
5529
5530 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5531 {
5532         struct napi_struct *napi;
5533
5534         napi = container_of(timer, struct napi_struct, timer);
5535
5536         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5537          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5538          */
5539         if (napi->gro_list && !napi_disable_pending(napi) &&
5540             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5541                 __napi_schedule_irqoff(napi);
5542
5543         return HRTIMER_NORESTART;
5544 }
5545
5546 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5547                     int (*poll)(struct napi_struct *, int), int weight)
5548 {
5549         INIT_LIST_HEAD(&napi->poll_list);
5550         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5551         napi->timer.function = napi_watchdog;
5552         napi->gro_count = 0;
5553         napi->gro_list = NULL;
5554         napi->skb = NULL;
5555         napi->poll = poll;
5556         if (weight > NAPI_POLL_WEIGHT)
5557                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5558                             weight, dev->name);
5559         napi->weight = weight;
5560         list_add(&napi->dev_list, &dev->napi_list);
5561         napi->dev = dev;
5562 #ifdef CONFIG_NETPOLL
5563         napi->poll_owner = -1;
5564 #endif
5565         set_bit(NAPI_STATE_SCHED, &napi->state);
5566         napi_hash_add(napi);
5567 }
5568 EXPORT_SYMBOL(netif_napi_add);
5569
5570 void napi_disable(struct napi_struct *n)
5571 {
5572         might_sleep();
5573         set_bit(NAPI_STATE_DISABLE, &n->state);
5574
5575         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5576                 msleep(1);
5577         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5578                 msleep(1);
5579
5580         hrtimer_cancel(&n->timer);
5581
5582         clear_bit(NAPI_STATE_DISABLE, &n->state);
5583 }
5584 EXPORT_SYMBOL(napi_disable);
5585
5586 /* Must be called in process context */
5587 void netif_napi_del(struct napi_struct *napi)
5588 {
5589         might_sleep();
5590         if (napi_hash_del(napi))
5591                 synchronize_net();
5592         list_del_init(&napi->dev_list);
5593         napi_free_frags(napi);
5594
5595         kfree_skb_list(napi->gro_list);
5596         napi->gro_list = NULL;
5597         napi->gro_count = 0;
5598 }
5599 EXPORT_SYMBOL(netif_napi_del);
5600
5601 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5602 {
5603         void *have;
5604         int work, weight;
5605
5606         list_del_init(&n->poll_list);
5607
5608         have = netpoll_poll_lock(n);
5609
5610         weight = n->weight;
5611
5612         /* This NAPI_STATE_SCHED test is for avoiding a race
5613          * with netpoll's poll_napi().  Only the entity which
5614          * obtains the lock and sees NAPI_STATE_SCHED set will
5615          * actually make the ->poll() call.  Therefore we avoid
5616          * accidentally calling ->poll() when NAPI is not scheduled.
5617          */
5618         work = 0;
5619         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5620                 work = n->poll(n, weight);
5621                 trace_napi_poll(n, work, weight);
5622         }
5623
5624         WARN_ON_ONCE(work > weight);
5625
5626         if (likely(work < weight))
5627                 goto out_unlock;
5628
5629         /* Drivers must not modify the NAPI state if they
5630          * consume the entire weight.  In such cases this code
5631          * still "owns" the NAPI instance and therefore can
5632          * move the instance around on the list at-will.
5633          */
5634         if (unlikely(napi_disable_pending(n))) {
5635                 napi_complete(n);
5636                 goto out_unlock;
5637         }
5638
5639         if (n->gro_list) {
5640                 /* flush too old packets
5641                  * If HZ < 1000, flush all packets.
5642                  */
5643                 napi_gro_flush(n, HZ >= 1000);
5644         }
5645
5646         /* Some drivers may have called napi_schedule
5647          * prior to exhausting their budget.
5648          */
5649         if (unlikely(!list_empty(&n->poll_list))) {
5650                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5651                              n->dev ? n->dev->name : "backlog");
5652                 goto out_unlock;
5653         }
5654
5655         list_add_tail(&n->poll_list, repoll);
5656
5657 out_unlock:
5658         netpoll_poll_unlock(have);
5659
5660         return work;
5661 }
5662
5663 static __latent_entropy void net_rx_action(struct softirq_action *h)
5664 {
5665         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5666         unsigned long time_limit = jiffies +
5667                 usecs_to_jiffies(netdev_budget_usecs);
5668         int budget = netdev_budget;
5669         LIST_HEAD(list);
5670         LIST_HEAD(repoll);
5671
5672         local_irq_disable();
5673         list_splice_init(&sd->poll_list, &list);
5674         local_irq_enable();
5675
5676         for (;;) {
5677                 struct napi_struct *n;
5678
5679                 if (list_empty(&list)) {
5680                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5681                                 goto out;
5682                         break;
5683                 }
5684
5685                 n = list_first_entry(&list, struct napi_struct, poll_list);
5686                 budget -= napi_poll(n, &repoll);
5687
5688                 /* If softirq window is exhausted then punt.
5689                  * Allow this to run for 2 jiffies since which will allow
5690                  * an average latency of 1.5/HZ.
5691                  */
5692                 if (unlikely(budget <= 0 ||
5693                              time_after_eq(jiffies, time_limit))) {
5694                         sd->time_squeeze++;
5695                         break;
5696                 }
5697         }
5698
5699         local_irq_disable();
5700
5701         list_splice_tail_init(&sd->poll_list, &list);
5702         list_splice_tail(&repoll, &list);
5703         list_splice(&list, &sd->poll_list);
5704         if (!list_empty(&sd->poll_list))
5705                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5706
5707         net_rps_action_and_irq_enable(sd);
5708 out:
5709         __kfree_skb_flush();
5710 }
5711
5712 struct netdev_adjacent {
5713         struct net_device *dev;
5714
5715         /* upper master flag, there can only be one master device per list */
5716         bool master;
5717
5718         /* counter for the number of times this device was added to us */
5719         u16 ref_nr;
5720
5721         /* private field for the users */
5722         void *private;
5723
5724         struct list_head list;
5725         struct rcu_head rcu;
5726 };
5727
5728 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5729                                                  struct list_head *adj_list)
5730 {
5731         struct netdev_adjacent *adj;
5732
5733         list_for_each_entry(adj, adj_list, list) {
5734                 if (adj->dev == adj_dev)
5735                         return adj;
5736         }
5737         return NULL;
5738 }
5739
5740 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5741 {
5742         struct net_device *dev = data;
5743
5744         return upper_dev == dev;
5745 }
5746
5747 /**
5748  * netdev_has_upper_dev - Check if device is linked to an upper device
5749  * @dev: device
5750  * @upper_dev: upper device to check
5751  *
5752  * Find out if a device is linked to specified upper device and return true
5753  * in case it is. Note that this checks only immediate upper device,
5754  * not through a complete stack of devices. The caller must hold the RTNL lock.
5755  */
5756 bool netdev_has_upper_dev(struct net_device *dev,
5757                           struct net_device *upper_dev)
5758 {
5759         ASSERT_RTNL();
5760
5761         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5762                                              upper_dev);
5763 }
5764 EXPORT_SYMBOL(netdev_has_upper_dev);
5765
5766 /**
5767  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5768  * @dev: device
5769  * @upper_dev: upper device to check
5770  *
5771  * Find out if a device is linked to specified upper device and return true
5772  * in case it is. Note that this checks the entire upper device chain.
5773  * The caller must hold rcu lock.
5774  */
5775
5776 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5777                                   struct net_device *upper_dev)
5778 {
5779         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5780                                                upper_dev);
5781 }
5782 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5783
5784 /**
5785  * netdev_has_any_upper_dev - Check if device is linked to some device
5786  * @dev: device
5787  *
5788  * Find out if a device is linked to an upper device and return true in case
5789  * it is. The caller must hold the RTNL lock.
5790  */
5791 bool netdev_has_any_upper_dev(struct net_device *dev)
5792 {
5793         ASSERT_RTNL();
5794
5795         return !list_empty(&dev->adj_list.upper);
5796 }
5797 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5798
5799 /**
5800  * netdev_master_upper_dev_get - Get master upper device
5801  * @dev: device
5802  *
5803  * Find a master upper device and return pointer to it or NULL in case
5804  * it's not there. The caller must hold the RTNL lock.
5805  */
5806 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5807 {
5808         struct netdev_adjacent *upper;
5809
5810         ASSERT_RTNL();
5811
5812         if (list_empty(&dev->adj_list.upper))
5813                 return NULL;
5814
5815         upper = list_first_entry(&dev->adj_list.upper,
5816                                  struct netdev_adjacent, list);
5817         if (likely(upper->master))
5818                 return upper->dev;
5819         return NULL;
5820 }
5821 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5822
5823 /**
5824  * netdev_has_any_lower_dev - Check if device is linked to some device
5825  * @dev: device
5826  *
5827  * Find out if a device is linked to a lower device and return true in case
5828  * it is. The caller must hold the RTNL lock.
5829  */
5830 static bool netdev_has_any_lower_dev(struct net_device *dev)
5831 {
5832         ASSERT_RTNL();
5833
5834         return !list_empty(&dev->adj_list.lower);
5835 }
5836
5837 void *netdev_adjacent_get_private(struct list_head *adj_list)
5838 {
5839         struct netdev_adjacent *adj;
5840
5841         adj = list_entry(adj_list, struct netdev_adjacent, list);
5842
5843         return adj->private;
5844 }
5845 EXPORT_SYMBOL(netdev_adjacent_get_private);
5846
5847 /**
5848  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5849  * @dev: device
5850  * @iter: list_head ** of the current position
5851  *
5852  * Gets the next device from the dev's upper list, starting from iter
5853  * position. The caller must hold RCU read lock.
5854  */
5855 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5856                                                  struct list_head **iter)
5857 {
5858         struct netdev_adjacent *upper;
5859
5860         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5861
5862         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5863
5864         if (&upper->list == &dev->adj_list.upper)
5865                 return NULL;
5866
5867         *iter = &upper->list;
5868
5869         return upper->dev;
5870 }
5871 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5872
5873 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5874                                                     struct list_head **iter)
5875 {
5876         struct netdev_adjacent *upper;
5877
5878         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5879
5880         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5881
5882         if (&upper->list == &dev->adj_list.upper)
5883                 return NULL;
5884
5885         *iter = &upper->list;
5886
5887         return upper->dev;
5888 }
5889
5890 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5891                                   int (*fn)(struct net_device *dev,
5892                                             void *data),
5893                                   void *data)
5894 {
5895         struct net_device *udev;
5896         struct list_head *iter;
5897         int ret;
5898
5899         for (iter = &dev->adj_list.upper,
5900              udev = netdev_next_upper_dev_rcu(dev, &iter);
5901              udev;
5902              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5903                 /* first is the upper device itself */
5904                 ret = fn(udev, data);
5905                 if (ret)
5906                         return ret;
5907
5908                 /* then look at all of its upper devices */
5909                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5910                 if (ret)
5911                         return ret;
5912         }
5913
5914         return 0;
5915 }
5916 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5917
5918 /**
5919  * netdev_lower_get_next_private - Get the next ->private from the
5920  *                                 lower neighbour list
5921  * @dev: device
5922  * @iter: list_head ** of the current position
5923  *
5924  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5925  * list, starting from iter position. The caller must hold either hold the
5926  * RTNL lock or its own locking that guarantees that the neighbour lower
5927  * list will remain unchanged.
5928  */
5929 void *netdev_lower_get_next_private(struct net_device *dev,
5930                                     struct list_head **iter)
5931 {
5932         struct netdev_adjacent *lower;
5933
5934         lower = list_entry(*iter, struct netdev_adjacent, list);
5935
5936         if (&lower->list == &dev->adj_list.lower)
5937                 return NULL;
5938
5939         *iter = lower->list.next;
5940
5941         return lower->private;
5942 }
5943 EXPORT_SYMBOL(netdev_lower_get_next_private);
5944
5945 /**
5946  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5947  *                                     lower neighbour list, RCU
5948  *                                     variant
5949  * @dev: device
5950  * @iter: list_head ** of the current position
5951  *
5952  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5953  * list, starting from iter position. The caller must hold RCU read lock.
5954  */
5955 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5956                                         struct list_head **iter)
5957 {
5958         struct netdev_adjacent *lower;
5959
5960         WARN_ON_ONCE(!rcu_read_lock_held());
5961
5962         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5963
5964         if (&lower->list == &dev->adj_list.lower)
5965                 return NULL;
5966
5967         *iter = &lower->list;
5968
5969         return lower->private;
5970 }
5971 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5972
5973 /**
5974  * netdev_lower_get_next - Get the next device from the lower neighbour
5975  *                         list
5976  * @dev: device
5977  * @iter: list_head ** of the current position
5978  *
5979  * Gets the next netdev_adjacent from the dev's lower neighbour
5980  * list, starting from iter position. The caller must hold RTNL lock or
5981  * its own locking that guarantees that the neighbour lower
5982  * list will remain unchanged.
5983  */
5984 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5985 {
5986         struct netdev_adjacent *lower;
5987
5988         lower = list_entry(*iter, struct netdev_adjacent, list);
5989
5990         if (&lower->list == &dev->adj_list.lower)
5991                 return NULL;
5992
5993         *iter = lower->list.next;
5994
5995         return lower->dev;
5996 }
5997 EXPORT_SYMBOL(netdev_lower_get_next);
5998
5999 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6000                                                 struct list_head **iter)
6001 {
6002         struct netdev_adjacent *lower;
6003
6004         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6005
6006         if (&lower->list == &dev->adj_list.lower)
6007                 return NULL;
6008
6009         *iter = &lower->list;
6010
6011         return lower->dev;
6012 }
6013
6014 int netdev_walk_all_lower_dev(struct net_device *dev,
6015                               int (*fn)(struct net_device *dev,
6016                                         void *data),
6017                               void *data)
6018 {
6019         struct net_device *ldev;
6020         struct list_head *iter;
6021         int ret;
6022
6023         for (iter = &dev->adj_list.lower,
6024              ldev = netdev_next_lower_dev(dev, &iter);
6025              ldev;
6026              ldev = netdev_next_lower_dev(dev, &iter)) {
6027                 /* first is the lower device itself */
6028                 ret = fn(ldev, data);
6029                 if (ret)
6030                         return ret;
6031
6032                 /* then look at all of its lower devices */
6033                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6034                 if (ret)
6035                         return ret;
6036         }
6037
6038         return 0;
6039 }
6040 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6041
6042 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6043                                                     struct list_head **iter)
6044 {
6045         struct netdev_adjacent *lower;
6046
6047         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6048         if (&lower->list == &dev->adj_list.lower)
6049                 return NULL;
6050
6051         *iter = &lower->list;
6052
6053         return lower->dev;
6054 }
6055
6056 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6057                                   int (*fn)(struct net_device *dev,
6058                                             void *data),
6059                                   void *data)
6060 {
6061         struct net_device *ldev;
6062         struct list_head *iter;
6063         int ret;
6064
6065         for (iter = &dev->adj_list.lower,
6066              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6067              ldev;
6068              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6069                 /* first is the lower device itself */
6070                 ret = fn(ldev, data);
6071                 if (ret)
6072                         return ret;
6073
6074                 /* then look at all of its lower devices */
6075                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6076                 if (ret)
6077                         return ret;
6078         }
6079
6080         return 0;
6081 }
6082 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6083
6084 /**
6085  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6086  *                                     lower neighbour list, RCU
6087  *                                     variant
6088  * @dev: device
6089  *
6090  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6091  * list. The caller must hold RCU read lock.
6092  */
6093 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6094 {
6095         struct netdev_adjacent *lower;
6096
6097         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6098                         struct netdev_adjacent, list);
6099         if (lower)
6100                 return lower->private;
6101         return NULL;
6102 }
6103 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6104
6105 /**
6106  * netdev_master_upper_dev_get_rcu - Get master upper device
6107  * @dev: device
6108  *
6109  * Find a master upper device and return pointer to it or NULL in case
6110  * it's not there. The caller must hold the RCU read lock.
6111  */
6112 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6113 {
6114         struct netdev_adjacent *upper;
6115
6116         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6117                                        struct netdev_adjacent, list);
6118         if (upper && likely(upper->master))
6119                 return upper->dev;
6120         return NULL;
6121 }
6122 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6123
6124 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6125                               struct net_device *adj_dev,
6126                               struct list_head *dev_list)
6127 {
6128         char linkname[IFNAMSIZ+7];
6129
6130         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6131                 "upper_%s" : "lower_%s", adj_dev->name);
6132         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6133                                  linkname);
6134 }
6135 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6136                                char *name,
6137                                struct list_head *dev_list)
6138 {
6139         char linkname[IFNAMSIZ+7];
6140
6141         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6142                 "upper_%s" : "lower_%s", name);
6143         sysfs_remove_link(&(dev->dev.kobj), linkname);
6144 }
6145
6146 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6147                                                  struct net_device *adj_dev,
6148                                                  struct list_head *dev_list)
6149 {
6150         return (dev_list == &dev->adj_list.upper ||
6151                 dev_list == &dev->adj_list.lower) &&
6152                 net_eq(dev_net(dev), dev_net(adj_dev));
6153 }
6154
6155 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6156                                         struct net_device *adj_dev,
6157                                         struct list_head *dev_list,
6158                                         void *private, bool master)
6159 {
6160         struct netdev_adjacent *adj;
6161         int ret;
6162
6163         adj = __netdev_find_adj(adj_dev, dev_list);
6164
6165         if (adj) {
6166                 adj->ref_nr += 1;
6167                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6168                          dev->name, adj_dev->name, adj->ref_nr);
6169
6170                 return 0;
6171         }
6172
6173         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6174         if (!adj)
6175                 return -ENOMEM;
6176
6177         adj->dev = adj_dev;
6178         adj->master = master;
6179         adj->ref_nr = 1;
6180         adj->private = private;
6181         dev_hold(adj_dev);
6182
6183         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6184                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6185
6186         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6187                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6188                 if (ret)
6189                         goto free_adj;
6190         }
6191
6192         /* Ensure that master link is always the first item in list. */
6193         if (master) {
6194                 ret = sysfs_create_link(&(dev->dev.kobj),
6195                                         &(adj_dev->dev.kobj), "master");
6196                 if (ret)
6197                         goto remove_symlinks;
6198
6199                 list_add_rcu(&adj->list, dev_list);
6200         } else {
6201                 list_add_tail_rcu(&adj->list, dev_list);
6202         }
6203
6204         return 0;
6205
6206 remove_symlinks:
6207         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6208                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6209 free_adj:
6210         kfree(adj);
6211         dev_put(adj_dev);
6212
6213         return ret;
6214 }
6215
6216 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6217                                          struct net_device *adj_dev,
6218                                          u16 ref_nr,
6219                                          struct list_head *dev_list)
6220 {
6221         struct netdev_adjacent *adj;
6222
6223         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6224                  dev->name, adj_dev->name, ref_nr);
6225
6226         adj = __netdev_find_adj(adj_dev, dev_list);
6227
6228         if (!adj) {
6229                 pr_err("Adjacency does not exist for device %s from %s\n",
6230                        dev->name, adj_dev->name);
6231                 WARN_ON(1);
6232                 return;
6233         }
6234
6235         if (adj->ref_nr > ref_nr) {
6236                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6237                          dev->name, adj_dev->name, ref_nr,
6238                          adj->ref_nr - ref_nr);
6239                 adj->ref_nr -= ref_nr;
6240                 return;
6241         }
6242
6243         if (adj->master)
6244                 sysfs_remove_link(&(dev->dev.kobj), "master");
6245
6246         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6247                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6248
6249         list_del_rcu(&adj->list);
6250         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6251                  adj_dev->name, dev->name, adj_dev->name);
6252         dev_put(adj_dev);
6253         kfree_rcu(adj, rcu);
6254 }
6255
6256 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6257                                             struct net_device *upper_dev,
6258                                             struct list_head *up_list,
6259                                             struct list_head *down_list,
6260                                             void *private, bool master)
6261 {
6262         int ret;
6263
6264         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6265                                            private, master);
6266         if (ret)
6267                 return ret;
6268
6269         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6270                                            private, false);
6271         if (ret) {
6272                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6273                 return ret;
6274         }
6275
6276         return 0;
6277 }
6278
6279 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6280                                                struct net_device *upper_dev,
6281                                                u16 ref_nr,
6282                                                struct list_head *up_list,
6283                                                struct list_head *down_list)
6284 {
6285         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6286         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6287 }
6288
6289 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6290                                                 struct net_device *upper_dev,
6291                                                 void *private, bool master)
6292 {
6293         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6294                                                 &dev->adj_list.upper,
6295                                                 &upper_dev->adj_list.lower,
6296                                                 private, master);
6297 }
6298
6299 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6300                                                    struct net_device *upper_dev)
6301 {
6302         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6303                                            &dev->adj_list.upper,
6304                                            &upper_dev->adj_list.lower);
6305 }
6306
6307 static int __netdev_upper_dev_link(struct net_device *dev,
6308                                    struct net_device *upper_dev, bool master,
6309                                    void *upper_priv, void *upper_info,
6310                                    struct netlink_ext_ack *extack)
6311 {
6312         struct netdev_notifier_changeupper_info changeupper_info = {
6313                 .info = {
6314                         .dev = dev,
6315                         .extack = extack,
6316                 },
6317                 .upper_dev = upper_dev,
6318                 .master = master,
6319                 .linking = true,
6320                 .upper_info = upper_info,
6321         };
6322         int ret = 0;
6323
6324         ASSERT_RTNL();
6325
6326         if (dev == upper_dev)
6327                 return -EBUSY;
6328
6329         /* To prevent loops, check if dev is not upper device to upper_dev. */
6330         if (netdev_has_upper_dev(upper_dev, dev))
6331                 return -EBUSY;
6332
6333         if (netdev_has_upper_dev(dev, upper_dev))
6334                 return -EEXIST;
6335
6336         if (master && netdev_master_upper_dev_get(dev))
6337                 return -EBUSY;
6338
6339         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6340                                             &changeupper_info.info);
6341         ret = notifier_to_errno(ret);
6342         if (ret)
6343                 return ret;
6344
6345         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6346                                                    master);
6347         if (ret)
6348                 return ret;
6349
6350         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6351                                             &changeupper_info.info);
6352         ret = notifier_to_errno(ret);
6353         if (ret)
6354                 goto rollback;
6355
6356         return 0;
6357
6358 rollback:
6359         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6360
6361         return ret;
6362 }
6363
6364 /**
6365  * netdev_upper_dev_link - Add a link to the upper device
6366  * @dev: device
6367  * @upper_dev: new upper device
6368  *
6369  * Adds a link to device which is upper to this one. The caller must hold
6370  * the RTNL lock. On a failure a negative errno code is returned.
6371  * On success the reference counts are adjusted and the function
6372  * returns zero.
6373  */
6374 int netdev_upper_dev_link(struct net_device *dev,
6375                           struct net_device *upper_dev,
6376                           struct netlink_ext_ack *extack)
6377 {
6378         return __netdev_upper_dev_link(dev, upper_dev, false,
6379                                        NULL, NULL, extack);
6380 }
6381 EXPORT_SYMBOL(netdev_upper_dev_link);
6382
6383 /**
6384  * netdev_master_upper_dev_link - Add a master link to the upper device
6385  * @dev: device
6386  * @upper_dev: new upper device
6387  * @upper_priv: upper device private
6388  * @upper_info: upper info to be passed down via notifier
6389  *
6390  * Adds a link to device which is upper to this one. In this case, only
6391  * one master upper device can be linked, although other non-master devices
6392  * might be linked as well. The caller must hold the RTNL lock.
6393  * On a failure a negative errno code is returned. On success the reference
6394  * counts are adjusted and the function returns zero.
6395  */
6396 int netdev_master_upper_dev_link(struct net_device *dev,
6397                                  struct net_device *upper_dev,
6398                                  void *upper_priv, void *upper_info,
6399                                  struct netlink_ext_ack *extack)
6400 {
6401         return __netdev_upper_dev_link(dev, upper_dev, true,
6402                                        upper_priv, upper_info, extack);
6403 }
6404 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6405
6406 /**
6407  * netdev_upper_dev_unlink - Removes a link to upper device
6408  * @dev: device
6409  * @upper_dev: new upper device
6410  *
6411  * Removes a link to device which is upper to this one. The caller must hold
6412  * the RTNL lock.
6413  */
6414 void netdev_upper_dev_unlink(struct net_device *dev,
6415                              struct net_device *upper_dev)
6416 {
6417         struct netdev_notifier_changeupper_info changeupper_info = {
6418                 .info = {
6419                         .dev = dev,
6420                 },
6421                 .upper_dev = upper_dev,
6422                 .linking = false,
6423         };
6424
6425         ASSERT_RTNL();
6426
6427         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6428
6429         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6430                                       &changeupper_info.info);
6431
6432         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6433
6434         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6435                                       &changeupper_info.info);
6436 }
6437 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6438
6439 /**
6440  * netdev_bonding_info_change - Dispatch event about slave change
6441  * @dev: device
6442  * @bonding_info: info to dispatch
6443  *
6444  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6445  * The caller must hold the RTNL lock.
6446  */
6447 void netdev_bonding_info_change(struct net_device *dev,
6448                                 struct netdev_bonding_info *bonding_info)
6449 {
6450         struct netdev_notifier_bonding_info info = {
6451                 .info.dev = dev,
6452         };
6453
6454         memcpy(&info.bonding_info, bonding_info,
6455                sizeof(struct netdev_bonding_info));
6456         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6457                                       &info.info);
6458 }
6459 EXPORT_SYMBOL(netdev_bonding_info_change);
6460
6461 static void netdev_adjacent_add_links(struct net_device *dev)
6462 {
6463         struct netdev_adjacent *iter;
6464
6465         struct net *net = dev_net(dev);
6466
6467         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6468                 if (!net_eq(net, dev_net(iter->dev)))
6469                         continue;
6470                 netdev_adjacent_sysfs_add(iter->dev, dev,
6471                                           &iter->dev->adj_list.lower);
6472                 netdev_adjacent_sysfs_add(dev, iter->dev,
6473                                           &dev->adj_list.upper);
6474         }
6475
6476         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6477                 if (!net_eq(net, dev_net(iter->dev)))
6478                         continue;
6479                 netdev_adjacent_sysfs_add(iter->dev, dev,
6480                                           &iter->dev->adj_list.upper);
6481                 netdev_adjacent_sysfs_add(dev, iter->dev,
6482                                           &dev->adj_list.lower);
6483         }
6484 }
6485
6486 static void netdev_adjacent_del_links(struct net_device *dev)
6487 {
6488         struct netdev_adjacent *iter;
6489
6490         struct net *net = dev_net(dev);
6491
6492         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6493                 if (!net_eq(net, dev_net(iter->dev)))
6494                         continue;
6495                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6496                                           &iter->dev->adj_list.lower);
6497                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6498                                           &dev->adj_list.upper);
6499         }
6500
6501         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6502                 if (!net_eq(net, dev_net(iter->dev)))
6503                         continue;
6504                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6505                                           &iter->dev->adj_list.upper);
6506                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6507                                           &dev->adj_list.lower);
6508         }
6509 }
6510
6511 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6512 {
6513         struct netdev_adjacent *iter;
6514
6515         struct net *net = dev_net(dev);
6516
6517         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6518                 if (!net_eq(net, dev_net(iter->dev)))
6519                         continue;
6520                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6521                                           &iter->dev->adj_list.lower);
6522                 netdev_adjacent_sysfs_add(iter->dev, dev,
6523                                           &iter->dev->adj_list.lower);
6524         }
6525
6526         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6527                 if (!net_eq(net, dev_net(iter->dev)))
6528                         continue;
6529                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6530                                           &iter->dev->adj_list.upper);
6531                 netdev_adjacent_sysfs_add(iter->dev, dev,
6532                                           &iter->dev->adj_list.upper);
6533         }
6534 }
6535
6536 void *netdev_lower_dev_get_private(struct net_device *dev,
6537                                    struct net_device *lower_dev)
6538 {
6539         struct netdev_adjacent *lower;
6540
6541         if (!lower_dev)
6542                 return NULL;
6543         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6544         if (!lower)
6545                 return NULL;
6546
6547         return lower->private;
6548 }
6549 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6550
6551
6552 int dev_get_nest_level(struct net_device *dev)
6553 {
6554         struct net_device *lower = NULL;
6555         struct list_head *iter;
6556         int max_nest = -1;
6557         int nest;
6558
6559         ASSERT_RTNL();
6560
6561         netdev_for_each_lower_dev(dev, lower, iter) {
6562                 nest = dev_get_nest_level(lower);
6563                 if (max_nest < nest)
6564                         max_nest = nest;
6565         }
6566
6567         return max_nest + 1;
6568 }
6569 EXPORT_SYMBOL(dev_get_nest_level);
6570
6571 /**
6572  * netdev_lower_change - Dispatch event about lower device state change
6573  * @lower_dev: device
6574  * @lower_state_info: state to dispatch
6575  *
6576  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6577  * The caller must hold the RTNL lock.
6578  */
6579 void netdev_lower_state_changed(struct net_device *lower_dev,
6580                                 void *lower_state_info)
6581 {
6582         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6583                 .info.dev = lower_dev,
6584         };
6585
6586         ASSERT_RTNL();
6587         changelowerstate_info.lower_state_info = lower_state_info;
6588         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6589                                       &changelowerstate_info.info);
6590 }
6591 EXPORT_SYMBOL(netdev_lower_state_changed);
6592
6593 static void dev_change_rx_flags(struct net_device *dev, int flags)
6594 {
6595         const struct net_device_ops *ops = dev->netdev_ops;
6596
6597         if (ops->ndo_change_rx_flags)
6598                 ops->ndo_change_rx_flags(dev, flags);
6599 }
6600
6601 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6602 {
6603         unsigned int old_flags = dev->flags;
6604         kuid_t uid;
6605         kgid_t gid;
6606
6607         ASSERT_RTNL();
6608
6609         dev->flags |= IFF_PROMISC;
6610         dev->promiscuity += inc;
6611         if (dev->promiscuity == 0) {
6612                 /*
6613                  * Avoid overflow.
6614                  * If inc causes overflow, untouch promisc and return error.
6615                  */
6616                 if (inc < 0)
6617                         dev->flags &= ~IFF_PROMISC;
6618                 else {
6619                         dev->promiscuity -= inc;
6620                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6621                                 dev->name);
6622                         return -EOVERFLOW;
6623                 }
6624         }
6625         if (dev->flags != old_flags) {
6626                 pr_info("device %s %s promiscuous mode\n",
6627                         dev->name,
6628                         dev->flags & IFF_PROMISC ? "entered" : "left");
6629                 if (audit_enabled) {
6630                         current_uid_gid(&uid, &gid);
6631                         audit_log(current->audit_context, GFP_ATOMIC,
6632                                 AUDIT_ANOM_PROMISCUOUS,
6633                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6634                                 dev->name, (dev->flags & IFF_PROMISC),
6635                                 (old_flags & IFF_PROMISC),
6636                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6637                                 from_kuid(&init_user_ns, uid),
6638                                 from_kgid(&init_user_ns, gid),
6639                                 audit_get_sessionid(current));
6640                 }
6641
6642                 dev_change_rx_flags(dev, IFF_PROMISC);
6643         }
6644         if (notify)
6645                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6646         return 0;
6647 }
6648
6649 /**
6650  *      dev_set_promiscuity     - update promiscuity count on a device
6651  *      @dev: device
6652  *      @inc: modifier
6653  *
6654  *      Add or remove promiscuity from a device. While the count in the device
6655  *      remains above zero the interface remains promiscuous. Once it hits zero
6656  *      the device reverts back to normal filtering operation. A negative inc
6657  *      value is used to drop promiscuity on the device.
6658  *      Return 0 if successful or a negative errno code on error.
6659  */
6660 int dev_set_promiscuity(struct net_device *dev, int inc)
6661 {
6662         unsigned int old_flags = dev->flags;
6663         int err;
6664
6665         err = __dev_set_promiscuity(dev, inc, true);
6666         if (err < 0)
6667                 return err;
6668         if (dev->flags != old_flags)
6669                 dev_set_rx_mode(dev);
6670         return err;
6671 }
6672 EXPORT_SYMBOL(dev_set_promiscuity);
6673
6674 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6675 {
6676         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6677
6678         ASSERT_RTNL();
6679
6680         dev->flags |= IFF_ALLMULTI;
6681         dev->allmulti += inc;
6682         if (dev->allmulti == 0) {
6683                 /*
6684                  * Avoid overflow.
6685                  * If inc causes overflow, untouch allmulti and return error.
6686                  */
6687                 if (inc < 0)
6688                         dev->flags &= ~IFF_ALLMULTI;
6689                 else {
6690                         dev->allmulti -= inc;
6691                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6692                                 dev->name);
6693                         return -EOVERFLOW;
6694                 }
6695         }
6696         if (dev->flags ^ old_flags) {
6697                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6698                 dev_set_rx_mode(dev);
6699                 if (notify)
6700                         __dev_notify_flags(dev, old_flags,
6701                                            dev->gflags ^ old_gflags);
6702         }
6703         return 0;
6704 }
6705
6706 /**
6707  *      dev_set_allmulti        - update allmulti count on a device
6708  *      @dev: device
6709  *      @inc: modifier
6710  *
6711  *      Add or remove reception of all multicast frames to a device. While the
6712  *      count in the device remains above zero the interface remains listening
6713  *      to all interfaces. Once it hits zero the device reverts back to normal
6714  *      filtering operation. A negative @inc value is used to drop the counter
6715  *      when releasing a resource needing all multicasts.
6716  *      Return 0 if successful or a negative errno code on error.
6717  */
6718
6719 int dev_set_allmulti(struct net_device *dev, int inc)
6720 {
6721         return __dev_set_allmulti(dev, inc, true);
6722 }
6723 EXPORT_SYMBOL(dev_set_allmulti);
6724
6725 /*
6726  *      Upload unicast and multicast address lists to device and
6727  *      configure RX filtering. When the device doesn't support unicast
6728  *      filtering it is put in promiscuous mode while unicast addresses
6729  *      are present.
6730  */
6731 void __dev_set_rx_mode(struct net_device *dev)
6732 {
6733         const struct net_device_ops *ops = dev->netdev_ops;
6734
6735         /* dev_open will call this function so the list will stay sane. */
6736         if (!(dev->flags&IFF_UP))
6737                 return;
6738
6739         if (!netif_device_present(dev))
6740                 return;
6741
6742         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6743                 /* Unicast addresses changes may only happen under the rtnl,
6744                  * therefore calling __dev_set_promiscuity here is safe.
6745                  */
6746                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6747                         __dev_set_promiscuity(dev, 1, false);
6748                         dev->uc_promisc = true;
6749                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6750                         __dev_set_promiscuity(dev, -1, false);
6751                         dev->uc_promisc = false;
6752                 }
6753         }
6754
6755         if (ops->ndo_set_rx_mode)
6756                 ops->ndo_set_rx_mode(dev);
6757 }
6758
6759 void dev_set_rx_mode(struct net_device *dev)
6760 {
6761         netif_addr_lock_bh(dev);
6762         __dev_set_rx_mode(dev);
6763         netif_addr_unlock_bh(dev);
6764 }
6765
6766 /**
6767  *      dev_get_flags - get flags reported to userspace
6768  *      @dev: device
6769  *
6770  *      Get the combination of flag bits exported through APIs to userspace.
6771  */
6772 unsigned int dev_get_flags(const struct net_device *dev)
6773 {
6774         unsigned int flags;
6775
6776         flags = (dev->flags & ~(IFF_PROMISC |
6777                                 IFF_ALLMULTI |
6778                                 IFF_RUNNING |
6779                                 IFF_LOWER_UP |
6780                                 IFF_DORMANT)) |
6781                 (dev->gflags & (IFF_PROMISC |
6782                                 IFF_ALLMULTI));
6783
6784         if (netif_running(dev)) {
6785                 if (netif_oper_up(dev))
6786                         flags |= IFF_RUNNING;
6787                 if (netif_carrier_ok(dev))
6788                         flags |= IFF_LOWER_UP;
6789                 if (netif_dormant(dev))
6790                         flags |= IFF_DORMANT;
6791         }
6792
6793         return flags;
6794 }
6795 EXPORT_SYMBOL(dev_get_flags);
6796
6797 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6798 {
6799         unsigned int old_flags = dev->flags;
6800         int ret;
6801
6802         ASSERT_RTNL();
6803
6804         /*
6805          *      Set the flags on our device.
6806          */
6807
6808         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6809                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6810                                IFF_AUTOMEDIA)) |
6811                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6812                                     IFF_ALLMULTI));
6813
6814         /*
6815          *      Load in the correct multicast list now the flags have changed.
6816          */
6817
6818         if ((old_flags ^ flags) & IFF_MULTICAST)
6819                 dev_change_rx_flags(dev, IFF_MULTICAST);
6820
6821         dev_set_rx_mode(dev);
6822
6823         /*
6824          *      Have we downed the interface. We handle IFF_UP ourselves
6825          *      according to user attempts to set it, rather than blindly
6826          *      setting it.
6827          */
6828
6829         ret = 0;
6830         if ((old_flags ^ flags) & IFF_UP) {
6831                 if (old_flags & IFF_UP)
6832                         __dev_close(dev);
6833                 else
6834                         ret = __dev_open(dev);
6835         }
6836
6837         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6838                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6839                 unsigned int old_flags = dev->flags;
6840
6841                 dev->gflags ^= IFF_PROMISC;
6842
6843                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6844                         if (dev->flags != old_flags)
6845                                 dev_set_rx_mode(dev);
6846         }
6847
6848         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6849          * is important. Some (broken) drivers set IFF_PROMISC, when
6850          * IFF_ALLMULTI is requested not asking us and not reporting.
6851          */
6852         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6853                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6854
6855                 dev->gflags ^= IFF_ALLMULTI;
6856                 __dev_set_allmulti(dev, inc, false);
6857         }
6858
6859         return ret;
6860 }
6861
6862 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6863                         unsigned int gchanges)
6864 {
6865         unsigned int changes = dev->flags ^ old_flags;
6866
6867         if (gchanges)
6868                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6869
6870         if (changes & IFF_UP) {
6871                 if (dev->flags & IFF_UP)
6872                         call_netdevice_notifiers(NETDEV_UP, dev);
6873                 else
6874                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6875         }
6876
6877         if (dev->flags & IFF_UP &&
6878             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6879                 struct netdev_notifier_change_info change_info = {
6880                         .info = {
6881                                 .dev = dev,
6882                         },
6883                         .flags_changed = changes,
6884                 };
6885
6886                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6887         }
6888 }
6889
6890 /**
6891  *      dev_change_flags - change device settings
6892  *      @dev: device
6893  *      @flags: device state flags
6894  *
6895  *      Change settings on device based state flags. The flags are
6896  *      in the userspace exported format.
6897  */
6898 int dev_change_flags(struct net_device *dev, unsigned int flags)
6899 {
6900         int ret;
6901         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6902
6903         ret = __dev_change_flags(dev, flags);
6904         if (ret < 0)
6905                 return ret;
6906
6907         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6908         __dev_notify_flags(dev, old_flags, changes);
6909         return ret;
6910 }
6911 EXPORT_SYMBOL(dev_change_flags);
6912
6913 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6914 {
6915         const struct net_device_ops *ops = dev->netdev_ops;
6916
6917         if (ops->ndo_change_mtu)
6918                 return ops->ndo_change_mtu(dev, new_mtu);
6919
6920         dev->mtu = new_mtu;
6921         return 0;
6922 }
6923 EXPORT_SYMBOL(__dev_set_mtu);
6924
6925 /**
6926  *      dev_set_mtu - Change maximum transfer unit
6927  *      @dev: device
6928  *      @new_mtu: new transfer unit
6929  *
6930  *      Change the maximum transfer size of the network device.
6931  */
6932 int dev_set_mtu(struct net_device *dev, int new_mtu)
6933 {
6934         int err, orig_mtu;
6935
6936         if (new_mtu == dev->mtu)
6937                 return 0;
6938
6939         /* MTU must be positive, and in range */
6940         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6941                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6942                                     dev->name, new_mtu, dev->min_mtu);
6943                 return -EINVAL;
6944         }
6945
6946         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6947                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6948                                     dev->name, new_mtu, dev->max_mtu);
6949                 return -EINVAL;
6950         }
6951
6952         if (!netif_device_present(dev))
6953                 return -ENODEV;
6954
6955         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6956         err = notifier_to_errno(err);
6957         if (err)
6958                 return err;
6959
6960         orig_mtu = dev->mtu;
6961         err = __dev_set_mtu(dev, new_mtu);
6962
6963         if (!err) {
6964                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6965                 err = notifier_to_errno(err);
6966                 if (err) {
6967                         /* setting mtu back and notifying everyone again,
6968                          * so that they have a chance to revert changes.
6969                          */
6970                         __dev_set_mtu(dev, orig_mtu);
6971                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6972                 }
6973         }
6974         return err;
6975 }
6976 EXPORT_SYMBOL(dev_set_mtu);
6977
6978 /**
6979  *      dev_set_group - Change group this device belongs to
6980  *      @dev: device
6981  *      @new_group: group this device should belong to
6982  */
6983 void dev_set_group(struct net_device *dev, int new_group)
6984 {
6985         dev->group = new_group;
6986 }
6987 EXPORT_SYMBOL(dev_set_group);
6988
6989 /**
6990  *      dev_set_mac_address - Change Media Access Control Address
6991  *      @dev: device
6992  *      @sa: new address
6993  *
6994  *      Change the hardware (MAC) address of the device
6995  */
6996 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6997 {
6998         const struct net_device_ops *ops = dev->netdev_ops;
6999         int err;
7000
7001         if (!ops->ndo_set_mac_address)
7002                 return -EOPNOTSUPP;
7003         if (sa->sa_family != dev->type)
7004                 return -EINVAL;
7005         if (!netif_device_present(dev))
7006                 return -ENODEV;
7007         err = ops->ndo_set_mac_address(dev, sa);
7008         if (err)
7009                 return err;
7010         dev->addr_assign_type = NET_ADDR_SET;
7011         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7012         add_device_randomness(dev->dev_addr, dev->addr_len);
7013         return 0;
7014 }
7015 EXPORT_SYMBOL(dev_set_mac_address);
7016
7017 /**
7018  *      dev_change_carrier - Change device carrier
7019  *      @dev: device
7020  *      @new_carrier: new value
7021  *
7022  *      Change device carrier
7023  */
7024 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7025 {
7026         const struct net_device_ops *ops = dev->netdev_ops;
7027
7028         if (!ops->ndo_change_carrier)
7029                 return -EOPNOTSUPP;
7030         if (!netif_device_present(dev))
7031                 return -ENODEV;
7032         return ops->ndo_change_carrier(dev, new_carrier);
7033 }
7034 EXPORT_SYMBOL(dev_change_carrier);
7035
7036 /**
7037  *      dev_get_phys_port_id - Get device physical port ID
7038  *      @dev: device
7039  *      @ppid: port ID
7040  *
7041  *      Get device physical port ID
7042  */
7043 int dev_get_phys_port_id(struct net_device *dev,
7044                          struct netdev_phys_item_id *ppid)
7045 {
7046         const struct net_device_ops *ops = dev->netdev_ops;
7047
7048         if (!ops->ndo_get_phys_port_id)
7049                 return -EOPNOTSUPP;
7050         return ops->ndo_get_phys_port_id(dev, ppid);
7051 }
7052 EXPORT_SYMBOL(dev_get_phys_port_id);
7053
7054 /**
7055  *      dev_get_phys_port_name - Get device physical port name
7056  *      @dev: device
7057  *      @name: port name
7058  *      @len: limit of bytes to copy to name
7059  *
7060  *      Get device physical port name
7061  */
7062 int dev_get_phys_port_name(struct net_device *dev,
7063                            char *name, size_t len)
7064 {
7065         const struct net_device_ops *ops = dev->netdev_ops;
7066
7067         if (!ops->ndo_get_phys_port_name)
7068                 return -EOPNOTSUPP;
7069         return ops->ndo_get_phys_port_name(dev, name, len);
7070 }
7071 EXPORT_SYMBOL(dev_get_phys_port_name);
7072
7073 /**
7074  *      dev_change_proto_down - update protocol port state information
7075  *      @dev: device
7076  *      @proto_down: new value
7077  *
7078  *      This info can be used by switch drivers to set the phys state of the
7079  *      port.
7080  */
7081 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7082 {
7083         const struct net_device_ops *ops = dev->netdev_ops;
7084
7085         if (!ops->ndo_change_proto_down)
7086                 return -EOPNOTSUPP;
7087         if (!netif_device_present(dev))
7088                 return -ENODEV;
7089         return ops->ndo_change_proto_down(dev, proto_down);
7090 }
7091 EXPORT_SYMBOL(dev_change_proto_down);
7092
7093 u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op, u32 *prog_id)
7094 {
7095         struct netdev_bpf xdp;
7096
7097         memset(&xdp, 0, sizeof(xdp));
7098         xdp.command = XDP_QUERY_PROG;
7099
7100         /* Query must always succeed. */
7101         WARN_ON(bpf_op(dev, &xdp) < 0);
7102         if (prog_id)
7103                 *prog_id = xdp.prog_id;
7104
7105         return xdp.prog_attached;
7106 }
7107
7108 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7109                            struct netlink_ext_ack *extack, u32 flags,
7110                            struct bpf_prog *prog)
7111 {
7112         struct netdev_bpf xdp;
7113
7114         memset(&xdp, 0, sizeof(xdp));
7115         if (flags & XDP_FLAGS_HW_MODE)
7116                 xdp.command = XDP_SETUP_PROG_HW;
7117         else
7118                 xdp.command = XDP_SETUP_PROG;
7119         xdp.extack = extack;
7120         xdp.flags = flags;
7121         xdp.prog = prog;
7122
7123         return bpf_op(dev, &xdp);
7124 }
7125
7126 /**
7127  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7128  *      @dev: device
7129  *      @extack: netlink extended ack
7130  *      @fd: new program fd or negative value to clear
7131  *      @flags: xdp-related flags
7132  *
7133  *      Set or clear a bpf program for a device
7134  */
7135 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7136                       int fd, u32 flags)
7137 {
7138         const struct net_device_ops *ops = dev->netdev_ops;
7139         struct bpf_prog *prog = NULL;
7140         bpf_op_t bpf_op, bpf_chk;
7141         int err;
7142
7143         ASSERT_RTNL();
7144
7145         bpf_op = bpf_chk = ops->ndo_bpf;
7146         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7147                 return -EOPNOTSUPP;
7148         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7149                 bpf_op = generic_xdp_install;
7150         if (bpf_op == bpf_chk)
7151                 bpf_chk = generic_xdp_install;
7152
7153         if (fd >= 0) {
7154                 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk, NULL))
7155                         return -EEXIST;
7156                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7157                     __dev_xdp_attached(dev, bpf_op, NULL))
7158                         return -EBUSY;
7159
7160                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7161                 if (IS_ERR(prog))
7162                         return PTR_ERR(prog);
7163         }
7164
7165         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7166         if (err < 0 && prog)
7167                 bpf_prog_put(prog);
7168
7169         return err;
7170 }
7171
7172 /**
7173  *      dev_new_index   -       allocate an ifindex
7174  *      @net: the applicable net namespace
7175  *
7176  *      Returns a suitable unique value for a new device interface
7177  *      number.  The caller must hold the rtnl semaphore or the
7178  *      dev_base_lock to be sure it remains unique.
7179  */
7180 static int dev_new_index(struct net *net)
7181 {
7182         int ifindex = net->ifindex;
7183
7184         for (;;) {
7185                 if (++ifindex <= 0)
7186                         ifindex = 1;
7187                 if (!__dev_get_by_index(net, ifindex))
7188                         return net->ifindex = ifindex;
7189         }
7190 }
7191
7192 /* Delayed registration/unregisteration */
7193 static LIST_HEAD(net_todo_list);
7194 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7195
7196 static void net_set_todo(struct net_device *dev)
7197 {
7198         list_add_tail(&dev->todo_list, &net_todo_list);
7199         dev_net(dev)->dev_unreg_count++;
7200 }
7201
7202 static void rollback_registered_many(struct list_head *head)
7203 {
7204         struct net_device *dev, *tmp;
7205         LIST_HEAD(close_head);
7206
7207         BUG_ON(dev_boot_phase);
7208         ASSERT_RTNL();
7209
7210         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7211                 /* Some devices call without registering
7212                  * for initialization unwind. Remove those
7213                  * devices and proceed with the remaining.
7214                  */
7215                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7216                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7217                                  dev->name, dev);
7218
7219                         WARN_ON(1);
7220                         list_del(&dev->unreg_list);
7221                         continue;
7222                 }
7223                 dev->dismantle = true;
7224                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7225         }
7226
7227         /* If device is running, close it first. */
7228         list_for_each_entry(dev, head, unreg_list)
7229                 list_add_tail(&dev->close_list, &close_head);
7230         dev_close_many(&close_head, true);
7231
7232         list_for_each_entry(dev, head, unreg_list) {
7233                 /* And unlink it from device chain. */
7234                 unlist_netdevice(dev);
7235
7236                 dev->reg_state = NETREG_UNREGISTERING;
7237         }
7238         flush_all_backlogs();
7239
7240         synchronize_net();
7241
7242         list_for_each_entry(dev, head, unreg_list) {
7243                 struct sk_buff *skb = NULL;
7244
7245                 /* Shutdown queueing discipline. */
7246                 dev_shutdown(dev);
7247
7248
7249                 /* Notify protocols, that we are about to destroy
7250                  * this device. They should clean all the things.
7251                  */
7252                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7253
7254                 if (!dev->rtnl_link_ops ||
7255                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7256                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7257                                                      GFP_KERNEL, NULL);
7258
7259                 /*
7260                  *      Flush the unicast and multicast chains
7261                  */
7262                 dev_uc_flush(dev);
7263                 dev_mc_flush(dev);
7264
7265                 if (dev->netdev_ops->ndo_uninit)
7266                         dev->netdev_ops->ndo_uninit(dev);
7267
7268                 if (skb)
7269                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7270
7271                 /* Notifier chain MUST detach us all upper devices. */
7272                 WARN_ON(netdev_has_any_upper_dev(dev));
7273                 WARN_ON(netdev_has_any_lower_dev(dev));
7274
7275                 /* Remove entries from kobject tree */
7276                 netdev_unregister_kobject(dev);
7277 #ifdef CONFIG_XPS
7278                 /* Remove XPS queueing entries */
7279                 netif_reset_xps_queues_gt(dev, 0);
7280 #endif
7281         }
7282
7283         synchronize_net();
7284
7285         list_for_each_entry(dev, head, unreg_list)
7286                 dev_put(dev);
7287 }
7288
7289 static void rollback_registered(struct net_device *dev)
7290 {
7291         LIST_HEAD(single);
7292
7293         list_add(&dev->unreg_list, &single);
7294         rollback_registered_many(&single);
7295         list_del(&single);
7296 }
7297
7298 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7299         struct net_device *upper, netdev_features_t features)
7300 {
7301         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7302         netdev_features_t feature;
7303         int feature_bit;
7304
7305         for_each_netdev_feature(&upper_disables, feature_bit) {
7306                 feature = __NETIF_F_BIT(feature_bit);
7307                 if (!(upper->wanted_features & feature)
7308                     && (features & feature)) {
7309                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7310                                    &feature, upper->name);
7311                         features &= ~feature;
7312                 }
7313         }
7314
7315         return features;
7316 }
7317
7318 static void netdev_sync_lower_features(struct net_device *upper,
7319         struct net_device *lower, netdev_features_t features)
7320 {
7321         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7322         netdev_features_t feature;
7323         int feature_bit;
7324
7325         for_each_netdev_feature(&upper_disables, feature_bit) {
7326                 feature = __NETIF_F_BIT(feature_bit);
7327                 if (!(features & feature) && (lower->features & feature)) {
7328                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7329                                    &feature, lower->name);
7330                         lower->wanted_features &= ~feature;
7331                         netdev_update_features(lower);
7332
7333                         if (unlikely(lower->features & feature))
7334                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7335                                             &feature, lower->name);
7336                 }
7337         }
7338 }
7339
7340 static netdev_features_t netdev_fix_features(struct net_device *dev,
7341         netdev_features_t features)
7342 {
7343         /* Fix illegal checksum combinations */
7344         if ((features & NETIF_F_HW_CSUM) &&
7345             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7346                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7347                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7348         }
7349
7350         /* TSO requires that SG is present as well. */
7351         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7352                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7353                 features &= ~NETIF_F_ALL_TSO;
7354         }
7355
7356         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7357                                         !(features & NETIF_F_IP_CSUM)) {
7358                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7359                 features &= ~NETIF_F_TSO;
7360                 features &= ~NETIF_F_TSO_ECN;
7361         }
7362
7363         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7364                                          !(features & NETIF_F_IPV6_CSUM)) {
7365                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7366                 features &= ~NETIF_F_TSO6;
7367         }
7368
7369         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7370         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7371                 features &= ~NETIF_F_TSO_MANGLEID;
7372
7373         /* TSO ECN requires that TSO is present as well. */
7374         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7375                 features &= ~NETIF_F_TSO_ECN;
7376
7377         /* Software GSO depends on SG. */
7378         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7379                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7380                 features &= ~NETIF_F_GSO;
7381         }
7382
7383         /* GSO partial features require GSO partial be set */
7384         if ((features & dev->gso_partial_features) &&
7385             !(features & NETIF_F_GSO_PARTIAL)) {
7386                 netdev_dbg(dev,
7387                            "Dropping partially supported GSO features since no GSO partial.\n");
7388                 features &= ~dev->gso_partial_features;
7389         }
7390
7391         return features;
7392 }
7393
7394 int __netdev_update_features(struct net_device *dev)
7395 {
7396         struct net_device *upper, *lower;
7397         netdev_features_t features;
7398         struct list_head *iter;
7399         int err = -1;
7400
7401         ASSERT_RTNL();
7402
7403         features = netdev_get_wanted_features(dev);
7404
7405         if (dev->netdev_ops->ndo_fix_features)
7406                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7407
7408         /* driver might be less strict about feature dependencies */
7409         features = netdev_fix_features(dev, features);
7410
7411         /* some features can't be enabled if they're off an an upper device */
7412         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7413                 features = netdev_sync_upper_features(dev, upper, features);
7414
7415         if (dev->features == features)
7416                 goto sync_lower;
7417
7418         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7419                 &dev->features, &features);
7420
7421         if (dev->netdev_ops->ndo_set_features)
7422                 err = dev->netdev_ops->ndo_set_features(dev, features);
7423         else
7424                 err = 0;
7425
7426         if (unlikely(err < 0)) {
7427                 netdev_err(dev,
7428                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7429                         err, &features, &dev->features);
7430                 /* return non-0 since some features might have changed and
7431                  * it's better to fire a spurious notification than miss it
7432                  */
7433                 return -1;
7434         }
7435
7436 sync_lower:
7437         /* some features must be disabled on lower devices when disabled
7438          * on an upper device (think: bonding master or bridge)
7439          */
7440         netdev_for_each_lower_dev(dev, lower, iter)
7441                 netdev_sync_lower_features(dev, lower, features);
7442
7443         if (!err) {
7444                 netdev_features_t diff = features ^ dev->features;
7445
7446                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7447                         /* udp_tunnel_{get,drop}_rx_info both need
7448                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7449                          * device, or they won't do anything.
7450                          * Thus we need to update dev->features
7451                          * *before* calling udp_tunnel_get_rx_info,
7452                          * but *after* calling udp_tunnel_drop_rx_info.
7453                          */
7454                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7455                                 dev->features = features;
7456                                 udp_tunnel_get_rx_info(dev);
7457                         } else {
7458                                 udp_tunnel_drop_rx_info(dev);
7459                         }
7460                 }
7461
7462                 dev->features = features;
7463         }
7464
7465         return err < 0 ? 0 : 1;
7466 }
7467
7468 /**
7469  *      netdev_update_features - recalculate device features
7470  *      @dev: the device to check
7471  *
7472  *      Recalculate dev->features set and send notifications if it
7473  *      has changed. Should be called after driver or hardware dependent
7474  *      conditions might have changed that influence the features.
7475  */
7476 void netdev_update_features(struct net_device *dev)
7477 {
7478         if (__netdev_update_features(dev))
7479                 netdev_features_change(dev);
7480 }
7481 EXPORT_SYMBOL(netdev_update_features);
7482
7483 /**
7484  *      netdev_change_features - recalculate device features
7485  *      @dev: the device to check
7486  *
7487  *      Recalculate dev->features set and send notifications even
7488  *      if they have not changed. Should be called instead of
7489  *      netdev_update_features() if also dev->vlan_features might
7490  *      have changed to allow the changes to be propagated to stacked
7491  *      VLAN devices.
7492  */
7493 void netdev_change_features(struct net_device *dev)
7494 {
7495         __netdev_update_features(dev);
7496         netdev_features_change(dev);
7497 }
7498 EXPORT_SYMBOL(netdev_change_features);
7499
7500 /**
7501  *      netif_stacked_transfer_operstate -      transfer operstate
7502  *      @rootdev: the root or lower level device to transfer state from
7503  *      @dev: the device to transfer operstate to
7504  *
7505  *      Transfer operational state from root to device. This is normally
7506  *      called when a stacking relationship exists between the root
7507  *      device and the device(a leaf device).
7508  */
7509 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7510                                         struct net_device *dev)
7511 {
7512         if (rootdev->operstate == IF_OPER_DORMANT)
7513                 netif_dormant_on(dev);
7514         else
7515                 netif_dormant_off(dev);
7516
7517         if (netif_carrier_ok(rootdev))
7518                 netif_carrier_on(dev);
7519         else
7520                 netif_carrier_off(dev);
7521 }
7522 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7523
7524 #ifdef CONFIG_SYSFS
7525 static int netif_alloc_rx_queues(struct net_device *dev)
7526 {
7527         unsigned int i, count = dev->num_rx_queues;
7528         struct netdev_rx_queue *rx;
7529         size_t sz = count * sizeof(*rx);
7530
7531         BUG_ON(count < 1);
7532
7533         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7534         if (!rx)
7535                 return -ENOMEM;
7536
7537         dev->_rx = rx;
7538
7539         for (i = 0; i < count; i++)
7540                 rx[i].dev = dev;
7541         return 0;
7542 }
7543 #endif
7544
7545 static void netdev_init_one_queue(struct net_device *dev,
7546                                   struct netdev_queue *queue, void *_unused)
7547 {
7548         /* Initialize queue lock */
7549         spin_lock_init(&queue->_xmit_lock);
7550         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7551         queue->xmit_lock_owner = -1;
7552         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7553         queue->dev = dev;
7554 #ifdef CONFIG_BQL
7555         dql_init(&queue->dql, HZ);
7556 #endif
7557 }
7558
7559 static void netif_free_tx_queues(struct net_device *dev)
7560 {
7561         kvfree(dev->_tx);
7562 }
7563
7564 static int netif_alloc_netdev_queues(struct net_device *dev)
7565 {
7566         unsigned int count = dev->num_tx_queues;
7567         struct netdev_queue *tx;
7568         size_t sz = count * sizeof(*tx);
7569
7570         if (count < 1 || count > 0xffff)
7571                 return -EINVAL;
7572
7573         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7574         if (!tx)
7575                 return -ENOMEM;
7576
7577         dev->_tx = tx;
7578
7579         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7580         spin_lock_init(&dev->tx_global_lock);
7581
7582         return 0;
7583 }
7584
7585 void netif_tx_stop_all_queues(struct net_device *dev)
7586 {
7587         unsigned int i;
7588
7589         for (i = 0; i < dev->num_tx_queues; i++) {
7590                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7591
7592                 netif_tx_stop_queue(txq);
7593         }
7594 }
7595 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7596
7597 /**
7598  *      register_netdevice      - register a network device
7599  *      @dev: device to register
7600  *
7601  *      Take a completed network device structure and add it to the kernel
7602  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7603  *      chain. 0 is returned on success. A negative errno code is returned
7604  *      on a failure to set up the device, or if the name is a duplicate.
7605  *
7606  *      Callers must hold the rtnl semaphore. You may want
7607  *      register_netdev() instead of this.
7608  *
7609  *      BUGS:
7610  *      The locking appears insufficient to guarantee two parallel registers
7611  *      will not get the same name.
7612  */
7613
7614 int register_netdevice(struct net_device *dev)
7615 {
7616         int ret;
7617         struct net *net = dev_net(dev);
7618
7619         BUG_ON(dev_boot_phase);
7620         ASSERT_RTNL();
7621
7622         might_sleep();
7623
7624         /* When net_device's are persistent, this will be fatal. */
7625         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7626         BUG_ON(!net);
7627
7628         spin_lock_init(&dev->addr_list_lock);
7629         netdev_set_addr_lockdep_class(dev);
7630
7631         ret = dev_get_valid_name(net, dev, dev->name);
7632         if (ret < 0)
7633                 goto out;
7634
7635         /* Init, if this function is available */
7636         if (dev->netdev_ops->ndo_init) {
7637                 ret = dev->netdev_ops->ndo_init(dev);
7638                 if (ret) {
7639                         if (ret > 0)
7640                                 ret = -EIO;
7641                         goto out;
7642                 }
7643         }
7644
7645         if (((dev->hw_features | dev->features) &
7646              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7647             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7648              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7649                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7650                 ret = -EINVAL;
7651                 goto err_uninit;
7652         }
7653
7654         ret = -EBUSY;
7655         if (!dev->ifindex)
7656                 dev->ifindex = dev_new_index(net);
7657         else if (__dev_get_by_index(net, dev->ifindex))
7658                 goto err_uninit;
7659
7660         /* Transfer changeable features to wanted_features and enable
7661          * software offloads (GSO and GRO).
7662          */
7663         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7664         dev->features |= NETIF_F_SOFT_FEATURES;
7665
7666         if (dev->netdev_ops->ndo_udp_tunnel_add) {
7667                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7668                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7669         }
7670
7671         dev->wanted_features = dev->features & dev->hw_features;
7672
7673         if (!(dev->flags & IFF_LOOPBACK))
7674                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7675
7676         /* If IPv4 TCP segmentation offload is supported we should also
7677          * allow the device to enable segmenting the frame with the option
7678          * of ignoring a static IP ID value.  This doesn't enable the
7679          * feature itself but allows the user to enable it later.
7680          */
7681         if (dev->hw_features & NETIF_F_TSO)
7682                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7683         if (dev->vlan_features & NETIF_F_TSO)
7684                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7685         if (dev->mpls_features & NETIF_F_TSO)
7686                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7687         if (dev->hw_enc_features & NETIF_F_TSO)
7688                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7689
7690         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7691          */
7692         dev->vlan_features |= NETIF_F_HIGHDMA;
7693
7694         /* Make NETIF_F_SG inheritable to tunnel devices.
7695          */
7696         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7697
7698         /* Make NETIF_F_SG inheritable to MPLS.
7699          */
7700         dev->mpls_features |= NETIF_F_SG;
7701
7702         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7703         ret = notifier_to_errno(ret);
7704         if (ret)
7705                 goto err_uninit;
7706
7707         ret = netdev_register_kobject(dev);
7708         if (ret)
7709                 goto err_uninit;
7710         dev->reg_state = NETREG_REGISTERED;
7711
7712         __netdev_update_features(dev);
7713
7714         /*
7715          *      Default initial state at registry is that the
7716          *      device is present.
7717          */
7718
7719         set_bit(__LINK_STATE_PRESENT, &dev->state);
7720
7721         linkwatch_init_dev(dev);
7722
7723         dev_init_scheduler(dev);
7724         dev_hold(dev);
7725         list_netdevice(dev);
7726         add_device_randomness(dev->dev_addr, dev->addr_len);
7727
7728         /* If the device has permanent device address, driver should
7729          * set dev_addr and also addr_assign_type should be set to
7730          * NET_ADDR_PERM (default value).
7731          */
7732         if (dev->addr_assign_type == NET_ADDR_PERM)
7733                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7734
7735         /* Notify protocols, that a new device appeared. */
7736         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7737         ret = notifier_to_errno(ret);
7738         if (ret) {
7739                 rollback_registered(dev);
7740                 dev->reg_state = NETREG_UNREGISTERED;
7741         }
7742         /*
7743          *      Prevent userspace races by waiting until the network
7744          *      device is fully setup before sending notifications.
7745          */
7746         if (!dev->rtnl_link_ops ||
7747             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7748                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7749
7750 out:
7751         return ret;
7752
7753 err_uninit:
7754         if (dev->netdev_ops->ndo_uninit)
7755                 dev->netdev_ops->ndo_uninit(dev);
7756         if (dev->priv_destructor)
7757                 dev->priv_destructor(dev);
7758         goto out;
7759 }
7760 EXPORT_SYMBOL(register_netdevice);
7761
7762 /**
7763  *      init_dummy_netdev       - init a dummy network device for NAPI
7764  *      @dev: device to init
7765  *
7766  *      This takes a network device structure and initialize the minimum
7767  *      amount of fields so it can be used to schedule NAPI polls without
7768  *      registering a full blown interface. This is to be used by drivers
7769  *      that need to tie several hardware interfaces to a single NAPI
7770  *      poll scheduler due to HW limitations.
7771  */
7772 int init_dummy_netdev(struct net_device *dev)
7773 {
7774         /* Clear everything. Note we don't initialize spinlocks
7775          * are they aren't supposed to be taken by any of the
7776          * NAPI code and this dummy netdev is supposed to be
7777          * only ever used for NAPI polls
7778          */
7779         memset(dev, 0, sizeof(struct net_device));
7780
7781         /* make sure we BUG if trying to hit standard
7782          * register/unregister code path
7783          */
7784         dev->reg_state = NETREG_DUMMY;
7785
7786         /* NAPI wants this */
7787         INIT_LIST_HEAD(&dev->napi_list);
7788
7789         /* a dummy interface is started by default */
7790         set_bit(__LINK_STATE_PRESENT, &dev->state);
7791         set_bit(__LINK_STATE_START, &dev->state);
7792
7793         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7794          * because users of this 'device' dont need to change
7795          * its refcount.
7796          */
7797
7798         return 0;
7799 }
7800 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7801
7802
7803 /**
7804  *      register_netdev - register a network device
7805  *      @dev: device to register
7806  *
7807  *      Take a completed network device structure and add it to the kernel
7808  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7809  *      chain. 0 is returned on success. A negative errno code is returned
7810  *      on a failure to set up the device, or if the name is a duplicate.
7811  *
7812  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7813  *      and expands the device name if you passed a format string to
7814  *      alloc_netdev.
7815  */
7816 int register_netdev(struct net_device *dev)
7817 {
7818         int err;
7819
7820         rtnl_lock();
7821         err = register_netdevice(dev);
7822         rtnl_unlock();
7823         return err;
7824 }
7825 EXPORT_SYMBOL(register_netdev);
7826
7827 int netdev_refcnt_read(const struct net_device *dev)
7828 {
7829         int i, refcnt = 0;
7830
7831         for_each_possible_cpu(i)
7832                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7833         return refcnt;
7834 }
7835 EXPORT_SYMBOL(netdev_refcnt_read);
7836
7837 /**
7838  * netdev_wait_allrefs - wait until all references are gone.
7839  * @dev: target net_device
7840  *
7841  * This is called when unregistering network devices.
7842  *
7843  * Any protocol or device that holds a reference should register
7844  * for netdevice notification, and cleanup and put back the
7845  * reference if they receive an UNREGISTER event.
7846  * We can get stuck here if buggy protocols don't correctly
7847  * call dev_put.
7848  */
7849 static void netdev_wait_allrefs(struct net_device *dev)
7850 {
7851         unsigned long rebroadcast_time, warning_time;
7852         int refcnt;
7853
7854         linkwatch_forget_dev(dev);
7855
7856         rebroadcast_time = warning_time = jiffies;
7857         refcnt = netdev_refcnt_read(dev);
7858
7859         while (refcnt != 0) {
7860                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7861                         rtnl_lock();
7862
7863                         /* Rebroadcast unregister notification */
7864                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7865
7866                         __rtnl_unlock();
7867                         rcu_barrier();
7868                         rtnl_lock();
7869
7870                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7871                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7872                                      &dev->state)) {
7873                                 /* We must not have linkwatch events
7874                                  * pending on unregister. If this
7875                                  * happens, we simply run the queue
7876                                  * unscheduled, resulting in a noop
7877                                  * for this device.
7878                                  */
7879                                 linkwatch_run_queue();
7880                         }
7881
7882                         __rtnl_unlock();
7883
7884                         rebroadcast_time = jiffies;
7885                 }
7886
7887                 msleep(250);
7888
7889                 refcnt = netdev_refcnt_read(dev);
7890
7891                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7892                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7893                                  dev->name, refcnt);
7894                         warning_time = jiffies;
7895                 }
7896         }
7897 }
7898
7899 /* The sequence is:
7900  *
7901  *      rtnl_lock();
7902  *      ...
7903  *      register_netdevice(x1);
7904  *      register_netdevice(x2);
7905  *      ...
7906  *      unregister_netdevice(y1);
7907  *      unregister_netdevice(y2);
7908  *      ...
7909  *      rtnl_unlock();
7910  *      free_netdev(y1);
7911  *      free_netdev(y2);
7912  *
7913  * We are invoked by rtnl_unlock().
7914  * This allows us to deal with problems:
7915  * 1) We can delete sysfs objects which invoke hotplug
7916  *    without deadlocking with linkwatch via keventd.
7917  * 2) Since we run with the RTNL semaphore not held, we can sleep
7918  *    safely in order to wait for the netdev refcnt to drop to zero.
7919  *
7920  * We must not return until all unregister events added during
7921  * the interval the lock was held have been completed.
7922  */
7923 void netdev_run_todo(void)
7924 {
7925         struct list_head list;
7926
7927         /* Snapshot list, allow later requests */
7928         list_replace_init(&net_todo_list, &list);
7929
7930         __rtnl_unlock();
7931
7932
7933         /* Wait for rcu callbacks to finish before next phase */
7934         if (!list_empty(&list))
7935                 rcu_barrier();
7936
7937         while (!list_empty(&list)) {
7938                 struct net_device *dev
7939                         = list_first_entry(&list, struct net_device, todo_list);
7940                 list_del(&dev->todo_list);
7941
7942                 rtnl_lock();
7943                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7944                 __rtnl_unlock();
7945
7946                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7947                         pr_err("network todo '%s' but state %d\n",
7948                                dev->name, dev->reg_state);
7949                         dump_stack();
7950                         continue;
7951                 }
7952
7953                 dev->reg_state = NETREG_UNREGISTERED;
7954
7955                 netdev_wait_allrefs(dev);
7956
7957                 /* paranoia */
7958                 BUG_ON(netdev_refcnt_read(dev));
7959                 BUG_ON(!list_empty(&dev->ptype_all));
7960                 BUG_ON(!list_empty(&dev->ptype_specific));
7961                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7962                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7963                 WARN_ON(dev->dn_ptr);
7964
7965                 if (dev->priv_destructor)
7966                         dev->priv_destructor(dev);
7967                 if (dev->needs_free_netdev)
7968                         free_netdev(dev);
7969
7970                 /* Report a network device has been unregistered */
7971                 rtnl_lock();
7972                 dev_net(dev)->dev_unreg_count--;
7973                 __rtnl_unlock();
7974                 wake_up(&netdev_unregistering_wq);
7975
7976                 /* Free network device */
7977                 kobject_put(&dev->dev.kobj);
7978         }
7979 }
7980
7981 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7982  * all the same fields in the same order as net_device_stats, with only
7983  * the type differing, but rtnl_link_stats64 may have additional fields
7984  * at the end for newer counters.
7985  */
7986 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7987                              const struct net_device_stats *netdev_stats)
7988 {
7989 #if BITS_PER_LONG == 64
7990         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7991         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7992         /* zero out counters that only exist in rtnl_link_stats64 */
7993         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7994                sizeof(*stats64) - sizeof(*netdev_stats));
7995 #else
7996         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7997         const unsigned long *src = (const unsigned long *)netdev_stats;
7998         u64 *dst = (u64 *)stats64;
7999
8000         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8001         for (i = 0; i < n; i++)
8002                 dst[i] = src[i];
8003         /* zero out counters that only exist in rtnl_link_stats64 */
8004         memset((char *)stats64 + n * sizeof(u64), 0,
8005                sizeof(*stats64) - n * sizeof(u64));
8006 #endif
8007 }
8008 EXPORT_SYMBOL(netdev_stats_to_stats64);
8009
8010 /**
8011  *      dev_get_stats   - get network device statistics
8012  *      @dev: device to get statistics from
8013  *      @storage: place to store stats
8014  *
8015  *      Get network statistics from device. Return @storage.
8016  *      The device driver may provide its own method by setting
8017  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8018  *      otherwise the internal statistics structure is used.
8019  */
8020 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8021                                         struct rtnl_link_stats64 *storage)
8022 {
8023         const struct net_device_ops *ops = dev->netdev_ops;
8024
8025         if (ops->ndo_get_stats64) {
8026                 memset(storage, 0, sizeof(*storage));
8027                 ops->ndo_get_stats64(dev, storage);
8028         } else if (ops->ndo_get_stats) {
8029                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8030         } else {
8031                 netdev_stats_to_stats64(storage, &dev->stats);
8032         }
8033         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8034         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8035         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8036         return storage;
8037 }
8038 EXPORT_SYMBOL(dev_get_stats);
8039
8040 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8041 {
8042         struct netdev_queue *queue = dev_ingress_queue(dev);
8043
8044 #ifdef CONFIG_NET_CLS_ACT
8045         if (queue)
8046                 return queue;
8047         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8048         if (!queue)
8049                 return NULL;
8050         netdev_init_one_queue(dev, queue, NULL);
8051         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8052         queue->qdisc_sleeping = &noop_qdisc;
8053         rcu_assign_pointer(dev->ingress_queue, queue);
8054 #endif
8055         return queue;
8056 }
8057
8058 static const struct ethtool_ops default_ethtool_ops;
8059
8060 void netdev_set_default_ethtool_ops(struct net_device *dev,
8061                                     const struct ethtool_ops *ops)
8062 {
8063         if (dev->ethtool_ops == &default_ethtool_ops)
8064                 dev->ethtool_ops = ops;
8065 }
8066 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8067
8068 void netdev_freemem(struct net_device *dev)
8069 {
8070         char *addr = (char *)dev - dev->padded;
8071
8072         kvfree(addr);
8073 }
8074
8075 /**
8076  * alloc_netdev_mqs - allocate network device
8077  * @sizeof_priv: size of private data to allocate space for
8078  * @name: device name format string
8079  * @name_assign_type: origin of device name
8080  * @setup: callback to initialize device
8081  * @txqs: the number of TX subqueues to allocate
8082  * @rxqs: the number of RX subqueues to allocate
8083  *
8084  * Allocates a struct net_device with private data area for driver use
8085  * and performs basic initialization.  Also allocates subqueue structs
8086  * for each queue on the device.
8087  */
8088 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8089                 unsigned char name_assign_type,
8090                 void (*setup)(struct net_device *),
8091                 unsigned int txqs, unsigned int rxqs)
8092 {
8093         struct net_device *dev;
8094         unsigned int alloc_size;
8095         struct net_device *p;
8096
8097         BUG_ON(strlen(name) >= sizeof(dev->name));
8098
8099         if (txqs < 1) {
8100                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8101                 return NULL;
8102         }
8103
8104 #ifdef CONFIG_SYSFS
8105         if (rxqs < 1) {
8106                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8107                 return NULL;
8108         }
8109 #endif
8110
8111         alloc_size = sizeof(struct net_device);
8112         if (sizeof_priv) {
8113                 /* ensure 32-byte alignment of private area */
8114                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8115                 alloc_size += sizeof_priv;
8116         }
8117         /* ensure 32-byte alignment of whole construct */
8118         alloc_size += NETDEV_ALIGN - 1;
8119
8120         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8121         if (!p)
8122                 return NULL;
8123
8124         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8125         dev->padded = (char *)dev - (char *)p;
8126
8127         dev->pcpu_refcnt = alloc_percpu(int);
8128         if (!dev->pcpu_refcnt)
8129                 goto free_dev;
8130
8131         if (dev_addr_init(dev))
8132                 goto free_pcpu;
8133
8134         dev_mc_init(dev);
8135         dev_uc_init(dev);
8136
8137         dev_net_set(dev, &init_net);
8138
8139         dev->gso_max_size = GSO_MAX_SIZE;
8140         dev->gso_max_segs = GSO_MAX_SEGS;
8141
8142         INIT_LIST_HEAD(&dev->napi_list);
8143         INIT_LIST_HEAD(&dev->unreg_list);
8144         INIT_LIST_HEAD(&dev->close_list);
8145         INIT_LIST_HEAD(&dev->link_watch_list);
8146         INIT_LIST_HEAD(&dev->adj_list.upper);
8147         INIT_LIST_HEAD(&dev->adj_list.lower);
8148         INIT_LIST_HEAD(&dev->ptype_all);
8149         INIT_LIST_HEAD(&dev->ptype_specific);
8150 #ifdef CONFIG_NET_SCHED
8151         hash_init(dev->qdisc_hash);
8152 #endif
8153         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8154         setup(dev);
8155
8156         if (!dev->tx_queue_len) {
8157                 dev->priv_flags |= IFF_NO_QUEUE;
8158                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8159         }
8160
8161         dev->num_tx_queues = txqs;
8162         dev->real_num_tx_queues = txqs;
8163         if (netif_alloc_netdev_queues(dev))
8164                 goto free_all;
8165
8166 #ifdef CONFIG_SYSFS
8167         dev->num_rx_queues = rxqs;
8168         dev->real_num_rx_queues = rxqs;
8169         if (netif_alloc_rx_queues(dev))
8170                 goto free_all;
8171 #endif
8172
8173         strcpy(dev->name, name);
8174         dev->name_assign_type = name_assign_type;
8175         dev->group = INIT_NETDEV_GROUP;
8176         if (!dev->ethtool_ops)
8177                 dev->ethtool_ops = &default_ethtool_ops;
8178
8179         nf_hook_ingress_init(dev);
8180
8181         return dev;
8182
8183 free_all:
8184         free_netdev(dev);
8185         return NULL;
8186
8187 free_pcpu:
8188         free_percpu(dev->pcpu_refcnt);
8189 free_dev:
8190         netdev_freemem(dev);
8191         return NULL;
8192 }
8193 EXPORT_SYMBOL(alloc_netdev_mqs);
8194
8195 /**
8196  * free_netdev - free network device
8197  * @dev: device
8198  *
8199  * This function does the last stage of destroying an allocated device
8200  * interface. The reference to the device object is released. If this
8201  * is the last reference then it will be freed.Must be called in process
8202  * context.
8203  */
8204 void free_netdev(struct net_device *dev)
8205 {
8206         struct napi_struct *p, *n;
8207         struct bpf_prog *prog;
8208
8209         might_sleep();
8210         netif_free_tx_queues(dev);
8211 #ifdef CONFIG_SYSFS
8212         kvfree(dev->_rx);
8213 #endif
8214
8215         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8216
8217         /* Flush device addresses */
8218         dev_addr_flush(dev);
8219
8220         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8221                 netif_napi_del(p);
8222
8223         free_percpu(dev->pcpu_refcnt);
8224         dev->pcpu_refcnt = NULL;
8225
8226         prog = rcu_dereference_protected(dev->xdp_prog, 1);
8227         if (prog) {
8228                 bpf_prog_put(prog);
8229                 static_key_slow_dec(&generic_xdp_needed);
8230         }
8231
8232         /*  Compatibility with error handling in drivers */
8233         if (dev->reg_state == NETREG_UNINITIALIZED) {
8234                 netdev_freemem(dev);
8235                 return;
8236         }
8237
8238         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8239         dev->reg_state = NETREG_RELEASED;
8240
8241         /* will free via device release */
8242         put_device(&dev->dev);
8243 }
8244 EXPORT_SYMBOL(free_netdev);
8245
8246 /**
8247  *      synchronize_net -  Synchronize with packet receive processing
8248  *
8249  *      Wait for packets currently being received to be done.
8250  *      Does not block later packets from starting.
8251  */
8252 void synchronize_net(void)
8253 {
8254         might_sleep();
8255         if (rtnl_is_locked())
8256                 synchronize_rcu_expedited();
8257         else
8258                 synchronize_rcu();
8259 }
8260 EXPORT_SYMBOL(synchronize_net);
8261
8262 /**
8263  *      unregister_netdevice_queue - remove device from the kernel
8264  *      @dev: device
8265  *      @head: list
8266  *
8267  *      This function shuts down a device interface and removes it
8268  *      from the kernel tables.
8269  *      If head not NULL, device is queued to be unregistered later.
8270  *
8271  *      Callers must hold the rtnl semaphore.  You may want
8272  *      unregister_netdev() instead of this.
8273  */
8274
8275 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8276 {
8277         ASSERT_RTNL();
8278
8279         if (head) {
8280                 list_move_tail(&dev->unreg_list, head);
8281         } else {
8282                 rollback_registered(dev);
8283                 /* Finish processing unregister after unlock */
8284                 net_set_todo(dev);
8285         }
8286 }
8287 EXPORT_SYMBOL(unregister_netdevice_queue);
8288
8289 /**
8290  *      unregister_netdevice_many - unregister many devices
8291  *      @head: list of devices
8292  *
8293  *  Note: As most callers use a stack allocated list_head,
8294  *  we force a list_del() to make sure stack wont be corrupted later.
8295  */
8296 void unregister_netdevice_many(struct list_head *head)
8297 {
8298         struct net_device *dev;
8299
8300         if (!list_empty(head)) {
8301                 rollback_registered_many(head);
8302                 list_for_each_entry(dev, head, unreg_list)
8303                         net_set_todo(dev);
8304                 list_del(head);
8305         }
8306 }
8307 EXPORT_SYMBOL(unregister_netdevice_many);
8308
8309 /**
8310  *      unregister_netdev - remove device from the kernel
8311  *      @dev: device
8312  *
8313  *      This function shuts down a device interface and removes it
8314  *      from the kernel tables.
8315  *
8316  *      This is just a wrapper for unregister_netdevice that takes
8317  *      the rtnl semaphore.  In general you want to use this and not
8318  *      unregister_netdevice.
8319  */
8320 void unregister_netdev(struct net_device *dev)
8321 {
8322         rtnl_lock();
8323         unregister_netdevice(dev);
8324         rtnl_unlock();
8325 }
8326 EXPORT_SYMBOL(unregister_netdev);
8327
8328 /**
8329  *      dev_change_net_namespace - move device to different nethost namespace
8330  *      @dev: device
8331  *      @net: network namespace
8332  *      @pat: If not NULL name pattern to try if the current device name
8333  *            is already taken in the destination network namespace.
8334  *
8335  *      This function shuts down a device interface and moves it
8336  *      to a new network namespace. On success 0 is returned, on
8337  *      a failure a netagive errno code is returned.
8338  *
8339  *      Callers must hold the rtnl semaphore.
8340  */
8341
8342 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8343 {
8344         int err, new_nsid;
8345
8346         ASSERT_RTNL();
8347
8348         /* Don't allow namespace local devices to be moved. */
8349         err = -EINVAL;
8350         if (dev->features & NETIF_F_NETNS_LOCAL)
8351                 goto out;
8352
8353         /* Ensure the device has been registrered */
8354         if (dev->reg_state != NETREG_REGISTERED)
8355                 goto out;
8356
8357         /* Get out if there is nothing todo */
8358         err = 0;
8359         if (net_eq(dev_net(dev), net))
8360                 goto out;
8361
8362         /* Pick the destination device name, and ensure
8363          * we can use it in the destination network namespace.
8364          */
8365         err = -EEXIST;
8366         if (__dev_get_by_name(net, dev->name)) {
8367                 /* We get here if we can't use the current device name */
8368                 if (!pat)
8369                         goto out;
8370                 if (dev_get_valid_name(net, dev, pat) < 0)
8371                         goto out;
8372         }
8373
8374         /*
8375          * And now a mini version of register_netdevice unregister_netdevice.
8376          */
8377
8378         /* If device is running close it first. */
8379         dev_close(dev);
8380
8381         /* And unlink it from device chain */
8382         err = -ENODEV;
8383         unlist_netdevice(dev);
8384
8385         synchronize_net();
8386
8387         /* Shutdown queueing discipline. */
8388         dev_shutdown(dev);
8389
8390         /* Notify protocols, that we are about to destroy
8391          * this device. They should clean all the things.
8392          *
8393          * Note that dev->reg_state stays at NETREG_REGISTERED.
8394          * This is wanted because this way 8021q and macvlan know
8395          * the device is just moving and can keep their slaves up.
8396          */
8397         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8398         rcu_barrier();
8399         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8400         if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8401                 new_nsid = peernet2id_alloc(dev_net(dev), net);
8402         else
8403                 new_nsid = peernet2id(dev_net(dev), net);
8404         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
8405
8406         /*
8407          *      Flush the unicast and multicast chains
8408          */
8409         dev_uc_flush(dev);
8410         dev_mc_flush(dev);
8411
8412         /* Send a netdev-removed uevent to the old namespace */
8413         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8414         netdev_adjacent_del_links(dev);
8415
8416         /* Actually switch the network namespace */
8417         dev_net_set(dev, net);
8418
8419         /* If there is an ifindex conflict assign a new one */
8420         if (__dev_get_by_index(net, dev->ifindex))
8421                 dev->ifindex = dev_new_index(net);
8422
8423         /* Send a netdev-add uevent to the new namespace */
8424         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8425         netdev_adjacent_add_links(dev);
8426
8427         /* Fixup kobjects */
8428         err = device_rename(&dev->dev, dev->name);
8429         WARN_ON(err);
8430
8431         /* Add the device back in the hashes */
8432         list_netdevice(dev);
8433
8434         /* Notify protocols, that a new device appeared. */
8435         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8436
8437         /*
8438          *      Prevent userspace races by waiting until the network
8439          *      device is fully setup before sending notifications.
8440          */
8441         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8442
8443         synchronize_net();
8444         err = 0;
8445 out:
8446         return err;
8447 }
8448 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8449
8450 static int dev_cpu_dead(unsigned int oldcpu)
8451 {
8452         struct sk_buff **list_skb;
8453         struct sk_buff *skb;
8454         unsigned int cpu;
8455         struct softnet_data *sd, *oldsd, *remsd = NULL;
8456
8457         local_irq_disable();
8458         cpu = smp_processor_id();
8459         sd = &per_cpu(softnet_data, cpu);
8460         oldsd = &per_cpu(softnet_data, oldcpu);
8461
8462         /* Find end of our completion_queue. */
8463         list_skb = &sd->completion_queue;
8464         while (*list_skb)
8465                 list_skb = &(*list_skb)->next;
8466         /* Append completion queue from offline CPU. */
8467         *list_skb = oldsd->completion_queue;
8468         oldsd->completion_queue = NULL;
8469
8470         /* Append output queue from offline CPU. */
8471         if (oldsd->output_queue) {
8472                 *sd->output_queue_tailp = oldsd->output_queue;
8473                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8474                 oldsd->output_queue = NULL;
8475                 oldsd->output_queue_tailp = &oldsd->output_queue;
8476         }
8477         /* Append NAPI poll list from offline CPU, with one exception :
8478          * process_backlog() must be called by cpu owning percpu backlog.
8479          * We properly handle process_queue & input_pkt_queue later.
8480          */
8481         while (!list_empty(&oldsd->poll_list)) {
8482                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8483                                                             struct napi_struct,
8484                                                             poll_list);
8485
8486                 list_del_init(&napi->poll_list);
8487                 if (napi->poll == process_backlog)
8488                         napi->state = 0;
8489                 else
8490                         ____napi_schedule(sd, napi);
8491         }
8492
8493         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8494         local_irq_enable();
8495
8496 #ifdef CONFIG_RPS
8497         remsd = oldsd->rps_ipi_list;
8498         oldsd->rps_ipi_list = NULL;
8499 #endif
8500         /* send out pending IPI's on offline CPU */
8501         net_rps_send_ipi(remsd);
8502
8503         /* Process offline CPU's input_pkt_queue */
8504         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8505                 netif_rx_ni(skb);
8506                 input_queue_head_incr(oldsd);
8507         }
8508         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8509                 netif_rx_ni(skb);
8510                 input_queue_head_incr(oldsd);
8511         }
8512
8513         return 0;
8514 }
8515
8516 /**
8517  *      netdev_increment_features - increment feature set by one
8518  *      @all: current feature set
8519  *      @one: new feature set
8520  *      @mask: mask feature set
8521  *
8522  *      Computes a new feature set after adding a device with feature set
8523  *      @one to the master device with current feature set @all.  Will not
8524  *      enable anything that is off in @mask. Returns the new feature set.
8525  */
8526 netdev_features_t netdev_increment_features(netdev_features_t all,
8527         netdev_features_t one, netdev_features_t mask)
8528 {
8529         if (mask & NETIF_F_HW_CSUM)
8530                 mask |= NETIF_F_CSUM_MASK;
8531         mask |= NETIF_F_VLAN_CHALLENGED;
8532
8533         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8534         all &= one | ~NETIF_F_ALL_FOR_ALL;
8535
8536         /* If one device supports hw checksumming, set for all. */
8537         if (all & NETIF_F_HW_CSUM)
8538                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8539
8540         return all;
8541 }
8542 EXPORT_SYMBOL(netdev_increment_features);
8543
8544 static struct hlist_head * __net_init netdev_create_hash(void)
8545 {
8546         int i;
8547         struct hlist_head *hash;
8548
8549         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8550         if (hash != NULL)
8551                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8552                         INIT_HLIST_HEAD(&hash[i]);
8553
8554         return hash;
8555 }
8556
8557 /* Initialize per network namespace state */
8558 static int __net_init netdev_init(struct net *net)
8559 {
8560         if (net != &init_net)
8561                 INIT_LIST_HEAD(&net->dev_base_head);
8562
8563         net->dev_name_head = netdev_create_hash();
8564         if (net->dev_name_head == NULL)
8565                 goto err_name;
8566
8567         net->dev_index_head = netdev_create_hash();
8568         if (net->dev_index_head == NULL)
8569                 goto err_idx;
8570
8571         return 0;
8572
8573 err_idx:
8574         kfree(net->dev_name_head);
8575 err_name:
8576         return -ENOMEM;
8577 }
8578
8579 /**
8580  *      netdev_drivername - network driver for the device
8581  *      @dev: network device
8582  *
8583  *      Determine network driver for device.
8584  */
8585 const char *netdev_drivername(const struct net_device *dev)
8586 {
8587         const struct device_driver *driver;
8588         const struct device *parent;
8589         const char *empty = "";
8590
8591         parent = dev->dev.parent;
8592         if (!parent)
8593                 return empty;
8594
8595         driver = parent->driver;
8596         if (driver && driver->name)
8597                 return driver->name;
8598         return empty;
8599 }
8600
8601 static void __netdev_printk(const char *level, const struct net_device *dev,
8602                             struct va_format *vaf)
8603 {
8604         if (dev && dev->dev.parent) {
8605                 dev_printk_emit(level[1] - '0',
8606                                 dev->dev.parent,
8607                                 "%s %s %s%s: %pV",
8608                                 dev_driver_string(dev->dev.parent),
8609                                 dev_name(dev->dev.parent),
8610                                 netdev_name(dev), netdev_reg_state(dev),
8611                                 vaf);
8612         } else if (dev) {
8613                 printk("%s%s%s: %pV",
8614                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8615         } else {
8616                 printk("%s(NULL net_device): %pV", level, vaf);
8617         }
8618 }
8619
8620 void netdev_printk(const char *level, const struct net_device *dev,
8621                    const char *format, ...)
8622 {
8623         struct va_format vaf;
8624         va_list args;
8625
8626         va_start(args, format);
8627
8628         vaf.fmt = format;
8629         vaf.va = &args;
8630
8631         __netdev_printk(level, dev, &vaf);
8632
8633         va_end(args);
8634 }
8635 EXPORT_SYMBOL(netdev_printk);
8636
8637 #define define_netdev_printk_level(func, level)                 \
8638 void func(const struct net_device *dev, const char *fmt, ...)   \
8639 {                                                               \
8640         struct va_format vaf;                                   \
8641         va_list args;                                           \
8642                                                                 \
8643         va_start(args, fmt);                                    \
8644                                                                 \
8645         vaf.fmt = fmt;                                          \
8646         vaf.va = &args;                                         \
8647                                                                 \
8648         __netdev_printk(level, dev, &vaf);                      \
8649                                                                 \
8650         va_end(args);                                           \
8651 }                                                               \
8652 EXPORT_SYMBOL(func);
8653
8654 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8655 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8656 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8657 define_netdev_printk_level(netdev_err, KERN_ERR);
8658 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8659 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8660 define_netdev_printk_level(netdev_info, KERN_INFO);
8661
8662 static void __net_exit netdev_exit(struct net *net)
8663 {
8664         kfree(net->dev_name_head);
8665         kfree(net->dev_index_head);
8666 }
8667
8668 static struct pernet_operations __net_initdata netdev_net_ops = {
8669         .init = netdev_init,
8670         .exit = netdev_exit,
8671 };
8672
8673 static void __net_exit default_device_exit(struct net *net)
8674 {
8675         struct net_device *dev, *aux;
8676         /*
8677          * Push all migratable network devices back to the
8678          * initial network namespace
8679          */
8680         rtnl_lock();
8681         for_each_netdev_safe(net, dev, aux) {
8682                 int err;
8683                 char fb_name[IFNAMSIZ];
8684
8685                 /* Ignore unmoveable devices (i.e. loopback) */
8686                 if (dev->features & NETIF_F_NETNS_LOCAL)
8687                         continue;
8688
8689                 /* Leave virtual devices for the generic cleanup */
8690                 if (dev->rtnl_link_ops)
8691                         continue;
8692
8693                 /* Push remaining network devices to init_net */
8694                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8695                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8696                 if (err) {
8697                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8698                                  __func__, dev->name, err);
8699                         BUG();
8700                 }
8701         }
8702         rtnl_unlock();
8703 }
8704
8705 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8706 {
8707         /* Return with the rtnl_lock held when there are no network
8708          * devices unregistering in any network namespace in net_list.
8709          */
8710         struct net *net;
8711         bool unregistering;
8712         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8713
8714         add_wait_queue(&netdev_unregistering_wq, &wait);
8715         for (;;) {
8716                 unregistering = false;
8717                 rtnl_lock();
8718                 list_for_each_entry(net, net_list, exit_list) {
8719                         if (net->dev_unreg_count > 0) {
8720                                 unregistering = true;
8721                                 break;
8722                         }
8723                 }
8724                 if (!unregistering)
8725                         break;
8726                 __rtnl_unlock();
8727
8728                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8729         }
8730         remove_wait_queue(&netdev_unregistering_wq, &wait);
8731 }
8732
8733 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8734 {
8735         /* At exit all network devices most be removed from a network
8736          * namespace.  Do this in the reverse order of registration.
8737          * Do this across as many network namespaces as possible to
8738          * improve batching efficiency.
8739          */
8740         struct net_device *dev;
8741         struct net *net;
8742         LIST_HEAD(dev_kill_list);
8743
8744         /* To prevent network device cleanup code from dereferencing
8745          * loopback devices or network devices that have been freed
8746          * wait here for all pending unregistrations to complete,
8747          * before unregistring the loopback device and allowing the
8748          * network namespace be freed.
8749          *
8750          * The netdev todo list containing all network devices
8751          * unregistrations that happen in default_device_exit_batch
8752          * will run in the rtnl_unlock() at the end of
8753          * default_device_exit_batch.
8754          */
8755         rtnl_lock_unregistering(net_list);
8756         list_for_each_entry(net, net_list, exit_list) {
8757                 for_each_netdev_reverse(net, dev) {
8758                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8759                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8760                         else
8761                                 unregister_netdevice_queue(dev, &dev_kill_list);
8762                 }
8763         }
8764         unregister_netdevice_many(&dev_kill_list);
8765         rtnl_unlock();
8766 }
8767
8768 static struct pernet_operations __net_initdata default_device_ops = {
8769         .exit = default_device_exit,
8770         .exit_batch = default_device_exit_batch,
8771 };
8772
8773 /*
8774  *      Initialize the DEV module. At boot time this walks the device list and
8775  *      unhooks any devices that fail to initialise (normally hardware not
8776  *      present) and leaves us with a valid list of present and active devices.
8777  *
8778  */
8779
8780 /*
8781  *       This is called single threaded during boot, so no need
8782  *       to take the rtnl semaphore.
8783  */
8784 static int __init net_dev_init(void)
8785 {
8786         int i, rc = -ENOMEM;
8787
8788         BUG_ON(!dev_boot_phase);
8789
8790         if (dev_proc_init())
8791                 goto out;
8792
8793         if (netdev_kobject_init())
8794                 goto out;
8795
8796         INIT_LIST_HEAD(&ptype_all);
8797         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8798                 INIT_LIST_HEAD(&ptype_base[i]);
8799
8800         INIT_LIST_HEAD(&offload_base);
8801
8802         if (register_pernet_subsys(&netdev_net_ops))
8803                 goto out;
8804
8805         /*
8806          *      Initialise the packet receive queues.
8807          */
8808
8809         for_each_possible_cpu(i) {
8810                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8811                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8812
8813                 INIT_WORK(flush, flush_backlog);
8814
8815                 skb_queue_head_init(&sd->input_pkt_queue);
8816                 skb_queue_head_init(&sd->process_queue);
8817                 INIT_LIST_HEAD(&sd->poll_list);
8818                 sd->output_queue_tailp = &sd->output_queue;
8819 #ifdef CONFIG_RPS
8820                 sd->csd.func = rps_trigger_softirq;
8821                 sd->csd.info = sd;
8822                 sd->cpu = i;
8823 #endif
8824
8825                 sd->backlog.poll = process_backlog;
8826                 sd->backlog.weight = weight_p;
8827         }
8828
8829         dev_boot_phase = 0;
8830
8831         /* The loopback device is special if any other network devices
8832          * is present in a network namespace the loopback device must
8833          * be present. Since we now dynamically allocate and free the
8834          * loopback device ensure this invariant is maintained by
8835          * keeping the loopback device as the first device on the
8836          * list of network devices.  Ensuring the loopback devices
8837          * is the first device that appears and the last network device
8838          * that disappears.
8839          */
8840         if (register_pernet_device(&loopback_net_ops))
8841                 goto out;
8842
8843         if (register_pernet_device(&default_device_ops))
8844                 goto out;
8845
8846         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8847         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8848
8849         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8850                                        NULL, dev_cpu_dead);
8851         WARN_ON(rc < 0);
8852         rc = 0;
8853 out:
8854         return rc;
8855 }
8856
8857 subsys_initcall(net_dev_init);