]> asedeno.scripts.mit.edu Git - linux.git/blob - net/core/dev.c
net: busy-poll: allow preemption in sk_busy_loop()
[linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;       /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160                                          struct net_device *dev,
161                                          struct netdev_notifier_info *info);
162
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195         while (++net->dev_base_seq == 0);
196 }
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
201
202         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213         spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227         struct net *net = dev_net(dev);
228
229         ASSERT_RTNL();
230
231         write_lock_bh(&dev_base_lock);
232         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234         hlist_add_head_rcu(&dev->index_hlist,
235                            dev_index_hash(net, dev->ifindex));
236         write_unlock_bh(&dev_base_lock);
237
238         dev_base_seq_inc(net);
239 }
240
241 /* Device list removal
242  * caller must respect a RCU grace period before freeing/reusing dev
243  */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246         ASSERT_RTNL();
247
248         /* Unlink dev from the device chain */
249         write_lock_bh(&dev_base_lock);
250         list_del_rcu(&dev->dev_list);
251         hlist_del_rcu(&dev->name_hlist);
252         hlist_del_rcu(&dev->index_hlist);
253         write_unlock_bh(&dev_base_lock);
254
255         dev_base_seq_inc(dev_net(dev));
256 }
257
258 /*
259  *      Our notifier list
260  */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265  *      Device drivers call our routines to queue packets here. We empty the
266  *      queue in the local softnet handler.
267  */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275  * according to dev->type
276  */
277 static const unsigned short netdev_lock_type[] =
278         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316         int i;
317
318         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319                 if (netdev_lock_type[i] == dev_type)
320                         return i;
321         /* the last key is used by default */
322         return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326                                                  unsigned short dev_type)
327 {
328         int i;
329
330         i = netdev_lock_pos(dev_type);
331         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332                                    netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev->type);
340         lockdep_set_class_and_name(&dev->addr_list_lock,
341                                    &netdev_addr_lock_key[i],
342                                    netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346                                                  unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356                 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361  *      Add a protocol ID to the list. Now that the input handler is
362  *      smarter we can dispense with all the messy stuff that used to be
363  *      here.
364  *
365  *      BEWARE!!! Protocol handlers, mangling input packets,
366  *      MUST BE last in hash buckets and checking protocol handlers
367  *      MUST start from promiscuous ptype_all chain in net_bh.
368  *      It is true now, do not change it.
369  *      Explanation follows: if protocol handler, mangling packet, will
370  *      be the first on list, it is not able to sense, that packet
371  *      is cloned and should be copied-on-write, so that it will
372  *      change it and subsequent readers will get broken packet.
373  *                                                      --ANK (980803)
374  */
375
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378         if (pt->type == htons(ETH_P_ALL))
379                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380         else
381                 return pt->dev ? &pt->dev->ptype_specific :
382                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386  *      dev_add_pack - add packet handler
387  *      @pt: packet type declaration
388  *
389  *      Add a protocol handler to the networking stack. The passed &packet_type
390  *      is linked into kernel lists and may not be freed until it has been
391  *      removed from the kernel lists.
392  *
393  *      This call does not sleep therefore it can not
394  *      guarantee all CPU's that are in middle of receiving packets
395  *      will see the new packet type (until the next received packet).
396  */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400         struct list_head *head = ptype_head(pt);
401
402         spin_lock(&ptype_lock);
403         list_add_rcu(&pt->list, head);
404         spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409  *      __dev_remove_pack        - remove packet handler
410  *      @pt: packet type declaration
411  *
412  *      Remove a protocol handler that was previously added to the kernel
413  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *      from the kernel lists and can be freed or reused once this function
415  *      returns.
416  *
417  *      The packet type might still be in use by receivers
418  *      and must not be freed until after all the CPU's have gone
419  *      through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423         struct list_head *head = ptype_head(pt);
424         struct packet_type *pt1;
425
426         spin_lock(&ptype_lock);
427
428         list_for_each_entry(pt1, head, list) {
429                 if (pt == pt1) {
430                         list_del_rcu(&pt->list);
431                         goto out;
432                 }
433         }
434
435         pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437         spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442  *      dev_remove_pack  - remove packet handler
443  *      @pt: packet type declaration
444  *
445  *      Remove a protocol handler that was previously added to the kernel
446  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *      from the kernel lists and can be freed or reused once this function
448  *      returns.
449  *
450  *      This call sleeps to guarantee that no CPU is looking at the packet
451  *      type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455         __dev_remove_pack(pt);
456
457         synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461
462 /**
463  *      dev_add_offload - register offload handlers
464  *      @po: protocol offload declaration
465  *
466  *      Add protocol offload handlers to the networking stack. The passed
467  *      &proto_offload is linked into kernel lists and may not be freed until
468  *      it has been removed from the kernel lists.
469  *
470  *      This call does not sleep therefore it can not
471  *      guarantee all CPU's that are in middle of receiving packets
472  *      will see the new offload handlers (until the next received packet).
473  */
474 void dev_add_offload(struct packet_offload *po)
475 {
476         struct packet_offload *elem;
477
478         spin_lock(&offload_lock);
479         list_for_each_entry(elem, &offload_base, list) {
480                 if (po->priority < elem->priority)
481                         break;
482         }
483         list_add_rcu(&po->list, elem->list.prev);
484         spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487
488 /**
489  *      __dev_remove_offload     - remove offload handler
490  *      @po: packet offload declaration
491  *
492  *      Remove a protocol offload handler that was previously added to the
493  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
494  *      is removed from the kernel lists and can be freed or reused once this
495  *      function returns.
496  *
497  *      The packet type might still be in use by receivers
498  *      and must not be freed until after all the CPU's have gone
499  *      through a quiescent state.
500  */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503         struct list_head *head = &offload_base;
504         struct packet_offload *po1;
505
506         spin_lock(&offload_lock);
507
508         list_for_each_entry(po1, head, list) {
509                 if (po == po1) {
510                         list_del_rcu(&po->list);
511                         goto out;
512                 }
513         }
514
515         pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517         spin_unlock(&offload_lock);
518 }
519
520 /**
521  *      dev_remove_offload       - remove packet offload handler
522  *      @po: packet offload declaration
523  *
524  *      Remove a packet offload handler that was previously added to the kernel
525  *      offload handlers by dev_add_offload(). The passed &offload_type is
526  *      removed from the kernel lists and can be freed or reused once this
527  *      function returns.
528  *
529  *      This call sleeps to guarantee that no CPU is looking at the packet
530  *      type after return.
531  */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534         __dev_remove_offload(po);
535
536         synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539
540 /******************************************************************************
541
542                       Device Boot-time Settings Routines
543
544 *******************************************************************************/
545
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549 /**
550  *      netdev_boot_setup_add   - add new setup entry
551  *      @name: name of the device
552  *      @map: configured settings for the device
553  *
554  *      Adds new setup entry to the dev_boot_setup list.  The function
555  *      returns 0 on error and 1 on success.  This is a generic routine to
556  *      all netdevices.
557  */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560         struct netdev_boot_setup *s;
561         int i;
562
563         s = dev_boot_setup;
564         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566                         memset(s[i].name, 0, sizeof(s[i].name));
567                         strlcpy(s[i].name, name, IFNAMSIZ);
568                         memcpy(&s[i].map, map, sizeof(s[i].map));
569                         break;
570                 }
571         }
572
573         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575
576 /**
577  *      netdev_boot_setup_check - check boot time settings
578  *      @dev: the netdevice
579  *
580  *      Check boot time settings for the device.
581  *      The found settings are set for the device to be used
582  *      later in the device probing.
583  *      Returns 0 if no settings found, 1 if they are.
584  */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587         struct netdev_boot_setup *s = dev_boot_setup;
588         int i;
589
590         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592                     !strcmp(dev->name, s[i].name)) {
593                         dev->irq        = s[i].map.irq;
594                         dev->base_addr  = s[i].map.base_addr;
595                         dev->mem_start  = s[i].map.mem_start;
596                         dev->mem_end    = s[i].map.mem_end;
597                         return 1;
598                 }
599         }
600         return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603
604
605 /**
606  *      netdev_boot_base        - get address from boot time settings
607  *      @prefix: prefix for network device
608  *      @unit: id for network device
609  *
610  *      Check boot time settings for the base address of device.
611  *      The found settings are set for the device to be used
612  *      later in the device probing.
613  *      Returns 0 if no settings found.
614  */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617         const struct netdev_boot_setup *s = dev_boot_setup;
618         char name[IFNAMSIZ];
619         int i;
620
621         sprintf(name, "%s%d", prefix, unit);
622
623         /*
624          * If device already registered then return base of 1
625          * to indicate not to probe for this interface
626          */
627         if (__dev_get_by_name(&init_net, name))
628                 return 1;
629
630         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631                 if (!strcmp(name, s[i].name))
632                         return s[i].map.base_addr;
633         return 0;
634 }
635
636 /*
637  * Saves at boot time configured settings for any netdevice.
638  */
639 int __init netdev_boot_setup(char *str)
640 {
641         int ints[5];
642         struct ifmap map;
643
644         str = get_options(str, ARRAY_SIZE(ints), ints);
645         if (!str || !*str)
646                 return 0;
647
648         /* Save settings */
649         memset(&map, 0, sizeof(map));
650         if (ints[0] > 0)
651                 map.irq = ints[1];
652         if (ints[0] > 1)
653                 map.base_addr = ints[2];
654         if (ints[0] > 2)
655                 map.mem_start = ints[3];
656         if (ints[0] > 3)
657                 map.mem_end = ints[4];
658
659         /* Add new entry to the list */
660         return netdev_boot_setup_add(str, &map);
661 }
662
663 __setup("netdev=", netdev_boot_setup);
664
665 /*******************************************************************************
666
667                             Device Interface Subroutines
668
669 *******************************************************************************/
670
671 /**
672  *      dev_get_iflink  - get 'iflink' value of a interface
673  *      @dev: targeted interface
674  *
675  *      Indicates the ifindex the interface is linked to.
676  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
677  */
678
679 int dev_get_iflink(const struct net_device *dev)
680 {
681         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682                 return dev->netdev_ops->ndo_get_iflink(dev);
683
684         return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687
688 /**
689  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
690  *      @dev: targeted interface
691  *      @skb: The packet.
692  *
693  *      For better visibility of tunnel traffic OVS needs to retrieve
694  *      egress tunnel information for a packet. Following API allows
695  *      user to get this info.
696  */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699         struct ip_tunnel_info *info;
700
701         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
702                 return -EINVAL;
703
704         info = skb_tunnel_info_unclone(skb);
705         if (!info)
706                 return -ENOMEM;
707         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708                 return -EINVAL;
709
710         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
714 /**
715  *      __dev_get_by_name       - find a device by its name
716  *      @net: the applicable net namespace
717  *      @name: name to find
718  *
719  *      Find an interface by name. Must be called under RTNL semaphore
720  *      or @dev_base_lock. If the name is found a pointer to the device
721  *      is returned. If the name is not found then %NULL is returned. The
722  *      reference counters are not incremented so the caller must be
723  *      careful with locks.
724  */
725
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728         struct net_device *dev;
729         struct hlist_head *head = dev_name_hash(net, name);
730
731         hlist_for_each_entry(dev, head, name_hlist)
732                 if (!strncmp(dev->name, name, IFNAMSIZ))
733                         return dev;
734
735         return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738
739 /**
740  *      dev_get_by_name_rcu     - find a device by its name
741  *      @net: the applicable net namespace
742  *      @name: name to find
743  *
744  *      Find an interface by name.
745  *      If the name is found a pointer to the device is returned.
746  *      If the name is not found then %NULL is returned.
747  *      The reference counters are not incremented so the caller must be
748  *      careful with locks. The caller must hold RCU lock.
749  */
750
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753         struct net_device *dev;
754         struct hlist_head *head = dev_name_hash(net, name);
755
756         hlist_for_each_entry_rcu(dev, head, name_hlist)
757                 if (!strncmp(dev->name, name, IFNAMSIZ))
758                         return dev;
759
760         return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763
764 /**
765  *      dev_get_by_name         - find a device by its name
766  *      @net: the applicable net namespace
767  *      @name: name to find
768  *
769  *      Find an interface by name. This can be called from any
770  *      context and does its own locking. The returned handle has
771  *      the usage count incremented and the caller must use dev_put() to
772  *      release it when it is no longer needed. %NULL is returned if no
773  *      matching device is found.
774  */
775
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778         struct net_device *dev;
779
780         rcu_read_lock();
781         dev = dev_get_by_name_rcu(net, name);
782         if (dev)
783                 dev_hold(dev);
784         rcu_read_unlock();
785         return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788
789 /**
790  *      __dev_get_by_index - find a device by its ifindex
791  *      @net: the applicable net namespace
792  *      @ifindex: index of device
793  *
794  *      Search for an interface by index. Returns %NULL if the device
795  *      is not found or a pointer to the device. The device has not
796  *      had its reference counter increased so the caller must be careful
797  *      about locking. The caller must hold either the RTNL semaphore
798  *      or @dev_base_lock.
799  */
800
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803         struct net_device *dev;
804         struct hlist_head *head = dev_index_hash(net, ifindex);
805
806         hlist_for_each_entry(dev, head, index_hlist)
807                 if (dev->ifindex == ifindex)
808                         return dev;
809
810         return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813
814 /**
815  *      dev_get_by_index_rcu - find a device by its ifindex
816  *      @net: the applicable net namespace
817  *      @ifindex: index of device
818  *
819  *      Search for an interface by index. Returns %NULL if the device
820  *      is not found or a pointer to the device. The device has not
821  *      had its reference counter increased so the caller must be careful
822  *      about locking. The caller must hold RCU lock.
823  */
824
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827         struct net_device *dev;
828         struct hlist_head *head = dev_index_hash(net, ifindex);
829
830         hlist_for_each_entry_rcu(dev, head, index_hlist)
831                 if (dev->ifindex == ifindex)
832                         return dev;
833
834         return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837
838
839 /**
840  *      dev_get_by_index - find a device by its ifindex
841  *      @net: the applicable net namespace
842  *      @ifindex: index of device
843  *
844  *      Search for an interface by index. Returns NULL if the device
845  *      is not found or a pointer to the device. The device returned has
846  *      had a reference added and the pointer is safe until the user calls
847  *      dev_put to indicate they have finished with it.
848  */
849
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852         struct net_device *dev;
853
854         rcu_read_lock();
855         dev = dev_get_by_index_rcu(net, ifindex);
856         if (dev)
857                 dev_hold(dev);
858         rcu_read_unlock();
859         return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862
863 /**
864  *      netdev_get_name - get a netdevice name, knowing its ifindex.
865  *      @net: network namespace
866  *      @name: a pointer to the buffer where the name will be stored.
867  *      @ifindex: the ifindex of the interface to get the name from.
868  *
869  *      The use of raw_seqcount_begin() and cond_resched() before
870  *      retrying is required as we want to give the writers a chance
871  *      to complete when CONFIG_PREEMPT is not set.
872  */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875         struct net_device *dev;
876         unsigned int seq;
877
878 retry:
879         seq = raw_seqcount_begin(&devnet_rename_seq);
880         rcu_read_lock();
881         dev = dev_get_by_index_rcu(net, ifindex);
882         if (!dev) {
883                 rcu_read_unlock();
884                 return -ENODEV;
885         }
886
887         strcpy(name, dev->name);
888         rcu_read_unlock();
889         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890                 cond_resched();
891                 goto retry;
892         }
893
894         return 0;
895 }
896
897 /**
898  *      dev_getbyhwaddr_rcu - find a device by its hardware address
899  *      @net: the applicable net namespace
900  *      @type: media type of device
901  *      @ha: hardware address
902  *
903  *      Search for an interface by MAC address. Returns NULL if the device
904  *      is not found or a pointer to the device.
905  *      The caller must hold RCU or RTNL.
906  *      The returned device has not had its ref count increased
907  *      and the caller must therefore be careful about locking
908  *
909  */
910
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912                                        const char *ha)
913 {
914         struct net_device *dev;
915
916         for_each_netdev_rcu(net, dev)
917                 if (dev->type == type &&
918                     !memcmp(dev->dev_addr, ha, dev->addr_len))
919                         return dev;
920
921         return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927         struct net_device *dev;
928
929         ASSERT_RTNL();
930         for_each_netdev(net, dev)
931                 if (dev->type == type)
932                         return dev;
933
934         return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940         struct net_device *dev, *ret = NULL;
941
942         rcu_read_lock();
943         for_each_netdev_rcu(net, dev)
944                 if (dev->type == type) {
945                         dev_hold(dev);
946                         ret = dev;
947                         break;
948                 }
949         rcu_read_unlock();
950         return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954 /**
955  *      __dev_get_by_flags - find any device with given flags
956  *      @net: the applicable net namespace
957  *      @if_flags: IFF_* values
958  *      @mask: bitmask of bits in if_flags to check
959  *
960  *      Search for any interface with the given flags. Returns NULL if a device
961  *      is not found or a pointer to the device. Must be called inside
962  *      rtnl_lock(), and result refcount is unchanged.
963  */
964
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966                                       unsigned short mask)
967 {
968         struct net_device *dev, *ret;
969
970         ASSERT_RTNL();
971
972         ret = NULL;
973         for_each_netdev(net, dev) {
974                 if (((dev->flags ^ if_flags) & mask) == 0) {
975                         ret = dev;
976                         break;
977                 }
978         }
979         return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982
983 /**
984  *      dev_valid_name - check if name is okay for network device
985  *      @name: name string
986  *
987  *      Network device names need to be valid file names to
988  *      to allow sysfs to work.  We also disallow any kind of
989  *      whitespace.
990  */
991 bool dev_valid_name(const char *name)
992 {
993         if (*name == '\0')
994                 return false;
995         if (strlen(name) >= IFNAMSIZ)
996                 return false;
997         if (!strcmp(name, ".") || !strcmp(name, ".."))
998                 return false;
999
1000         while (*name) {
1001                 if (*name == '/' || *name == ':' || isspace(*name))
1002                         return false;
1003                 name++;
1004         }
1005         return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008
1009 /**
1010  *      __dev_alloc_name - allocate a name for a device
1011  *      @net: network namespace to allocate the device name in
1012  *      @name: name format string
1013  *      @buf:  scratch buffer and result name string
1014  *
1015  *      Passed a format string - eg "lt%d" it will try and find a suitable
1016  *      id. It scans list of devices to build up a free map, then chooses
1017  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1018  *      while allocating the name and adding the device in order to avoid
1019  *      duplicates.
1020  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021  *      Returns the number of the unit assigned or a negative errno code.
1022  */
1023
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026         int i = 0;
1027         const char *p;
1028         const int max_netdevices = 8*PAGE_SIZE;
1029         unsigned long *inuse;
1030         struct net_device *d;
1031
1032         p = strnchr(name, IFNAMSIZ-1, '%');
1033         if (p) {
1034                 /*
1035                  * Verify the string as this thing may have come from
1036                  * the user.  There must be either one "%d" and no other "%"
1037                  * characters.
1038                  */
1039                 if (p[1] != 'd' || strchr(p + 2, '%'))
1040                         return -EINVAL;
1041
1042                 /* Use one page as a bit array of possible slots */
1043                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044                 if (!inuse)
1045                         return -ENOMEM;
1046
1047                 for_each_netdev(net, d) {
1048                         if (!sscanf(d->name, name, &i))
1049                                 continue;
1050                         if (i < 0 || i >= max_netdevices)
1051                                 continue;
1052
1053                         /*  avoid cases where sscanf is not exact inverse of printf */
1054                         snprintf(buf, IFNAMSIZ, name, i);
1055                         if (!strncmp(buf, d->name, IFNAMSIZ))
1056                                 set_bit(i, inuse);
1057                 }
1058
1059                 i = find_first_zero_bit(inuse, max_netdevices);
1060                 free_page((unsigned long) inuse);
1061         }
1062
1063         if (buf != name)
1064                 snprintf(buf, IFNAMSIZ, name, i);
1065         if (!__dev_get_by_name(net, buf))
1066                 return i;
1067
1068         /* It is possible to run out of possible slots
1069          * when the name is long and there isn't enough space left
1070          * for the digits, or if all bits are used.
1071          */
1072         return -ENFILE;
1073 }
1074
1075 /**
1076  *      dev_alloc_name - allocate a name for a device
1077  *      @dev: device
1078  *      @name: name format string
1079  *
1080  *      Passed a format string - eg "lt%d" it will try and find a suitable
1081  *      id. It scans list of devices to build up a free map, then chooses
1082  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *      while allocating the name and adding the device in order to avoid
1084  *      duplicates.
1085  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *      Returns the number of the unit assigned or a negative errno code.
1087  */
1088
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091         char buf[IFNAMSIZ];
1092         struct net *net;
1093         int ret;
1094
1095         BUG_ON(!dev_net(dev));
1096         net = dev_net(dev);
1097         ret = __dev_alloc_name(net, name, buf);
1098         if (ret >= 0)
1099                 strlcpy(dev->name, buf, IFNAMSIZ);
1100         return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103
1104 static int dev_alloc_name_ns(struct net *net,
1105                              struct net_device *dev,
1106                              const char *name)
1107 {
1108         char buf[IFNAMSIZ];
1109         int ret;
1110
1111         ret = __dev_alloc_name(net, name, buf);
1112         if (ret >= 0)
1113                 strlcpy(dev->name, buf, IFNAMSIZ);
1114         return ret;
1115 }
1116
1117 static int dev_get_valid_name(struct net *net,
1118                               struct net_device *dev,
1119                               const char *name)
1120 {
1121         BUG_ON(!net);
1122
1123         if (!dev_valid_name(name))
1124                 return -EINVAL;
1125
1126         if (strchr(name, '%'))
1127                 return dev_alloc_name_ns(net, dev, name);
1128         else if (__dev_get_by_name(net, name))
1129                 return -EEXIST;
1130         else if (dev->name != name)
1131                 strlcpy(dev->name, name, IFNAMSIZ);
1132
1133         return 0;
1134 }
1135
1136 /**
1137  *      dev_change_name - change name of a device
1138  *      @dev: device
1139  *      @newname: name (or format string) must be at least IFNAMSIZ
1140  *
1141  *      Change name of a device, can pass format strings "eth%d".
1142  *      for wildcarding.
1143  */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146         unsigned char old_assign_type;
1147         char oldname[IFNAMSIZ];
1148         int err = 0;
1149         int ret;
1150         struct net *net;
1151
1152         ASSERT_RTNL();
1153         BUG_ON(!dev_net(dev));
1154
1155         net = dev_net(dev);
1156         if (dev->flags & IFF_UP)
1157                 return -EBUSY;
1158
1159         write_seqcount_begin(&devnet_rename_seq);
1160
1161         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162                 write_seqcount_end(&devnet_rename_seq);
1163                 return 0;
1164         }
1165
1166         memcpy(oldname, dev->name, IFNAMSIZ);
1167
1168         err = dev_get_valid_name(net, dev, newname);
1169         if (err < 0) {
1170                 write_seqcount_end(&devnet_rename_seq);
1171                 return err;
1172         }
1173
1174         if (oldname[0] && !strchr(oldname, '%'))
1175                 netdev_info(dev, "renamed from %s\n", oldname);
1176
1177         old_assign_type = dev->name_assign_type;
1178         dev->name_assign_type = NET_NAME_RENAMED;
1179
1180 rollback:
1181         ret = device_rename(&dev->dev, dev->name);
1182         if (ret) {
1183                 memcpy(dev->name, oldname, IFNAMSIZ);
1184                 dev->name_assign_type = old_assign_type;
1185                 write_seqcount_end(&devnet_rename_seq);
1186                 return ret;
1187         }
1188
1189         write_seqcount_end(&devnet_rename_seq);
1190
1191         netdev_adjacent_rename_links(dev, oldname);
1192
1193         write_lock_bh(&dev_base_lock);
1194         hlist_del_rcu(&dev->name_hlist);
1195         write_unlock_bh(&dev_base_lock);
1196
1197         synchronize_rcu();
1198
1199         write_lock_bh(&dev_base_lock);
1200         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201         write_unlock_bh(&dev_base_lock);
1202
1203         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204         ret = notifier_to_errno(ret);
1205
1206         if (ret) {
1207                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208                 if (err >= 0) {
1209                         err = ret;
1210                         write_seqcount_begin(&devnet_rename_seq);
1211                         memcpy(dev->name, oldname, IFNAMSIZ);
1212                         memcpy(oldname, newname, IFNAMSIZ);
1213                         dev->name_assign_type = old_assign_type;
1214                         old_assign_type = NET_NAME_RENAMED;
1215                         goto rollback;
1216                 } else {
1217                         pr_err("%s: name change rollback failed: %d\n",
1218                                dev->name, ret);
1219                 }
1220         }
1221
1222         return err;
1223 }
1224
1225 /**
1226  *      dev_set_alias - change ifalias of a device
1227  *      @dev: device
1228  *      @alias: name up to IFALIASZ
1229  *      @len: limit of bytes to copy from info
1230  *
1231  *      Set ifalias for a device,
1232  */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235         char *new_ifalias;
1236
1237         ASSERT_RTNL();
1238
1239         if (len >= IFALIASZ)
1240                 return -EINVAL;
1241
1242         if (!len) {
1243                 kfree(dev->ifalias);
1244                 dev->ifalias = NULL;
1245                 return 0;
1246         }
1247
1248         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249         if (!new_ifalias)
1250                 return -ENOMEM;
1251         dev->ifalias = new_ifalias;
1252
1253         strlcpy(dev->ifalias, alias, len+1);
1254         return len;
1255 }
1256
1257
1258 /**
1259  *      netdev_features_change - device changes features
1260  *      @dev: device to cause notification
1261  *
1262  *      Called to indicate a device has changed features.
1263  */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269
1270 /**
1271  *      netdev_state_change - device changes state
1272  *      @dev: device to cause notification
1273  *
1274  *      Called to indicate a device has changed state. This function calls
1275  *      the notifier chains for netdev_chain and sends a NEWLINK message
1276  *      to the routing socket.
1277  */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280         if (dev->flags & IFF_UP) {
1281                 struct netdev_notifier_change_info change_info;
1282
1283                 change_info.flags_changed = 0;
1284                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285                                               &change_info.info);
1286                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287         }
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290
1291 /**
1292  *      netdev_notify_peers - notify network peers about existence of @dev
1293  *      @dev: network device
1294  *
1295  * Generate traffic such that interested network peers are aware of
1296  * @dev, such as by generating a gratuitous ARP. This may be used when
1297  * a device wants to inform the rest of the network about some sort of
1298  * reconfiguration such as a failover event or virtual machine
1299  * migration.
1300  */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303         rtnl_lock();
1304         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305         rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308
1309 static int __dev_open(struct net_device *dev)
1310 {
1311         const struct net_device_ops *ops = dev->netdev_ops;
1312         int ret;
1313
1314         ASSERT_RTNL();
1315
1316         if (!netif_device_present(dev))
1317                 return -ENODEV;
1318
1319         /* Block netpoll from trying to do any rx path servicing.
1320          * If we don't do this there is a chance ndo_poll_controller
1321          * or ndo_poll may be running while we open the device
1322          */
1323         netpoll_poll_disable(dev);
1324
1325         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326         ret = notifier_to_errno(ret);
1327         if (ret)
1328                 return ret;
1329
1330         set_bit(__LINK_STATE_START, &dev->state);
1331
1332         if (ops->ndo_validate_addr)
1333                 ret = ops->ndo_validate_addr(dev);
1334
1335         if (!ret && ops->ndo_open)
1336                 ret = ops->ndo_open(dev);
1337
1338         netpoll_poll_enable(dev);
1339
1340         if (ret)
1341                 clear_bit(__LINK_STATE_START, &dev->state);
1342         else {
1343                 dev->flags |= IFF_UP;
1344                 dev_set_rx_mode(dev);
1345                 dev_activate(dev);
1346                 add_device_randomness(dev->dev_addr, dev->addr_len);
1347         }
1348
1349         return ret;
1350 }
1351
1352 /**
1353  *      dev_open        - prepare an interface for use.
1354  *      @dev:   device to open
1355  *
1356  *      Takes a device from down to up state. The device's private open
1357  *      function is invoked and then the multicast lists are loaded. Finally
1358  *      the device is moved into the up state and a %NETDEV_UP message is
1359  *      sent to the netdev notifier chain.
1360  *
1361  *      Calling this function on an active interface is a nop. On a failure
1362  *      a negative errno code is returned.
1363  */
1364 int dev_open(struct net_device *dev)
1365 {
1366         int ret;
1367
1368         if (dev->flags & IFF_UP)
1369                 return 0;
1370
1371         ret = __dev_open(dev);
1372         if (ret < 0)
1373                 return ret;
1374
1375         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376         call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378         return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384         struct net_device *dev;
1385
1386         ASSERT_RTNL();
1387         might_sleep();
1388
1389         list_for_each_entry(dev, head, close_list) {
1390                 /* Temporarily disable netpoll until the interface is down */
1391                 netpoll_poll_disable(dev);
1392
1393                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394
1395                 clear_bit(__LINK_STATE_START, &dev->state);
1396
1397                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398                  * can be even on different cpu. So just clear netif_running().
1399                  *
1400                  * dev->stop() will invoke napi_disable() on all of it's
1401                  * napi_struct instances on this device.
1402                  */
1403                 smp_mb__after_atomic(); /* Commit netif_running(). */
1404         }
1405
1406         dev_deactivate_many(head);
1407
1408         list_for_each_entry(dev, head, close_list) {
1409                 const struct net_device_ops *ops = dev->netdev_ops;
1410
1411                 /*
1412                  *      Call the device specific close. This cannot fail.
1413                  *      Only if device is UP
1414                  *
1415                  *      We allow it to be called even after a DETACH hot-plug
1416                  *      event.
1417                  */
1418                 if (ops->ndo_stop)
1419                         ops->ndo_stop(dev);
1420
1421                 dev->flags &= ~IFF_UP;
1422                 netpoll_poll_enable(dev);
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int __dev_close(struct net_device *dev)
1429 {
1430         int retval;
1431         LIST_HEAD(single);
1432
1433         list_add(&dev->close_list, &single);
1434         retval = __dev_close_many(&single);
1435         list_del(&single);
1436
1437         return retval;
1438 }
1439
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442         struct net_device *dev, *tmp;
1443
1444         /* Remove the devices that don't need to be closed */
1445         list_for_each_entry_safe(dev, tmp, head, close_list)
1446                 if (!(dev->flags & IFF_UP))
1447                         list_del_init(&dev->close_list);
1448
1449         __dev_close_many(head);
1450
1451         list_for_each_entry_safe(dev, tmp, head, close_list) {
1452                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1454                 if (unlink)
1455                         list_del_init(&dev->close_list);
1456         }
1457
1458         return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461
1462 /**
1463  *      dev_close - shutdown an interface.
1464  *      @dev: device to shutdown
1465  *
1466  *      This function moves an active device into down state. A
1467  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469  *      chain.
1470  */
1471 int dev_close(struct net_device *dev)
1472 {
1473         if (dev->flags & IFF_UP) {
1474                 LIST_HEAD(single);
1475
1476                 list_add(&dev->close_list, &single);
1477                 dev_close_many(&single, true);
1478                 list_del(&single);
1479         }
1480         return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483
1484
1485 /**
1486  *      dev_disable_lro - disable Large Receive Offload on a device
1487  *      @dev: device
1488  *
1489  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1490  *      called under RTNL.  This is needed if received packets may be
1491  *      forwarded to another interface.
1492  */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495         struct net_device *lower_dev;
1496         struct list_head *iter;
1497
1498         dev->wanted_features &= ~NETIF_F_LRO;
1499         netdev_update_features(dev);
1500
1501         if (unlikely(dev->features & NETIF_F_LRO))
1502                 netdev_WARN(dev, "failed to disable LRO!\n");
1503
1504         netdev_for_each_lower_dev(dev, lower_dev, iter)
1505                 dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510                                    struct net_device *dev)
1511 {
1512         struct netdev_notifier_info info;
1513
1514         netdev_notifier_info_init(&info, dev);
1515         return nb->notifier_call(nb, val, &info);
1516 }
1517
1518 static int dev_boot_phase = 1;
1519
1520 /**
1521  *      register_netdevice_notifier - register a network notifier block
1522  *      @nb: notifier
1523  *
1524  *      Register a notifier to be called when network device events occur.
1525  *      The notifier passed is linked into the kernel structures and must
1526  *      not be reused until it has been unregistered. A negative errno code
1527  *      is returned on a failure.
1528  *
1529  *      When registered all registration and up events are replayed
1530  *      to the new notifier to allow device to have a race free
1531  *      view of the network device list.
1532  */
1533
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536         struct net_device *dev;
1537         struct net_device *last;
1538         struct net *net;
1539         int err;
1540
1541         rtnl_lock();
1542         err = raw_notifier_chain_register(&netdev_chain, nb);
1543         if (err)
1544                 goto unlock;
1545         if (dev_boot_phase)
1546                 goto unlock;
1547         for_each_net(net) {
1548                 for_each_netdev(net, dev) {
1549                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550                         err = notifier_to_errno(err);
1551                         if (err)
1552                                 goto rollback;
1553
1554                         if (!(dev->flags & IFF_UP))
1555                                 continue;
1556
1557                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1558                 }
1559         }
1560
1561 unlock:
1562         rtnl_unlock();
1563         return err;
1564
1565 rollback:
1566         last = dev;
1567         for_each_net(net) {
1568                 for_each_netdev(net, dev) {
1569                         if (dev == last)
1570                                 goto outroll;
1571
1572                         if (dev->flags & IFF_UP) {
1573                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574                                                         dev);
1575                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576                         }
1577                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578                 }
1579         }
1580
1581 outroll:
1582         raw_notifier_chain_unregister(&netdev_chain, nb);
1583         goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586
1587 /**
1588  *      unregister_netdevice_notifier - unregister a network notifier block
1589  *      @nb: notifier
1590  *
1591  *      Unregister a notifier previously registered by
1592  *      register_netdevice_notifier(). The notifier is unlinked into the
1593  *      kernel structures and may then be reused. A negative errno code
1594  *      is returned on a failure.
1595  *
1596  *      After unregistering unregister and down device events are synthesized
1597  *      for all devices on the device list to the removed notifier to remove
1598  *      the need for special case cleanup code.
1599  */
1600
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603         struct net_device *dev;
1604         struct net *net;
1605         int err;
1606
1607         rtnl_lock();
1608         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609         if (err)
1610                 goto unlock;
1611
1612         for_each_net(net) {
1613                 for_each_netdev(net, dev) {
1614                         if (dev->flags & IFF_UP) {
1615                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616                                                         dev);
1617                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618                         }
1619                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620                 }
1621         }
1622 unlock:
1623         rtnl_unlock();
1624         return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627
1628 /**
1629  *      call_netdevice_notifiers_info - call all network notifier blocks
1630  *      @val: value passed unmodified to notifier function
1631  *      @dev: net_device pointer passed unmodified to notifier function
1632  *      @info: notifier information data
1633  *
1634  *      Call all network notifier blocks.  Parameters and return value
1635  *      are as for raw_notifier_call_chain().
1636  */
1637
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639                                          struct net_device *dev,
1640                                          struct netdev_notifier_info *info)
1641 {
1642         ASSERT_RTNL();
1643         netdev_notifier_info_init(info, dev);
1644         return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646
1647 /**
1648  *      call_netdevice_notifiers - call all network notifier blocks
1649  *      @val: value passed unmodified to notifier function
1650  *      @dev: net_device pointer passed unmodified to notifier function
1651  *
1652  *      Call all network notifier blocks.  Parameters and return value
1653  *      are as for raw_notifier_call_chain().
1654  */
1655
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658         struct netdev_notifier_info info;
1659
1660         return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666
1667 void net_inc_ingress_queue(void)
1668 {
1669         static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673 void net_dec_ingress_queue(void)
1674 {
1675         static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682
1683 void net_inc_egress_queue(void)
1684 {
1685         static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689 void net_dec_egress_queue(void)
1690 {
1691         static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699  * If net_disable_timestamp() is called from irq context, defer the
1700  * static_key_slow_dec() calls.
1701  */
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1704
1705 void net_enable_timestamp(void)
1706 {
1707 #ifdef HAVE_JUMP_LABEL
1708         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710         if (deferred) {
1711                 while (--deferred)
1712                         static_key_slow_dec(&netstamp_needed);
1713                 return;
1714         }
1715 #endif
1716         static_key_slow_inc(&netstamp_needed);
1717 }
1718 EXPORT_SYMBOL(net_enable_timestamp);
1719
1720 void net_disable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723         if (in_interrupt()) {
1724                 atomic_inc(&netstamp_needed_deferred);
1725                 return;
1726         }
1727 #endif
1728         static_key_slow_dec(&netstamp_needed);
1729 }
1730 EXPORT_SYMBOL(net_disable_timestamp);
1731
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1733 {
1734         skb->tstamp.tv64 = 0;
1735         if (static_key_false(&netstamp_needed))
1736                 __net_timestamp(skb);
1737 }
1738
1739 #define net_timestamp_check(COND, SKB)                  \
1740         if (static_key_false(&netstamp_needed)) {               \
1741                 if ((COND) && !(SKB)->tstamp.tv64)      \
1742                         __net_timestamp(SKB);           \
1743         }                                               \
1744
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747         unsigned int len;
1748
1749         if (!(dev->flags & IFF_UP))
1750                 return false;
1751
1752         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753         if (skb->len <= len)
1754                 return true;
1755
1756         /* if TSO is enabled, we don't care about the length as the packet
1757          * could be forwarded without being segmented before
1758          */
1759         if (skb_is_gso(skb))
1760                 return true;
1761
1762         return false;
1763 }
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 {
1768         int ret = ____dev_forward_skb(dev, skb);
1769
1770         if (likely(!ret)) {
1771                 skb->protocol = eth_type_trans(skb, dev);
1772                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773         }
1774
1775         return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778
1779 /**
1780  * dev_forward_skb - loopback an skb to another netif
1781  *
1782  * @dev: destination network device
1783  * @skb: buffer to forward
1784  *
1785  * return values:
1786  *      NET_RX_SUCCESS  (no congestion)
1787  *      NET_RX_DROP     (packet was dropped, but freed)
1788  *
1789  * dev_forward_skb can be used for injecting an skb from the
1790  * start_xmit function of one device into the receive queue
1791  * of another device.
1792  *
1793  * The receiving device may be in another namespace, so
1794  * we have to clear all information in the skb that could
1795  * impact namespace isolation.
1796  */
1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798 {
1799         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1800 }
1801 EXPORT_SYMBOL_GPL(dev_forward_skb);
1802
1803 static inline int deliver_skb(struct sk_buff *skb,
1804                               struct packet_type *pt_prev,
1805                               struct net_device *orig_dev)
1806 {
1807         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808                 return -ENOMEM;
1809         atomic_inc(&skb->users);
1810         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811 }
1812
1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814                                           struct packet_type **pt,
1815                                           struct net_device *orig_dev,
1816                                           __be16 type,
1817                                           struct list_head *ptype_list)
1818 {
1819         struct packet_type *ptype, *pt_prev = *pt;
1820
1821         list_for_each_entry_rcu(ptype, ptype_list, list) {
1822                 if (ptype->type != type)
1823                         continue;
1824                 if (pt_prev)
1825                         deliver_skb(skb, pt_prev, orig_dev);
1826                 pt_prev = ptype;
1827         }
1828         *pt = pt_prev;
1829 }
1830
1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832 {
1833         if (!ptype->af_packet_priv || !skb->sk)
1834                 return false;
1835
1836         if (ptype->id_match)
1837                 return ptype->id_match(ptype, skb->sk);
1838         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839                 return true;
1840
1841         return false;
1842 }
1843
1844 /*
1845  *      Support routine. Sends outgoing frames to any network
1846  *      taps currently in use.
1847  */
1848
1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1850 {
1851         struct packet_type *ptype;
1852         struct sk_buff *skb2 = NULL;
1853         struct packet_type *pt_prev = NULL;
1854         struct list_head *ptype_list = &ptype_all;
1855
1856         rcu_read_lock();
1857 again:
1858         list_for_each_entry_rcu(ptype, ptype_list, list) {
1859                 /* Never send packets back to the socket
1860                  * they originated from - MvS (miquels@drinkel.ow.org)
1861                  */
1862                 if (skb_loop_sk(ptype, skb))
1863                         continue;
1864
1865                 if (pt_prev) {
1866                         deliver_skb(skb2, pt_prev, skb->dev);
1867                         pt_prev = ptype;
1868                         continue;
1869                 }
1870
1871                 /* need to clone skb, done only once */
1872                 skb2 = skb_clone(skb, GFP_ATOMIC);
1873                 if (!skb2)
1874                         goto out_unlock;
1875
1876                 net_timestamp_set(skb2);
1877
1878                 /* skb->nh should be correctly
1879                  * set by sender, so that the second statement is
1880                  * just protection against buggy protocols.
1881                  */
1882                 skb_reset_mac_header(skb2);
1883
1884                 if (skb_network_header(skb2) < skb2->data ||
1885                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887                                              ntohs(skb2->protocol),
1888                                              dev->name);
1889                         skb_reset_network_header(skb2);
1890                 }
1891
1892                 skb2->transport_header = skb2->network_header;
1893                 skb2->pkt_type = PACKET_OUTGOING;
1894                 pt_prev = ptype;
1895         }
1896
1897         if (ptype_list == &ptype_all) {
1898                 ptype_list = &dev->ptype_all;
1899                 goto again;
1900         }
1901 out_unlock:
1902         if (pt_prev)
1903                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1904         rcu_read_unlock();
1905 }
1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1907
1908 /**
1909  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1910  * @dev: Network device
1911  * @txq: number of queues available
1912  *
1913  * If real_num_tx_queues is changed the tc mappings may no longer be
1914  * valid. To resolve this verify the tc mapping remains valid and if
1915  * not NULL the mapping. With no priorities mapping to this
1916  * offset/count pair it will no longer be used. In the worst case TC0
1917  * is invalid nothing can be done so disable priority mappings. If is
1918  * expected that drivers will fix this mapping if they can before
1919  * calling netif_set_real_num_tx_queues.
1920  */
1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1922 {
1923         int i;
1924         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925
1926         /* If TC0 is invalidated disable TC mapping */
1927         if (tc->offset + tc->count > txq) {
1928                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1929                 dev->num_tc = 0;
1930                 return;
1931         }
1932
1933         /* Invalidated prio to tc mappings set to TC0 */
1934         for (i = 1; i < TC_BITMASK + 1; i++) {
1935                 int q = netdev_get_prio_tc_map(dev, i);
1936
1937                 tc = &dev->tc_to_txq[q];
1938                 if (tc->offset + tc->count > txq) {
1939                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940                                 i, q);
1941                         netdev_set_prio_tc_map(dev, i, 0);
1942                 }
1943         }
1944 }
1945
1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947 {
1948         if (dev->num_tc) {
1949                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950                 int i;
1951
1952                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953                         if ((txq - tc->offset) < tc->count)
1954                                 return i;
1955                 }
1956
1957                 return -1;
1958         }
1959
1960         return 0;
1961 }
1962
1963 #ifdef CONFIG_XPS
1964 static DEFINE_MUTEX(xps_map_mutex);
1965 #define xmap_dereference(P)             \
1966         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967
1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969                              int tci, u16 index)
1970 {
1971         struct xps_map *map = NULL;
1972         int pos;
1973
1974         if (dev_maps)
1975                 map = xmap_dereference(dev_maps->cpu_map[tci]);
1976         if (!map)
1977                 return false;
1978
1979         for (pos = map->len; pos--;) {
1980                 if (map->queues[pos] != index)
1981                         continue;
1982
1983                 if (map->len > 1) {
1984                         map->queues[pos] = map->queues[--map->len];
1985                         break;
1986                 }
1987
1988                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989                 kfree_rcu(map, rcu);
1990                 return false;
1991         }
1992
1993         return true;
1994 }
1995
1996 static bool remove_xps_queue_cpu(struct net_device *dev,
1997                                  struct xps_dev_maps *dev_maps,
1998                                  int cpu, u16 offset, u16 count)
1999 {
2000         int num_tc = dev->num_tc ? : 1;
2001         bool active = false;
2002         int tci;
2003
2004         for (tci = cpu * num_tc; num_tc--; tci++) {
2005                 int i, j;
2006
2007                 for (i = count, j = offset; i--; j++) {
2008                         if (!remove_xps_queue(dev_maps, cpu, j))
2009                                 break;
2010                 }
2011
2012                 active |= i < 0;
2013         }
2014
2015         return active;
2016 }
2017
2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019                                    u16 count)
2020 {
2021         struct xps_dev_maps *dev_maps;
2022         int cpu, i;
2023         bool active = false;
2024
2025         mutex_lock(&xps_map_mutex);
2026         dev_maps = xmap_dereference(dev->xps_maps);
2027
2028         if (!dev_maps)
2029                 goto out_no_maps;
2030
2031         for_each_possible_cpu(cpu)
2032                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033                                                offset, count);
2034
2035         if (!active) {
2036                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2037                 kfree_rcu(dev_maps, rcu);
2038         }
2039
2040         for (i = offset + (count - 1); count--; i--)
2041                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042                                              NUMA_NO_NODE);
2043
2044 out_no_maps:
2045         mutex_unlock(&xps_map_mutex);
2046 }
2047
2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049 {
2050         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051 }
2052
2053 static struct xps_map *expand_xps_map(struct xps_map *map,
2054                                       int cpu, u16 index)
2055 {
2056         struct xps_map *new_map;
2057         int alloc_len = XPS_MIN_MAP_ALLOC;
2058         int i, pos;
2059
2060         for (pos = 0; map && pos < map->len; pos++) {
2061                 if (map->queues[pos] != index)
2062                         continue;
2063                 return map;
2064         }
2065
2066         /* Need to add queue to this CPU's existing map */
2067         if (map) {
2068                 if (pos < map->alloc_len)
2069                         return map;
2070
2071                 alloc_len = map->alloc_len * 2;
2072         }
2073
2074         /* Need to allocate new map to store queue on this CPU's map */
2075         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076                                cpu_to_node(cpu));
2077         if (!new_map)
2078                 return NULL;
2079
2080         for (i = 0; i < pos; i++)
2081                 new_map->queues[i] = map->queues[i];
2082         new_map->alloc_len = alloc_len;
2083         new_map->len = pos;
2084
2085         return new_map;
2086 }
2087
2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089                         u16 index)
2090 {
2091         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2092         int i, cpu, tci, numa_node_id = -2;
2093         int maps_sz, num_tc = 1, tc = 0;
2094         struct xps_map *map, *new_map;
2095         bool active = false;
2096
2097         if (dev->num_tc) {
2098                 num_tc = dev->num_tc;
2099                 tc = netdev_txq_to_tc(dev, index);
2100                 if (tc < 0)
2101                         return -EINVAL;
2102         }
2103
2104         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105         if (maps_sz < L1_CACHE_BYTES)
2106                 maps_sz = L1_CACHE_BYTES;
2107
2108         mutex_lock(&xps_map_mutex);
2109
2110         dev_maps = xmap_dereference(dev->xps_maps);
2111
2112         /* allocate memory for queue storage */
2113         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2114                 if (!new_dev_maps)
2115                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2116                 if (!new_dev_maps) {
2117                         mutex_unlock(&xps_map_mutex);
2118                         return -ENOMEM;
2119                 }
2120
2121                 tci = cpu * num_tc + tc;
2122                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2123                                  NULL;
2124
2125                 map = expand_xps_map(map, cpu, index);
2126                 if (!map)
2127                         goto error;
2128
2129                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2130         }
2131
2132         if (!new_dev_maps)
2133                 goto out_no_new_maps;
2134
2135         for_each_possible_cpu(cpu) {
2136                 /* copy maps belonging to foreign traffic classes */
2137                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138                         /* fill in the new device map from the old device map */
2139                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2140                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141                 }
2142
2143                 /* We need to explicitly update tci as prevous loop
2144                  * could break out early if dev_maps is NULL.
2145                  */
2146                 tci = cpu * num_tc + tc;
2147
2148                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149                         /* add queue to CPU maps */
2150                         int pos = 0;
2151
2152                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2153                         while ((pos < map->len) && (map->queues[pos] != index))
2154                                 pos++;
2155
2156                         if (pos == map->len)
2157                                 map->queues[map->len++] = index;
2158 #ifdef CONFIG_NUMA
2159                         if (numa_node_id == -2)
2160                                 numa_node_id = cpu_to_node(cpu);
2161                         else if (numa_node_id != cpu_to_node(cpu))
2162                                 numa_node_id = -1;
2163 #endif
2164                 } else if (dev_maps) {
2165                         /* fill in the new device map from the old device map */
2166                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2167                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168                 }
2169
2170                 /* copy maps belonging to foreign traffic classes */
2171                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172                         /* fill in the new device map from the old device map */
2173                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2174                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175                 }
2176         }
2177
2178         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179
2180         /* Cleanup old maps */
2181         if (!dev_maps)
2182                 goto out_no_old_maps;
2183
2184         for_each_possible_cpu(cpu) {
2185                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2188                         if (map && map != new_map)
2189                                 kfree_rcu(map, rcu);
2190                 }
2191         }
2192
2193         kfree_rcu(dev_maps, rcu);
2194
2195 out_no_old_maps:
2196         dev_maps = new_dev_maps;
2197         active = true;
2198
2199 out_no_new_maps:
2200         /* update Tx queue numa node */
2201         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202                                      (numa_node_id >= 0) ? numa_node_id :
2203                                      NUMA_NO_NODE);
2204
2205         if (!dev_maps)
2206                 goto out_no_maps;
2207
2208         /* removes queue from unused CPUs */
2209         for_each_possible_cpu(cpu) {
2210                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2211                         active |= remove_xps_queue(dev_maps, tci, index);
2212                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213                         active |= remove_xps_queue(dev_maps, tci, index);
2214                 for (i = num_tc - tc, tci++; --i; tci++)
2215                         active |= remove_xps_queue(dev_maps, tci, index);
2216         }
2217
2218         /* free map if not active */
2219         if (!active) {
2220                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2221                 kfree_rcu(dev_maps, rcu);
2222         }
2223
2224 out_no_maps:
2225         mutex_unlock(&xps_map_mutex);
2226
2227         return 0;
2228 error:
2229         /* remove any maps that we added */
2230         for_each_possible_cpu(cpu) {
2231                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233                         map = dev_maps ?
2234                               xmap_dereference(dev_maps->cpu_map[tci]) :
2235                               NULL;
2236                         if (new_map && new_map != map)
2237                                 kfree(new_map);
2238                 }
2239         }
2240
2241         mutex_unlock(&xps_map_mutex);
2242
2243         kfree(new_dev_maps);
2244         return -ENOMEM;
2245 }
2246 EXPORT_SYMBOL(netif_set_xps_queue);
2247
2248 #endif
2249 void netdev_reset_tc(struct net_device *dev)
2250 {
2251 #ifdef CONFIG_XPS
2252         netif_reset_xps_queues_gt(dev, 0);
2253 #endif
2254         dev->num_tc = 0;
2255         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257 }
2258 EXPORT_SYMBOL(netdev_reset_tc);
2259
2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261 {
2262         if (tc >= dev->num_tc)
2263                 return -EINVAL;
2264
2265 #ifdef CONFIG_XPS
2266         netif_reset_xps_queues(dev, offset, count);
2267 #endif
2268         dev->tc_to_txq[tc].count = count;
2269         dev->tc_to_txq[tc].offset = offset;
2270         return 0;
2271 }
2272 EXPORT_SYMBOL(netdev_set_tc_queue);
2273
2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275 {
2276         if (num_tc > TC_MAX_QUEUE)
2277                 return -EINVAL;
2278
2279 #ifdef CONFIG_XPS
2280         netif_reset_xps_queues_gt(dev, 0);
2281 #endif
2282         dev->num_tc = num_tc;
2283         return 0;
2284 }
2285 EXPORT_SYMBOL(netdev_set_num_tc);
2286
2287 /*
2288  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290  */
2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2292 {
2293         int rc;
2294
2295         if (txq < 1 || txq > dev->num_tx_queues)
2296                 return -EINVAL;
2297
2298         if (dev->reg_state == NETREG_REGISTERED ||
2299             dev->reg_state == NETREG_UNREGISTERING) {
2300                 ASSERT_RTNL();
2301
2302                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303                                                   txq);
2304                 if (rc)
2305                         return rc;
2306
2307                 if (dev->num_tc)
2308                         netif_setup_tc(dev, txq);
2309
2310                 if (txq < dev->real_num_tx_queues) {
2311                         qdisc_reset_all_tx_gt(dev, txq);
2312 #ifdef CONFIG_XPS
2313                         netif_reset_xps_queues_gt(dev, txq);
2314 #endif
2315                 }
2316         }
2317
2318         dev->real_num_tx_queues = txq;
2319         return 0;
2320 }
2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2322
2323 #ifdef CONFIG_SYSFS
2324 /**
2325  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2326  *      @dev: Network device
2327  *      @rxq: Actual number of RX queues
2328  *
2329  *      This must be called either with the rtnl_lock held or before
2330  *      registration of the net device.  Returns 0 on success, or a
2331  *      negative error code.  If called before registration, it always
2332  *      succeeds.
2333  */
2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335 {
2336         int rc;
2337
2338         if (rxq < 1 || rxq > dev->num_rx_queues)
2339                 return -EINVAL;
2340
2341         if (dev->reg_state == NETREG_REGISTERED) {
2342                 ASSERT_RTNL();
2343
2344                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345                                                   rxq);
2346                 if (rc)
2347                         return rc;
2348         }
2349
2350         dev->real_num_rx_queues = rxq;
2351         return 0;
2352 }
2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354 #endif
2355
2356 /**
2357  * netif_get_num_default_rss_queues - default number of RSS queues
2358  *
2359  * This routine should set an upper limit on the number of RSS queues
2360  * used by default by multiqueue devices.
2361  */
2362 int netif_get_num_default_rss_queues(void)
2363 {
2364         return is_kdump_kernel() ?
2365                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2366 }
2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368
2369 static void __netif_reschedule(struct Qdisc *q)
2370 {
2371         struct softnet_data *sd;
2372         unsigned long flags;
2373
2374         local_irq_save(flags);
2375         sd = this_cpu_ptr(&softnet_data);
2376         q->next_sched = NULL;
2377         *sd->output_queue_tailp = q;
2378         sd->output_queue_tailp = &q->next_sched;
2379         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380         local_irq_restore(flags);
2381 }
2382
2383 void __netif_schedule(struct Qdisc *q)
2384 {
2385         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386                 __netif_reschedule(q);
2387 }
2388 EXPORT_SYMBOL(__netif_schedule);
2389
2390 struct dev_kfree_skb_cb {
2391         enum skb_free_reason reason;
2392 };
2393
2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2395 {
2396         return (struct dev_kfree_skb_cb *)skb->cb;
2397 }
2398
2399 void netif_schedule_queue(struct netdev_queue *txq)
2400 {
2401         rcu_read_lock();
2402         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2404
2405                 __netif_schedule(q);
2406         }
2407         rcu_read_unlock();
2408 }
2409 EXPORT_SYMBOL(netif_schedule_queue);
2410
2411 /**
2412  *      netif_wake_subqueue - allow sending packets on subqueue
2413  *      @dev: network device
2414  *      @queue_index: sub queue index
2415  *
2416  * Resume individual transmit queue of a device with multiple transmit queues.
2417  */
2418 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2419 {
2420         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2421
2422         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2423                 struct Qdisc *q;
2424
2425                 rcu_read_lock();
2426                 q = rcu_dereference(txq->qdisc);
2427                 __netif_schedule(q);
2428                 rcu_read_unlock();
2429         }
2430 }
2431 EXPORT_SYMBOL(netif_wake_subqueue);
2432
2433 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2434 {
2435         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2436                 struct Qdisc *q;
2437
2438                 rcu_read_lock();
2439                 q = rcu_dereference(dev_queue->qdisc);
2440                 __netif_schedule(q);
2441                 rcu_read_unlock();
2442         }
2443 }
2444 EXPORT_SYMBOL(netif_tx_wake_queue);
2445
2446 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2447 {
2448         unsigned long flags;
2449
2450         if (likely(atomic_read(&skb->users) == 1)) {
2451                 smp_rmb();
2452                 atomic_set(&skb->users, 0);
2453         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2454                 return;
2455         }
2456         get_kfree_skb_cb(skb)->reason = reason;
2457         local_irq_save(flags);
2458         skb->next = __this_cpu_read(softnet_data.completion_queue);
2459         __this_cpu_write(softnet_data.completion_queue, skb);
2460         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461         local_irq_restore(flags);
2462 }
2463 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2464
2465 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2466 {
2467         if (in_irq() || irqs_disabled())
2468                 __dev_kfree_skb_irq(skb, reason);
2469         else
2470                 dev_kfree_skb(skb);
2471 }
2472 EXPORT_SYMBOL(__dev_kfree_skb_any);
2473
2474
2475 /**
2476  * netif_device_detach - mark device as removed
2477  * @dev: network device
2478  *
2479  * Mark device as removed from system and therefore no longer available.
2480  */
2481 void netif_device_detach(struct net_device *dev)
2482 {
2483         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2484             netif_running(dev)) {
2485                 netif_tx_stop_all_queues(dev);
2486         }
2487 }
2488 EXPORT_SYMBOL(netif_device_detach);
2489
2490 /**
2491  * netif_device_attach - mark device as attached
2492  * @dev: network device
2493  *
2494  * Mark device as attached from system and restart if needed.
2495  */
2496 void netif_device_attach(struct net_device *dev)
2497 {
2498         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2499             netif_running(dev)) {
2500                 netif_tx_wake_all_queues(dev);
2501                 __netdev_watchdog_up(dev);
2502         }
2503 }
2504 EXPORT_SYMBOL(netif_device_attach);
2505
2506 /*
2507  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2508  * to be used as a distribution range.
2509  */
2510 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2511                   unsigned int num_tx_queues)
2512 {
2513         u32 hash;
2514         u16 qoffset = 0;
2515         u16 qcount = num_tx_queues;
2516
2517         if (skb_rx_queue_recorded(skb)) {
2518                 hash = skb_get_rx_queue(skb);
2519                 while (unlikely(hash >= num_tx_queues))
2520                         hash -= num_tx_queues;
2521                 return hash;
2522         }
2523
2524         if (dev->num_tc) {
2525                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2526                 qoffset = dev->tc_to_txq[tc].offset;
2527                 qcount = dev->tc_to_txq[tc].count;
2528         }
2529
2530         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2531 }
2532 EXPORT_SYMBOL(__skb_tx_hash);
2533
2534 static void skb_warn_bad_offload(const struct sk_buff *skb)
2535 {
2536         static const netdev_features_t null_features;
2537         struct net_device *dev = skb->dev;
2538         const char *name = "";
2539
2540         if (!net_ratelimit())
2541                 return;
2542
2543         if (dev) {
2544                 if (dev->dev.parent)
2545                         name = dev_driver_string(dev->dev.parent);
2546                 else
2547                         name = netdev_name(dev);
2548         }
2549         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2550              "gso_type=%d ip_summed=%d\n",
2551              name, dev ? &dev->features : &null_features,
2552              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2553              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2554              skb_shinfo(skb)->gso_type, skb->ip_summed);
2555 }
2556
2557 /*
2558  * Invalidate hardware checksum when packet is to be mangled, and
2559  * complete checksum manually on outgoing path.
2560  */
2561 int skb_checksum_help(struct sk_buff *skb)
2562 {
2563         __wsum csum;
2564         int ret = 0, offset;
2565
2566         if (skb->ip_summed == CHECKSUM_COMPLETE)
2567                 goto out_set_summed;
2568
2569         if (unlikely(skb_shinfo(skb)->gso_size)) {
2570                 skb_warn_bad_offload(skb);
2571                 return -EINVAL;
2572         }
2573
2574         /* Before computing a checksum, we should make sure no frag could
2575          * be modified by an external entity : checksum could be wrong.
2576          */
2577         if (skb_has_shared_frag(skb)) {
2578                 ret = __skb_linearize(skb);
2579                 if (ret)
2580                         goto out;
2581         }
2582
2583         offset = skb_checksum_start_offset(skb);
2584         BUG_ON(offset >= skb_headlen(skb));
2585         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2586
2587         offset += skb->csum_offset;
2588         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2589
2590         if (skb_cloned(skb) &&
2591             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2592                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2593                 if (ret)
2594                         goto out;
2595         }
2596
2597         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2598 out_set_summed:
2599         skb->ip_summed = CHECKSUM_NONE;
2600 out:
2601         return ret;
2602 }
2603 EXPORT_SYMBOL(skb_checksum_help);
2604
2605 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2606 {
2607         __be16 type = skb->protocol;
2608
2609         /* Tunnel gso handlers can set protocol to ethernet. */
2610         if (type == htons(ETH_P_TEB)) {
2611                 struct ethhdr *eth;
2612
2613                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2614                         return 0;
2615
2616                 eth = (struct ethhdr *)skb_mac_header(skb);
2617                 type = eth->h_proto;
2618         }
2619
2620         return __vlan_get_protocol(skb, type, depth);
2621 }
2622
2623 /**
2624  *      skb_mac_gso_segment - mac layer segmentation handler.
2625  *      @skb: buffer to segment
2626  *      @features: features for the output path (see dev->features)
2627  */
2628 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2629                                     netdev_features_t features)
2630 {
2631         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2632         struct packet_offload *ptype;
2633         int vlan_depth = skb->mac_len;
2634         __be16 type = skb_network_protocol(skb, &vlan_depth);
2635
2636         if (unlikely(!type))
2637                 return ERR_PTR(-EINVAL);
2638
2639         __skb_pull(skb, vlan_depth);
2640
2641         rcu_read_lock();
2642         list_for_each_entry_rcu(ptype, &offload_base, list) {
2643                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2644                         segs = ptype->callbacks.gso_segment(skb, features);
2645                         break;
2646                 }
2647         }
2648         rcu_read_unlock();
2649
2650         __skb_push(skb, skb->data - skb_mac_header(skb));
2651
2652         return segs;
2653 }
2654 EXPORT_SYMBOL(skb_mac_gso_segment);
2655
2656
2657 /* openvswitch calls this on rx path, so we need a different check.
2658  */
2659 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2660 {
2661         if (tx_path)
2662                 return skb->ip_summed != CHECKSUM_PARTIAL;
2663         else
2664                 return skb->ip_summed == CHECKSUM_NONE;
2665 }
2666
2667 /**
2668  *      __skb_gso_segment - Perform segmentation on skb.
2669  *      @skb: buffer to segment
2670  *      @features: features for the output path (see dev->features)
2671  *      @tx_path: whether it is called in TX path
2672  *
2673  *      This function segments the given skb and returns a list of segments.
2674  *
2675  *      It may return NULL if the skb requires no segmentation.  This is
2676  *      only possible when GSO is used for verifying header integrity.
2677  *
2678  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2679  */
2680 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2681                                   netdev_features_t features, bool tx_path)
2682 {
2683         if (unlikely(skb_needs_check(skb, tx_path))) {
2684                 int err;
2685
2686                 skb_warn_bad_offload(skb);
2687
2688                 err = skb_cow_head(skb, 0);
2689                 if (err < 0)
2690                         return ERR_PTR(err);
2691         }
2692
2693         /* Only report GSO partial support if it will enable us to
2694          * support segmentation on this frame without needing additional
2695          * work.
2696          */
2697         if (features & NETIF_F_GSO_PARTIAL) {
2698                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2699                 struct net_device *dev = skb->dev;
2700
2701                 partial_features |= dev->features & dev->gso_partial_features;
2702                 if (!skb_gso_ok(skb, features | partial_features))
2703                         features &= ~NETIF_F_GSO_PARTIAL;
2704         }
2705
2706         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2707                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2708
2709         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2710         SKB_GSO_CB(skb)->encap_level = 0;
2711
2712         skb_reset_mac_header(skb);
2713         skb_reset_mac_len(skb);
2714
2715         return skb_mac_gso_segment(skb, features);
2716 }
2717 EXPORT_SYMBOL(__skb_gso_segment);
2718
2719 /* Take action when hardware reception checksum errors are detected. */
2720 #ifdef CONFIG_BUG
2721 void netdev_rx_csum_fault(struct net_device *dev)
2722 {
2723         if (net_ratelimit()) {
2724                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2725                 dump_stack();
2726         }
2727 }
2728 EXPORT_SYMBOL(netdev_rx_csum_fault);
2729 #endif
2730
2731 /* Actually, we should eliminate this check as soon as we know, that:
2732  * 1. IOMMU is present and allows to map all the memory.
2733  * 2. No high memory really exists on this machine.
2734  */
2735
2736 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2737 {
2738 #ifdef CONFIG_HIGHMEM
2739         int i;
2740         if (!(dev->features & NETIF_F_HIGHDMA)) {
2741                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2742                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2743                         if (PageHighMem(skb_frag_page(frag)))
2744                                 return 1;
2745                 }
2746         }
2747
2748         if (PCI_DMA_BUS_IS_PHYS) {
2749                 struct device *pdev = dev->dev.parent;
2750
2751                 if (!pdev)
2752                         return 0;
2753                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2756                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2757                                 return 1;
2758                 }
2759         }
2760 #endif
2761         return 0;
2762 }
2763
2764 /* If MPLS offload request, verify we are testing hardware MPLS features
2765  * instead of standard features for the netdev.
2766  */
2767 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2768 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2769                                            netdev_features_t features,
2770                                            __be16 type)
2771 {
2772         if (eth_p_mpls(type))
2773                 features &= skb->dev->mpls_features;
2774
2775         return features;
2776 }
2777 #else
2778 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2779                                            netdev_features_t features,
2780                                            __be16 type)
2781 {
2782         return features;
2783 }
2784 #endif
2785
2786 static netdev_features_t harmonize_features(struct sk_buff *skb,
2787         netdev_features_t features)
2788 {
2789         int tmp;
2790         __be16 type;
2791
2792         type = skb_network_protocol(skb, &tmp);
2793         features = net_mpls_features(skb, features, type);
2794
2795         if (skb->ip_summed != CHECKSUM_NONE &&
2796             !can_checksum_protocol(features, type)) {
2797                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2798         } else if (illegal_highdma(skb->dev, skb)) {
2799                 features &= ~NETIF_F_SG;
2800         }
2801
2802         return features;
2803 }
2804
2805 netdev_features_t passthru_features_check(struct sk_buff *skb,
2806                                           struct net_device *dev,
2807                                           netdev_features_t features)
2808 {
2809         return features;
2810 }
2811 EXPORT_SYMBOL(passthru_features_check);
2812
2813 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2814                                              struct net_device *dev,
2815                                              netdev_features_t features)
2816 {
2817         return vlan_features_check(skb, features);
2818 }
2819
2820 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2821                                             struct net_device *dev,
2822                                             netdev_features_t features)
2823 {
2824         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2825
2826         if (gso_segs > dev->gso_max_segs)
2827                 return features & ~NETIF_F_GSO_MASK;
2828
2829         /* Support for GSO partial features requires software
2830          * intervention before we can actually process the packets
2831          * so we need to strip support for any partial features now
2832          * and we can pull them back in after we have partially
2833          * segmented the frame.
2834          */
2835         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2836                 features &= ~dev->gso_partial_features;
2837
2838         /* Make sure to clear the IPv4 ID mangling feature if the
2839          * IPv4 header has the potential to be fragmented.
2840          */
2841         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2842                 struct iphdr *iph = skb->encapsulation ?
2843                                     inner_ip_hdr(skb) : ip_hdr(skb);
2844
2845                 if (!(iph->frag_off & htons(IP_DF)))
2846                         features &= ~NETIF_F_TSO_MANGLEID;
2847         }
2848
2849         return features;
2850 }
2851
2852 netdev_features_t netif_skb_features(struct sk_buff *skb)
2853 {
2854         struct net_device *dev = skb->dev;
2855         netdev_features_t features = dev->features;
2856
2857         if (skb_is_gso(skb))
2858                 features = gso_features_check(skb, dev, features);
2859
2860         /* If encapsulation offload request, verify we are testing
2861          * hardware encapsulation features instead of standard
2862          * features for the netdev
2863          */
2864         if (skb->encapsulation)
2865                 features &= dev->hw_enc_features;
2866
2867         if (skb_vlan_tagged(skb))
2868                 features = netdev_intersect_features(features,
2869                                                      dev->vlan_features |
2870                                                      NETIF_F_HW_VLAN_CTAG_TX |
2871                                                      NETIF_F_HW_VLAN_STAG_TX);
2872
2873         if (dev->netdev_ops->ndo_features_check)
2874                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2875                                                                 features);
2876         else
2877                 features &= dflt_features_check(skb, dev, features);
2878
2879         return harmonize_features(skb, features);
2880 }
2881 EXPORT_SYMBOL(netif_skb_features);
2882
2883 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2884                     struct netdev_queue *txq, bool more)
2885 {
2886         unsigned int len;
2887         int rc;
2888
2889         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2890                 dev_queue_xmit_nit(skb, dev);
2891
2892         len = skb->len;
2893         trace_net_dev_start_xmit(skb, dev);
2894         rc = netdev_start_xmit(skb, dev, txq, more);
2895         trace_net_dev_xmit(skb, rc, dev, len);
2896
2897         return rc;
2898 }
2899
2900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2901                                     struct netdev_queue *txq, int *ret)
2902 {
2903         struct sk_buff *skb = first;
2904         int rc = NETDEV_TX_OK;
2905
2906         while (skb) {
2907                 struct sk_buff *next = skb->next;
2908
2909                 skb->next = NULL;
2910                 rc = xmit_one(skb, dev, txq, next != NULL);
2911                 if (unlikely(!dev_xmit_complete(rc))) {
2912                         skb->next = next;
2913                         goto out;
2914                 }
2915
2916                 skb = next;
2917                 if (netif_xmit_stopped(txq) && skb) {
2918                         rc = NETDEV_TX_BUSY;
2919                         break;
2920                 }
2921         }
2922
2923 out:
2924         *ret = rc;
2925         return skb;
2926 }
2927
2928 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2929                                           netdev_features_t features)
2930 {
2931         if (skb_vlan_tag_present(skb) &&
2932             !vlan_hw_offload_capable(features, skb->vlan_proto))
2933                 skb = __vlan_hwaccel_push_inside(skb);
2934         return skb;
2935 }
2936
2937 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2938 {
2939         netdev_features_t features;
2940
2941         features = netif_skb_features(skb);
2942         skb = validate_xmit_vlan(skb, features);
2943         if (unlikely(!skb))
2944                 goto out_null;
2945
2946         if (netif_needs_gso(skb, features)) {
2947                 struct sk_buff *segs;
2948
2949                 segs = skb_gso_segment(skb, features);
2950                 if (IS_ERR(segs)) {
2951                         goto out_kfree_skb;
2952                 } else if (segs) {
2953                         consume_skb(skb);
2954                         skb = segs;
2955                 }
2956         } else {
2957                 if (skb_needs_linearize(skb, features) &&
2958                     __skb_linearize(skb))
2959                         goto out_kfree_skb;
2960
2961                 /* If packet is not checksummed and device does not
2962                  * support checksumming for this protocol, complete
2963                  * checksumming here.
2964                  */
2965                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2966                         if (skb->encapsulation)
2967                                 skb_set_inner_transport_header(skb,
2968                                                                skb_checksum_start_offset(skb));
2969                         else
2970                                 skb_set_transport_header(skb,
2971                                                          skb_checksum_start_offset(skb));
2972                         if (!(features & NETIF_F_CSUM_MASK) &&
2973                             skb_checksum_help(skb))
2974                                 goto out_kfree_skb;
2975                 }
2976         }
2977
2978         return skb;
2979
2980 out_kfree_skb:
2981         kfree_skb(skb);
2982 out_null:
2983         atomic_long_inc(&dev->tx_dropped);
2984         return NULL;
2985 }
2986
2987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2988 {
2989         struct sk_buff *next, *head = NULL, *tail;
2990
2991         for (; skb != NULL; skb = next) {
2992                 next = skb->next;
2993                 skb->next = NULL;
2994
2995                 /* in case skb wont be segmented, point to itself */
2996                 skb->prev = skb;
2997
2998                 skb = validate_xmit_skb(skb, dev);
2999                 if (!skb)
3000                         continue;
3001
3002                 if (!head)
3003                         head = skb;
3004                 else
3005                         tail->next = skb;
3006                 /* If skb was segmented, skb->prev points to
3007                  * the last segment. If not, it still contains skb.
3008                  */
3009                 tail = skb->prev;
3010         }
3011         return head;
3012 }
3013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3014
3015 static void qdisc_pkt_len_init(struct sk_buff *skb)
3016 {
3017         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3018
3019         qdisc_skb_cb(skb)->pkt_len = skb->len;
3020
3021         /* To get more precise estimation of bytes sent on wire,
3022          * we add to pkt_len the headers size of all segments
3023          */
3024         if (shinfo->gso_size)  {
3025                 unsigned int hdr_len;
3026                 u16 gso_segs = shinfo->gso_segs;
3027
3028                 /* mac layer + network layer */
3029                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3030
3031                 /* + transport layer */
3032                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3033                         hdr_len += tcp_hdrlen(skb);
3034                 else
3035                         hdr_len += sizeof(struct udphdr);
3036
3037                 if (shinfo->gso_type & SKB_GSO_DODGY)
3038                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3039                                                 shinfo->gso_size);
3040
3041                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3042         }
3043 }
3044
3045 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3046                                  struct net_device *dev,
3047                                  struct netdev_queue *txq)
3048 {
3049         spinlock_t *root_lock = qdisc_lock(q);
3050         struct sk_buff *to_free = NULL;
3051         bool contended;
3052         int rc;
3053
3054         qdisc_calculate_pkt_len(skb, q);
3055         /*
3056          * Heuristic to force contended enqueues to serialize on a
3057          * separate lock before trying to get qdisc main lock.
3058          * This permits qdisc->running owner to get the lock more
3059          * often and dequeue packets faster.
3060          */
3061         contended = qdisc_is_running(q);
3062         if (unlikely(contended))
3063                 spin_lock(&q->busylock);
3064
3065         spin_lock(root_lock);
3066         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3067                 __qdisc_drop(skb, &to_free);
3068                 rc = NET_XMIT_DROP;
3069         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3070                    qdisc_run_begin(q)) {
3071                 /*
3072                  * This is a work-conserving queue; there are no old skbs
3073                  * waiting to be sent out; and the qdisc is not running -
3074                  * xmit the skb directly.
3075                  */
3076
3077                 qdisc_bstats_update(q, skb);
3078
3079                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3080                         if (unlikely(contended)) {
3081                                 spin_unlock(&q->busylock);
3082                                 contended = false;
3083                         }
3084                         __qdisc_run(q);
3085                 } else
3086                         qdisc_run_end(q);
3087
3088                 rc = NET_XMIT_SUCCESS;
3089         } else {
3090                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3091                 if (qdisc_run_begin(q)) {
3092                         if (unlikely(contended)) {
3093                                 spin_unlock(&q->busylock);
3094                                 contended = false;
3095                         }
3096                         __qdisc_run(q);
3097                 }
3098         }
3099         spin_unlock(root_lock);
3100         if (unlikely(to_free))
3101                 kfree_skb_list(to_free);
3102         if (unlikely(contended))
3103                 spin_unlock(&q->busylock);
3104         return rc;
3105 }
3106
3107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3108 static void skb_update_prio(struct sk_buff *skb)
3109 {
3110         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3111
3112         if (!skb->priority && skb->sk && map) {
3113                 unsigned int prioidx =
3114                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3115
3116                 if (prioidx < map->priomap_len)
3117                         skb->priority = map->priomap[prioidx];
3118         }
3119 }
3120 #else
3121 #define skb_update_prio(skb)
3122 #endif
3123
3124 DEFINE_PER_CPU(int, xmit_recursion);
3125 EXPORT_SYMBOL(xmit_recursion);
3126
3127 /**
3128  *      dev_loopback_xmit - loop back @skb
3129  *      @net: network namespace this loopback is happening in
3130  *      @sk:  sk needed to be a netfilter okfn
3131  *      @skb: buffer to transmit
3132  */
3133 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3134 {
3135         skb_reset_mac_header(skb);
3136         __skb_pull(skb, skb_network_offset(skb));
3137         skb->pkt_type = PACKET_LOOPBACK;
3138         skb->ip_summed = CHECKSUM_UNNECESSARY;
3139         WARN_ON(!skb_dst(skb));
3140         skb_dst_force(skb);
3141         netif_rx_ni(skb);
3142         return 0;
3143 }
3144 EXPORT_SYMBOL(dev_loopback_xmit);
3145
3146 #ifdef CONFIG_NET_EGRESS
3147 static struct sk_buff *
3148 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3149 {
3150         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3151         struct tcf_result cl_res;
3152
3153         if (!cl)
3154                 return skb;
3155
3156         /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3157          * earlier by the caller.
3158          */
3159         qdisc_bstats_cpu_update(cl->q, skb);
3160
3161         switch (tc_classify(skb, cl, &cl_res, false)) {
3162         case TC_ACT_OK:
3163         case TC_ACT_RECLASSIFY:
3164                 skb->tc_index = TC_H_MIN(cl_res.classid);
3165                 break;
3166         case TC_ACT_SHOT:
3167                 qdisc_qstats_cpu_drop(cl->q);
3168                 *ret = NET_XMIT_DROP;
3169                 kfree_skb(skb);
3170                 return NULL;
3171         case TC_ACT_STOLEN:
3172         case TC_ACT_QUEUED:
3173                 *ret = NET_XMIT_SUCCESS;
3174                 consume_skb(skb);
3175                 return NULL;
3176         case TC_ACT_REDIRECT:
3177                 /* No need to push/pop skb's mac_header here on egress! */
3178                 skb_do_redirect(skb);
3179                 *ret = NET_XMIT_SUCCESS;
3180                 return NULL;
3181         default:
3182                 break;
3183         }
3184
3185         return skb;
3186 }
3187 #endif /* CONFIG_NET_EGRESS */
3188
3189 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3190 {
3191 #ifdef CONFIG_XPS
3192         struct xps_dev_maps *dev_maps;
3193         struct xps_map *map;
3194         int queue_index = -1;
3195
3196         rcu_read_lock();
3197         dev_maps = rcu_dereference(dev->xps_maps);
3198         if (dev_maps) {
3199                 unsigned int tci = skb->sender_cpu - 1;
3200
3201                 if (dev->num_tc) {
3202                         tci *= dev->num_tc;
3203                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3204                 }
3205
3206                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3207                 if (map) {
3208                         if (map->len == 1)
3209                                 queue_index = map->queues[0];
3210                         else
3211                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3212                                                                            map->len)];
3213                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3214                                 queue_index = -1;
3215                 }
3216         }
3217         rcu_read_unlock();
3218
3219         return queue_index;
3220 #else
3221         return -1;
3222 #endif
3223 }
3224
3225 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3226 {
3227         struct sock *sk = skb->sk;
3228         int queue_index = sk_tx_queue_get(sk);
3229
3230         if (queue_index < 0 || skb->ooo_okay ||
3231             queue_index >= dev->real_num_tx_queues) {
3232                 int new_index = get_xps_queue(dev, skb);
3233                 if (new_index < 0)
3234                         new_index = skb_tx_hash(dev, skb);
3235
3236                 if (queue_index != new_index && sk &&
3237                     sk_fullsock(sk) &&
3238                     rcu_access_pointer(sk->sk_dst_cache))
3239                         sk_tx_queue_set(sk, new_index);
3240
3241                 queue_index = new_index;
3242         }
3243
3244         return queue_index;
3245 }
3246
3247 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3248                                     struct sk_buff *skb,
3249                                     void *accel_priv)
3250 {
3251         int queue_index = 0;
3252
3253 #ifdef CONFIG_XPS
3254         u32 sender_cpu = skb->sender_cpu - 1;
3255
3256         if (sender_cpu >= (u32)NR_CPUS)
3257                 skb->sender_cpu = raw_smp_processor_id() + 1;
3258 #endif
3259
3260         if (dev->real_num_tx_queues != 1) {
3261                 const struct net_device_ops *ops = dev->netdev_ops;
3262                 if (ops->ndo_select_queue)
3263                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3264                                                             __netdev_pick_tx);
3265                 else
3266                         queue_index = __netdev_pick_tx(dev, skb);
3267
3268                 if (!accel_priv)
3269                         queue_index = netdev_cap_txqueue(dev, queue_index);
3270         }
3271
3272         skb_set_queue_mapping(skb, queue_index);
3273         return netdev_get_tx_queue(dev, queue_index);
3274 }
3275
3276 /**
3277  *      __dev_queue_xmit - transmit a buffer
3278  *      @skb: buffer to transmit
3279  *      @accel_priv: private data used for L2 forwarding offload
3280  *
3281  *      Queue a buffer for transmission to a network device. The caller must
3282  *      have set the device and priority and built the buffer before calling
3283  *      this function. The function can be called from an interrupt.
3284  *
3285  *      A negative errno code is returned on a failure. A success does not
3286  *      guarantee the frame will be transmitted as it may be dropped due
3287  *      to congestion or traffic shaping.
3288  *
3289  * -----------------------------------------------------------------------------------
3290  *      I notice this method can also return errors from the queue disciplines,
3291  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3292  *      be positive.
3293  *
3294  *      Regardless of the return value, the skb is consumed, so it is currently
3295  *      difficult to retry a send to this method.  (You can bump the ref count
3296  *      before sending to hold a reference for retry if you are careful.)
3297  *
3298  *      When calling this method, interrupts MUST be enabled.  This is because
3299  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3300  *          --BLG
3301  */
3302 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3303 {
3304         struct net_device *dev = skb->dev;
3305         struct netdev_queue *txq;
3306         struct Qdisc *q;
3307         int rc = -ENOMEM;
3308
3309         skb_reset_mac_header(skb);
3310
3311         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3312                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3313
3314         /* Disable soft irqs for various locks below. Also
3315          * stops preemption for RCU.
3316          */
3317         rcu_read_lock_bh();
3318
3319         skb_update_prio(skb);
3320
3321         qdisc_pkt_len_init(skb);
3322 #ifdef CONFIG_NET_CLS_ACT
3323         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3324 # ifdef CONFIG_NET_EGRESS
3325         if (static_key_false(&egress_needed)) {
3326                 skb = sch_handle_egress(skb, &rc, dev);
3327                 if (!skb)
3328                         goto out;
3329         }
3330 # endif
3331 #endif
3332         /* If device/qdisc don't need skb->dst, release it right now while
3333          * its hot in this cpu cache.
3334          */
3335         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3336                 skb_dst_drop(skb);
3337         else
3338                 skb_dst_force(skb);
3339
3340         txq = netdev_pick_tx(dev, skb, accel_priv);
3341         q = rcu_dereference_bh(txq->qdisc);
3342
3343         trace_net_dev_queue(skb);
3344         if (q->enqueue) {
3345                 rc = __dev_xmit_skb(skb, q, dev, txq);
3346                 goto out;
3347         }
3348
3349         /* The device has no queue. Common case for software devices:
3350            loopback, all the sorts of tunnels...
3351
3352            Really, it is unlikely that netif_tx_lock protection is necessary
3353            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3354            counters.)
3355            However, it is possible, that they rely on protection
3356            made by us here.
3357
3358            Check this and shot the lock. It is not prone from deadlocks.
3359            Either shot noqueue qdisc, it is even simpler 8)
3360          */
3361         if (dev->flags & IFF_UP) {
3362                 int cpu = smp_processor_id(); /* ok because BHs are off */
3363
3364                 if (txq->xmit_lock_owner != cpu) {
3365                         if (unlikely(__this_cpu_read(xmit_recursion) >
3366                                      XMIT_RECURSION_LIMIT))
3367                                 goto recursion_alert;
3368
3369                         skb = validate_xmit_skb(skb, dev);
3370                         if (!skb)
3371                                 goto out;
3372
3373                         HARD_TX_LOCK(dev, txq, cpu);
3374
3375                         if (!netif_xmit_stopped(txq)) {
3376                                 __this_cpu_inc(xmit_recursion);
3377                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3378                                 __this_cpu_dec(xmit_recursion);
3379                                 if (dev_xmit_complete(rc)) {
3380                                         HARD_TX_UNLOCK(dev, txq);
3381                                         goto out;
3382                                 }
3383                         }
3384                         HARD_TX_UNLOCK(dev, txq);
3385                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3386                                              dev->name);
3387                 } else {
3388                         /* Recursion is detected! It is possible,
3389                          * unfortunately
3390                          */
3391 recursion_alert:
3392                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3393                                              dev->name);
3394                 }
3395         }
3396
3397         rc = -ENETDOWN;
3398         rcu_read_unlock_bh();
3399
3400         atomic_long_inc(&dev->tx_dropped);
3401         kfree_skb_list(skb);
3402         return rc;
3403 out:
3404         rcu_read_unlock_bh();
3405         return rc;
3406 }
3407
3408 int dev_queue_xmit(struct sk_buff *skb)
3409 {
3410         return __dev_queue_xmit(skb, NULL);
3411 }
3412 EXPORT_SYMBOL(dev_queue_xmit);
3413
3414 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3415 {
3416         return __dev_queue_xmit(skb, accel_priv);
3417 }
3418 EXPORT_SYMBOL(dev_queue_xmit_accel);
3419
3420
3421 /*=======================================================================
3422                         Receiver routines
3423   =======================================================================*/
3424
3425 int netdev_max_backlog __read_mostly = 1000;
3426 EXPORT_SYMBOL(netdev_max_backlog);
3427
3428 int netdev_tstamp_prequeue __read_mostly = 1;
3429 int netdev_budget __read_mostly = 300;
3430 int weight_p __read_mostly = 64;            /* old backlog weight */
3431
3432 /* Called with irq disabled */
3433 static inline void ____napi_schedule(struct softnet_data *sd,
3434                                      struct napi_struct *napi)
3435 {
3436         list_add_tail(&napi->poll_list, &sd->poll_list);
3437         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3438 }
3439
3440 #ifdef CONFIG_RPS
3441
3442 /* One global table that all flow-based protocols share. */
3443 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3444 EXPORT_SYMBOL(rps_sock_flow_table);
3445 u32 rps_cpu_mask __read_mostly;
3446 EXPORT_SYMBOL(rps_cpu_mask);
3447
3448 struct static_key rps_needed __read_mostly;
3449 EXPORT_SYMBOL(rps_needed);
3450
3451 static struct rps_dev_flow *
3452 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3453             struct rps_dev_flow *rflow, u16 next_cpu)
3454 {
3455         if (next_cpu < nr_cpu_ids) {
3456 #ifdef CONFIG_RFS_ACCEL
3457                 struct netdev_rx_queue *rxqueue;
3458                 struct rps_dev_flow_table *flow_table;
3459                 struct rps_dev_flow *old_rflow;
3460                 u32 flow_id;
3461                 u16 rxq_index;
3462                 int rc;
3463
3464                 /* Should we steer this flow to a different hardware queue? */
3465                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3466                     !(dev->features & NETIF_F_NTUPLE))
3467                         goto out;
3468                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3469                 if (rxq_index == skb_get_rx_queue(skb))
3470                         goto out;
3471
3472                 rxqueue = dev->_rx + rxq_index;
3473                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3474                 if (!flow_table)
3475                         goto out;
3476                 flow_id = skb_get_hash(skb) & flow_table->mask;
3477                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3478                                                         rxq_index, flow_id);
3479                 if (rc < 0)
3480                         goto out;
3481                 old_rflow = rflow;
3482                 rflow = &flow_table->flows[flow_id];
3483                 rflow->filter = rc;
3484                 if (old_rflow->filter == rflow->filter)
3485                         old_rflow->filter = RPS_NO_FILTER;
3486         out:
3487 #endif
3488                 rflow->last_qtail =
3489                         per_cpu(softnet_data, next_cpu).input_queue_head;
3490         }
3491
3492         rflow->cpu = next_cpu;
3493         return rflow;
3494 }
3495
3496 /*
3497  * get_rps_cpu is called from netif_receive_skb and returns the target
3498  * CPU from the RPS map of the receiving queue for a given skb.
3499  * rcu_read_lock must be held on entry.
3500  */
3501 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3502                        struct rps_dev_flow **rflowp)
3503 {
3504         const struct rps_sock_flow_table *sock_flow_table;
3505         struct netdev_rx_queue *rxqueue = dev->_rx;
3506         struct rps_dev_flow_table *flow_table;
3507         struct rps_map *map;
3508         int cpu = -1;
3509         u32 tcpu;
3510         u32 hash;
3511
3512         if (skb_rx_queue_recorded(skb)) {
3513                 u16 index = skb_get_rx_queue(skb);
3514
3515                 if (unlikely(index >= dev->real_num_rx_queues)) {
3516                         WARN_ONCE(dev->real_num_rx_queues > 1,
3517                                   "%s received packet on queue %u, but number "
3518                                   "of RX queues is %u\n",
3519                                   dev->name, index, dev->real_num_rx_queues);
3520                         goto done;
3521                 }
3522                 rxqueue += index;
3523         }
3524
3525         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3526
3527         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3528         map = rcu_dereference(rxqueue->rps_map);
3529         if (!flow_table && !map)
3530                 goto done;
3531
3532         skb_reset_network_header(skb);
3533         hash = skb_get_hash(skb);
3534         if (!hash)
3535                 goto done;
3536
3537         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3538         if (flow_table && sock_flow_table) {
3539                 struct rps_dev_flow *rflow;
3540                 u32 next_cpu;
3541                 u32 ident;
3542
3543                 /* First check into global flow table if there is a match */
3544                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3545                 if ((ident ^ hash) & ~rps_cpu_mask)
3546                         goto try_rps;
3547
3548                 next_cpu = ident & rps_cpu_mask;
3549
3550                 /* OK, now we know there is a match,
3551                  * we can look at the local (per receive queue) flow table
3552                  */
3553                 rflow = &flow_table->flows[hash & flow_table->mask];
3554                 tcpu = rflow->cpu;
3555
3556                 /*
3557                  * If the desired CPU (where last recvmsg was done) is
3558                  * different from current CPU (one in the rx-queue flow
3559                  * table entry), switch if one of the following holds:
3560                  *   - Current CPU is unset (>= nr_cpu_ids).
3561                  *   - Current CPU is offline.
3562                  *   - The current CPU's queue tail has advanced beyond the
3563                  *     last packet that was enqueued using this table entry.
3564                  *     This guarantees that all previous packets for the flow
3565                  *     have been dequeued, thus preserving in order delivery.
3566                  */
3567                 if (unlikely(tcpu != next_cpu) &&
3568                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3569                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3570                       rflow->last_qtail)) >= 0)) {
3571                         tcpu = next_cpu;
3572                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3573                 }
3574
3575                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3576                         *rflowp = rflow;
3577                         cpu = tcpu;
3578                         goto done;
3579                 }
3580         }
3581
3582 try_rps:
3583
3584         if (map) {
3585                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3586                 if (cpu_online(tcpu)) {
3587                         cpu = tcpu;
3588                         goto done;
3589                 }
3590         }
3591
3592 done:
3593         return cpu;
3594 }
3595
3596 #ifdef CONFIG_RFS_ACCEL
3597
3598 /**
3599  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3600  * @dev: Device on which the filter was set
3601  * @rxq_index: RX queue index
3602  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3603  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3604  *
3605  * Drivers that implement ndo_rx_flow_steer() should periodically call
3606  * this function for each installed filter and remove the filters for
3607  * which it returns %true.
3608  */
3609 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3610                          u32 flow_id, u16 filter_id)
3611 {
3612         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3613         struct rps_dev_flow_table *flow_table;
3614         struct rps_dev_flow *rflow;
3615         bool expire = true;
3616         unsigned int cpu;
3617
3618         rcu_read_lock();
3619         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3620         if (flow_table && flow_id <= flow_table->mask) {
3621                 rflow = &flow_table->flows[flow_id];
3622                 cpu = ACCESS_ONCE(rflow->cpu);
3623                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3624                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3625                            rflow->last_qtail) <
3626                      (int)(10 * flow_table->mask)))
3627                         expire = false;
3628         }
3629         rcu_read_unlock();
3630         return expire;
3631 }
3632 EXPORT_SYMBOL(rps_may_expire_flow);
3633
3634 #endif /* CONFIG_RFS_ACCEL */
3635
3636 /* Called from hardirq (IPI) context */
3637 static void rps_trigger_softirq(void *data)
3638 {
3639         struct softnet_data *sd = data;
3640
3641         ____napi_schedule(sd, &sd->backlog);
3642         sd->received_rps++;
3643 }
3644
3645 #endif /* CONFIG_RPS */
3646
3647 /*
3648  * Check if this softnet_data structure is another cpu one
3649  * If yes, queue it to our IPI list and return 1
3650  * If no, return 0
3651  */
3652 static int rps_ipi_queued(struct softnet_data *sd)
3653 {
3654 #ifdef CONFIG_RPS
3655         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3656
3657         if (sd != mysd) {
3658                 sd->rps_ipi_next = mysd->rps_ipi_list;
3659                 mysd->rps_ipi_list = sd;
3660
3661                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3662                 return 1;
3663         }
3664 #endif /* CONFIG_RPS */
3665         return 0;
3666 }
3667
3668 #ifdef CONFIG_NET_FLOW_LIMIT
3669 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3670 #endif
3671
3672 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3673 {
3674 #ifdef CONFIG_NET_FLOW_LIMIT
3675         struct sd_flow_limit *fl;
3676         struct softnet_data *sd;
3677         unsigned int old_flow, new_flow;
3678
3679         if (qlen < (netdev_max_backlog >> 1))
3680                 return false;
3681
3682         sd = this_cpu_ptr(&softnet_data);
3683
3684         rcu_read_lock();
3685         fl = rcu_dereference(sd->flow_limit);
3686         if (fl) {
3687                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3688                 old_flow = fl->history[fl->history_head];
3689                 fl->history[fl->history_head] = new_flow;
3690
3691                 fl->history_head++;
3692                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3693
3694                 if (likely(fl->buckets[old_flow]))
3695                         fl->buckets[old_flow]--;
3696
3697                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3698                         fl->count++;
3699                         rcu_read_unlock();
3700                         return true;
3701                 }
3702         }
3703         rcu_read_unlock();
3704 #endif
3705         return false;
3706 }
3707
3708 /*
3709  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3710  * queue (may be a remote CPU queue).
3711  */
3712 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3713                               unsigned int *qtail)
3714 {
3715         struct softnet_data *sd;
3716         unsigned long flags;
3717         unsigned int qlen;
3718
3719         sd = &per_cpu(softnet_data, cpu);
3720
3721         local_irq_save(flags);
3722
3723         rps_lock(sd);
3724         if (!netif_running(skb->dev))
3725                 goto drop;
3726         qlen = skb_queue_len(&sd->input_pkt_queue);
3727         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3728                 if (qlen) {
3729 enqueue:
3730                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3731                         input_queue_tail_incr_save(sd, qtail);
3732                         rps_unlock(sd);
3733                         local_irq_restore(flags);
3734                         return NET_RX_SUCCESS;
3735                 }
3736
3737                 /* Schedule NAPI for backlog device
3738                  * We can use non atomic operation since we own the queue lock
3739                  */
3740                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3741                         if (!rps_ipi_queued(sd))
3742                                 ____napi_schedule(sd, &sd->backlog);
3743                 }
3744                 goto enqueue;
3745         }
3746
3747 drop:
3748         sd->dropped++;
3749         rps_unlock(sd);
3750
3751         local_irq_restore(flags);
3752
3753         atomic_long_inc(&skb->dev->rx_dropped);
3754         kfree_skb(skb);
3755         return NET_RX_DROP;
3756 }
3757
3758 static int netif_rx_internal(struct sk_buff *skb)
3759 {
3760         int ret;
3761
3762         net_timestamp_check(netdev_tstamp_prequeue, skb);
3763
3764         trace_netif_rx(skb);
3765 #ifdef CONFIG_RPS
3766         if (static_key_false(&rps_needed)) {
3767                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3768                 int cpu;
3769
3770                 preempt_disable();
3771                 rcu_read_lock();
3772
3773                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3774                 if (cpu < 0)
3775                         cpu = smp_processor_id();
3776
3777                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3778
3779                 rcu_read_unlock();
3780                 preempt_enable();
3781         } else
3782 #endif
3783         {
3784                 unsigned int qtail;
3785                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3786                 put_cpu();
3787         }
3788         return ret;
3789 }
3790
3791 /**
3792  *      netif_rx        -       post buffer to the network code
3793  *      @skb: buffer to post
3794  *
3795  *      This function receives a packet from a device driver and queues it for
3796  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3797  *      may be dropped during processing for congestion control or by the
3798  *      protocol layers.
3799  *
3800  *      return values:
3801  *      NET_RX_SUCCESS  (no congestion)
3802  *      NET_RX_DROP     (packet was dropped)
3803  *
3804  */
3805
3806 int netif_rx(struct sk_buff *skb)
3807 {
3808         trace_netif_rx_entry(skb);
3809
3810         return netif_rx_internal(skb);
3811 }
3812 EXPORT_SYMBOL(netif_rx);
3813
3814 int netif_rx_ni(struct sk_buff *skb)
3815 {
3816         int err;
3817
3818         trace_netif_rx_ni_entry(skb);
3819
3820         preempt_disable();
3821         err = netif_rx_internal(skb);
3822         if (local_softirq_pending())
3823                 do_softirq();
3824         preempt_enable();
3825
3826         return err;
3827 }
3828 EXPORT_SYMBOL(netif_rx_ni);
3829
3830 static __latent_entropy void net_tx_action(struct softirq_action *h)
3831 {
3832         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3833
3834         if (sd->completion_queue) {
3835                 struct sk_buff *clist;
3836
3837                 local_irq_disable();
3838                 clist = sd->completion_queue;
3839                 sd->completion_queue = NULL;
3840                 local_irq_enable();
3841
3842                 while (clist) {
3843                         struct sk_buff *skb = clist;
3844                         clist = clist->next;
3845
3846                         WARN_ON(atomic_read(&skb->users));
3847                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3848                                 trace_consume_skb(skb);
3849                         else
3850                                 trace_kfree_skb(skb, net_tx_action);
3851
3852                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3853                                 __kfree_skb(skb);
3854                         else
3855                                 __kfree_skb_defer(skb);
3856                 }
3857
3858                 __kfree_skb_flush();
3859         }
3860
3861         if (sd->output_queue) {
3862                 struct Qdisc *head;
3863
3864                 local_irq_disable();
3865                 head = sd->output_queue;
3866                 sd->output_queue = NULL;
3867                 sd->output_queue_tailp = &sd->output_queue;
3868                 local_irq_enable();
3869
3870                 while (head) {
3871                         struct Qdisc *q = head;
3872                         spinlock_t *root_lock;
3873
3874                         head = head->next_sched;
3875
3876                         root_lock = qdisc_lock(q);
3877                         spin_lock(root_lock);
3878                         /* We need to make sure head->next_sched is read
3879                          * before clearing __QDISC_STATE_SCHED
3880                          */
3881                         smp_mb__before_atomic();
3882                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3883                         qdisc_run(q);
3884                         spin_unlock(root_lock);
3885                 }
3886         }
3887 }
3888
3889 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3890 /* This hook is defined here for ATM LANE */
3891 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3892                              unsigned char *addr) __read_mostly;
3893 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3894 #endif
3895
3896 static inline struct sk_buff *
3897 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3898                    struct net_device *orig_dev)
3899 {
3900 #ifdef CONFIG_NET_CLS_ACT
3901         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3902         struct tcf_result cl_res;
3903
3904         /* If there's at least one ingress present somewhere (so
3905          * we get here via enabled static key), remaining devices
3906          * that are not configured with an ingress qdisc will bail
3907          * out here.
3908          */
3909         if (!cl)
3910                 return skb;
3911         if (*pt_prev) {
3912                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3913                 *pt_prev = NULL;
3914         }
3915
3916         qdisc_skb_cb(skb)->pkt_len = skb->len;
3917         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3918         qdisc_bstats_cpu_update(cl->q, skb);
3919
3920         switch (tc_classify(skb, cl, &cl_res, false)) {
3921         case TC_ACT_OK:
3922         case TC_ACT_RECLASSIFY:
3923                 skb->tc_index = TC_H_MIN(cl_res.classid);
3924                 break;
3925         case TC_ACT_SHOT:
3926                 qdisc_qstats_cpu_drop(cl->q);
3927                 kfree_skb(skb);
3928                 return NULL;
3929         case TC_ACT_STOLEN:
3930         case TC_ACT_QUEUED:
3931                 consume_skb(skb);
3932                 return NULL;
3933         case TC_ACT_REDIRECT:
3934                 /* skb_mac_header check was done by cls/act_bpf, so
3935                  * we can safely push the L2 header back before
3936                  * redirecting to another netdev
3937                  */
3938                 __skb_push(skb, skb->mac_len);
3939                 skb_do_redirect(skb);
3940                 return NULL;
3941         default:
3942                 break;
3943         }
3944 #endif /* CONFIG_NET_CLS_ACT */
3945         return skb;
3946 }
3947
3948 /**
3949  *      netdev_is_rx_handler_busy - check if receive handler is registered
3950  *      @dev: device to check
3951  *
3952  *      Check if a receive handler is already registered for a given device.
3953  *      Return true if there one.
3954  *
3955  *      The caller must hold the rtnl_mutex.
3956  */
3957 bool netdev_is_rx_handler_busy(struct net_device *dev)
3958 {
3959         ASSERT_RTNL();
3960         return dev && rtnl_dereference(dev->rx_handler);
3961 }
3962 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3963
3964 /**
3965  *      netdev_rx_handler_register - register receive handler
3966  *      @dev: device to register a handler for
3967  *      @rx_handler: receive handler to register
3968  *      @rx_handler_data: data pointer that is used by rx handler
3969  *
3970  *      Register a receive handler for a device. This handler will then be
3971  *      called from __netif_receive_skb. A negative errno code is returned
3972  *      on a failure.
3973  *
3974  *      The caller must hold the rtnl_mutex.
3975  *
3976  *      For a general description of rx_handler, see enum rx_handler_result.
3977  */
3978 int netdev_rx_handler_register(struct net_device *dev,
3979                                rx_handler_func_t *rx_handler,
3980                                void *rx_handler_data)
3981 {
3982         ASSERT_RTNL();
3983
3984         if (dev->rx_handler)
3985                 return -EBUSY;
3986
3987         /* Note: rx_handler_data must be set before rx_handler */
3988         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3989         rcu_assign_pointer(dev->rx_handler, rx_handler);
3990
3991         return 0;
3992 }
3993 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3994
3995 /**
3996  *      netdev_rx_handler_unregister - unregister receive handler
3997  *      @dev: device to unregister a handler from
3998  *
3999  *      Unregister a receive handler from a device.
4000  *
4001  *      The caller must hold the rtnl_mutex.
4002  */
4003 void netdev_rx_handler_unregister(struct net_device *dev)
4004 {
4005
4006         ASSERT_RTNL();
4007         RCU_INIT_POINTER(dev->rx_handler, NULL);
4008         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4009          * section has a guarantee to see a non NULL rx_handler_data
4010          * as well.
4011          */
4012         synchronize_net();
4013         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4014 }
4015 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4016
4017 /*
4018  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4019  * the special handling of PFMEMALLOC skbs.
4020  */
4021 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4022 {
4023         switch (skb->protocol) {
4024         case htons(ETH_P_ARP):
4025         case htons(ETH_P_IP):
4026         case htons(ETH_P_IPV6):
4027         case htons(ETH_P_8021Q):
4028         case htons(ETH_P_8021AD):
4029                 return true;
4030         default:
4031                 return false;
4032         }
4033 }
4034
4035 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4036                              int *ret, struct net_device *orig_dev)
4037 {
4038 #ifdef CONFIG_NETFILTER_INGRESS
4039         if (nf_hook_ingress_active(skb)) {
4040                 int ingress_retval;
4041
4042                 if (*pt_prev) {
4043                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4044                         *pt_prev = NULL;
4045                 }
4046
4047                 rcu_read_lock();
4048                 ingress_retval = nf_hook_ingress(skb);
4049                 rcu_read_unlock();
4050                 return ingress_retval;
4051         }
4052 #endif /* CONFIG_NETFILTER_INGRESS */
4053         return 0;
4054 }
4055
4056 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4057 {
4058         struct packet_type *ptype, *pt_prev;
4059         rx_handler_func_t *rx_handler;
4060         struct net_device *orig_dev;
4061         bool deliver_exact = false;
4062         int ret = NET_RX_DROP;
4063         __be16 type;
4064
4065         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4066
4067         trace_netif_receive_skb(skb);
4068
4069         orig_dev = skb->dev;
4070
4071         skb_reset_network_header(skb);
4072         if (!skb_transport_header_was_set(skb))
4073                 skb_reset_transport_header(skb);
4074         skb_reset_mac_len(skb);
4075
4076         pt_prev = NULL;
4077
4078 another_round:
4079         skb->skb_iif = skb->dev->ifindex;
4080
4081         __this_cpu_inc(softnet_data.processed);
4082
4083         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4084             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4085                 skb = skb_vlan_untag(skb);
4086                 if (unlikely(!skb))
4087                         goto out;
4088         }
4089
4090 #ifdef CONFIG_NET_CLS_ACT
4091         if (skb->tc_verd & TC_NCLS) {
4092                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4093                 goto ncls;
4094         }
4095 #endif
4096
4097         if (pfmemalloc)
4098                 goto skip_taps;
4099
4100         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4101                 if (pt_prev)
4102                         ret = deliver_skb(skb, pt_prev, orig_dev);
4103                 pt_prev = ptype;
4104         }
4105
4106         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4107                 if (pt_prev)
4108                         ret = deliver_skb(skb, pt_prev, orig_dev);
4109                 pt_prev = ptype;
4110         }
4111
4112 skip_taps:
4113 #ifdef CONFIG_NET_INGRESS
4114         if (static_key_false(&ingress_needed)) {
4115                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4116                 if (!skb)
4117                         goto out;
4118
4119                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4120                         goto out;
4121         }
4122 #endif
4123 #ifdef CONFIG_NET_CLS_ACT
4124         skb->tc_verd = 0;
4125 ncls:
4126 #endif
4127         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4128                 goto drop;
4129
4130         if (skb_vlan_tag_present(skb)) {
4131                 if (pt_prev) {
4132                         ret = deliver_skb(skb, pt_prev, orig_dev);
4133                         pt_prev = NULL;
4134                 }
4135                 if (vlan_do_receive(&skb))
4136                         goto another_round;
4137                 else if (unlikely(!skb))
4138                         goto out;
4139         }
4140
4141         rx_handler = rcu_dereference(skb->dev->rx_handler);
4142         if (rx_handler) {
4143                 if (pt_prev) {
4144                         ret = deliver_skb(skb, pt_prev, orig_dev);
4145                         pt_prev = NULL;
4146                 }
4147                 switch (rx_handler(&skb)) {
4148                 case RX_HANDLER_CONSUMED:
4149                         ret = NET_RX_SUCCESS;
4150                         goto out;
4151                 case RX_HANDLER_ANOTHER:
4152                         goto another_round;
4153                 case RX_HANDLER_EXACT:
4154                         deliver_exact = true;
4155                 case RX_HANDLER_PASS:
4156                         break;
4157                 default:
4158                         BUG();
4159                 }
4160         }
4161
4162         if (unlikely(skb_vlan_tag_present(skb))) {
4163                 if (skb_vlan_tag_get_id(skb))
4164                         skb->pkt_type = PACKET_OTHERHOST;
4165                 /* Note: we might in the future use prio bits
4166                  * and set skb->priority like in vlan_do_receive()
4167                  * For the time being, just ignore Priority Code Point
4168                  */
4169                 skb->vlan_tci = 0;
4170         }
4171
4172         type = skb->protocol;
4173
4174         /* deliver only exact match when indicated */
4175         if (likely(!deliver_exact)) {
4176                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4177                                        &ptype_base[ntohs(type) &
4178                                                    PTYPE_HASH_MASK]);
4179         }
4180
4181         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4182                                &orig_dev->ptype_specific);
4183
4184         if (unlikely(skb->dev != orig_dev)) {
4185                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4186                                        &skb->dev->ptype_specific);
4187         }
4188
4189         if (pt_prev) {
4190                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4191                         goto drop;
4192                 else
4193                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4194         } else {
4195 drop:
4196                 if (!deliver_exact)
4197                         atomic_long_inc(&skb->dev->rx_dropped);
4198                 else
4199                         atomic_long_inc(&skb->dev->rx_nohandler);
4200                 kfree_skb(skb);
4201                 /* Jamal, now you will not able to escape explaining
4202                  * me how you were going to use this. :-)
4203                  */
4204                 ret = NET_RX_DROP;
4205         }
4206
4207 out:
4208         return ret;
4209 }
4210
4211 static int __netif_receive_skb(struct sk_buff *skb)
4212 {
4213         int ret;
4214
4215         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4216                 unsigned long pflags = current->flags;
4217
4218                 /*
4219                  * PFMEMALLOC skbs are special, they should
4220                  * - be delivered to SOCK_MEMALLOC sockets only
4221                  * - stay away from userspace
4222                  * - have bounded memory usage
4223                  *
4224                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4225                  * context down to all allocation sites.
4226                  */
4227                 current->flags |= PF_MEMALLOC;
4228                 ret = __netif_receive_skb_core(skb, true);
4229                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4230         } else
4231                 ret = __netif_receive_skb_core(skb, false);
4232
4233         return ret;
4234 }
4235
4236 static int netif_receive_skb_internal(struct sk_buff *skb)
4237 {
4238         int ret;
4239
4240         net_timestamp_check(netdev_tstamp_prequeue, skb);
4241
4242         if (skb_defer_rx_timestamp(skb))
4243                 return NET_RX_SUCCESS;
4244
4245         rcu_read_lock();
4246
4247 #ifdef CONFIG_RPS
4248         if (static_key_false(&rps_needed)) {
4249                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4250                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4251
4252                 if (cpu >= 0) {
4253                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4254                         rcu_read_unlock();
4255                         return ret;
4256                 }
4257         }
4258 #endif
4259         ret = __netif_receive_skb(skb);
4260         rcu_read_unlock();
4261         return ret;
4262 }
4263
4264 /**
4265  *      netif_receive_skb - process receive buffer from network
4266  *      @skb: buffer to process
4267  *
4268  *      netif_receive_skb() is the main receive data processing function.
4269  *      It always succeeds. The buffer may be dropped during processing
4270  *      for congestion control or by the protocol layers.
4271  *
4272  *      This function may only be called from softirq context and interrupts
4273  *      should be enabled.
4274  *
4275  *      Return values (usually ignored):
4276  *      NET_RX_SUCCESS: no congestion
4277  *      NET_RX_DROP: packet was dropped
4278  */
4279 int netif_receive_skb(struct sk_buff *skb)
4280 {
4281         trace_netif_receive_skb_entry(skb);
4282
4283         return netif_receive_skb_internal(skb);
4284 }
4285 EXPORT_SYMBOL(netif_receive_skb);
4286
4287 DEFINE_PER_CPU(struct work_struct, flush_works);
4288
4289 /* Network device is going away, flush any packets still pending */
4290 static void flush_backlog(struct work_struct *work)
4291 {
4292         struct sk_buff *skb, *tmp;
4293         struct softnet_data *sd;
4294
4295         local_bh_disable();
4296         sd = this_cpu_ptr(&softnet_data);
4297
4298         local_irq_disable();
4299         rps_lock(sd);
4300         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4301                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4302                         __skb_unlink(skb, &sd->input_pkt_queue);
4303                         kfree_skb(skb);
4304                         input_queue_head_incr(sd);
4305                 }
4306         }
4307         rps_unlock(sd);
4308         local_irq_enable();
4309
4310         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4311                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4312                         __skb_unlink(skb, &sd->process_queue);
4313                         kfree_skb(skb);
4314                         input_queue_head_incr(sd);
4315                 }
4316         }
4317         local_bh_enable();
4318 }
4319
4320 static void flush_all_backlogs(void)
4321 {
4322         unsigned int cpu;
4323
4324         get_online_cpus();
4325
4326         for_each_online_cpu(cpu)
4327                 queue_work_on(cpu, system_highpri_wq,
4328                               per_cpu_ptr(&flush_works, cpu));
4329
4330         for_each_online_cpu(cpu)
4331                 flush_work(per_cpu_ptr(&flush_works, cpu));
4332
4333         put_online_cpus();
4334 }
4335
4336 static int napi_gro_complete(struct sk_buff *skb)
4337 {
4338         struct packet_offload *ptype;
4339         __be16 type = skb->protocol;
4340         struct list_head *head = &offload_base;
4341         int err = -ENOENT;
4342
4343         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4344
4345         if (NAPI_GRO_CB(skb)->count == 1) {
4346                 skb_shinfo(skb)->gso_size = 0;
4347                 goto out;
4348         }
4349
4350         rcu_read_lock();
4351         list_for_each_entry_rcu(ptype, head, list) {
4352                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4353                         continue;
4354
4355                 err = ptype->callbacks.gro_complete(skb, 0);
4356                 break;
4357         }
4358         rcu_read_unlock();
4359
4360         if (err) {
4361                 WARN_ON(&ptype->list == head);
4362                 kfree_skb(skb);
4363                 return NET_RX_SUCCESS;
4364         }
4365
4366 out:
4367         return netif_receive_skb_internal(skb);
4368 }
4369
4370 /* napi->gro_list contains packets ordered by age.
4371  * youngest packets at the head of it.
4372  * Complete skbs in reverse order to reduce latencies.
4373  */
4374 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4375 {
4376         struct sk_buff *skb, *prev = NULL;
4377
4378         /* scan list and build reverse chain */
4379         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4380                 skb->prev = prev;
4381                 prev = skb;
4382         }
4383
4384         for (skb = prev; skb; skb = prev) {
4385                 skb->next = NULL;
4386
4387                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4388                         return;
4389
4390                 prev = skb->prev;
4391                 napi_gro_complete(skb);
4392                 napi->gro_count--;
4393         }
4394
4395         napi->gro_list = NULL;
4396 }
4397 EXPORT_SYMBOL(napi_gro_flush);
4398
4399 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4400 {
4401         struct sk_buff *p;
4402         unsigned int maclen = skb->dev->hard_header_len;
4403         u32 hash = skb_get_hash_raw(skb);
4404
4405         for (p = napi->gro_list; p; p = p->next) {
4406                 unsigned long diffs;
4407
4408                 NAPI_GRO_CB(p)->flush = 0;
4409
4410                 if (hash != skb_get_hash_raw(p)) {
4411                         NAPI_GRO_CB(p)->same_flow = 0;
4412                         continue;
4413                 }
4414
4415                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4416                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4417                 diffs |= skb_metadata_dst_cmp(p, skb);
4418                 if (maclen == ETH_HLEN)
4419                         diffs |= compare_ether_header(skb_mac_header(p),
4420                                                       skb_mac_header(skb));
4421                 else if (!diffs)
4422                         diffs = memcmp(skb_mac_header(p),
4423                                        skb_mac_header(skb),
4424                                        maclen);
4425                 NAPI_GRO_CB(p)->same_flow = !diffs;
4426         }
4427 }
4428
4429 static void skb_gro_reset_offset(struct sk_buff *skb)
4430 {
4431         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4432         const skb_frag_t *frag0 = &pinfo->frags[0];
4433
4434         NAPI_GRO_CB(skb)->data_offset = 0;
4435         NAPI_GRO_CB(skb)->frag0 = NULL;
4436         NAPI_GRO_CB(skb)->frag0_len = 0;
4437
4438         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4439             pinfo->nr_frags &&
4440             !PageHighMem(skb_frag_page(frag0))) {
4441                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4442                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4443         }
4444 }
4445
4446 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4447 {
4448         struct skb_shared_info *pinfo = skb_shinfo(skb);
4449
4450         BUG_ON(skb->end - skb->tail < grow);
4451
4452         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4453
4454         skb->data_len -= grow;
4455         skb->tail += grow;
4456
4457         pinfo->frags[0].page_offset += grow;
4458         skb_frag_size_sub(&pinfo->frags[0], grow);
4459
4460         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4461                 skb_frag_unref(skb, 0);
4462                 memmove(pinfo->frags, pinfo->frags + 1,
4463                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4464         }
4465 }
4466
4467 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4468 {
4469         struct sk_buff **pp = NULL;
4470         struct packet_offload *ptype;
4471         __be16 type = skb->protocol;
4472         struct list_head *head = &offload_base;
4473         int same_flow;
4474         enum gro_result ret;
4475         int grow;
4476
4477         if (!(skb->dev->features & NETIF_F_GRO))
4478                 goto normal;
4479
4480         if (skb->csum_bad)
4481                 goto normal;
4482
4483         gro_list_prepare(napi, skb);
4484
4485         rcu_read_lock();
4486         list_for_each_entry_rcu(ptype, head, list) {
4487                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4488                         continue;
4489
4490                 skb_set_network_header(skb, skb_gro_offset(skb));
4491                 skb_reset_mac_len(skb);
4492                 NAPI_GRO_CB(skb)->same_flow = 0;
4493                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4494                 NAPI_GRO_CB(skb)->free = 0;
4495                 NAPI_GRO_CB(skb)->encap_mark = 0;
4496                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4497                 NAPI_GRO_CB(skb)->is_fou = 0;
4498                 NAPI_GRO_CB(skb)->is_atomic = 1;
4499                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4500
4501                 /* Setup for GRO checksum validation */
4502                 switch (skb->ip_summed) {
4503                 case CHECKSUM_COMPLETE:
4504                         NAPI_GRO_CB(skb)->csum = skb->csum;
4505                         NAPI_GRO_CB(skb)->csum_valid = 1;
4506                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4507                         break;
4508                 case CHECKSUM_UNNECESSARY:
4509                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4510                         NAPI_GRO_CB(skb)->csum_valid = 0;
4511                         break;
4512                 default:
4513                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4514                         NAPI_GRO_CB(skb)->csum_valid = 0;
4515                 }
4516
4517                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4518                 break;
4519         }
4520         rcu_read_unlock();
4521
4522         if (&ptype->list == head)
4523                 goto normal;
4524
4525         same_flow = NAPI_GRO_CB(skb)->same_flow;
4526         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4527
4528         if (pp) {
4529                 struct sk_buff *nskb = *pp;
4530
4531                 *pp = nskb->next;
4532                 nskb->next = NULL;
4533                 napi_gro_complete(nskb);
4534                 napi->gro_count--;
4535         }
4536
4537         if (same_flow)
4538                 goto ok;
4539
4540         if (NAPI_GRO_CB(skb)->flush)
4541                 goto normal;
4542
4543         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4544                 struct sk_buff *nskb = napi->gro_list;
4545
4546                 /* locate the end of the list to select the 'oldest' flow */
4547                 while (nskb->next) {
4548                         pp = &nskb->next;
4549                         nskb = *pp;
4550                 }
4551                 *pp = NULL;
4552                 nskb->next = NULL;
4553                 napi_gro_complete(nskb);
4554         } else {
4555                 napi->gro_count++;
4556         }
4557         NAPI_GRO_CB(skb)->count = 1;
4558         NAPI_GRO_CB(skb)->age = jiffies;
4559         NAPI_GRO_CB(skb)->last = skb;
4560         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4561         skb->next = napi->gro_list;
4562         napi->gro_list = skb;
4563         ret = GRO_HELD;
4564
4565 pull:
4566         grow = skb_gro_offset(skb) - skb_headlen(skb);
4567         if (grow > 0)
4568                 gro_pull_from_frag0(skb, grow);
4569 ok:
4570         return ret;
4571
4572 normal:
4573         ret = GRO_NORMAL;
4574         goto pull;
4575 }
4576
4577 struct packet_offload *gro_find_receive_by_type(__be16 type)
4578 {
4579         struct list_head *offload_head = &offload_base;
4580         struct packet_offload *ptype;
4581
4582         list_for_each_entry_rcu(ptype, offload_head, list) {
4583                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4584                         continue;
4585                 return ptype;
4586         }
4587         return NULL;
4588 }
4589 EXPORT_SYMBOL(gro_find_receive_by_type);
4590
4591 struct packet_offload *gro_find_complete_by_type(__be16 type)
4592 {
4593         struct list_head *offload_head = &offload_base;
4594         struct packet_offload *ptype;
4595
4596         list_for_each_entry_rcu(ptype, offload_head, list) {
4597                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4598                         continue;
4599                 return ptype;
4600         }
4601         return NULL;
4602 }
4603 EXPORT_SYMBOL(gro_find_complete_by_type);
4604
4605 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4606 {
4607         switch (ret) {
4608         case GRO_NORMAL:
4609                 if (netif_receive_skb_internal(skb))
4610                         ret = GRO_DROP;
4611                 break;
4612
4613         case GRO_DROP:
4614                 kfree_skb(skb);
4615                 break;
4616
4617         case GRO_MERGED_FREE:
4618                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4619                         skb_dst_drop(skb);
4620                         kmem_cache_free(skbuff_head_cache, skb);
4621                 } else {
4622                         __kfree_skb(skb);
4623                 }
4624                 break;
4625
4626         case GRO_HELD:
4627         case GRO_MERGED:
4628                 break;
4629         }
4630
4631         return ret;
4632 }
4633
4634 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4635 {
4636         skb_mark_napi_id(skb, napi);
4637         trace_napi_gro_receive_entry(skb);
4638
4639         skb_gro_reset_offset(skb);
4640
4641         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4642 }
4643 EXPORT_SYMBOL(napi_gro_receive);
4644
4645 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4646 {
4647         if (unlikely(skb->pfmemalloc)) {
4648                 consume_skb(skb);
4649                 return;
4650         }
4651         __skb_pull(skb, skb_headlen(skb));
4652         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4653         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4654         skb->vlan_tci = 0;
4655         skb->dev = napi->dev;
4656         skb->skb_iif = 0;
4657         skb->encapsulation = 0;
4658         skb_shinfo(skb)->gso_type = 0;
4659         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4660
4661         napi->skb = skb;
4662 }
4663
4664 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4665 {
4666         struct sk_buff *skb = napi->skb;
4667
4668         if (!skb) {
4669                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4670                 if (skb) {
4671                         napi->skb = skb;
4672                         skb_mark_napi_id(skb, napi);
4673                 }
4674         }
4675         return skb;
4676 }
4677 EXPORT_SYMBOL(napi_get_frags);
4678
4679 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4680                                       struct sk_buff *skb,
4681                                       gro_result_t ret)
4682 {
4683         switch (ret) {
4684         case GRO_NORMAL:
4685         case GRO_HELD:
4686                 __skb_push(skb, ETH_HLEN);
4687                 skb->protocol = eth_type_trans(skb, skb->dev);
4688                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4689                         ret = GRO_DROP;
4690                 break;
4691
4692         case GRO_DROP:
4693         case GRO_MERGED_FREE:
4694                 napi_reuse_skb(napi, skb);
4695                 break;
4696
4697         case GRO_MERGED:
4698                 break;
4699         }
4700
4701         return ret;
4702 }
4703
4704 /* Upper GRO stack assumes network header starts at gro_offset=0
4705  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4706  * We copy ethernet header into skb->data to have a common layout.
4707  */
4708 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4709 {
4710         struct sk_buff *skb = napi->skb;
4711         const struct ethhdr *eth;
4712         unsigned int hlen = sizeof(*eth);
4713
4714         napi->skb = NULL;
4715
4716         skb_reset_mac_header(skb);
4717         skb_gro_reset_offset(skb);
4718
4719         eth = skb_gro_header_fast(skb, 0);
4720         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4721                 eth = skb_gro_header_slow(skb, hlen, 0);
4722                 if (unlikely(!eth)) {
4723                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4724                                              __func__, napi->dev->name);
4725                         napi_reuse_skb(napi, skb);
4726                         return NULL;
4727                 }
4728         } else {
4729                 gro_pull_from_frag0(skb, hlen);
4730                 NAPI_GRO_CB(skb)->frag0 += hlen;
4731                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4732         }
4733         __skb_pull(skb, hlen);
4734
4735         /*
4736          * This works because the only protocols we care about don't require
4737          * special handling.
4738          * We'll fix it up properly in napi_frags_finish()
4739          */
4740         skb->protocol = eth->h_proto;
4741
4742         return skb;
4743 }
4744
4745 gro_result_t napi_gro_frags(struct napi_struct *napi)
4746 {
4747         struct sk_buff *skb = napi_frags_skb(napi);
4748
4749         if (!skb)
4750                 return GRO_DROP;
4751
4752         trace_napi_gro_frags_entry(skb);
4753
4754         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4755 }
4756 EXPORT_SYMBOL(napi_gro_frags);
4757
4758 /* Compute the checksum from gro_offset and return the folded value
4759  * after adding in any pseudo checksum.
4760  */
4761 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4762 {
4763         __wsum wsum;
4764         __sum16 sum;
4765
4766         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4767
4768         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4769         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4770         if (likely(!sum)) {
4771                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4772                     !skb->csum_complete_sw)
4773                         netdev_rx_csum_fault(skb->dev);
4774         }
4775
4776         NAPI_GRO_CB(skb)->csum = wsum;
4777         NAPI_GRO_CB(skb)->csum_valid = 1;
4778
4779         return sum;
4780 }
4781 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4782
4783 /*
4784  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4785  * Note: called with local irq disabled, but exits with local irq enabled.
4786  */
4787 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4788 {
4789 #ifdef CONFIG_RPS
4790         struct softnet_data *remsd = sd->rps_ipi_list;
4791
4792         if (remsd) {
4793                 sd->rps_ipi_list = NULL;
4794
4795                 local_irq_enable();
4796
4797                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4798                 while (remsd) {
4799                         struct softnet_data *next = remsd->rps_ipi_next;
4800
4801                         if (cpu_online(remsd->cpu))
4802                                 smp_call_function_single_async(remsd->cpu,
4803                                                            &remsd->csd);
4804                         remsd = next;
4805                 }
4806         } else
4807 #endif
4808                 local_irq_enable();
4809 }
4810
4811 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4812 {
4813 #ifdef CONFIG_RPS
4814         return sd->rps_ipi_list != NULL;
4815 #else
4816         return false;
4817 #endif
4818 }
4819
4820 static int process_backlog(struct napi_struct *napi, int quota)
4821 {
4822         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4823         bool again = true;
4824         int work = 0;
4825
4826         /* Check if we have pending ipi, its better to send them now,
4827          * not waiting net_rx_action() end.
4828          */
4829         if (sd_has_rps_ipi_waiting(sd)) {
4830                 local_irq_disable();
4831                 net_rps_action_and_irq_enable(sd);
4832         }
4833
4834         napi->weight = weight_p;
4835         while (again) {
4836                 struct sk_buff *skb;
4837
4838                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4839                         rcu_read_lock();
4840                         __netif_receive_skb(skb);
4841                         rcu_read_unlock();
4842                         input_queue_head_incr(sd);
4843                         if (++work >= quota)
4844                                 return work;
4845
4846                 }
4847
4848                 local_irq_disable();
4849                 rps_lock(sd);
4850                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4851                         /*
4852                          * Inline a custom version of __napi_complete().
4853                          * only current cpu owns and manipulates this napi,
4854                          * and NAPI_STATE_SCHED is the only possible flag set
4855                          * on backlog.
4856                          * We can use a plain write instead of clear_bit(),
4857                          * and we dont need an smp_mb() memory barrier.
4858                          */
4859                         napi->state = 0;
4860                         again = false;
4861                 } else {
4862                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
4863                                                    &sd->process_queue);
4864                 }
4865                 rps_unlock(sd);
4866                 local_irq_enable();
4867         }
4868
4869         return work;
4870 }
4871
4872 /**
4873  * __napi_schedule - schedule for receive
4874  * @n: entry to schedule
4875  *
4876  * The entry's receive function will be scheduled to run.
4877  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4878  */
4879 void __napi_schedule(struct napi_struct *n)
4880 {
4881         unsigned long flags;
4882
4883         local_irq_save(flags);
4884         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4885         local_irq_restore(flags);
4886 }
4887 EXPORT_SYMBOL(__napi_schedule);
4888
4889 /**
4890  * __napi_schedule_irqoff - schedule for receive
4891  * @n: entry to schedule
4892  *
4893  * Variant of __napi_schedule() assuming hard irqs are masked
4894  */
4895 void __napi_schedule_irqoff(struct napi_struct *n)
4896 {
4897         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4898 }
4899 EXPORT_SYMBOL(__napi_schedule_irqoff);
4900
4901 void __napi_complete(struct napi_struct *n)
4902 {
4903         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4904
4905         /* Some drivers call us directly, instead of calling
4906          * napi_complete_done().
4907          */
4908         if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4909                 return;
4910
4911         list_del_init(&n->poll_list);
4912         smp_mb__before_atomic();
4913         clear_bit(NAPI_STATE_SCHED, &n->state);
4914 }
4915 EXPORT_SYMBOL(__napi_complete);
4916
4917 void napi_complete_done(struct napi_struct *n, int work_done)
4918 {
4919         unsigned long flags;
4920
4921         /*
4922          * 1) Don't let napi dequeue from the cpu poll list
4923          *    just in case its running on a different cpu.
4924          * 2) If we are busy polling, do nothing here, we have
4925          *    the guarantee we will be called later.
4926          */
4927         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4928                                  NAPIF_STATE_IN_BUSY_POLL)))
4929                 return;
4930
4931         if (n->gro_list) {
4932                 unsigned long timeout = 0;
4933
4934                 if (work_done)
4935                         timeout = n->dev->gro_flush_timeout;
4936
4937                 if (timeout)
4938                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4939                                       HRTIMER_MODE_REL_PINNED);
4940                 else
4941                         napi_gro_flush(n, false);
4942         }
4943         if (likely(list_empty(&n->poll_list))) {
4944                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4945         } else {
4946                 /* If n->poll_list is not empty, we need to mask irqs */
4947                 local_irq_save(flags);
4948                 __napi_complete(n);
4949                 local_irq_restore(flags);
4950         }
4951 }
4952 EXPORT_SYMBOL(napi_complete_done);
4953
4954 /* must be called under rcu_read_lock(), as we dont take a reference */
4955 static struct napi_struct *napi_by_id(unsigned int napi_id)
4956 {
4957         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4958         struct napi_struct *napi;
4959
4960         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4961                 if (napi->napi_id == napi_id)
4962                         return napi;
4963
4964         return NULL;
4965 }
4966
4967 #if defined(CONFIG_NET_RX_BUSY_POLL)
4968
4969 #define BUSY_POLL_BUDGET 8
4970
4971 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4972 {
4973         int rc;
4974
4975         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4976
4977         local_bh_disable();
4978
4979         /* All we really want here is to re-enable device interrupts.
4980          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4981          */
4982         rc = napi->poll(napi, BUSY_POLL_BUDGET);
4983         netpoll_poll_unlock(have_poll_lock);
4984         if (rc == BUSY_POLL_BUDGET)
4985                 __napi_schedule(napi);
4986         local_bh_enable();
4987         if (local_softirq_pending())
4988                 do_softirq();
4989 }
4990
4991 bool sk_busy_loop(struct sock *sk, int nonblock)
4992 {
4993         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4994         int (*napi_poll)(struct napi_struct *napi, int budget);
4995         int (*busy_poll)(struct napi_struct *dev);
4996         void *have_poll_lock = NULL;
4997         struct napi_struct *napi;
4998         int rc;
4999
5000 restart:
5001         rc = false;
5002         napi_poll = NULL;
5003
5004         rcu_read_lock();
5005
5006         napi = napi_by_id(sk->sk_napi_id);
5007         if (!napi)
5008                 goto out;
5009
5010         /* Note: ndo_busy_poll method is optional in linux-4.5 */
5011         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
5012
5013         preempt_disable();
5014         for (;;) {
5015                 rc = 0;
5016                 local_bh_disable();
5017                 if (busy_poll) {
5018                         rc = busy_poll(napi);
5019                         goto count;
5020                 }
5021                 if (!napi_poll) {
5022                         unsigned long val = READ_ONCE(napi->state);
5023
5024                         /* If multiple threads are competing for this napi,
5025                          * we avoid dirtying napi->state as much as we can.
5026                          */
5027                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5028                                    NAPIF_STATE_IN_BUSY_POLL))
5029                                 goto count;
5030                         if (cmpxchg(&napi->state, val,
5031                                     val | NAPIF_STATE_IN_BUSY_POLL |
5032                                           NAPIF_STATE_SCHED) != val)
5033                                 goto count;
5034                         have_poll_lock = netpoll_poll_lock(napi);
5035                         napi_poll = napi->poll;
5036                 }
5037                 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5038                 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5039 count:
5040                 if (rc > 0)
5041                         __NET_ADD_STATS(sock_net(sk),
5042                                         LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5043                 local_bh_enable();
5044
5045                 if (rc == LL_FLUSH_FAILED)
5046                         break; /* permanent failure */
5047
5048                 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5049                     busy_loop_timeout(end_time))
5050                         break;
5051
5052                 if (unlikely(need_resched())) {
5053                         if (napi_poll)
5054                                 busy_poll_stop(napi, have_poll_lock);
5055                         preempt_enable();
5056                         rcu_read_unlock();
5057                         cond_resched();
5058                         rc = !skb_queue_empty(&sk->sk_receive_queue);
5059                         if (rc || busy_loop_timeout(end_time))
5060                                 return rc;
5061                         goto restart;
5062                 }
5063                 cpu_relax_lowlatency();
5064         }
5065         if (napi_poll)
5066                 busy_poll_stop(napi, have_poll_lock);
5067         preempt_enable();
5068         rc = !skb_queue_empty(&sk->sk_receive_queue);
5069 out:
5070         rcu_read_unlock();
5071         return rc;
5072 }
5073 EXPORT_SYMBOL(sk_busy_loop);
5074
5075 #endif /* CONFIG_NET_RX_BUSY_POLL */
5076
5077 static void napi_hash_add(struct napi_struct *napi)
5078 {
5079         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5080             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5081                 return;
5082
5083         spin_lock(&napi_hash_lock);
5084
5085         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5086         do {
5087                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5088                         napi_gen_id = NR_CPUS + 1;
5089         } while (napi_by_id(napi_gen_id));
5090         napi->napi_id = napi_gen_id;
5091
5092         hlist_add_head_rcu(&napi->napi_hash_node,
5093                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5094
5095         spin_unlock(&napi_hash_lock);
5096 }
5097
5098 /* Warning : caller is responsible to make sure rcu grace period
5099  * is respected before freeing memory containing @napi
5100  */
5101 bool napi_hash_del(struct napi_struct *napi)
5102 {
5103         bool rcu_sync_needed = false;
5104
5105         spin_lock(&napi_hash_lock);
5106
5107         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5108                 rcu_sync_needed = true;
5109                 hlist_del_rcu(&napi->napi_hash_node);
5110         }
5111         spin_unlock(&napi_hash_lock);
5112         return rcu_sync_needed;
5113 }
5114 EXPORT_SYMBOL_GPL(napi_hash_del);
5115
5116 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5117 {
5118         struct napi_struct *napi;
5119
5120         napi = container_of(timer, struct napi_struct, timer);
5121         if (napi->gro_list)
5122                 napi_schedule(napi);
5123
5124         return HRTIMER_NORESTART;
5125 }
5126
5127 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5128                     int (*poll)(struct napi_struct *, int), int weight)
5129 {
5130         INIT_LIST_HEAD(&napi->poll_list);
5131         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5132         napi->timer.function = napi_watchdog;
5133         napi->gro_count = 0;
5134         napi->gro_list = NULL;
5135         napi->skb = NULL;
5136         napi->poll = poll;
5137         if (weight > NAPI_POLL_WEIGHT)
5138                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5139                             weight, dev->name);
5140         napi->weight = weight;
5141         list_add(&napi->dev_list, &dev->napi_list);
5142         napi->dev = dev;
5143 #ifdef CONFIG_NETPOLL
5144         spin_lock_init(&napi->poll_lock);
5145         napi->poll_owner = -1;
5146 #endif
5147         set_bit(NAPI_STATE_SCHED, &napi->state);
5148         napi_hash_add(napi);
5149 }
5150 EXPORT_SYMBOL(netif_napi_add);
5151
5152 void napi_disable(struct napi_struct *n)
5153 {
5154         might_sleep();
5155         set_bit(NAPI_STATE_DISABLE, &n->state);
5156
5157         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5158                 msleep(1);
5159         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5160                 msleep(1);
5161
5162         hrtimer_cancel(&n->timer);
5163
5164         clear_bit(NAPI_STATE_DISABLE, &n->state);
5165 }
5166 EXPORT_SYMBOL(napi_disable);
5167
5168 /* Must be called in process context */
5169 void netif_napi_del(struct napi_struct *napi)
5170 {
5171         might_sleep();
5172         if (napi_hash_del(napi))
5173                 synchronize_net();
5174         list_del_init(&napi->dev_list);
5175         napi_free_frags(napi);
5176
5177         kfree_skb_list(napi->gro_list);
5178         napi->gro_list = NULL;
5179         napi->gro_count = 0;
5180 }
5181 EXPORT_SYMBOL(netif_napi_del);
5182
5183 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5184 {
5185         void *have;
5186         int work, weight;
5187
5188         list_del_init(&n->poll_list);
5189
5190         have = netpoll_poll_lock(n);
5191
5192         weight = n->weight;
5193
5194         /* This NAPI_STATE_SCHED test is for avoiding a race
5195          * with netpoll's poll_napi().  Only the entity which
5196          * obtains the lock and sees NAPI_STATE_SCHED set will
5197          * actually make the ->poll() call.  Therefore we avoid
5198          * accidentally calling ->poll() when NAPI is not scheduled.
5199          */
5200         work = 0;
5201         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5202                 work = n->poll(n, weight);
5203                 trace_napi_poll(n, work, weight);
5204         }
5205
5206         WARN_ON_ONCE(work > weight);
5207
5208         if (likely(work < weight))
5209                 goto out_unlock;
5210
5211         /* Drivers must not modify the NAPI state if they
5212          * consume the entire weight.  In such cases this code
5213          * still "owns" the NAPI instance and therefore can
5214          * move the instance around on the list at-will.
5215          */
5216         if (unlikely(napi_disable_pending(n))) {
5217                 napi_complete(n);
5218                 goto out_unlock;
5219         }
5220
5221         if (n->gro_list) {
5222                 /* flush too old packets
5223                  * If HZ < 1000, flush all packets.
5224                  */
5225                 napi_gro_flush(n, HZ >= 1000);
5226         }
5227
5228         /* Some drivers may have called napi_schedule
5229          * prior to exhausting their budget.
5230          */
5231         if (unlikely(!list_empty(&n->poll_list))) {
5232                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5233                              n->dev ? n->dev->name : "backlog");
5234                 goto out_unlock;
5235         }
5236
5237         list_add_tail(&n->poll_list, repoll);
5238
5239 out_unlock:
5240         netpoll_poll_unlock(have);
5241
5242         return work;
5243 }
5244
5245 static __latent_entropy void net_rx_action(struct softirq_action *h)
5246 {
5247         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5248         unsigned long time_limit = jiffies + 2;
5249         int budget = netdev_budget;
5250         LIST_HEAD(list);
5251         LIST_HEAD(repoll);
5252
5253         local_irq_disable();
5254         list_splice_init(&sd->poll_list, &list);
5255         local_irq_enable();
5256
5257         for (;;) {
5258                 struct napi_struct *n;
5259
5260                 if (list_empty(&list)) {
5261                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5262                                 return;
5263                         break;
5264                 }
5265
5266                 n = list_first_entry(&list, struct napi_struct, poll_list);
5267                 budget -= napi_poll(n, &repoll);
5268
5269                 /* If softirq window is exhausted then punt.
5270                  * Allow this to run for 2 jiffies since which will allow
5271                  * an average latency of 1.5/HZ.
5272                  */
5273                 if (unlikely(budget <= 0 ||
5274                              time_after_eq(jiffies, time_limit))) {
5275                         sd->time_squeeze++;
5276                         break;
5277                 }
5278         }
5279
5280         __kfree_skb_flush();
5281         local_irq_disable();
5282
5283         list_splice_tail_init(&sd->poll_list, &list);
5284         list_splice_tail(&repoll, &list);
5285         list_splice(&list, &sd->poll_list);
5286         if (!list_empty(&sd->poll_list))
5287                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5288
5289         net_rps_action_and_irq_enable(sd);
5290 }
5291
5292 struct netdev_adjacent {
5293         struct net_device *dev;
5294
5295         /* upper master flag, there can only be one master device per list */
5296         bool master;
5297
5298         /* counter for the number of times this device was added to us */
5299         u16 ref_nr;
5300
5301         /* private field for the users */
5302         void *private;
5303
5304         struct list_head list;
5305         struct rcu_head rcu;
5306 };
5307
5308 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5309                                                  struct list_head *adj_list)
5310 {
5311         struct netdev_adjacent *adj;
5312
5313         list_for_each_entry(adj, adj_list, list) {
5314                 if (adj->dev == adj_dev)
5315                         return adj;
5316         }
5317         return NULL;
5318 }
5319
5320 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5321 {
5322         struct net_device *dev = data;
5323
5324         return upper_dev == dev;
5325 }
5326
5327 /**
5328  * netdev_has_upper_dev - Check if device is linked to an upper device
5329  * @dev: device
5330  * @upper_dev: upper device to check
5331  *
5332  * Find out if a device is linked to specified upper device and return true
5333  * in case it is. Note that this checks only immediate upper device,
5334  * not through a complete stack of devices. The caller must hold the RTNL lock.
5335  */
5336 bool netdev_has_upper_dev(struct net_device *dev,
5337                           struct net_device *upper_dev)
5338 {
5339         ASSERT_RTNL();
5340
5341         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5342                                              upper_dev);
5343 }
5344 EXPORT_SYMBOL(netdev_has_upper_dev);
5345
5346 /**
5347  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5348  * @dev: device
5349  * @upper_dev: upper device to check
5350  *
5351  * Find out if a device is linked to specified upper device and return true
5352  * in case it is. Note that this checks the entire upper device chain.
5353  * The caller must hold rcu lock.
5354  */
5355
5356 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5357                                   struct net_device *upper_dev)
5358 {
5359         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5360                                                upper_dev);
5361 }
5362 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5363
5364 /**
5365  * netdev_has_any_upper_dev - Check if device is linked to some device
5366  * @dev: device
5367  *
5368  * Find out if a device is linked to an upper device and return true in case
5369  * it is. The caller must hold the RTNL lock.
5370  */
5371 static bool netdev_has_any_upper_dev(struct net_device *dev)
5372 {
5373         ASSERT_RTNL();
5374
5375         return !list_empty(&dev->adj_list.upper);
5376 }
5377
5378 /**
5379  * netdev_master_upper_dev_get - Get master upper device
5380  * @dev: device
5381  *
5382  * Find a master upper device and return pointer to it or NULL in case
5383  * it's not there. The caller must hold the RTNL lock.
5384  */
5385 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5386 {
5387         struct netdev_adjacent *upper;
5388
5389         ASSERT_RTNL();
5390
5391         if (list_empty(&dev->adj_list.upper))
5392                 return NULL;
5393
5394         upper = list_first_entry(&dev->adj_list.upper,
5395                                  struct netdev_adjacent, list);
5396         if (likely(upper->master))
5397                 return upper->dev;
5398         return NULL;
5399 }
5400 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5401
5402 /**
5403  * netdev_has_any_lower_dev - Check if device is linked to some device
5404  * @dev: device
5405  *
5406  * Find out if a device is linked to a lower device and return true in case
5407  * it is. The caller must hold the RTNL lock.
5408  */
5409 static bool netdev_has_any_lower_dev(struct net_device *dev)
5410 {
5411         ASSERT_RTNL();
5412
5413         return !list_empty(&dev->adj_list.lower);
5414 }
5415
5416 void *netdev_adjacent_get_private(struct list_head *adj_list)
5417 {
5418         struct netdev_adjacent *adj;
5419
5420         adj = list_entry(adj_list, struct netdev_adjacent, list);
5421
5422         return adj->private;
5423 }
5424 EXPORT_SYMBOL(netdev_adjacent_get_private);
5425
5426 /**
5427  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5428  * @dev: device
5429  * @iter: list_head ** of the current position
5430  *
5431  * Gets the next device from the dev's upper list, starting from iter
5432  * position. The caller must hold RCU read lock.
5433  */
5434 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5435                                                  struct list_head **iter)
5436 {
5437         struct netdev_adjacent *upper;
5438
5439         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5440
5441         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5442
5443         if (&upper->list == &dev->adj_list.upper)
5444                 return NULL;
5445
5446         *iter = &upper->list;
5447
5448         return upper->dev;
5449 }
5450 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5451
5452 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5453                                                     struct list_head **iter)
5454 {
5455         struct netdev_adjacent *upper;
5456
5457         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5458
5459         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5460
5461         if (&upper->list == &dev->adj_list.upper)
5462                 return NULL;
5463
5464         *iter = &upper->list;
5465
5466         return upper->dev;
5467 }
5468
5469 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5470                                   int (*fn)(struct net_device *dev,
5471                                             void *data),
5472                                   void *data)
5473 {
5474         struct net_device *udev;
5475         struct list_head *iter;
5476         int ret;
5477
5478         for (iter = &dev->adj_list.upper,
5479              udev = netdev_next_upper_dev_rcu(dev, &iter);
5480              udev;
5481              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5482                 /* first is the upper device itself */
5483                 ret = fn(udev, data);
5484                 if (ret)
5485                         return ret;
5486
5487                 /* then look at all of its upper devices */
5488                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5489                 if (ret)
5490                         return ret;
5491         }
5492
5493         return 0;
5494 }
5495 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5496
5497 /**
5498  * netdev_lower_get_next_private - Get the next ->private from the
5499  *                                 lower neighbour list
5500  * @dev: device
5501  * @iter: list_head ** of the current position
5502  *
5503  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5504  * list, starting from iter position. The caller must hold either hold the
5505  * RTNL lock or its own locking that guarantees that the neighbour lower
5506  * list will remain unchanged.
5507  */
5508 void *netdev_lower_get_next_private(struct net_device *dev,
5509                                     struct list_head **iter)
5510 {
5511         struct netdev_adjacent *lower;
5512
5513         lower = list_entry(*iter, struct netdev_adjacent, list);
5514
5515         if (&lower->list == &dev->adj_list.lower)
5516                 return NULL;
5517
5518         *iter = lower->list.next;
5519
5520         return lower->private;
5521 }
5522 EXPORT_SYMBOL(netdev_lower_get_next_private);
5523
5524 /**
5525  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5526  *                                     lower neighbour list, RCU
5527  *                                     variant
5528  * @dev: device
5529  * @iter: list_head ** of the current position
5530  *
5531  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5532  * list, starting from iter position. The caller must hold RCU read lock.
5533  */
5534 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5535                                         struct list_head **iter)
5536 {
5537         struct netdev_adjacent *lower;
5538
5539         WARN_ON_ONCE(!rcu_read_lock_held());
5540
5541         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5542
5543         if (&lower->list == &dev->adj_list.lower)
5544                 return NULL;
5545
5546         *iter = &lower->list;
5547
5548         return lower->private;
5549 }
5550 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5551
5552 /**
5553  * netdev_lower_get_next - Get the next device from the lower neighbour
5554  *                         list
5555  * @dev: device
5556  * @iter: list_head ** of the current position
5557  *
5558  * Gets the next netdev_adjacent from the dev's lower neighbour
5559  * list, starting from iter position. The caller must hold RTNL lock or
5560  * its own locking that guarantees that the neighbour lower
5561  * list will remain unchanged.
5562  */
5563 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5564 {
5565         struct netdev_adjacent *lower;
5566
5567         lower = list_entry(*iter, struct netdev_adjacent, list);
5568
5569         if (&lower->list == &dev->adj_list.lower)
5570                 return NULL;
5571
5572         *iter = lower->list.next;
5573
5574         return lower->dev;
5575 }
5576 EXPORT_SYMBOL(netdev_lower_get_next);
5577
5578 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5579                                                 struct list_head **iter)
5580 {
5581         struct netdev_adjacent *lower;
5582
5583         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5584
5585         if (&lower->list == &dev->adj_list.lower)
5586                 return NULL;
5587
5588         *iter = &lower->list;
5589
5590         return lower->dev;
5591 }
5592
5593 int netdev_walk_all_lower_dev(struct net_device *dev,
5594                               int (*fn)(struct net_device *dev,
5595                                         void *data),
5596                               void *data)
5597 {
5598         struct net_device *ldev;
5599         struct list_head *iter;
5600         int ret;
5601
5602         for (iter = &dev->adj_list.lower,
5603              ldev = netdev_next_lower_dev(dev, &iter);
5604              ldev;
5605              ldev = netdev_next_lower_dev(dev, &iter)) {
5606                 /* first is the lower device itself */
5607                 ret = fn(ldev, data);
5608                 if (ret)
5609                         return ret;
5610
5611                 /* then look at all of its lower devices */
5612                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5613                 if (ret)
5614                         return ret;
5615         }
5616
5617         return 0;
5618 }
5619 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5620
5621 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5622                                                     struct list_head **iter)
5623 {
5624         struct netdev_adjacent *lower;
5625
5626         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5627         if (&lower->list == &dev->adj_list.lower)
5628                 return NULL;
5629
5630         *iter = &lower->list;
5631
5632         return lower->dev;
5633 }
5634
5635 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5636                                   int (*fn)(struct net_device *dev,
5637                                             void *data),
5638                                   void *data)
5639 {
5640         struct net_device *ldev;
5641         struct list_head *iter;
5642         int ret;
5643
5644         for (iter = &dev->adj_list.lower,
5645              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5646              ldev;
5647              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5648                 /* first is the lower device itself */
5649                 ret = fn(ldev, data);
5650                 if (ret)
5651                         return ret;
5652
5653                 /* then look at all of its lower devices */
5654                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5655                 if (ret)
5656                         return ret;
5657         }
5658
5659         return 0;
5660 }
5661 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5662
5663 /**
5664  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5665  *                                     lower neighbour list, RCU
5666  *                                     variant
5667  * @dev: device
5668  *
5669  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5670  * list. The caller must hold RCU read lock.
5671  */
5672 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5673 {
5674         struct netdev_adjacent *lower;
5675
5676         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5677                         struct netdev_adjacent, list);
5678         if (lower)
5679                 return lower->private;
5680         return NULL;
5681 }
5682 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5683
5684 /**
5685  * netdev_master_upper_dev_get_rcu - Get master upper device
5686  * @dev: device
5687  *
5688  * Find a master upper device and return pointer to it or NULL in case
5689  * it's not there. The caller must hold the RCU read lock.
5690  */
5691 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5692 {
5693         struct netdev_adjacent *upper;
5694
5695         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5696                                        struct netdev_adjacent, list);
5697         if (upper && likely(upper->master))
5698                 return upper->dev;
5699         return NULL;
5700 }
5701 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5702
5703 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5704                               struct net_device *adj_dev,
5705                               struct list_head *dev_list)
5706 {
5707         char linkname[IFNAMSIZ+7];
5708         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5709                 "upper_%s" : "lower_%s", adj_dev->name);
5710         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5711                                  linkname);
5712 }
5713 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5714                                char *name,
5715                                struct list_head *dev_list)
5716 {
5717         char linkname[IFNAMSIZ+7];
5718         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5719                 "upper_%s" : "lower_%s", name);
5720         sysfs_remove_link(&(dev->dev.kobj), linkname);
5721 }
5722
5723 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5724                                                  struct net_device *adj_dev,
5725                                                  struct list_head *dev_list)
5726 {
5727         return (dev_list == &dev->adj_list.upper ||
5728                 dev_list == &dev->adj_list.lower) &&
5729                 net_eq(dev_net(dev), dev_net(adj_dev));
5730 }
5731
5732 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5733                                         struct net_device *adj_dev,
5734                                         struct list_head *dev_list,
5735                                         void *private, bool master)
5736 {
5737         struct netdev_adjacent *adj;
5738         int ret;
5739
5740         adj = __netdev_find_adj(adj_dev, dev_list);
5741
5742         if (adj) {
5743                 adj->ref_nr += 1;
5744                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5745                          dev->name, adj_dev->name, adj->ref_nr);
5746
5747                 return 0;
5748         }
5749
5750         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5751         if (!adj)
5752                 return -ENOMEM;
5753
5754         adj->dev = adj_dev;
5755         adj->master = master;
5756         adj->ref_nr = 1;
5757         adj->private = private;
5758         dev_hold(adj_dev);
5759
5760         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5761                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5762
5763         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5764                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5765                 if (ret)
5766                         goto free_adj;
5767         }
5768
5769         /* Ensure that master link is always the first item in list. */
5770         if (master) {
5771                 ret = sysfs_create_link(&(dev->dev.kobj),
5772                                         &(adj_dev->dev.kobj), "master");
5773                 if (ret)
5774                         goto remove_symlinks;
5775
5776                 list_add_rcu(&adj->list, dev_list);
5777         } else {
5778                 list_add_tail_rcu(&adj->list, dev_list);
5779         }
5780
5781         return 0;
5782
5783 remove_symlinks:
5784         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5785                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5786 free_adj:
5787         kfree(adj);
5788         dev_put(adj_dev);
5789
5790         return ret;
5791 }
5792
5793 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5794                                          struct net_device *adj_dev,
5795                                          u16 ref_nr,
5796                                          struct list_head *dev_list)
5797 {
5798         struct netdev_adjacent *adj;
5799
5800         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5801                  dev->name, adj_dev->name, ref_nr);
5802
5803         adj = __netdev_find_adj(adj_dev, dev_list);
5804
5805         if (!adj) {
5806                 pr_err("Adjacency does not exist for device %s from %s\n",
5807                        dev->name, adj_dev->name);
5808                 WARN_ON(1);
5809                 return;
5810         }
5811
5812         if (adj->ref_nr > ref_nr) {
5813                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5814                          dev->name, adj_dev->name, ref_nr,
5815                          adj->ref_nr - ref_nr);
5816                 adj->ref_nr -= ref_nr;
5817                 return;
5818         }
5819
5820         if (adj->master)
5821                 sysfs_remove_link(&(dev->dev.kobj), "master");
5822
5823         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5824                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5825
5826         list_del_rcu(&adj->list);
5827         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5828                  adj_dev->name, dev->name, adj_dev->name);
5829         dev_put(adj_dev);
5830         kfree_rcu(adj, rcu);
5831 }
5832
5833 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5834                                             struct net_device *upper_dev,
5835                                             struct list_head *up_list,
5836                                             struct list_head *down_list,
5837                                             void *private, bool master)
5838 {
5839         int ret;
5840
5841         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5842                                            private, master);
5843         if (ret)
5844                 return ret;
5845
5846         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5847                                            private, false);
5848         if (ret) {
5849                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5850                 return ret;
5851         }
5852
5853         return 0;
5854 }
5855
5856 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5857                                                struct net_device *upper_dev,
5858                                                u16 ref_nr,
5859                                                struct list_head *up_list,
5860                                                struct list_head *down_list)
5861 {
5862         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5863         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5864 }
5865
5866 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5867                                                 struct net_device *upper_dev,
5868                                                 void *private, bool master)
5869 {
5870         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5871                                                 &dev->adj_list.upper,
5872                                                 &upper_dev->adj_list.lower,
5873                                                 private, master);
5874 }
5875
5876 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5877                                                    struct net_device *upper_dev)
5878 {
5879         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5880                                            &dev->adj_list.upper,
5881                                            &upper_dev->adj_list.lower);
5882 }
5883
5884 static int __netdev_upper_dev_link(struct net_device *dev,
5885                                    struct net_device *upper_dev, bool master,
5886                                    void *upper_priv, void *upper_info)
5887 {
5888         struct netdev_notifier_changeupper_info changeupper_info;
5889         int ret = 0;
5890
5891         ASSERT_RTNL();
5892
5893         if (dev == upper_dev)
5894                 return -EBUSY;
5895
5896         /* To prevent loops, check if dev is not upper device to upper_dev. */
5897         if (netdev_has_upper_dev(upper_dev, dev))
5898                 return -EBUSY;
5899
5900         if (netdev_has_upper_dev(dev, upper_dev))
5901                 return -EEXIST;
5902
5903         if (master && netdev_master_upper_dev_get(dev))
5904                 return -EBUSY;
5905
5906         changeupper_info.upper_dev = upper_dev;
5907         changeupper_info.master = master;
5908         changeupper_info.linking = true;
5909         changeupper_info.upper_info = upper_info;
5910
5911         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5912                                             &changeupper_info.info);
5913         ret = notifier_to_errno(ret);
5914         if (ret)
5915                 return ret;
5916
5917         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5918                                                    master);
5919         if (ret)
5920                 return ret;
5921
5922         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5923                                             &changeupper_info.info);
5924         ret = notifier_to_errno(ret);
5925         if (ret)
5926                 goto rollback;
5927
5928         return 0;
5929
5930 rollback:
5931         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5932
5933         return ret;
5934 }
5935
5936 /**
5937  * netdev_upper_dev_link - Add a link to the upper device
5938  * @dev: device
5939  * @upper_dev: new upper device
5940  *
5941  * Adds a link to device which is upper to this one. The caller must hold
5942  * the RTNL lock. On a failure a negative errno code is returned.
5943  * On success the reference counts are adjusted and the function
5944  * returns zero.
5945  */
5946 int netdev_upper_dev_link(struct net_device *dev,
5947                           struct net_device *upper_dev)
5948 {
5949         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5950 }
5951 EXPORT_SYMBOL(netdev_upper_dev_link);
5952
5953 /**
5954  * netdev_master_upper_dev_link - Add a master link to the upper device
5955  * @dev: device
5956  * @upper_dev: new upper device
5957  * @upper_priv: upper device private
5958  * @upper_info: upper info to be passed down via notifier
5959  *
5960  * Adds a link to device which is upper to this one. In this case, only
5961  * one master upper device can be linked, although other non-master devices
5962  * might be linked as well. The caller must hold the RTNL lock.
5963  * On a failure a negative errno code is returned. On success the reference
5964  * counts are adjusted and the function returns zero.
5965  */
5966 int netdev_master_upper_dev_link(struct net_device *dev,
5967                                  struct net_device *upper_dev,
5968                                  void *upper_priv, void *upper_info)
5969 {
5970         return __netdev_upper_dev_link(dev, upper_dev, true,
5971                                        upper_priv, upper_info);
5972 }
5973 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5974
5975 /**
5976  * netdev_upper_dev_unlink - Removes a link to upper device
5977  * @dev: device
5978  * @upper_dev: new upper device
5979  *
5980  * Removes a link to device which is upper to this one. The caller must hold
5981  * the RTNL lock.
5982  */
5983 void netdev_upper_dev_unlink(struct net_device *dev,
5984                              struct net_device *upper_dev)
5985 {
5986         struct netdev_notifier_changeupper_info changeupper_info;
5987         ASSERT_RTNL();
5988
5989         changeupper_info.upper_dev = upper_dev;
5990         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5991         changeupper_info.linking = false;
5992
5993         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5994                                       &changeupper_info.info);
5995
5996         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5997
5998         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5999                                       &changeupper_info.info);
6000 }
6001 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6002
6003 /**
6004  * netdev_bonding_info_change - Dispatch event about slave change
6005  * @dev: device
6006  * @bonding_info: info to dispatch
6007  *
6008  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6009  * The caller must hold the RTNL lock.
6010  */
6011 void netdev_bonding_info_change(struct net_device *dev,
6012                                 struct netdev_bonding_info *bonding_info)
6013 {
6014         struct netdev_notifier_bonding_info     info;
6015
6016         memcpy(&info.bonding_info, bonding_info,
6017                sizeof(struct netdev_bonding_info));
6018         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6019                                       &info.info);
6020 }
6021 EXPORT_SYMBOL(netdev_bonding_info_change);
6022
6023 static void netdev_adjacent_add_links(struct net_device *dev)
6024 {
6025         struct netdev_adjacent *iter;
6026
6027         struct net *net = dev_net(dev);
6028
6029         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6030                 if (!net_eq(net, dev_net(iter->dev)))
6031                         continue;
6032                 netdev_adjacent_sysfs_add(iter->dev, dev,
6033                                           &iter->dev->adj_list.lower);
6034                 netdev_adjacent_sysfs_add(dev, iter->dev,
6035                                           &dev->adj_list.upper);
6036         }
6037
6038         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6039                 if (!net_eq(net, dev_net(iter->dev)))
6040                         continue;
6041                 netdev_adjacent_sysfs_add(iter->dev, dev,
6042                                           &iter->dev->adj_list.upper);
6043                 netdev_adjacent_sysfs_add(dev, iter->dev,
6044                                           &dev->adj_list.lower);
6045         }
6046 }
6047
6048 static void netdev_adjacent_del_links(struct net_device *dev)
6049 {
6050         struct netdev_adjacent *iter;
6051
6052         struct net *net = dev_net(dev);
6053
6054         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6055                 if (!net_eq(net, dev_net(iter->dev)))
6056                         continue;
6057                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6058                                           &iter->dev->adj_list.lower);
6059                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6060                                           &dev->adj_list.upper);
6061         }
6062
6063         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6064                 if (!net_eq(net, dev_net(iter->dev)))
6065                         continue;
6066                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6067                                           &iter->dev->adj_list.upper);
6068                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6069                                           &dev->adj_list.lower);
6070         }
6071 }
6072
6073 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6074 {
6075         struct netdev_adjacent *iter;
6076
6077         struct net *net = dev_net(dev);
6078
6079         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6080                 if (!net_eq(net, dev_net(iter->dev)))
6081                         continue;
6082                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6083                                           &iter->dev->adj_list.lower);
6084                 netdev_adjacent_sysfs_add(iter->dev, dev,
6085                                           &iter->dev->adj_list.lower);
6086         }
6087
6088         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6089                 if (!net_eq(net, dev_net(iter->dev)))
6090                         continue;
6091                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6092                                           &iter->dev->adj_list.upper);
6093                 netdev_adjacent_sysfs_add(iter->dev, dev,
6094                                           &iter->dev->adj_list.upper);
6095         }
6096 }
6097
6098 void *netdev_lower_dev_get_private(struct net_device *dev,
6099                                    struct net_device *lower_dev)
6100 {
6101         struct netdev_adjacent *lower;
6102
6103         if (!lower_dev)
6104                 return NULL;
6105         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6106         if (!lower)
6107                 return NULL;
6108
6109         return lower->private;
6110 }
6111 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6112
6113
6114 int dev_get_nest_level(struct net_device *dev)
6115 {
6116         struct net_device *lower = NULL;
6117         struct list_head *iter;
6118         int max_nest = -1;
6119         int nest;
6120
6121         ASSERT_RTNL();
6122
6123         netdev_for_each_lower_dev(dev, lower, iter) {
6124                 nest = dev_get_nest_level(lower);
6125                 if (max_nest < nest)
6126                         max_nest = nest;
6127         }
6128
6129         return max_nest + 1;
6130 }
6131 EXPORT_SYMBOL(dev_get_nest_level);
6132
6133 /**
6134  * netdev_lower_change - Dispatch event about lower device state change
6135  * @lower_dev: device
6136  * @lower_state_info: state to dispatch
6137  *
6138  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6139  * The caller must hold the RTNL lock.
6140  */
6141 void netdev_lower_state_changed(struct net_device *lower_dev,
6142                                 void *lower_state_info)
6143 {
6144         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6145
6146         ASSERT_RTNL();
6147         changelowerstate_info.lower_state_info = lower_state_info;
6148         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6149                                       &changelowerstate_info.info);
6150 }
6151 EXPORT_SYMBOL(netdev_lower_state_changed);
6152
6153 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6154                                            struct neighbour *n)
6155 {
6156         struct net_device *lower_dev, *stop_dev;
6157         struct list_head *iter;
6158         int err;
6159
6160         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6161                 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6162                         continue;
6163                 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6164                 if (err) {
6165                         stop_dev = lower_dev;
6166                         goto rollback;
6167                 }
6168         }
6169         return 0;
6170
6171 rollback:
6172         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6173                 if (lower_dev == stop_dev)
6174                         break;
6175                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6176                         continue;
6177                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6178         }
6179         return err;
6180 }
6181 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6182
6183 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6184                                           struct neighbour *n)
6185 {
6186         struct net_device *lower_dev;
6187         struct list_head *iter;
6188
6189         netdev_for_each_lower_dev(dev, lower_dev, iter) {
6190                 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6191                         continue;
6192                 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6193         }
6194 }
6195 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6196
6197 static void dev_change_rx_flags(struct net_device *dev, int flags)
6198 {
6199         const struct net_device_ops *ops = dev->netdev_ops;
6200
6201         if (ops->ndo_change_rx_flags)
6202                 ops->ndo_change_rx_flags(dev, flags);
6203 }
6204
6205 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6206 {
6207         unsigned int old_flags = dev->flags;
6208         kuid_t uid;
6209         kgid_t gid;
6210
6211         ASSERT_RTNL();
6212
6213         dev->flags |= IFF_PROMISC;
6214         dev->promiscuity += inc;
6215         if (dev->promiscuity == 0) {
6216                 /*
6217                  * Avoid overflow.
6218                  * If inc causes overflow, untouch promisc and return error.
6219                  */
6220                 if (inc < 0)
6221                         dev->flags &= ~IFF_PROMISC;
6222                 else {
6223                         dev->promiscuity -= inc;
6224                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6225                                 dev->name);
6226                         return -EOVERFLOW;
6227                 }
6228         }
6229         if (dev->flags != old_flags) {
6230                 pr_info("device %s %s promiscuous mode\n",
6231                         dev->name,
6232                         dev->flags & IFF_PROMISC ? "entered" : "left");
6233                 if (audit_enabled) {
6234                         current_uid_gid(&uid, &gid);
6235                         audit_log(current->audit_context, GFP_ATOMIC,
6236                                 AUDIT_ANOM_PROMISCUOUS,
6237                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6238                                 dev->name, (dev->flags & IFF_PROMISC),
6239                                 (old_flags & IFF_PROMISC),
6240                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6241                                 from_kuid(&init_user_ns, uid),
6242                                 from_kgid(&init_user_ns, gid),
6243                                 audit_get_sessionid(current));
6244                 }
6245
6246                 dev_change_rx_flags(dev, IFF_PROMISC);
6247         }
6248         if (notify)
6249                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6250         return 0;
6251 }
6252
6253 /**
6254  *      dev_set_promiscuity     - update promiscuity count on a device
6255  *      @dev: device
6256  *      @inc: modifier
6257  *
6258  *      Add or remove promiscuity from a device. While the count in the device
6259  *      remains above zero the interface remains promiscuous. Once it hits zero
6260  *      the device reverts back to normal filtering operation. A negative inc
6261  *      value is used to drop promiscuity on the device.
6262  *      Return 0 if successful or a negative errno code on error.
6263  */
6264 int dev_set_promiscuity(struct net_device *dev, int inc)
6265 {
6266         unsigned int old_flags = dev->flags;
6267         int err;
6268
6269         err = __dev_set_promiscuity(dev, inc, true);
6270         if (err < 0)
6271                 return err;
6272         if (dev->flags != old_flags)
6273                 dev_set_rx_mode(dev);
6274         return err;
6275 }
6276 EXPORT_SYMBOL(dev_set_promiscuity);
6277
6278 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6279 {
6280         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6281
6282         ASSERT_RTNL();
6283
6284         dev->flags |= IFF_ALLMULTI;
6285         dev->allmulti += inc;
6286         if (dev->allmulti == 0) {
6287                 /*
6288                  * Avoid overflow.
6289                  * If inc causes overflow, untouch allmulti and return error.
6290                  */
6291                 if (inc < 0)
6292                         dev->flags &= ~IFF_ALLMULTI;
6293                 else {
6294                         dev->allmulti -= inc;
6295                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6296                                 dev->name);
6297                         return -EOVERFLOW;
6298                 }
6299         }
6300         if (dev->flags ^ old_flags) {
6301                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6302                 dev_set_rx_mode(dev);
6303                 if (notify)
6304                         __dev_notify_flags(dev, old_flags,
6305                                            dev->gflags ^ old_gflags);
6306         }
6307         return 0;
6308 }
6309
6310 /**
6311  *      dev_set_allmulti        - update allmulti count on a device
6312  *      @dev: device
6313  *      @inc: modifier
6314  *
6315  *      Add or remove reception of all multicast frames to a device. While the
6316  *      count in the device remains above zero the interface remains listening
6317  *      to all interfaces. Once it hits zero the device reverts back to normal
6318  *      filtering operation. A negative @inc value is used to drop the counter
6319  *      when releasing a resource needing all multicasts.
6320  *      Return 0 if successful or a negative errno code on error.
6321  */
6322
6323 int dev_set_allmulti(struct net_device *dev, int inc)
6324 {
6325         return __dev_set_allmulti(dev, inc, true);
6326 }
6327 EXPORT_SYMBOL(dev_set_allmulti);
6328
6329 /*
6330  *      Upload unicast and multicast address lists to device and
6331  *      configure RX filtering. When the device doesn't support unicast
6332  *      filtering it is put in promiscuous mode while unicast addresses
6333  *      are present.
6334  */
6335 void __dev_set_rx_mode(struct net_device *dev)
6336 {
6337         const struct net_device_ops *ops = dev->netdev_ops;
6338
6339         /* dev_open will call this function so the list will stay sane. */
6340         if (!(dev->flags&IFF_UP))
6341                 return;
6342
6343         if (!netif_device_present(dev))
6344                 return;
6345
6346         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6347                 /* Unicast addresses changes may only happen under the rtnl,
6348                  * therefore calling __dev_set_promiscuity here is safe.
6349                  */
6350                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6351                         __dev_set_promiscuity(dev, 1, false);
6352                         dev->uc_promisc = true;
6353                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6354                         __dev_set_promiscuity(dev, -1, false);
6355                         dev->uc_promisc = false;
6356                 }
6357         }
6358
6359         if (ops->ndo_set_rx_mode)
6360                 ops->ndo_set_rx_mode(dev);
6361 }
6362
6363 void dev_set_rx_mode(struct net_device *dev)
6364 {
6365         netif_addr_lock_bh(dev);
6366         __dev_set_rx_mode(dev);
6367         netif_addr_unlock_bh(dev);
6368 }
6369
6370 /**
6371  *      dev_get_flags - get flags reported to userspace
6372  *      @dev: device
6373  *
6374  *      Get the combination of flag bits exported through APIs to userspace.
6375  */
6376 unsigned int dev_get_flags(const struct net_device *dev)
6377 {
6378         unsigned int flags;
6379
6380         flags = (dev->flags & ~(IFF_PROMISC |
6381                                 IFF_ALLMULTI |
6382                                 IFF_RUNNING |
6383                                 IFF_LOWER_UP |
6384                                 IFF_DORMANT)) |
6385                 (dev->gflags & (IFF_PROMISC |
6386                                 IFF_ALLMULTI));
6387
6388         if (netif_running(dev)) {
6389                 if (netif_oper_up(dev))
6390                         flags |= IFF_RUNNING;
6391                 if (netif_carrier_ok(dev))
6392                         flags |= IFF_LOWER_UP;
6393                 if (netif_dormant(dev))
6394                         flags |= IFF_DORMANT;
6395         }
6396
6397         return flags;
6398 }
6399 EXPORT_SYMBOL(dev_get_flags);
6400
6401 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6402 {
6403         unsigned int old_flags = dev->flags;
6404         int ret;
6405
6406         ASSERT_RTNL();
6407
6408         /*
6409          *      Set the flags on our device.
6410          */
6411
6412         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6413                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6414                                IFF_AUTOMEDIA)) |
6415                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6416                                     IFF_ALLMULTI));
6417
6418         /*
6419          *      Load in the correct multicast list now the flags have changed.
6420          */
6421
6422         if ((old_flags ^ flags) & IFF_MULTICAST)
6423                 dev_change_rx_flags(dev, IFF_MULTICAST);
6424
6425         dev_set_rx_mode(dev);
6426
6427         /*
6428          *      Have we downed the interface. We handle IFF_UP ourselves
6429          *      according to user attempts to set it, rather than blindly
6430          *      setting it.
6431          */
6432
6433         ret = 0;
6434         if ((old_flags ^ flags) & IFF_UP)
6435                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6436
6437         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6438                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6439                 unsigned int old_flags = dev->flags;
6440
6441                 dev->gflags ^= IFF_PROMISC;
6442
6443                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6444                         if (dev->flags != old_flags)
6445                                 dev_set_rx_mode(dev);
6446         }
6447
6448         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6449            is important. Some (broken) drivers set IFF_PROMISC, when
6450            IFF_ALLMULTI is requested not asking us and not reporting.
6451          */
6452         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6453                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6454
6455                 dev->gflags ^= IFF_ALLMULTI;
6456                 __dev_set_allmulti(dev, inc, false);
6457         }
6458
6459         return ret;
6460 }
6461
6462 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6463                         unsigned int gchanges)
6464 {
6465         unsigned int changes = dev->flags ^ old_flags;
6466
6467         if (gchanges)
6468                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6469
6470         if (changes & IFF_UP) {
6471                 if (dev->flags & IFF_UP)
6472                         call_netdevice_notifiers(NETDEV_UP, dev);
6473                 else
6474                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6475         }
6476
6477         if (dev->flags & IFF_UP &&
6478             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6479                 struct netdev_notifier_change_info change_info;
6480
6481                 change_info.flags_changed = changes;
6482                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6483                                               &change_info.info);
6484         }
6485 }
6486
6487 /**
6488  *      dev_change_flags - change device settings
6489  *      @dev: device
6490  *      @flags: device state flags
6491  *
6492  *      Change settings on device based state flags. The flags are
6493  *      in the userspace exported format.
6494  */
6495 int dev_change_flags(struct net_device *dev, unsigned int flags)
6496 {
6497         int ret;
6498         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6499
6500         ret = __dev_change_flags(dev, flags);
6501         if (ret < 0)
6502                 return ret;
6503
6504         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6505         __dev_notify_flags(dev, old_flags, changes);
6506         return ret;
6507 }
6508 EXPORT_SYMBOL(dev_change_flags);
6509
6510 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6511 {
6512         const struct net_device_ops *ops = dev->netdev_ops;
6513
6514         if (ops->ndo_change_mtu)
6515                 return ops->ndo_change_mtu(dev, new_mtu);
6516
6517         dev->mtu = new_mtu;
6518         return 0;
6519 }
6520
6521 /**
6522  *      dev_set_mtu - Change maximum transfer unit
6523  *      @dev: device
6524  *      @new_mtu: new transfer unit
6525  *
6526  *      Change the maximum transfer size of the network device.
6527  */
6528 int dev_set_mtu(struct net_device *dev, int new_mtu)
6529 {
6530         int err, orig_mtu;
6531
6532         if (new_mtu == dev->mtu)
6533                 return 0;
6534
6535         /* MTU must be positive, and in range */
6536         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6537                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6538                                     dev->name, new_mtu, dev->min_mtu);
6539                 return -EINVAL;
6540         }
6541
6542         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6543                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6544                                     dev->name, new_mtu, dev->max_mtu);
6545                 return -EINVAL;
6546         }
6547
6548         if (!netif_device_present(dev))
6549                 return -ENODEV;
6550
6551         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6552         err = notifier_to_errno(err);
6553         if (err)
6554                 return err;
6555
6556         orig_mtu = dev->mtu;
6557         err = __dev_set_mtu(dev, new_mtu);
6558
6559         if (!err) {
6560                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6561                 err = notifier_to_errno(err);
6562                 if (err) {
6563                         /* setting mtu back and notifying everyone again,
6564                          * so that they have a chance to revert changes.
6565                          */
6566                         __dev_set_mtu(dev, orig_mtu);
6567                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6568                 }
6569         }
6570         return err;
6571 }
6572 EXPORT_SYMBOL(dev_set_mtu);
6573
6574 /**
6575  *      dev_set_group - Change group this device belongs to
6576  *      @dev: device
6577  *      @new_group: group this device should belong to
6578  */
6579 void dev_set_group(struct net_device *dev, int new_group)
6580 {
6581         dev->group = new_group;
6582 }
6583 EXPORT_SYMBOL(dev_set_group);
6584
6585 /**
6586  *      dev_set_mac_address - Change Media Access Control Address
6587  *      @dev: device
6588  *      @sa: new address
6589  *
6590  *      Change the hardware (MAC) address of the device
6591  */
6592 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6593 {
6594         const struct net_device_ops *ops = dev->netdev_ops;
6595         int err;
6596
6597         if (!ops->ndo_set_mac_address)
6598                 return -EOPNOTSUPP;
6599         if (sa->sa_family != dev->type)
6600                 return -EINVAL;
6601         if (!netif_device_present(dev))
6602                 return -ENODEV;
6603         err = ops->ndo_set_mac_address(dev, sa);
6604         if (err)
6605                 return err;
6606         dev->addr_assign_type = NET_ADDR_SET;
6607         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6608         add_device_randomness(dev->dev_addr, dev->addr_len);
6609         return 0;
6610 }
6611 EXPORT_SYMBOL(dev_set_mac_address);
6612
6613 /**
6614  *      dev_change_carrier - Change device carrier
6615  *      @dev: device
6616  *      @new_carrier: new value
6617  *
6618  *      Change device carrier
6619  */
6620 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6621 {
6622         const struct net_device_ops *ops = dev->netdev_ops;
6623
6624         if (!ops->ndo_change_carrier)
6625                 return -EOPNOTSUPP;
6626         if (!netif_device_present(dev))
6627                 return -ENODEV;
6628         return ops->ndo_change_carrier(dev, new_carrier);
6629 }
6630 EXPORT_SYMBOL(dev_change_carrier);
6631
6632 /**
6633  *      dev_get_phys_port_id - Get device physical port ID
6634  *      @dev: device
6635  *      @ppid: port ID
6636  *
6637  *      Get device physical port ID
6638  */
6639 int dev_get_phys_port_id(struct net_device *dev,
6640                          struct netdev_phys_item_id *ppid)
6641 {
6642         const struct net_device_ops *ops = dev->netdev_ops;
6643
6644         if (!ops->ndo_get_phys_port_id)
6645                 return -EOPNOTSUPP;
6646         return ops->ndo_get_phys_port_id(dev, ppid);
6647 }
6648 EXPORT_SYMBOL(dev_get_phys_port_id);
6649
6650 /**
6651  *      dev_get_phys_port_name - Get device physical port name
6652  *      @dev: device
6653  *      @name: port name
6654  *      @len: limit of bytes to copy to name
6655  *
6656  *      Get device physical port name
6657  */
6658 int dev_get_phys_port_name(struct net_device *dev,
6659                            char *name, size_t len)
6660 {
6661         const struct net_device_ops *ops = dev->netdev_ops;
6662
6663         if (!ops->ndo_get_phys_port_name)
6664                 return -EOPNOTSUPP;
6665         return ops->ndo_get_phys_port_name(dev, name, len);
6666 }
6667 EXPORT_SYMBOL(dev_get_phys_port_name);
6668
6669 /**
6670  *      dev_change_proto_down - update protocol port state information
6671  *      @dev: device
6672  *      @proto_down: new value
6673  *
6674  *      This info can be used by switch drivers to set the phys state of the
6675  *      port.
6676  */
6677 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6678 {
6679         const struct net_device_ops *ops = dev->netdev_ops;
6680
6681         if (!ops->ndo_change_proto_down)
6682                 return -EOPNOTSUPP;
6683         if (!netif_device_present(dev))
6684                 return -ENODEV;
6685         return ops->ndo_change_proto_down(dev, proto_down);
6686 }
6687 EXPORT_SYMBOL(dev_change_proto_down);
6688
6689 /**
6690  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6691  *      @dev: device
6692  *      @fd: new program fd or negative value to clear
6693  *
6694  *      Set or clear a bpf program for a device
6695  */
6696 int dev_change_xdp_fd(struct net_device *dev, int fd)
6697 {
6698         const struct net_device_ops *ops = dev->netdev_ops;
6699         struct bpf_prog *prog = NULL;
6700         struct netdev_xdp xdp = {};
6701         int err;
6702
6703         if (!ops->ndo_xdp)
6704                 return -EOPNOTSUPP;
6705         if (fd >= 0) {
6706                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6707                 if (IS_ERR(prog))
6708                         return PTR_ERR(prog);
6709         }
6710
6711         xdp.command = XDP_SETUP_PROG;
6712         xdp.prog = prog;
6713         err = ops->ndo_xdp(dev, &xdp);
6714         if (err < 0 && prog)
6715                 bpf_prog_put(prog);
6716
6717         return err;
6718 }
6719 EXPORT_SYMBOL(dev_change_xdp_fd);
6720
6721 /**
6722  *      dev_new_index   -       allocate an ifindex
6723  *      @net: the applicable net namespace
6724  *
6725  *      Returns a suitable unique value for a new device interface
6726  *      number.  The caller must hold the rtnl semaphore or the
6727  *      dev_base_lock to be sure it remains unique.
6728  */
6729 static int dev_new_index(struct net *net)
6730 {
6731         int ifindex = net->ifindex;
6732         for (;;) {
6733                 if (++ifindex <= 0)
6734                         ifindex = 1;
6735                 if (!__dev_get_by_index(net, ifindex))
6736                         return net->ifindex = ifindex;
6737         }
6738 }
6739
6740 /* Delayed registration/unregisteration */
6741 static LIST_HEAD(net_todo_list);
6742 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6743
6744 static void net_set_todo(struct net_device *dev)
6745 {
6746         list_add_tail(&dev->todo_list, &net_todo_list);
6747         dev_net(dev)->dev_unreg_count++;
6748 }
6749
6750 static void rollback_registered_many(struct list_head *head)
6751 {
6752         struct net_device *dev, *tmp;
6753         LIST_HEAD(close_head);
6754
6755         BUG_ON(dev_boot_phase);
6756         ASSERT_RTNL();
6757
6758         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6759                 /* Some devices call without registering
6760                  * for initialization unwind. Remove those
6761                  * devices and proceed with the remaining.
6762                  */
6763                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6764                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6765                                  dev->name, dev);
6766
6767                         WARN_ON(1);
6768                         list_del(&dev->unreg_list);
6769                         continue;
6770                 }
6771                 dev->dismantle = true;
6772                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6773         }
6774
6775         /* If device is running, close it first. */
6776         list_for_each_entry(dev, head, unreg_list)
6777                 list_add_tail(&dev->close_list, &close_head);
6778         dev_close_many(&close_head, true);
6779
6780         list_for_each_entry(dev, head, unreg_list) {
6781                 /* And unlink it from device chain. */
6782                 unlist_netdevice(dev);
6783
6784                 dev->reg_state = NETREG_UNREGISTERING;
6785         }
6786         flush_all_backlogs();
6787
6788         synchronize_net();
6789
6790         list_for_each_entry(dev, head, unreg_list) {
6791                 struct sk_buff *skb = NULL;
6792
6793                 /* Shutdown queueing discipline. */
6794                 dev_shutdown(dev);
6795
6796
6797                 /* Notify protocols, that we are about to destroy
6798                    this device. They should clean all the things.
6799                 */
6800                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6801
6802                 if (!dev->rtnl_link_ops ||
6803                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6804                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6805                                                      GFP_KERNEL);
6806
6807                 /*
6808                  *      Flush the unicast and multicast chains
6809                  */
6810                 dev_uc_flush(dev);
6811                 dev_mc_flush(dev);
6812
6813                 if (dev->netdev_ops->ndo_uninit)
6814                         dev->netdev_ops->ndo_uninit(dev);
6815
6816                 if (skb)
6817                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6818
6819                 /* Notifier chain MUST detach us all upper devices. */
6820                 WARN_ON(netdev_has_any_upper_dev(dev));
6821                 WARN_ON(netdev_has_any_lower_dev(dev));
6822
6823                 /* Remove entries from kobject tree */
6824                 netdev_unregister_kobject(dev);
6825 #ifdef CONFIG_XPS
6826                 /* Remove XPS queueing entries */
6827                 netif_reset_xps_queues_gt(dev, 0);
6828 #endif
6829         }
6830
6831         synchronize_net();
6832
6833         list_for_each_entry(dev, head, unreg_list)
6834                 dev_put(dev);
6835 }
6836
6837 static void rollback_registered(struct net_device *dev)
6838 {
6839         LIST_HEAD(single);
6840
6841         list_add(&dev->unreg_list, &single);
6842         rollback_registered_many(&single);
6843         list_del(&single);
6844 }
6845
6846 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6847         struct net_device *upper, netdev_features_t features)
6848 {
6849         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6850         netdev_features_t feature;
6851         int feature_bit;
6852
6853         for_each_netdev_feature(&upper_disables, feature_bit) {
6854                 feature = __NETIF_F_BIT(feature_bit);
6855                 if (!(upper->wanted_features & feature)
6856                     && (features & feature)) {
6857                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6858                                    &feature, upper->name);
6859                         features &= ~feature;
6860                 }
6861         }
6862
6863         return features;
6864 }
6865
6866 static void netdev_sync_lower_features(struct net_device *upper,
6867         struct net_device *lower, netdev_features_t features)
6868 {
6869         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6870         netdev_features_t feature;
6871         int feature_bit;
6872
6873         for_each_netdev_feature(&upper_disables, feature_bit) {
6874                 feature = __NETIF_F_BIT(feature_bit);
6875                 if (!(features & feature) && (lower->features & feature)) {
6876                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6877                                    &feature, lower->name);
6878                         lower->wanted_features &= ~feature;
6879                         netdev_update_features(lower);
6880
6881                         if (unlikely(lower->features & feature))
6882                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6883                                             &feature, lower->name);
6884                 }
6885         }
6886 }
6887
6888 static netdev_features_t netdev_fix_features(struct net_device *dev,
6889         netdev_features_t features)
6890 {
6891         /* Fix illegal checksum combinations */
6892         if ((features & NETIF_F_HW_CSUM) &&
6893             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6894                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6895                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6896         }
6897
6898         /* TSO requires that SG is present as well. */
6899         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6900                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6901                 features &= ~NETIF_F_ALL_TSO;
6902         }
6903
6904         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6905                                         !(features & NETIF_F_IP_CSUM)) {
6906                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6907                 features &= ~NETIF_F_TSO;
6908                 features &= ~NETIF_F_TSO_ECN;
6909         }
6910
6911         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6912                                          !(features & NETIF_F_IPV6_CSUM)) {
6913                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6914                 features &= ~NETIF_F_TSO6;
6915         }
6916
6917         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6918         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6919                 features &= ~NETIF_F_TSO_MANGLEID;
6920
6921         /* TSO ECN requires that TSO is present as well. */
6922         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6923                 features &= ~NETIF_F_TSO_ECN;
6924
6925         /* Software GSO depends on SG. */
6926         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6927                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6928                 features &= ~NETIF_F_GSO;
6929         }
6930
6931         /* UFO needs SG and checksumming */
6932         if (features & NETIF_F_UFO) {
6933                 /* maybe split UFO into V4 and V6? */
6934                 if (!(features & NETIF_F_HW_CSUM) &&
6935                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6936                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6937                         netdev_dbg(dev,
6938                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6939                         features &= ~NETIF_F_UFO;
6940                 }
6941
6942                 if (!(features & NETIF_F_SG)) {
6943                         netdev_dbg(dev,
6944                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6945                         features &= ~NETIF_F_UFO;
6946                 }
6947         }
6948
6949         /* GSO partial features require GSO partial be set */
6950         if ((features & dev->gso_partial_features) &&
6951             !(features & NETIF_F_GSO_PARTIAL)) {
6952                 netdev_dbg(dev,
6953                            "Dropping partially supported GSO features since no GSO partial.\n");
6954                 features &= ~dev->gso_partial_features;
6955         }
6956
6957 #ifdef CONFIG_NET_RX_BUSY_POLL
6958         if (dev->netdev_ops->ndo_busy_poll)
6959                 features |= NETIF_F_BUSY_POLL;
6960         else
6961 #endif
6962                 features &= ~NETIF_F_BUSY_POLL;
6963
6964         return features;
6965 }
6966
6967 int __netdev_update_features(struct net_device *dev)
6968 {
6969         struct net_device *upper, *lower;
6970         netdev_features_t features;
6971         struct list_head *iter;
6972         int err = -1;
6973
6974         ASSERT_RTNL();
6975
6976         features = netdev_get_wanted_features(dev);
6977
6978         if (dev->netdev_ops->ndo_fix_features)
6979                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6980
6981         /* driver might be less strict about feature dependencies */
6982         features = netdev_fix_features(dev, features);
6983
6984         /* some features can't be enabled if they're off an an upper device */
6985         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6986                 features = netdev_sync_upper_features(dev, upper, features);
6987
6988         if (dev->features == features)
6989                 goto sync_lower;
6990
6991         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6992                 &dev->features, &features);
6993
6994         if (dev->netdev_ops->ndo_set_features)
6995                 err = dev->netdev_ops->ndo_set_features(dev, features);
6996         else
6997                 err = 0;
6998
6999         if (unlikely(err < 0)) {
7000                 netdev_err(dev,
7001                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7002                         err, &features, &dev->features);
7003                 /* return non-0 since some features might have changed and
7004                  * it's better to fire a spurious notification than miss it
7005                  */
7006                 return -1;
7007         }
7008
7009 sync_lower:
7010         /* some features must be disabled on lower devices when disabled
7011          * on an upper device (think: bonding master or bridge)
7012          */
7013         netdev_for_each_lower_dev(dev, lower, iter)
7014                 netdev_sync_lower_features(dev, lower, features);
7015
7016         if (!err)
7017                 dev->features = features;
7018
7019         return err < 0 ? 0 : 1;
7020 }
7021
7022 /**
7023  *      netdev_update_features - recalculate device features
7024  *      @dev: the device to check
7025  *
7026  *      Recalculate dev->features set and send notifications if it
7027  *      has changed. Should be called after driver or hardware dependent
7028  *      conditions might have changed that influence the features.
7029  */
7030 void netdev_update_features(struct net_device *dev)
7031 {
7032         if (__netdev_update_features(dev))
7033                 netdev_features_change(dev);
7034 }
7035 EXPORT_SYMBOL(netdev_update_features);
7036
7037 /**
7038  *      netdev_change_features - recalculate device features
7039  *      @dev: the device to check
7040  *
7041  *      Recalculate dev->features set and send notifications even
7042  *      if they have not changed. Should be called instead of
7043  *      netdev_update_features() if also dev->vlan_features might
7044  *      have changed to allow the changes to be propagated to stacked
7045  *      VLAN devices.
7046  */
7047 void netdev_change_features(struct net_device *dev)
7048 {
7049         __netdev_update_features(dev);
7050         netdev_features_change(dev);
7051 }
7052 EXPORT_SYMBOL(netdev_change_features);
7053
7054 /**
7055  *      netif_stacked_transfer_operstate -      transfer operstate
7056  *      @rootdev: the root or lower level device to transfer state from
7057  *      @dev: the device to transfer operstate to
7058  *
7059  *      Transfer operational state from root to device. This is normally
7060  *      called when a stacking relationship exists between the root
7061  *      device and the device(a leaf device).
7062  */
7063 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7064                                         struct net_device *dev)
7065 {
7066         if (rootdev->operstate == IF_OPER_DORMANT)
7067                 netif_dormant_on(dev);
7068         else
7069                 netif_dormant_off(dev);
7070
7071         if (netif_carrier_ok(rootdev)) {
7072                 if (!netif_carrier_ok(dev))
7073                         netif_carrier_on(dev);
7074         } else {
7075                 if (netif_carrier_ok(dev))
7076                         netif_carrier_off(dev);
7077         }
7078 }
7079 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7080
7081 #ifdef CONFIG_SYSFS
7082 static int netif_alloc_rx_queues(struct net_device *dev)
7083 {
7084         unsigned int i, count = dev->num_rx_queues;
7085         struct netdev_rx_queue *rx;
7086         size_t sz = count * sizeof(*rx);
7087
7088         BUG_ON(count < 1);
7089
7090         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7091         if (!rx) {
7092                 rx = vzalloc(sz);
7093                 if (!rx)
7094                         return -ENOMEM;
7095         }
7096         dev->_rx = rx;
7097
7098         for (i = 0; i < count; i++)
7099                 rx[i].dev = dev;
7100         return 0;
7101 }
7102 #endif
7103
7104 static void netdev_init_one_queue(struct net_device *dev,
7105                                   struct netdev_queue *queue, void *_unused)
7106 {
7107         /* Initialize queue lock */
7108         spin_lock_init(&queue->_xmit_lock);
7109         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7110         queue->xmit_lock_owner = -1;
7111         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7112         queue->dev = dev;
7113 #ifdef CONFIG_BQL
7114         dql_init(&queue->dql, HZ);
7115 #endif
7116 }
7117
7118 static void netif_free_tx_queues(struct net_device *dev)
7119 {
7120         kvfree(dev->_tx);
7121 }
7122
7123 static int netif_alloc_netdev_queues(struct net_device *dev)
7124 {
7125         unsigned int count = dev->num_tx_queues;
7126         struct netdev_queue *tx;
7127         size_t sz = count * sizeof(*tx);
7128
7129         if (count < 1 || count > 0xffff)
7130                 return -EINVAL;
7131
7132         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7133         if (!tx) {
7134                 tx = vzalloc(sz);
7135                 if (!tx)
7136                         return -ENOMEM;
7137         }
7138         dev->_tx = tx;
7139
7140         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7141         spin_lock_init(&dev->tx_global_lock);
7142
7143         return 0;
7144 }
7145
7146 void netif_tx_stop_all_queues(struct net_device *dev)
7147 {
7148         unsigned int i;
7149
7150         for (i = 0; i < dev->num_tx_queues; i++) {
7151                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7152                 netif_tx_stop_queue(txq);
7153         }
7154 }
7155 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7156
7157 /**
7158  *      register_netdevice      - register a network device
7159  *      @dev: device to register
7160  *
7161  *      Take a completed network device structure and add it to the kernel
7162  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7163  *      chain. 0 is returned on success. A negative errno code is returned
7164  *      on a failure to set up the device, or if the name is a duplicate.
7165  *
7166  *      Callers must hold the rtnl semaphore. You may want
7167  *      register_netdev() instead of this.
7168  *
7169  *      BUGS:
7170  *      The locking appears insufficient to guarantee two parallel registers
7171  *      will not get the same name.
7172  */
7173
7174 int register_netdevice(struct net_device *dev)
7175 {
7176         int ret;
7177         struct net *net = dev_net(dev);
7178
7179         BUG_ON(dev_boot_phase);
7180         ASSERT_RTNL();
7181
7182         might_sleep();
7183
7184         /* When net_device's are persistent, this will be fatal. */
7185         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7186         BUG_ON(!net);
7187
7188         spin_lock_init(&dev->addr_list_lock);
7189         netdev_set_addr_lockdep_class(dev);
7190
7191         ret = dev_get_valid_name(net, dev, dev->name);
7192         if (ret < 0)
7193                 goto out;
7194
7195         /* Init, if this function is available */
7196         if (dev->netdev_ops->ndo_init) {
7197                 ret = dev->netdev_ops->ndo_init(dev);
7198                 if (ret) {
7199                         if (ret > 0)
7200                                 ret = -EIO;
7201                         goto out;
7202                 }
7203         }
7204
7205         if (((dev->hw_features | dev->features) &
7206              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7207             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7208              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7209                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7210                 ret = -EINVAL;
7211                 goto err_uninit;
7212         }
7213
7214         ret = -EBUSY;
7215         if (!dev->ifindex)
7216                 dev->ifindex = dev_new_index(net);
7217         else if (__dev_get_by_index(net, dev->ifindex))
7218                 goto err_uninit;
7219
7220         /* Transfer changeable features to wanted_features and enable
7221          * software offloads (GSO and GRO).
7222          */
7223         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7224         dev->features |= NETIF_F_SOFT_FEATURES;
7225         dev->wanted_features = dev->features & dev->hw_features;
7226
7227         if (!(dev->flags & IFF_LOOPBACK))
7228                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7229
7230         /* If IPv4 TCP segmentation offload is supported we should also
7231          * allow the device to enable segmenting the frame with the option
7232          * of ignoring a static IP ID value.  This doesn't enable the
7233          * feature itself but allows the user to enable it later.
7234          */
7235         if (dev->hw_features & NETIF_F_TSO)
7236                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7237         if (dev->vlan_features & NETIF_F_TSO)
7238                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7239         if (dev->mpls_features & NETIF_F_TSO)
7240                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7241         if (dev->hw_enc_features & NETIF_F_TSO)
7242                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7243
7244         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7245          */
7246         dev->vlan_features |= NETIF_F_HIGHDMA;
7247
7248         /* Make NETIF_F_SG inheritable to tunnel devices.
7249          */
7250         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7251
7252         /* Make NETIF_F_SG inheritable to MPLS.
7253          */
7254         dev->mpls_features |= NETIF_F_SG;
7255
7256         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7257         ret = notifier_to_errno(ret);
7258         if (ret)
7259                 goto err_uninit;
7260
7261         ret = netdev_register_kobject(dev);
7262         if (ret)
7263                 goto err_uninit;
7264         dev->reg_state = NETREG_REGISTERED;
7265
7266         __netdev_update_features(dev);
7267
7268         /*
7269          *      Default initial state at registry is that the
7270          *      device is present.
7271          */
7272
7273         set_bit(__LINK_STATE_PRESENT, &dev->state);
7274
7275         linkwatch_init_dev(dev);
7276
7277         dev_init_scheduler(dev);
7278         dev_hold(dev);
7279         list_netdevice(dev);
7280         add_device_randomness(dev->dev_addr, dev->addr_len);
7281
7282         /* If the device has permanent device address, driver should
7283          * set dev_addr and also addr_assign_type should be set to
7284          * NET_ADDR_PERM (default value).
7285          */
7286         if (dev->addr_assign_type == NET_ADDR_PERM)
7287                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7288
7289         /* Notify protocols, that a new device appeared. */
7290         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7291         ret = notifier_to_errno(ret);
7292         if (ret) {
7293                 rollback_registered(dev);
7294                 dev->reg_state = NETREG_UNREGISTERED;
7295         }
7296         /*
7297          *      Prevent userspace races by waiting until the network
7298          *      device is fully setup before sending notifications.
7299          */
7300         if (!dev->rtnl_link_ops ||
7301             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7302                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7303
7304 out:
7305         return ret;
7306
7307 err_uninit:
7308         if (dev->netdev_ops->ndo_uninit)
7309                 dev->netdev_ops->ndo_uninit(dev);
7310         goto out;
7311 }
7312 EXPORT_SYMBOL(register_netdevice);
7313
7314 /**
7315  *      init_dummy_netdev       - init a dummy network device for NAPI
7316  *      @dev: device to init
7317  *
7318  *      This takes a network device structure and initialize the minimum
7319  *      amount of fields so it can be used to schedule NAPI polls without
7320  *      registering a full blown interface. This is to be used by drivers
7321  *      that need to tie several hardware interfaces to a single NAPI
7322  *      poll scheduler due to HW limitations.
7323  */
7324 int init_dummy_netdev(struct net_device *dev)
7325 {
7326         /* Clear everything. Note we don't initialize spinlocks
7327          * are they aren't supposed to be taken by any of the
7328          * NAPI code and this dummy netdev is supposed to be
7329          * only ever used for NAPI polls
7330          */
7331         memset(dev, 0, sizeof(struct net_device));
7332
7333         /* make sure we BUG if trying to hit standard
7334          * register/unregister code path
7335          */
7336         dev->reg_state = NETREG_DUMMY;
7337
7338         /* NAPI wants this */
7339         INIT_LIST_HEAD(&dev->napi_list);
7340
7341         /* a dummy interface is started by default */
7342         set_bit(__LINK_STATE_PRESENT, &dev->state);
7343         set_bit(__LINK_STATE_START, &dev->state);
7344
7345         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7346          * because users of this 'device' dont need to change
7347          * its refcount.
7348          */
7349
7350         return 0;
7351 }
7352 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7353
7354
7355 /**
7356  *      register_netdev - register a network device
7357  *      @dev: device to register
7358  *
7359  *      Take a completed network device structure and add it to the kernel
7360  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7361  *      chain. 0 is returned on success. A negative errno code is returned
7362  *      on a failure to set up the device, or if the name is a duplicate.
7363  *
7364  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7365  *      and expands the device name if you passed a format string to
7366  *      alloc_netdev.
7367  */
7368 int register_netdev(struct net_device *dev)
7369 {
7370         int err;
7371
7372         rtnl_lock();
7373         err = register_netdevice(dev);
7374         rtnl_unlock();
7375         return err;
7376 }
7377 EXPORT_SYMBOL(register_netdev);
7378
7379 int netdev_refcnt_read(const struct net_device *dev)
7380 {
7381         int i, refcnt = 0;
7382
7383         for_each_possible_cpu(i)
7384                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7385         return refcnt;
7386 }
7387 EXPORT_SYMBOL(netdev_refcnt_read);
7388
7389 /**
7390  * netdev_wait_allrefs - wait until all references are gone.
7391  * @dev: target net_device
7392  *
7393  * This is called when unregistering network devices.
7394  *
7395  * Any protocol or device that holds a reference should register
7396  * for netdevice notification, and cleanup and put back the
7397  * reference if they receive an UNREGISTER event.
7398  * We can get stuck here if buggy protocols don't correctly
7399  * call dev_put.
7400  */
7401 static void netdev_wait_allrefs(struct net_device *dev)
7402 {
7403         unsigned long rebroadcast_time, warning_time;
7404         int refcnt;
7405
7406         linkwatch_forget_dev(dev);
7407
7408         rebroadcast_time = warning_time = jiffies;
7409         refcnt = netdev_refcnt_read(dev);
7410
7411         while (refcnt != 0) {
7412                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7413                         rtnl_lock();
7414
7415                         /* Rebroadcast unregister notification */
7416                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7417
7418                         __rtnl_unlock();
7419                         rcu_barrier();
7420                         rtnl_lock();
7421
7422                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7423                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7424                                      &dev->state)) {
7425                                 /* We must not have linkwatch events
7426                                  * pending on unregister. If this
7427                                  * happens, we simply run the queue
7428                                  * unscheduled, resulting in a noop
7429                                  * for this device.
7430                                  */
7431                                 linkwatch_run_queue();
7432                         }
7433
7434                         __rtnl_unlock();
7435
7436                         rebroadcast_time = jiffies;
7437                 }
7438
7439                 msleep(250);
7440
7441                 refcnt = netdev_refcnt_read(dev);
7442
7443                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7444                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7445                                  dev->name, refcnt);
7446                         warning_time = jiffies;
7447                 }
7448         }
7449 }
7450
7451 /* The sequence is:
7452  *
7453  *      rtnl_lock();
7454  *      ...
7455  *      register_netdevice(x1);
7456  *      register_netdevice(x2);
7457  *      ...
7458  *      unregister_netdevice(y1);
7459  *      unregister_netdevice(y2);
7460  *      ...
7461  *      rtnl_unlock();
7462  *      free_netdev(y1);
7463  *      free_netdev(y2);
7464  *
7465  * We are invoked by rtnl_unlock().
7466  * This allows us to deal with problems:
7467  * 1) We can delete sysfs objects which invoke hotplug
7468  *    without deadlocking with linkwatch via keventd.
7469  * 2) Since we run with the RTNL semaphore not held, we can sleep
7470  *    safely in order to wait for the netdev refcnt to drop to zero.
7471  *
7472  * We must not return until all unregister events added during
7473  * the interval the lock was held have been completed.
7474  */
7475 void netdev_run_todo(void)
7476 {
7477         struct list_head list;
7478
7479         /* Snapshot list, allow later requests */
7480         list_replace_init(&net_todo_list, &list);
7481
7482         __rtnl_unlock();
7483
7484
7485         /* Wait for rcu callbacks to finish before next phase */
7486         if (!list_empty(&list))
7487                 rcu_barrier();
7488
7489         while (!list_empty(&list)) {
7490                 struct net_device *dev
7491                         = list_first_entry(&list, struct net_device, todo_list);
7492                 list_del(&dev->todo_list);
7493
7494                 rtnl_lock();
7495                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7496                 __rtnl_unlock();
7497
7498                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7499                         pr_err("network todo '%s' but state %d\n",
7500                                dev->name, dev->reg_state);
7501                         dump_stack();
7502                         continue;
7503                 }
7504
7505                 dev->reg_state = NETREG_UNREGISTERED;
7506
7507                 netdev_wait_allrefs(dev);
7508
7509                 /* paranoia */
7510                 BUG_ON(netdev_refcnt_read(dev));
7511                 BUG_ON(!list_empty(&dev->ptype_all));
7512                 BUG_ON(!list_empty(&dev->ptype_specific));
7513                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7514                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7515                 WARN_ON(dev->dn_ptr);
7516
7517                 if (dev->destructor)
7518                         dev->destructor(dev);
7519
7520                 /* Report a network device has been unregistered */
7521                 rtnl_lock();
7522                 dev_net(dev)->dev_unreg_count--;
7523                 __rtnl_unlock();
7524                 wake_up(&netdev_unregistering_wq);
7525
7526                 /* Free network device */
7527                 kobject_put(&dev->dev.kobj);
7528         }
7529 }
7530
7531 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7532  * all the same fields in the same order as net_device_stats, with only
7533  * the type differing, but rtnl_link_stats64 may have additional fields
7534  * at the end for newer counters.
7535  */
7536 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7537                              const struct net_device_stats *netdev_stats)
7538 {
7539 #if BITS_PER_LONG == 64
7540         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7541         memcpy(stats64, netdev_stats, sizeof(*stats64));
7542         /* zero out counters that only exist in rtnl_link_stats64 */
7543         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7544                sizeof(*stats64) - sizeof(*netdev_stats));
7545 #else
7546         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7547         const unsigned long *src = (const unsigned long *)netdev_stats;
7548         u64 *dst = (u64 *)stats64;
7549
7550         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7551         for (i = 0; i < n; i++)
7552                 dst[i] = src[i];
7553         /* zero out counters that only exist in rtnl_link_stats64 */
7554         memset((char *)stats64 + n * sizeof(u64), 0,
7555                sizeof(*stats64) - n * sizeof(u64));
7556 #endif
7557 }
7558 EXPORT_SYMBOL(netdev_stats_to_stats64);
7559
7560 /**
7561  *      dev_get_stats   - get network device statistics
7562  *      @dev: device to get statistics from
7563  *      @storage: place to store stats
7564  *
7565  *      Get network statistics from device. Return @storage.
7566  *      The device driver may provide its own method by setting
7567  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7568  *      otherwise the internal statistics structure is used.
7569  */
7570 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7571                                         struct rtnl_link_stats64 *storage)
7572 {
7573         const struct net_device_ops *ops = dev->netdev_ops;
7574
7575         if (ops->ndo_get_stats64) {
7576                 memset(storage, 0, sizeof(*storage));
7577                 ops->ndo_get_stats64(dev, storage);
7578         } else if (ops->ndo_get_stats) {
7579                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7580         } else {
7581                 netdev_stats_to_stats64(storage, &dev->stats);
7582         }
7583         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7584         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7585         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7586         return storage;
7587 }
7588 EXPORT_SYMBOL(dev_get_stats);
7589
7590 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7591 {
7592         struct netdev_queue *queue = dev_ingress_queue(dev);
7593
7594 #ifdef CONFIG_NET_CLS_ACT
7595         if (queue)
7596                 return queue;
7597         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7598         if (!queue)
7599                 return NULL;
7600         netdev_init_one_queue(dev, queue, NULL);
7601         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7602         queue->qdisc_sleeping = &noop_qdisc;
7603         rcu_assign_pointer(dev->ingress_queue, queue);
7604 #endif
7605         return queue;
7606 }
7607
7608 static const struct ethtool_ops default_ethtool_ops;
7609
7610 void netdev_set_default_ethtool_ops(struct net_device *dev,
7611                                     const struct ethtool_ops *ops)
7612 {
7613         if (dev->ethtool_ops == &default_ethtool_ops)
7614                 dev->ethtool_ops = ops;
7615 }
7616 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7617
7618 void netdev_freemem(struct net_device *dev)
7619 {
7620         char *addr = (char *)dev - dev->padded;
7621
7622         kvfree(addr);
7623 }
7624
7625 /**
7626  *      alloc_netdev_mqs - allocate network device
7627  *      @sizeof_priv:           size of private data to allocate space for
7628  *      @name:                  device name format string
7629  *      @name_assign_type:      origin of device name
7630  *      @setup:                 callback to initialize device
7631  *      @txqs:                  the number of TX subqueues to allocate
7632  *      @rxqs:                  the number of RX subqueues to allocate
7633  *
7634  *      Allocates a struct net_device with private data area for driver use
7635  *      and performs basic initialization.  Also allocates subqueue structs
7636  *      for each queue on the device.
7637  */
7638 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7639                 unsigned char name_assign_type,
7640                 void (*setup)(struct net_device *),
7641                 unsigned int txqs, unsigned int rxqs)
7642 {
7643         struct net_device *dev;
7644         size_t alloc_size;
7645         struct net_device *p;
7646
7647         BUG_ON(strlen(name) >= sizeof(dev->name));
7648
7649         if (txqs < 1) {
7650                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7651                 return NULL;
7652         }
7653
7654 #ifdef CONFIG_SYSFS
7655         if (rxqs < 1) {
7656                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7657                 return NULL;
7658         }
7659 #endif
7660
7661         alloc_size = sizeof(struct net_device);
7662         if (sizeof_priv) {
7663                 /* ensure 32-byte alignment of private area */
7664                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7665                 alloc_size += sizeof_priv;
7666         }
7667         /* ensure 32-byte alignment of whole construct */
7668         alloc_size += NETDEV_ALIGN - 1;
7669
7670         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7671         if (!p)
7672                 p = vzalloc(alloc_size);
7673         if (!p)
7674                 return NULL;
7675
7676         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7677         dev->padded = (char *)dev - (char *)p;
7678
7679         dev->pcpu_refcnt = alloc_percpu(int);
7680         if (!dev->pcpu_refcnt)
7681                 goto free_dev;
7682
7683         if (dev_addr_init(dev))
7684                 goto free_pcpu;
7685
7686         dev_mc_init(dev);
7687         dev_uc_init(dev);
7688
7689         dev_net_set(dev, &init_net);
7690
7691         dev->gso_max_size = GSO_MAX_SIZE;
7692         dev->gso_max_segs = GSO_MAX_SEGS;
7693
7694         INIT_LIST_HEAD(&dev->napi_list);
7695         INIT_LIST_HEAD(&dev->unreg_list);
7696         INIT_LIST_HEAD(&dev->close_list);
7697         INIT_LIST_HEAD(&dev->link_watch_list);
7698         INIT_LIST_HEAD(&dev->adj_list.upper);
7699         INIT_LIST_HEAD(&dev->adj_list.lower);
7700         INIT_LIST_HEAD(&dev->ptype_all);
7701         INIT_LIST_HEAD(&dev->ptype_specific);
7702 #ifdef CONFIG_NET_SCHED
7703         hash_init(dev->qdisc_hash);
7704 #endif
7705         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7706         setup(dev);
7707
7708         if (!dev->tx_queue_len) {
7709                 dev->priv_flags |= IFF_NO_QUEUE;
7710                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7711         }
7712
7713         dev->num_tx_queues = txqs;
7714         dev->real_num_tx_queues = txqs;
7715         if (netif_alloc_netdev_queues(dev))
7716                 goto free_all;
7717
7718 #ifdef CONFIG_SYSFS
7719         dev->num_rx_queues = rxqs;
7720         dev->real_num_rx_queues = rxqs;
7721         if (netif_alloc_rx_queues(dev))
7722                 goto free_all;
7723 #endif
7724
7725         strcpy(dev->name, name);
7726         dev->name_assign_type = name_assign_type;
7727         dev->group = INIT_NETDEV_GROUP;
7728         if (!dev->ethtool_ops)
7729                 dev->ethtool_ops = &default_ethtool_ops;
7730
7731         nf_hook_ingress_init(dev);
7732
7733         return dev;
7734
7735 free_all:
7736         free_netdev(dev);
7737         return NULL;
7738
7739 free_pcpu:
7740         free_percpu(dev->pcpu_refcnt);
7741 free_dev:
7742         netdev_freemem(dev);
7743         return NULL;
7744 }
7745 EXPORT_SYMBOL(alloc_netdev_mqs);
7746
7747 /**
7748  *      free_netdev - free network device
7749  *      @dev: device
7750  *
7751  *      This function does the last stage of destroying an allocated device
7752  *      interface. The reference to the device object is released.
7753  *      If this is the last reference then it will be freed.
7754  *      Must be called in process context.
7755  */
7756 void free_netdev(struct net_device *dev)
7757 {
7758         struct napi_struct *p, *n;
7759
7760         might_sleep();
7761         netif_free_tx_queues(dev);
7762 #ifdef CONFIG_SYSFS
7763         kvfree(dev->_rx);
7764 #endif
7765
7766         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7767
7768         /* Flush device addresses */
7769         dev_addr_flush(dev);
7770
7771         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7772                 netif_napi_del(p);
7773
7774         free_percpu(dev->pcpu_refcnt);
7775         dev->pcpu_refcnt = NULL;
7776
7777         /*  Compatibility with error handling in drivers */
7778         if (dev->reg_state == NETREG_UNINITIALIZED) {
7779                 netdev_freemem(dev);
7780                 return;
7781         }
7782
7783         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7784         dev->reg_state = NETREG_RELEASED;
7785
7786         /* will free via device release */
7787         put_device(&dev->dev);
7788 }
7789 EXPORT_SYMBOL(free_netdev);
7790
7791 /**
7792  *      synchronize_net -  Synchronize with packet receive processing
7793  *
7794  *      Wait for packets currently being received to be done.
7795  *      Does not block later packets from starting.
7796  */
7797 void synchronize_net(void)
7798 {
7799         might_sleep();
7800         if (rtnl_is_locked())
7801                 synchronize_rcu_expedited();
7802         else
7803                 synchronize_rcu();
7804 }
7805 EXPORT_SYMBOL(synchronize_net);
7806
7807 /**
7808  *      unregister_netdevice_queue - remove device from the kernel
7809  *      @dev: device
7810  *      @head: list
7811  *
7812  *      This function shuts down a device interface and removes it
7813  *      from the kernel tables.
7814  *      If head not NULL, device is queued to be unregistered later.
7815  *
7816  *      Callers must hold the rtnl semaphore.  You may want
7817  *      unregister_netdev() instead of this.
7818  */
7819
7820 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7821 {
7822         ASSERT_RTNL();
7823
7824         if (head) {
7825                 list_move_tail(&dev->unreg_list, head);
7826         } else {
7827                 rollback_registered(dev);
7828                 /* Finish processing unregister after unlock */
7829                 net_set_todo(dev);
7830         }
7831 }
7832 EXPORT_SYMBOL(unregister_netdevice_queue);
7833
7834 /**
7835  *      unregister_netdevice_many - unregister many devices
7836  *      @head: list of devices
7837  *
7838  *  Note: As most callers use a stack allocated list_head,
7839  *  we force a list_del() to make sure stack wont be corrupted later.
7840  */
7841 void unregister_netdevice_many(struct list_head *head)
7842 {
7843         struct net_device *dev;
7844
7845         if (!list_empty(head)) {
7846                 rollback_registered_many(head);
7847                 list_for_each_entry(dev, head, unreg_list)
7848                         net_set_todo(dev);
7849                 list_del(head);
7850         }
7851 }
7852 EXPORT_SYMBOL(unregister_netdevice_many);
7853
7854 /**
7855  *      unregister_netdev - remove device from the kernel
7856  *      @dev: device
7857  *
7858  *      This function shuts down a device interface and removes it
7859  *      from the kernel tables.
7860  *
7861  *      This is just a wrapper for unregister_netdevice that takes
7862  *      the rtnl semaphore.  In general you want to use this and not
7863  *      unregister_netdevice.
7864  */
7865 void unregister_netdev(struct net_device *dev)
7866 {
7867         rtnl_lock();
7868         unregister_netdevice(dev);
7869         rtnl_unlock();
7870 }
7871 EXPORT_SYMBOL(unregister_netdev);
7872
7873 /**
7874  *      dev_change_net_namespace - move device to different nethost namespace
7875  *      @dev: device
7876  *      @net: network namespace
7877  *      @pat: If not NULL name pattern to try if the current device name
7878  *            is already taken in the destination network namespace.
7879  *
7880  *      This function shuts down a device interface and moves it
7881  *      to a new network namespace. On success 0 is returned, on
7882  *      a failure a netagive errno code is returned.
7883  *
7884  *      Callers must hold the rtnl semaphore.
7885  */
7886
7887 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7888 {
7889         int err;
7890
7891         ASSERT_RTNL();
7892
7893         /* Don't allow namespace local devices to be moved. */
7894         err = -EINVAL;
7895         if (dev->features & NETIF_F_NETNS_LOCAL)
7896                 goto out;
7897
7898         /* Ensure the device has been registrered */
7899         if (dev->reg_state != NETREG_REGISTERED)
7900                 goto out;
7901
7902         /* Get out if there is nothing todo */
7903         err = 0;
7904         if (net_eq(dev_net(dev), net))
7905                 goto out;
7906
7907         /* Pick the destination device name, and ensure
7908          * we can use it in the destination network namespace.
7909          */
7910         err = -EEXIST;
7911         if (__dev_get_by_name(net, dev->name)) {
7912                 /* We get here if we can't use the current device name */
7913                 if (!pat)
7914                         goto out;
7915                 if (dev_get_valid_name(net, dev, pat) < 0)
7916                         goto out;
7917         }
7918
7919         /*
7920          * And now a mini version of register_netdevice unregister_netdevice.
7921          */
7922
7923         /* If device is running close it first. */
7924         dev_close(dev);
7925
7926         /* And unlink it from device chain */
7927         err = -ENODEV;
7928         unlist_netdevice(dev);
7929
7930         synchronize_net();
7931
7932         /* Shutdown queueing discipline. */
7933         dev_shutdown(dev);
7934
7935         /* Notify protocols, that we are about to destroy
7936            this device. They should clean all the things.
7937
7938            Note that dev->reg_state stays at NETREG_REGISTERED.
7939            This is wanted because this way 8021q and macvlan know
7940            the device is just moving and can keep their slaves up.
7941         */
7942         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7943         rcu_barrier();
7944         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7945         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7946
7947         /*
7948          *      Flush the unicast and multicast chains
7949          */
7950         dev_uc_flush(dev);
7951         dev_mc_flush(dev);
7952
7953         /* Send a netdev-removed uevent to the old namespace */
7954         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7955         netdev_adjacent_del_links(dev);
7956
7957         /* Actually switch the network namespace */
7958         dev_net_set(dev, net);
7959
7960         /* If there is an ifindex conflict assign a new one */
7961         if (__dev_get_by_index(net, dev->ifindex))
7962                 dev->ifindex = dev_new_index(net);
7963
7964         /* Send a netdev-add uevent to the new namespace */
7965         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7966         netdev_adjacent_add_links(dev);
7967
7968         /* Fixup kobjects */
7969         err = device_rename(&dev->dev, dev->name);
7970         WARN_ON(err);
7971
7972         /* Add the device back in the hashes */
7973         list_netdevice(dev);
7974
7975         /* Notify protocols, that a new device appeared. */
7976         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7977
7978         /*
7979          *      Prevent userspace races by waiting until the network
7980          *      device is fully setup before sending notifications.
7981          */
7982         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7983
7984         synchronize_net();
7985         err = 0;
7986 out:
7987         return err;
7988 }
7989 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7990
7991 static int dev_cpu_callback(struct notifier_block *nfb,
7992                             unsigned long action,
7993                             void *ocpu)
7994 {
7995         struct sk_buff **list_skb;
7996         struct sk_buff *skb;
7997         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7998         struct softnet_data *sd, *oldsd;
7999
8000         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
8001                 return NOTIFY_OK;
8002
8003         local_irq_disable();
8004         cpu = smp_processor_id();
8005         sd = &per_cpu(softnet_data, cpu);
8006         oldsd = &per_cpu(softnet_data, oldcpu);
8007
8008         /* Find end of our completion_queue. */
8009         list_skb = &sd->completion_queue;
8010         while (*list_skb)
8011                 list_skb = &(*list_skb)->next;
8012         /* Append completion queue from offline CPU. */
8013         *list_skb = oldsd->completion_queue;
8014         oldsd->completion_queue = NULL;
8015
8016         /* Append output queue from offline CPU. */
8017         if (oldsd->output_queue) {
8018                 *sd->output_queue_tailp = oldsd->output_queue;
8019                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8020                 oldsd->output_queue = NULL;
8021                 oldsd->output_queue_tailp = &oldsd->output_queue;
8022         }
8023         /* Append NAPI poll list from offline CPU, with one exception :
8024          * process_backlog() must be called by cpu owning percpu backlog.
8025          * We properly handle process_queue & input_pkt_queue later.
8026          */
8027         while (!list_empty(&oldsd->poll_list)) {
8028                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8029                                                             struct napi_struct,
8030                                                             poll_list);
8031
8032                 list_del_init(&napi->poll_list);
8033                 if (napi->poll == process_backlog)
8034                         napi->state = 0;
8035                 else
8036                         ____napi_schedule(sd, napi);
8037         }
8038
8039         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8040         local_irq_enable();
8041
8042         /* Process offline CPU's input_pkt_queue */
8043         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8044                 netif_rx_ni(skb);
8045                 input_queue_head_incr(oldsd);
8046         }
8047         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8048                 netif_rx_ni(skb);
8049                 input_queue_head_incr(oldsd);
8050         }
8051
8052         return NOTIFY_OK;
8053 }
8054
8055
8056 /**
8057  *      netdev_increment_features - increment feature set by one
8058  *      @all: current feature set
8059  *      @one: new feature set
8060  *      @mask: mask feature set
8061  *
8062  *      Computes a new feature set after adding a device with feature set
8063  *      @one to the master device with current feature set @all.  Will not
8064  *      enable anything that is off in @mask. Returns the new feature set.
8065  */
8066 netdev_features_t netdev_increment_features(netdev_features_t all,
8067         netdev_features_t one, netdev_features_t mask)
8068 {
8069         if (mask & NETIF_F_HW_CSUM)
8070                 mask |= NETIF_F_CSUM_MASK;
8071         mask |= NETIF_F_VLAN_CHALLENGED;
8072
8073         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8074         all &= one | ~NETIF_F_ALL_FOR_ALL;
8075
8076         /* If one device supports hw checksumming, set for all. */
8077         if (all & NETIF_F_HW_CSUM)
8078                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8079
8080         return all;
8081 }
8082 EXPORT_SYMBOL(netdev_increment_features);
8083
8084 static struct hlist_head * __net_init netdev_create_hash(void)
8085 {
8086         int i;
8087         struct hlist_head *hash;
8088
8089         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8090         if (hash != NULL)
8091                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8092                         INIT_HLIST_HEAD(&hash[i]);
8093
8094         return hash;
8095 }
8096
8097 /* Initialize per network namespace state */
8098 static int __net_init netdev_init(struct net *net)
8099 {
8100         if (net != &init_net)
8101                 INIT_LIST_HEAD(&net->dev_base_head);
8102
8103         net->dev_name_head = netdev_create_hash();
8104         if (net->dev_name_head == NULL)
8105                 goto err_name;
8106
8107         net->dev_index_head = netdev_create_hash();
8108         if (net->dev_index_head == NULL)
8109                 goto err_idx;
8110
8111         return 0;
8112
8113 err_idx:
8114         kfree(net->dev_name_head);
8115 err_name:
8116         return -ENOMEM;
8117 }
8118
8119 /**
8120  *      netdev_drivername - network driver for the device
8121  *      @dev: network device
8122  *
8123  *      Determine network driver for device.
8124  */
8125 const char *netdev_drivername(const struct net_device *dev)
8126 {
8127         const struct device_driver *driver;
8128         const struct device *parent;
8129         const char *empty = "";
8130
8131         parent = dev->dev.parent;
8132         if (!parent)
8133                 return empty;
8134
8135         driver = parent->driver;
8136         if (driver && driver->name)
8137                 return driver->name;
8138         return empty;
8139 }
8140
8141 static void __netdev_printk(const char *level, const struct net_device *dev,
8142                             struct va_format *vaf)
8143 {
8144         if (dev && dev->dev.parent) {
8145                 dev_printk_emit(level[1] - '0',
8146                                 dev->dev.parent,
8147                                 "%s %s %s%s: %pV",
8148                                 dev_driver_string(dev->dev.parent),
8149                                 dev_name(dev->dev.parent),
8150                                 netdev_name(dev), netdev_reg_state(dev),
8151                                 vaf);
8152         } else if (dev) {
8153                 printk("%s%s%s: %pV",
8154                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8155         } else {
8156                 printk("%s(NULL net_device): %pV", level, vaf);
8157         }
8158 }
8159
8160 void netdev_printk(const char *level, const struct net_device *dev,
8161                    const char *format, ...)
8162 {
8163         struct va_format vaf;
8164         va_list args;
8165
8166         va_start(args, format);
8167
8168         vaf.fmt = format;
8169         vaf.va = &args;
8170
8171         __netdev_printk(level, dev, &vaf);
8172
8173         va_end(args);
8174 }
8175 EXPORT_SYMBOL(netdev_printk);
8176
8177 #define define_netdev_printk_level(func, level)                 \
8178 void func(const struct net_device *dev, const char *fmt, ...)   \
8179 {                                                               \
8180         struct va_format vaf;                                   \
8181         va_list args;                                           \
8182                                                                 \
8183         va_start(args, fmt);                                    \
8184                                                                 \
8185         vaf.fmt = fmt;                                          \
8186         vaf.va = &args;                                         \
8187                                                                 \
8188         __netdev_printk(level, dev, &vaf);                      \
8189                                                                 \
8190         va_end(args);                                           \
8191 }                                                               \
8192 EXPORT_SYMBOL(func);
8193
8194 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8195 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8196 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8197 define_netdev_printk_level(netdev_err, KERN_ERR);
8198 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8199 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8200 define_netdev_printk_level(netdev_info, KERN_INFO);
8201
8202 static void __net_exit netdev_exit(struct net *net)
8203 {
8204         kfree(net->dev_name_head);
8205         kfree(net->dev_index_head);
8206 }
8207
8208 static struct pernet_operations __net_initdata netdev_net_ops = {
8209         .init = netdev_init,
8210         .exit = netdev_exit,
8211 };
8212
8213 static void __net_exit default_device_exit(struct net *net)
8214 {
8215         struct net_device *dev, *aux;
8216         /*
8217          * Push all migratable network devices back to the
8218          * initial network namespace
8219          */
8220         rtnl_lock();
8221         for_each_netdev_safe(net, dev, aux) {
8222                 int err;
8223                 char fb_name[IFNAMSIZ];
8224
8225                 /* Ignore unmoveable devices (i.e. loopback) */
8226                 if (dev->features & NETIF_F_NETNS_LOCAL)
8227                         continue;
8228
8229                 /* Leave virtual devices for the generic cleanup */
8230                 if (dev->rtnl_link_ops)
8231                         continue;
8232
8233                 /* Push remaining network devices to init_net */
8234                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8235                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8236                 if (err) {
8237                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8238                                  __func__, dev->name, err);
8239                         BUG();
8240                 }
8241         }
8242         rtnl_unlock();
8243 }
8244
8245 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8246 {
8247         /* Return with the rtnl_lock held when there are no network
8248          * devices unregistering in any network namespace in net_list.
8249          */
8250         struct net *net;
8251         bool unregistering;
8252         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8253
8254         add_wait_queue(&netdev_unregistering_wq, &wait);
8255         for (;;) {
8256                 unregistering = false;
8257                 rtnl_lock();
8258                 list_for_each_entry(net, net_list, exit_list) {
8259                         if (net->dev_unreg_count > 0) {
8260                                 unregistering = true;
8261                                 break;
8262                         }
8263                 }
8264                 if (!unregistering)
8265                         break;
8266                 __rtnl_unlock();
8267
8268                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8269         }
8270         remove_wait_queue(&netdev_unregistering_wq, &wait);
8271 }
8272
8273 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8274 {
8275         /* At exit all network devices most be removed from a network
8276          * namespace.  Do this in the reverse order of registration.
8277          * Do this across as many network namespaces as possible to
8278          * improve batching efficiency.
8279          */
8280         struct net_device *dev;
8281         struct net *net;
8282         LIST_HEAD(dev_kill_list);
8283
8284         /* To prevent network device cleanup code from dereferencing
8285          * loopback devices or network devices that have been freed
8286          * wait here for all pending unregistrations to complete,
8287          * before unregistring the loopback device and allowing the
8288          * network namespace be freed.
8289          *
8290          * The netdev todo list containing all network devices
8291          * unregistrations that happen in default_device_exit_batch
8292          * will run in the rtnl_unlock() at the end of
8293          * default_device_exit_batch.
8294          */
8295         rtnl_lock_unregistering(net_list);
8296         list_for_each_entry(net, net_list, exit_list) {
8297                 for_each_netdev_reverse(net, dev) {
8298                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8299                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8300                         else
8301                                 unregister_netdevice_queue(dev, &dev_kill_list);
8302                 }
8303         }
8304         unregister_netdevice_many(&dev_kill_list);
8305         rtnl_unlock();
8306 }
8307
8308 static struct pernet_operations __net_initdata default_device_ops = {
8309         .exit = default_device_exit,
8310         .exit_batch = default_device_exit_batch,
8311 };
8312
8313 /*
8314  *      Initialize the DEV module. At boot time this walks the device list and
8315  *      unhooks any devices that fail to initialise (normally hardware not
8316  *      present) and leaves us with a valid list of present and active devices.
8317  *
8318  */
8319
8320 /*
8321  *       This is called single threaded during boot, so no need
8322  *       to take the rtnl semaphore.
8323  */
8324 static int __init net_dev_init(void)
8325 {
8326         int i, rc = -ENOMEM;
8327
8328         BUG_ON(!dev_boot_phase);
8329
8330         if (dev_proc_init())
8331                 goto out;
8332
8333         if (netdev_kobject_init())
8334                 goto out;
8335
8336         INIT_LIST_HEAD(&ptype_all);
8337         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8338                 INIT_LIST_HEAD(&ptype_base[i]);
8339
8340         INIT_LIST_HEAD(&offload_base);
8341
8342         if (register_pernet_subsys(&netdev_net_ops))
8343                 goto out;
8344
8345         /*
8346          *      Initialise the packet receive queues.
8347          */
8348
8349         for_each_possible_cpu(i) {
8350                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8351                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8352
8353                 INIT_WORK(flush, flush_backlog);
8354
8355                 skb_queue_head_init(&sd->input_pkt_queue);
8356                 skb_queue_head_init(&sd->process_queue);
8357                 INIT_LIST_HEAD(&sd->poll_list);
8358                 sd->output_queue_tailp = &sd->output_queue;
8359 #ifdef CONFIG_RPS
8360                 sd->csd.func = rps_trigger_softirq;
8361                 sd->csd.info = sd;
8362                 sd->cpu = i;
8363 #endif
8364
8365                 sd->backlog.poll = process_backlog;
8366                 sd->backlog.weight = weight_p;
8367         }
8368
8369         dev_boot_phase = 0;
8370
8371         /* The loopback device is special if any other network devices
8372          * is present in a network namespace the loopback device must
8373          * be present. Since we now dynamically allocate and free the
8374          * loopback device ensure this invariant is maintained by
8375          * keeping the loopback device as the first device on the
8376          * list of network devices.  Ensuring the loopback devices
8377          * is the first device that appears and the last network device
8378          * that disappears.
8379          */
8380         if (register_pernet_device(&loopback_net_ops))
8381                 goto out;
8382
8383         if (register_pernet_device(&default_device_ops))
8384                 goto out;
8385
8386         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8387         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8388
8389         hotcpu_notifier(dev_cpu_callback, 0);
8390         dst_subsys_init();
8391         rc = 0;
8392 out:
8393         return rc;
8394 }
8395
8396 subsys_initcall(net_dev_init);