]> asedeno.scripts.mit.edu Git - linux.git/blob - net/core/dev.c
Merge branch 'i2c-mux/for-next' of https://github.com/peda-r/i2c-mux into i2c/for...
[linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148
149 #include "net-sysfs.h"
150
151 #define MAX_GRO_SKBS 8
152
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;       /* Taps */
160 static struct list_head offload_base __read_mostly;
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234         struct net *net = dev_net(dev);
235
236         ASSERT_RTNL();
237
238         write_lock_bh(&dev_base_lock);
239         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241         hlist_add_head_rcu(&dev->index_hlist,
242                            dev_index_hash(net, dev->ifindex));
243         write_unlock_bh(&dev_base_lock);
244
245         dev_base_seq_inc(net);
246 }
247
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253         ASSERT_RTNL();
254
255         /* Unlink dev from the device chain */
256         write_lock_bh(&dev_base_lock);
257         list_del_rcu(&dev->dev_list);
258         hlist_del_rcu(&dev->name_hlist);
259         hlist_del_rcu(&dev->index_hlist);
260         write_unlock_bh(&dev_base_lock);
261
262         dev_base_seq_inc(dev_net(dev));
263 }
264
265 /*
266  *      Our notifier list
267  */
268
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270
271 /*
272  *      Device drivers call our routines to queue packets here. We empty the
273  *      queue in the local softnet handler.
274  */
275
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301 static const char *const netdev_lock_name[] = {
302         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323         int i;
324
325         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326                 if (netdev_lock_type[i] == dev_type)
327                         return i;
328         /* the last key is used by default */
329         return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333                                                  unsigned short dev_type)
334 {
335         int i;
336
337         i = netdev_lock_pos(dev_type);
338         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344         int i;
345
346         i = netdev_lock_pos(dev->type);
347         lockdep_set_class_and_name(&dev->addr_list_lock,
348                                    &netdev_addr_lock_key[i],
349                                    netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353                                                  unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360
361 /*******************************************************************************
362  *
363  *              Protocol management and registration routines
364  *
365  *******************************************************************************/
366
367
368 /*
369  *      Add a protocol ID to the list. Now that the input handler is
370  *      smarter we can dispense with all the messy stuff that used to be
371  *      here.
372  *
373  *      BEWARE!!! Protocol handlers, mangling input packets,
374  *      MUST BE last in hash buckets and checking protocol handlers
375  *      MUST start from promiscuous ptype_all chain in net_bh.
376  *      It is true now, do not change it.
377  *      Explanation follows: if protocol handler, mangling packet, will
378  *      be the first on list, it is not able to sense, that packet
379  *      is cloned and should be copied-on-write, so that it will
380  *      change it and subsequent readers will get broken packet.
381  *                                                      --ANK (980803)
382  */
383
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386         if (pt->type == htons(ETH_P_ALL))
387                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388         else
389                 return pt->dev ? &pt->dev->ptype_specific :
390                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392
393 /**
394  *      dev_add_pack - add packet handler
395  *      @pt: packet type declaration
396  *
397  *      Add a protocol handler to the networking stack. The passed &packet_type
398  *      is linked into kernel lists and may not be freed until it has been
399  *      removed from the kernel lists.
400  *
401  *      This call does not sleep therefore it can not
402  *      guarantee all CPU's that are in middle of receiving packets
403  *      will see the new packet type (until the next received packet).
404  */
405
406 void dev_add_pack(struct packet_type *pt)
407 {
408         struct list_head *head = ptype_head(pt);
409
410         spin_lock(&ptype_lock);
411         list_add_rcu(&pt->list, head);
412         spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415
416 /**
417  *      __dev_remove_pack        - remove packet handler
418  *      @pt: packet type declaration
419  *
420  *      Remove a protocol handler that was previously added to the kernel
421  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *      from the kernel lists and can be freed or reused once this function
423  *      returns.
424  *
425  *      The packet type might still be in use by receivers
426  *      and must not be freed until after all the CPU's have gone
427  *      through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431         struct list_head *head = ptype_head(pt);
432         struct packet_type *pt1;
433
434         spin_lock(&ptype_lock);
435
436         list_for_each_entry(pt1, head, list) {
437                 if (pt == pt1) {
438                         list_del_rcu(&pt->list);
439                         goto out;
440                 }
441         }
442
443         pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445         spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448
449 /**
450  *      dev_remove_pack  - remove packet handler
451  *      @pt: packet type declaration
452  *
453  *      Remove a protocol handler that was previously added to the kernel
454  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *      from the kernel lists and can be freed or reused once this function
456  *      returns.
457  *
458  *      This call sleeps to guarantee that no CPU is looking at the packet
459  *      type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463         __dev_remove_pack(pt);
464
465         synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468
469
470 /**
471  *      dev_add_offload - register offload handlers
472  *      @po: protocol offload declaration
473  *
474  *      Add protocol offload handlers to the networking stack. The passed
475  *      &proto_offload is linked into kernel lists and may not be freed until
476  *      it has been removed from the kernel lists.
477  *
478  *      This call does not sleep therefore it can not
479  *      guarantee all CPU's that are in middle of receiving packets
480  *      will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484         struct packet_offload *elem;
485
486         spin_lock(&offload_lock);
487         list_for_each_entry(elem, &offload_base, list) {
488                 if (po->priority < elem->priority)
489                         break;
490         }
491         list_add_rcu(&po->list, elem->list.prev);
492         spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495
496 /**
497  *      __dev_remove_offload     - remove offload handler
498  *      @po: packet offload declaration
499  *
500  *      Remove a protocol offload handler that was previously added to the
501  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *      is removed from the kernel lists and can be freed or reused once this
503  *      function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *      and must not be freed until after all the CPU's have gone
507  *      through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511         struct list_head *head = &offload_base;
512         struct packet_offload *po1;
513
514         spin_lock(&offload_lock);
515
516         list_for_each_entry(po1, head, list) {
517                 if (po == po1) {
518                         list_del_rcu(&po->list);
519                         goto out;
520                 }
521         }
522
523         pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525         spin_unlock(&offload_lock);
526 }
527
528 /**
529  *      dev_remove_offload       - remove packet offload handler
530  *      @po: packet offload declaration
531  *
532  *      Remove a packet offload handler that was previously added to the kernel
533  *      offload handlers by dev_add_offload(). The passed &offload_type is
534  *      removed from the kernel lists and can be freed or reused once this
535  *      function returns.
536  *
537  *      This call sleeps to guarantee that no CPU is looking at the packet
538  *      type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542         __dev_remove_offload(po);
543
544         synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547
548 /******************************************************************************
549  *
550  *                    Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557 /**
558  *      netdev_boot_setup_add   - add new setup entry
559  *      @name: name of the device
560  *      @map: configured settings for the device
561  *
562  *      Adds new setup entry to the dev_boot_setup list.  The function
563  *      returns 0 on error and 1 on success.  This is a generic routine to
564  *      all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568         struct netdev_boot_setup *s;
569         int i;
570
571         s = dev_boot_setup;
572         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574                         memset(s[i].name, 0, sizeof(s[i].name));
575                         strlcpy(s[i].name, name, IFNAMSIZ);
576                         memcpy(&s[i].map, map, sizeof(s[i].map));
577                         break;
578                 }
579         }
580
581         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583
584 /**
585  * netdev_boot_setup_check      - check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595         struct netdev_boot_setup *s = dev_boot_setup;
596         int i;
597
598         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600                     !strcmp(dev->name, s[i].name)) {
601                         dev->irq = s[i].map.irq;
602                         dev->base_addr = s[i].map.base_addr;
603                         dev->mem_start = s[i].map.mem_start;
604                         dev->mem_end = s[i].map.mem_end;
605                         return 1;
606                 }
607         }
608         return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613 /**
614  * netdev_boot_base     - get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625         const struct netdev_boot_setup *s = dev_boot_setup;
626         char name[IFNAMSIZ];
627         int i;
628
629         sprintf(name, "%s%d", prefix, unit);
630
631         /*
632          * If device already registered then return base of 1
633          * to indicate not to probe for this interface
634          */
635         if (__dev_get_by_name(&init_net, name))
636                 return 1;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639                 if (!strcmp(name, s[i].name))
640                         return s[i].map.base_addr;
641         return 0;
642 }
643
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649         int ints[5];
650         struct ifmap map;
651
652         str = get_options(str, ARRAY_SIZE(ints), ints);
653         if (!str || !*str)
654                 return 0;
655
656         /* Save settings */
657         memset(&map, 0, sizeof(map));
658         if (ints[0] > 0)
659                 map.irq = ints[1];
660         if (ints[0] > 1)
661                 map.base_addr = ints[2];
662         if (ints[0] > 2)
663                 map.mem_start = ints[3];
664         if (ints[0] > 3)
665                 map.mem_end = ints[4];
666
667         /* Add new entry to the list */
668         return netdev_boot_setup_add(str, &map);
669 }
670
671 __setup("netdev=", netdev_boot_setup);
672
673 /*******************************************************************************
674  *
675  *                          Device Interface Subroutines
676  *
677  *******************************************************************************/
678
679 /**
680  *      dev_get_iflink  - get 'iflink' value of a interface
681  *      @dev: targeted interface
682  *
683  *      Indicates the ifindex the interface is linked to.
684  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686
687 int dev_get_iflink(const struct net_device *dev)
688 {
689         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690                 return dev->netdev_ops->ndo_get_iflink(dev);
691
692         return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *      @dev: targeted interface
699  *      @skb: The packet.
700  *
701  *      For better visibility of tunnel traffic OVS needs to retrieve
702  *      egress tunnel information for a packet. Following API allows
703  *      user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707         struct ip_tunnel_info *info;
708
709         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710                 return -EINVAL;
711
712         info = skb_tunnel_info_unclone(skb);
713         if (!info)
714                 return -ENOMEM;
715         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716                 return -EINVAL;
717
718         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722 /**
723  *      __dev_get_by_name       - find a device by its name
724  *      @net: the applicable net namespace
725  *      @name: name to find
726  *
727  *      Find an interface by name. Must be called under RTNL semaphore
728  *      or @dev_base_lock. If the name is found a pointer to the device
729  *      is returned. If the name is not found then %NULL is returned. The
730  *      reference counters are not incremented so the caller must be
731  *      careful with locks.
732  */
733
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736         struct net_device *dev;
737         struct hlist_head *head = dev_name_hash(net, name);
738
739         hlist_for_each_entry(dev, head, name_hlist)
740                 if (!strncmp(dev->name, name, IFNAMSIZ))
741                         return dev;
742
743         return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746
747 /**
748  * dev_get_by_name_rcu  - find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761         struct net_device *dev;
762         struct hlist_head *head = dev_name_hash(net, name);
763
764         hlist_for_each_entry_rcu(dev, head, name_hlist)
765                 if (!strncmp(dev->name, name, IFNAMSIZ))
766                         return dev;
767
768         return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772 /**
773  *      dev_get_by_name         - find a device by its name
774  *      @net: the applicable net namespace
775  *      @name: name to find
776  *
777  *      Find an interface by name. This can be called from any
778  *      context and does its own locking. The returned handle has
779  *      the usage count incremented and the caller must use dev_put() to
780  *      release it when it is no longer needed. %NULL is returned if no
781  *      matching device is found.
782  */
783
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786         struct net_device *dev;
787
788         rcu_read_lock();
789         dev = dev_get_by_name_rcu(net, name);
790         if (dev)
791                 dev_hold(dev);
792         rcu_read_unlock();
793         return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796
797 /**
798  *      __dev_get_by_index - find a device by its ifindex
799  *      @net: the applicable net namespace
800  *      @ifindex: index of device
801  *
802  *      Search for an interface by index. Returns %NULL if the device
803  *      is not found or a pointer to the device. The device has not
804  *      had its reference counter increased so the caller must be careful
805  *      about locking. The caller must hold either the RTNL semaphore
806  *      or @dev_base_lock.
807  */
808
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811         struct net_device *dev;
812         struct hlist_head *head = dev_index_hash(net, ifindex);
813
814         hlist_for_each_entry(dev, head, index_hlist)
815                 if (dev->ifindex == ifindex)
816                         return dev;
817
818         return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821
822 /**
823  *      dev_get_by_index_rcu - find a device by its ifindex
824  *      @net: the applicable net namespace
825  *      @ifindex: index of device
826  *
827  *      Search for an interface by index. Returns %NULL if the device
828  *      is not found or a pointer to the device. The device has not
829  *      had its reference counter increased so the caller must be careful
830  *      about locking. The caller must hold RCU lock.
831  */
832
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835         struct net_device *dev;
836         struct hlist_head *head = dev_index_hash(net, ifindex);
837
838         hlist_for_each_entry_rcu(dev, head, index_hlist)
839                 if (dev->ifindex == ifindex)
840                         return dev;
841
842         return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847 /**
848  *      dev_get_by_index - find a device by its ifindex
849  *      @net: the applicable net namespace
850  *      @ifindex: index of device
851  *
852  *      Search for an interface by index. Returns NULL if the device
853  *      is not found or a pointer to the device. The device returned has
854  *      had a reference added and the pointer is safe until the user calls
855  *      dev_put to indicate they have finished with it.
856  */
857
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861
862         rcu_read_lock();
863         dev = dev_get_by_index_rcu(net, ifindex);
864         if (dev)
865                 dev_hold(dev);
866         rcu_read_unlock();
867         return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870
871 /**
872  *      dev_get_by_napi_id - find a device by napi_id
873  *      @napi_id: ID of the NAPI struct
874  *
875  *      Search for an interface by NAPI ID. Returns %NULL if the device
876  *      is not found or a pointer to the device. The device has not had
877  *      its reference counter increased so the caller must be careful
878  *      about locking. The caller must hold RCU lock.
879  */
880
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883         struct napi_struct *napi;
884
885         WARN_ON_ONCE(!rcu_read_lock_held());
886
887         if (napi_id < MIN_NAPI_ID)
888                 return NULL;
889
890         napi = napi_by_id(napi_id);
891
892         return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895
896 /**
897  *      netdev_get_name - get a netdevice name, knowing its ifindex.
898  *      @net: network namespace
899  *      @name: a pointer to the buffer where the name will be stored.
900  *      @ifindex: the ifindex of the interface to get the name from.
901  *
902  *      The use of raw_seqcount_begin() and cond_resched() before
903  *      retrying is required as we want to give the writers a chance
904  *      to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908         struct net_device *dev;
909         unsigned int seq;
910
911 retry:
912         seq = raw_seqcount_begin(&devnet_rename_seq);
913         rcu_read_lock();
914         dev = dev_get_by_index_rcu(net, ifindex);
915         if (!dev) {
916                 rcu_read_unlock();
917                 return -ENODEV;
918         }
919
920         strcpy(name, dev->name);
921         rcu_read_unlock();
922         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923                 cond_resched();
924                 goto retry;
925         }
926
927         return 0;
928 }
929
930 /**
931  *      dev_getbyhwaddr_rcu - find a device by its hardware address
932  *      @net: the applicable net namespace
933  *      @type: media type of device
934  *      @ha: hardware address
935  *
936  *      Search for an interface by MAC address. Returns NULL if the device
937  *      is not found or a pointer to the device.
938  *      The caller must hold RCU or RTNL.
939  *      The returned device has not had its ref count increased
940  *      and the caller must therefore be careful about locking
941  *
942  */
943
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945                                        const char *ha)
946 {
947         struct net_device *dev;
948
949         for_each_netdev_rcu(net, dev)
950                 if (dev->type == type &&
951                     !memcmp(dev->dev_addr, ha, dev->addr_len))
952                         return dev;
953
954         return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960         struct net_device *dev;
961
962         ASSERT_RTNL();
963         for_each_netdev(net, dev)
964                 if (dev->type == type)
965                         return dev;
966
967         return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973         struct net_device *dev, *ret = NULL;
974
975         rcu_read_lock();
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type) {
978                         dev_hold(dev);
979                         ret = dev;
980                         break;
981                 }
982         rcu_read_unlock();
983         return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987 /**
988  *      __dev_get_by_flags - find any device with given flags
989  *      @net: the applicable net namespace
990  *      @if_flags: IFF_* values
991  *      @mask: bitmask of bits in if_flags to check
992  *
993  *      Search for any interface with the given flags. Returns NULL if a device
994  *      is not found or a pointer to the device. Must be called inside
995  *      rtnl_lock(), and result refcount is unchanged.
996  */
997
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999                                       unsigned short mask)
1000 {
1001         struct net_device *dev, *ret;
1002
1003         ASSERT_RTNL();
1004
1005         ret = NULL;
1006         for_each_netdev(net, dev) {
1007                 if (((dev->flags ^ if_flags) & mask) == 0) {
1008                         ret = dev;
1009                         break;
1010                 }
1011         }
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016 /**
1017  *      dev_valid_name - check if name is okay for network device
1018  *      @name: name string
1019  *
1020  *      Network device names need to be valid file names to
1021  *      to allow sysfs to work.  We also disallow any kind of
1022  *      whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026         if (*name == '\0')
1027                 return false;
1028         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029                 return false;
1030         if (!strcmp(name, ".") || !strcmp(name, ".."))
1031                 return false;
1032
1033         while (*name) {
1034                 if (*name == '/' || *name == ':' || isspace(*name))
1035                         return false;
1036                 name++;
1037         }
1038         return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041
1042 /**
1043  *      __dev_alloc_name - allocate a name for a device
1044  *      @net: network namespace to allocate the device name in
1045  *      @name: name format string
1046  *      @buf:  scratch buffer and result name string
1047  *
1048  *      Passed a format string - eg "lt%d" it will try and find a suitable
1049  *      id. It scans list of devices to build up a free map, then chooses
1050  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *      while allocating the name and adding the device in order to avoid
1052  *      duplicates.
1053  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *      Returns the number of the unit assigned or a negative errno code.
1055  */
1056
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059         int i = 0;
1060         const char *p;
1061         const int max_netdevices = 8*PAGE_SIZE;
1062         unsigned long *inuse;
1063         struct net_device *d;
1064
1065         if (!dev_valid_name(name))
1066                 return -EINVAL;
1067
1068         p = strchr(name, '%');
1069         if (p) {
1070                 /*
1071                  * Verify the string as this thing may have come from
1072                  * the user.  There must be either one "%d" and no other "%"
1073                  * characters.
1074                  */
1075                 if (p[1] != 'd' || strchr(p + 2, '%'))
1076                         return -EINVAL;
1077
1078                 /* Use one page as a bit array of possible slots */
1079                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080                 if (!inuse)
1081                         return -ENOMEM;
1082
1083                 for_each_netdev(net, d) {
1084                         if (!sscanf(d->name, name, &i))
1085                                 continue;
1086                         if (i < 0 || i >= max_netdevices)
1087                                 continue;
1088
1089                         /*  avoid cases where sscanf is not exact inverse of printf */
1090                         snprintf(buf, IFNAMSIZ, name, i);
1091                         if (!strncmp(buf, d->name, IFNAMSIZ))
1092                                 set_bit(i, inuse);
1093                 }
1094
1095                 i = find_first_zero_bit(inuse, max_netdevices);
1096                 free_page((unsigned long) inuse);
1097         }
1098
1099         snprintf(buf, IFNAMSIZ, name, i);
1100         if (!__dev_get_by_name(net, buf))
1101                 return i;
1102
1103         /* It is possible to run out of possible slots
1104          * when the name is long and there isn't enough space left
1105          * for the digits, or if all bits are used.
1106          */
1107         return -ENFILE;
1108 }
1109
1110 static int dev_alloc_name_ns(struct net *net,
1111                              struct net_device *dev,
1112                              const char *name)
1113 {
1114         char buf[IFNAMSIZ];
1115         int ret;
1116
1117         BUG_ON(!net);
1118         ret = __dev_alloc_name(net, name, buf);
1119         if (ret >= 0)
1120                 strlcpy(dev->name, buf, IFNAMSIZ);
1121         return ret;
1122 }
1123
1124 /**
1125  *      dev_alloc_name - allocate a name for a device
1126  *      @dev: device
1127  *      @name: name format string
1128  *
1129  *      Passed a format string - eg "lt%d" it will try and find a suitable
1130  *      id. It scans list of devices to build up a free map, then chooses
1131  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *      while allocating the name and adding the device in order to avoid
1133  *      duplicates.
1134  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *      Returns the number of the unit assigned or a negative errno code.
1136  */
1137
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140         return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145                        const char *name)
1146 {
1147         BUG_ON(!net);
1148
1149         if (!dev_valid_name(name))
1150                 return -EINVAL;
1151
1152         if (strchr(name, '%'))
1153                 return dev_alloc_name_ns(net, dev, name);
1154         else if (__dev_get_by_name(net, name))
1155                 return -EEXIST;
1156         else if (dev->name != name)
1157                 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159         return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162
1163 /**
1164  *      dev_change_name - change name of a device
1165  *      @dev: device
1166  *      @newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *      Change name of a device, can pass format strings "eth%d".
1169  *      for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173         unsigned char old_assign_type;
1174         char oldname[IFNAMSIZ];
1175         int err = 0;
1176         int ret;
1177         struct net *net;
1178
1179         ASSERT_RTNL();
1180         BUG_ON(!dev_net(dev));
1181
1182         net = dev_net(dev);
1183         if (dev->flags & IFF_UP)
1184                 return -EBUSY;
1185
1186         write_seqcount_begin(&devnet_rename_seq);
1187
1188         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189                 write_seqcount_end(&devnet_rename_seq);
1190                 return 0;
1191         }
1192
1193         memcpy(oldname, dev->name, IFNAMSIZ);
1194
1195         err = dev_get_valid_name(net, dev, newname);
1196         if (err < 0) {
1197                 write_seqcount_end(&devnet_rename_seq);
1198                 return err;
1199         }
1200
1201         if (oldname[0] && !strchr(oldname, '%'))
1202                 netdev_info(dev, "renamed from %s\n", oldname);
1203
1204         old_assign_type = dev->name_assign_type;
1205         dev->name_assign_type = NET_NAME_RENAMED;
1206
1207 rollback:
1208         ret = device_rename(&dev->dev, dev->name);
1209         if (ret) {
1210                 memcpy(dev->name, oldname, IFNAMSIZ);
1211                 dev->name_assign_type = old_assign_type;
1212                 write_seqcount_end(&devnet_rename_seq);
1213                 return ret;
1214         }
1215
1216         write_seqcount_end(&devnet_rename_seq);
1217
1218         netdev_adjacent_rename_links(dev, oldname);
1219
1220         write_lock_bh(&dev_base_lock);
1221         hlist_del_rcu(&dev->name_hlist);
1222         write_unlock_bh(&dev_base_lock);
1223
1224         synchronize_rcu();
1225
1226         write_lock_bh(&dev_base_lock);
1227         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228         write_unlock_bh(&dev_base_lock);
1229
1230         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231         ret = notifier_to_errno(ret);
1232
1233         if (ret) {
1234                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1235                 if (err >= 0) {
1236                         err = ret;
1237                         write_seqcount_begin(&devnet_rename_seq);
1238                         memcpy(dev->name, oldname, IFNAMSIZ);
1239                         memcpy(oldname, newname, IFNAMSIZ);
1240                         dev->name_assign_type = old_assign_type;
1241                         old_assign_type = NET_NAME_RENAMED;
1242                         goto rollback;
1243                 } else {
1244                         pr_err("%s: name change rollback failed: %d\n",
1245                                dev->name, ret);
1246                 }
1247         }
1248
1249         return err;
1250 }
1251
1252 /**
1253  *      dev_set_alias - change ifalias of a device
1254  *      @dev: device
1255  *      @alias: name up to IFALIASZ
1256  *      @len: limit of bytes to copy from info
1257  *
1258  *      Set ifalias for a device,
1259  */
1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261 {
1262         struct dev_ifalias *new_alias = NULL;
1263
1264         if (len >= IFALIASZ)
1265                 return -EINVAL;
1266
1267         if (len) {
1268                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269                 if (!new_alias)
1270                         return -ENOMEM;
1271
1272                 memcpy(new_alias->ifalias, alias, len);
1273                 new_alias->ifalias[len] = 0;
1274         }
1275
1276         mutex_lock(&ifalias_mutex);
1277         rcu_swap_protected(dev->ifalias, new_alias,
1278                            mutex_is_locked(&ifalias_mutex));
1279         mutex_unlock(&ifalias_mutex);
1280
1281         if (new_alias)
1282                 kfree_rcu(new_alias, rcuhead);
1283
1284         return len;
1285 }
1286 EXPORT_SYMBOL(dev_set_alias);
1287
1288 /**
1289  *      dev_get_alias - get ifalias of a device
1290  *      @dev: device
1291  *      @name: buffer to store name of ifalias
1292  *      @len: size of buffer
1293  *
1294  *      get ifalias for a device.  Caller must make sure dev cannot go
1295  *      away,  e.g. rcu read lock or own a reference count to device.
1296  */
1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298 {
1299         const struct dev_ifalias *alias;
1300         int ret = 0;
1301
1302         rcu_read_lock();
1303         alias = rcu_dereference(dev->ifalias);
1304         if (alias)
1305                 ret = snprintf(name, len, "%s", alias->ifalias);
1306         rcu_read_unlock();
1307
1308         return ret;
1309 }
1310
1311 /**
1312  *      netdev_features_change - device changes features
1313  *      @dev: device to cause notification
1314  *
1315  *      Called to indicate a device has changed features.
1316  */
1317 void netdev_features_change(struct net_device *dev)
1318 {
1319         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320 }
1321 EXPORT_SYMBOL(netdev_features_change);
1322
1323 /**
1324  *      netdev_state_change - device changes state
1325  *      @dev: device to cause notification
1326  *
1327  *      Called to indicate a device has changed state. This function calls
1328  *      the notifier chains for netdev_chain and sends a NEWLINK message
1329  *      to the routing socket.
1330  */
1331 void netdev_state_change(struct net_device *dev)
1332 {
1333         if (dev->flags & IFF_UP) {
1334                 struct netdev_notifier_change_info change_info = {
1335                         .info.dev = dev,
1336                 };
1337
1338                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1339                                               &change_info.info);
1340                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341         }
1342 }
1343 EXPORT_SYMBOL(netdev_state_change);
1344
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357         rtnl_lock();
1358         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360         rtnl_unlock();
1361 }
1362 EXPORT_SYMBOL(netdev_notify_peers);
1363
1364 static int __dev_open(struct net_device *dev)
1365 {
1366         const struct net_device_ops *ops = dev->netdev_ops;
1367         int ret;
1368
1369         ASSERT_RTNL();
1370
1371         if (!netif_device_present(dev))
1372                 return -ENODEV;
1373
1374         /* Block netpoll from trying to do any rx path servicing.
1375          * If we don't do this there is a chance ndo_poll_controller
1376          * or ndo_poll may be running while we open the device
1377          */
1378         netpoll_poll_disable(dev);
1379
1380         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381         ret = notifier_to_errno(ret);
1382         if (ret)
1383                 return ret;
1384
1385         set_bit(__LINK_STATE_START, &dev->state);
1386
1387         if (ops->ndo_validate_addr)
1388                 ret = ops->ndo_validate_addr(dev);
1389
1390         if (!ret && ops->ndo_open)
1391                 ret = ops->ndo_open(dev);
1392
1393         netpoll_poll_enable(dev);
1394
1395         if (ret)
1396                 clear_bit(__LINK_STATE_START, &dev->state);
1397         else {
1398                 dev->flags |= IFF_UP;
1399                 dev_set_rx_mode(dev);
1400                 dev_activate(dev);
1401                 add_device_randomness(dev->dev_addr, dev->addr_len);
1402         }
1403
1404         return ret;
1405 }
1406
1407 /**
1408  *      dev_open        - prepare an interface for use.
1409  *      @dev:   device to open
1410  *
1411  *      Takes a device from down to up state. The device's private open
1412  *      function is invoked and then the multicast lists are loaded. Finally
1413  *      the device is moved into the up state and a %NETDEV_UP message is
1414  *      sent to the netdev notifier chain.
1415  *
1416  *      Calling this function on an active interface is a nop. On a failure
1417  *      a negative errno code is returned.
1418  */
1419 int dev_open(struct net_device *dev)
1420 {
1421         int ret;
1422
1423         if (dev->flags & IFF_UP)
1424                 return 0;
1425
1426         ret = __dev_open(dev);
1427         if (ret < 0)
1428                 return ret;
1429
1430         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431         call_netdevice_notifiers(NETDEV_UP, dev);
1432
1433         return ret;
1434 }
1435 EXPORT_SYMBOL(dev_open);
1436
1437 static void __dev_close_many(struct list_head *head)
1438 {
1439         struct net_device *dev;
1440
1441         ASSERT_RTNL();
1442         might_sleep();
1443
1444         list_for_each_entry(dev, head, close_list) {
1445                 /* Temporarily disable netpoll until the interface is down */
1446                 netpoll_poll_disable(dev);
1447
1448                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449
1450                 clear_bit(__LINK_STATE_START, &dev->state);
1451
1452                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1453                  * can be even on different cpu. So just clear netif_running().
1454                  *
1455                  * dev->stop() will invoke napi_disable() on all of it's
1456                  * napi_struct instances on this device.
1457                  */
1458                 smp_mb__after_atomic(); /* Commit netif_running(). */
1459         }
1460
1461         dev_deactivate_many(head);
1462
1463         list_for_each_entry(dev, head, close_list) {
1464                 const struct net_device_ops *ops = dev->netdev_ops;
1465
1466                 /*
1467                  *      Call the device specific close. This cannot fail.
1468                  *      Only if device is UP
1469                  *
1470                  *      We allow it to be called even after a DETACH hot-plug
1471                  *      event.
1472                  */
1473                 if (ops->ndo_stop)
1474                         ops->ndo_stop(dev);
1475
1476                 dev->flags &= ~IFF_UP;
1477                 netpoll_poll_enable(dev);
1478         }
1479 }
1480
1481 static void __dev_close(struct net_device *dev)
1482 {
1483         LIST_HEAD(single);
1484
1485         list_add(&dev->close_list, &single);
1486         __dev_close_many(&single);
1487         list_del(&single);
1488 }
1489
1490 void dev_close_many(struct list_head *head, bool unlink)
1491 {
1492         struct net_device *dev, *tmp;
1493
1494         /* Remove the devices that don't need to be closed */
1495         list_for_each_entry_safe(dev, tmp, head, close_list)
1496                 if (!(dev->flags & IFF_UP))
1497                         list_del_init(&dev->close_list);
1498
1499         __dev_close_many(head);
1500
1501         list_for_each_entry_safe(dev, tmp, head, close_list) {
1502                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1504                 if (unlink)
1505                         list_del_init(&dev->close_list);
1506         }
1507 }
1508 EXPORT_SYMBOL(dev_close_many);
1509
1510 /**
1511  *      dev_close - shutdown an interface.
1512  *      @dev: device to shutdown
1513  *
1514  *      This function moves an active device into down state. A
1515  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517  *      chain.
1518  */
1519 void dev_close(struct net_device *dev)
1520 {
1521         if (dev->flags & IFF_UP) {
1522                 LIST_HEAD(single);
1523
1524                 list_add(&dev->close_list, &single);
1525                 dev_close_many(&single, true);
1526                 list_del(&single);
1527         }
1528 }
1529 EXPORT_SYMBOL(dev_close);
1530
1531
1532 /**
1533  *      dev_disable_lro - disable Large Receive Offload on a device
1534  *      @dev: device
1535  *
1536  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1537  *      called under RTNL.  This is needed if received packets may be
1538  *      forwarded to another interface.
1539  */
1540 void dev_disable_lro(struct net_device *dev)
1541 {
1542         struct net_device *lower_dev;
1543         struct list_head *iter;
1544
1545         dev->wanted_features &= ~NETIF_F_LRO;
1546         netdev_update_features(dev);
1547
1548         if (unlikely(dev->features & NETIF_F_LRO))
1549                 netdev_WARN(dev, "failed to disable LRO!\n");
1550
1551         netdev_for_each_lower_dev(dev, lower_dev, iter)
1552                 dev_disable_lro(lower_dev);
1553 }
1554 EXPORT_SYMBOL(dev_disable_lro);
1555
1556 /**
1557  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558  *      @dev: device
1559  *
1560  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1561  *      called under RTNL.  This is needed if Generic XDP is installed on
1562  *      the device.
1563  */
1564 static void dev_disable_gro_hw(struct net_device *dev)
1565 {
1566         dev->wanted_features &= ~NETIF_F_GRO_HW;
1567         netdev_update_features(dev);
1568
1569         if (unlikely(dev->features & NETIF_F_GRO_HW))
1570                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571 }
1572
1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574 {
1575 #define N(val)                                          \
1576         case NETDEV_##val:                              \
1577                 return "NETDEV_" __stringify(val);
1578         switch (cmd) {
1579         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588         }
1589 #undef N
1590         return "UNKNOWN_NETDEV_EVENT";
1591 }
1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593
1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595                                    struct net_device *dev)
1596 {
1597         struct netdev_notifier_info info = {
1598                 .dev = dev,
1599         };
1600
1601         return nb->notifier_call(nb, val, &info);
1602 }
1603
1604 static int dev_boot_phase = 1;
1605
1606 /**
1607  * register_netdevice_notifier - register a network notifier block
1608  * @nb: notifier
1609  *
1610  * Register a notifier to be called when network device events occur.
1611  * The notifier passed is linked into the kernel structures and must
1612  * not be reused until it has been unregistered. A negative errno code
1613  * is returned on a failure.
1614  *
1615  * When registered all registration and up events are replayed
1616  * to the new notifier to allow device to have a race free
1617  * view of the network device list.
1618  */
1619
1620 int register_netdevice_notifier(struct notifier_block *nb)
1621 {
1622         struct net_device *dev;
1623         struct net_device *last;
1624         struct net *net;
1625         int err;
1626
1627         /* Close race with setup_net() and cleanup_net() */
1628         down_write(&pernet_ops_rwsem);
1629         rtnl_lock();
1630         err = raw_notifier_chain_register(&netdev_chain, nb);
1631         if (err)
1632                 goto unlock;
1633         if (dev_boot_phase)
1634                 goto unlock;
1635         for_each_net(net) {
1636                 for_each_netdev(net, dev) {
1637                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638                         err = notifier_to_errno(err);
1639                         if (err)
1640                                 goto rollback;
1641
1642                         if (!(dev->flags & IFF_UP))
1643                                 continue;
1644
1645                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1646                 }
1647         }
1648
1649 unlock:
1650         rtnl_unlock();
1651         up_write(&pernet_ops_rwsem);
1652         return err;
1653
1654 rollback:
1655         last = dev;
1656         for_each_net(net) {
1657                 for_each_netdev(net, dev) {
1658                         if (dev == last)
1659                                 goto outroll;
1660
1661                         if (dev->flags & IFF_UP) {
1662                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663                                                         dev);
1664                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665                         }
1666                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667                 }
1668         }
1669
1670 outroll:
1671         raw_notifier_chain_unregister(&netdev_chain, nb);
1672         goto unlock;
1673 }
1674 EXPORT_SYMBOL(register_netdevice_notifier);
1675
1676 /**
1677  * unregister_netdevice_notifier - unregister a network notifier block
1678  * @nb: notifier
1679  *
1680  * Unregister a notifier previously registered by
1681  * register_netdevice_notifier(). The notifier is unlinked into the
1682  * kernel structures and may then be reused. A negative errno code
1683  * is returned on a failure.
1684  *
1685  * After unregistering unregister and down device events are synthesized
1686  * for all devices on the device list to the removed notifier to remove
1687  * the need for special case cleanup code.
1688  */
1689
1690 int unregister_netdevice_notifier(struct notifier_block *nb)
1691 {
1692         struct net_device *dev;
1693         struct net *net;
1694         int err;
1695
1696         /* Close race with setup_net() and cleanup_net() */
1697         down_write(&pernet_ops_rwsem);
1698         rtnl_lock();
1699         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700         if (err)
1701                 goto unlock;
1702
1703         for_each_net(net) {
1704                 for_each_netdev(net, dev) {
1705                         if (dev->flags & IFF_UP) {
1706                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707                                                         dev);
1708                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709                         }
1710                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711                 }
1712         }
1713 unlock:
1714         rtnl_unlock();
1715         up_write(&pernet_ops_rwsem);
1716         return err;
1717 }
1718 EXPORT_SYMBOL(unregister_netdevice_notifier);
1719
1720 /**
1721  *      call_netdevice_notifiers_info - call all network notifier blocks
1722  *      @val: value passed unmodified to notifier function
1723  *      @info: notifier information data
1724  *
1725  *      Call all network notifier blocks.  Parameters and return value
1726  *      are as for raw_notifier_call_chain().
1727  */
1728
1729 static int call_netdevice_notifiers_info(unsigned long val,
1730                                          struct netdev_notifier_info *info)
1731 {
1732         ASSERT_RTNL();
1733         return raw_notifier_call_chain(&netdev_chain, val, info);
1734 }
1735
1736 /**
1737  *      call_netdevice_notifiers - call all network notifier blocks
1738  *      @val: value passed unmodified to notifier function
1739  *      @dev: net_device pointer passed unmodified to notifier function
1740  *
1741  *      Call all network notifier blocks.  Parameters and return value
1742  *      are as for raw_notifier_call_chain().
1743  */
1744
1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746 {
1747         struct netdev_notifier_info info = {
1748                 .dev = dev,
1749         };
1750
1751         return call_netdevice_notifiers_info(val, &info);
1752 }
1753 EXPORT_SYMBOL(call_netdevice_notifiers);
1754
1755 #ifdef CONFIG_NET_INGRESS
1756 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1757
1758 void net_inc_ingress_queue(void)
1759 {
1760         static_branch_inc(&ingress_needed_key);
1761 }
1762 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1763
1764 void net_dec_ingress_queue(void)
1765 {
1766         static_branch_dec(&ingress_needed_key);
1767 }
1768 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1769 #endif
1770
1771 #ifdef CONFIG_NET_EGRESS
1772 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1773
1774 void net_inc_egress_queue(void)
1775 {
1776         static_branch_inc(&egress_needed_key);
1777 }
1778 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1779
1780 void net_dec_egress_queue(void)
1781 {
1782         static_branch_dec(&egress_needed_key);
1783 }
1784 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1785 #endif
1786
1787 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1788 #ifdef HAVE_JUMP_LABEL
1789 static atomic_t netstamp_needed_deferred;
1790 static atomic_t netstamp_wanted;
1791 static void netstamp_clear(struct work_struct *work)
1792 {
1793         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1794         int wanted;
1795
1796         wanted = atomic_add_return(deferred, &netstamp_wanted);
1797         if (wanted > 0)
1798                 static_branch_enable(&netstamp_needed_key);
1799         else
1800                 static_branch_disable(&netstamp_needed_key);
1801 }
1802 static DECLARE_WORK(netstamp_work, netstamp_clear);
1803 #endif
1804
1805 void net_enable_timestamp(void)
1806 {
1807 #ifdef HAVE_JUMP_LABEL
1808         int wanted;
1809
1810         while (1) {
1811                 wanted = atomic_read(&netstamp_wanted);
1812                 if (wanted <= 0)
1813                         break;
1814                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1815                         return;
1816         }
1817         atomic_inc(&netstamp_needed_deferred);
1818         schedule_work(&netstamp_work);
1819 #else
1820         static_branch_inc(&netstamp_needed_key);
1821 #endif
1822 }
1823 EXPORT_SYMBOL(net_enable_timestamp);
1824
1825 void net_disable_timestamp(void)
1826 {
1827 #ifdef HAVE_JUMP_LABEL
1828         int wanted;
1829
1830         while (1) {
1831                 wanted = atomic_read(&netstamp_wanted);
1832                 if (wanted <= 1)
1833                         break;
1834                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1835                         return;
1836         }
1837         atomic_dec(&netstamp_needed_deferred);
1838         schedule_work(&netstamp_work);
1839 #else
1840         static_branch_dec(&netstamp_needed_key);
1841 #endif
1842 }
1843 EXPORT_SYMBOL(net_disable_timestamp);
1844
1845 static inline void net_timestamp_set(struct sk_buff *skb)
1846 {
1847         skb->tstamp = 0;
1848         if (static_branch_unlikely(&netstamp_needed_key))
1849                 __net_timestamp(skb);
1850 }
1851
1852 #define net_timestamp_check(COND, SKB)                          \
1853         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1854                 if ((COND) && !(SKB)->tstamp)                   \
1855                         __net_timestamp(SKB);                   \
1856         }                                                       \
1857
1858 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1859 {
1860         unsigned int len;
1861
1862         if (!(dev->flags & IFF_UP))
1863                 return false;
1864
1865         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1866         if (skb->len <= len)
1867                 return true;
1868
1869         /* if TSO is enabled, we don't care about the length as the packet
1870          * could be forwarded without being segmented before
1871          */
1872         if (skb_is_gso(skb))
1873                 return true;
1874
1875         return false;
1876 }
1877 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1878
1879 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1880 {
1881         int ret = ____dev_forward_skb(dev, skb);
1882
1883         if (likely(!ret)) {
1884                 skb->protocol = eth_type_trans(skb, dev);
1885                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1886         }
1887
1888         return ret;
1889 }
1890 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1891
1892 /**
1893  * dev_forward_skb - loopback an skb to another netif
1894  *
1895  * @dev: destination network device
1896  * @skb: buffer to forward
1897  *
1898  * return values:
1899  *      NET_RX_SUCCESS  (no congestion)
1900  *      NET_RX_DROP     (packet was dropped, but freed)
1901  *
1902  * dev_forward_skb can be used for injecting an skb from the
1903  * start_xmit function of one device into the receive queue
1904  * of another device.
1905  *
1906  * The receiving device may be in another namespace, so
1907  * we have to clear all information in the skb that could
1908  * impact namespace isolation.
1909  */
1910 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1911 {
1912         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1913 }
1914 EXPORT_SYMBOL_GPL(dev_forward_skb);
1915
1916 static inline int deliver_skb(struct sk_buff *skb,
1917                               struct packet_type *pt_prev,
1918                               struct net_device *orig_dev)
1919 {
1920         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1921                 return -ENOMEM;
1922         refcount_inc(&skb->users);
1923         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1924 }
1925
1926 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1927                                           struct packet_type **pt,
1928                                           struct net_device *orig_dev,
1929                                           __be16 type,
1930                                           struct list_head *ptype_list)
1931 {
1932         struct packet_type *ptype, *pt_prev = *pt;
1933
1934         list_for_each_entry_rcu(ptype, ptype_list, list) {
1935                 if (ptype->type != type)
1936                         continue;
1937                 if (pt_prev)
1938                         deliver_skb(skb, pt_prev, orig_dev);
1939                 pt_prev = ptype;
1940         }
1941         *pt = pt_prev;
1942 }
1943
1944 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1945 {
1946         if (!ptype->af_packet_priv || !skb->sk)
1947                 return false;
1948
1949         if (ptype->id_match)
1950                 return ptype->id_match(ptype, skb->sk);
1951         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1952                 return true;
1953
1954         return false;
1955 }
1956
1957 /*
1958  *      Support routine. Sends outgoing frames to any network
1959  *      taps currently in use.
1960  */
1961
1962 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1963 {
1964         struct packet_type *ptype;
1965         struct sk_buff *skb2 = NULL;
1966         struct packet_type *pt_prev = NULL;
1967         struct list_head *ptype_list = &ptype_all;
1968
1969         rcu_read_lock();
1970 again:
1971         list_for_each_entry_rcu(ptype, ptype_list, list) {
1972                 /* Never send packets back to the socket
1973                  * they originated from - MvS (miquels@drinkel.ow.org)
1974                  */
1975                 if (skb_loop_sk(ptype, skb))
1976                         continue;
1977
1978                 if (pt_prev) {
1979                         deliver_skb(skb2, pt_prev, skb->dev);
1980                         pt_prev = ptype;
1981                         continue;
1982                 }
1983
1984                 /* need to clone skb, done only once */
1985                 skb2 = skb_clone(skb, GFP_ATOMIC);
1986                 if (!skb2)
1987                         goto out_unlock;
1988
1989                 net_timestamp_set(skb2);
1990
1991                 /* skb->nh should be correctly
1992                  * set by sender, so that the second statement is
1993                  * just protection against buggy protocols.
1994                  */
1995                 skb_reset_mac_header(skb2);
1996
1997                 if (skb_network_header(skb2) < skb2->data ||
1998                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1999                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2000                                              ntohs(skb2->protocol),
2001                                              dev->name);
2002                         skb_reset_network_header(skb2);
2003                 }
2004
2005                 skb2->transport_header = skb2->network_header;
2006                 skb2->pkt_type = PACKET_OUTGOING;
2007                 pt_prev = ptype;
2008         }
2009
2010         if (ptype_list == &ptype_all) {
2011                 ptype_list = &dev->ptype_all;
2012                 goto again;
2013         }
2014 out_unlock:
2015         if (pt_prev) {
2016                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2017                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2018                 else
2019                         kfree_skb(skb2);
2020         }
2021         rcu_read_unlock();
2022 }
2023 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2024
2025 /**
2026  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2027  * @dev: Network device
2028  * @txq: number of queues available
2029  *
2030  * If real_num_tx_queues is changed the tc mappings may no longer be
2031  * valid. To resolve this verify the tc mapping remains valid and if
2032  * not NULL the mapping. With no priorities mapping to this
2033  * offset/count pair it will no longer be used. In the worst case TC0
2034  * is invalid nothing can be done so disable priority mappings. If is
2035  * expected that drivers will fix this mapping if they can before
2036  * calling netif_set_real_num_tx_queues.
2037  */
2038 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2039 {
2040         int i;
2041         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2042
2043         /* If TC0 is invalidated disable TC mapping */
2044         if (tc->offset + tc->count > txq) {
2045                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2046                 dev->num_tc = 0;
2047                 return;
2048         }
2049
2050         /* Invalidated prio to tc mappings set to TC0 */
2051         for (i = 1; i < TC_BITMASK + 1; i++) {
2052                 int q = netdev_get_prio_tc_map(dev, i);
2053
2054                 tc = &dev->tc_to_txq[q];
2055                 if (tc->offset + tc->count > txq) {
2056                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2057                                 i, q);
2058                         netdev_set_prio_tc_map(dev, i, 0);
2059                 }
2060         }
2061 }
2062
2063 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2064 {
2065         if (dev->num_tc) {
2066                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2067                 int i;
2068
2069                 /* walk through the TCs and see if it falls into any of them */
2070                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2071                         if ((txq - tc->offset) < tc->count)
2072                                 return i;
2073                 }
2074
2075                 /* didn't find it, just return -1 to indicate no match */
2076                 return -1;
2077         }
2078
2079         return 0;
2080 }
2081 EXPORT_SYMBOL(netdev_txq_to_tc);
2082
2083 #ifdef CONFIG_XPS
2084 struct static_key xps_needed __read_mostly;
2085 EXPORT_SYMBOL(xps_needed);
2086 struct static_key xps_rxqs_needed __read_mostly;
2087 EXPORT_SYMBOL(xps_rxqs_needed);
2088 static DEFINE_MUTEX(xps_map_mutex);
2089 #define xmap_dereference(P)             \
2090         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2091
2092 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2093                              int tci, u16 index)
2094 {
2095         struct xps_map *map = NULL;
2096         int pos;
2097
2098         if (dev_maps)
2099                 map = xmap_dereference(dev_maps->attr_map[tci]);
2100         if (!map)
2101                 return false;
2102
2103         for (pos = map->len; pos--;) {
2104                 if (map->queues[pos] != index)
2105                         continue;
2106
2107                 if (map->len > 1) {
2108                         map->queues[pos] = map->queues[--map->len];
2109                         break;
2110                 }
2111
2112                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2113                 kfree_rcu(map, rcu);
2114                 return false;
2115         }
2116
2117         return true;
2118 }
2119
2120 static bool remove_xps_queue_cpu(struct net_device *dev,
2121                                  struct xps_dev_maps *dev_maps,
2122                                  int cpu, u16 offset, u16 count)
2123 {
2124         int num_tc = dev->num_tc ? : 1;
2125         bool active = false;
2126         int tci;
2127
2128         for (tci = cpu * num_tc; num_tc--; tci++) {
2129                 int i, j;
2130
2131                 for (i = count, j = offset; i--; j++) {
2132                         if (!remove_xps_queue(dev_maps, tci, j))
2133                                 break;
2134                 }
2135
2136                 active |= i < 0;
2137         }
2138
2139         return active;
2140 }
2141
2142 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2143                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2144                            u16 offset, u16 count, bool is_rxqs_map)
2145 {
2146         bool active = false;
2147         int i, j;
2148
2149         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2150              j < nr_ids;)
2151                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2152                                                count);
2153         if (!active) {
2154                 if (is_rxqs_map) {
2155                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2156                 } else {
2157                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2158
2159                         for (i = offset + (count - 1); count--; i--)
2160                                 netdev_queue_numa_node_write(
2161                                         netdev_get_tx_queue(dev, i),
2162                                                         NUMA_NO_NODE);
2163                 }
2164                 kfree_rcu(dev_maps, rcu);
2165         }
2166 }
2167
2168 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2169                                    u16 count)
2170 {
2171         const unsigned long *possible_mask = NULL;
2172         struct xps_dev_maps *dev_maps;
2173         unsigned int nr_ids;
2174
2175         if (!static_key_false(&xps_needed))
2176                 return;
2177
2178         cpus_read_lock();
2179         mutex_lock(&xps_map_mutex);
2180
2181         if (static_key_false(&xps_rxqs_needed)) {
2182                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2183                 if (dev_maps) {
2184                         nr_ids = dev->num_rx_queues;
2185                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2186                                        offset, count, true);
2187                 }
2188         }
2189
2190         dev_maps = xmap_dereference(dev->xps_cpus_map);
2191         if (!dev_maps)
2192                 goto out_no_maps;
2193
2194         if (num_possible_cpus() > 1)
2195                 possible_mask = cpumask_bits(cpu_possible_mask);
2196         nr_ids = nr_cpu_ids;
2197         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2198                        false);
2199
2200 out_no_maps:
2201         if (static_key_enabled(&xps_rxqs_needed))
2202                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2203
2204         static_key_slow_dec_cpuslocked(&xps_needed);
2205         mutex_unlock(&xps_map_mutex);
2206         cpus_read_unlock();
2207 }
2208
2209 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2210 {
2211         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2212 }
2213
2214 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2215                                       u16 index, bool is_rxqs_map)
2216 {
2217         struct xps_map *new_map;
2218         int alloc_len = XPS_MIN_MAP_ALLOC;
2219         int i, pos;
2220
2221         for (pos = 0; map && pos < map->len; pos++) {
2222                 if (map->queues[pos] != index)
2223                         continue;
2224                 return map;
2225         }
2226
2227         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2228         if (map) {
2229                 if (pos < map->alloc_len)
2230                         return map;
2231
2232                 alloc_len = map->alloc_len * 2;
2233         }
2234
2235         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2236          *  map
2237          */
2238         if (is_rxqs_map)
2239                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2240         else
2241                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2242                                        cpu_to_node(attr_index));
2243         if (!new_map)
2244                 return NULL;
2245
2246         for (i = 0; i < pos; i++)
2247                 new_map->queues[i] = map->queues[i];
2248         new_map->alloc_len = alloc_len;
2249         new_map->len = pos;
2250
2251         return new_map;
2252 }
2253
2254 /* Must be called under cpus_read_lock */
2255 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2256                           u16 index, bool is_rxqs_map)
2257 {
2258         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2259         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2260         int i, j, tci, numa_node_id = -2;
2261         int maps_sz, num_tc = 1, tc = 0;
2262         struct xps_map *map, *new_map;
2263         bool active = false;
2264         unsigned int nr_ids;
2265
2266         if (dev->num_tc) {
2267                 /* Do not allow XPS on subordinate device directly */
2268                 num_tc = dev->num_tc;
2269                 if (num_tc < 0)
2270                         return -EINVAL;
2271
2272                 /* If queue belongs to subordinate dev use its map */
2273                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2274
2275                 tc = netdev_txq_to_tc(dev, index);
2276                 if (tc < 0)
2277                         return -EINVAL;
2278         }
2279
2280         mutex_lock(&xps_map_mutex);
2281         if (is_rxqs_map) {
2282                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2283                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2284                 nr_ids = dev->num_rx_queues;
2285         } else {
2286                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2287                 if (num_possible_cpus() > 1) {
2288                         online_mask = cpumask_bits(cpu_online_mask);
2289                         possible_mask = cpumask_bits(cpu_possible_mask);
2290                 }
2291                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2292                 nr_ids = nr_cpu_ids;
2293         }
2294
2295         if (maps_sz < L1_CACHE_BYTES)
2296                 maps_sz = L1_CACHE_BYTES;
2297
2298         /* allocate memory for queue storage */
2299         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2300              j < nr_ids;) {
2301                 if (!new_dev_maps)
2302                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2303                 if (!new_dev_maps) {
2304                         mutex_unlock(&xps_map_mutex);
2305                         return -ENOMEM;
2306                 }
2307
2308                 tci = j * num_tc + tc;
2309                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2310                                  NULL;
2311
2312                 map = expand_xps_map(map, j, index, is_rxqs_map);
2313                 if (!map)
2314                         goto error;
2315
2316                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2317         }
2318
2319         if (!new_dev_maps)
2320                 goto out_no_new_maps;
2321
2322         static_key_slow_inc_cpuslocked(&xps_needed);
2323         if (is_rxqs_map)
2324                 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2325
2326         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2327              j < nr_ids;) {
2328                 /* copy maps belonging to foreign traffic classes */
2329                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2330                         /* fill in the new device map from the old device map */
2331                         map = xmap_dereference(dev_maps->attr_map[tci]);
2332                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2333                 }
2334
2335                 /* We need to explicitly update tci as prevous loop
2336                  * could break out early if dev_maps is NULL.
2337                  */
2338                 tci = j * num_tc + tc;
2339
2340                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2341                     netif_attr_test_online(j, online_mask, nr_ids)) {
2342                         /* add tx-queue to CPU/rx-queue maps */
2343                         int pos = 0;
2344
2345                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2346                         while ((pos < map->len) && (map->queues[pos] != index))
2347                                 pos++;
2348
2349                         if (pos == map->len)
2350                                 map->queues[map->len++] = index;
2351 #ifdef CONFIG_NUMA
2352                         if (!is_rxqs_map) {
2353                                 if (numa_node_id == -2)
2354                                         numa_node_id = cpu_to_node(j);
2355                                 else if (numa_node_id != cpu_to_node(j))
2356                                         numa_node_id = -1;
2357                         }
2358 #endif
2359                 } else if (dev_maps) {
2360                         /* fill in the new device map from the old device map */
2361                         map = xmap_dereference(dev_maps->attr_map[tci]);
2362                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2363                 }
2364
2365                 /* copy maps belonging to foreign traffic classes */
2366                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2367                         /* fill in the new device map from the old device map */
2368                         map = xmap_dereference(dev_maps->attr_map[tci]);
2369                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2370                 }
2371         }
2372
2373         if (is_rxqs_map)
2374                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2375         else
2376                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2377
2378         /* Cleanup old maps */
2379         if (!dev_maps)
2380                 goto out_no_old_maps;
2381
2382         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2383              j < nr_ids;) {
2384                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2385                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2386                         map = xmap_dereference(dev_maps->attr_map[tci]);
2387                         if (map && map != new_map)
2388                                 kfree_rcu(map, rcu);
2389                 }
2390         }
2391
2392         kfree_rcu(dev_maps, rcu);
2393
2394 out_no_old_maps:
2395         dev_maps = new_dev_maps;
2396         active = true;
2397
2398 out_no_new_maps:
2399         if (!is_rxqs_map) {
2400                 /* update Tx queue numa node */
2401                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2402                                              (numa_node_id >= 0) ?
2403                                              numa_node_id : NUMA_NO_NODE);
2404         }
2405
2406         if (!dev_maps)
2407                 goto out_no_maps;
2408
2409         /* removes tx-queue from unused CPUs/rx-queues */
2410         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2411              j < nr_ids;) {
2412                 for (i = tc, tci = j * num_tc; i--; tci++)
2413                         active |= remove_xps_queue(dev_maps, tci, index);
2414                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2415                     !netif_attr_test_online(j, online_mask, nr_ids))
2416                         active |= remove_xps_queue(dev_maps, tci, index);
2417                 for (i = num_tc - tc, tci++; --i; tci++)
2418                         active |= remove_xps_queue(dev_maps, tci, index);
2419         }
2420
2421         /* free map if not active */
2422         if (!active) {
2423                 if (is_rxqs_map)
2424                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2425                 else
2426                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2427                 kfree_rcu(dev_maps, rcu);
2428         }
2429
2430 out_no_maps:
2431         mutex_unlock(&xps_map_mutex);
2432
2433         return 0;
2434 error:
2435         /* remove any maps that we added */
2436         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2437              j < nr_ids;) {
2438                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2439                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2440                         map = dev_maps ?
2441                               xmap_dereference(dev_maps->attr_map[tci]) :
2442                               NULL;
2443                         if (new_map && new_map != map)
2444                                 kfree(new_map);
2445                 }
2446         }
2447
2448         mutex_unlock(&xps_map_mutex);
2449
2450         kfree(new_dev_maps);
2451         return -ENOMEM;
2452 }
2453 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2454
2455 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2456                         u16 index)
2457 {
2458         int ret;
2459
2460         cpus_read_lock();
2461         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2462         cpus_read_unlock();
2463
2464         return ret;
2465 }
2466 EXPORT_SYMBOL(netif_set_xps_queue);
2467
2468 #endif
2469 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2470 {
2471         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2472
2473         /* Unbind any subordinate channels */
2474         while (txq-- != &dev->_tx[0]) {
2475                 if (txq->sb_dev)
2476                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2477         }
2478 }
2479
2480 void netdev_reset_tc(struct net_device *dev)
2481 {
2482 #ifdef CONFIG_XPS
2483         netif_reset_xps_queues_gt(dev, 0);
2484 #endif
2485         netdev_unbind_all_sb_channels(dev);
2486
2487         /* Reset TC configuration of device */
2488         dev->num_tc = 0;
2489         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2490         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2491 }
2492 EXPORT_SYMBOL(netdev_reset_tc);
2493
2494 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2495 {
2496         if (tc >= dev->num_tc)
2497                 return -EINVAL;
2498
2499 #ifdef CONFIG_XPS
2500         netif_reset_xps_queues(dev, offset, count);
2501 #endif
2502         dev->tc_to_txq[tc].count = count;
2503         dev->tc_to_txq[tc].offset = offset;
2504         return 0;
2505 }
2506 EXPORT_SYMBOL(netdev_set_tc_queue);
2507
2508 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2509 {
2510         if (num_tc > TC_MAX_QUEUE)
2511                 return -EINVAL;
2512
2513 #ifdef CONFIG_XPS
2514         netif_reset_xps_queues_gt(dev, 0);
2515 #endif
2516         netdev_unbind_all_sb_channels(dev);
2517
2518         dev->num_tc = num_tc;
2519         return 0;
2520 }
2521 EXPORT_SYMBOL(netdev_set_num_tc);
2522
2523 void netdev_unbind_sb_channel(struct net_device *dev,
2524                               struct net_device *sb_dev)
2525 {
2526         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2527
2528 #ifdef CONFIG_XPS
2529         netif_reset_xps_queues_gt(sb_dev, 0);
2530 #endif
2531         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2532         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2533
2534         while (txq-- != &dev->_tx[0]) {
2535                 if (txq->sb_dev == sb_dev)
2536                         txq->sb_dev = NULL;
2537         }
2538 }
2539 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2540
2541 int netdev_bind_sb_channel_queue(struct net_device *dev,
2542                                  struct net_device *sb_dev,
2543                                  u8 tc, u16 count, u16 offset)
2544 {
2545         /* Make certain the sb_dev and dev are already configured */
2546         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2547                 return -EINVAL;
2548
2549         /* We cannot hand out queues we don't have */
2550         if ((offset + count) > dev->real_num_tx_queues)
2551                 return -EINVAL;
2552
2553         /* Record the mapping */
2554         sb_dev->tc_to_txq[tc].count = count;
2555         sb_dev->tc_to_txq[tc].offset = offset;
2556
2557         /* Provide a way for Tx queue to find the tc_to_txq map or
2558          * XPS map for itself.
2559          */
2560         while (count--)
2561                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2562
2563         return 0;
2564 }
2565 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2566
2567 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2568 {
2569         /* Do not use a multiqueue device to represent a subordinate channel */
2570         if (netif_is_multiqueue(dev))
2571                 return -ENODEV;
2572
2573         /* We allow channels 1 - 32767 to be used for subordinate channels.
2574          * Channel 0 is meant to be "native" mode and used only to represent
2575          * the main root device. We allow writing 0 to reset the device back
2576          * to normal mode after being used as a subordinate channel.
2577          */
2578         if (channel > S16_MAX)
2579                 return -EINVAL;
2580
2581         dev->num_tc = -channel;
2582
2583         return 0;
2584 }
2585 EXPORT_SYMBOL(netdev_set_sb_channel);
2586
2587 /*
2588  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2589  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2590  */
2591 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2592 {
2593         bool disabling;
2594         int rc;
2595
2596         disabling = txq < dev->real_num_tx_queues;
2597
2598         if (txq < 1 || txq > dev->num_tx_queues)
2599                 return -EINVAL;
2600
2601         if (dev->reg_state == NETREG_REGISTERED ||
2602             dev->reg_state == NETREG_UNREGISTERING) {
2603                 ASSERT_RTNL();
2604
2605                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2606                                                   txq);
2607                 if (rc)
2608                         return rc;
2609
2610                 if (dev->num_tc)
2611                         netif_setup_tc(dev, txq);
2612
2613                 dev->real_num_tx_queues = txq;
2614
2615                 if (disabling) {
2616                         synchronize_net();
2617                         qdisc_reset_all_tx_gt(dev, txq);
2618 #ifdef CONFIG_XPS
2619                         netif_reset_xps_queues_gt(dev, txq);
2620 #endif
2621                 }
2622         } else {
2623                 dev->real_num_tx_queues = txq;
2624         }
2625
2626         return 0;
2627 }
2628 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2629
2630 #ifdef CONFIG_SYSFS
2631 /**
2632  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2633  *      @dev: Network device
2634  *      @rxq: Actual number of RX queues
2635  *
2636  *      This must be called either with the rtnl_lock held or before
2637  *      registration of the net device.  Returns 0 on success, or a
2638  *      negative error code.  If called before registration, it always
2639  *      succeeds.
2640  */
2641 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2642 {
2643         int rc;
2644
2645         if (rxq < 1 || rxq > dev->num_rx_queues)
2646                 return -EINVAL;
2647
2648         if (dev->reg_state == NETREG_REGISTERED) {
2649                 ASSERT_RTNL();
2650
2651                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2652                                                   rxq);
2653                 if (rc)
2654                         return rc;
2655         }
2656
2657         dev->real_num_rx_queues = rxq;
2658         return 0;
2659 }
2660 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2661 #endif
2662
2663 /**
2664  * netif_get_num_default_rss_queues - default number of RSS queues
2665  *
2666  * This routine should set an upper limit on the number of RSS queues
2667  * used by default by multiqueue devices.
2668  */
2669 int netif_get_num_default_rss_queues(void)
2670 {
2671         return is_kdump_kernel() ?
2672                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2673 }
2674 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2675
2676 static void __netif_reschedule(struct Qdisc *q)
2677 {
2678         struct softnet_data *sd;
2679         unsigned long flags;
2680
2681         local_irq_save(flags);
2682         sd = this_cpu_ptr(&softnet_data);
2683         q->next_sched = NULL;
2684         *sd->output_queue_tailp = q;
2685         sd->output_queue_tailp = &q->next_sched;
2686         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2687         local_irq_restore(flags);
2688 }
2689
2690 void __netif_schedule(struct Qdisc *q)
2691 {
2692         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2693                 __netif_reschedule(q);
2694 }
2695 EXPORT_SYMBOL(__netif_schedule);
2696
2697 struct dev_kfree_skb_cb {
2698         enum skb_free_reason reason;
2699 };
2700
2701 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2702 {
2703         return (struct dev_kfree_skb_cb *)skb->cb;
2704 }
2705
2706 void netif_schedule_queue(struct netdev_queue *txq)
2707 {
2708         rcu_read_lock();
2709         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2710                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2711
2712                 __netif_schedule(q);
2713         }
2714         rcu_read_unlock();
2715 }
2716 EXPORT_SYMBOL(netif_schedule_queue);
2717
2718 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2719 {
2720         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2721                 struct Qdisc *q;
2722
2723                 rcu_read_lock();
2724                 q = rcu_dereference(dev_queue->qdisc);
2725                 __netif_schedule(q);
2726                 rcu_read_unlock();
2727         }
2728 }
2729 EXPORT_SYMBOL(netif_tx_wake_queue);
2730
2731 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2732 {
2733         unsigned long flags;
2734
2735         if (unlikely(!skb))
2736                 return;
2737
2738         if (likely(refcount_read(&skb->users) == 1)) {
2739                 smp_rmb();
2740                 refcount_set(&skb->users, 0);
2741         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2742                 return;
2743         }
2744         get_kfree_skb_cb(skb)->reason = reason;
2745         local_irq_save(flags);
2746         skb->next = __this_cpu_read(softnet_data.completion_queue);
2747         __this_cpu_write(softnet_data.completion_queue, skb);
2748         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2749         local_irq_restore(flags);
2750 }
2751 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2752
2753 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2754 {
2755         if (in_irq() || irqs_disabled())
2756                 __dev_kfree_skb_irq(skb, reason);
2757         else
2758                 dev_kfree_skb(skb);
2759 }
2760 EXPORT_SYMBOL(__dev_kfree_skb_any);
2761
2762
2763 /**
2764  * netif_device_detach - mark device as removed
2765  * @dev: network device
2766  *
2767  * Mark device as removed from system and therefore no longer available.
2768  */
2769 void netif_device_detach(struct net_device *dev)
2770 {
2771         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2772             netif_running(dev)) {
2773                 netif_tx_stop_all_queues(dev);
2774         }
2775 }
2776 EXPORT_SYMBOL(netif_device_detach);
2777
2778 /**
2779  * netif_device_attach - mark device as attached
2780  * @dev: network device
2781  *
2782  * Mark device as attached from system and restart if needed.
2783  */
2784 void netif_device_attach(struct net_device *dev)
2785 {
2786         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2787             netif_running(dev)) {
2788                 netif_tx_wake_all_queues(dev);
2789                 __netdev_watchdog_up(dev);
2790         }
2791 }
2792 EXPORT_SYMBOL(netif_device_attach);
2793
2794 /*
2795  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2796  * to be used as a distribution range.
2797  */
2798 static u16 skb_tx_hash(const struct net_device *dev,
2799                        const struct net_device *sb_dev,
2800                        struct sk_buff *skb)
2801 {
2802         u32 hash;
2803         u16 qoffset = 0;
2804         u16 qcount = dev->real_num_tx_queues;
2805
2806         if (dev->num_tc) {
2807                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2808
2809                 qoffset = sb_dev->tc_to_txq[tc].offset;
2810                 qcount = sb_dev->tc_to_txq[tc].count;
2811         }
2812
2813         if (skb_rx_queue_recorded(skb)) {
2814                 hash = skb_get_rx_queue(skb);
2815                 while (unlikely(hash >= qcount))
2816                         hash -= qcount;
2817                 return hash + qoffset;
2818         }
2819
2820         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2821 }
2822
2823 static void skb_warn_bad_offload(const struct sk_buff *skb)
2824 {
2825         static const netdev_features_t null_features;
2826         struct net_device *dev = skb->dev;
2827         const char *name = "";
2828
2829         if (!net_ratelimit())
2830                 return;
2831
2832         if (dev) {
2833                 if (dev->dev.parent)
2834                         name = dev_driver_string(dev->dev.parent);
2835                 else
2836                         name = netdev_name(dev);
2837         }
2838         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2839              "gso_type=%d ip_summed=%d\n",
2840              name, dev ? &dev->features : &null_features,
2841              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2842              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2843              skb_shinfo(skb)->gso_type, skb->ip_summed);
2844 }
2845
2846 /*
2847  * Invalidate hardware checksum when packet is to be mangled, and
2848  * complete checksum manually on outgoing path.
2849  */
2850 int skb_checksum_help(struct sk_buff *skb)
2851 {
2852         __wsum csum;
2853         int ret = 0, offset;
2854
2855         if (skb->ip_summed == CHECKSUM_COMPLETE)
2856                 goto out_set_summed;
2857
2858         if (unlikely(skb_shinfo(skb)->gso_size)) {
2859                 skb_warn_bad_offload(skb);
2860                 return -EINVAL;
2861         }
2862
2863         /* Before computing a checksum, we should make sure no frag could
2864          * be modified by an external entity : checksum could be wrong.
2865          */
2866         if (skb_has_shared_frag(skb)) {
2867                 ret = __skb_linearize(skb);
2868                 if (ret)
2869                         goto out;
2870         }
2871
2872         offset = skb_checksum_start_offset(skb);
2873         BUG_ON(offset >= skb_headlen(skb));
2874         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2875
2876         offset += skb->csum_offset;
2877         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2878
2879         if (skb_cloned(skb) &&
2880             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2881                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2882                 if (ret)
2883                         goto out;
2884         }
2885
2886         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2887 out_set_summed:
2888         skb->ip_summed = CHECKSUM_NONE;
2889 out:
2890         return ret;
2891 }
2892 EXPORT_SYMBOL(skb_checksum_help);
2893
2894 int skb_crc32c_csum_help(struct sk_buff *skb)
2895 {
2896         __le32 crc32c_csum;
2897         int ret = 0, offset, start;
2898
2899         if (skb->ip_summed != CHECKSUM_PARTIAL)
2900                 goto out;
2901
2902         if (unlikely(skb_is_gso(skb)))
2903                 goto out;
2904
2905         /* Before computing a checksum, we should make sure no frag could
2906          * be modified by an external entity : checksum could be wrong.
2907          */
2908         if (unlikely(skb_has_shared_frag(skb))) {
2909                 ret = __skb_linearize(skb);
2910                 if (ret)
2911                         goto out;
2912         }
2913         start = skb_checksum_start_offset(skb);
2914         offset = start + offsetof(struct sctphdr, checksum);
2915         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2916                 ret = -EINVAL;
2917                 goto out;
2918         }
2919         if (skb_cloned(skb) &&
2920             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2921                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2922                 if (ret)
2923                         goto out;
2924         }
2925         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2926                                                   skb->len - start, ~(__u32)0,
2927                                                   crc32c_csum_stub));
2928         *(__le32 *)(skb->data + offset) = crc32c_csum;
2929         skb->ip_summed = CHECKSUM_NONE;
2930         skb->csum_not_inet = 0;
2931 out:
2932         return ret;
2933 }
2934
2935 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2936 {
2937         __be16 type = skb->protocol;
2938
2939         /* Tunnel gso handlers can set protocol to ethernet. */
2940         if (type == htons(ETH_P_TEB)) {
2941                 struct ethhdr *eth;
2942
2943                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2944                         return 0;
2945
2946                 eth = (struct ethhdr *)skb->data;
2947                 type = eth->h_proto;
2948         }
2949
2950         return __vlan_get_protocol(skb, type, depth);
2951 }
2952
2953 /**
2954  *      skb_mac_gso_segment - mac layer segmentation handler.
2955  *      @skb: buffer to segment
2956  *      @features: features for the output path (see dev->features)
2957  */
2958 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2959                                     netdev_features_t features)
2960 {
2961         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2962         struct packet_offload *ptype;
2963         int vlan_depth = skb->mac_len;
2964         __be16 type = skb_network_protocol(skb, &vlan_depth);
2965
2966         if (unlikely(!type))
2967                 return ERR_PTR(-EINVAL);
2968
2969         __skb_pull(skb, vlan_depth);
2970
2971         rcu_read_lock();
2972         list_for_each_entry_rcu(ptype, &offload_base, list) {
2973                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2974                         segs = ptype->callbacks.gso_segment(skb, features);
2975                         break;
2976                 }
2977         }
2978         rcu_read_unlock();
2979
2980         __skb_push(skb, skb->data - skb_mac_header(skb));
2981
2982         return segs;
2983 }
2984 EXPORT_SYMBOL(skb_mac_gso_segment);
2985
2986
2987 /* openvswitch calls this on rx path, so we need a different check.
2988  */
2989 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2990 {
2991         if (tx_path)
2992                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2993                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2994
2995         return skb->ip_summed == CHECKSUM_NONE;
2996 }
2997
2998 /**
2999  *      __skb_gso_segment - Perform segmentation on skb.
3000  *      @skb: buffer to segment
3001  *      @features: features for the output path (see dev->features)
3002  *      @tx_path: whether it is called in TX path
3003  *
3004  *      This function segments the given skb and returns a list of segments.
3005  *
3006  *      It may return NULL if the skb requires no segmentation.  This is
3007  *      only possible when GSO is used for verifying header integrity.
3008  *
3009  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3010  */
3011 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3012                                   netdev_features_t features, bool tx_path)
3013 {
3014         struct sk_buff *segs;
3015
3016         if (unlikely(skb_needs_check(skb, tx_path))) {
3017                 int err;
3018
3019                 /* We're going to init ->check field in TCP or UDP header */
3020                 err = skb_cow_head(skb, 0);
3021                 if (err < 0)
3022                         return ERR_PTR(err);
3023         }
3024
3025         /* Only report GSO partial support if it will enable us to
3026          * support segmentation on this frame without needing additional
3027          * work.
3028          */
3029         if (features & NETIF_F_GSO_PARTIAL) {
3030                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3031                 struct net_device *dev = skb->dev;
3032
3033                 partial_features |= dev->features & dev->gso_partial_features;
3034                 if (!skb_gso_ok(skb, features | partial_features))
3035                         features &= ~NETIF_F_GSO_PARTIAL;
3036         }
3037
3038         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3039                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3040
3041         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3042         SKB_GSO_CB(skb)->encap_level = 0;
3043
3044         skb_reset_mac_header(skb);
3045         skb_reset_mac_len(skb);
3046
3047         segs = skb_mac_gso_segment(skb, features);
3048
3049         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3050                 skb_warn_bad_offload(skb);
3051
3052         return segs;
3053 }
3054 EXPORT_SYMBOL(__skb_gso_segment);
3055
3056 /* Take action when hardware reception checksum errors are detected. */
3057 #ifdef CONFIG_BUG
3058 void netdev_rx_csum_fault(struct net_device *dev)
3059 {
3060         if (net_ratelimit()) {
3061                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3062                 dump_stack();
3063         }
3064 }
3065 EXPORT_SYMBOL(netdev_rx_csum_fault);
3066 #endif
3067
3068 /* XXX: check that highmem exists at all on the given machine. */
3069 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3070 {
3071 #ifdef CONFIG_HIGHMEM
3072         int i;
3073
3074         if (!(dev->features & NETIF_F_HIGHDMA)) {
3075                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3076                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3077
3078                         if (PageHighMem(skb_frag_page(frag)))
3079                                 return 1;
3080                 }
3081         }
3082 #endif
3083         return 0;
3084 }
3085
3086 /* If MPLS offload request, verify we are testing hardware MPLS features
3087  * instead of standard features for the netdev.
3088  */
3089 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3090 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3091                                            netdev_features_t features,
3092                                            __be16 type)
3093 {
3094         if (eth_p_mpls(type))
3095                 features &= skb->dev->mpls_features;
3096
3097         return features;
3098 }
3099 #else
3100 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3101                                            netdev_features_t features,
3102                                            __be16 type)
3103 {
3104         return features;
3105 }
3106 #endif
3107
3108 static netdev_features_t harmonize_features(struct sk_buff *skb,
3109         netdev_features_t features)
3110 {
3111         int tmp;
3112         __be16 type;
3113
3114         type = skb_network_protocol(skb, &tmp);
3115         features = net_mpls_features(skb, features, type);
3116
3117         if (skb->ip_summed != CHECKSUM_NONE &&
3118             !can_checksum_protocol(features, type)) {
3119                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3120         }
3121         if (illegal_highdma(skb->dev, skb))
3122                 features &= ~NETIF_F_SG;
3123
3124         return features;
3125 }
3126
3127 netdev_features_t passthru_features_check(struct sk_buff *skb,
3128                                           struct net_device *dev,
3129                                           netdev_features_t features)
3130 {
3131         return features;
3132 }
3133 EXPORT_SYMBOL(passthru_features_check);
3134
3135 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3136                                              struct net_device *dev,
3137                                              netdev_features_t features)
3138 {
3139         return vlan_features_check(skb, features);
3140 }
3141
3142 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3143                                             struct net_device *dev,
3144                                             netdev_features_t features)
3145 {
3146         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3147
3148         if (gso_segs > dev->gso_max_segs)
3149                 return features & ~NETIF_F_GSO_MASK;
3150
3151         /* Support for GSO partial features requires software
3152          * intervention before we can actually process the packets
3153          * so we need to strip support for any partial features now
3154          * and we can pull them back in after we have partially
3155          * segmented the frame.
3156          */
3157         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3158                 features &= ~dev->gso_partial_features;
3159
3160         /* Make sure to clear the IPv4 ID mangling feature if the
3161          * IPv4 header has the potential to be fragmented.
3162          */
3163         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3164                 struct iphdr *iph = skb->encapsulation ?
3165                                     inner_ip_hdr(skb) : ip_hdr(skb);
3166
3167                 if (!(iph->frag_off & htons(IP_DF)))
3168                         features &= ~NETIF_F_TSO_MANGLEID;
3169         }
3170
3171         return features;
3172 }
3173
3174 netdev_features_t netif_skb_features(struct sk_buff *skb)
3175 {
3176         struct net_device *dev = skb->dev;
3177         netdev_features_t features = dev->features;
3178
3179         if (skb_is_gso(skb))
3180                 features = gso_features_check(skb, dev, features);
3181
3182         /* If encapsulation offload request, verify we are testing
3183          * hardware encapsulation features instead of standard
3184          * features for the netdev
3185          */
3186         if (skb->encapsulation)
3187                 features &= dev->hw_enc_features;
3188
3189         if (skb_vlan_tagged(skb))
3190                 features = netdev_intersect_features(features,
3191                                                      dev->vlan_features |
3192                                                      NETIF_F_HW_VLAN_CTAG_TX |
3193                                                      NETIF_F_HW_VLAN_STAG_TX);
3194
3195         if (dev->netdev_ops->ndo_features_check)
3196                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3197                                                                 features);
3198         else
3199                 features &= dflt_features_check(skb, dev, features);
3200
3201         return harmonize_features(skb, features);
3202 }
3203 EXPORT_SYMBOL(netif_skb_features);
3204
3205 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3206                     struct netdev_queue *txq, bool more)
3207 {
3208         unsigned int len;
3209         int rc;
3210
3211         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3212                 dev_queue_xmit_nit(skb, dev);
3213
3214         len = skb->len;
3215         trace_net_dev_start_xmit(skb, dev);
3216         rc = netdev_start_xmit(skb, dev, txq, more);
3217         trace_net_dev_xmit(skb, rc, dev, len);
3218
3219         return rc;
3220 }
3221
3222 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3223                                     struct netdev_queue *txq, int *ret)
3224 {
3225         struct sk_buff *skb = first;
3226         int rc = NETDEV_TX_OK;
3227
3228         while (skb) {
3229                 struct sk_buff *next = skb->next;
3230
3231                 skb->next = NULL;
3232                 rc = xmit_one(skb, dev, txq, next != NULL);
3233                 if (unlikely(!dev_xmit_complete(rc))) {
3234                         skb->next = next;
3235                         goto out;
3236                 }
3237
3238                 skb = next;
3239                 if (netif_xmit_stopped(txq) && skb) {
3240                         rc = NETDEV_TX_BUSY;
3241                         break;
3242                 }
3243         }
3244
3245 out:
3246         *ret = rc;
3247         return skb;
3248 }
3249
3250 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3251                                           netdev_features_t features)
3252 {
3253         if (skb_vlan_tag_present(skb) &&
3254             !vlan_hw_offload_capable(features, skb->vlan_proto))
3255                 skb = __vlan_hwaccel_push_inside(skb);
3256         return skb;
3257 }
3258
3259 int skb_csum_hwoffload_help(struct sk_buff *skb,
3260                             const netdev_features_t features)
3261 {
3262         if (unlikely(skb->csum_not_inet))
3263                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3264                         skb_crc32c_csum_help(skb);
3265
3266         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3267 }
3268 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3269
3270 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3271 {
3272         netdev_features_t features;
3273
3274         features = netif_skb_features(skb);
3275         skb = validate_xmit_vlan(skb, features);
3276         if (unlikely(!skb))
3277                 goto out_null;
3278
3279         skb = sk_validate_xmit_skb(skb, dev);
3280         if (unlikely(!skb))
3281                 goto out_null;
3282
3283         if (netif_needs_gso(skb, features)) {
3284                 struct sk_buff *segs;
3285
3286                 segs = skb_gso_segment(skb, features);
3287                 if (IS_ERR(segs)) {
3288                         goto out_kfree_skb;
3289                 } else if (segs) {
3290                         consume_skb(skb);
3291                         skb = segs;
3292                 }
3293         } else {
3294                 if (skb_needs_linearize(skb, features) &&
3295                     __skb_linearize(skb))
3296                         goto out_kfree_skb;
3297
3298                 /* If packet is not checksummed and device does not
3299                  * support checksumming for this protocol, complete
3300                  * checksumming here.
3301                  */
3302                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3303                         if (skb->encapsulation)
3304                                 skb_set_inner_transport_header(skb,
3305                                                                skb_checksum_start_offset(skb));
3306                         else
3307                                 skb_set_transport_header(skb,
3308                                                          skb_checksum_start_offset(skb));
3309                         if (skb_csum_hwoffload_help(skb, features))
3310                                 goto out_kfree_skb;
3311                 }
3312         }
3313
3314         skb = validate_xmit_xfrm(skb, features, again);
3315
3316         return skb;
3317
3318 out_kfree_skb:
3319         kfree_skb(skb);
3320 out_null:
3321         atomic_long_inc(&dev->tx_dropped);
3322         return NULL;
3323 }
3324
3325 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3326 {
3327         struct sk_buff *next, *head = NULL, *tail;
3328
3329         for (; skb != NULL; skb = next) {
3330                 next = skb->next;
3331                 skb->next = NULL;
3332
3333                 /* in case skb wont be segmented, point to itself */
3334                 skb->prev = skb;
3335
3336                 skb = validate_xmit_skb(skb, dev, again);
3337                 if (!skb)
3338                         continue;
3339
3340                 if (!head)
3341                         head = skb;
3342                 else
3343                         tail->next = skb;
3344                 /* If skb was segmented, skb->prev points to
3345                  * the last segment. If not, it still contains skb.
3346                  */
3347                 tail = skb->prev;
3348         }
3349         return head;
3350 }
3351 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3352
3353 static void qdisc_pkt_len_init(struct sk_buff *skb)
3354 {
3355         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3356
3357         qdisc_skb_cb(skb)->pkt_len = skb->len;
3358
3359         /* To get more precise estimation of bytes sent on wire,
3360          * we add to pkt_len the headers size of all segments
3361          */
3362         if (shinfo->gso_size)  {
3363                 unsigned int hdr_len;
3364                 u16 gso_segs = shinfo->gso_segs;
3365
3366                 /* mac layer + network layer */
3367                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3368
3369                 /* + transport layer */
3370                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3371                         const struct tcphdr *th;
3372                         struct tcphdr _tcphdr;
3373
3374                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3375                                                 sizeof(_tcphdr), &_tcphdr);
3376                         if (likely(th))
3377                                 hdr_len += __tcp_hdrlen(th);
3378                 } else {
3379                         struct udphdr _udphdr;
3380
3381                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3382                                                sizeof(_udphdr), &_udphdr))
3383                                 hdr_len += sizeof(struct udphdr);
3384                 }
3385
3386                 if (shinfo->gso_type & SKB_GSO_DODGY)
3387                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3388                                                 shinfo->gso_size);
3389
3390                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3391         }
3392 }
3393
3394 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3395                                  struct net_device *dev,
3396                                  struct netdev_queue *txq)
3397 {
3398         spinlock_t *root_lock = qdisc_lock(q);
3399         struct sk_buff *to_free = NULL;
3400         bool contended;
3401         int rc;
3402
3403         qdisc_calculate_pkt_len(skb, q);
3404
3405         if (q->flags & TCQ_F_NOLOCK) {
3406                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3407                         __qdisc_drop(skb, &to_free);
3408                         rc = NET_XMIT_DROP;
3409                 } else {
3410                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3411                         qdisc_run(q);
3412                 }
3413
3414                 if (unlikely(to_free))
3415                         kfree_skb_list(to_free);
3416                 return rc;
3417         }
3418
3419         /*
3420          * Heuristic to force contended enqueues to serialize on a
3421          * separate lock before trying to get qdisc main lock.
3422          * This permits qdisc->running owner to get the lock more
3423          * often and dequeue packets faster.
3424          */
3425         contended = qdisc_is_running(q);
3426         if (unlikely(contended))
3427                 spin_lock(&q->busylock);
3428
3429         spin_lock(root_lock);
3430         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3431                 __qdisc_drop(skb, &to_free);
3432                 rc = NET_XMIT_DROP;
3433         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3434                    qdisc_run_begin(q)) {
3435                 /*
3436                  * This is a work-conserving queue; there are no old skbs
3437                  * waiting to be sent out; and the qdisc is not running -
3438                  * xmit the skb directly.
3439                  */
3440
3441                 qdisc_bstats_update(q, skb);
3442
3443                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3444                         if (unlikely(contended)) {
3445                                 spin_unlock(&q->busylock);
3446                                 contended = false;
3447                         }
3448                         __qdisc_run(q);
3449                 }
3450
3451                 qdisc_run_end(q);
3452                 rc = NET_XMIT_SUCCESS;
3453         } else {
3454                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3455                 if (qdisc_run_begin(q)) {
3456                         if (unlikely(contended)) {
3457                                 spin_unlock(&q->busylock);
3458                                 contended = false;
3459                         }
3460                         __qdisc_run(q);
3461                         qdisc_run_end(q);
3462                 }
3463         }
3464         spin_unlock(root_lock);
3465         if (unlikely(to_free))
3466                 kfree_skb_list(to_free);
3467         if (unlikely(contended))
3468                 spin_unlock(&q->busylock);
3469         return rc;
3470 }
3471
3472 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3473 static void skb_update_prio(struct sk_buff *skb)
3474 {
3475         const struct netprio_map *map;
3476         const struct sock *sk;
3477         unsigned int prioidx;
3478
3479         if (skb->priority)
3480                 return;
3481         map = rcu_dereference_bh(skb->dev->priomap);
3482         if (!map)
3483                 return;
3484         sk = skb_to_full_sk(skb);
3485         if (!sk)
3486                 return;
3487
3488         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3489
3490         if (prioidx < map->priomap_len)
3491                 skb->priority = map->priomap[prioidx];
3492 }
3493 #else
3494 #define skb_update_prio(skb)
3495 #endif
3496
3497 DEFINE_PER_CPU(int, xmit_recursion);
3498 EXPORT_SYMBOL(xmit_recursion);
3499
3500 /**
3501  *      dev_loopback_xmit - loop back @skb
3502  *      @net: network namespace this loopback is happening in
3503  *      @sk:  sk needed to be a netfilter okfn
3504  *      @skb: buffer to transmit
3505  */
3506 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3507 {
3508         skb_reset_mac_header(skb);
3509         __skb_pull(skb, skb_network_offset(skb));
3510         skb->pkt_type = PACKET_LOOPBACK;
3511         skb->ip_summed = CHECKSUM_UNNECESSARY;
3512         WARN_ON(!skb_dst(skb));
3513         skb_dst_force(skb);
3514         netif_rx_ni(skb);
3515         return 0;
3516 }
3517 EXPORT_SYMBOL(dev_loopback_xmit);
3518
3519 #ifdef CONFIG_NET_EGRESS
3520 static struct sk_buff *
3521 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3522 {
3523         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3524         struct tcf_result cl_res;
3525
3526         if (!miniq)
3527                 return skb;
3528
3529         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3530         mini_qdisc_bstats_cpu_update(miniq, skb);
3531
3532         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3533         case TC_ACT_OK:
3534         case TC_ACT_RECLASSIFY:
3535                 skb->tc_index = TC_H_MIN(cl_res.classid);
3536                 break;
3537         case TC_ACT_SHOT:
3538                 mini_qdisc_qstats_cpu_drop(miniq);
3539                 *ret = NET_XMIT_DROP;
3540                 kfree_skb(skb);
3541                 return NULL;
3542         case TC_ACT_STOLEN:
3543         case TC_ACT_QUEUED:
3544         case TC_ACT_TRAP:
3545                 *ret = NET_XMIT_SUCCESS;
3546                 consume_skb(skb);
3547                 return NULL;
3548         case TC_ACT_REDIRECT:
3549                 /* No need to push/pop skb's mac_header here on egress! */
3550                 skb_do_redirect(skb);
3551                 *ret = NET_XMIT_SUCCESS;
3552                 return NULL;
3553         default:
3554                 break;
3555         }
3556
3557         return skb;
3558 }
3559 #endif /* CONFIG_NET_EGRESS */
3560
3561 #ifdef CONFIG_XPS
3562 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3563                                struct xps_dev_maps *dev_maps, unsigned int tci)
3564 {
3565         struct xps_map *map;
3566         int queue_index = -1;
3567
3568         if (dev->num_tc) {
3569                 tci *= dev->num_tc;
3570                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3571         }
3572
3573         map = rcu_dereference(dev_maps->attr_map[tci]);
3574         if (map) {
3575                 if (map->len == 1)
3576                         queue_index = map->queues[0];
3577                 else
3578                         queue_index = map->queues[reciprocal_scale(
3579                                                 skb_get_hash(skb), map->len)];
3580                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3581                         queue_index = -1;
3582         }
3583         return queue_index;
3584 }
3585 #endif
3586
3587 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3588                          struct sk_buff *skb)
3589 {
3590 #ifdef CONFIG_XPS
3591         struct xps_dev_maps *dev_maps;
3592         struct sock *sk = skb->sk;
3593         int queue_index = -1;
3594
3595         if (!static_key_false(&xps_needed))
3596                 return -1;
3597
3598         rcu_read_lock();
3599         if (!static_key_false(&xps_rxqs_needed))
3600                 goto get_cpus_map;
3601
3602         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3603         if (dev_maps) {
3604                 int tci = sk_rx_queue_get(sk);
3605
3606                 if (tci >= 0 && tci < dev->num_rx_queues)
3607                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3608                                                           tci);
3609         }
3610
3611 get_cpus_map:
3612         if (queue_index < 0) {
3613                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3614                 if (dev_maps) {
3615                         unsigned int tci = skb->sender_cpu - 1;
3616
3617                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3618                                                           tci);
3619                 }
3620         }
3621         rcu_read_unlock();
3622
3623         return queue_index;
3624 #else
3625         return -1;
3626 #endif
3627 }
3628
3629 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3630                      struct net_device *sb_dev,
3631                      select_queue_fallback_t fallback)
3632 {
3633         return 0;
3634 }
3635 EXPORT_SYMBOL(dev_pick_tx_zero);
3636
3637 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3638                        struct net_device *sb_dev,
3639                        select_queue_fallback_t fallback)
3640 {
3641         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3642 }
3643 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3644
3645 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3646                             struct net_device *sb_dev)
3647 {
3648         struct sock *sk = skb->sk;
3649         int queue_index = sk_tx_queue_get(sk);
3650
3651         sb_dev = sb_dev ? : dev;
3652
3653         if (queue_index < 0 || skb->ooo_okay ||
3654             queue_index >= dev->real_num_tx_queues) {
3655                 int new_index = get_xps_queue(dev, sb_dev, skb);
3656
3657                 if (new_index < 0)
3658                         new_index = skb_tx_hash(dev, sb_dev, skb);
3659
3660                 if (queue_index != new_index && sk &&
3661                     sk_fullsock(sk) &&
3662                     rcu_access_pointer(sk->sk_dst_cache))
3663                         sk_tx_queue_set(sk, new_index);
3664
3665                 queue_index = new_index;
3666         }
3667
3668         return queue_index;
3669 }
3670
3671 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3672                                     struct sk_buff *skb,
3673                                     struct net_device *sb_dev)
3674 {
3675         int queue_index = 0;
3676
3677 #ifdef CONFIG_XPS
3678         u32 sender_cpu = skb->sender_cpu - 1;
3679
3680         if (sender_cpu >= (u32)NR_CPUS)
3681                 skb->sender_cpu = raw_smp_processor_id() + 1;
3682 #endif
3683
3684         if (dev->real_num_tx_queues != 1) {
3685                 const struct net_device_ops *ops = dev->netdev_ops;
3686
3687                 if (ops->ndo_select_queue)
3688                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3689                                                             __netdev_pick_tx);
3690                 else
3691                         queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3692
3693                 queue_index = netdev_cap_txqueue(dev, queue_index);
3694         }
3695
3696         skb_set_queue_mapping(skb, queue_index);
3697         return netdev_get_tx_queue(dev, queue_index);
3698 }
3699
3700 /**
3701  *      __dev_queue_xmit - transmit a buffer
3702  *      @skb: buffer to transmit
3703  *      @sb_dev: suboordinate device used for L2 forwarding offload
3704  *
3705  *      Queue a buffer for transmission to a network device. The caller must
3706  *      have set the device and priority and built the buffer before calling
3707  *      this function. The function can be called from an interrupt.
3708  *
3709  *      A negative errno code is returned on a failure. A success does not
3710  *      guarantee the frame will be transmitted as it may be dropped due
3711  *      to congestion or traffic shaping.
3712  *
3713  * -----------------------------------------------------------------------------------
3714  *      I notice this method can also return errors from the queue disciplines,
3715  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3716  *      be positive.
3717  *
3718  *      Regardless of the return value, the skb is consumed, so it is currently
3719  *      difficult to retry a send to this method.  (You can bump the ref count
3720  *      before sending to hold a reference for retry if you are careful.)
3721  *
3722  *      When calling this method, interrupts MUST be enabled.  This is because
3723  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3724  *          --BLG
3725  */
3726 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3727 {
3728         struct net_device *dev = skb->dev;
3729         struct netdev_queue *txq;
3730         struct Qdisc *q;
3731         int rc = -ENOMEM;
3732         bool again = false;
3733
3734         skb_reset_mac_header(skb);
3735
3736         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3737                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3738
3739         /* Disable soft irqs for various locks below. Also
3740          * stops preemption for RCU.
3741          */
3742         rcu_read_lock_bh();
3743
3744         skb_update_prio(skb);
3745
3746         qdisc_pkt_len_init(skb);
3747 #ifdef CONFIG_NET_CLS_ACT
3748         skb->tc_at_ingress = 0;
3749 # ifdef CONFIG_NET_EGRESS
3750         if (static_branch_unlikely(&egress_needed_key)) {
3751                 skb = sch_handle_egress(skb, &rc, dev);
3752                 if (!skb)
3753                         goto out;
3754         }
3755 # endif
3756 #endif
3757         /* If device/qdisc don't need skb->dst, release it right now while
3758          * its hot in this cpu cache.
3759          */
3760         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3761                 skb_dst_drop(skb);
3762         else
3763                 skb_dst_force(skb);
3764
3765         txq = netdev_pick_tx(dev, skb, sb_dev);
3766         q = rcu_dereference_bh(txq->qdisc);
3767
3768         trace_net_dev_queue(skb);
3769         if (q->enqueue) {
3770                 rc = __dev_xmit_skb(skb, q, dev, txq);
3771                 goto out;
3772         }
3773
3774         /* The device has no queue. Common case for software devices:
3775          * loopback, all the sorts of tunnels...
3776
3777          * Really, it is unlikely that netif_tx_lock protection is necessary
3778          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3779          * counters.)
3780          * However, it is possible, that they rely on protection
3781          * made by us here.
3782
3783          * Check this and shot the lock. It is not prone from deadlocks.
3784          *Either shot noqueue qdisc, it is even simpler 8)
3785          */
3786         if (dev->flags & IFF_UP) {
3787                 int cpu = smp_processor_id(); /* ok because BHs are off */
3788
3789                 if (txq->xmit_lock_owner != cpu) {
3790                         if (unlikely(__this_cpu_read(xmit_recursion) >
3791                                      XMIT_RECURSION_LIMIT))
3792                                 goto recursion_alert;
3793
3794                         skb = validate_xmit_skb(skb, dev, &again);
3795                         if (!skb)
3796                                 goto out;
3797
3798                         HARD_TX_LOCK(dev, txq, cpu);
3799
3800                         if (!netif_xmit_stopped(txq)) {
3801                                 __this_cpu_inc(xmit_recursion);
3802                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3803                                 __this_cpu_dec(xmit_recursion);
3804                                 if (dev_xmit_complete(rc)) {
3805                                         HARD_TX_UNLOCK(dev, txq);
3806                                         goto out;
3807                                 }
3808                         }
3809                         HARD_TX_UNLOCK(dev, txq);
3810                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3811                                              dev->name);
3812                 } else {
3813                         /* Recursion is detected! It is possible,
3814                          * unfortunately
3815                          */
3816 recursion_alert:
3817                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3818                                              dev->name);
3819                 }
3820         }
3821
3822         rc = -ENETDOWN;
3823         rcu_read_unlock_bh();
3824
3825         atomic_long_inc(&dev->tx_dropped);
3826         kfree_skb_list(skb);
3827         return rc;
3828 out:
3829         rcu_read_unlock_bh();
3830         return rc;
3831 }
3832
3833 int dev_queue_xmit(struct sk_buff *skb)
3834 {
3835         return __dev_queue_xmit(skb, NULL);
3836 }
3837 EXPORT_SYMBOL(dev_queue_xmit);
3838
3839 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3840 {
3841         return __dev_queue_xmit(skb, sb_dev);
3842 }
3843 EXPORT_SYMBOL(dev_queue_xmit_accel);
3844
3845 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3846 {
3847         struct net_device *dev = skb->dev;
3848         struct sk_buff *orig_skb = skb;
3849         struct netdev_queue *txq;
3850         int ret = NETDEV_TX_BUSY;
3851         bool again = false;
3852
3853         if (unlikely(!netif_running(dev) ||
3854                      !netif_carrier_ok(dev)))
3855                 goto drop;
3856
3857         skb = validate_xmit_skb_list(skb, dev, &again);
3858         if (skb != orig_skb)
3859                 goto drop;
3860
3861         skb_set_queue_mapping(skb, queue_id);
3862         txq = skb_get_tx_queue(dev, skb);
3863
3864         local_bh_disable();
3865
3866         HARD_TX_LOCK(dev, txq, smp_processor_id());
3867         if (!netif_xmit_frozen_or_drv_stopped(txq))
3868                 ret = netdev_start_xmit(skb, dev, txq, false);
3869         HARD_TX_UNLOCK(dev, txq);
3870
3871         local_bh_enable();
3872
3873         if (!dev_xmit_complete(ret))
3874                 kfree_skb(skb);
3875
3876         return ret;
3877 drop:
3878         atomic_long_inc(&dev->tx_dropped);
3879         kfree_skb_list(skb);
3880         return NET_XMIT_DROP;
3881 }
3882 EXPORT_SYMBOL(dev_direct_xmit);
3883
3884 /*************************************************************************
3885  *                      Receiver routines
3886  *************************************************************************/
3887
3888 int netdev_max_backlog __read_mostly = 1000;
3889 EXPORT_SYMBOL(netdev_max_backlog);
3890
3891 int netdev_tstamp_prequeue __read_mostly = 1;
3892 int netdev_budget __read_mostly = 300;
3893 unsigned int __read_mostly netdev_budget_usecs = 2000;
3894 int weight_p __read_mostly = 64;           /* old backlog weight */
3895 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3896 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3897 int dev_rx_weight __read_mostly = 64;
3898 int dev_tx_weight __read_mostly = 64;
3899
3900 /* Called with irq disabled */
3901 static inline void ____napi_schedule(struct softnet_data *sd,
3902                                      struct napi_struct *napi)
3903 {
3904         list_add_tail(&napi->poll_list, &sd->poll_list);
3905         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3906 }
3907
3908 #ifdef CONFIG_RPS
3909
3910 /* One global table that all flow-based protocols share. */
3911 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3912 EXPORT_SYMBOL(rps_sock_flow_table);
3913 u32 rps_cpu_mask __read_mostly;
3914 EXPORT_SYMBOL(rps_cpu_mask);
3915
3916 struct static_key rps_needed __read_mostly;
3917 EXPORT_SYMBOL(rps_needed);
3918 struct static_key rfs_needed __read_mostly;
3919 EXPORT_SYMBOL(rfs_needed);
3920
3921 static struct rps_dev_flow *
3922 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3923             struct rps_dev_flow *rflow, u16 next_cpu)
3924 {
3925         if (next_cpu < nr_cpu_ids) {
3926 #ifdef CONFIG_RFS_ACCEL
3927                 struct netdev_rx_queue *rxqueue;
3928                 struct rps_dev_flow_table *flow_table;
3929                 struct rps_dev_flow *old_rflow;
3930                 u32 flow_id;
3931                 u16 rxq_index;
3932                 int rc;
3933
3934                 /* Should we steer this flow to a different hardware queue? */
3935                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3936                     !(dev->features & NETIF_F_NTUPLE))
3937                         goto out;
3938                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3939                 if (rxq_index == skb_get_rx_queue(skb))
3940                         goto out;
3941
3942                 rxqueue = dev->_rx + rxq_index;
3943                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3944                 if (!flow_table)
3945                         goto out;
3946                 flow_id = skb_get_hash(skb) & flow_table->mask;
3947                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3948                                                         rxq_index, flow_id);
3949                 if (rc < 0)
3950                         goto out;
3951                 old_rflow = rflow;
3952                 rflow = &flow_table->flows[flow_id];
3953                 rflow->filter = rc;
3954                 if (old_rflow->filter == rflow->filter)
3955                         old_rflow->filter = RPS_NO_FILTER;
3956         out:
3957 #endif
3958                 rflow->last_qtail =
3959                         per_cpu(softnet_data, next_cpu).input_queue_head;
3960         }
3961
3962         rflow->cpu = next_cpu;
3963         return rflow;
3964 }
3965
3966 /*
3967  * get_rps_cpu is called from netif_receive_skb and returns the target
3968  * CPU from the RPS map of the receiving queue for a given skb.
3969  * rcu_read_lock must be held on entry.
3970  */
3971 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3972                        struct rps_dev_flow **rflowp)
3973 {
3974         const struct rps_sock_flow_table *sock_flow_table;
3975         struct netdev_rx_queue *rxqueue = dev->_rx;
3976         struct rps_dev_flow_table *flow_table;
3977         struct rps_map *map;
3978         int cpu = -1;
3979         u32 tcpu;
3980         u32 hash;
3981
3982         if (skb_rx_queue_recorded(skb)) {
3983                 u16 index = skb_get_rx_queue(skb);
3984
3985                 if (unlikely(index >= dev->real_num_rx_queues)) {
3986                         WARN_ONCE(dev->real_num_rx_queues > 1,
3987                                   "%s received packet on queue %u, but number "
3988                                   "of RX queues is %u\n",
3989                                   dev->name, index, dev->real_num_rx_queues);
3990                         goto done;
3991                 }
3992                 rxqueue += index;
3993         }
3994
3995         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3996
3997         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3998         map = rcu_dereference(rxqueue->rps_map);
3999         if (!flow_table && !map)
4000                 goto done;
4001
4002         skb_reset_network_header(skb);
4003         hash = skb_get_hash(skb);
4004         if (!hash)
4005                 goto done;
4006
4007         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4008         if (flow_table && sock_flow_table) {
4009                 struct rps_dev_flow *rflow;
4010                 u32 next_cpu;
4011                 u32 ident;
4012
4013                 /* First check into global flow table if there is a match */
4014                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4015                 if ((ident ^ hash) & ~rps_cpu_mask)
4016                         goto try_rps;
4017
4018                 next_cpu = ident & rps_cpu_mask;
4019
4020                 /* OK, now we know there is a match,
4021                  * we can look at the local (per receive queue) flow table
4022                  */
4023                 rflow = &flow_table->flows[hash & flow_table->mask];
4024                 tcpu = rflow->cpu;
4025
4026                 /*
4027                  * If the desired CPU (where last recvmsg was done) is
4028                  * different from current CPU (one in the rx-queue flow
4029                  * table entry), switch if one of the following holds:
4030                  *   - Current CPU is unset (>= nr_cpu_ids).
4031                  *   - Current CPU is offline.
4032                  *   - The current CPU's queue tail has advanced beyond the
4033                  *     last packet that was enqueued using this table entry.
4034                  *     This guarantees that all previous packets for the flow
4035                  *     have been dequeued, thus preserving in order delivery.
4036                  */
4037                 if (unlikely(tcpu != next_cpu) &&
4038                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4039                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4040                       rflow->last_qtail)) >= 0)) {
4041                         tcpu = next_cpu;
4042                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4043                 }
4044
4045                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4046                         *rflowp = rflow;
4047                         cpu = tcpu;
4048                         goto done;
4049                 }
4050         }
4051
4052 try_rps:
4053
4054         if (map) {
4055                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4056                 if (cpu_online(tcpu)) {
4057                         cpu = tcpu;
4058                         goto done;
4059                 }
4060         }
4061
4062 done:
4063         return cpu;
4064 }
4065
4066 #ifdef CONFIG_RFS_ACCEL
4067
4068 /**
4069  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4070  * @dev: Device on which the filter was set
4071  * @rxq_index: RX queue index
4072  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4073  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4074  *
4075  * Drivers that implement ndo_rx_flow_steer() should periodically call
4076  * this function for each installed filter and remove the filters for
4077  * which it returns %true.
4078  */
4079 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4080                          u32 flow_id, u16 filter_id)
4081 {
4082         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4083         struct rps_dev_flow_table *flow_table;
4084         struct rps_dev_flow *rflow;
4085         bool expire = true;
4086         unsigned int cpu;
4087
4088         rcu_read_lock();
4089         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4090         if (flow_table && flow_id <= flow_table->mask) {
4091                 rflow = &flow_table->flows[flow_id];
4092                 cpu = READ_ONCE(rflow->cpu);
4093                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4094                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4095                            rflow->last_qtail) <
4096                      (int)(10 * flow_table->mask)))
4097                         expire = false;
4098         }
4099         rcu_read_unlock();
4100         return expire;
4101 }
4102 EXPORT_SYMBOL(rps_may_expire_flow);
4103
4104 #endif /* CONFIG_RFS_ACCEL */
4105
4106 /* Called from hardirq (IPI) context */
4107 static void rps_trigger_softirq(void *data)
4108 {
4109         struct softnet_data *sd = data;
4110
4111         ____napi_schedule(sd, &sd->backlog);
4112         sd->received_rps++;
4113 }
4114
4115 #endif /* CONFIG_RPS */
4116
4117 /*
4118  * Check if this softnet_data structure is another cpu one
4119  * If yes, queue it to our IPI list and return 1
4120  * If no, return 0
4121  */
4122 static int rps_ipi_queued(struct softnet_data *sd)
4123 {
4124 #ifdef CONFIG_RPS
4125         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4126
4127         if (sd != mysd) {
4128                 sd->rps_ipi_next = mysd->rps_ipi_list;
4129                 mysd->rps_ipi_list = sd;
4130
4131                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4132                 return 1;
4133         }
4134 #endif /* CONFIG_RPS */
4135         return 0;
4136 }
4137
4138 #ifdef CONFIG_NET_FLOW_LIMIT
4139 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4140 #endif
4141
4142 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4143 {
4144 #ifdef CONFIG_NET_FLOW_LIMIT
4145         struct sd_flow_limit *fl;
4146         struct softnet_data *sd;
4147         unsigned int old_flow, new_flow;
4148
4149         if (qlen < (netdev_max_backlog >> 1))
4150                 return false;
4151
4152         sd = this_cpu_ptr(&softnet_data);
4153
4154         rcu_read_lock();
4155         fl = rcu_dereference(sd->flow_limit);
4156         if (fl) {
4157                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4158                 old_flow = fl->history[fl->history_head];
4159                 fl->history[fl->history_head] = new_flow;
4160
4161                 fl->history_head++;
4162                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4163
4164                 if (likely(fl->buckets[old_flow]))
4165                         fl->buckets[old_flow]--;
4166
4167                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4168                         fl->count++;
4169                         rcu_read_unlock();
4170                         return true;
4171                 }
4172         }
4173         rcu_read_unlock();
4174 #endif
4175         return false;
4176 }
4177
4178 /*
4179  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4180  * queue (may be a remote CPU queue).
4181  */
4182 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4183                               unsigned int *qtail)
4184 {
4185         struct softnet_data *sd;
4186         unsigned long flags;
4187         unsigned int qlen;
4188
4189         sd = &per_cpu(softnet_data, cpu);
4190
4191         local_irq_save(flags);
4192
4193         rps_lock(sd);
4194         if (!netif_running(skb->dev))
4195                 goto drop;
4196         qlen = skb_queue_len(&sd->input_pkt_queue);
4197         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4198                 if (qlen) {
4199 enqueue:
4200                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4201                         input_queue_tail_incr_save(sd, qtail);
4202                         rps_unlock(sd);
4203                         local_irq_restore(flags);
4204                         return NET_RX_SUCCESS;
4205                 }
4206
4207                 /* Schedule NAPI for backlog device
4208                  * We can use non atomic operation since we own the queue lock
4209                  */
4210                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4211                         if (!rps_ipi_queued(sd))
4212                                 ____napi_schedule(sd, &sd->backlog);
4213                 }
4214                 goto enqueue;
4215         }
4216
4217 drop:
4218         sd->dropped++;
4219         rps_unlock(sd);
4220
4221         local_irq_restore(flags);
4222
4223         atomic_long_inc(&skb->dev->rx_dropped);
4224         kfree_skb(skb);
4225         return NET_RX_DROP;
4226 }
4227
4228 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4229 {
4230         struct net_device *dev = skb->dev;
4231         struct netdev_rx_queue *rxqueue;
4232
4233         rxqueue = dev->_rx;
4234
4235         if (skb_rx_queue_recorded(skb)) {
4236                 u16 index = skb_get_rx_queue(skb);
4237
4238                 if (unlikely(index >= dev->real_num_rx_queues)) {
4239                         WARN_ONCE(dev->real_num_rx_queues > 1,
4240                                   "%s received packet on queue %u, but number "
4241                                   "of RX queues is %u\n",
4242                                   dev->name, index, dev->real_num_rx_queues);
4243
4244                         return rxqueue; /* Return first rxqueue */
4245                 }
4246                 rxqueue += index;
4247         }
4248         return rxqueue;
4249 }
4250
4251 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4252                                      struct xdp_buff *xdp,
4253                                      struct bpf_prog *xdp_prog)
4254 {
4255         struct netdev_rx_queue *rxqueue;
4256         void *orig_data, *orig_data_end;
4257         u32 metalen, act = XDP_DROP;
4258         int hlen, off;
4259         u32 mac_len;
4260
4261         /* Reinjected packets coming from act_mirred or similar should
4262          * not get XDP generic processing.
4263          */
4264         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4265                 return XDP_PASS;
4266
4267         /* XDP packets must be linear and must have sufficient headroom
4268          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4269          * native XDP provides, thus we need to do it here as well.
4270          */
4271         if (skb_is_nonlinear(skb) ||
4272             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4273                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4274                 int troom = skb->tail + skb->data_len - skb->end;
4275
4276                 /* In case we have to go down the path and also linearize,
4277                  * then lets do the pskb_expand_head() work just once here.
4278                  */
4279                 if (pskb_expand_head(skb,
4280                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4281                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4282                         goto do_drop;
4283                 if (skb_linearize(skb))
4284                         goto do_drop;
4285         }
4286
4287         /* The XDP program wants to see the packet starting at the MAC
4288          * header.
4289          */
4290         mac_len = skb->data - skb_mac_header(skb);
4291         hlen = skb_headlen(skb) + mac_len;
4292         xdp->data = skb->data - mac_len;
4293         xdp->data_meta = xdp->data;
4294         xdp->data_end = xdp->data + hlen;
4295         xdp->data_hard_start = skb->data - skb_headroom(skb);
4296         orig_data_end = xdp->data_end;
4297         orig_data = xdp->data;
4298
4299         rxqueue = netif_get_rxqueue(skb);
4300         xdp->rxq = &rxqueue->xdp_rxq;
4301
4302         act = bpf_prog_run_xdp(xdp_prog, xdp);
4303
4304         off = xdp->data - orig_data;
4305         if (off > 0)
4306                 __skb_pull(skb, off);
4307         else if (off < 0)
4308                 __skb_push(skb, -off);
4309         skb->mac_header += off;
4310
4311         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4312          * pckt.
4313          */
4314         off = orig_data_end - xdp->data_end;
4315         if (off != 0) {
4316                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4317                 skb->len -= off;
4318
4319         }
4320
4321         switch (act) {
4322         case XDP_REDIRECT:
4323         case XDP_TX:
4324                 __skb_push(skb, mac_len);
4325                 break;
4326         case XDP_PASS:
4327                 metalen = xdp->data - xdp->data_meta;
4328                 if (metalen)
4329                         skb_metadata_set(skb, metalen);
4330                 break;
4331         default:
4332                 bpf_warn_invalid_xdp_action(act);
4333                 /* fall through */
4334         case XDP_ABORTED:
4335                 trace_xdp_exception(skb->dev, xdp_prog, act);
4336                 /* fall through */
4337         case XDP_DROP:
4338         do_drop:
4339                 kfree_skb(skb);
4340                 break;
4341         }
4342
4343         return act;
4344 }
4345
4346 /* When doing generic XDP we have to bypass the qdisc layer and the
4347  * network taps in order to match in-driver-XDP behavior.
4348  */
4349 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4350 {
4351         struct net_device *dev = skb->dev;
4352         struct netdev_queue *txq;
4353         bool free_skb = true;
4354         int cpu, rc;
4355
4356         txq = netdev_pick_tx(dev, skb, NULL);
4357         cpu = smp_processor_id();
4358         HARD_TX_LOCK(dev, txq, cpu);
4359         if (!netif_xmit_stopped(txq)) {
4360                 rc = netdev_start_xmit(skb, dev, txq, 0);
4361                 if (dev_xmit_complete(rc))
4362                         free_skb = false;
4363         }
4364         HARD_TX_UNLOCK(dev, txq);
4365         if (free_skb) {
4366                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4367                 kfree_skb(skb);
4368         }
4369 }
4370 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4371
4372 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4373
4374 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4375 {
4376         if (xdp_prog) {
4377                 struct xdp_buff xdp;
4378                 u32 act;
4379                 int err;
4380
4381                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4382                 if (act != XDP_PASS) {
4383                         switch (act) {
4384                         case XDP_REDIRECT:
4385                                 err = xdp_do_generic_redirect(skb->dev, skb,
4386                                                               &xdp, xdp_prog);
4387                                 if (err)
4388                                         goto out_redir;
4389                                 break;
4390                         case XDP_TX:
4391                                 generic_xdp_tx(skb, xdp_prog);
4392                                 break;
4393                         }
4394                         return XDP_DROP;
4395                 }
4396         }
4397         return XDP_PASS;
4398 out_redir:
4399         kfree_skb(skb);
4400         return XDP_DROP;
4401 }
4402 EXPORT_SYMBOL_GPL(do_xdp_generic);
4403
4404 static int netif_rx_internal(struct sk_buff *skb)
4405 {
4406         int ret;
4407
4408         net_timestamp_check(netdev_tstamp_prequeue, skb);
4409
4410         trace_netif_rx(skb);
4411
4412         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4413                 int ret;
4414
4415                 preempt_disable();
4416                 rcu_read_lock();
4417                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4418                 rcu_read_unlock();
4419                 preempt_enable();
4420
4421                 /* Consider XDP consuming the packet a success from
4422                  * the netdev point of view we do not want to count
4423                  * this as an error.
4424                  */
4425                 if (ret != XDP_PASS)
4426                         return NET_RX_SUCCESS;
4427         }
4428
4429 #ifdef CONFIG_RPS
4430         if (static_key_false(&rps_needed)) {
4431                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4432                 int cpu;
4433
4434                 preempt_disable();
4435                 rcu_read_lock();
4436
4437                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4438                 if (cpu < 0)
4439                         cpu = smp_processor_id();
4440
4441                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4442
4443                 rcu_read_unlock();
4444                 preempt_enable();
4445         } else
4446 #endif
4447         {
4448                 unsigned int qtail;
4449
4450                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4451                 put_cpu();
4452         }
4453         return ret;
4454 }
4455
4456 /**
4457  *      netif_rx        -       post buffer to the network code
4458  *      @skb: buffer to post
4459  *
4460  *      This function receives a packet from a device driver and queues it for
4461  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4462  *      may be dropped during processing for congestion control or by the
4463  *      protocol layers.
4464  *
4465  *      return values:
4466  *      NET_RX_SUCCESS  (no congestion)
4467  *      NET_RX_DROP     (packet was dropped)
4468  *
4469  */
4470
4471 int netif_rx(struct sk_buff *skb)
4472 {
4473         trace_netif_rx_entry(skb);
4474
4475         return netif_rx_internal(skb);
4476 }
4477 EXPORT_SYMBOL(netif_rx);
4478
4479 int netif_rx_ni(struct sk_buff *skb)
4480 {
4481         int err;
4482
4483         trace_netif_rx_ni_entry(skb);
4484
4485         preempt_disable();
4486         err = netif_rx_internal(skb);
4487         if (local_softirq_pending())
4488                 do_softirq();
4489         preempt_enable();
4490
4491         return err;
4492 }
4493 EXPORT_SYMBOL(netif_rx_ni);
4494
4495 static __latent_entropy void net_tx_action(struct softirq_action *h)
4496 {
4497         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4498
4499         if (sd->completion_queue) {
4500                 struct sk_buff *clist;
4501
4502                 local_irq_disable();
4503                 clist = sd->completion_queue;
4504                 sd->completion_queue = NULL;
4505                 local_irq_enable();
4506
4507                 while (clist) {
4508                         struct sk_buff *skb = clist;
4509
4510                         clist = clist->next;
4511
4512                         WARN_ON(refcount_read(&skb->users));
4513                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4514                                 trace_consume_skb(skb);
4515                         else
4516                                 trace_kfree_skb(skb, net_tx_action);
4517
4518                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4519                                 __kfree_skb(skb);
4520                         else
4521                                 __kfree_skb_defer(skb);
4522                 }
4523
4524                 __kfree_skb_flush();
4525         }
4526
4527         if (sd->output_queue) {
4528                 struct Qdisc *head;
4529
4530                 local_irq_disable();
4531                 head = sd->output_queue;
4532                 sd->output_queue = NULL;
4533                 sd->output_queue_tailp = &sd->output_queue;
4534                 local_irq_enable();
4535
4536                 while (head) {
4537                         struct Qdisc *q = head;
4538                         spinlock_t *root_lock = NULL;
4539
4540                         head = head->next_sched;
4541
4542                         if (!(q->flags & TCQ_F_NOLOCK)) {
4543                                 root_lock = qdisc_lock(q);
4544                                 spin_lock(root_lock);
4545                         }
4546                         /* We need to make sure head->next_sched is read
4547                          * before clearing __QDISC_STATE_SCHED
4548                          */
4549                         smp_mb__before_atomic();
4550                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4551                         qdisc_run(q);
4552                         if (root_lock)
4553                                 spin_unlock(root_lock);
4554                 }
4555         }
4556
4557         xfrm_dev_backlog(sd);
4558 }
4559
4560 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4561 /* This hook is defined here for ATM LANE */
4562 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4563                              unsigned char *addr) __read_mostly;
4564 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4565 #endif
4566
4567 static inline struct sk_buff *
4568 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4569                    struct net_device *orig_dev)
4570 {
4571 #ifdef CONFIG_NET_CLS_ACT
4572         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4573         struct tcf_result cl_res;
4574
4575         /* If there's at least one ingress present somewhere (so
4576          * we get here via enabled static key), remaining devices
4577          * that are not configured with an ingress qdisc will bail
4578          * out here.
4579          */
4580         if (!miniq)
4581                 return skb;
4582
4583         if (*pt_prev) {
4584                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4585                 *pt_prev = NULL;
4586         }
4587
4588         qdisc_skb_cb(skb)->pkt_len = skb->len;
4589         skb->tc_at_ingress = 1;
4590         mini_qdisc_bstats_cpu_update(miniq, skb);
4591
4592         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4593         case TC_ACT_OK:
4594         case TC_ACT_RECLASSIFY:
4595                 skb->tc_index = TC_H_MIN(cl_res.classid);
4596                 break;
4597         case TC_ACT_SHOT:
4598                 mini_qdisc_qstats_cpu_drop(miniq);
4599                 kfree_skb(skb);
4600                 return NULL;
4601         case TC_ACT_STOLEN:
4602         case TC_ACT_QUEUED:
4603         case TC_ACT_TRAP:
4604                 consume_skb(skb);
4605                 return NULL;
4606         case TC_ACT_REDIRECT:
4607                 /* skb_mac_header check was done by cls/act_bpf, so
4608                  * we can safely push the L2 header back before
4609                  * redirecting to another netdev
4610                  */
4611                 __skb_push(skb, skb->mac_len);
4612                 skb_do_redirect(skb);
4613                 return NULL;
4614         case TC_ACT_REINSERT:
4615                 /* this does not scrub the packet, and updates stats on error */
4616                 skb_tc_reinsert(skb, &cl_res);
4617                 return NULL;
4618         default:
4619                 break;
4620         }
4621 #endif /* CONFIG_NET_CLS_ACT */
4622         return skb;
4623 }
4624
4625 /**
4626  *      netdev_is_rx_handler_busy - check if receive handler is registered
4627  *      @dev: device to check
4628  *
4629  *      Check if a receive handler is already registered for a given device.
4630  *      Return true if there one.
4631  *
4632  *      The caller must hold the rtnl_mutex.
4633  */
4634 bool netdev_is_rx_handler_busy(struct net_device *dev)
4635 {
4636         ASSERT_RTNL();
4637         return dev && rtnl_dereference(dev->rx_handler);
4638 }
4639 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4640
4641 /**
4642  *      netdev_rx_handler_register - register receive handler
4643  *      @dev: device to register a handler for
4644  *      @rx_handler: receive handler to register
4645  *      @rx_handler_data: data pointer that is used by rx handler
4646  *
4647  *      Register a receive handler for a device. This handler will then be
4648  *      called from __netif_receive_skb. A negative errno code is returned
4649  *      on a failure.
4650  *
4651  *      The caller must hold the rtnl_mutex.
4652  *
4653  *      For a general description of rx_handler, see enum rx_handler_result.
4654  */
4655 int netdev_rx_handler_register(struct net_device *dev,
4656                                rx_handler_func_t *rx_handler,
4657                                void *rx_handler_data)
4658 {
4659         if (netdev_is_rx_handler_busy(dev))
4660                 return -EBUSY;
4661
4662         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4663                 return -EINVAL;
4664
4665         /* Note: rx_handler_data must be set before rx_handler */
4666         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4667         rcu_assign_pointer(dev->rx_handler, rx_handler);
4668
4669         return 0;
4670 }
4671 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4672
4673 /**
4674  *      netdev_rx_handler_unregister - unregister receive handler
4675  *      @dev: device to unregister a handler from
4676  *
4677  *      Unregister a receive handler from a device.
4678  *
4679  *      The caller must hold the rtnl_mutex.
4680  */
4681 void netdev_rx_handler_unregister(struct net_device *dev)
4682 {
4683
4684         ASSERT_RTNL();
4685         RCU_INIT_POINTER(dev->rx_handler, NULL);
4686         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4687          * section has a guarantee to see a non NULL rx_handler_data
4688          * as well.
4689          */
4690         synchronize_net();
4691         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4692 }
4693 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4694
4695 /*
4696  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4697  * the special handling of PFMEMALLOC skbs.
4698  */
4699 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4700 {
4701         switch (skb->protocol) {
4702         case htons(ETH_P_ARP):
4703         case htons(ETH_P_IP):
4704         case htons(ETH_P_IPV6):
4705         case htons(ETH_P_8021Q):
4706         case htons(ETH_P_8021AD):
4707                 return true;
4708         default:
4709                 return false;
4710         }
4711 }
4712
4713 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4714                              int *ret, struct net_device *orig_dev)
4715 {
4716 #ifdef CONFIG_NETFILTER_INGRESS
4717         if (nf_hook_ingress_active(skb)) {
4718                 int ingress_retval;
4719
4720                 if (*pt_prev) {
4721                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4722                         *pt_prev = NULL;
4723                 }
4724
4725                 rcu_read_lock();
4726                 ingress_retval = nf_hook_ingress(skb);
4727                 rcu_read_unlock();
4728                 return ingress_retval;
4729         }
4730 #endif /* CONFIG_NETFILTER_INGRESS */
4731         return 0;
4732 }
4733
4734 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4735                                     struct packet_type **ppt_prev)
4736 {
4737         struct packet_type *ptype, *pt_prev;
4738         rx_handler_func_t *rx_handler;
4739         struct net_device *orig_dev;
4740         bool deliver_exact = false;
4741         int ret = NET_RX_DROP;
4742         __be16 type;
4743
4744         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4745
4746         trace_netif_receive_skb(skb);
4747
4748         orig_dev = skb->dev;
4749
4750         skb_reset_network_header(skb);
4751         if (!skb_transport_header_was_set(skb))
4752                 skb_reset_transport_header(skb);
4753         skb_reset_mac_len(skb);
4754
4755         pt_prev = NULL;
4756
4757 another_round:
4758         skb->skb_iif = skb->dev->ifindex;
4759
4760         __this_cpu_inc(softnet_data.processed);
4761
4762         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4763             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4764                 skb = skb_vlan_untag(skb);
4765                 if (unlikely(!skb))
4766                         goto out;
4767         }
4768
4769         if (skb_skip_tc_classify(skb))
4770                 goto skip_classify;
4771
4772         if (pfmemalloc)
4773                 goto skip_taps;
4774
4775         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4776                 if (pt_prev)
4777                         ret = deliver_skb(skb, pt_prev, orig_dev);
4778                 pt_prev = ptype;
4779         }
4780
4781         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4782                 if (pt_prev)
4783                         ret = deliver_skb(skb, pt_prev, orig_dev);
4784                 pt_prev = ptype;
4785         }
4786
4787 skip_taps:
4788 #ifdef CONFIG_NET_INGRESS
4789         if (static_branch_unlikely(&ingress_needed_key)) {
4790                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4791                 if (!skb)
4792                         goto out;
4793
4794                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4795                         goto out;
4796         }
4797 #endif
4798         skb_reset_tc(skb);
4799 skip_classify:
4800         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4801                 goto drop;
4802
4803         if (skb_vlan_tag_present(skb)) {
4804                 if (pt_prev) {
4805                         ret = deliver_skb(skb, pt_prev, orig_dev);
4806                         pt_prev = NULL;
4807                 }
4808                 if (vlan_do_receive(&skb))
4809                         goto another_round;
4810                 else if (unlikely(!skb))
4811                         goto out;
4812         }
4813
4814         rx_handler = rcu_dereference(skb->dev->rx_handler);
4815         if (rx_handler) {
4816                 if (pt_prev) {
4817                         ret = deliver_skb(skb, pt_prev, orig_dev);
4818                         pt_prev = NULL;
4819                 }
4820                 switch (rx_handler(&skb)) {
4821                 case RX_HANDLER_CONSUMED:
4822                         ret = NET_RX_SUCCESS;
4823                         goto out;
4824                 case RX_HANDLER_ANOTHER:
4825                         goto another_round;
4826                 case RX_HANDLER_EXACT:
4827                         deliver_exact = true;
4828                 case RX_HANDLER_PASS:
4829                         break;
4830                 default:
4831                         BUG();
4832                 }
4833         }
4834
4835         if (unlikely(skb_vlan_tag_present(skb))) {
4836                 if (skb_vlan_tag_get_id(skb))
4837                         skb->pkt_type = PACKET_OTHERHOST;
4838                 /* Note: we might in the future use prio bits
4839                  * and set skb->priority like in vlan_do_receive()
4840                  * For the time being, just ignore Priority Code Point
4841                  */
4842                 skb->vlan_tci = 0;
4843         }
4844
4845         type = skb->protocol;
4846
4847         /* deliver only exact match when indicated */
4848         if (likely(!deliver_exact)) {
4849                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4850                                        &ptype_base[ntohs(type) &
4851                                                    PTYPE_HASH_MASK]);
4852         }
4853
4854         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4855                                &orig_dev->ptype_specific);
4856
4857         if (unlikely(skb->dev != orig_dev)) {
4858                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4859                                        &skb->dev->ptype_specific);
4860         }
4861
4862         if (pt_prev) {
4863                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4864                         goto drop;
4865                 *ppt_prev = pt_prev;
4866         } else {
4867 drop:
4868                 if (!deliver_exact)
4869                         atomic_long_inc(&skb->dev->rx_dropped);
4870                 else
4871                         atomic_long_inc(&skb->dev->rx_nohandler);
4872                 kfree_skb(skb);
4873                 /* Jamal, now you will not able to escape explaining
4874                  * me how you were going to use this. :-)
4875                  */
4876                 ret = NET_RX_DROP;
4877         }
4878
4879 out:
4880         return ret;
4881 }
4882
4883 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4884 {
4885         struct net_device *orig_dev = skb->dev;
4886         struct packet_type *pt_prev = NULL;
4887         int ret;
4888
4889         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4890         if (pt_prev)
4891                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4892         return ret;
4893 }
4894
4895 /**
4896  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4897  *      @skb: buffer to process
4898  *
4899  *      More direct receive version of netif_receive_skb().  It should
4900  *      only be used by callers that have a need to skip RPS and Generic XDP.
4901  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4902  *
4903  *      This function may only be called from softirq context and interrupts
4904  *      should be enabled.
4905  *
4906  *      Return values (usually ignored):
4907  *      NET_RX_SUCCESS: no congestion
4908  *      NET_RX_DROP: packet was dropped
4909  */
4910 int netif_receive_skb_core(struct sk_buff *skb)
4911 {
4912         int ret;
4913
4914         rcu_read_lock();
4915         ret = __netif_receive_skb_one_core(skb, false);
4916         rcu_read_unlock();
4917
4918         return ret;
4919 }
4920 EXPORT_SYMBOL(netif_receive_skb_core);
4921
4922 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4923                                                   struct packet_type *pt_prev,
4924                                                   struct net_device *orig_dev)
4925 {
4926         struct sk_buff *skb, *next;
4927
4928         if (!pt_prev)
4929                 return;
4930         if (list_empty(head))
4931                 return;
4932         if (pt_prev->list_func != NULL)
4933                 pt_prev->list_func(head, pt_prev, orig_dev);
4934         else
4935                 list_for_each_entry_safe(skb, next, head, list)
4936                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4937 }
4938
4939 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4940 {
4941         /* Fast-path assumptions:
4942          * - There is no RX handler.
4943          * - Only one packet_type matches.
4944          * If either of these fails, we will end up doing some per-packet
4945          * processing in-line, then handling the 'last ptype' for the whole
4946          * sublist.  This can't cause out-of-order delivery to any single ptype,
4947          * because the 'last ptype' must be constant across the sublist, and all
4948          * other ptypes are handled per-packet.
4949          */
4950         /* Current (common) ptype of sublist */
4951         struct packet_type *pt_curr = NULL;
4952         /* Current (common) orig_dev of sublist */
4953         struct net_device *od_curr = NULL;
4954         struct list_head sublist;
4955         struct sk_buff *skb, *next;
4956
4957         INIT_LIST_HEAD(&sublist);
4958         list_for_each_entry_safe(skb, next, head, list) {
4959                 struct net_device *orig_dev = skb->dev;
4960                 struct packet_type *pt_prev = NULL;
4961
4962                 list_del(&skb->list);
4963                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4964                 if (!pt_prev)
4965                         continue;
4966                 if (pt_curr != pt_prev || od_curr != orig_dev) {
4967                         /* dispatch old sublist */
4968                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4969                         /* start new sublist */
4970                         INIT_LIST_HEAD(&sublist);
4971                         pt_curr = pt_prev;
4972                         od_curr = orig_dev;
4973                 }
4974                 list_add_tail(&skb->list, &sublist);
4975         }
4976
4977         /* dispatch final sublist */
4978         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4979 }
4980
4981 static int __netif_receive_skb(struct sk_buff *skb)
4982 {
4983         int ret;
4984
4985         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4986                 unsigned int noreclaim_flag;
4987
4988                 /*
4989                  * PFMEMALLOC skbs are special, they should
4990                  * - be delivered to SOCK_MEMALLOC sockets only
4991                  * - stay away from userspace
4992                  * - have bounded memory usage
4993                  *
4994                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4995                  * context down to all allocation sites.
4996                  */
4997                 noreclaim_flag = memalloc_noreclaim_save();
4998                 ret = __netif_receive_skb_one_core(skb, true);
4999                 memalloc_noreclaim_restore(noreclaim_flag);
5000         } else
5001                 ret = __netif_receive_skb_one_core(skb, false);
5002
5003         return ret;
5004 }
5005
5006 static void __netif_receive_skb_list(struct list_head *head)
5007 {
5008         unsigned long noreclaim_flag = 0;
5009         struct sk_buff *skb, *next;
5010         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5011
5012         list_for_each_entry_safe(skb, next, head, list) {
5013                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5014                         struct list_head sublist;
5015
5016                         /* Handle the previous sublist */
5017                         list_cut_before(&sublist, head, &skb->list);
5018                         if (!list_empty(&sublist))
5019                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5020                         pfmemalloc = !pfmemalloc;
5021                         /* See comments in __netif_receive_skb */
5022                         if (pfmemalloc)
5023                                 noreclaim_flag = memalloc_noreclaim_save();
5024                         else
5025                                 memalloc_noreclaim_restore(noreclaim_flag);
5026                 }
5027         }
5028         /* Handle the remaining sublist */
5029         if (!list_empty(head))
5030                 __netif_receive_skb_list_core(head, pfmemalloc);
5031         /* Restore pflags */
5032         if (pfmemalloc)
5033                 memalloc_noreclaim_restore(noreclaim_flag);
5034 }
5035
5036 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5037 {
5038         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5039         struct bpf_prog *new = xdp->prog;
5040         int ret = 0;
5041
5042         switch (xdp->command) {
5043         case XDP_SETUP_PROG:
5044                 rcu_assign_pointer(dev->xdp_prog, new);
5045                 if (old)
5046                         bpf_prog_put(old);
5047
5048                 if (old && !new) {
5049                         static_branch_dec(&generic_xdp_needed_key);
5050                 } else if (new && !old) {
5051                         static_branch_inc(&generic_xdp_needed_key);
5052                         dev_disable_lro(dev);
5053                         dev_disable_gro_hw(dev);
5054                 }
5055                 break;
5056
5057         case XDP_QUERY_PROG:
5058                 xdp->prog_id = old ? old->aux->id : 0;
5059                 break;
5060
5061         default:
5062                 ret = -EINVAL;
5063                 break;
5064         }
5065
5066         return ret;
5067 }
5068
5069 static int netif_receive_skb_internal(struct sk_buff *skb)
5070 {
5071         int ret;
5072
5073         net_timestamp_check(netdev_tstamp_prequeue, skb);
5074
5075         if (skb_defer_rx_timestamp(skb))
5076                 return NET_RX_SUCCESS;
5077
5078         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5079                 int ret;
5080
5081                 preempt_disable();
5082                 rcu_read_lock();
5083                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5084                 rcu_read_unlock();
5085                 preempt_enable();
5086
5087                 if (ret != XDP_PASS)
5088                         return NET_RX_DROP;
5089         }
5090
5091         rcu_read_lock();
5092 #ifdef CONFIG_RPS
5093         if (static_key_false(&rps_needed)) {
5094                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5095                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5096
5097                 if (cpu >= 0) {
5098                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5099                         rcu_read_unlock();
5100                         return ret;
5101                 }
5102         }
5103 #endif
5104         ret = __netif_receive_skb(skb);
5105         rcu_read_unlock();
5106         return ret;
5107 }
5108
5109 static void netif_receive_skb_list_internal(struct list_head *head)
5110 {
5111         struct bpf_prog *xdp_prog = NULL;
5112         struct sk_buff *skb, *next;
5113         struct list_head sublist;
5114
5115         INIT_LIST_HEAD(&sublist);
5116         list_for_each_entry_safe(skb, next, head, list) {
5117                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5118                 list_del(&skb->list);
5119                 if (!skb_defer_rx_timestamp(skb))
5120                         list_add_tail(&skb->list, &sublist);
5121         }
5122         list_splice_init(&sublist, head);
5123
5124         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5125                 preempt_disable();
5126                 rcu_read_lock();
5127                 list_for_each_entry_safe(skb, next, head, list) {
5128                         xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5129                         list_del(&skb->list);
5130                         if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5131                                 list_add_tail(&skb->list, &sublist);
5132                 }
5133                 rcu_read_unlock();
5134                 preempt_enable();
5135                 /* Put passed packets back on main list */
5136                 list_splice_init(&sublist, head);
5137         }
5138
5139         rcu_read_lock();
5140 #ifdef CONFIG_RPS
5141         if (static_key_false(&rps_needed)) {
5142                 list_for_each_entry_safe(skb, next, head, list) {
5143                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5144                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5145
5146                         if (cpu >= 0) {
5147                                 /* Will be handled, remove from list */
5148                                 list_del(&skb->list);
5149                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5150                         }
5151                 }
5152         }
5153 #endif
5154         __netif_receive_skb_list(head);
5155         rcu_read_unlock();
5156 }
5157
5158 /**
5159  *      netif_receive_skb - process receive buffer from network
5160  *      @skb: buffer to process
5161  *
5162  *      netif_receive_skb() is the main receive data processing function.
5163  *      It always succeeds. The buffer may be dropped during processing
5164  *      for congestion control or by the protocol layers.
5165  *
5166  *      This function may only be called from softirq context and interrupts
5167  *      should be enabled.
5168  *
5169  *      Return values (usually ignored):
5170  *      NET_RX_SUCCESS: no congestion
5171  *      NET_RX_DROP: packet was dropped
5172  */
5173 int netif_receive_skb(struct sk_buff *skb)
5174 {
5175         trace_netif_receive_skb_entry(skb);
5176
5177         return netif_receive_skb_internal(skb);
5178 }
5179 EXPORT_SYMBOL(netif_receive_skb);
5180
5181 /**
5182  *      netif_receive_skb_list - process many receive buffers from network
5183  *      @head: list of skbs to process.
5184  *
5185  *      Since return value of netif_receive_skb() is normally ignored, and
5186  *      wouldn't be meaningful for a list, this function returns void.
5187  *
5188  *      This function may only be called from softirq context and interrupts
5189  *      should be enabled.
5190  */
5191 void netif_receive_skb_list(struct list_head *head)
5192 {
5193         struct sk_buff *skb;
5194
5195         if (list_empty(head))
5196                 return;
5197         list_for_each_entry(skb, head, list)
5198                 trace_netif_receive_skb_list_entry(skb);
5199         netif_receive_skb_list_internal(head);
5200 }
5201 EXPORT_SYMBOL(netif_receive_skb_list);
5202
5203 DEFINE_PER_CPU(struct work_struct, flush_works);
5204
5205 /* Network device is going away, flush any packets still pending */
5206 static void flush_backlog(struct work_struct *work)
5207 {
5208         struct sk_buff *skb, *tmp;
5209         struct softnet_data *sd;
5210
5211         local_bh_disable();
5212         sd = this_cpu_ptr(&softnet_data);
5213
5214         local_irq_disable();
5215         rps_lock(sd);
5216         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5217                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5218                         __skb_unlink(skb, &sd->input_pkt_queue);
5219                         kfree_skb(skb);
5220                         input_queue_head_incr(sd);
5221                 }
5222         }
5223         rps_unlock(sd);
5224         local_irq_enable();
5225
5226         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5227                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5228                         __skb_unlink(skb, &sd->process_queue);
5229                         kfree_skb(skb);
5230                         input_queue_head_incr(sd);
5231                 }
5232         }
5233         local_bh_enable();
5234 }
5235
5236 static void flush_all_backlogs(void)
5237 {
5238         unsigned int cpu;
5239
5240         get_online_cpus();
5241
5242         for_each_online_cpu(cpu)
5243                 queue_work_on(cpu, system_highpri_wq,
5244                               per_cpu_ptr(&flush_works, cpu));
5245
5246         for_each_online_cpu(cpu)
5247                 flush_work(per_cpu_ptr(&flush_works, cpu));
5248
5249         put_online_cpus();
5250 }
5251
5252 static int napi_gro_complete(struct sk_buff *skb)
5253 {
5254         struct packet_offload *ptype;
5255         __be16 type = skb->protocol;
5256         struct list_head *head = &offload_base;
5257         int err = -ENOENT;
5258
5259         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5260
5261         if (NAPI_GRO_CB(skb)->count == 1) {
5262                 skb_shinfo(skb)->gso_size = 0;
5263                 goto out;
5264         }
5265
5266         rcu_read_lock();
5267         list_for_each_entry_rcu(ptype, head, list) {
5268                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5269                         continue;
5270
5271                 err = ptype->callbacks.gro_complete(skb, 0);
5272                 break;
5273         }
5274         rcu_read_unlock();
5275
5276         if (err) {
5277                 WARN_ON(&ptype->list == head);
5278                 kfree_skb(skb);
5279                 return NET_RX_SUCCESS;
5280         }
5281
5282 out:
5283         return netif_receive_skb_internal(skb);
5284 }
5285
5286 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5287                                    bool flush_old)
5288 {
5289         struct list_head *head = &napi->gro_hash[index].list;
5290         struct sk_buff *skb, *p;
5291
5292         list_for_each_entry_safe_reverse(skb, p, head, list) {
5293                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5294                         return;
5295                 list_del(&skb->list);
5296                 skb->next = NULL;
5297                 napi_gro_complete(skb);
5298                 napi->gro_hash[index].count--;
5299         }
5300
5301         if (!napi->gro_hash[index].count)
5302                 __clear_bit(index, &napi->gro_bitmask);
5303 }
5304
5305 /* napi->gro_hash[].list contains packets ordered by age.
5306  * youngest packets at the head of it.
5307  * Complete skbs in reverse order to reduce latencies.
5308  */
5309 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5310 {
5311         u32 i;
5312
5313         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5314                 if (test_bit(i, &napi->gro_bitmask))
5315                         __napi_gro_flush_chain(napi, i, flush_old);
5316         }
5317 }
5318 EXPORT_SYMBOL(napi_gro_flush);
5319
5320 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5321                                           struct sk_buff *skb)
5322 {
5323         unsigned int maclen = skb->dev->hard_header_len;
5324         u32 hash = skb_get_hash_raw(skb);
5325         struct list_head *head;
5326         struct sk_buff *p;
5327
5328         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5329         list_for_each_entry(p, head, list) {
5330                 unsigned long diffs;
5331
5332                 NAPI_GRO_CB(p)->flush = 0;
5333
5334                 if (hash != skb_get_hash_raw(p)) {
5335                         NAPI_GRO_CB(p)->same_flow = 0;
5336                         continue;
5337                 }
5338
5339                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5340                 diffs |= p->vlan_tci ^ skb->vlan_tci;
5341                 diffs |= skb_metadata_dst_cmp(p, skb);
5342                 diffs |= skb_metadata_differs(p, skb);
5343                 if (maclen == ETH_HLEN)
5344                         diffs |= compare_ether_header(skb_mac_header(p),
5345                                                       skb_mac_header(skb));
5346                 else if (!diffs)
5347                         diffs = memcmp(skb_mac_header(p),
5348                                        skb_mac_header(skb),
5349                                        maclen);
5350                 NAPI_GRO_CB(p)->same_flow = !diffs;
5351         }
5352
5353         return head;
5354 }
5355
5356 static void skb_gro_reset_offset(struct sk_buff *skb)
5357 {
5358         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5359         const skb_frag_t *frag0 = &pinfo->frags[0];
5360
5361         NAPI_GRO_CB(skb)->data_offset = 0;
5362         NAPI_GRO_CB(skb)->frag0 = NULL;
5363         NAPI_GRO_CB(skb)->frag0_len = 0;
5364
5365         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5366             pinfo->nr_frags &&
5367             !PageHighMem(skb_frag_page(frag0))) {
5368                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5369                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5370                                                     skb_frag_size(frag0),
5371                                                     skb->end - skb->tail);
5372         }
5373 }
5374
5375 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5376 {
5377         struct skb_shared_info *pinfo = skb_shinfo(skb);
5378
5379         BUG_ON(skb->end - skb->tail < grow);
5380
5381         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5382
5383         skb->data_len -= grow;
5384         skb->tail += grow;
5385
5386         pinfo->frags[0].page_offset += grow;
5387         skb_frag_size_sub(&pinfo->frags[0], grow);
5388
5389         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5390                 skb_frag_unref(skb, 0);
5391                 memmove(pinfo->frags, pinfo->frags + 1,
5392                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5393         }
5394 }
5395
5396 static void gro_flush_oldest(struct list_head *head)
5397 {
5398         struct sk_buff *oldest;
5399
5400         oldest = list_last_entry(head, struct sk_buff, list);
5401
5402         /* We are called with head length >= MAX_GRO_SKBS, so this is
5403          * impossible.
5404          */
5405         if (WARN_ON_ONCE(!oldest))
5406                 return;
5407
5408         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5409          * SKB to the chain.
5410          */
5411         list_del(&oldest->list);
5412         napi_gro_complete(oldest);
5413 }
5414
5415 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5416 {
5417         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5418         struct list_head *head = &offload_base;
5419         struct packet_offload *ptype;
5420         __be16 type = skb->protocol;
5421         struct list_head *gro_head;
5422         struct sk_buff *pp = NULL;
5423         enum gro_result ret;
5424         int same_flow;
5425         int grow;
5426
5427         if (netif_elide_gro(skb->dev))
5428                 goto normal;
5429
5430         gro_head = gro_list_prepare(napi, skb);
5431
5432         rcu_read_lock();
5433         list_for_each_entry_rcu(ptype, head, list) {
5434                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5435                         continue;
5436
5437                 skb_set_network_header(skb, skb_gro_offset(skb));
5438                 skb_reset_mac_len(skb);
5439                 NAPI_GRO_CB(skb)->same_flow = 0;
5440                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5441                 NAPI_GRO_CB(skb)->free = 0;
5442                 NAPI_GRO_CB(skb)->encap_mark = 0;
5443                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5444                 NAPI_GRO_CB(skb)->is_fou = 0;
5445                 NAPI_GRO_CB(skb)->is_atomic = 1;
5446                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5447
5448                 /* Setup for GRO checksum validation */
5449                 switch (skb->ip_summed) {
5450                 case CHECKSUM_COMPLETE:
5451                         NAPI_GRO_CB(skb)->csum = skb->csum;
5452                         NAPI_GRO_CB(skb)->csum_valid = 1;
5453                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5454                         break;
5455                 case CHECKSUM_UNNECESSARY:
5456                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5457                         NAPI_GRO_CB(skb)->csum_valid = 0;
5458                         break;
5459                 default:
5460                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5461                         NAPI_GRO_CB(skb)->csum_valid = 0;
5462                 }
5463
5464                 pp = ptype->callbacks.gro_receive(gro_head, skb);
5465                 break;
5466         }
5467         rcu_read_unlock();
5468
5469         if (&ptype->list == head)
5470                 goto normal;
5471
5472         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5473                 ret = GRO_CONSUMED;
5474                 goto ok;
5475         }
5476
5477         same_flow = NAPI_GRO_CB(skb)->same_flow;
5478         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5479
5480         if (pp) {
5481                 list_del(&pp->list);
5482                 pp->next = NULL;
5483                 napi_gro_complete(pp);
5484                 napi->gro_hash[hash].count--;
5485         }
5486
5487         if (same_flow)
5488                 goto ok;
5489
5490         if (NAPI_GRO_CB(skb)->flush)
5491                 goto normal;
5492
5493         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5494                 gro_flush_oldest(gro_head);
5495         } else {
5496                 napi->gro_hash[hash].count++;
5497         }
5498         NAPI_GRO_CB(skb)->count = 1;
5499         NAPI_GRO_CB(skb)->age = jiffies;
5500         NAPI_GRO_CB(skb)->last = skb;
5501         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5502         list_add(&skb->list, gro_head);
5503         ret = GRO_HELD;
5504
5505 pull:
5506         grow = skb_gro_offset(skb) - skb_headlen(skb);
5507         if (grow > 0)
5508                 gro_pull_from_frag0(skb, grow);
5509 ok:
5510         if (napi->gro_hash[hash].count) {
5511                 if (!test_bit(hash, &napi->gro_bitmask))
5512                         __set_bit(hash, &napi->gro_bitmask);
5513         } else if (test_bit(hash, &napi->gro_bitmask)) {
5514                 __clear_bit(hash, &napi->gro_bitmask);
5515         }
5516
5517         return ret;
5518
5519 normal:
5520         ret = GRO_NORMAL;
5521         goto pull;
5522 }
5523
5524 struct packet_offload *gro_find_receive_by_type(__be16 type)
5525 {
5526         struct list_head *offload_head = &offload_base;
5527         struct packet_offload *ptype;
5528
5529         list_for_each_entry_rcu(ptype, offload_head, list) {
5530                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5531                         continue;
5532                 return ptype;
5533         }
5534         return NULL;
5535 }
5536 EXPORT_SYMBOL(gro_find_receive_by_type);
5537
5538 struct packet_offload *gro_find_complete_by_type(__be16 type)
5539 {
5540         struct list_head *offload_head = &offload_base;
5541         struct packet_offload *ptype;
5542
5543         list_for_each_entry_rcu(ptype, offload_head, list) {
5544                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5545                         continue;
5546                 return ptype;
5547         }
5548         return NULL;
5549 }
5550 EXPORT_SYMBOL(gro_find_complete_by_type);
5551
5552 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5553 {
5554         skb_dst_drop(skb);
5555         secpath_reset(skb);
5556         kmem_cache_free(skbuff_head_cache, skb);
5557 }
5558
5559 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5560 {
5561         switch (ret) {
5562         case GRO_NORMAL:
5563                 if (netif_receive_skb_internal(skb))
5564                         ret = GRO_DROP;
5565                 break;
5566
5567         case GRO_DROP:
5568                 kfree_skb(skb);
5569                 break;
5570
5571         case GRO_MERGED_FREE:
5572                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5573                         napi_skb_free_stolen_head(skb);
5574                 else
5575                         __kfree_skb(skb);
5576                 break;
5577
5578         case GRO_HELD:
5579         case GRO_MERGED:
5580         case GRO_CONSUMED:
5581                 break;
5582         }
5583
5584         return ret;
5585 }
5586
5587 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5588 {
5589         skb_mark_napi_id(skb, napi);
5590         trace_napi_gro_receive_entry(skb);
5591
5592         skb_gro_reset_offset(skb);
5593
5594         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5595 }
5596 EXPORT_SYMBOL(napi_gro_receive);
5597
5598 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5599 {
5600         if (unlikely(skb->pfmemalloc)) {
5601                 consume_skb(skb);
5602                 return;
5603         }
5604         __skb_pull(skb, skb_headlen(skb));
5605         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5606         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5607         skb->vlan_tci = 0;
5608         skb->dev = napi->dev;
5609         skb->skb_iif = 0;
5610         skb->encapsulation = 0;
5611         skb_shinfo(skb)->gso_type = 0;
5612         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5613         secpath_reset(skb);
5614
5615         napi->skb = skb;
5616 }
5617
5618 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5619 {
5620         struct sk_buff *skb = napi->skb;
5621
5622         if (!skb) {
5623                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5624                 if (skb) {
5625                         napi->skb = skb;
5626                         skb_mark_napi_id(skb, napi);
5627                 }
5628         }
5629         return skb;
5630 }
5631 EXPORT_SYMBOL(napi_get_frags);
5632
5633 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5634                                       struct sk_buff *skb,
5635                                       gro_result_t ret)
5636 {
5637         switch (ret) {
5638         case GRO_NORMAL:
5639         case GRO_HELD:
5640                 __skb_push(skb, ETH_HLEN);
5641                 skb->protocol = eth_type_trans(skb, skb->dev);
5642                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5643                         ret = GRO_DROP;
5644                 break;
5645
5646         case GRO_DROP:
5647                 napi_reuse_skb(napi, skb);
5648                 break;
5649
5650         case GRO_MERGED_FREE:
5651                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5652                         napi_skb_free_stolen_head(skb);
5653                 else
5654                         napi_reuse_skb(napi, skb);
5655                 break;
5656
5657         case GRO_MERGED:
5658         case GRO_CONSUMED:
5659                 break;
5660         }
5661
5662         return ret;
5663 }
5664
5665 /* Upper GRO stack assumes network header starts at gro_offset=0
5666  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5667  * We copy ethernet header into skb->data to have a common layout.
5668  */
5669 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5670 {
5671         struct sk_buff *skb = napi->skb;
5672         const struct ethhdr *eth;
5673         unsigned int hlen = sizeof(*eth);
5674
5675         napi->skb = NULL;
5676
5677         skb_reset_mac_header(skb);
5678         skb_gro_reset_offset(skb);
5679
5680         eth = skb_gro_header_fast(skb, 0);
5681         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5682                 eth = skb_gro_header_slow(skb, hlen, 0);
5683                 if (unlikely(!eth)) {
5684                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5685                                              __func__, napi->dev->name);
5686                         napi_reuse_skb(napi, skb);
5687                         return NULL;
5688                 }
5689         } else {
5690                 gro_pull_from_frag0(skb, hlen);
5691                 NAPI_GRO_CB(skb)->frag0 += hlen;
5692                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5693         }
5694         __skb_pull(skb, hlen);
5695
5696         /*
5697          * This works because the only protocols we care about don't require
5698          * special handling.
5699          * We'll fix it up properly in napi_frags_finish()
5700          */
5701         skb->protocol = eth->h_proto;
5702
5703         return skb;
5704 }
5705
5706 gro_result_t napi_gro_frags(struct napi_struct *napi)
5707 {
5708         struct sk_buff *skb = napi_frags_skb(napi);
5709
5710         if (!skb)
5711                 return GRO_DROP;
5712
5713         trace_napi_gro_frags_entry(skb);
5714
5715         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5716 }
5717 EXPORT_SYMBOL(napi_gro_frags);
5718
5719 /* Compute the checksum from gro_offset and return the folded value
5720  * after adding in any pseudo checksum.
5721  */
5722 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5723 {
5724         __wsum wsum;
5725         __sum16 sum;
5726
5727         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5728
5729         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5730         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5731         if (likely(!sum)) {
5732                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5733                     !skb->csum_complete_sw)
5734                         netdev_rx_csum_fault(skb->dev);
5735         }
5736
5737         NAPI_GRO_CB(skb)->csum = wsum;
5738         NAPI_GRO_CB(skb)->csum_valid = 1;
5739
5740         return sum;
5741 }
5742 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5743
5744 static void net_rps_send_ipi(struct softnet_data *remsd)
5745 {
5746 #ifdef CONFIG_RPS
5747         while (remsd) {
5748                 struct softnet_data *next = remsd->rps_ipi_next;
5749
5750                 if (cpu_online(remsd->cpu))
5751                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5752                 remsd = next;
5753         }
5754 #endif
5755 }
5756
5757 /*
5758  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5759  * Note: called with local irq disabled, but exits with local irq enabled.
5760  */
5761 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5762 {
5763 #ifdef CONFIG_RPS
5764         struct softnet_data *remsd = sd->rps_ipi_list;
5765
5766         if (remsd) {
5767                 sd->rps_ipi_list = NULL;
5768
5769                 local_irq_enable();
5770
5771                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5772                 net_rps_send_ipi(remsd);
5773         } else
5774 #endif
5775                 local_irq_enable();
5776 }
5777
5778 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5779 {
5780 #ifdef CONFIG_RPS
5781         return sd->rps_ipi_list != NULL;
5782 #else
5783         return false;
5784 #endif
5785 }
5786
5787 static int process_backlog(struct napi_struct *napi, int quota)
5788 {
5789         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5790         bool again = true;
5791         int work = 0;
5792
5793         /* Check if we have pending ipi, its better to send them now,
5794          * not waiting net_rx_action() end.
5795          */
5796         if (sd_has_rps_ipi_waiting(sd)) {
5797                 local_irq_disable();
5798                 net_rps_action_and_irq_enable(sd);
5799         }
5800
5801         napi->weight = dev_rx_weight;
5802         while (again) {
5803                 struct sk_buff *skb;
5804
5805                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5806                         rcu_read_lock();
5807                         __netif_receive_skb(skb);
5808                         rcu_read_unlock();
5809                         input_queue_head_incr(sd);
5810                         if (++work >= quota)
5811                                 return work;
5812
5813                 }
5814
5815                 local_irq_disable();
5816                 rps_lock(sd);
5817                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5818                         /*
5819                          * Inline a custom version of __napi_complete().
5820                          * only current cpu owns and manipulates this napi,
5821                          * and NAPI_STATE_SCHED is the only possible flag set
5822                          * on backlog.
5823                          * We can use a plain write instead of clear_bit(),
5824                          * and we dont need an smp_mb() memory barrier.
5825                          */
5826                         napi->state = 0;
5827                         again = false;
5828                 } else {
5829                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5830                                                    &sd->process_queue);
5831                 }
5832                 rps_unlock(sd);
5833                 local_irq_enable();
5834         }
5835
5836         return work;
5837 }
5838
5839 /**
5840  * __napi_schedule - schedule for receive
5841  * @n: entry to schedule
5842  *
5843  * The entry's receive function will be scheduled to run.
5844  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5845  */
5846 void __napi_schedule(struct napi_struct *n)
5847 {
5848         unsigned long flags;
5849
5850         local_irq_save(flags);
5851         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5852         local_irq_restore(flags);
5853 }
5854 EXPORT_SYMBOL(__napi_schedule);
5855
5856 /**
5857  *      napi_schedule_prep - check if napi can be scheduled
5858  *      @n: napi context
5859  *
5860  * Test if NAPI routine is already running, and if not mark
5861  * it as running.  This is used as a condition variable
5862  * insure only one NAPI poll instance runs.  We also make
5863  * sure there is no pending NAPI disable.
5864  */
5865 bool napi_schedule_prep(struct napi_struct *n)
5866 {
5867         unsigned long val, new;
5868
5869         do {
5870                 val = READ_ONCE(n->state);
5871                 if (unlikely(val & NAPIF_STATE_DISABLE))
5872                         return false;
5873                 new = val | NAPIF_STATE_SCHED;
5874
5875                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5876                  * This was suggested by Alexander Duyck, as compiler
5877                  * emits better code than :
5878                  * if (val & NAPIF_STATE_SCHED)
5879                  *     new |= NAPIF_STATE_MISSED;
5880                  */
5881                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5882                                                    NAPIF_STATE_MISSED;
5883         } while (cmpxchg(&n->state, val, new) != val);
5884
5885         return !(val & NAPIF_STATE_SCHED);
5886 }
5887 EXPORT_SYMBOL(napi_schedule_prep);
5888
5889 /**
5890  * __napi_schedule_irqoff - schedule for receive
5891  * @n: entry to schedule
5892  *
5893  * Variant of __napi_schedule() assuming hard irqs are masked
5894  */
5895 void __napi_schedule_irqoff(struct napi_struct *n)
5896 {
5897         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5898 }
5899 EXPORT_SYMBOL(__napi_schedule_irqoff);
5900
5901 bool napi_complete_done(struct napi_struct *n, int work_done)
5902 {
5903         unsigned long flags, val, new;
5904
5905         /*
5906          * 1) Don't let napi dequeue from the cpu poll list
5907          *    just in case its running on a different cpu.
5908          * 2) If we are busy polling, do nothing here, we have
5909          *    the guarantee we will be called later.
5910          */
5911         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5912                                  NAPIF_STATE_IN_BUSY_POLL)))
5913                 return false;
5914
5915         if (n->gro_bitmask) {
5916                 unsigned long timeout = 0;
5917
5918                 if (work_done)
5919                         timeout = n->dev->gro_flush_timeout;
5920
5921                 if (timeout)
5922                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5923                                       HRTIMER_MODE_REL_PINNED);
5924                 else
5925                         napi_gro_flush(n, false);
5926         }
5927         if (unlikely(!list_empty(&n->poll_list))) {
5928                 /* If n->poll_list is not empty, we need to mask irqs */
5929                 local_irq_save(flags);
5930                 list_del_init(&n->poll_list);
5931                 local_irq_restore(flags);
5932         }
5933
5934         do {
5935                 val = READ_ONCE(n->state);
5936
5937                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5938
5939                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5940
5941                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5942                  * because we will call napi->poll() one more time.
5943                  * This C code was suggested by Alexander Duyck to help gcc.
5944                  */
5945                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5946                                                     NAPIF_STATE_SCHED;
5947         } while (cmpxchg(&n->state, val, new) != val);
5948
5949         if (unlikely(val & NAPIF_STATE_MISSED)) {
5950                 __napi_schedule(n);
5951                 return false;
5952         }
5953
5954         return true;
5955 }
5956 EXPORT_SYMBOL(napi_complete_done);
5957
5958 /* must be called under rcu_read_lock(), as we dont take a reference */
5959 static struct napi_struct *napi_by_id(unsigned int napi_id)
5960 {
5961         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5962         struct napi_struct *napi;
5963
5964         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5965                 if (napi->napi_id == napi_id)
5966                         return napi;
5967
5968         return NULL;
5969 }
5970
5971 #if defined(CONFIG_NET_RX_BUSY_POLL)
5972
5973 #define BUSY_POLL_BUDGET 8
5974
5975 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5976 {
5977         int rc;
5978
5979         /* Busy polling means there is a high chance device driver hard irq
5980          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5981          * set in napi_schedule_prep().
5982          * Since we are about to call napi->poll() once more, we can safely
5983          * clear NAPI_STATE_MISSED.
5984          *
5985          * Note: x86 could use a single "lock and ..." instruction
5986          * to perform these two clear_bit()
5987          */
5988         clear_bit(NAPI_STATE_MISSED, &napi->state);
5989         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5990
5991         local_bh_disable();
5992
5993         /* All we really want here is to re-enable device interrupts.
5994          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5995          */
5996         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5997         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5998         netpoll_poll_unlock(have_poll_lock);
5999         if (rc == BUSY_POLL_BUDGET)
6000                 __napi_schedule(napi);
6001         local_bh_enable();
6002 }
6003
6004 void napi_busy_loop(unsigned int napi_id,
6005                     bool (*loop_end)(void *, unsigned long),
6006                     void *loop_end_arg)
6007 {
6008         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6009         int (*napi_poll)(struct napi_struct *napi, int budget);
6010         void *have_poll_lock = NULL;
6011         struct napi_struct *napi;
6012
6013 restart:
6014         napi_poll = NULL;
6015
6016         rcu_read_lock();
6017
6018         napi = napi_by_id(napi_id);
6019         if (!napi)
6020                 goto out;
6021
6022         preempt_disable();
6023         for (;;) {
6024                 int work = 0;
6025
6026                 local_bh_disable();
6027                 if (!napi_poll) {
6028                         unsigned long val = READ_ONCE(napi->state);
6029
6030                         /* If multiple threads are competing for this napi,
6031                          * we avoid dirtying napi->state as much as we can.
6032                          */
6033                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6034                                    NAPIF_STATE_IN_BUSY_POLL))
6035                                 goto count;
6036                         if (cmpxchg(&napi->state, val,
6037                                     val | NAPIF_STATE_IN_BUSY_POLL |
6038                                           NAPIF_STATE_SCHED) != val)
6039                                 goto count;
6040                         have_poll_lock = netpoll_poll_lock(napi);
6041                         napi_poll = napi->poll;
6042                 }
6043                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6044                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6045 count:
6046                 if (work > 0)
6047                         __NET_ADD_STATS(dev_net(napi->dev),
6048                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6049                 local_bh_enable();
6050
6051                 if (!loop_end || loop_end(loop_end_arg, start_time))
6052                         break;
6053
6054                 if (unlikely(need_resched())) {
6055                         if (napi_poll)
6056                                 busy_poll_stop(napi, have_poll_lock);
6057                         preempt_enable();
6058                         rcu_read_unlock();
6059                         cond_resched();
6060                         if (loop_end(loop_end_arg, start_time))
6061                                 return;
6062                         goto restart;
6063                 }
6064                 cpu_relax();
6065         }
6066         if (napi_poll)
6067                 busy_poll_stop(napi, have_poll_lock);
6068         preempt_enable();
6069 out:
6070         rcu_read_unlock();
6071 }
6072 EXPORT_SYMBOL(napi_busy_loop);
6073
6074 #endif /* CONFIG_NET_RX_BUSY_POLL */
6075
6076 static void napi_hash_add(struct napi_struct *napi)
6077 {
6078         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6079             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6080                 return;
6081
6082         spin_lock(&napi_hash_lock);
6083
6084         /* 0..NR_CPUS range is reserved for sender_cpu use */
6085         do {
6086                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6087                         napi_gen_id = MIN_NAPI_ID;
6088         } while (napi_by_id(napi_gen_id));
6089         napi->napi_id = napi_gen_id;
6090
6091         hlist_add_head_rcu(&napi->napi_hash_node,
6092                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6093
6094         spin_unlock(&napi_hash_lock);
6095 }
6096
6097 /* Warning : caller is responsible to make sure rcu grace period
6098  * is respected before freeing memory containing @napi
6099  */
6100 bool napi_hash_del(struct napi_struct *napi)
6101 {
6102         bool rcu_sync_needed = false;
6103
6104         spin_lock(&napi_hash_lock);
6105
6106         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6107                 rcu_sync_needed = true;
6108                 hlist_del_rcu(&napi->napi_hash_node);
6109         }
6110         spin_unlock(&napi_hash_lock);
6111         return rcu_sync_needed;
6112 }
6113 EXPORT_SYMBOL_GPL(napi_hash_del);
6114
6115 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6116 {
6117         struct napi_struct *napi;
6118
6119         napi = container_of(timer, struct napi_struct, timer);
6120
6121         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6122          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6123          */
6124         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6125             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6126                 __napi_schedule_irqoff(napi);
6127
6128         return HRTIMER_NORESTART;
6129 }
6130
6131 static void init_gro_hash(struct napi_struct *napi)
6132 {
6133         int i;
6134
6135         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6136                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6137                 napi->gro_hash[i].count = 0;
6138         }
6139         napi->gro_bitmask = 0;
6140 }
6141
6142 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6143                     int (*poll)(struct napi_struct *, int), int weight)
6144 {
6145         INIT_LIST_HEAD(&napi->poll_list);
6146         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6147         napi->timer.function = napi_watchdog;
6148         init_gro_hash(napi);
6149         napi->skb = NULL;
6150         napi->poll = poll;
6151         if (weight > NAPI_POLL_WEIGHT)
6152                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6153                             weight, dev->name);
6154         napi->weight = weight;
6155         list_add(&napi->dev_list, &dev->napi_list);
6156         napi->dev = dev;
6157 #ifdef CONFIG_NETPOLL
6158         napi->poll_owner = -1;
6159 #endif
6160         set_bit(NAPI_STATE_SCHED, &napi->state);
6161         napi_hash_add(napi);
6162 }
6163 EXPORT_SYMBOL(netif_napi_add);
6164
6165 void napi_disable(struct napi_struct *n)
6166 {
6167         might_sleep();
6168         set_bit(NAPI_STATE_DISABLE, &n->state);
6169
6170         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6171                 msleep(1);
6172         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6173                 msleep(1);
6174
6175         hrtimer_cancel(&n->timer);
6176
6177         clear_bit(NAPI_STATE_DISABLE, &n->state);
6178 }
6179 EXPORT_SYMBOL(napi_disable);
6180
6181 static void flush_gro_hash(struct napi_struct *napi)
6182 {
6183         int i;
6184
6185         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6186                 struct sk_buff *skb, *n;
6187
6188                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6189                         kfree_skb(skb);
6190                 napi->gro_hash[i].count = 0;
6191         }
6192 }
6193
6194 /* Must be called in process context */
6195 void netif_napi_del(struct napi_struct *napi)
6196 {
6197         might_sleep();
6198         if (napi_hash_del(napi))
6199                 synchronize_net();
6200         list_del_init(&napi->dev_list);
6201         napi_free_frags(napi);
6202
6203         flush_gro_hash(napi);
6204         napi->gro_bitmask = 0;
6205 }
6206 EXPORT_SYMBOL(netif_napi_del);
6207
6208 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6209 {
6210         void *have;
6211         int work, weight;
6212
6213         list_del_init(&n->poll_list);
6214
6215         have = netpoll_poll_lock(n);
6216
6217         weight = n->weight;
6218
6219         /* This NAPI_STATE_SCHED test is for avoiding a race
6220          * with netpoll's poll_napi().  Only the entity which
6221          * obtains the lock and sees NAPI_STATE_SCHED set will
6222          * actually make the ->poll() call.  Therefore we avoid
6223          * accidentally calling ->poll() when NAPI is not scheduled.
6224          */
6225         work = 0;
6226         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6227                 work = n->poll(n, weight);
6228                 trace_napi_poll(n, work, weight);
6229         }
6230
6231         WARN_ON_ONCE(work > weight);
6232
6233         if (likely(work < weight))
6234                 goto out_unlock;
6235
6236         /* Drivers must not modify the NAPI state if they
6237          * consume the entire weight.  In such cases this code
6238          * still "owns" the NAPI instance and therefore can
6239          * move the instance around on the list at-will.
6240          */
6241         if (unlikely(napi_disable_pending(n))) {
6242                 napi_complete(n);
6243                 goto out_unlock;
6244         }
6245
6246         if (n->gro_bitmask) {
6247                 /* flush too old packets
6248                  * If HZ < 1000, flush all packets.
6249                  */
6250                 napi_gro_flush(n, HZ >= 1000);
6251         }
6252
6253         /* Some drivers may have called napi_schedule
6254          * prior to exhausting their budget.
6255          */
6256         if (unlikely(!list_empty(&n->poll_list))) {
6257                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6258                              n->dev ? n->dev->name : "backlog");
6259                 goto out_unlock;
6260         }
6261
6262         list_add_tail(&n->poll_list, repoll);
6263
6264 out_unlock:
6265         netpoll_poll_unlock(have);
6266
6267         return work;
6268 }
6269
6270 static __latent_entropy void net_rx_action(struct softirq_action *h)
6271 {
6272         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6273         unsigned long time_limit = jiffies +
6274                 usecs_to_jiffies(netdev_budget_usecs);
6275         int budget = netdev_budget;
6276         LIST_HEAD(list);
6277         LIST_HEAD(repoll);
6278
6279         local_irq_disable();
6280         list_splice_init(&sd->poll_list, &list);
6281         local_irq_enable();
6282
6283         for (;;) {
6284                 struct napi_struct *n;
6285
6286                 if (list_empty(&list)) {
6287                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6288                                 goto out;
6289                         break;
6290                 }
6291
6292                 n = list_first_entry(&list, struct napi_struct, poll_list);
6293                 budget -= napi_poll(n, &repoll);
6294
6295                 /* If softirq window is exhausted then punt.
6296                  * Allow this to run for 2 jiffies since which will allow
6297                  * an average latency of 1.5/HZ.
6298                  */
6299                 if (unlikely(budget <= 0 ||
6300                              time_after_eq(jiffies, time_limit))) {
6301                         sd->time_squeeze++;
6302                         break;
6303                 }
6304         }
6305
6306         local_irq_disable();
6307
6308         list_splice_tail_init(&sd->poll_list, &list);
6309         list_splice_tail(&repoll, &list);
6310         list_splice(&list, &sd->poll_list);
6311         if (!list_empty(&sd->poll_list))
6312                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6313
6314         net_rps_action_and_irq_enable(sd);
6315 out:
6316         __kfree_skb_flush();
6317 }
6318
6319 struct netdev_adjacent {
6320         struct net_device *dev;
6321
6322         /* upper master flag, there can only be one master device per list */
6323         bool master;
6324
6325         /* counter for the number of times this device was added to us */
6326         u16 ref_nr;
6327
6328         /* private field for the users */
6329         void *private;
6330
6331         struct list_head list;
6332         struct rcu_head rcu;
6333 };
6334
6335 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6336                                                  struct list_head *adj_list)
6337 {
6338         struct netdev_adjacent *adj;
6339
6340         list_for_each_entry(adj, adj_list, list) {
6341                 if (adj->dev == adj_dev)
6342                         return adj;
6343         }
6344         return NULL;
6345 }
6346
6347 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6348 {
6349         struct net_device *dev = data;
6350
6351         return upper_dev == dev;
6352 }
6353
6354 /**
6355  * netdev_has_upper_dev - Check if device is linked to an upper device
6356  * @dev: device
6357  * @upper_dev: upper device to check
6358  *
6359  * Find out if a device is linked to specified upper device and return true
6360  * in case it is. Note that this checks only immediate upper device,
6361  * not through a complete stack of devices. The caller must hold the RTNL lock.
6362  */
6363 bool netdev_has_upper_dev(struct net_device *dev,
6364                           struct net_device *upper_dev)
6365 {
6366         ASSERT_RTNL();
6367
6368         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6369                                              upper_dev);
6370 }
6371 EXPORT_SYMBOL(netdev_has_upper_dev);
6372
6373 /**
6374  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6375  * @dev: device
6376  * @upper_dev: upper device to check
6377  *
6378  * Find out if a device is linked to specified upper device and return true
6379  * in case it is. Note that this checks the entire upper device chain.
6380  * The caller must hold rcu lock.
6381  */
6382
6383 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6384                                   struct net_device *upper_dev)
6385 {
6386         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6387                                                upper_dev);
6388 }
6389 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6390
6391 /**
6392  * netdev_has_any_upper_dev - Check if device is linked to some device
6393  * @dev: device
6394  *
6395  * Find out if a device is linked to an upper device and return true in case
6396  * it is. The caller must hold the RTNL lock.
6397  */
6398 bool netdev_has_any_upper_dev(struct net_device *dev)
6399 {
6400         ASSERT_RTNL();
6401
6402         return !list_empty(&dev->adj_list.upper);
6403 }
6404 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6405
6406 /**
6407  * netdev_master_upper_dev_get - Get master upper device
6408  * @dev: device
6409  *
6410  * Find a master upper device and return pointer to it or NULL in case
6411  * it's not there. The caller must hold the RTNL lock.
6412  */
6413 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6414 {
6415         struct netdev_adjacent *upper;
6416
6417         ASSERT_RTNL();
6418
6419         if (list_empty(&dev->adj_list.upper))
6420                 return NULL;
6421
6422         upper = list_first_entry(&dev->adj_list.upper,
6423                                  struct netdev_adjacent, list);
6424         if (likely(upper->master))
6425                 return upper->dev;
6426         return NULL;
6427 }
6428 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6429
6430 /**
6431  * netdev_has_any_lower_dev - Check if device is linked to some device
6432  * @dev: device
6433  *
6434  * Find out if a device is linked to a lower device and return true in case
6435  * it is. The caller must hold the RTNL lock.
6436  */
6437 static bool netdev_has_any_lower_dev(struct net_device *dev)
6438 {
6439         ASSERT_RTNL();
6440
6441         return !list_empty(&dev->adj_list.lower);
6442 }
6443
6444 void *netdev_adjacent_get_private(struct list_head *adj_list)
6445 {
6446         struct netdev_adjacent *adj;
6447
6448         adj = list_entry(adj_list, struct netdev_adjacent, list);
6449
6450         return adj->private;
6451 }
6452 EXPORT_SYMBOL(netdev_adjacent_get_private);
6453
6454 /**
6455  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6456  * @dev: device
6457  * @iter: list_head ** of the current position
6458  *
6459  * Gets the next device from the dev's upper list, starting from iter
6460  * position. The caller must hold RCU read lock.
6461  */
6462 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6463                                                  struct list_head **iter)
6464 {
6465         struct netdev_adjacent *upper;
6466
6467         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6468
6469         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6470
6471         if (&upper->list == &dev->adj_list.upper)
6472                 return NULL;
6473
6474         *iter = &upper->list;
6475
6476         return upper->dev;
6477 }
6478 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6479
6480 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6481                                                     struct list_head **iter)
6482 {
6483         struct netdev_adjacent *upper;
6484
6485         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6486
6487         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6488
6489         if (&upper->list == &dev->adj_list.upper)
6490                 return NULL;
6491
6492         *iter = &upper->list;
6493
6494         return upper->dev;
6495 }
6496
6497 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6498                                   int (*fn)(struct net_device *dev,
6499                                             void *data),
6500                                   void *data)
6501 {
6502         struct net_device *udev;
6503         struct list_head *iter;
6504         int ret;
6505
6506         for (iter = &dev->adj_list.upper,
6507              udev = netdev_next_upper_dev_rcu(dev, &iter);
6508              udev;
6509              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6510                 /* first is the upper device itself */
6511                 ret = fn(udev, data);
6512                 if (ret)
6513                         return ret;
6514
6515                 /* then look at all of its upper devices */
6516                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6517                 if (ret)
6518                         return ret;
6519         }
6520
6521         return 0;
6522 }
6523 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6524
6525 /**
6526  * netdev_lower_get_next_private - Get the next ->private from the
6527  *                                 lower neighbour list
6528  * @dev: device
6529  * @iter: list_head ** of the current position
6530  *
6531  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6532  * list, starting from iter position. The caller must hold either hold the
6533  * RTNL lock or its own locking that guarantees that the neighbour lower
6534  * list will remain unchanged.
6535  */
6536 void *netdev_lower_get_next_private(struct net_device *dev,
6537                                     struct list_head **iter)
6538 {
6539         struct netdev_adjacent *lower;
6540
6541         lower = list_entry(*iter, struct netdev_adjacent, list);
6542
6543         if (&lower->list == &dev->adj_list.lower)
6544                 return NULL;
6545
6546         *iter = lower->list.next;
6547
6548         return lower->private;
6549 }
6550 EXPORT_SYMBOL(netdev_lower_get_next_private);
6551
6552 /**
6553  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6554  *                                     lower neighbour list, RCU
6555  *                                     variant
6556  * @dev: device
6557  * @iter: list_head ** of the current position
6558  *
6559  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6560  * list, starting from iter position. The caller must hold RCU read lock.
6561  */
6562 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6563                                         struct list_head **iter)
6564 {
6565         struct netdev_adjacent *lower;
6566
6567         WARN_ON_ONCE(!rcu_read_lock_held());
6568
6569         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6570
6571         if (&lower->list == &dev->adj_list.lower)
6572                 return NULL;
6573
6574         *iter = &lower->list;
6575
6576         return lower->private;
6577 }
6578 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6579
6580 /**
6581  * netdev_lower_get_next - Get the next device from the lower neighbour
6582  *                         list
6583  * @dev: device
6584  * @iter: list_head ** of the current position
6585  *
6586  * Gets the next netdev_adjacent from the dev's lower neighbour
6587  * list, starting from iter position. The caller must hold RTNL lock or
6588  * its own locking that guarantees that the neighbour lower
6589  * list will remain unchanged.
6590  */
6591 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6592 {
6593         struct netdev_adjacent *lower;
6594
6595         lower = list_entry(*iter, struct netdev_adjacent, list);
6596
6597         if (&lower->list == &dev->adj_list.lower)
6598                 return NULL;
6599
6600         *iter = lower->list.next;
6601
6602         return lower->dev;
6603 }
6604 EXPORT_SYMBOL(netdev_lower_get_next);
6605
6606 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6607                                                 struct list_head **iter)
6608 {
6609         struct netdev_adjacent *lower;
6610
6611         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6612
6613         if (&lower->list == &dev->adj_list.lower)
6614                 return NULL;
6615
6616         *iter = &lower->list;
6617
6618         return lower->dev;
6619 }
6620
6621 int netdev_walk_all_lower_dev(struct net_device *dev,
6622                               int (*fn)(struct net_device *dev,
6623                                         void *data),
6624                               void *data)
6625 {
6626         struct net_device *ldev;
6627         struct list_head *iter;
6628         int ret;
6629
6630         for (iter = &dev->adj_list.lower,
6631              ldev = netdev_next_lower_dev(dev, &iter);
6632              ldev;
6633              ldev = netdev_next_lower_dev(dev, &iter)) {
6634                 /* first is the lower device itself */
6635                 ret = fn(ldev, data);
6636                 if (ret)
6637                         return ret;
6638
6639                 /* then look at all of its lower devices */
6640                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6641                 if (ret)
6642                         return ret;
6643         }
6644
6645         return 0;
6646 }
6647 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6648
6649 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6650                                                     struct list_head **iter)
6651 {
6652         struct netdev_adjacent *lower;
6653
6654         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6655         if (&lower->list == &dev->adj_list.lower)
6656                 return NULL;
6657
6658         *iter = &lower->list;
6659
6660         return lower->dev;
6661 }
6662
6663 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6664                                   int (*fn)(struct net_device *dev,
6665                                             void *data),
6666                                   void *data)
6667 {
6668         struct net_device *ldev;
6669         struct list_head *iter;
6670         int ret;
6671
6672         for (iter = &dev->adj_list.lower,
6673              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6674              ldev;
6675              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6676                 /* first is the lower device itself */
6677                 ret = fn(ldev, data);
6678                 if (ret)
6679                         return ret;
6680
6681                 /* then look at all of its lower devices */
6682                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6683                 if (ret)
6684                         return ret;
6685         }
6686
6687         return 0;
6688 }
6689 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6690
6691 /**
6692  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6693  *                                     lower neighbour list, RCU
6694  *                                     variant
6695  * @dev: device
6696  *
6697  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6698  * list. The caller must hold RCU read lock.
6699  */
6700 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6701 {
6702         struct netdev_adjacent *lower;
6703
6704         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6705                         struct netdev_adjacent, list);
6706         if (lower)
6707                 return lower->private;
6708         return NULL;
6709 }
6710 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6711
6712 /**
6713  * netdev_master_upper_dev_get_rcu - Get master upper device
6714  * @dev: device
6715  *
6716  * Find a master upper device and return pointer to it or NULL in case
6717  * it's not there. The caller must hold the RCU read lock.
6718  */
6719 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6720 {
6721         struct netdev_adjacent *upper;
6722
6723         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6724                                        struct netdev_adjacent, list);
6725         if (upper && likely(upper->master))
6726                 return upper->dev;
6727         return NULL;
6728 }
6729 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6730
6731 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6732                               struct net_device *adj_dev,
6733                               struct list_head *dev_list)
6734 {
6735         char linkname[IFNAMSIZ+7];
6736
6737         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6738                 "upper_%s" : "lower_%s", adj_dev->name);
6739         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6740                                  linkname);
6741 }
6742 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6743                                char *name,
6744                                struct list_head *dev_list)
6745 {
6746         char linkname[IFNAMSIZ+7];
6747
6748         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6749                 "upper_%s" : "lower_%s", name);
6750         sysfs_remove_link(&(dev->dev.kobj), linkname);
6751 }
6752
6753 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6754                                                  struct net_device *adj_dev,
6755                                                  struct list_head *dev_list)
6756 {
6757         return (dev_list == &dev->adj_list.upper ||
6758                 dev_list == &dev->adj_list.lower) &&
6759                 net_eq(dev_net(dev), dev_net(adj_dev));
6760 }
6761
6762 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6763                                         struct net_device *adj_dev,
6764                                         struct list_head *dev_list,
6765                                         void *private, bool master)
6766 {
6767         struct netdev_adjacent *adj;
6768         int ret;
6769
6770         adj = __netdev_find_adj(adj_dev, dev_list);
6771
6772         if (adj) {
6773                 adj->ref_nr += 1;
6774                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6775                          dev->name, adj_dev->name, adj->ref_nr);
6776
6777                 return 0;
6778         }
6779
6780         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6781         if (!adj)
6782                 return -ENOMEM;
6783
6784         adj->dev = adj_dev;
6785         adj->master = master;
6786         adj->ref_nr = 1;
6787         adj->private = private;
6788         dev_hold(adj_dev);
6789
6790         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6791                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6792
6793         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6794                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6795                 if (ret)
6796                         goto free_adj;
6797         }
6798
6799         /* Ensure that master link is always the first item in list. */
6800         if (master) {
6801                 ret = sysfs_create_link(&(dev->dev.kobj),
6802                                         &(adj_dev->dev.kobj), "master");
6803                 if (ret)
6804                         goto remove_symlinks;
6805
6806                 list_add_rcu(&adj->list, dev_list);
6807         } else {
6808                 list_add_tail_rcu(&adj->list, dev_list);
6809         }
6810
6811         return 0;
6812
6813 remove_symlinks:
6814         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6815                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6816 free_adj:
6817         kfree(adj);
6818         dev_put(adj_dev);
6819
6820         return ret;
6821 }
6822
6823 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6824                                          struct net_device *adj_dev,
6825                                          u16 ref_nr,
6826                                          struct list_head *dev_list)
6827 {
6828         struct netdev_adjacent *adj;
6829
6830         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6831                  dev->name, adj_dev->name, ref_nr);
6832
6833         adj = __netdev_find_adj(adj_dev, dev_list);
6834
6835         if (!adj) {
6836                 pr_err("Adjacency does not exist for device %s from %s\n",
6837                        dev->name, adj_dev->name);
6838                 WARN_ON(1);
6839                 return;
6840         }
6841
6842         if (adj->ref_nr > ref_nr) {
6843                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6844                          dev->name, adj_dev->name, ref_nr,
6845                          adj->ref_nr - ref_nr);
6846                 adj->ref_nr -= ref_nr;
6847                 return;
6848         }
6849
6850         if (adj->master)
6851                 sysfs_remove_link(&(dev->dev.kobj), "master");
6852
6853         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6854                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6855
6856         list_del_rcu(&adj->list);
6857         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6858                  adj_dev->name, dev->name, adj_dev->name);
6859         dev_put(adj_dev);
6860         kfree_rcu(adj, rcu);
6861 }
6862
6863 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6864                                             struct net_device *upper_dev,
6865                                             struct list_head *up_list,
6866                                             struct list_head *down_list,
6867                                             void *private, bool master)
6868 {
6869         int ret;
6870
6871         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6872                                            private, master);
6873         if (ret)
6874                 return ret;
6875
6876         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6877                                            private, false);
6878         if (ret) {
6879                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6880                 return ret;
6881         }
6882
6883         return 0;
6884 }
6885
6886 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6887                                                struct net_device *upper_dev,
6888                                                u16 ref_nr,
6889                                                struct list_head *up_list,
6890                                                struct list_head *down_list)
6891 {
6892         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6893         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6894 }
6895
6896 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6897                                                 struct net_device *upper_dev,
6898                                                 void *private, bool master)
6899 {
6900         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6901                                                 &dev->adj_list.upper,
6902                                                 &upper_dev->adj_list.lower,
6903                                                 private, master);
6904 }
6905
6906 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6907                                                    struct net_device *upper_dev)
6908 {
6909         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6910                                            &dev->adj_list.upper,
6911                                            &upper_dev->adj_list.lower);
6912 }
6913
6914 static int __netdev_upper_dev_link(struct net_device *dev,
6915                                    struct net_device *upper_dev, bool master,
6916                                    void *upper_priv, void *upper_info,
6917                                    struct netlink_ext_ack *extack)
6918 {
6919         struct netdev_notifier_changeupper_info changeupper_info = {
6920                 .info = {
6921                         .dev = dev,
6922                         .extack = extack,
6923                 },
6924                 .upper_dev = upper_dev,
6925                 .master = master,
6926                 .linking = true,
6927                 .upper_info = upper_info,
6928         };
6929         struct net_device *master_dev;
6930         int ret = 0;
6931
6932         ASSERT_RTNL();
6933
6934         if (dev == upper_dev)
6935                 return -EBUSY;
6936
6937         /* To prevent loops, check if dev is not upper device to upper_dev. */
6938         if (netdev_has_upper_dev(upper_dev, dev))
6939                 return -EBUSY;
6940
6941         if (!master) {
6942                 if (netdev_has_upper_dev(dev, upper_dev))
6943                         return -EEXIST;
6944         } else {
6945                 master_dev = netdev_master_upper_dev_get(dev);
6946                 if (master_dev)
6947                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
6948         }
6949
6950         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6951                                             &changeupper_info.info);
6952         ret = notifier_to_errno(ret);
6953         if (ret)
6954                 return ret;
6955
6956         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6957                                                    master);
6958         if (ret)
6959                 return ret;
6960
6961         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6962                                             &changeupper_info.info);
6963         ret = notifier_to_errno(ret);
6964         if (ret)
6965                 goto rollback;
6966
6967         return 0;
6968
6969 rollback:
6970         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6971
6972         return ret;
6973 }
6974
6975 /**
6976  * netdev_upper_dev_link - Add a link to the upper device
6977  * @dev: device
6978  * @upper_dev: new upper device
6979  * @extack: netlink extended ack
6980  *
6981  * Adds a link to device which is upper to this one. The caller must hold
6982  * the RTNL lock. On a failure a negative errno code is returned.
6983  * On success the reference counts are adjusted and the function
6984  * returns zero.
6985  */
6986 int netdev_upper_dev_link(struct net_device *dev,
6987                           struct net_device *upper_dev,
6988                           struct netlink_ext_ack *extack)
6989 {
6990         return __netdev_upper_dev_link(dev, upper_dev, false,
6991                                        NULL, NULL, extack);
6992 }
6993 EXPORT_SYMBOL(netdev_upper_dev_link);
6994
6995 /**
6996  * netdev_master_upper_dev_link - Add a master link to the upper device
6997  * @dev: device
6998  * @upper_dev: new upper device
6999  * @upper_priv: upper device private
7000  * @upper_info: upper info to be passed down via notifier
7001  * @extack: netlink extended ack
7002  *
7003  * Adds a link to device which is upper to this one. In this case, only
7004  * one master upper device can be linked, although other non-master devices
7005  * might be linked as well. The caller must hold the RTNL lock.
7006  * On a failure a negative errno code is returned. On success the reference
7007  * counts are adjusted and the function returns zero.
7008  */
7009 int netdev_master_upper_dev_link(struct net_device *dev,
7010                                  struct net_device *upper_dev,
7011                                  void *upper_priv, void *upper_info,
7012                                  struct netlink_ext_ack *extack)
7013 {
7014         return __netdev_upper_dev_link(dev, upper_dev, true,
7015                                        upper_priv, upper_info, extack);
7016 }
7017 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7018
7019 /**
7020  * netdev_upper_dev_unlink - Removes a link to upper device
7021  * @dev: device
7022  * @upper_dev: new upper device
7023  *
7024  * Removes a link to device which is upper to this one. The caller must hold
7025  * the RTNL lock.
7026  */
7027 void netdev_upper_dev_unlink(struct net_device *dev,
7028                              struct net_device *upper_dev)
7029 {
7030         struct netdev_notifier_changeupper_info changeupper_info = {
7031                 .info = {
7032                         .dev = dev,
7033                 },
7034                 .upper_dev = upper_dev,
7035                 .linking = false,
7036         };
7037
7038         ASSERT_RTNL();
7039
7040         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7041
7042         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7043                                       &changeupper_info.info);
7044
7045         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7046
7047         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7048                                       &changeupper_info.info);
7049 }
7050 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7051
7052 /**
7053  * netdev_bonding_info_change - Dispatch event about slave change
7054  * @dev: device
7055  * @bonding_info: info to dispatch
7056  *
7057  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7058  * The caller must hold the RTNL lock.
7059  */
7060 void netdev_bonding_info_change(struct net_device *dev,
7061                                 struct netdev_bonding_info *bonding_info)
7062 {
7063         struct netdev_notifier_bonding_info info = {
7064                 .info.dev = dev,
7065         };
7066
7067         memcpy(&info.bonding_info, bonding_info,
7068                sizeof(struct netdev_bonding_info));
7069         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7070                                       &info.info);
7071 }
7072 EXPORT_SYMBOL(netdev_bonding_info_change);
7073
7074 static void netdev_adjacent_add_links(struct net_device *dev)
7075 {
7076         struct netdev_adjacent *iter;
7077
7078         struct net *net = dev_net(dev);
7079
7080         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7081                 if (!net_eq(net, dev_net(iter->dev)))
7082                         continue;
7083                 netdev_adjacent_sysfs_add(iter->dev, dev,
7084                                           &iter->dev->adj_list.lower);
7085                 netdev_adjacent_sysfs_add(dev, iter->dev,
7086                                           &dev->adj_list.upper);
7087         }
7088
7089         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7090                 if (!net_eq(net, dev_net(iter->dev)))
7091                         continue;
7092                 netdev_adjacent_sysfs_add(iter->dev, dev,
7093                                           &iter->dev->adj_list.upper);
7094                 netdev_adjacent_sysfs_add(dev, iter->dev,
7095                                           &dev->adj_list.lower);
7096         }
7097 }
7098
7099 static void netdev_adjacent_del_links(struct net_device *dev)
7100 {
7101         struct netdev_adjacent *iter;
7102
7103         struct net *net = dev_net(dev);
7104
7105         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7106                 if (!net_eq(net, dev_net(iter->dev)))
7107                         continue;
7108                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7109                                           &iter->dev->adj_list.lower);
7110                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7111                                           &dev->adj_list.upper);
7112         }
7113
7114         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7115                 if (!net_eq(net, dev_net(iter->dev)))
7116                         continue;
7117                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7118                                           &iter->dev->adj_list.upper);
7119                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7120                                           &dev->adj_list.lower);
7121         }
7122 }
7123
7124 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7125 {
7126         struct netdev_adjacent *iter;
7127
7128         struct net *net = dev_net(dev);
7129
7130         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7131                 if (!net_eq(net, dev_net(iter->dev)))
7132                         continue;
7133                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7134                                           &iter->dev->adj_list.lower);
7135                 netdev_adjacent_sysfs_add(iter->dev, dev,
7136                                           &iter->dev->adj_list.lower);
7137         }
7138
7139         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7140                 if (!net_eq(net, dev_net(iter->dev)))
7141                         continue;
7142                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7143                                           &iter->dev->adj_list.upper);
7144                 netdev_adjacent_sysfs_add(iter->dev, dev,
7145                                           &iter->dev->adj_list.upper);
7146         }
7147 }
7148
7149 void *netdev_lower_dev_get_private(struct net_device *dev,
7150                                    struct net_device *lower_dev)
7151 {
7152         struct netdev_adjacent *lower;
7153
7154         if (!lower_dev)
7155                 return NULL;
7156         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7157         if (!lower)
7158                 return NULL;
7159
7160         return lower->private;
7161 }
7162 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7163
7164
7165 int dev_get_nest_level(struct net_device *dev)
7166 {
7167         struct net_device *lower = NULL;
7168         struct list_head *iter;
7169         int max_nest = -1;
7170         int nest;
7171
7172         ASSERT_RTNL();
7173
7174         netdev_for_each_lower_dev(dev, lower, iter) {
7175                 nest = dev_get_nest_level(lower);
7176                 if (max_nest < nest)
7177                         max_nest = nest;
7178         }
7179
7180         return max_nest + 1;
7181 }
7182 EXPORT_SYMBOL(dev_get_nest_level);
7183
7184 /**
7185  * netdev_lower_change - Dispatch event about lower device state change
7186  * @lower_dev: device
7187  * @lower_state_info: state to dispatch
7188  *
7189  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7190  * The caller must hold the RTNL lock.
7191  */
7192 void netdev_lower_state_changed(struct net_device *lower_dev,
7193                                 void *lower_state_info)
7194 {
7195         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7196                 .info.dev = lower_dev,
7197         };
7198
7199         ASSERT_RTNL();
7200         changelowerstate_info.lower_state_info = lower_state_info;
7201         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7202                                       &changelowerstate_info.info);
7203 }
7204 EXPORT_SYMBOL(netdev_lower_state_changed);
7205
7206 static void dev_change_rx_flags(struct net_device *dev, int flags)
7207 {
7208         const struct net_device_ops *ops = dev->netdev_ops;
7209
7210         if (ops->ndo_change_rx_flags)
7211                 ops->ndo_change_rx_flags(dev, flags);
7212 }
7213
7214 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7215 {
7216         unsigned int old_flags = dev->flags;
7217         kuid_t uid;
7218         kgid_t gid;
7219
7220         ASSERT_RTNL();
7221
7222         dev->flags |= IFF_PROMISC;
7223         dev->promiscuity += inc;
7224         if (dev->promiscuity == 0) {
7225                 /*
7226                  * Avoid overflow.
7227                  * If inc causes overflow, untouch promisc and return error.
7228                  */
7229                 if (inc < 0)
7230                         dev->flags &= ~IFF_PROMISC;
7231                 else {
7232                         dev->promiscuity -= inc;
7233                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7234                                 dev->name);
7235                         return -EOVERFLOW;
7236                 }
7237         }
7238         if (dev->flags != old_flags) {
7239                 pr_info("device %s %s promiscuous mode\n",
7240                         dev->name,
7241                         dev->flags & IFF_PROMISC ? "entered" : "left");
7242                 if (audit_enabled) {
7243                         current_uid_gid(&uid, &gid);
7244                         audit_log(audit_context(), GFP_ATOMIC,
7245                                   AUDIT_ANOM_PROMISCUOUS,
7246                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7247                                   dev->name, (dev->flags & IFF_PROMISC),
7248                                   (old_flags & IFF_PROMISC),
7249                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7250                                   from_kuid(&init_user_ns, uid),
7251                                   from_kgid(&init_user_ns, gid),
7252                                   audit_get_sessionid(current));
7253                 }
7254
7255                 dev_change_rx_flags(dev, IFF_PROMISC);
7256         }
7257         if (notify)
7258                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7259         return 0;
7260 }
7261
7262 /**
7263  *      dev_set_promiscuity     - update promiscuity count on a device
7264  *      @dev: device
7265  *      @inc: modifier
7266  *
7267  *      Add or remove promiscuity from a device. While the count in the device
7268  *      remains above zero the interface remains promiscuous. Once it hits zero
7269  *      the device reverts back to normal filtering operation. A negative inc
7270  *      value is used to drop promiscuity on the device.
7271  *      Return 0 if successful or a negative errno code on error.
7272  */
7273 int dev_set_promiscuity(struct net_device *dev, int inc)
7274 {
7275         unsigned int old_flags = dev->flags;
7276         int err;
7277
7278         err = __dev_set_promiscuity(dev, inc, true);
7279         if (err < 0)
7280                 return err;
7281         if (dev->flags != old_flags)
7282                 dev_set_rx_mode(dev);
7283         return err;
7284 }
7285 EXPORT_SYMBOL(dev_set_promiscuity);
7286
7287 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7288 {
7289         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7290
7291         ASSERT_RTNL();
7292
7293         dev->flags |= IFF_ALLMULTI;
7294         dev->allmulti += inc;
7295         if (dev->allmulti == 0) {
7296                 /*
7297                  * Avoid overflow.
7298                  * If inc causes overflow, untouch allmulti and return error.
7299                  */
7300                 if (inc < 0)
7301                         dev->flags &= ~IFF_ALLMULTI;
7302                 else {
7303                         dev->allmulti -= inc;
7304                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7305                                 dev->name);
7306                         return -EOVERFLOW;
7307                 }
7308         }
7309         if (dev->flags ^ old_flags) {
7310                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7311                 dev_set_rx_mode(dev);
7312                 if (notify)
7313                         __dev_notify_flags(dev, old_flags,
7314                                            dev->gflags ^ old_gflags);
7315         }
7316         return 0;
7317 }
7318
7319 /**
7320  *      dev_set_allmulti        - update allmulti count on a device
7321  *      @dev: device
7322  *      @inc: modifier
7323  *
7324  *      Add or remove reception of all multicast frames to a device. While the
7325  *      count in the device remains above zero the interface remains listening
7326  *      to all interfaces. Once it hits zero the device reverts back to normal
7327  *      filtering operation. A negative @inc value is used to drop the counter
7328  *      when releasing a resource needing all multicasts.
7329  *      Return 0 if successful or a negative errno code on error.
7330  */
7331
7332 int dev_set_allmulti(struct net_device *dev, int inc)
7333 {
7334         return __dev_set_allmulti(dev, inc, true);
7335 }
7336 EXPORT_SYMBOL(dev_set_allmulti);
7337
7338 /*
7339  *      Upload unicast and multicast address lists to device and
7340  *      configure RX filtering. When the device doesn't support unicast
7341  *      filtering it is put in promiscuous mode while unicast addresses
7342  *      are present.
7343  */
7344 void __dev_set_rx_mode(struct net_device *dev)
7345 {
7346         const struct net_device_ops *ops = dev->netdev_ops;
7347
7348         /* dev_open will call this function so the list will stay sane. */
7349         if (!(dev->flags&IFF_UP))
7350                 return;
7351
7352         if (!netif_device_present(dev))
7353                 return;
7354
7355         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7356                 /* Unicast addresses changes may only happen under the rtnl,
7357                  * therefore calling __dev_set_promiscuity here is safe.
7358                  */
7359                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7360                         __dev_set_promiscuity(dev, 1, false);
7361                         dev->uc_promisc = true;
7362                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7363                         __dev_set_promiscuity(dev, -1, false);
7364                         dev->uc_promisc = false;
7365                 }
7366         }
7367
7368         if (ops->ndo_set_rx_mode)
7369                 ops->ndo_set_rx_mode(dev);
7370 }
7371
7372 void dev_set_rx_mode(struct net_device *dev)
7373 {
7374         netif_addr_lock_bh(dev);
7375         __dev_set_rx_mode(dev);
7376         netif_addr_unlock_bh(dev);
7377 }
7378
7379 /**
7380  *      dev_get_flags - get flags reported to userspace
7381  *      @dev: device
7382  *
7383  *      Get the combination of flag bits exported through APIs to userspace.
7384  */
7385 unsigned int dev_get_flags(const struct net_device *dev)
7386 {
7387         unsigned int flags;
7388
7389         flags = (dev->flags & ~(IFF_PROMISC |
7390                                 IFF_ALLMULTI |
7391                                 IFF_RUNNING |
7392                                 IFF_LOWER_UP |
7393                                 IFF_DORMANT)) |
7394                 (dev->gflags & (IFF_PROMISC |
7395                                 IFF_ALLMULTI));
7396
7397         if (netif_running(dev)) {
7398                 if (netif_oper_up(dev))
7399                         flags |= IFF_RUNNING;
7400                 if (netif_carrier_ok(dev))
7401                         flags |= IFF_LOWER_UP;
7402                 if (netif_dormant(dev))
7403                         flags |= IFF_DORMANT;
7404         }
7405
7406         return flags;
7407 }
7408 EXPORT_SYMBOL(dev_get_flags);
7409
7410 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7411 {
7412         unsigned int old_flags = dev->flags;
7413         int ret;
7414
7415         ASSERT_RTNL();
7416
7417         /*
7418          *      Set the flags on our device.
7419          */
7420
7421         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7422                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7423                                IFF_AUTOMEDIA)) |
7424                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7425                                     IFF_ALLMULTI));
7426
7427         /*
7428          *      Load in the correct multicast list now the flags have changed.
7429          */
7430
7431         if ((old_flags ^ flags) & IFF_MULTICAST)
7432                 dev_change_rx_flags(dev, IFF_MULTICAST);
7433
7434         dev_set_rx_mode(dev);
7435
7436         /*
7437          *      Have we downed the interface. We handle IFF_UP ourselves
7438          *      according to user attempts to set it, rather than blindly
7439          *      setting it.
7440          */
7441
7442         ret = 0;
7443         if ((old_flags ^ flags) & IFF_UP) {
7444                 if (old_flags & IFF_UP)
7445                         __dev_close(dev);
7446                 else
7447                         ret = __dev_open(dev);
7448         }
7449
7450         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7451                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7452                 unsigned int old_flags = dev->flags;
7453
7454                 dev->gflags ^= IFF_PROMISC;
7455
7456                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7457                         if (dev->flags != old_flags)
7458                                 dev_set_rx_mode(dev);
7459         }
7460
7461         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7462          * is important. Some (broken) drivers set IFF_PROMISC, when
7463          * IFF_ALLMULTI is requested not asking us and not reporting.
7464          */
7465         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7466                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7467
7468                 dev->gflags ^= IFF_ALLMULTI;
7469                 __dev_set_allmulti(dev, inc, false);
7470         }
7471
7472         return ret;
7473 }
7474
7475 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7476                         unsigned int gchanges)
7477 {
7478         unsigned int changes = dev->flags ^ old_flags;
7479
7480         if (gchanges)
7481                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7482
7483         if (changes & IFF_UP) {
7484                 if (dev->flags & IFF_UP)
7485                         call_netdevice_notifiers(NETDEV_UP, dev);
7486                 else
7487                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7488         }
7489
7490         if (dev->flags & IFF_UP &&
7491             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7492                 struct netdev_notifier_change_info change_info = {
7493                         .info = {
7494                                 .dev = dev,
7495                         },
7496                         .flags_changed = changes,
7497                 };
7498
7499                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7500         }
7501 }
7502
7503 /**
7504  *      dev_change_flags - change device settings
7505  *      @dev: device
7506  *      @flags: device state flags
7507  *
7508  *      Change settings on device based state flags. The flags are
7509  *      in the userspace exported format.
7510  */
7511 int dev_change_flags(struct net_device *dev, unsigned int flags)
7512 {
7513         int ret;
7514         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7515
7516         ret = __dev_change_flags(dev, flags);
7517         if (ret < 0)
7518                 return ret;
7519
7520         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7521         __dev_notify_flags(dev, old_flags, changes);
7522         return ret;
7523 }
7524 EXPORT_SYMBOL(dev_change_flags);
7525
7526 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7527 {
7528         const struct net_device_ops *ops = dev->netdev_ops;
7529
7530         if (ops->ndo_change_mtu)
7531                 return ops->ndo_change_mtu(dev, new_mtu);
7532
7533         dev->mtu = new_mtu;
7534         return 0;
7535 }
7536 EXPORT_SYMBOL(__dev_set_mtu);
7537
7538 /**
7539  *      dev_set_mtu_ext - Change maximum transfer unit
7540  *      @dev: device
7541  *      @new_mtu: new transfer unit
7542  *      @extack: netlink extended ack
7543  *
7544  *      Change the maximum transfer size of the network device.
7545  */
7546 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7547                     struct netlink_ext_ack *extack)
7548 {
7549         int err, orig_mtu;
7550
7551         if (new_mtu == dev->mtu)
7552                 return 0;
7553
7554         /* MTU must be positive, and in range */
7555         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7556                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7557                 return -EINVAL;
7558         }
7559
7560         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7561                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7562                 return -EINVAL;
7563         }
7564
7565         if (!netif_device_present(dev))
7566                 return -ENODEV;
7567
7568         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7569         err = notifier_to_errno(err);
7570         if (err)
7571                 return err;
7572
7573         orig_mtu = dev->mtu;
7574         err = __dev_set_mtu(dev, new_mtu);
7575
7576         if (!err) {
7577                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7578                 err = notifier_to_errno(err);
7579                 if (err) {
7580                         /* setting mtu back and notifying everyone again,
7581                          * so that they have a chance to revert changes.
7582                          */
7583                         __dev_set_mtu(dev, orig_mtu);
7584                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7585                 }
7586         }
7587         return err;
7588 }
7589
7590 int dev_set_mtu(struct net_device *dev, int new_mtu)
7591 {
7592         struct netlink_ext_ack extack;
7593         int err;
7594
7595         memset(&extack, 0, sizeof(extack));
7596         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7597         if (err && extack._msg)
7598                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7599         return err;
7600 }
7601 EXPORT_SYMBOL(dev_set_mtu);
7602
7603 /**
7604  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7605  *      @dev: device
7606  *      @new_len: new tx queue length
7607  */
7608 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7609 {
7610         unsigned int orig_len = dev->tx_queue_len;
7611         int res;
7612
7613         if (new_len != (unsigned int)new_len)
7614                 return -ERANGE;
7615
7616         if (new_len != orig_len) {
7617                 dev->tx_queue_len = new_len;
7618                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7619                 res = notifier_to_errno(res);
7620                 if (res)
7621                         goto err_rollback;
7622                 res = dev_qdisc_change_tx_queue_len(dev);
7623                 if (res)
7624                         goto err_rollback;
7625         }
7626
7627         return 0;
7628
7629 err_rollback:
7630         netdev_err(dev, "refused to change device tx_queue_len\n");
7631         dev->tx_queue_len = orig_len;
7632         return res;
7633 }
7634
7635 /**
7636  *      dev_set_group - Change group this device belongs to
7637  *      @dev: device
7638  *      @new_group: group this device should belong to
7639  */
7640 void dev_set_group(struct net_device *dev, int new_group)
7641 {
7642         dev->group = new_group;
7643 }
7644 EXPORT_SYMBOL(dev_set_group);
7645
7646 /**
7647  *      dev_set_mac_address - Change Media Access Control Address
7648  *      @dev: device
7649  *      @sa: new address
7650  *
7651  *      Change the hardware (MAC) address of the device
7652  */
7653 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7654 {
7655         const struct net_device_ops *ops = dev->netdev_ops;
7656         int err;
7657
7658         if (!ops->ndo_set_mac_address)
7659                 return -EOPNOTSUPP;
7660         if (sa->sa_family != dev->type)
7661                 return -EINVAL;
7662         if (!netif_device_present(dev))
7663                 return -ENODEV;
7664         err = ops->ndo_set_mac_address(dev, sa);
7665         if (err)
7666                 return err;
7667         dev->addr_assign_type = NET_ADDR_SET;
7668         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7669         add_device_randomness(dev->dev_addr, dev->addr_len);
7670         return 0;
7671 }
7672 EXPORT_SYMBOL(dev_set_mac_address);
7673
7674 /**
7675  *      dev_change_carrier - Change device carrier
7676  *      @dev: device
7677  *      @new_carrier: new value
7678  *
7679  *      Change device carrier
7680  */
7681 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7682 {
7683         const struct net_device_ops *ops = dev->netdev_ops;
7684
7685         if (!ops->ndo_change_carrier)
7686                 return -EOPNOTSUPP;
7687         if (!netif_device_present(dev))
7688                 return -ENODEV;
7689         return ops->ndo_change_carrier(dev, new_carrier);
7690 }
7691 EXPORT_SYMBOL(dev_change_carrier);
7692
7693 /**
7694  *      dev_get_phys_port_id - Get device physical port ID
7695  *      @dev: device
7696  *      @ppid: port ID
7697  *
7698  *      Get device physical port ID
7699  */
7700 int dev_get_phys_port_id(struct net_device *dev,
7701                          struct netdev_phys_item_id *ppid)
7702 {
7703         const struct net_device_ops *ops = dev->netdev_ops;
7704
7705         if (!ops->ndo_get_phys_port_id)
7706                 return -EOPNOTSUPP;
7707         return ops->ndo_get_phys_port_id(dev, ppid);
7708 }
7709 EXPORT_SYMBOL(dev_get_phys_port_id);
7710
7711 /**
7712  *      dev_get_phys_port_name - Get device physical port name
7713  *      @dev: device
7714  *      @name: port name
7715  *      @len: limit of bytes to copy to name
7716  *
7717  *      Get device physical port name
7718  */
7719 int dev_get_phys_port_name(struct net_device *dev,
7720                            char *name, size_t len)
7721 {
7722         const struct net_device_ops *ops = dev->netdev_ops;
7723
7724         if (!ops->ndo_get_phys_port_name)
7725                 return -EOPNOTSUPP;
7726         return ops->ndo_get_phys_port_name(dev, name, len);
7727 }
7728 EXPORT_SYMBOL(dev_get_phys_port_name);
7729
7730 /**
7731  *      dev_change_proto_down - update protocol port state information
7732  *      @dev: device
7733  *      @proto_down: new value
7734  *
7735  *      This info can be used by switch drivers to set the phys state of the
7736  *      port.
7737  */
7738 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7739 {
7740         const struct net_device_ops *ops = dev->netdev_ops;
7741
7742         if (!ops->ndo_change_proto_down)
7743                 return -EOPNOTSUPP;
7744         if (!netif_device_present(dev))
7745                 return -ENODEV;
7746         return ops->ndo_change_proto_down(dev, proto_down);
7747 }
7748 EXPORT_SYMBOL(dev_change_proto_down);
7749
7750 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7751                     enum bpf_netdev_command cmd)
7752 {
7753         struct netdev_bpf xdp;
7754
7755         if (!bpf_op)
7756                 return 0;
7757
7758         memset(&xdp, 0, sizeof(xdp));
7759         xdp.command = cmd;
7760
7761         /* Query must always succeed. */
7762         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7763
7764         return xdp.prog_id;
7765 }
7766
7767 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7768                            struct netlink_ext_ack *extack, u32 flags,
7769                            struct bpf_prog *prog)
7770 {
7771         struct netdev_bpf xdp;
7772
7773         memset(&xdp, 0, sizeof(xdp));
7774         if (flags & XDP_FLAGS_HW_MODE)
7775                 xdp.command = XDP_SETUP_PROG_HW;
7776         else
7777                 xdp.command = XDP_SETUP_PROG;
7778         xdp.extack = extack;
7779         xdp.flags = flags;
7780         xdp.prog = prog;
7781
7782         return bpf_op(dev, &xdp);
7783 }
7784
7785 static void dev_xdp_uninstall(struct net_device *dev)
7786 {
7787         struct netdev_bpf xdp;
7788         bpf_op_t ndo_bpf;
7789
7790         /* Remove generic XDP */
7791         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7792
7793         /* Remove from the driver */
7794         ndo_bpf = dev->netdev_ops->ndo_bpf;
7795         if (!ndo_bpf)
7796                 return;
7797
7798         memset(&xdp, 0, sizeof(xdp));
7799         xdp.command = XDP_QUERY_PROG;
7800         WARN_ON(ndo_bpf(dev, &xdp));
7801         if (xdp.prog_id)
7802                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7803                                         NULL));
7804
7805         /* Remove HW offload */
7806         memset(&xdp, 0, sizeof(xdp));
7807         xdp.command = XDP_QUERY_PROG_HW;
7808         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7809                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7810                                         NULL));
7811 }
7812
7813 /**
7814  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7815  *      @dev: device
7816  *      @extack: netlink extended ack
7817  *      @fd: new program fd or negative value to clear
7818  *      @flags: xdp-related flags
7819  *
7820  *      Set or clear a bpf program for a device
7821  */
7822 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7823                       int fd, u32 flags)
7824 {
7825         const struct net_device_ops *ops = dev->netdev_ops;
7826         enum bpf_netdev_command query;
7827         struct bpf_prog *prog = NULL;
7828         bpf_op_t bpf_op, bpf_chk;
7829         int err;
7830
7831         ASSERT_RTNL();
7832
7833         query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7834
7835         bpf_op = bpf_chk = ops->ndo_bpf;
7836         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7837                 return -EOPNOTSUPP;
7838         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7839                 bpf_op = generic_xdp_install;
7840         if (bpf_op == bpf_chk)
7841                 bpf_chk = generic_xdp_install;
7842
7843         if (fd >= 0) {
7844                 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7845                     __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7846                         return -EEXIST;
7847                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7848                     __dev_xdp_query(dev, bpf_op, query))
7849                         return -EBUSY;
7850
7851                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7852                                              bpf_op == ops->ndo_bpf);
7853                 if (IS_ERR(prog))
7854                         return PTR_ERR(prog);
7855
7856                 if (!(flags & XDP_FLAGS_HW_MODE) &&
7857                     bpf_prog_is_dev_bound(prog->aux)) {
7858                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7859                         bpf_prog_put(prog);
7860                         return -EINVAL;
7861                 }
7862         }
7863
7864         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7865         if (err < 0 && prog)
7866                 bpf_prog_put(prog);
7867
7868         return err;
7869 }
7870
7871 /**
7872  *      dev_new_index   -       allocate an ifindex
7873  *      @net: the applicable net namespace
7874  *
7875  *      Returns a suitable unique value for a new device interface
7876  *      number.  The caller must hold the rtnl semaphore or the
7877  *      dev_base_lock to be sure it remains unique.
7878  */
7879 static int dev_new_index(struct net *net)
7880 {
7881         int ifindex = net->ifindex;
7882
7883         for (;;) {
7884                 if (++ifindex <= 0)
7885                         ifindex = 1;
7886                 if (!__dev_get_by_index(net, ifindex))
7887                         return net->ifindex = ifindex;
7888         }
7889 }
7890
7891 /* Delayed registration/unregisteration */
7892 static LIST_HEAD(net_todo_list);
7893 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7894
7895 static void net_set_todo(struct net_device *dev)
7896 {
7897         list_add_tail(&dev->todo_list, &net_todo_list);
7898         dev_net(dev)->dev_unreg_count++;
7899 }
7900
7901 static void rollback_registered_many(struct list_head *head)
7902 {
7903         struct net_device *dev, *tmp;
7904         LIST_HEAD(close_head);
7905
7906         BUG_ON(dev_boot_phase);
7907         ASSERT_RTNL();
7908
7909         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7910                 /* Some devices call without registering
7911                  * for initialization unwind. Remove those
7912                  * devices and proceed with the remaining.
7913                  */
7914                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7915                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7916                                  dev->name, dev);
7917
7918                         WARN_ON(1);
7919                         list_del(&dev->unreg_list);
7920                         continue;
7921                 }
7922                 dev->dismantle = true;
7923                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7924         }
7925
7926         /* If device is running, close it first. */
7927         list_for_each_entry(dev, head, unreg_list)
7928                 list_add_tail(&dev->close_list, &close_head);
7929         dev_close_many(&close_head, true);
7930
7931         list_for_each_entry(dev, head, unreg_list) {
7932                 /* And unlink it from device chain. */
7933                 unlist_netdevice(dev);
7934
7935                 dev->reg_state = NETREG_UNREGISTERING;
7936         }
7937         flush_all_backlogs();
7938
7939         synchronize_net();
7940
7941         list_for_each_entry(dev, head, unreg_list) {
7942                 struct sk_buff *skb = NULL;
7943
7944                 /* Shutdown queueing discipline. */
7945                 dev_shutdown(dev);
7946
7947                 dev_xdp_uninstall(dev);
7948
7949                 /* Notify protocols, that we are about to destroy
7950                  * this device. They should clean all the things.
7951                  */
7952                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7953
7954                 if (!dev->rtnl_link_ops ||
7955                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7956                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7957                                                      GFP_KERNEL, NULL, 0);
7958
7959                 /*
7960                  *      Flush the unicast and multicast chains
7961                  */
7962                 dev_uc_flush(dev);
7963                 dev_mc_flush(dev);
7964
7965                 if (dev->netdev_ops->ndo_uninit)
7966                         dev->netdev_ops->ndo_uninit(dev);
7967
7968                 if (skb)
7969                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7970
7971                 /* Notifier chain MUST detach us all upper devices. */
7972                 WARN_ON(netdev_has_any_upper_dev(dev));
7973                 WARN_ON(netdev_has_any_lower_dev(dev));
7974
7975                 /* Remove entries from kobject tree */
7976                 netdev_unregister_kobject(dev);
7977 #ifdef CONFIG_XPS
7978                 /* Remove XPS queueing entries */
7979                 netif_reset_xps_queues_gt(dev, 0);
7980 #endif
7981         }
7982
7983         synchronize_net();
7984
7985         list_for_each_entry(dev, head, unreg_list)
7986                 dev_put(dev);
7987 }
7988
7989 static void rollback_registered(struct net_device *dev)
7990 {
7991         LIST_HEAD(single);
7992
7993         list_add(&dev->unreg_list, &single);
7994         rollback_registered_many(&single);
7995         list_del(&single);
7996 }
7997
7998 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7999         struct net_device *upper, netdev_features_t features)
8000 {
8001         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8002         netdev_features_t feature;
8003         int feature_bit;
8004
8005         for_each_netdev_feature(&upper_disables, feature_bit) {
8006                 feature = __NETIF_F_BIT(feature_bit);
8007                 if (!(upper->wanted_features & feature)
8008                     && (features & feature)) {
8009                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8010                                    &feature, upper->name);
8011                         features &= ~feature;
8012                 }
8013         }
8014
8015         return features;
8016 }
8017
8018 static void netdev_sync_lower_features(struct net_device *upper,
8019         struct net_device *lower, netdev_features_t features)
8020 {
8021         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8022         netdev_features_t feature;
8023         int feature_bit;
8024
8025         for_each_netdev_feature(&upper_disables, feature_bit) {
8026                 feature = __NETIF_F_BIT(feature_bit);
8027                 if (!(features & feature) && (lower->features & feature)) {
8028                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8029                                    &feature, lower->name);
8030                         lower->wanted_features &= ~feature;
8031                         netdev_update_features(lower);
8032
8033                         if (unlikely(lower->features & feature))
8034                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8035                                             &feature, lower->name);
8036                 }
8037         }
8038 }
8039
8040 static netdev_features_t netdev_fix_features(struct net_device *dev,
8041         netdev_features_t features)
8042 {
8043         /* Fix illegal checksum combinations */
8044         if ((features & NETIF_F_HW_CSUM) &&
8045             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8046                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8047                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8048         }
8049
8050         /* TSO requires that SG is present as well. */
8051         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8052                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8053                 features &= ~NETIF_F_ALL_TSO;
8054         }
8055
8056         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8057                                         !(features & NETIF_F_IP_CSUM)) {
8058                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8059                 features &= ~NETIF_F_TSO;
8060                 features &= ~NETIF_F_TSO_ECN;
8061         }
8062
8063         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8064                                          !(features & NETIF_F_IPV6_CSUM)) {
8065                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8066                 features &= ~NETIF_F_TSO6;
8067         }
8068
8069         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8070         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8071                 features &= ~NETIF_F_TSO_MANGLEID;
8072
8073         /* TSO ECN requires that TSO is present as well. */
8074         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8075                 features &= ~NETIF_F_TSO_ECN;
8076
8077         /* Software GSO depends on SG. */
8078         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8079                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8080                 features &= ~NETIF_F_GSO;
8081         }
8082
8083         /* GSO partial features require GSO partial be set */
8084         if ((features & dev->gso_partial_features) &&
8085             !(features & NETIF_F_GSO_PARTIAL)) {
8086                 netdev_dbg(dev,
8087                            "Dropping partially supported GSO features since no GSO partial.\n");
8088                 features &= ~dev->gso_partial_features;
8089         }
8090
8091         if (!(features & NETIF_F_RXCSUM)) {
8092                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8093                  * successfully merged by hardware must also have the
8094                  * checksum verified by hardware.  If the user does not
8095                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8096                  */
8097                 if (features & NETIF_F_GRO_HW) {
8098                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8099                         features &= ~NETIF_F_GRO_HW;
8100                 }
8101         }
8102
8103         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8104         if (features & NETIF_F_RXFCS) {
8105                 if (features & NETIF_F_LRO) {
8106                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8107                         features &= ~NETIF_F_LRO;
8108                 }
8109
8110                 if (features & NETIF_F_GRO_HW) {
8111                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8112                         features &= ~NETIF_F_GRO_HW;
8113                 }
8114         }
8115
8116         return features;
8117 }
8118
8119 int __netdev_update_features(struct net_device *dev)
8120 {
8121         struct net_device *upper, *lower;
8122         netdev_features_t features;
8123         struct list_head *iter;
8124         int err = -1;
8125
8126         ASSERT_RTNL();
8127
8128         features = netdev_get_wanted_features(dev);
8129
8130         if (dev->netdev_ops->ndo_fix_features)
8131                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8132
8133         /* driver might be less strict about feature dependencies */
8134         features = netdev_fix_features(dev, features);
8135
8136         /* some features can't be enabled if they're off an an upper device */
8137         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8138                 features = netdev_sync_upper_features(dev, upper, features);
8139
8140         if (dev->features == features)
8141                 goto sync_lower;
8142
8143         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8144                 &dev->features, &features);
8145
8146         if (dev->netdev_ops->ndo_set_features)
8147                 err = dev->netdev_ops->ndo_set_features(dev, features);
8148         else
8149                 err = 0;
8150
8151         if (unlikely(err < 0)) {
8152                 netdev_err(dev,
8153                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8154                         err, &features, &dev->features);
8155                 /* return non-0 since some features might have changed and
8156                  * it's better to fire a spurious notification than miss it
8157                  */
8158                 return -1;
8159         }
8160
8161 sync_lower:
8162         /* some features must be disabled on lower devices when disabled
8163          * on an upper device (think: bonding master or bridge)
8164          */
8165         netdev_for_each_lower_dev(dev, lower, iter)
8166                 netdev_sync_lower_features(dev, lower, features);
8167
8168         if (!err) {
8169                 netdev_features_t diff = features ^ dev->features;
8170
8171                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8172                         /* udp_tunnel_{get,drop}_rx_info both need
8173                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8174                          * device, or they won't do anything.
8175                          * Thus we need to update dev->features
8176                          * *before* calling udp_tunnel_get_rx_info,
8177                          * but *after* calling udp_tunnel_drop_rx_info.
8178                          */
8179                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8180                                 dev->features = features;
8181                                 udp_tunnel_get_rx_info(dev);
8182                         } else {
8183                                 udp_tunnel_drop_rx_info(dev);
8184                         }
8185                 }
8186
8187                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8188                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8189                                 dev->features = features;
8190                                 err |= vlan_get_rx_ctag_filter_info(dev);
8191                         } else {
8192                                 vlan_drop_rx_ctag_filter_info(dev);
8193                         }
8194                 }
8195
8196                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8197                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8198                                 dev->features = features;
8199                                 err |= vlan_get_rx_stag_filter_info(dev);
8200                         } else {
8201                                 vlan_drop_rx_stag_filter_info(dev);
8202                         }
8203                 }
8204
8205                 dev->features = features;
8206         }
8207
8208         return err < 0 ? 0 : 1;
8209 }
8210
8211 /**
8212  *      netdev_update_features - recalculate device features
8213  *      @dev: the device to check
8214  *
8215  *      Recalculate dev->features set and send notifications if it
8216  *      has changed. Should be called after driver or hardware dependent
8217  *      conditions might have changed that influence the features.
8218  */
8219 void netdev_update_features(struct net_device *dev)
8220 {
8221         if (__netdev_update_features(dev))
8222                 netdev_features_change(dev);
8223 }
8224 EXPORT_SYMBOL(netdev_update_features);
8225
8226 /**
8227  *      netdev_change_features - recalculate device features
8228  *      @dev: the device to check
8229  *
8230  *      Recalculate dev->features set and send notifications even
8231  *      if they have not changed. Should be called instead of
8232  *      netdev_update_features() if also dev->vlan_features might
8233  *      have changed to allow the changes to be propagated to stacked
8234  *      VLAN devices.
8235  */
8236 void netdev_change_features(struct net_device *dev)
8237 {
8238         __netdev_update_features(dev);
8239         netdev_features_change(dev);
8240 }
8241 EXPORT_SYMBOL(netdev_change_features);
8242
8243 /**
8244  *      netif_stacked_transfer_operstate -      transfer operstate
8245  *      @rootdev: the root or lower level device to transfer state from
8246  *      @dev: the device to transfer operstate to
8247  *
8248  *      Transfer operational state from root to device. This is normally
8249  *      called when a stacking relationship exists between the root
8250  *      device and the device(a leaf device).
8251  */
8252 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8253                                         struct net_device *dev)
8254 {
8255         if (rootdev->operstate == IF_OPER_DORMANT)
8256                 netif_dormant_on(dev);
8257         else
8258                 netif_dormant_off(dev);
8259
8260         if (netif_carrier_ok(rootdev))
8261                 netif_carrier_on(dev);
8262         else
8263                 netif_carrier_off(dev);
8264 }
8265 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8266
8267 static int netif_alloc_rx_queues(struct net_device *dev)
8268 {
8269         unsigned int i, count = dev->num_rx_queues;
8270         struct netdev_rx_queue *rx;
8271         size_t sz = count * sizeof(*rx);
8272         int err = 0;
8273
8274         BUG_ON(count < 1);
8275
8276         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8277         if (!rx)
8278                 return -ENOMEM;
8279
8280         dev->_rx = rx;
8281
8282         for (i = 0; i < count; i++) {
8283                 rx[i].dev = dev;
8284
8285                 /* XDP RX-queue setup */
8286                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8287                 if (err < 0)
8288                         goto err_rxq_info;
8289         }
8290         return 0;
8291
8292 err_rxq_info:
8293         /* Rollback successful reg's and free other resources */
8294         while (i--)
8295                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8296         kvfree(dev->_rx);
8297         dev->_rx = NULL;
8298         return err;
8299 }
8300
8301 static void netif_free_rx_queues(struct net_device *dev)
8302 {
8303         unsigned int i, count = dev->num_rx_queues;
8304
8305         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8306         if (!dev->_rx)
8307                 return;
8308
8309         for (i = 0; i < count; i++)
8310                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8311
8312         kvfree(dev->_rx);
8313 }
8314
8315 static void netdev_init_one_queue(struct net_device *dev,
8316                                   struct netdev_queue *queue, void *_unused)
8317 {
8318         /* Initialize queue lock */
8319         spin_lock_init(&queue->_xmit_lock);
8320         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8321         queue->xmit_lock_owner = -1;
8322         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8323         queue->dev = dev;
8324 #ifdef CONFIG_BQL
8325         dql_init(&queue->dql, HZ);
8326 #endif
8327 }
8328
8329 static void netif_free_tx_queues(struct net_device *dev)
8330 {
8331         kvfree(dev->_tx);
8332 }
8333
8334 static int netif_alloc_netdev_queues(struct net_device *dev)
8335 {
8336         unsigned int count = dev->num_tx_queues;
8337         struct netdev_queue *tx;
8338         size_t sz = count * sizeof(*tx);
8339
8340         if (count < 1 || count > 0xffff)
8341                 return -EINVAL;
8342
8343         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8344         if (!tx)
8345                 return -ENOMEM;
8346
8347         dev->_tx = tx;
8348
8349         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8350         spin_lock_init(&dev->tx_global_lock);
8351
8352         return 0;
8353 }
8354
8355 void netif_tx_stop_all_queues(struct net_device *dev)
8356 {
8357         unsigned int i;
8358
8359         for (i = 0; i < dev->num_tx_queues; i++) {
8360                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8361
8362                 netif_tx_stop_queue(txq);
8363         }
8364 }
8365 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8366
8367 /**
8368  *      register_netdevice      - register a network device
8369  *      @dev: device to register
8370  *
8371  *      Take a completed network device structure and add it to the kernel
8372  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8373  *      chain. 0 is returned on success. A negative errno code is returned
8374  *      on a failure to set up the device, or if the name is a duplicate.
8375  *
8376  *      Callers must hold the rtnl semaphore. You may want
8377  *      register_netdev() instead of this.
8378  *
8379  *      BUGS:
8380  *      The locking appears insufficient to guarantee two parallel registers
8381  *      will not get the same name.
8382  */
8383
8384 int register_netdevice(struct net_device *dev)
8385 {
8386         int ret;
8387         struct net *net = dev_net(dev);
8388
8389         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8390                      NETDEV_FEATURE_COUNT);
8391         BUG_ON(dev_boot_phase);
8392         ASSERT_RTNL();
8393
8394         might_sleep();
8395
8396         /* When net_device's are persistent, this will be fatal. */
8397         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8398         BUG_ON(!net);
8399
8400         spin_lock_init(&dev->addr_list_lock);
8401         netdev_set_addr_lockdep_class(dev);
8402
8403         ret = dev_get_valid_name(net, dev, dev->name);
8404         if (ret < 0)
8405                 goto out;
8406
8407         /* Init, if this function is available */
8408         if (dev->netdev_ops->ndo_init) {
8409                 ret = dev->netdev_ops->ndo_init(dev);
8410                 if (ret) {
8411                         if (ret > 0)
8412                                 ret = -EIO;
8413                         goto out;
8414                 }
8415         }
8416
8417         if (((dev->hw_features | dev->features) &
8418              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8419             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8420              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8421                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8422                 ret = -EINVAL;
8423                 goto err_uninit;
8424         }
8425
8426         ret = -EBUSY;
8427         if (!dev->ifindex)
8428                 dev->ifindex = dev_new_index(net);
8429         else if (__dev_get_by_index(net, dev->ifindex))
8430                 goto err_uninit;
8431
8432         /* Transfer changeable features to wanted_features and enable
8433          * software offloads (GSO and GRO).
8434          */
8435         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8436         dev->features |= NETIF_F_SOFT_FEATURES;
8437
8438         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8439                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8440                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8441         }
8442
8443         dev->wanted_features = dev->features & dev->hw_features;
8444
8445         if (!(dev->flags & IFF_LOOPBACK))
8446                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8447
8448         /* If IPv4 TCP segmentation offload is supported we should also
8449          * allow the device to enable segmenting the frame with the option
8450          * of ignoring a static IP ID value.  This doesn't enable the
8451          * feature itself but allows the user to enable it later.
8452          */
8453         if (dev->hw_features & NETIF_F_TSO)
8454                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8455         if (dev->vlan_features & NETIF_F_TSO)
8456                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8457         if (dev->mpls_features & NETIF_F_TSO)
8458                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8459         if (dev->hw_enc_features & NETIF_F_TSO)
8460                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8461
8462         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8463          */
8464         dev->vlan_features |= NETIF_F_HIGHDMA;
8465
8466         /* Make NETIF_F_SG inheritable to tunnel devices.
8467          */
8468         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8469
8470         /* Make NETIF_F_SG inheritable to MPLS.
8471          */
8472         dev->mpls_features |= NETIF_F_SG;
8473
8474         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8475         ret = notifier_to_errno(ret);
8476         if (ret)
8477                 goto err_uninit;
8478
8479         ret = netdev_register_kobject(dev);
8480         if (ret)
8481                 goto err_uninit;
8482         dev->reg_state = NETREG_REGISTERED;
8483
8484         __netdev_update_features(dev);
8485
8486         /*
8487          *      Default initial state at registry is that the
8488          *      device is present.
8489          */
8490
8491         set_bit(__LINK_STATE_PRESENT, &dev->state);
8492
8493         linkwatch_init_dev(dev);
8494
8495         dev_init_scheduler(dev);
8496         dev_hold(dev);
8497         list_netdevice(dev);
8498         add_device_randomness(dev->dev_addr, dev->addr_len);
8499
8500         /* If the device has permanent device address, driver should
8501          * set dev_addr and also addr_assign_type should be set to
8502          * NET_ADDR_PERM (default value).
8503          */
8504         if (dev->addr_assign_type == NET_ADDR_PERM)
8505                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8506
8507         /* Notify protocols, that a new device appeared. */
8508         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8509         ret = notifier_to_errno(ret);
8510         if (ret) {
8511                 rollback_registered(dev);
8512                 dev->reg_state = NETREG_UNREGISTERED;
8513         }
8514         /*
8515          *      Prevent userspace races by waiting until the network
8516          *      device is fully setup before sending notifications.
8517          */
8518         if (!dev->rtnl_link_ops ||
8519             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8520                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8521
8522 out:
8523         return ret;
8524
8525 err_uninit:
8526         if (dev->netdev_ops->ndo_uninit)
8527                 dev->netdev_ops->ndo_uninit(dev);
8528         if (dev->priv_destructor)
8529                 dev->priv_destructor(dev);
8530         goto out;
8531 }
8532 EXPORT_SYMBOL(register_netdevice);
8533
8534 /**
8535  *      init_dummy_netdev       - init a dummy network device for NAPI
8536  *      @dev: device to init
8537  *
8538  *      This takes a network device structure and initialize the minimum
8539  *      amount of fields so it can be used to schedule NAPI polls without
8540  *      registering a full blown interface. This is to be used by drivers
8541  *      that need to tie several hardware interfaces to a single NAPI
8542  *      poll scheduler due to HW limitations.
8543  */
8544 int init_dummy_netdev(struct net_device *dev)
8545 {
8546         /* Clear everything. Note we don't initialize spinlocks
8547          * are they aren't supposed to be taken by any of the
8548          * NAPI code and this dummy netdev is supposed to be
8549          * only ever used for NAPI polls
8550          */
8551         memset(dev, 0, sizeof(struct net_device));
8552
8553         /* make sure we BUG if trying to hit standard
8554          * register/unregister code path
8555          */
8556         dev->reg_state = NETREG_DUMMY;
8557
8558         /* NAPI wants this */
8559         INIT_LIST_HEAD(&dev->napi_list);
8560
8561         /* a dummy interface is started by default */
8562         set_bit(__LINK_STATE_PRESENT, &dev->state);
8563         set_bit(__LINK_STATE_START, &dev->state);
8564
8565         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8566          * because users of this 'device' dont need to change
8567          * its refcount.
8568          */
8569
8570         return 0;
8571 }
8572 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8573
8574
8575 /**
8576  *      register_netdev - register a network device
8577  *      @dev: device to register
8578  *
8579  *      Take a completed network device structure and add it to the kernel
8580  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8581  *      chain. 0 is returned on success. A negative errno code is returned
8582  *      on a failure to set up the device, or if the name is a duplicate.
8583  *
8584  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8585  *      and expands the device name if you passed a format string to
8586  *      alloc_netdev.
8587  */
8588 int register_netdev(struct net_device *dev)
8589 {
8590         int err;
8591
8592         if (rtnl_lock_killable())
8593                 return -EINTR;
8594         err = register_netdevice(dev);
8595         rtnl_unlock();
8596         return err;
8597 }
8598 EXPORT_SYMBOL(register_netdev);
8599
8600 int netdev_refcnt_read(const struct net_device *dev)
8601 {
8602         int i, refcnt = 0;
8603
8604         for_each_possible_cpu(i)
8605                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8606         return refcnt;
8607 }
8608 EXPORT_SYMBOL(netdev_refcnt_read);
8609
8610 /**
8611  * netdev_wait_allrefs - wait until all references are gone.
8612  * @dev: target net_device
8613  *
8614  * This is called when unregistering network devices.
8615  *
8616  * Any protocol or device that holds a reference should register
8617  * for netdevice notification, and cleanup and put back the
8618  * reference if they receive an UNREGISTER event.
8619  * We can get stuck here if buggy protocols don't correctly
8620  * call dev_put.
8621  */
8622 static void netdev_wait_allrefs(struct net_device *dev)
8623 {
8624         unsigned long rebroadcast_time, warning_time;
8625         int refcnt;
8626
8627         linkwatch_forget_dev(dev);
8628
8629         rebroadcast_time = warning_time = jiffies;
8630         refcnt = netdev_refcnt_read(dev);
8631
8632         while (refcnt != 0) {
8633                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8634                         rtnl_lock();
8635
8636                         /* Rebroadcast unregister notification */
8637                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8638
8639                         __rtnl_unlock();
8640                         rcu_barrier();
8641                         rtnl_lock();
8642
8643                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8644                                      &dev->state)) {
8645                                 /* We must not have linkwatch events
8646                                  * pending on unregister. If this
8647                                  * happens, we simply run the queue
8648                                  * unscheduled, resulting in a noop
8649                                  * for this device.
8650                                  */
8651                                 linkwatch_run_queue();
8652                         }
8653
8654                         __rtnl_unlock();
8655
8656                         rebroadcast_time = jiffies;
8657                 }
8658
8659                 msleep(250);
8660
8661                 refcnt = netdev_refcnt_read(dev);
8662
8663                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8664                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8665                                  dev->name, refcnt);
8666                         warning_time = jiffies;
8667                 }
8668         }
8669 }
8670
8671 /* The sequence is:
8672  *
8673  *      rtnl_lock();
8674  *      ...
8675  *      register_netdevice(x1);
8676  *      register_netdevice(x2);
8677  *      ...
8678  *      unregister_netdevice(y1);
8679  *      unregister_netdevice(y2);
8680  *      ...
8681  *      rtnl_unlock();
8682  *      free_netdev(y1);
8683  *      free_netdev(y2);
8684  *
8685  * We are invoked by rtnl_unlock().
8686  * This allows us to deal with problems:
8687  * 1) We can delete sysfs objects which invoke hotplug
8688  *    without deadlocking with linkwatch via keventd.
8689  * 2) Since we run with the RTNL semaphore not held, we can sleep
8690  *    safely in order to wait for the netdev refcnt to drop to zero.
8691  *
8692  * We must not return until all unregister events added during
8693  * the interval the lock was held have been completed.
8694  */
8695 void netdev_run_todo(void)
8696 {
8697         struct list_head list;
8698
8699         /* Snapshot list, allow later requests */
8700         list_replace_init(&net_todo_list, &list);
8701
8702         __rtnl_unlock();
8703
8704
8705         /* Wait for rcu callbacks to finish before next phase */
8706         if (!list_empty(&list))
8707                 rcu_barrier();
8708
8709         while (!list_empty(&list)) {
8710                 struct net_device *dev
8711                         = list_first_entry(&list, struct net_device, todo_list);
8712                 list_del(&dev->todo_list);
8713
8714                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8715                         pr_err("network todo '%s' but state %d\n",
8716                                dev->name, dev->reg_state);
8717                         dump_stack();
8718                         continue;
8719                 }
8720
8721                 dev->reg_state = NETREG_UNREGISTERED;
8722
8723                 netdev_wait_allrefs(dev);
8724
8725                 /* paranoia */
8726                 BUG_ON(netdev_refcnt_read(dev));
8727                 BUG_ON(!list_empty(&dev->ptype_all));
8728                 BUG_ON(!list_empty(&dev->ptype_specific));
8729                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8730                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8731 #if IS_ENABLED(CONFIG_DECNET)
8732                 WARN_ON(dev->dn_ptr);
8733 #endif
8734                 if (dev->priv_destructor)
8735                         dev->priv_destructor(dev);
8736                 if (dev->needs_free_netdev)
8737                         free_netdev(dev);
8738
8739                 /* Report a network device has been unregistered */
8740                 rtnl_lock();
8741                 dev_net(dev)->dev_unreg_count--;
8742                 __rtnl_unlock();
8743                 wake_up(&netdev_unregistering_wq);
8744
8745                 /* Free network device */
8746                 kobject_put(&dev->dev.kobj);
8747         }
8748 }
8749
8750 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8751  * all the same fields in the same order as net_device_stats, with only
8752  * the type differing, but rtnl_link_stats64 may have additional fields
8753  * at the end for newer counters.
8754  */
8755 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8756                              const struct net_device_stats *netdev_stats)
8757 {
8758 #if BITS_PER_LONG == 64
8759         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8760         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8761         /* zero out counters that only exist in rtnl_link_stats64 */
8762         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8763                sizeof(*stats64) - sizeof(*netdev_stats));
8764 #else
8765         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8766         const unsigned long *src = (const unsigned long *)netdev_stats;
8767         u64 *dst = (u64 *)stats64;
8768
8769         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8770         for (i = 0; i < n; i++)
8771                 dst[i] = src[i];
8772         /* zero out counters that only exist in rtnl_link_stats64 */
8773         memset((char *)stats64 + n * sizeof(u64), 0,
8774                sizeof(*stats64) - n * sizeof(u64));
8775 #endif
8776 }
8777 EXPORT_SYMBOL(netdev_stats_to_stats64);
8778
8779 /**
8780  *      dev_get_stats   - get network device statistics
8781  *      @dev: device to get statistics from
8782  *      @storage: place to store stats
8783  *
8784  *      Get network statistics from device. Return @storage.
8785  *      The device driver may provide its own method by setting
8786  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8787  *      otherwise the internal statistics structure is used.
8788  */
8789 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8790                                         struct rtnl_link_stats64 *storage)
8791 {
8792         const struct net_device_ops *ops = dev->netdev_ops;
8793
8794         if (ops->ndo_get_stats64) {
8795                 memset(storage, 0, sizeof(*storage));
8796                 ops->ndo_get_stats64(dev, storage);
8797         } else if (ops->ndo_get_stats) {
8798                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8799         } else {
8800                 netdev_stats_to_stats64(storage, &dev->stats);
8801         }
8802         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8803         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8804         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8805         return storage;
8806 }
8807 EXPORT_SYMBOL(dev_get_stats);
8808
8809 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8810 {
8811         struct netdev_queue *queue = dev_ingress_queue(dev);
8812
8813 #ifdef CONFIG_NET_CLS_ACT
8814         if (queue)
8815                 return queue;
8816         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8817         if (!queue)
8818                 return NULL;
8819         netdev_init_one_queue(dev, queue, NULL);
8820         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8821         queue->qdisc_sleeping = &noop_qdisc;
8822         rcu_assign_pointer(dev->ingress_queue, queue);
8823 #endif
8824         return queue;
8825 }
8826
8827 static const struct ethtool_ops default_ethtool_ops;
8828
8829 void netdev_set_default_ethtool_ops(struct net_device *dev,
8830                                     const struct ethtool_ops *ops)
8831 {
8832         if (dev->ethtool_ops == &default_ethtool_ops)
8833                 dev->ethtool_ops = ops;
8834 }
8835 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8836
8837 void netdev_freemem(struct net_device *dev)
8838 {
8839         char *addr = (char *)dev - dev->padded;
8840
8841         kvfree(addr);
8842 }
8843
8844 /**
8845  * alloc_netdev_mqs - allocate network device
8846  * @sizeof_priv: size of private data to allocate space for
8847  * @name: device name format string
8848  * @name_assign_type: origin of device name
8849  * @setup: callback to initialize device
8850  * @txqs: the number of TX subqueues to allocate
8851  * @rxqs: the number of RX subqueues to allocate
8852  *
8853  * Allocates a struct net_device with private data area for driver use
8854  * and performs basic initialization.  Also allocates subqueue structs
8855  * for each queue on the device.
8856  */
8857 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8858                 unsigned char name_assign_type,
8859                 void (*setup)(struct net_device *),
8860                 unsigned int txqs, unsigned int rxqs)
8861 {
8862         struct net_device *dev;
8863         unsigned int alloc_size;
8864         struct net_device *p;
8865
8866         BUG_ON(strlen(name) >= sizeof(dev->name));
8867
8868         if (txqs < 1) {
8869                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8870                 return NULL;
8871         }
8872
8873         if (rxqs < 1) {
8874                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8875                 return NULL;
8876         }
8877
8878         alloc_size = sizeof(struct net_device);
8879         if (sizeof_priv) {
8880                 /* ensure 32-byte alignment of private area */
8881                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8882                 alloc_size += sizeof_priv;
8883         }
8884         /* ensure 32-byte alignment of whole construct */
8885         alloc_size += NETDEV_ALIGN - 1;
8886
8887         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8888         if (!p)
8889                 return NULL;
8890
8891         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8892         dev->padded = (char *)dev - (char *)p;
8893
8894         dev->pcpu_refcnt = alloc_percpu(int);
8895         if (!dev->pcpu_refcnt)
8896                 goto free_dev;
8897
8898         if (dev_addr_init(dev))
8899                 goto free_pcpu;
8900
8901         dev_mc_init(dev);
8902         dev_uc_init(dev);
8903
8904         dev_net_set(dev, &init_net);
8905
8906         dev->gso_max_size = GSO_MAX_SIZE;
8907         dev->gso_max_segs = GSO_MAX_SEGS;
8908
8909         INIT_LIST_HEAD(&dev->napi_list);
8910         INIT_LIST_HEAD(&dev->unreg_list);
8911         INIT_LIST_HEAD(&dev->close_list);
8912         INIT_LIST_HEAD(&dev->link_watch_list);
8913         INIT_LIST_HEAD(&dev->adj_list.upper);
8914         INIT_LIST_HEAD(&dev->adj_list.lower);
8915         INIT_LIST_HEAD(&dev->ptype_all);
8916         INIT_LIST_HEAD(&dev->ptype_specific);
8917 #ifdef CONFIG_NET_SCHED
8918         hash_init(dev->qdisc_hash);
8919 #endif
8920         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8921         setup(dev);
8922
8923         if (!dev->tx_queue_len) {
8924                 dev->priv_flags |= IFF_NO_QUEUE;
8925                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8926         }
8927
8928         dev->num_tx_queues = txqs;
8929         dev->real_num_tx_queues = txqs;
8930         if (netif_alloc_netdev_queues(dev))
8931                 goto free_all;
8932
8933         dev->num_rx_queues = rxqs;
8934         dev->real_num_rx_queues = rxqs;
8935         if (netif_alloc_rx_queues(dev))
8936                 goto free_all;
8937
8938         strcpy(dev->name, name);
8939         dev->name_assign_type = name_assign_type;
8940         dev->group = INIT_NETDEV_GROUP;
8941         if (!dev->ethtool_ops)
8942                 dev->ethtool_ops = &default_ethtool_ops;
8943
8944         nf_hook_ingress_init(dev);
8945
8946         return dev;
8947
8948 free_all:
8949         free_netdev(dev);
8950         return NULL;
8951
8952 free_pcpu:
8953         free_percpu(dev->pcpu_refcnt);
8954 free_dev:
8955         netdev_freemem(dev);
8956         return NULL;
8957 }
8958 EXPORT_SYMBOL(alloc_netdev_mqs);
8959
8960 /**
8961  * free_netdev - free network device
8962  * @dev: device
8963  *
8964  * This function does the last stage of destroying an allocated device
8965  * interface. The reference to the device object is released. If this
8966  * is the last reference then it will be freed.Must be called in process
8967  * context.
8968  */
8969 void free_netdev(struct net_device *dev)
8970 {
8971         struct napi_struct *p, *n;
8972
8973         might_sleep();
8974         netif_free_tx_queues(dev);
8975         netif_free_rx_queues(dev);
8976
8977         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8978
8979         /* Flush device addresses */
8980         dev_addr_flush(dev);
8981
8982         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8983                 netif_napi_del(p);
8984
8985         free_percpu(dev->pcpu_refcnt);
8986         dev->pcpu_refcnt = NULL;
8987
8988         /*  Compatibility with error handling in drivers */
8989         if (dev->reg_state == NETREG_UNINITIALIZED) {
8990                 netdev_freemem(dev);
8991                 return;
8992         }
8993
8994         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8995         dev->reg_state = NETREG_RELEASED;
8996
8997         /* will free via device release */
8998         put_device(&dev->dev);
8999 }
9000 EXPORT_SYMBOL(free_netdev);
9001
9002 /**
9003  *      synchronize_net -  Synchronize with packet receive processing
9004  *
9005  *      Wait for packets currently being received to be done.
9006  *      Does not block later packets from starting.
9007  */
9008 void synchronize_net(void)
9009 {
9010         might_sleep();
9011         if (rtnl_is_locked())
9012                 synchronize_rcu_expedited();
9013         else
9014                 synchronize_rcu();
9015 }
9016 EXPORT_SYMBOL(synchronize_net);
9017
9018 /**
9019  *      unregister_netdevice_queue - remove device from the kernel
9020  *      @dev: device
9021  *      @head: list
9022  *
9023  *      This function shuts down a device interface and removes it
9024  *      from the kernel tables.
9025  *      If head not NULL, device is queued to be unregistered later.
9026  *
9027  *      Callers must hold the rtnl semaphore.  You may want
9028  *      unregister_netdev() instead of this.
9029  */
9030
9031 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9032 {
9033         ASSERT_RTNL();
9034
9035         if (head) {
9036                 list_move_tail(&dev->unreg_list, head);
9037         } else {
9038                 rollback_registered(dev);
9039                 /* Finish processing unregister after unlock */
9040                 net_set_todo(dev);
9041         }
9042 }
9043 EXPORT_SYMBOL(unregister_netdevice_queue);
9044
9045 /**
9046  *      unregister_netdevice_many - unregister many devices
9047  *      @head: list of devices
9048  *
9049  *  Note: As most callers use a stack allocated list_head,
9050  *  we force a list_del() to make sure stack wont be corrupted later.
9051  */
9052 void unregister_netdevice_many(struct list_head *head)
9053 {
9054         struct net_device *dev;
9055
9056         if (!list_empty(head)) {
9057                 rollback_registered_many(head);
9058                 list_for_each_entry(dev, head, unreg_list)
9059                         net_set_todo(dev);
9060                 list_del(head);
9061         }
9062 }
9063 EXPORT_SYMBOL(unregister_netdevice_many);
9064
9065 /**
9066  *      unregister_netdev - remove device from the kernel
9067  *      @dev: device
9068  *
9069  *      This function shuts down a device interface and removes it
9070  *      from the kernel tables.
9071  *
9072  *      This is just a wrapper for unregister_netdevice that takes
9073  *      the rtnl semaphore.  In general you want to use this and not
9074  *      unregister_netdevice.
9075  */
9076 void unregister_netdev(struct net_device *dev)
9077 {
9078         rtnl_lock();
9079         unregister_netdevice(dev);
9080         rtnl_unlock();
9081 }
9082 EXPORT_SYMBOL(unregister_netdev);
9083
9084 /**
9085  *      dev_change_net_namespace - move device to different nethost namespace
9086  *      @dev: device
9087  *      @net: network namespace
9088  *      @pat: If not NULL name pattern to try if the current device name
9089  *            is already taken in the destination network namespace.
9090  *
9091  *      This function shuts down a device interface and moves it
9092  *      to a new network namespace. On success 0 is returned, on
9093  *      a failure a netagive errno code is returned.
9094  *
9095  *      Callers must hold the rtnl semaphore.
9096  */
9097
9098 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9099 {
9100         int err, new_nsid, new_ifindex;
9101
9102         ASSERT_RTNL();
9103
9104         /* Don't allow namespace local devices to be moved. */
9105         err = -EINVAL;
9106         if (dev->features & NETIF_F_NETNS_LOCAL)
9107                 goto out;
9108
9109         /* Ensure the device has been registrered */
9110         if (dev->reg_state != NETREG_REGISTERED)
9111                 goto out;
9112
9113         /* Get out if there is nothing todo */
9114         err = 0;
9115         if (net_eq(dev_net(dev), net))
9116                 goto out;
9117
9118         /* Pick the destination device name, and ensure
9119          * we can use it in the destination network namespace.
9120          */
9121         err = -EEXIST;
9122         if (__dev_get_by_name(net, dev->name)) {
9123                 /* We get here if we can't use the current device name */
9124                 if (!pat)
9125                         goto out;
9126                 err = dev_get_valid_name(net, dev, pat);
9127                 if (err < 0)
9128                         goto out;
9129         }
9130
9131         /*
9132          * And now a mini version of register_netdevice unregister_netdevice.
9133          */
9134
9135         /* If device is running close it first. */
9136         dev_close(dev);
9137
9138         /* And unlink it from device chain */
9139         unlist_netdevice(dev);
9140
9141         synchronize_net();
9142
9143         /* Shutdown queueing discipline. */
9144         dev_shutdown(dev);
9145
9146         /* Notify protocols, that we are about to destroy
9147          * this device. They should clean all the things.
9148          *
9149          * Note that dev->reg_state stays at NETREG_REGISTERED.
9150          * This is wanted because this way 8021q and macvlan know
9151          * the device is just moving and can keep their slaves up.
9152          */
9153         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9154         rcu_barrier();
9155
9156         new_nsid = peernet2id_alloc(dev_net(dev), net);
9157         /* If there is an ifindex conflict assign a new one */
9158         if (__dev_get_by_index(net, dev->ifindex))
9159                 new_ifindex = dev_new_index(net);
9160         else
9161                 new_ifindex = dev->ifindex;
9162
9163         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9164                             new_ifindex);
9165
9166         /*
9167          *      Flush the unicast and multicast chains
9168          */
9169         dev_uc_flush(dev);
9170         dev_mc_flush(dev);
9171
9172         /* Send a netdev-removed uevent to the old namespace */
9173         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9174         netdev_adjacent_del_links(dev);
9175
9176         /* Actually switch the network namespace */
9177         dev_net_set(dev, net);
9178         dev->ifindex = new_ifindex;
9179
9180         /* Send a netdev-add uevent to the new namespace */
9181         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9182         netdev_adjacent_add_links(dev);
9183
9184         /* Fixup kobjects */
9185         err = device_rename(&dev->dev, dev->name);
9186         WARN_ON(err);
9187
9188         /* Add the device back in the hashes */
9189         list_netdevice(dev);
9190
9191         /* Notify protocols, that a new device appeared. */
9192         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9193
9194         /*
9195          *      Prevent userspace races by waiting until the network
9196          *      device is fully setup before sending notifications.
9197          */
9198         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9199
9200         synchronize_net();
9201         err = 0;
9202 out:
9203         return err;
9204 }
9205 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9206
9207 static int dev_cpu_dead(unsigned int oldcpu)
9208 {
9209         struct sk_buff **list_skb;
9210         struct sk_buff *skb;
9211         unsigned int cpu;
9212         struct softnet_data *sd, *oldsd, *remsd = NULL;
9213
9214         local_irq_disable();
9215         cpu = smp_processor_id();
9216         sd = &per_cpu(softnet_data, cpu);
9217         oldsd = &per_cpu(softnet_data, oldcpu);
9218
9219         /* Find end of our completion_queue. */
9220         list_skb = &sd->completion_queue;
9221         while (*list_skb)
9222                 list_skb = &(*list_skb)->next;
9223         /* Append completion queue from offline CPU. */
9224         *list_skb = oldsd->completion_queue;
9225         oldsd->completion_queue = NULL;
9226
9227         /* Append output queue from offline CPU. */
9228         if (oldsd->output_queue) {
9229                 *sd->output_queue_tailp = oldsd->output_queue;
9230                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9231                 oldsd->output_queue = NULL;
9232                 oldsd->output_queue_tailp = &oldsd->output_queue;
9233         }
9234         /* Append NAPI poll list from offline CPU, with one exception :
9235          * process_backlog() must be called by cpu owning percpu backlog.
9236          * We properly handle process_queue & input_pkt_queue later.
9237          */
9238         while (!list_empty(&oldsd->poll_list)) {
9239                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9240                                                             struct napi_struct,
9241                                                             poll_list);
9242
9243                 list_del_init(&napi->poll_list);
9244                 if (napi->poll == process_backlog)
9245                         napi->state = 0;
9246                 else
9247                         ____napi_schedule(sd, napi);
9248         }
9249
9250         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9251         local_irq_enable();
9252
9253 #ifdef CONFIG_RPS
9254         remsd = oldsd->rps_ipi_list;
9255         oldsd->rps_ipi_list = NULL;
9256 #endif
9257         /* send out pending IPI's on offline CPU */
9258         net_rps_send_ipi(remsd);
9259
9260         /* Process offline CPU's input_pkt_queue */
9261         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9262                 netif_rx_ni(skb);
9263                 input_queue_head_incr(oldsd);
9264         }
9265         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9266                 netif_rx_ni(skb);
9267                 input_queue_head_incr(oldsd);
9268         }
9269
9270         return 0;
9271 }
9272
9273 /**
9274  *      netdev_increment_features - increment feature set by one
9275  *      @all: current feature set
9276  *      @one: new feature set
9277  *      @mask: mask feature set
9278  *
9279  *      Computes a new feature set after adding a device with feature set
9280  *      @one to the master device with current feature set @all.  Will not
9281  *      enable anything that is off in @mask. Returns the new feature set.
9282  */
9283 netdev_features_t netdev_increment_features(netdev_features_t all,
9284         netdev_features_t one, netdev_features_t mask)
9285 {
9286         if (mask & NETIF_F_HW_CSUM)
9287                 mask |= NETIF_F_CSUM_MASK;
9288         mask |= NETIF_F_VLAN_CHALLENGED;
9289
9290         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9291         all &= one | ~NETIF_F_ALL_FOR_ALL;
9292
9293         /* If one device supports hw checksumming, set for all. */
9294         if (all & NETIF_F_HW_CSUM)
9295                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9296
9297         return all;
9298 }
9299 EXPORT_SYMBOL(netdev_increment_features);
9300
9301 static struct hlist_head * __net_init netdev_create_hash(void)
9302 {
9303         int i;
9304         struct hlist_head *hash;
9305
9306         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9307         if (hash != NULL)
9308                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9309                         INIT_HLIST_HEAD(&hash[i]);
9310
9311         return hash;
9312 }
9313
9314 /* Initialize per network namespace state */
9315 static int __net_init netdev_init(struct net *net)
9316 {
9317         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9318                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9319
9320         if (net != &init_net)
9321                 INIT_LIST_HEAD(&net->dev_base_head);
9322
9323         net->dev_name_head = netdev_create_hash();
9324         if (net->dev_name_head == NULL)
9325                 goto err_name;
9326
9327         net->dev_index_head = netdev_create_hash();
9328         if (net->dev_index_head == NULL)
9329                 goto err_idx;
9330
9331         return 0;
9332
9333 err_idx:
9334         kfree(net->dev_name_head);
9335 err_name:
9336         return -ENOMEM;
9337 }
9338
9339 /**
9340  *      netdev_drivername - network driver for the device
9341  *      @dev: network device
9342  *
9343  *      Determine network driver for device.
9344  */
9345 const char *netdev_drivername(const struct net_device *dev)
9346 {
9347         const struct device_driver *driver;
9348         const struct device *parent;
9349         const char *empty = "";
9350
9351         parent = dev->dev.parent;
9352         if (!parent)
9353                 return empty;
9354
9355         driver = parent->driver;
9356         if (driver && driver->name)
9357                 return driver->name;
9358         return empty;
9359 }
9360
9361 static void __netdev_printk(const char *level, const struct net_device *dev,
9362                             struct va_format *vaf)
9363 {
9364         if (dev && dev->dev.parent) {
9365                 dev_printk_emit(level[1] - '0',
9366                                 dev->dev.parent,
9367                                 "%s %s %s%s: %pV",
9368                                 dev_driver_string(dev->dev.parent),
9369                                 dev_name(dev->dev.parent),
9370                                 netdev_name(dev), netdev_reg_state(dev),
9371                                 vaf);
9372         } else if (dev) {
9373                 printk("%s%s%s: %pV",
9374                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9375         } else {
9376                 printk("%s(NULL net_device): %pV", level, vaf);
9377         }
9378 }
9379
9380 void netdev_printk(const char *level, const struct net_device *dev,
9381                    const char *format, ...)
9382 {
9383         struct va_format vaf;
9384         va_list args;
9385
9386         va_start(args, format);
9387
9388         vaf.fmt = format;
9389         vaf.va = &args;
9390
9391         __netdev_printk(level, dev, &vaf);
9392
9393         va_end(args);
9394 }
9395 EXPORT_SYMBOL(netdev_printk);
9396
9397 #define define_netdev_printk_level(func, level)                 \
9398 void func(const struct net_device *dev, const char *fmt, ...)   \
9399 {                                                               \
9400         struct va_format vaf;                                   \
9401         va_list args;                                           \
9402                                                                 \
9403         va_start(args, fmt);                                    \
9404                                                                 \
9405         vaf.fmt = fmt;                                          \
9406         vaf.va = &args;                                         \
9407                                                                 \
9408         __netdev_printk(level, dev, &vaf);                      \
9409                                                                 \
9410         va_end(args);                                           \
9411 }                                                               \
9412 EXPORT_SYMBOL(func);
9413
9414 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9415 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9416 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9417 define_netdev_printk_level(netdev_err, KERN_ERR);
9418 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9419 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9420 define_netdev_printk_level(netdev_info, KERN_INFO);
9421
9422 static void __net_exit netdev_exit(struct net *net)
9423 {
9424         kfree(net->dev_name_head);
9425         kfree(net->dev_index_head);
9426         if (net != &init_net)
9427                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9428 }
9429
9430 static struct pernet_operations __net_initdata netdev_net_ops = {
9431         .init = netdev_init,
9432         .exit = netdev_exit,
9433 };
9434
9435 static void __net_exit default_device_exit(struct net *net)
9436 {
9437         struct net_device *dev, *aux;
9438         /*
9439          * Push all migratable network devices back to the
9440          * initial network namespace
9441          */
9442         rtnl_lock();
9443         for_each_netdev_safe(net, dev, aux) {
9444                 int err;
9445                 char fb_name[IFNAMSIZ];
9446
9447                 /* Ignore unmoveable devices (i.e. loopback) */
9448                 if (dev->features & NETIF_F_NETNS_LOCAL)
9449                         continue;
9450
9451                 /* Leave virtual devices for the generic cleanup */
9452                 if (dev->rtnl_link_ops)
9453                         continue;
9454
9455                 /* Push remaining network devices to init_net */
9456                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9457                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9458                 if (err) {
9459                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9460                                  __func__, dev->name, err);
9461                         BUG();
9462                 }
9463         }
9464         rtnl_unlock();
9465 }
9466
9467 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9468 {
9469         /* Return with the rtnl_lock held when there are no network
9470          * devices unregistering in any network namespace in net_list.
9471          */
9472         struct net *net;
9473         bool unregistering;
9474         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9475
9476         add_wait_queue(&netdev_unregistering_wq, &wait);
9477         for (;;) {
9478                 unregistering = false;
9479                 rtnl_lock();
9480                 list_for_each_entry(net, net_list, exit_list) {
9481                         if (net->dev_unreg_count > 0) {
9482                                 unregistering = true;
9483                                 break;
9484                         }
9485                 }
9486                 if (!unregistering)
9487                         break;
9488                 __rtnl_unlock();
9489
9490                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9491         }
9492         remove_wait_queue(&netdev_unregistering_wq, &wait);
9493 }
9494
9495 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9496 {
9497         /* At exit all network devices most be removed from a network
9498          * namespace.  Do this in the reverse order of registration.
9499          * Do this across as many network namespaces as possible to
9500          * improve batching efficiency.
9501          */
9502         struct net_device *dev;
9503         struct net *net;
9504         LIST_HEAD(dev_kill_list);
9505
9506         /* To prevent network device cleanup code from dereferencing
9507          * loopback devices or network devices that have been freed
9508          * wait here for all pending unregistrations to complete,
9509          * before unregistring the loopback device and allowing the
9510          * network namespace be freed.
9511          *
9512          * The netdev todo list containing all network devices
9513          * unregistrations that happen in default_device_exit_batch
9514          * will run in the rtnl_unlock() at the end of
9515          * default_device_exit_batch.
9516          */
9517         rtnl_lock_unregistering(net_list);
9518         list_for_each_entry(net, net_list, exit_list) {
9519                 for_each_netdev_reverse(net, dev) {
9520                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9521                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9522                         else
9523                                 unregister_netdevice_queue(dev, &dev_kill_list);
9524                 }
9525         }
9526         unregister_netdevice_many(&dev_kill_list);
9527         rtnl_unlock();
9528 }
9529
9530 static struct pernet_operations __net_initdata default_device_ops = {
9531         .exit = default_device_exit,
9532         .exit_batch = default_device_exit_batch,
9533 };
9534
9535 /*
9536  *      Initialize the DEV module. At boot time this walks the device list and
9537  *      unhooks any devices that fail to initialise (normally hardware not
9538  *      present) and leaves us with a valid list of present and active devices.
9539  *
9540  */
9541
9542 /*
9543  *       This is called single threaded during boot, so no need
9544  *       to take the rtnl semaphore.
9545  */
9546 static int __init net_dev_init(void)
9547 {
9548         int i, rc = -ENOMEM;
9549
9550         BUG_ON(!dev_boot_phase);
9551
9552         if (dev_proc_init())
9553                 goto out;
9554
9555         if (netdev_kobject_init())
9556                 goto out;
9557
9558         INIT_LIST_HEAD(&ptype_all);
9559         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9560                 INIT_LIST_HEAD(&ptype_base[i]);
9561
9562         INIT_LIST_HEAD(&offload_base);
9563
9564         if (register_pernet_subsys(&netdev_net_ops))
9565                 goto out;
9566
9567         /*
9568          *      Initialise the packet receive queues.
9569          */
9570
9571         for_each_possible_cpu(i) {
9572                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9573                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9574
9575                 INIT_WORK(flush, flush_backlog);
9576
9577                 skb_queue_head_init(&sd->input_pkt_queue);
9578                 skb_queue_head_init(&sd->process_queue);
9579 #ifdef CONFIG_XFRM_OFFLOAD
9580                 skb_queue_head_init(&sd->xfrm_backlog);
9581 #endif
9582                 INIT_LIST_HEAD(&sd->poll_list);
9583                 sd->output_queue_tailp = &sd->output_queue;
9584 #ifdef CONFIG_RPS
9585                 sd->csd.func = rps_trigger_softirq;
9586                 sd->csd.info = sd;
9587                 sd->cpu = i;
9588 #endif
9589
9590                 init_gro_hash(&sd->backlog);
9591                 sd->backlog.poll = process_backlog;
9592                 sd->backlog.weight = weight_p;
9593         }
9594
9595         dev_boot_phase = 0;
9596
9597         /* The loopback device is special if any other network devices
9598          * is present in a network namespace the loopback device must
9599          * be present. Since we now dynamically allocate and free the
9600          * loopback device ensure this invariant is maintained by
9601          * keeping the loopback device as the first device on the
9602          * list of network devices.  Ensuring the loopback devices
9603          * is the first device that appears and the last network device
9604          * that disappears.
9605          */
9606         if (register_pernet_device(&loopback_net_ops))
9607                 goto out;
9608
9609         if (register_pernet_device(&default_device_ops))
9610                 goto out;
9611
9612         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9613         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9614
9615         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9616                                        NULL, dev_cpu_dead);
9617         WARN_ON(rc < 0);
9618         rc = 0;
9619 out:
9620         return rc;
9621 }
9622
9623 subsys_initcall(net_dev_init);