]> asedeno.scripts.mit.edu Git - linux.git/blob - net/core/dev.c
89825c1eccdcd56de91f76d09e3b67f9c7e58367
[linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165                                          struct netdev_notifier_info *info);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 static DEFINE_MUTEX(ifalias_mutex);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static seqcount_t devnet_rename_seq;
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202         while (++net->dev_base_seq == 0)
203                 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235         struct net *net = dev_net(dev);
236
237         ASSERT_RTNL();
238
239         write_lock_bh(&dev_base_lock);
240         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242         hlist_add_head_rcu(&dev->index_hlist,
243                            dev_index_hash(net, dev->ifindex));
244         write_unlock_bh(&dev_base_lock);
245
246         dev_base_seq_inc(net);
247 }
248
249 /* Device list removal
250  * caller must respect a RCU grace period before freeing/reusing dev
251  */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254         ASSERT_RTNL();
255
256         /* Unlink dev from the device chain */
257         write_lock_bh(&dev_base_lock);
258         list_del_rcu(&dev->dev_list);
259         hlist_del_rcu(&dev->name_hlist);
260         hlist_del_rcu(&dev->index_hlist);
261         write_unlock_bh(&dev_base_lock);
262
263         dev_base_seq_inc(dev_net(dev));
264 }
265
266 /*
267  *      Our notifier list
268  */
269
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271
272 /*
273  *      Device drivers call our routines to queue packets here. We empty the
274  *      queue in the local softnet handler.
275  */
276
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279
280 #ifdef CONFIG_LOCKDEP
281 /*
282  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
283  * according to dev->type
284  */
285 static const unsigned short netdev_lock_type[] = {
286          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
287          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
288          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
289          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
290          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
291          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
292          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
293          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
294          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
295          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
296          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
297          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
298          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
299          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
300          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
301
302 static const char *const netdev_lock_name[] = {
303         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
304         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
305         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
306         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
307         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
308         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
309         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
310         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
311         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
312         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
313         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
314         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
315         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
316         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
317         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318
319 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
321
322 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
323 {
324         int i;
325
326         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
327                 if (netdev_lock_type[i] == dev_type)
328                         return i;
329         /* the last key is used by default */
330         return ARRAY_SIZE(netdev_lock_type) - 1;
331 }
332
333 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
334                                                  unsigned short dev_type)
335 {
336         int i;
337
338         i = netdev_lock_pos(dev_type);
339         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
340                                    netdev_lock_name[i]);
341 }
342
343 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
344 {
345         int i;
346
347         i = netdev_lock_pos(dev->type);
348         lockdep_set_class_and_name(&dev->addr_list_lock,
349                                    &netdev_addr_lock_key[i],
350                                    netdev_lock_name[i]);
351 }
352 #else
353 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
354                                                  unsigned short dev_type)
355 {
356 }
357 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
358 {
359 }
360 #endif
361
362 /*******************************************************************************
363  *
364  *              Protocol management and registration routines
365  *
366  *******************************************************************************/
367
368
369 /*
370  *      Add a protocol ID to the list. Now that the input handler is
371  *      smarter we can dispense with all the messy stuff that used to be
372  *      here.
373  *
374  *      BEWARE!!! Protocol handlers, mangling input packets,
375  *      MUST BE last in hash buckets and checking protocol handlers
376  *      MUST start from promiscuous ptype_all chain in net_bh.
377  *      It is true now, do not change it.
378  *      Explanation follows: if protocol handler, mangling packet, will
379  *      be the first on list, it is not able to sense, that packet
380  *      is cloned and should be copied-on-write, so that it will
381  *      change it and subsequent readers will get broken packet.
382  *                                                      --ANK (980803)
383  */
384
385 static inline struct list_head *ptype_head(const struct packet_type *pt)
386 {
387         if (pt->type == htons(ETH_P_ALL))
388                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
389         else
390                 return pt->dev ? &pt->dev->ptype_specific :
391                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
392 }
393
394 /**
395  *      dev_add_pack - add packet handler
396  *      @pt: packet type declaration
397  *
398  *      Add a protocol handler to the networking stack. The passed &packet_type
399  *      is linked into kernel lists and may not be freed until it has been
400  *      removed from the kernel lists.
401  *
402  *      This call does not sleep therefore it can not
403  *      guarantee all CPU's that are in middle of receiving packets
404  *      will see the new packet type (until the next received packet).
405  */
406
407 void dev_add_pack(struct packet_type *pt)
408 {
409         struct list_head *head = ptype_head(pt);
410
411         spin_lock(&ptype_lock);
412         list_add_rcu(&pt->list, head);
413         spin_unlock(&ptype_lock);
414 }
415 EXPORT_SYMBOL(dev_add_pack);
416
417 /**
418  *      __dev_remove_pack        - remove packet handler
419  *      @pt: packet type declaration
420  *
421  *      Remove a protocol handler that was previously added to the kernel
422  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
423  *      from the kernel lists and can be freed or reused once this function
424  *      returns.
425  *
426  *      The packet type might still be in use by receivers
427  *      and must not be freed until after all the CPU's have gone
428  *      through a quiescent state.
429  */
430 void __dev_remove_pack(struct packet_type *pt)
431 {
432         struct list_head *head = ptype_head(pt);
433         struct packet_type *pt1;
434
435         spin_lock(&ptype_lock);
436
437         list_for_each_entry(pt1, head, list) {
438                 if (pt == pt1) {
439                         list_del_rcu(&pt->list);
440                         goto out;
441                 }
442         }
443
444         pr_warn("dev_remove_pack: %p not found\n", pt);
445 out:
446         spin_unlock(&ptype_lock);
447 }
448 EXPORT_SYMBOL(__dev_remove_pack);
449
450 /**
451  *      dev_remove_pack  - remove packet handler
452  *      @pt: packet type declaration
453  *
454  *      Remove a protocol handler that was previously added to the kernel
455  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
456  *      from the kernel lists and can be freed or reused once this function
457  *      returns.
458  *
459  *      This call sleeps to guarantee that no CPU is looking at the packet
460  *      type after return.
461  */
462 void dev_remove_pack(struct packet_type *pt)
463 {
464         __dev_remove_pack(pt);
465
466         synchronize_net();
467 }
468 EXPORT_SYMBOL(dev_remove_pack);
469
470
471 /**
472  *      dev_add_offload - register offload handlers
473  *      @po: protocol offload declaration
474  *
475  *      Add protocol offload handlers to the networking stack. The passed
476  *      &proto_offload is linked into kernel lists and may not be freed until
477  *      it has been removed from the kernel lists.
478  *
479  *      This call does not sleep therefore it can not
480  *      guarantee all CPU's that are in middle of receiving packets
481  *      will see the new offload handlers (until the next received packet).
482  */
483 void dev_add_offload(struct packet_offload *po)
484 {
485         struct packet_offload *elem;
486
487         spin_lock(&offload_lock);
488         list_for_each_entry(elem, &offload_base, list) {
489                 if (po->priority < elem->priority)
490                         break;
491         }
492         list_add_rcu(&po->list, elem->list.prev);
493         spin_unlock(&offload_lock);
494 }
495 EXPORT_SYMBOL(dev_add_offload);
496
497 /**
498  *      __dev_remove_offload     - remove offload handler
499  *      @po: packet offload declaration
500  *
501  *      Remove a protocol offload handler that was previously added to the
502  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
503  *      is removed from the kernel lists and can be freed or reused once this
504  *      function returns.
505  *
506  *      The packet type might still be in use by receivers
507  *      and must not be freed until after all the CPU's have gone
508  *      through a quiescent state.
509  */
510 static void __dev_remove_offload(struct packet_offload *po)
511 {
512         struct list_head *head = &offload_base;
513         struct packet_offload *po1;
514
515         spin_lock(&offload_lock);
516
517         list_for_each_entry(po1, head, list) {
518                 if (po == po1) {
519                         list_del_rcu(&po->list);
520                         goto out;
521                 }
522         }
523
524         pr_warn("dev_remove_offload: %p not found\n", po);
525 out:
526         spin_unlock(&offload_lock);
527 }
528
529 /**
530  *      dev_remove_offload       - remove packet offload handler
531  *      @po: packet offload declaration
532  *
533  *      Remove a packet offload handler that was previously added to the kernel
534  *      offload handlers by dev_add_offload(). The passed &offload_type is
535  *      removed from the kernel lists and can be freed or reused once this
536  *      function returns.
537  *
538  *      This call sleeps to guarantee that no CPU is looking at the packet
539  *      type after return.
540  */
541 void dev_remove_offload(struct packet_offload *po)
542 {
543         __dev_remove_offload(po);
544
545         synchronize_net();
546 }
547 EXPORT_SYMBOL(dev_remove_offload);
548
549 /******************************************************************************
550  *
551  *                    Device Boot-time Settings Routines
552  *
553  ******************************************************************************/
554
555 /* Boot time configuration table */
556 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
557
558 /**
559  *      netdev_boot_setup_add   - add new setup entry
560  *      @name: name of the device
561  *      @map: configured settings for the device
562  *
563  *      Adds new setup entry to the dev_boot_setup list.  The function
564  *      returns 0 on error and 1 on success.  This is a generic routine to
565  *      all netdevices.
566  */
567 static int netdev_boot_setup_add(char *name, struct ifmap *map)
568 {
569         struct netdev_boot_setup *s;
570         int i;
571
572         s = dev_boot_setup;
573         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
574                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
575                         memset(s[i].name, 0, sizeof(s[i].name));
576                         strlcpy(s[i].name, name, IFNAMSIZ);
577                         memcpy(&s[i].map, map, sizeof(s[i].map));
578                         break;
579                 }
580         }
581
582         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
583 }
584
585 /**
586  * netdev_boot_setup_check      - check boot time settings
587  * @dev: the netdevice
588  *
589  * Check boot time settings for the device.
590  * The found settings are set for the device to be used
591  * later in the device probing.
592  * Returns 0 if no settings found, 1 if they are.
593  */
594 int netdev_boot_setup_check(struct net_device *dev)
595 {
596         struct netdev_boot_setup *s = dev_boot_setup;
597         int i;
598
599         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
600                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
601                     !strcmp(dev->name, s[i].name)) {
602                         dev->irq = s[i].map.irq;
603                         dev->base_addr = s[i].map.base_addr;
604                         dev->mem_start = s[i].map.mem_start;
605                         dev->mem_end = s[i].map.mem_end;
606                         return 1;
607                 }
608         }
609         return 0;
610 }
611 EXPORT_SYMBOL(netdev_boot_setup_check);
612
613
614 /**
615  * netdev_boot_base     - get address from boot time settings
616  * @prefix: prefix for network device
617  * @unit: id for network device
618  *
619  * Check boot time settings for the base address of device.
620  * The found settings are set for the device to be used
621  * later in the device probing.
622  * Returns 0 if no settings found.
623  */
624 unsigned long netdev_boot_base(const char *prefix, int unit)
625 {
626         const struct netdev_boot_setup *s = dev_boot_setup;
627         char name[IFNAMSIZ];
628         int i;
629
630         sprintf(name, "%s%d", prefix, unit);
631
632         /*
633          * If device already registered then return base of 1
634          * to indicate not to probe for this interface
635          */
636         if (__dev_get_by_name(&init_net, name))
637                 return 1;
638
639         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
640                 if (!strcmp(name, s[i].name))
641                         return s[i].map.base_addr;
642         return 0;
643 }
644
645 /*
646  * Saves at boot time configured settings for any netdevice.
647  */
648 int __init netdev_boot_setup(char *str)
649 {
650         int ints[5];
651         struct ifmap map;
652
653         str = get_options(str, ARRAY_SIZE(ints), ints);
654         if (!str || !*str)
655                 return 0;
656
657         /* Save settings */
658         memset(&map, 0, sizeof(map));
659         if (ints[0] > 0)
660                 map.irq = ints[1];
661         if (ints[0] > 1)
662                 map.base_addr = ints[2];
663         if (ints[0] > 2)
664                 map.mem_start = ints[3];
665         if (ints[0] > 3)
666                 map.mem_end = ints[4];
667
668         /* Add new entry to the list */
669         return netdev_boot_setup_add(str, &map);
670 }
671
672 __setup("netdev=", netdev_boot_setup);
673
674 /*******************************************************************************
675  *
676  *                          Device Interface Subroutines
677  *
678  *******************************************************************************/
679
680 /**
681  *      dev_get_iflink  - get 'iflink' value of a interface
682  *      @dev: targeted interface
683  *
684  *      Indicates the ifindex the interface is linked to.
685  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
686  */
687
688 int dev_get_iflink(const struct net_device *dev)
689 {
690         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
691                 return dev->netdev_ops->ndo_get_iflink(dev);
692
693         return dev->ifindex;
694 }
695 EXPORT_SYMBOL(dev_get_iflink);
696
697 /**
698  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
699  *      @dev: targeted interface
700  *      @skb: The packet.
701  *
702  *      For better visibility of tunnel traffic OVS needs to retrieve
703  *      egress tunnel information for a packet. Following API allows
704  *      user to get this info.
705  */
706 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
707 {
708         struct ip_tunnel_info *info;
709
710         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
711                 return -EINVAL;
712
713         info = skb_tunnel_info_unclone(skb);
714         if (!info)
715                 return -ENOMEM;
716         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
717                 return -EINVAL;
718
719         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
720 }
721 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
722
723 /**
724  *      __dev_get_by_name       - find a device by its name
725  *      @net: the applicable net namespace
726  *      @name: name to find
727  *
728  *      Find an interface by name. Must be called under RTNL semaphore
729  *      or @dev_base_lock. If the name is found a pointer to the device
730  *      is returned. If the name is not found then %NULL is returned. The
731  *      reference counters are not incremented so the caller must be
732  *      careful with locks.
733  */
734
735 struct net_device *__dev_get_by_name(struct net *net, const char *name)
736 {
737         struct net_device *dev;
738         struct hlist_head *head = dev_name_hash(net, name);
739
740         hlist_for_each_entry(dev, head, name_hlist)
741                 if (!strncmp(dev->name, name, IFNAMSIZ))
742                         return dev;
743
744         return NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_name);
747
748 /**
749  * dev_get_by_name_rcu  - find a device by its name
750  * @net: the applicable net namespace
751  * @name: name to find
752  *
753  * Find an interface by name.
754  * If the name is found a pointer to the device is returned.
755  * If the name is not found then %NULL is returned.
756  * The reference counters are not incremented so the caller must be
757  * careful with locks. The caller must hold RCU lock.
758  */
759
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 {
762         struct net_device *dev;
763         struct hlist_head *head = dev_name_hash(net, name);
764
765         hlist_for_each_entry_rcu(dev, head, name_hlist)
766                 if (!strncmp(dev->name, name, IFNAMSIZ))
767                         return dev;
768
769         return NULL;
770 }
771 EXPORT_SYMBOL(dev_get_by_name_rcu);
772
773 /**
774  *      dev_get_by_name         - find a device by its name
775  *      @net: the applicable net namespace
776  *      @name: name to find
777  *
778  *      Find an interface by name. This can be called from any
779  *      context and does its own locking. The returned handle has
780  *      the usage count incremented and the caller must use dev_put() to
781  *      release it when it is no longer needed. %NULL is returned if no
782  *      matching device is found.
783  */
784
785 struct net_device *dev_get_by_name(struct net *net, const char *name)
786 {
787         struct net_device *dev;
788
789         rcu_read_lock();
790         dev = dev_get_by_name_rcu(net, name);
791         if (dev)
792                 dev_hold(dev);
793         rcu_read_unlock();
794         return dev;
795 }
796 EXPORT_SYMBOL(dev_get_by_name);
797
798 /**
799  *      __dev_get_by_index - find a device by its ifindex
800  *      @net: the applicable net namespace
801  *      @ifindex: index of device
802  *
803  *      Search for an interface by index. Returns %NULL if the device
804  *      is not found or a pointer to the device. The device has not
805  *      had its reference counter increased so the caller must be careful
806  *      about locking. The caller must hold either the RTNL semaphore
807  *      or @dev_base_lock.
808  */
809
810 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
811 {
812         struct net_device *dev;
813         struct hlist_head *head = dev_index_hash(net, ifindex);
814
815         hlist_for_each_entry(dev, head, index_hlist)
816                 if (dev->ifindex == ifindex)
817                         return dev;
818
819         return NULL;
820 }
821 EXPORT_SYMBOL(__dev_get_by_index);
822
823 /**
824  *      dev_get_by_index_rcu - find a device by its ifindex
825  *      @net: the applicable net namespace
826  *      @ifindex: index of device
827  *
828  *      Search for an interface by index. Returns %NULL if the device
829  *      is not found or a pointer to the device. The device has not
830  *      had its reference counter increased so the caller must be careful
831  *      about locking. The caller must hold RCU lock.
832  */
833
834 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
835 {
836         struct net_device *dev;
837         struct hlist_head *head = dev_index_hash(net, ifindex);
838
839         hlist_for_each_entry_rcu(dev, head, index_hlist)
840                 if (dev->ifindex == ifindex)
841                         return dev;
842
843         return NULL;
844 }
845 EXPORT_SYMBOL(dev_get_by_index_rcu);
846
847
848 /**
849  *      dev_get_by_index - find a device by its ifindex
850  *      @net: the applicable net namespace
851  *      @ifindex: index of device
852  *
853  *      Search for an interface by index. Returns NULL if the device
854  *      is not found or a pointer to the device. The device returned has
855  *      had a reference added and the pointer is safe until the user calls
856  *      dev_put to indicate they have finished with it.
857  */
858
859 struct net_device *dev_get_by_index(struct net *net, int ifindex)
860 {
861         struct net_device *dev;
862
863         rcu_read_lock();
864         dev = dev_get_by_index_rcu(net, ifindex);
865         if (dev)
866                 dev_hold(dev);
867         rcu_read_unlock();
868         return dev;
869 }
870 EXPORT_SYMBOL(dev_get_by_index);
871
872 /**
873  *      dev_get_by_napi_id - find a device by napi_id
874  *      @napi_id: ID of the NAPI struct
875  *
876  *      Search for an interface by NAPI ID. Returns %NULL if the device
877  *      is not found or a pointer to the device. The device has not had
878  *      its reference counter increased so the caller must be careful
879  *      about locking. The caller must hold RCU lock.
880  */
881
882 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
883 {
884         struct napi_struct *napi;
885
886         WARN_ON_ONCE(!rcu_read_lock_held());
887
888         if (napi_id < MIN_NAPI_ID)
889                 return NULL;
890
891         napi = napi_by_id(napi_id);
892
893         return napi ? napi->dev : NULL;
894 }
895 EXPORT_SYMBOL(dev_get_by_napi_id);
896
897 /**
898  *      netdev_get_name - get a netdevice name, knowing its ifindex.
899  *      @net: network namespace
900  *      @name: a pointer to the buffer where the name will be stored.
901  *      @ifindex: the ifindex of the interface to get the name from.
902  *
903  *      The use of raw_seqcount_begin() and cond_resched() before
904  *      retrying is required as we want to give the writers a chance
905  *      to complete when CONFIG_PREEMPT is not set.
906  */
907 int netdev_get_name(struct net *net, char *name, int ifindex)
908 {
909         struct net_device *dev;
910         unsigned int seq;
911
912 retry:
913         seq = raw_seqcount_begin(&devnet_rename_seq);
914         rcu_read_lock();
915         dev = dev_get_by_index_rcu(net, ifindex);
916         if (!dev) {
917                 rcu_read_unlock();
918                 return -ENODEV;
919         }
920
921         strcpy(name, dev->name);
922         rcu_read_unlock();
923         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
924                 cond_resched();
925                 goto retry;
926         }
927
928         return 0;
929 }
930
931 /**
932  *      dev_getbyhwaddr_rcu - find a device by its hardware address
933  *      @net: the applicable net namespace
934  *      @type: media type of device
935  *      @ha: hardware address
936  *
937  *      Search for an interface by MAC address. Returns NULL if the device
938  *      is not found or a pointer to the device.
939  *      The caller must hold RCU or RTNL.
940  *      The returned device has not had its ref count increased
941  *      and the caller must therefore be careful about locking
942  *
943  */
944
945 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
946                                        const char *ha)
947 {
948         struct net_device *dev;
949
950         for_each_netdev_rcu(net, dev)
951                 if (dev->type == type &&
952                     !memcmp(dev->dev_addr, ha, dev->addr_len))
953                         return dev;
954
955         return NULL;
956 }
957 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
958
959 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
960 {
961         struct net_device *dev;
962
963         ASSERT_RTNL();
964         for_each_netdev(net, dev)
965                 if (dev->type == type)
966                         return dev;
967
968         return NULL;
969 }
970 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
971
972 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973 {
974         struct net_device *dev, *ret = NULL;
975
976         rcu_read_lock();
977         for_each_netdev_rcu(net, dev)
978                 if (dev->type == type) {
979                         dev_hold(dev);
980                         ret = dev;
981                         break;
982                 }
983         rcu_read_unlock();
984         return ret;
985 }
986 EXPORT_SYMBOL(dev_getfirstbyhwtype);
987
988 /**
989  *      __dev_get_by_flags - find any device with given flags
990  *      @net: the applicable net namespace
991  *      @if_flags: IFF_* values
992  *      @mask: bitmask of bits in if_flags to check
993  *
994  *      Search for any interface with the given flags. Returns NULL if a device
995  *      is not found or a pointer to the device. Must be called inside
996  *      rtnl_lock(), and result refcount is unchanged.
997  */
998
999 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000                                       unsigned short mask)
1001 {
1002         struct net_device *dev, *ret;
1003
1004         ASSERT_RTNL();
1005
1006         ret = NULL;
1007         for_each_netdev(net, dev) {
1008                 if (((dev->flags ^ if_flags) & mask) == 0) {
1009                         ret = dev;
1010                         break;
1011                 }
1012         }
1013         return ret;
1014 }
1015 EXPORT_SYMBOL(__dev_get_by_flags);
1016
1017 /**
1018  *      dev_valid_name - check if name is okay for network device
1019  *      @name: name string
1020  *
1021  *      Network device names need to be valid file names to
1022  *      to allow sysfs to work.  We also disallow any kind of
1023  *      whitespace.
1024  */
1025 bool dev_valid_name(const char *name)
1026 {
1027         if (*name == '\0')
1028                 return false;
1029         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030                 return false;
1031         if (!strcmp(name, ".") || !strcmp(name, ".."))
1032                 return false;
1033
1034         while (*name) {
1035                 if (*name == '/' || *name == ':' || isspace(*name))
1036                         return false;
1037                 name++;
1038         }
1039         return true;
1040 }
1041 EXPORT_SYMBOL(dev_valid_name);
1042
1043 /**
1044  *      __dev_alloc_name - allocate a name for a device
1045  *      @net: network namespace to allocate the device name in
1046  *      @name: name format string
1047  *      @buf:  scratch buffer and result name string
1048  *
1049  *      Passed a format string - eg "lt%d" it will try and find a suitable
1050  *      id. It scans list of devices to build up a free map, then chooses
1051  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1052  *      while allocating the name and adding the device in order to avoid
1053  *      duplicates.
1054  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055  *      Returns the number of the unit assigned or a negative errno code.
1056  */
1057
1058 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1059 {
1060         int i = 0;
1061         const char *p;
1062         const int max_netdevices = 8*PAGE_SIZE;
1063         unsigned long *inuse;
1064         struct net_device *d;
1065
1066         if (!dev_valid_name(name))
1067                 return -EINVAL;
1068
1069         p = strchr(name, '%');
1070         if (p) {
1071                 /*
1072                  * Verify the string as this thing may have come from
1073                  * the user.  There must be either one "%d" and no other "%"
1074                  * characters.
1075                  */
1076                 if (p[1] != 'd' || strchr(p + 2, '%'))
1077                         return -EINVAL;
1078
1079                 /* Use one page as a bit array of possible slots */
1080                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1081                 if (!inuse)
1082                         return -ENOMEM;
1083
1084                 for_each_netdev(net, d) {
1085                         if (!sscanf(d->name, name, &i))
1086                                 continue;
1087                         if (i < 0 || i >= max_netdevices)
1088                                 continue;
1089
1090                         /*  avoid cases where sscanf is not exact inverse of printf */
1091                         snprintf(buf, IFNAMSIZ, name, i);
1092                         if (!strncmp(buf, d->name, IFNAMSIZ))
1093                                 set_bit(i, inuse);
1094                 }
1095
1096                 i = find_first_zero_bit(inuse, max_netdevices);
1097                 free_page((unsigned long) inuse);
1098         }
1099
1100         snprintf(buf, IFNAMSIZ, name, i);
1101         if (!__dev_get_by_name(net, buf))
1102                 return i;
1103
1104         /* It is possible to run out of possible slots
1105          * when the name is long and there isn't enough space left
1106          * for the digits, or if all bits are used.
1107          */
1108         return -ENFILE;
1109 }
1110
1111 static int dev_alloc_name_ns(struct net *net,
1112                              struct net_device *dev,
1113                              const char *name)
1114 {
1115         char buf[IFNAMSIZ];
1116         int ret;
1117
1118         BUG_ON(!net);
1119         ret = __dev_alloc_name(net, name, buf);
1120         if (ret >= 0)
1121                 strlcpy(dev->name, buf, IFNAMSIZ);
1122         return ret;
1123 }
1124
1125 /**
1126  *      dev_alloc_name - allocate a name for a device
1127  *      @dev: device
1128  *      @name: name format string
1129  *
1130  *      Passed a format string - eg "lt%d" it will try and find a suitable
1131  *      id. It scans list of devices to build up a free map, then chooses
1132  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1133  *      while allocating the name and adding the device in order to avoid
1134  *      duplicates.
1135  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1136  *      Returns the number of the unit assigned or a negative errno code.
1137  */
1138
1139 int dev_alloc_name(struct net_device *dev, const char *name)
1140 {
1141         return dev_alloc_name_ns(dev_net(dev), dev, name);
1142 }
1143 EXPORT_SYMBOL(dev_alloc_name);
1144
1145 int dev_get_valid_name(struct net *net, struct net_device *dev,
1146                        const char *name)
1147 {
1148         BUG_ON(!net);
1149
1150         if (!dev_valid_name(name))
1151                 return -EINVAL;
1152
1153         if (strchr(name, '%'))
1154                 return dev_alloc_name_ns(net, dev, name);
1155         else if (__dev_get_by_name(net, name))
1156                 return -EEXIST;
1157         else if (dev->name != name)
1158                 strlcpy(dev->name, name, IFNAMSIZ);
1159
1160         return 0;
1161 }
1162 EXPORT_SYMBOL(dev_get_valid_name);
1163
1164 /**
1165  *      dev_change_name - change name of a device
1166  *      @dev: device
1167  *      @newname: name (or format string) must be at least IFNAMSIZ
1168  *
1169  *      Change name of a device, can pass format strings "eth%d".
1170  *      for wildcarding.
1171  */
1172 int dev_change_name(struct net_device *dev, const char *newname)
1173 {
1174         unsigned char old_assign_type;
1175         char oldname[IFNAMSIZ];
1176         int err = 0;
1177         int ret;
1178         struct net *net;
1179
1180         ASSERT_RTNL();
1181         BUG_ON(!dev_net(dev));
1182
1183         net = dev_net(dev);
1184         if (dev->flags & IFF_UP)
1185                 return -EBUSY;
1186
1187         write_seqcount_begin(&devnet_rename_seq);
1188
1189         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1190                 write_seqcount_end(&devnet_rename_seq);
1191                 return 0;
1192         }
1193
1194         memcpy(oldname, dev->name, IFNAMSIZ);
1195
1196         err = dev_get_valid_name(net, dev, newname);
1197         if (err < 0) {
1198                 write_seqcount_end(&devnet_rename_seq);
1199                 return err;
1200         }
1201
1202         if (oldname[0] && !strchr(oldname, '%'))
1203                 netdev_info(dev, "renamed from %s\n", oldname);
1204
1205         old_assign_type = dev->name_assign_type;
1206         dev->name_assign_type = NET_NAME_RENAMED;
1207
1208 rollback:
1209         ret = device_rename(&dev->dev, dev->name);
1210         if (ret) {
1211                 memcpy(dev->name, oldname, IFNAMSIZ);
1212                 dev->name_assign_type = old_assign_type;
1213                 write_seqcount_end(&devnet_rename_seq);
1214                 return ret;
1215         }
1216
1217         write_seqcount_end(&devnet_rename_seq);
1218
1219         netdev_adjacent_rename_links(dev, oldname);
1220
1221         write_lock_bh(&dev_base_lock);
1222         hlist_del_rcu(&dev->name_hlist);
1223         write_unlock_bh(&dev_base_lock);
1224
1225         synchronize_rcu();
1226
1227         write_lock_bh(&dev_base_lock);
1228         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1229         write_unlock_bh(&dev_base_lock);
1230
1231         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1232         ret = notifier_to_errno(ret);
1233
1234         if (ret) {
1235                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1236                 if (err >= 0) {
1237                         err = ret;
1238                         write_seqcount_begin(&devnet_rename_seq);
1239                         memcpy(dev->name, oldname, IFNAMSIZ);
1240                         memcpy(oldname, newname, IFNAMSIZ);
1241                         dev->name_assign_type = old_assign_type;
1242                         old_assign_type = NET_NAME_RENAMED;
1243                         goto rollback;
1244                 } else {
1245                         pr_err("%s: name change rollback failed: %d\n",
1246                                dev->name, ret);
1247                 }
1248         }
1249
1250         return err;
1251 }
1252
1253 /**
1254  *      dev_set_alias - change ifalias of a device
1255  *      @dev: device
1256  *      @alias: name up to IFALIASZ
1257  *      @len: limit of bytes to copy from info
1258  *
1259  *      Set ifalias for a device,
1260  */
1261 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1262 {
1263         struct dev_ifalias *new_alias = NULL;
1264
1265         if (len >= IFALIASZ)
1266                 return -EINVAL;
1267
1268         if (len) {
1269                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1270                 if (!new_alias)
1271                         return -ENOMEM;
1272
1273                 memcpy(new_alias->ifalias, alias, len);
1274                 new_alias->ifalias[len] = 0;
1275         }
1276
1277         mutex_lock(&ifalias_mutex);
1278         rcu_swap_protected(dev->ifalias, new_alias,
1279                            mutex_is_locked(&ifalias_mutex));
1280         mutex_unlock(&ifalias_mutex);
1281
1282         if (new_alias)
1283                 kfree_rcu(new_alias, rcuhead);
1284
1285         return len;
1286 }
1287 EXPORT_SYMBOL(dev_set_alias);
1288
1289 /**
1290  *      dev_get_alias - get ifalias of a device
1291  *      @dev: device
1292  *      @name: buffer to store name of ifalias
1293  *      @len: size of buffer
1294  *
1295  *      get ifalias for a device.  Caller must make sure dev cannot go
1296  *      away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300         const struct dev_ifalias *alias;
1301         int ret = 0;
1302
1303         rcu_read_lock();
1304         alias = rcu_dereference(dev->ifalias);
1305         if (alias)
1306                 ret = snprintf(name, len, "%s", alias->ifalias);
1307         rcu_read_unlock();
1308
1309         return ret;
1310 }
1311
1312 /**
1313  *      netdev_features_change - device changes features
1314  *      @dev: device to cause notification
1315  *
1316  *      Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323
1324 /**
1325  *      netdev_state_change - device changes state
1326  *      @dev: device to cause notification
1327  *
1328  *      Called to indicate a device has changed state. This function calls
1329  *      the notifier chains for netdev_chain and sends a NEWLINK message
1330  *      to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334         if (dev->flags & IFF_UP) {
1335                 struct netdev_notifier_change_info change_info = {
1336                         .info.dev = dev,
1337                 };
1338
1339                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1340                                               &change_info.info);
1341                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342         }
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358         rtnl_lock();
1359         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361         rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364
1365 static int __dev_open(struct net_device *dev)
1366 {
1367         const struct net_device_ops *ops = dev->netdev_ops;
1368         int ret;
1369
1370         ASSERT_RTNL();
1371
1372         if (!netif_device_present(dev))
1373                 return -ENODEV;
1374
1375         /* Block netpoll from trying to do any rx path servicing.
1376          * If we don't do this there is a chance ndo_poll_controller
1377          * or ndo_poll may be running while we open the device
1378          */
1379         netpoll_poll_disable(dev);
1380
1381         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382         ret = notifier_to_errno(ret);
1383         if (ret)
1384                 return ret;
1385
1386         set_bit(__LINK_STATE_START, &dev->state);
1387
1388         if (ops->ndo_validate_addr)
1389                 ret = ops->ndo_validate_addr(dev);
1390
1391         if (!ret && ops->ndo_open)
1392                 ret = ops->ndo_open(dev);
1393
1394         netpoll_poll_enable(dev);
1395
1396         if (ret)
1397                 clear_bit(__LINK_STATE_START, &dev->state);
1398         else {
1399                 dev->flags |= IFF_UP;
1400                 dev_set_rx_mode(dev);
1401                 dev_activate(dev);
1402                 add_device_randomness(dev->dev_addr, dev->addr_len);
1403         }
1404
1405         return ret;
1406 }
1407
1408 /**
1409  *      dev_open        - prepare an interface for use.
1410  *      @dev:   device to open
1411  *
1412  *      Takes a device from down to up state. The device's private open
1413  *      function is invoked and then the multicast lists are loaded. Finally
1414  *      the device is moved into the up state and a %NETDEV_UP message is
1415  *      sent to the netdev notifier chain.
1416  *
1417  *      Calling this function on an active interface is a nop. On a failure
1418  *      a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422         int ret;
1423
1424         if (dev->flags & IFF_UP)
1425                 return 0;
1426
1427         ret = __dev_open(dev);
1428         if (ret < 0)
1429                 return ret;
1430
1431         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432         call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434         return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440         struct net_device *dev;
1441
1442         ASSERT_RTNL();
1443         might_sleep();
1444
1445         list_for_each_entry(dev, head, close_list) {
1446                 /* Temporarily disable netpoll until the interface is down */
1447                 netpoll_poll_disable(dev);
1448
1449                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450
1451                 clear_bit(__LINK_STATE_START, &dev->state);
1452
1453                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454                  * can be even on different cpu. So just clear netif_running().
1455                  *
1456                  * dev->stop() will invoke napi_disable() on all of it's
1457                  * napi_struct instances on this device.
1458                  */
1459                 smp_mb__after_atomic(); /* Commit netif_running(). */
1460         }
1461
1462         dev_deactivate_many(head);
1463
1464         list_for_each_entry(dev, head, close_list) {
1465                 const struct net_device_ops *ops = dev->netdev_ops;
1466
1467                 /*
1468                  *      Call the device specific close. This cannot fail.
1469                  *      Only if device is UP
1470                  *
1471                  *      We allow it to be called even after a DETACH hot-plug
1472                  *      event.
1473                  */
1474                 if (ops->ndo_stop)
1475                         ops->ndo_stop(dev);
1476
1477                 dev->flags &= ~IFF_UP;
1478                 netpoll_poll_enable(dev);
1479         }
1480 }
1481
1482 static void __dev_close(struct net_device *dev)
1483 {
1484         LIST_HEAD(single);
1485
1486         list_add(&dev->close_list, &single);
1487         __dev_close_many(&single);
1488         list_del(&single);
1489 }
1490
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493         struct net_device *dev, *tmp;
1494
1495         /* Remove the devices that don't need to be closed */
1496         list_for_each_entry_safe(dev, tmp, head, close_list)
1497                 if (!(dev->flags & IFF_UP))
1498                         list_del_init(&dev->close_list);
1499
1500         __dev_close_many(head);
1501
1502         list_for_each_entry_safe(dev, tmp, head, close_list) {
1503                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1505                 if (unlink)
1506                         list_del_init(&dev->close_list);
1507         }
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510
1511 /**
1512  *      dev_close - shutdown an interface.
1513  *      @dev: device to shutdown
1514  *
1515  *      This function moves an active device into down state. A
1516  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *      chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522         if (dev->flags & IFF_UP) {
1523                 LIST_HEAD(single);
1524
1525                 list_add(&dev->close_list, &single);
1526                 dev_close_many(&single, true);
1527                 list_del(&single);
1528         }
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531
1532
1533 /**
1534  *      dev_disable_lro - disable Large Receive Offload on a device
1535  *      @dev: device
1536  *
1537  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *      called under RTNL.  This is needed if received packets may be
1539  *      forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543         struct net_device *lower_dev;
1544         struct list_head *iter;
1545
1546         dev->wanted_features &= ~NETIF_F_LRO;
1547         netdev_update_features(dev);
1548
1549         if (unlikely(dev->features & NETIF_F_LRO))
1550                 netdev_WARN(dev, "failed to disable LRO!\n");
1551
1552         netdev_for_each_lower_dev(dev, lower_dev, iter)
1553                 dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556
1557 /**
1558  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *      @dev: device
1560  *
1561  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *      called under RTNL.  This is needed if Generic XDP is installed on
1563  *      the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567         dev->wanted_features &= ~NETIF_F_GRO_HW;
1568         netdev_update_features(dev);
1569
1570         if (unlikely(dev->features & NETIF_F_GRO_HW))
1571                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573
1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1575 {
1576 #define N(val)                                          \
1577         case NETDEV_##val:                              \
1578                 return "NETDEV_" __stringify(val);
1579         switch (cmd) {
1580         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1587         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1588         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1589         }
1590 #undef N
1591         return "UNKNOWN_NETDEV_EVENT";
1592 }
1593 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1594
1595 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1596                                    struct net_device *dev)
1597 {
1598         struct netdev_notifier_info info = {
1599                 .dev = dev,
1600         };
1601
1602         return nb->notifier_call(nb, val, &info);
1603 }
1604
1605 static int dev_boot_phase = 1;
1606
1607 /**
1608  * register_netdevice_notifier - register a network notifier block
1609  * @nb: notifier
1610  *
1611  * Register a notifier to be called when network device events occur.
1612  * The notifier passed is linked into the kernel structures and must
1613  * not be reused until it has been unregistered. A negative errno code
1614  * is returned on a failure.
1615  *
1616  * When registered all registration and up events are replayed
1617  * to the new notifier to allow device to have a race free
1618  * view of the network device list.
1619  */
1620
1621 int register_netdevice_notifier(struct notifier_block *nb)
1622 {
1623         struct net_device *dev;
1624         struct net_device *last;
1625         struct net *net;
1626         int err;
1627
1628         /* Close race with setup_net() and cleanup_net() */
1629         down_write(&pernet_ops_rwsem);
1630         rtnl_lock();
1631         err = raw_notifier_chain_register(&netdev_chain, nb);
1632         if (err)
1633                 goto unlock;
1634         if (dev_boot_phase)
1635                 goto unlock;
1636         for_each_net(net) {
1637                 for_each_netdev(net, dev) {
1638                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639                         err = notifier_to_errno(err);
1640                         if (err)
1641                                 goto rollback;
1642
1643                         if (!(dev->flags & IFF_UP))
1644                                 continue;
1645
1646                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1647                 }
1648         }
1649
1650 unlock:
1651         rtnl_unlock();
1652         up_write(&pernet_ops_rwsem);
1653         return err;
1654
1655 rollback:
1656         last = dev;
1657         for_each_net(net) {
1658                 for_each_netdev(net, dev) {
1659                         if (dev == last)
1660                                 goto outroll;
1661
1662                         if (dev->flags & IFF_UP) {
1663                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664                                                         dev);
1665                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666                         }
1667                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1668                 }
1669         }
1670
1671 outroll:
1672         raw_notifier_chain_unregister(&netdev_chain, nb);
1673         goto unlock;
1674 }
1675 EXPORT_SYMBOL(register_netdevice_notifier);
1676
1677 /**
1678  * unregister_netdevice_notifier - unregister a network notifier block
1679  * @nb: notifier
1680  *
1681  * Unregister a notifier previously registered by
1682  * register_netdevice_notifier(). The notifier is unlinked into the
1683  * kernel structures and may then be reused. A negative errno code
1684  * is returned on a failure.
1685  *
1686  * After unregistering unregister and down device events are synthesized
1687  * for all devices on the device list to the removed notifier to remove
1688  * the need for special case cleanup code.
1689  */
1690
1691 int unregister_netdevice_notifier(struct notifier_block *nb)
1692 {
1693         struct net_device *dev;
1694         struct net *net;
1695         int err;
1696
1697         /* Close race with setup_net() and cleanup_net() */
1698         down_write(&pernet_ops_rwsem);
1699         rtnl_lock();
1700         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1701         if (err)
1702                 goto unlock;
1703
1704         for_each_net(net) {
1705                 for_each_netdev(net, dev) {
1706                         if (dev->flags & IFF_UP) {
1707                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708                                                         dev);
1709                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1710                         }
1711                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1712                 }
1713         }
1714 unlock:
1715         rtnl_unlock();
1716         up_write(&pernet_ops_rwsem);
1717         return err;
1718 }
1719 EXPORT_SYMBOL(unregister_netdevice_notifier);
1720
1721 /**
1722  *      call_netdevice_notifiers_info - call all network notifier blocks
1723  *      @val: value passed unmodified to notifier function
1724  *      @info: notifier information data
1725  *
1726  *      Call all network notifier blocks.  Parameters and return value
1727  *      are as for raw_notifier_call_chain().
1728  */
1729
1730 static int call_netdevice_notifiers_info(unsigned long val,
1731                                          struct netdev_notifier_info *info)
1732 {
1733         ASSERT_RTNL();
1734         return raw_notifier_call_chain(&netdev_chain, val, info);
1735 }
1736
1737 /**
1738  *      call_netdevice_notifiers - call all network notifier blocks
1739  *      @val: value passed unmodified to notifier function
1740  *      @dev: net_device pointer passed unmodified to notifier function
1741  *
1742  *      Call all network notifier blocks.  Parameters and return value
1743  *      are as for raw_notifier_call_chain().
1744  */
1745
1746 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1747 {
1748         struct netdev_notifier_info info = {
1749                 .dev = dev,
1750         };
1751
1752         return call_netdevice_notifiers_info(val, &info);
1753 }
1754 EXPORT_SYMBOL(call_netdevice_notifiers);
1755
1756 #ifdef CONFIG_NET_INGRESS
1757 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1758
1759 void net_inc_ingress_queue(void)
1760 {
1761         static_branch_inc(&ingress_needed_key);
1762 }
1763 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1764
1765 void net_dec_ingress_queue(void)
1766 {
1767         static_branch_dec(&ingress_needed_key);
1768 }
1769 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1770 #endif
1771
1772 #ifdef CONFIG_NET_EGRESS
1773 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1774
1775 void net_inc_egress_queue(void)
1776 {
1777         static_branch_inc(&egress_needed_key);
1778 }
1779 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1780
1781 void net_dec_egress_queue(void)
1782 {
1783         static_branch_dec(&egress_needed_key);
1784 }
1785 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1786 #endif
1787
1788 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1789 #ifdef HAVE_JUMP_LABEL
1790 static atomic_t netstamp_needed_deferred;
1791 static atomic_t netstamp_wanted;
1792 static void netstamp_clear(struct work_struct *work)
1793 {
1794         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1795         int wanted;
1796
1797         wanted = atomic_add_return(deferred, &netstamp_wanted);
1798         if (wanted > 0)
1799                 static_branch_enable(&netstamp_needed_key);
1800         else
1801                 static_branch_disable(&netstamp_needed_key);
1802 }
1803 static DECLARE_WORK(netstamp_work, netstamp_clear);
1804 #endif
1805
1806 void net_enable_timestamp(void)
1807 {
1808 #ifdef HAVE_JUMP_LABEL
1809         int wanted;
1810
1811         while (1) {
1812                 wanted = atomic_read(&netstamp_wanted);
1813                 if (wanted <= 0)
1814                         break;
1815                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1816                         return;
1817         }
1818         atomic_inc(&netstamp_needed_deferred);
1819         schedule_work(&netstamp_work);
1820 #else
1821         static_branch_inc(&netstamp_needed_key);
1822 #endif
1823 }
1824 EXPORT_SYMBOL(net_enable_timestamp);
1825
1826 void net_disable_timestamp(void)
1827 {
1828 #ifdef HAVE_JUMP_LABEL
1829         int wanted;
1830
1831         while (1) {
1832                 wanted = atomic_read(&netstamp_wanted);
1833                 if (wanted <= 1)
1834                         break;
1835                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1836                         return;
1837         }
1838         atomic_dec(&netstamp_needed_deferred);
1839         schedule_work(&netstamp_work);
1840 #else
1841         static_branch_dec(&netstamp_needed_key);
1842 #endif
1843 }
1844 EXPORT_SYMBOL(net_disable_timestamp);
1845
1846 static inline void net_timestamp_set(struct sk_buff *skb)
1847 {
1848         skb->tstamp = 0;
1849         if (static_branch_unlikely(&netstamp_needed_key))
1850                 __net_timestamp(skb);
1851 }
1852
1853 #define net_timestamp_check(COND, SKB)                          \
1854         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1855                 if ((COND) && !(SKB)->tstamp)                   \
1856                         __net_timestamp(SKB);                   \
1857         }                                                       \
1858
1859 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1860 {
1861         unsigned int len;
1862
1863         if (!(dev->flags & IFF_UP))
1864                 return false;
1865
1866         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1867         if (skb->len <= len)
1868                 return true;
1869
1870         /* if TSO is enabled, we don't care about the length as the packet
1871          * could be forwarded without being segmented before
1872          */
1873         if (skb_is_gso(skb))
1874                 return true;
1875
1876         return false;
1877 }
1878 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1879
1880 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1881 {
1882         int ret = ____dev_forward_skb(dev, skb);
1883
1884         if (likely(!ret)) {
1885                 skb->protocol = eth_type_trans(skb, dev);
1886                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1887         }
1888
1889         return ret;
1890 }
1891 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1892
1893 /**
1894  * dev_forward_skb - loopback an skb to another netif
1895  *
1896  * @dev: destination network device
1897  * @skb: buffer to forward
1898  *
1899  * return values:
1900  *      NET_RX_SUCCESS  (no congestion)
1901  *      NET_RX_DROP     (packet was dropped, but freed)
1902  *
1903  * dev_forward_skb can be used for injecting an skb from the
1904  * start_xmit function of one device into the receive queue
1905  * of another device.
1906  *
1907  * The receiving device may be in another namespace, so
1908  * we have to clear all information in the skb that could
1909  * impact namespace isolation.
1910  */
1911 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1912 {
1913         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1914 }
1915 EXPORT_SYMBOL_GPL(dev_forward_skb);
1916
1917 static inline int deliver_skb(struct sk_buff *skb,
1918                               struct packet_type *pt_prev,
1919                               struct net_device *orig_dev)
1920 {
1921         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1922                 return -ENOMEM;
1923         refcount_inc(&skb->users);
1924         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1925 }
1926
1927 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1928                                           struct packet_type **pt,
1929                                           struct net_device *orig_dev,
1930                                           __be16 type,
1931                                           struct list_head *ptype_list)
1932 {
1933         struct packet_type *ptype, *pt_prev = *pt;
1934
1935         list_for_each_entry_rcu(ptype, ptype_list, list) {
1936                 if (ptype->type != type)
1937                         continue;
1938                 if (pt_prev)
1939                         deliver_skb(skb, pt_prev, orig_dev);
1940                 pt_prev = ptype;
1941         }
1942         *pt = pt_prev;
1943 }
1944
1945 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1946 {
1947         if (!ptype->af_packet_priv || !skb->sk)
1948                 return false;
1949
1950         if (ptype->id_match)
1951                 return ptype->id_match(ptype, skb->sk);
1952         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1953                 return true;
1954
1955         return false;
1956 }
1957
1958 /*
1959  *      Support routine. Sends outgoing frames to any network
1960  *      taps currently in use.
1961  */
1962
1963 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1964 {
1965         struct packet_type *ptype;
1966         struct sk_buff *skb2 = NULL;
1967         struct packet_type *pt_prev = NULL;
1968         struct list_head *ptype_list = &ptype_all;
1969
1970         rcu_read_lock();
1971 again:
1972         list_for_each_entry_rcu(ptype, ptype_list, list) {
1973                 /* Never send packets back to the socket
1974                  * they originated from - MvS (miquels@drinkel.ow.org)
1975                  */
1976                 if (skb_loop_sk(ptype, skb))
1977                         continue;
1978
1979                 if (pt_prev) {
1980                         deliver_skb(skb2, pt_prev, skb->dev);
1981                         pt_prev = ptype;
1982                         continue;
1983                 }
1984
1985                 /* need to clone skb, done only once */
1986                 skb2 = skb_clone(skb, GFP_ATOMIC);
1987                 if (!skb2)
1988                         goto out_unlock;
1989
1990                 net_timestamp_set(skb2);
1991
1992                 /* skb->nh should be correctly
1993                  * set by sender, so that the second statement is
1994                  * just protection against buggy protocols.
1995                  */
1996                 skb_reset_mac_header(skb2);
1997
1998                 if (skb_network_header(skb2) < skb2->data ||
1999                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2000                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2001                                              ntohs(skb2->protocol),
2002                                              dev->name);
2003                         skb_reset_network_header(skb2);
2004                 }
2005
2006                 skb2->transport_header = skb2->network_header;
2007                 skb2->pkt_type = PACKET_OUTGOING;
2008                 pt_prev = ptype;
2009         }
2010
2011         if (ptype_list == &ptype_all) {
2012                 ptype_list = &dev->ptype_all;
2013                 goto again;
2014         }
2015 out_unlock:
2016         if (pt_prev) {
2017                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2018                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2019                 else
2020                         kfree_skb(skb2);
2021         }
2022         rcu_read_unlock();
2023 }
2024 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2025
2026 /**
2027  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2028  * @dev: Network device
2029  * @txq: number of queues available
2030  *
2031  * If real_num_tx_queues is changed the tc mappings may no longer be
2032  * valid. To resolve this verify the tc mapping remains valid and if
2033  * not NULL the mapping. With no priorities mapping to this
2034  * offset/count pair it will no longer be used. In the worst case TC0
2035  * is invalid nothing can be done so disable priority mappings. If is
2036  * expected that drivers will fix this mapping if they can before
2037  * calling netif_set_real_num_tx_queues.
2038  */
2039 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2040 {
2041         int i;
2042         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2043
2044         /* If TC0 is invalidated disable TC mapping */
2045         if (tc->offset + tc->count > txq) {
2046                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2047                 dev->num_tc = 0;
2048                 return;
2049         }
2050
2051         /* Invalidated prio to tc mappings set to TC0 */
2052         for (i = 1; i < TC_BITMASK + 1; i++) {
2053                 int q = netdev_get_prio_tc_map(dev, i);
2054
2055                 tc = &dev->tc_to_txq[q];
2056                 if (tc->offset + tc->count > txq) {
2057                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2058                                 i, q);
2059                         netdev_set_prio_tc_map(dev, i, 0);
2060                 }
2061         }
2062 }
2063
2064 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2065 {
2066         if (dev->num_tc) {
2067                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2068                 int i;
2069
2070                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2071                         if ((txq - tc->offset) < tc->count)
2072                                 return i;
2073                 }
2074
2075                 return -1;
2076         }
2077
2078         return 0;
2079 }
2080 EXPORT_SYMBOL(netdev_txq_to_tc);
2081
2082 #ifdef CONFIG_XPS
2083 struct static_key xps_needed __read_mostly;
2084 EXPORT_SYMBOL(xps_needed);
2085 struct static_key xps_rxqs_needed __read_mostly;
2086 EXPORT_SYMBOL(xps_rxqs_needed);
2087 static DEFINE_MUTEX(xps_map_mutex);
2088 #define xmap_dereference(P)             \
2089         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2090
2091 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2092                              int tci, u16 index)
2093 {
2094         struct xps_map *map = NULL;
2095         int pos;
2096
2097         if (dev_maps)
2098                 map = xmap_dereference(dev_maps->attr_map[tci]);
2099         if (!map)
2100                 return false;
2101
2102         for (pos = map->len; pos--;) {
2103                 if (map->queues[pos] != index)
2104                         continue;
2105
2106                 if (map->len > 1) {
2107                         map->queues[pos] = map->queues[--map->len];
2108                         break;
2109                 }
2110
2111                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2112                 kfree_rcu(map, rcu);
2113                 return false;
2114         }
2115
2116         return true;
2117 }
2118
2119 static bool remove_xps_queue_cpu(struct net_device *dev,
2120                                  struct xps_dev_maps *dev_maps,
2121                                  int cpu, u16 offset, u16 count)
2122 {
2123         int num_tc = dev->num_tc ? : 1;
2124         bool active = false;
2125         int tci;
2126
2127         for (tci = cpu * num_tc; num_tc--; tci++) {
2128                 int i, j;
2129
2130                 for (i = count, j = offset; i--; j++) {
2131                         if (!remove_xps_queue(dev_maps, tci, j))
2132                                 break;
2133                 }
2134
2135                 active |= i < 0;
2136         }
2137
2138         return active;
2139 }
2140
2141 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2142                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2143                            u16 offset, u16 count, bool is_rxqs_map)
2144 {
2145         bool active = false;
2146         int i, j;
2147
2148         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2149              j < nr_ids;)
2150                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2151                                                count);
2152         if (!active) {
2153                 if (is_rxqs_map) {
2154                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2155                 } else {
2156                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2157
2158                         for (i = offset + (count - 1); count--; i--)
2159                                 netdev_queue_numa_node_write(
2160                                         netdev_get_tx_queue(dev, i),
2161                                                         NUMA_NO_NODE);
2162                 }
2163                 kfree_rcu(dev_maps, rcu);
2164         }
2165 }
2166
2167 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2168                                    u16 count)
2169 {
2170         const unsigned long *possible_mask = NULL;
2171         struct xps_dev_maps *dev_maps;
2172         unsigned int nr_ids;
2173
2174         if (!static_key_false(&xps_needed))
2175                 return;
2176
2177         mutex_lock(&xps_map_mutex);
2178
2179         if (static_key_false(&xps_rxqs_needed)) {
2180                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2181                 if (dev_maps) {
2182                         nr_ids = dev->num_rx_queues;
2183                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2184                                        offset, count, true);
2185                 }
2186         }
2187
2188         dev_maps = xmap_dereference(dev->xps_cpus_map);
2189         if (!dev_maps)
2190                 goto out_no_maps;
2191
2192         if (num_possible_cpus() > 1)
2193                 possible_mask = cpumask_bits(cpu_possible_mask);
2194         nr_ids = nr_cpu_ids;
2195         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2196                        false);
2197
2198 out_no_maps:
2199         if (static_key_enabled(&xps_rxqs_needed))
2200                 static_key_slow_dec(&xps_rxqs_needed);
2201
2202         static_key_slow_dec(&xps_needed);
2203         mutex_unlock(&xps_map_mutex);
2204 }
2205
2206 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2207 {
2208         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2209 }
2210
2211 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2212                                       u16 index, bool is_rxqs_map)
2213 {
2214         struct xps_map *new_map;
2215         int alloc_len = XPS_MIN_MAP_ALLOC;
2216         int i, pos;
2217
2218         for (pos = 0; map && pos < map->len; pos++) {
2219                 if (map->queues[pos] != index)
2220                         continue;
2221                 return map;
2222         }
2223
2224         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2225         if (map) {
2226                 if (pos < map->alloc_len)
2227                         return map;
2228
2229                 alloc_len = map->alloc_len * 2;
2230         }
2231
2232         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2233          *  map
2234          */
2235         if (is_rxqs_map)
2236                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2237         else
2238                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2239                                        cpu_to_node(attr_index));
2240         if (!new_map)
2241                 return NULL;
2242
2243         for (i = 0; i < pos; i++)
2244                 new_map->queues[i] = map->queues[i];
2245         new_map->alloc_len = alloc_len;
2246         new_map->len = pos;
2247
2248         return new_map;
2249 }
2250
2251 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2252                           u16 index, bool is_rxqs_map)
2253 {
2254         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2255         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2256         int i, j, tci, numa_node_id = -2;
2257         int maps_sz, num_tc = 1, tc = 0;
2258         struct xps_map *map, *new_map;
2259         bool active = false;
2260         unsigned int nr_ids;
2261
2262         if (dev->num_tc) {
2263                 num_tc = dev->num_tc;
2264                 tc = netdev_txq_to_tc(dev, index);
2265                 if (tc < 0)
2266                         return -EINVAL;
2267         }
2268
2269         mutex_lock(&xps_map_mutex);
2270         if (is_rxqs_map) {
2271                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2272                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2273                 nr_ids = dev->num_rx_queues;
2274         } else {
2275                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2276                 if (num_possible_cpus() > 1) {
2277                         online_mask = cpumask_bits(cpu_online_mask);
2278                         possible_mask = cpumask_bits(cpu_possible_mask);
2279                 }
2280                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2281                 nr_ids = nr_cpu_ids;
2282         }
2283
2284         if (maps_sz < L1_CACHE_BYTES)
2285                 maps_sz = L1_CACHE_BYTES;
2286
2287         /* allocate memory for queue storage */
2288         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2289              j < nr_ids;) {
2290                 if (!new_dev_maps)
2291                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2292                 if (!new_dev_maps) {
2293                         mutex_unlock(&xps_map_mutex);
2294                         return -ENOMEM;
2295                 }
2296
2297                 tci = j * num_tc + tc;
2298                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2299                                  NULL;
2300
2301                 map = expand_xps_map(map, j, index, is_rxqs_map);
2302                 if (!map)
2303                         goto error;
2304
2305                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2306         }
2307
2308         if (!new_dev_maps)
2309                 goto out_no_new_maps;
2310
2311         static_key_slow_inc(&xps_needed);
2312         if (is_rxqs_map)
2313                 static_key_slow_inc(&xps_rxqs_needed);
2314
2315         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2316              j < nr_ids;) {
2317                 /* copy maps belonging to foreign traffic classes */
2318                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2319                         /* fill in the new device map from the old device map */
2320                         map = xmap_dereference(dev_maps->attr_map[tci]);
2321                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2322                 }
2323
2324                 /* We need to explicitly update tci as prevous loop
2325                  * could break out early if dev_maps is NULL.
2326                  */
2327                 tci = j * num_tc + tc;
2328
2329                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2330                     netif_attr_test_online(j, online_mask, nr_ids)) {
2331                         /* add tx-queue to CPU/rx-queue maps */
2332                         int pos = 0;
2333
2334                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2335                         while ((pos < map->len) && (map->queues[pos] != index))
2336                                 pos++;
2337
2338                         if (pos == map->len)
2339                                 map->queues[map->len++] = index;
2340 #ifdef CONFIG_NUMA
2341                         if (!is_rxqs_map) {
2342                                 if (numa_node_id == -2)
2343                                         numa_node_id = cpu_to_node(j);
2344                                 else if (numa_node_id != cpu_to_node(j))
2345                                         numa_node_id = -1;
2346                         }
2347 #endif
2348                 } else if (dev_maps) {
2349                         /* fill in the new device map from the old device map */
2350                         map = xmap_dereference(dev_maps->attr_map[tci]);
2351                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2352                 }
2353
2354                 /* copy maps belonging to foreign traffic classes */
2355                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2356                         /* fill in the new device map from the old device map */
2357                         map = xmap_dereference(dev_maps->attr_map[tci]);
2358                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2359                 }
2360         }
2361
2362         if (is_rxqs_map)
2363                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2364         else
2365                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2366
2367         /* Cleanup old maps */
2368         if (!dev_maps)
2369                 goto out_no_old_maps;
2370
2371         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2372              j < nr_ids;) {
2373                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2374                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2375                         map = xmap_dereference(dev_maps->attr_map[tci]);
2376                         if (map && map != new_map)
2377                                 kfree_rcu(map, rcu);
2378                 }
2379         }
2380
2381         kfree_rcu(dev_maps, rcu);
2382
2383 out_no_old_maps:
2384         dev_maps = new_dev_maps;
2385         active = true;
2386
2387 out_no_new_maps:
2388         if (!is_rxqs_map) {
2389                 /* update Tx queue numa node */
2390                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2391                                              (numa_node_id >= 0) ?
2392                                              numa_node_id : NUMA_NO_NODE);
2393         }
2394
2395         if (!dev_maps)
2396                 goto out_no_maps;
2397
2398         /* removes tx-queue from unused CPUs/rx-queues */
2399         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2400              j < nr_ids;) {
2401                 for (i = tc, tci = j * num_tc; i--; tci++)
2402                         active |= remove_xps_queue(dev_maps, tci, index);
2403                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2404                     !netif_attr_test_online(j, online_mask, nr_ids))
2405                         active |= remove_xps_queue(dev_maps, tci, index);
2406                 for (i = num_tc - tc, tci++; --i; tci++)
2407                         active |= remove_xps_queue(dev_maps, tci, index);
2408         }
2409
2410         /* free map if not active */
2411         if (!active) {
2412                 if (is_rxqs_map)
2413                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2414                 else
2415                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2416                 kfree_rcu(dev_maps, rcu);
2417         }
2418
2419 out_no_maps:
2420         mutex_unlock(&xps_map_mutex);
2421
2422         return 0;
2423 error:
2424         /* remove any maps that we added */
2425         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2426              j < nr_ids;) {
2427                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2428                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2429                         map = dev_maps ?
2430                               xmap_dereference(dev_maps->attr_map[tci]) :
2431                               NULL;
2432                         if (new_map && new_map != map)
2433                                 kfree(new_map);
2434                 }
2435         }
2436
2437         mutex_unlock(&xps_map_mutex);
2438
2439         kfree(new_dev_maps);
2440         return -ENOMEM;
2441 }
2442
2443 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2444                         u16 index)
2445 {
2446         return __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2447 }
2448 EXPORT_SYMBOL(netif_set_xps_queue);
2449
2450 #endif
2451 void netdev_reset_tc(struct net_device *dev)
2452 {
2453 #ifdef CONFIG_XPS
2454         netif_reset_xps_queues_gt(dev, 0);
2455 #endif
2456         dev->num_tc = 0;
2457         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2458         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2459 }
2460 EXPORT_SYMBOL(netdev_reset_tc);
2461
2462 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2463 {
2464         if (tc >= dev->num_tc)
2465                 return -EINVAL;
2466
2467 #ifdef CONFIG_XPS
2468         netif_reset_xps_queues(dev, offset, count);
2469 #endif
2470         dev->tc_to_txq[tc].count = count;
2471         dev->tc_to_txq[tc].offset = offset;
2472         return 0;
2473 }
2474 EXPORT_SYMBOL(netdev_set_tc_queue);
2475
2476 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2477 {
2478         if (num_tc > TC_MAX_QUEUE)
2479                 return -EINVAL;
2480
2481 #ifdef CONFIG_XPS
2482         netif_reset_xps_queues_gt(dev, 0);
2483 #endif
2484         dev->num_tc = num_tc;
2485         return 0;
2486 }
2487 EXPORT_SYMBOL(netdev_set_num_tc);
2488
2489 /*
2490  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2491  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2492  */
2493 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2494 {
2495         bool disabling;
2496         int rc;
2497
2498         disabling = txq < dev->real_num_tx_queues;
2499
2500         if (txq < 1 || txq > dev->num_tx_queues)
2501                 return -EINVAL;
2502
2503         if (dev->reg_state == NETREG_REGISTERED ||
2504             dev->reg_state == NETREG_UNREGISTERING) {
2505                 ASSERT_RTNL();
2506
2507                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2508                                                   txq);
2509                 if (rc)
2510                         return rc;
2511
2512                 if (dev->num_tc)
2513                         netif_setup_tc(dev, txq);
2514
2515                 dev->real_num_tx_queues = txq;
2516
2517                 if (disabling) {
2518                         synchronize_net();
2519                         qdisc_reset_all_tx_gt(dev, txq);
2520 #ifdef CONFIG_XPS
2521                         netif_reset_xps_queues_gt(dev, txq);
2522 #endif
2523                 }
2524         } else {
2525                 dev->real_num_tx_queues = txq;
2526         }
2527
2528         return 0;
2529 }
2530 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2531
2532 #ifdef CONFIG_SYSFS
2533 /**
2534  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2535  *      @dev: Network device
2536  *      @rxq: Actual number of RX queues
2537  *
2538  *      This must be called either with the rtnl_lock held or before
2539  *      registration of the net device.  Returns 0 on success, or a
2540  *      negative error code.  If called before registration, it always
2541  *      succeeds.
2542  */
2543 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2544 {
2545         int rc;
2546
2547         if (rxq < 1 || rxq > dev->num_rx_queues)
2548                 return -EINVAL;
2549
2550         if (dev->reg_state == NETREG_REGISTERED) {
2551                 ASSERT_RTNL();
2552
2553                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2554                                                   rxq);
2555                 if (rc)
2556                         return rc;
2557         }
2558
2559         dev->real_num_rx_queues = rxq;
2560         return 0;
2561 }
2562 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2563 #endif
2564
2565 /**
2566  * netif_get_num_default_rss_queues - default number of RSS queues
2567  *
2568  * This routine should set an upper limit on the number of RSS queues
2569  * used by default by multiqueue devices.
2570  */
2571 int netif_get_num_default_rss_queues(void)
2572 {
2573         return is_kdump_kernel() ?
2574                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2575 }
2576 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2577
2578 static void __netif_reschedule(struct Qdisc *q)
2579 {
2580         struct softnet_data *sd;
2581         unsigned long flags;
2582
2583         local_irq_save(flags);
2584         sd = this_cpu_ptr(&softnet_data);
2585         q->next_sched = NULL;
2586         *sd->output_queue_tailp = q;
2587         sd->output_queue_tailp = &q->next_sched;
2588         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2589         local_irq_restore(flags);
2590 }
2591
2592 void __netif_schedule(struct Qdisc *q)
2593 {
2594         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2595                 __netif_reschedule(q);
2596 }
2597 EXPORT_SYMBOL(__netif_schedule);
2598
2599 struct dev_kfree_skb_cb {
2600         enum skb_free_reason reason;
2601 };
2602
2603 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2604 {
2605         return (struct dev_kfree_skb_cb *)skb->cb;
2606 }
2607
2608 void netif_schedule_queue(struct netdev_queue *txq)
2609 {
2610         rcu_read_lock();
2611         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2612                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2613
2614                 __netif_schedule(q);
2615         }
2616         rcu_read_unlock();
2617 }
2618 EXPORT_SYMBOL(netif_schedule_queue);
2619
2620 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2621 {
2622         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2623                 struct Qdisc *q;
2624
2625                 rcu_read_lock();
2626                 q = rcu_dereference(dev_queue->qdisc);
2627                 __netif_schedule(q);
2628                 rcu_read_unlock();
2629         }
2630 }
2631 EXPORT_SYMBOL(netif_tx_wake_queue);
2632
2633 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2634 {
2635         unsigned long flags;
2636
2637         if (unlikely(!skb))
2638                 return;
2639
2640         if (likely(refcount_read(&skb->users) == 1)) {
2641                 smp_rmb();
2642                 refcount_set(&skb->users, 0);
2643         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2644                 return;
2645         }
2646         get_kfree_skb_cb(skb)->reason = reason;
2647         local_irq_save(flags);
2648         skb->next = __this_cpu_read(softnet_data.completion_queue);
2649         __this_cpu_write(softnet_data.completion_queue, skb);
2650         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2651         local_irq_restore(flags);
2652 }
2653 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2654
2655 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2656 {
2657         if (in_irq() || irqs_disabled())
2658                 __dev_kfree_skb_irq(skb, reason);
2659         else
2660                 dev_kfree_skb(skb);
2661 }
2662 EXPORT_SYMBOL(__dev_kfree_skb_any);
2663
2664
2665 /**
2666  * netif_device_detach - mark device as removed
2667  * @dev: network device
2668  *
2669  * Mark device as removed from system and therefore no longer available.
2670  */
2671 void netif_device_detach(struct net_device *dev)
2672 {
2673         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2674             netif_running(dev)) {
2675                 netif_tx_stop_all_queues(dev);
2676         }
2677 }
2678 EXPORT_SYMBOL(netif_device_detach);
2679
2680 /**
2681  * netif_device_attach - mark device as attached
2682  * @dev: network device
2683  *
2684  * Mark device as attached from system and restart if needed.
2685  */
2686 void netif_device_attach(struct net_device *dev)
2687 {
2688         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2689             netif_running(dev)) {
2690                 netif_tx_wake_all_queues(dev);
2691                 __netdev_watchdog_up(dev);
2692         }
2693 }
2694 EXPORT_SYMBOL(netif_device_attach);
2695
2696 /*
2697  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2698  * to be used as a distribution range.
2699  */
2700 static u16 skb_tx_hash(const struct net_device *dev, struct sk_buff *skb)
2701 {
2702         u32 hash;
2703         u16 qoffset = 0;
2704         u16 qcount = dev->real_num_tx_queues;
2705
2706         if (skb_rx_queue_recorded(skb)) {
2707                 hash = skb_get_rx_queue(skb);
2708                 while (unlikely(hash >= qcount))
2709                         hash -= qcount;
2710                 return hash;
2711         }
2712
2713         if (dev->num_tc) {
2714                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2715
2716                 qoffset = dev->tc_to_txq[tc].offset;
2717                 qcount = dev->tc_to_txq[tc].count;
2718         }
2719
2720         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2721 }
2722
2723 static void skb_warn_bad_offload(const struct sk_buff *skb)
2724 {
2725         static const netdev_features_t null_features;
2726         struct net_device *dev = skb->dev;
2727         const char *name = "";
2728
2729         if (!net_ratelimit())
2730                 return;
2731
2732         if (dev) {
2733                 if (dev->dev.parent)
2734                         name = dev_driver_string(dev->dev.parent);
2735                 else
2736                         name = netdev_name(dev);
2737         }
2738         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2739              "gso_type=%d ip_summed=%d\n",
2740              name, dev ? &dev->features : &null_features,
2741              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2742              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2743              skb_shinfo(skb)->gso_type, skb->ip_summed);
2744 }
2745
2746 /*
2747  * Invalidate hardware checksum when packet is to be mangled, and
2748  * complete checksum manually on outgoing path.
2749  */
2750 int skb_checksum_help(struct sk_buff *skb)
2751 {
2752         __wsum csum;
2753         int ret = 0, offset;
2754
2755         if (skb->ip_summed == CHECKSUM_COMPLETE)
2756                 goto out_set_summed;
2757
2758         if (unlikely(skb_shinfo(skb)->gso_size)) {
2759                 skb_warn_bad_offload(skb);
2760                 return -EINVAL;
2761         }
2762
2763         /* Before computing a checksum, we should make sure no frag could
2764          * be modified by an external entity : checksum could be wrong.
2765          */
2766         if (skb_has_shared_frag(skb)) {
2767                 ret = __skb_linearize(skb);
2768                 if (ret)
2769                         goto out;
2770         }
2771
2772         offset = skb_checksum_start_offset(skb);
2773         BUG_ON(offset >= skb_headlen(skb));
2774         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2775
2776         offset += skb->csum_offset;
2777         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2778
2779         if (skb_cloned(skb) &&
2780             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2781                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2782                 if (ret)
2783                         goto out;
2784         }
2785
2786         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2787 out_set_summed:
2788         skb->ip_summed = CHECKSUM_NONE;
2789 out:
2790         return ret;
2791 }
2792 EXPORT_SYMBOL(skb_checksum_help);
2793
2794 int skb_crc32c_csum_help(struct sk_buff *skb)
2795 {
2796         __le32 crc32c_csum;
2797         int ret = 0, offset, start;
2798
2799         if (skb->ip_summed != CHECKSUM_PARTIAL)
2800                 goto out;
2801
2802         if (unlikely(skb_is_gso(skb)))
2803                 goto out;
2804
2805         /* Before computing a checksum, we should make sure no frag could
2806          * be modified by an external entity : checksum could be wrong.
2807          */
2808         if (unlikely(skb_has_shared_frag(skb))) {
2809                 ret = __skb_linearize(skb);
2810                 if (ret)
2811                         goto out;
2812         }
2813         start = skb_checksum_start_offset(skb);
2814         offset = start + offsetof(struct sctphdr, checksum);
2815         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2816                 ret = -EINVAL;
2817                 goto out;
2818         }
2819         if (skb_cloned(skb) &&
2820             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2821                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2822                 if (ret)
2823                         goto out;
2824         }
2825         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2826                                                   skb->len - start, ~(__u32)0,
2827                                                   crc32c_csum_stub));
2828         *(__le32 *)(skb->data + offset) = crc32c_csum;
2829         skb->ip_summed = CHECKSUM_NONE;
2830         skb->csum_not_inet = 0;
2831 out:
2832         return ret;
2833 }
2834
2835 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2836 {
2837         __be16 type = skb->protocol;
2838
2839         /* Tunnel gso handlers can set protocol to ethernet. */
2840         if (type == htons(ETH_P_TEB)) {
2841                 struct ethhdr *eth;
2842
2843                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2844                         return 0;
2845
2846                 eth = (struct ethhdr *)skb->data;
2847                 type = eth->h_proto;
2848         }
2849
2850         return __vlan_get_protocol(skb, type, depth);
2851 }
2852
2853 /**
2854  *      skb_mac_gso_segment - mac layer segmentation handler.
2855  *      @skb: buffer to segment
2856  *      @features: features for the output path (see dev->features)
2857  */
2858 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2859                                     netdev_features_t features)
2860 {
2861         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2862         struct packet_offload *ptype;
2863         int vlan_depth = skb->mac_len;
2864         __be16 type = skb_network_protocol(skb, &vlan_depth);
2865
2866         if (unlikely(!type))
2867                 return ERR_PTR(-EINVAL);
2868
2869         __skb_pull(skb, vlan_depth);
2870
2871         rcu_read_lock();
2872         list_for_each_entry_rcu(ptype, &offload_base, list) {
2873                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2874                         segs = ptype->callbacks.gso_segment(skb, features);
2875                         break;
2876                 }
2877         }
2878         rcu_read_unlock();
2879
2880         __skb_push(skb, skb->data - skb_mac_header(skb));
2881
2882         return segs;
2883 }
2884 EXPORT_SYMBOL(skb_mac_gso_segment);
2885
2886
2887 /* openvswitch calls this on rx path, so we need a different check.
2888  */
2889 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2890 {
2891         if (tx_path)
2892                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2893                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2894
2895         return skb->ip_summed == CHECKSUM_NONE;
2896 }
2897
2898 /**
2899  *      __skb_gso_segment - Perform segmentation on skb.
2900  *      @skb: buffer to segment
2901  *      @features: features for the output path (see dev->features)
2902  *      @tx_path: whether it is called in TX path
2903  *
2904  *      This function segments the given skb and returns a list of segments.
2905  *
2906  *      It may return NULL if the skb requires no segmentation.  This is
2907  *      only possible when GSO is used for verifying header integrity.
2908  *
2909  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2910  */
2911 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2912                                   netdev_features_t features, bool tx_path)
2913 {
2914         struct sk_buff *segs;
2915
2916         if (unlikely(skb_needs_check(skb, tx_path))) {
2917                 int err;
2918
2919                 /* We're going to init ->check field in TCP or UDP header */
2920                 err = skb_cow_head(skb, 0);
2921                 if (err < 0)
2922                         return ERR_PTR(err);
2923         }
2924
2925         /* Only report GSO partial support if it will enable us to
2926          * support segmentation on this frame without needing additional
2927          * work.
2928          */
2929         if (features & NETIF_F_GSO_PARTIAL) {
2930                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2931                 struct net_device *dev = skb->dev;
2932
2933                 partial_features |= dev->features & dev->gso_partial_features;
2934                 if (!skb_gso_ok(skb, features | partial_features))
2935                         features &= ~NETIF_F_GSO_PARTIAL;
2936         }
2937
2938         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2939                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2940
2941         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2942         SKB_GSO_CB(skb)->encap_level = 0;
2943
2944         skb_reset_mac_header(skb);
2945         skb_reset_mac_len(skb);
2946
2947         segs = skb_mac_gso_segment(skb, features);
2948
2949         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2950                 skb_warn_bad_offload(skb);
2951
2952         return segs;
2953 }
2954 EXPORT_SYMBOL(__skb_gso_segment);
2955
2956 /* Take action when hardware reception checksum errors are detected. */
2957 #ifdef CONFIG_BUG
2958 void netdev_rx_csum_fault(struct net_device *dev)
2959 {
2960         if (net_ratelimit()) {
2961                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2962                 dump_stack();
2963         }
2964 }
2965 EXPORT_SYMBOL(netdev_rx_csum_fault);
2966 #endif
2967
2968 /* XXX: check that highmem exists at all on the given machine. */
2969 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2970 {
2971 #ifdef CONFIG_HIGHMEM
2972         int i;
2973
2974         if (!(dev->features & NETIF_F_HIGHDMA)) {
2975                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2976                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2977
2978                         if (PageHighMem(skb_frag_page(frag)))
2979                                 return 1;
2980                 }
2981         }
2982 #endif
2983         return 0;
2984 }
2985
2986 /* If MPLS offload request, verify we are testing hardware MPLS features
2987  * instead of standard features for the netdev.
2988  */
2989 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2990 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2991                                            netdev_features_t features,
2992                                            __be16 type)
2993 {
2994         if (eth_p_mpls(type))
2995                 features &= skb->dev->mpls_features;
2996
2997         return features;
2998 }
2999 #else
3000 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3001                                            netdev_features_t features,
3002                                            __be16 type)
3003 {
3004         return features;
3005 }
3006 #endif
3007
3008 static netdev_features_t harmonize_features(struct sk_buff *skb,
3009         netdev_features_t features)
3010 {
3011         int tmp;
3012         __be16 type;
3013
3014         type = skb_network_protocol(skb, &tmp);
3015         features = net_mpls_features(skb, features, type);
3016
3017         if (skb->ip_summed != CHECKSUM_NONE &&
3018             !can_checksum_protocol(features, type)) {
3019                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3020         }
3021         if (illegal_highdma(skb->dev, skb))
3022                 features &= ~NETIF_F_SG;
3023
3024         return features;
3025 }
3026
3027 netdev_features_t passthru_features_check(struct sk_buff *skb,
3028                                           struct net_device *dev,
3029                                           netdev_features_t features)
3030 {
3031         return features;
3032 }
3033 EXPORT_SYMBOL(passthru_features_check);
3034
3035 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3036                                              struct net_device *dev,
3037                                              netdev_features_t features)
3038 {
3039         return vlan_features_check(skb, features);
3040 }
3041
3042 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3043                                             struct net_device *dev,
3044                                             netdev_features_t features)
3045 {
3046         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3047
3048         if (gso_segs > dev->gso_max_segs)
3049                 return features & ~NETIF_F_GSO_MASK;
3050
3051         /* Support for GSO partial features requires software
3052          * intervention before we can actually process the packets
3053          * so we need to strip support for any partial features now
3054          * and we can pull them back in after we have partially
3055          * segmented the frame.
3056          */
3057         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3058                 features &= ~dev->gso_partial_features;
3059
3060         /* Make sure to clear the IPv4 ID mangling feature if the
3061          * IPv4 header has the potential to be fragmented.
3062          */
3063         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3064                 struct iphdr *iph = skb->encapsulation ?
3065                                     inner_ip_hdr(skb) : ip_hdr(skb);
3066
3067                 if (!(iph->frag_off & htons(IP_DF)))
3068                         features &= ~NETIF_F_TSO_MANGLEID;
3069         }
3070
3071         return features;
3072 }
3073
3074 netdev_features_t netif_skb_features(struct sk_buff *skb)
3075 {
3076         struct net_device *dev = skb->dev;
3077         netdev_features_t features = dev->features;
3078
3079         if (skb_is_gso(skb))
3080                 features = gso_features_check(skb, dev, features);
3081
3082         /* If encapsulation offload request, verify we are testing
3083          * hardware encapsulation features instead of standard
3084          * features for the netdev
3085          */
3086         if (skb->encapsulation)
3087                 features &= dev->hw_enc_features;
3088
3089         if (skb_vlan_tagged(skb))
3090                 features = netdev_intersect_features(features,
3091                                                      dev->vlan_features |
3092                                                      NETIF_F_HW_VLAN_CTAG_TX |
3093                                                      NETIF_F_HW_VLAN_STAG_TX);
3094
3095         if (dev->netdev_ops->ndo_features_check)
3096                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3097                                                                 features);
3098         else
3099                 features &= dflt_features_check(skb, dev, features);
3100
3101         return harmonize_features(skb, features);
3102 }
3103 EXPORT_SYMBOL(netif_skb_features);
3104
3105 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3106                     struct netdev_queue *txq, bool more)
3107 {
3108         unsigned int len;
3109         int rc;
3110
3111         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3112                 dev_queue_xmit_nit(skb, dev);
3113
3114         len = skb->len;
3115         trace_net_dev_start_xmit(skb, dev);
3116         rc = netdev_start_xmit(skb, dev, txq, more);
3117         trace_net_dev_xmit(skb, rc, dev, len);
3118
3119         return rc;
3120 }
3121
3122 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3123                                     struct netdev_queue *txq, int *ret)
3124 {
3125         struct sk_buff *skb = first;
3126         int rc = NETDEV_TX_OK;
3127
3128         while (skb) {
3129                 struct sk_buff *next = skb->next;
3130
3131                 skb->next = NULL;
3132                 rc = xmit_one(skb, dev, txq, next != NULL);
3133                 if (unlikely(!dev_xmit_complete(rc))) {
3134                         skb->next = next;
3135                         goto out;
3136                 }
3137
3138                 skb = next;
3139                 if (netif_xmit_stopped(txq) && skb) {
3140                         rc = NETDEV_TX_BUSY;
3141                         break;
3142                 }
3143         }
3144
3145 out:
3146         *ret = rc;
3147         return skb;
3148 }
3149
3150 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3151                                           netdev_features_t features)
3152 {
3153         if (skb_vlan_tag_present(skb) &&
3154             !vlan_hw_offload_capable(features, skb->vlan_proto))
3155                 skb = __vlan_hwaccel_push_inside(skb);
3156         return skb;
3157 }
3158
3159 int skb_csum_hwoffload_help(struct sk_buff *skb,
3160                             const netdev_features_t features)
3161 {
3162         if (unlikely(skb->csum_not_inet))
3163                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3164                         skb_crc32c_csum_help(skb);
3165
3166         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3167 }
3168 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3169
3170 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3171 {
3172         netdev_features_t features;
3173
3174         features = netif_skb_features(skb);
3175         skb = validate_xmit_vlan(skb, features);
3176         if (unlikely(!skb))
3177                 goto out_null;
3178
3179         skb = sk_validate_xmit_skb(skb, dev);
3180         if (unlikely(!skb))
3181                 goto out_null;
3182
3183         if (netif_needs_gso(skb, features)) {
3184                 struct sk_buff *segs;
3185
3186                 segs = skb_gso_segment(skb, features);
3187                 if (IS_ERR(segs)) {
3188                         goto out_kfree_skb;
3189                 } else if (segs) {
3190                         consume_skb(skb);
3191                         skb = segs;
3192                 }
3193         } else {
3194                 if (skb_needs_linearize(skb, features) &&
3195                     __skb_linearize(skb))
3196                         goto out_kfree_skb;
3197
3198                 /* If packet is not checksummed and device does not
3199                  * support checksumming for this protocol, complete
3200                  * checksumming here.
3201                  */
3202                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3203                         if (skb->encapsulation)
3204                                 skb_set_inner_transport_header(skb,
3205                                                                skb_checksum_start_offset(skb));
3206                         else
3207                                 skb_set_transport_header(skb,
3208                                                          skb_checksum_start_offset(skb));
3209                         if (skb_csum_hwoffload_help(skb, features))
3210                                 goto out_kfree_skb;
3211                 }
3212         }
3213
3214         skb = validate_xmit_xfrm(skb, features, again);
3215
3216         return skb;
3217
3218 out_kfree_skb:
3219         kfree_skb(skb);
3220 out_null:
3221         atomic_long_inc(&dev->tx_dropped);
3222         return NULL;
3223 }
3224
3225 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3226 {
3227         struct sk_buff *next, *head = NULL, *tail;
3228
3229         for (; skb != NULL; skb = next) {
3230                 next = skb->next;
3231                 skb->next = NULL;
3232
3233                 /* in case skb wont be segmented, point to itself */
3234                 skb->prev = skb;
3235
3236                 skb = validate_xmit_skb(skb, dev, again);
3237                 if (!skb)
3238                         continue;
3239
3240                 if (!head)
3241                         head = skb;
3242                 else
3243                         tail->next = skb;
3244                 /* If skb was segmented, skb->prev points to
3245                  * the last segment. If not, it still contains skb.
3246                  */
3247                 tail = skb->prev;
3248         }
3249         return head;
3250 }
3251 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3252
3253 static void qdisc_pkt_len_init(struct sk_buff *skb)
3254 {
3255         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3256
3257         qdisc_skb_cb(skb)->pkt_len = skb->len;
3258
3259         /* To get more precise estimation of bytes sent on wire,
3260          * we add to pkt_len the headers size of all segments
3261          */
3262         if (shinfo->gso_size)  {
3263                 unsigned int hdr_len;
3264                 u16 gso_segs = shinfo->gso_segs;
3265
3266                 /* mac layer + network layer */
3267                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3268
3269                 /* + transport layer */
3270                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3271                         const struct tcphdr *th;
3272                         struct tcphdr _tcphdr;
3273
3274                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3275                                                 sizeof(_tcphdr), &_tcphdr);
3276                         if (likely(th))
3277                                 hdr_len += __tcp_hdrlen(th);
3278                 } else {
3279                         struct udphdr _udphdr;
3280
3281                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3282                                                sizeof(_udphdr), &_udphdr))
3283                                 hdr_len += sizeof(struct udphdr);
3284                 }
3285
3286                 if (shinfo->gso_type & SKB_GSO_DODGY)
3287                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3288                                                 shinfo->gso_size);
3289
3290                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3291         }
3292 }
3293
3294 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3295                                  struct net_device *dev,
3296                                  struct netdev_queue *txq)
3297 {
3298         spinlock_t *root_lock = qdisc_lock(q);
3299         struct sk_buff *to_free = NULL;
3300         bool contended;
3301         int rc;
3302
3303         qdisc_calculate_pkt_len(skb, q);
3304
3305         if (q->flags & TCQ_F_NOLOCK) {
3306                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3307                         __qdisc_drop(skb, &to_free);
3308                         rc = NET_XMIT_DROP;
3309                 } else {
3310                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3311                         qdisc_run(q);
3312                 }
3313
3314                 if (unlikely(to_free))
3315                         kfree_skb_list(to_free);
3316                 return rc;
3317         }
3318
3319         /*
3320          * Heuristic to force contended enqueues to serialize on a
3321          * separate lock before trying to get qdisc main lock.
3322          * This permits qdisc->running owner to get the lock more
3323          * often and dequeue packets faster.
3324          */
3325         contended = qdisc_is_running(q);
3326         if (unlikely(contended))
3327                 spin_lock(&q->busylock);
3328
3329         spin_lock(root_lock);
3330         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3331                 __qdisc_drop(skb, &to_free);
3332                 rc = NET_XMIT_DROP;
3333         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3334                    qdisc_run_begin(q)) {
3335                 /*
3336                  * This is a work-conserving queue; there are no old skbs
3337                  * waiting to be sent out; and the qdisc is not running -
3338                  * xmit the skb directly.
3339                  */
3340
3341                 qdisc_bstats_update(q, skb);
3342
3343                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3344                         if (unlikely(contended)) {
3345                                 spin_unlock(&q->busylock);
3346                                 contended = false;
3347                         }
3348                         __qdisc_run(q);
3349                 }
3350
3351                 qdisc_run_end(q);
3352                 rc = NET_XMIT_SUCCESS;
3353         } else {
3354                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3355                 if (qdisc_run_begin(q)) {
3356                         if (unlikely(contended)) {
3357                                 spin_unlock(&q->busylock);
3358                                 contended = false;
3359                         }
3360                         __qdisc_run(q);
3361                         qdisc_run_end(q);
3362                 }
3363         }
3364         spin_unlock(root_lock);
3365         if (unlikely(to_free))
3366                 kfree_skb_list(to_free);
3367         if (unlikely(contended))
3368                 spin_unlock(&q->busylock);
3369         return rc;
3370 }
3371
3372 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3373 static void skb_update_prio(struct sk_buff *skb)
3374 {
3375         const struct netprio_map *map;
3376         const struct sock *sk;
3377         unsigned int prioidx;
3378
3379         if (skb->priority)
3380                 return;
3381         map = rcu_dereference_bh(skb->dev->priomap);
3382         if (!map)
3383                 return;
3384         sk = skb_to_full_sk(skb);
3385         if (!sk)
3386                 return;
3387
3388         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3389
3390         if (prioidx < map->priomap_len)
3391                 skb->priority = map->priomap[prioidx];
3392 }
3393 #else
3394 #define skb_update_prio(skb)
3395 #endif
3396
3397 DEFINE_PER_CPU(int, xmit_recursion);
3398 EXPORT_SYMBOL(xmit_recursion);
3399
3400 /**
3401  *      dev_loopback_xmit - loop back @skb
3402  *      @net: network namespace this loopback is happening in
3403  *      @sk:  sk needed to be a netfilter okfn
3404  *      @skb: buffer to transmit
3405  */
3406 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3407 {
3408         skb_reset_mac_header(skb);
3409         __skb_pull(skb, skb_network_offset(skb));
3410         skb->pkt_type = PACKET_LOOPBACK;
3411         skb->ip_summed = CHECKSUM_UNNECESSARY;
3412         WARN_ON(!skb_dst(skb));
3413         skb_dst_force(skb);
3414         netif_rx_ni(skb);
3415         return 0;
3416 }
3417 EXPORT_SYMBOL(dev_loopback_xmit);
3418
3419 #ifdef CONFIG_NET_EGRESS
3420 static struct sk_buff *
3421 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3422 {
3423         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3424         struct tcf_result cl_res;
3425
3426         if (!miniq)
3427                 return skb;
3428
3429         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3430         mini_qdisc_bstats_cpu_update(miniq, skb);
3431
3432         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3433         case TC_ACT_OK:
3434         case TC_ACT_RECLASSIFY:
3435                 skb->tc_index = TC_H_MIN(cl_res.classid);
3436                 break;
3437         case TC_ACT_SHOT:
3438                 mini_qdisc_qstats_cpu_drop(miniq);
3439                 *ret = NET_XMIT_DROP;
3440                 kfree_skb(skb);
3441                 return NULL;
3442         case TC_ACT_STOLEN:
3443         case TC_ACT_QUEUED:
3444         case TC_ACT_TRAP:
3445                 *ret = NET_XMIT_SUCCESS;
3446                 consume_skb(skb);
3447                 return NULL;
3448         case TC_ACT_REDIRECT:
3449                 /* No need to push/pop skb's mac_header here on egress! */
3450                 skb_do_redirect(skb);
3451                 *ret = NET_XMIT_SUCCESS;
3452                 return NULL;
3453         default:
3454                 break;
3455         }
3456
3457         return skb;
3458 }
3459 #endif /* CONFIG_NET_EGRESS */
3460
3461 #ifdef CONFIG_XPS
3462 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3463                                struct xps_dev_maps *dev_maps, unsigned int tci)
3464 {
3465         struct xps_map *map;
3466         int queue_index = -1;
3467
3468         if (dev->num_tc) {
3469                 tci *= dev->num_tc;
3470                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3471         }
3472
3473         map = rcu_dereference(dev_maps->attr_map[tci]);
3474         if (map) {
3475                 if (map->len == 1)
3476                         queue_index = map->queues[0];
3477                 else
3478                         queue_index = map->queues[reciprocal_scale(
3479                                                 skb_get_hash(skb), map->len)];
3480                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3481                         queue_index = -1;
3482         }
3483         return queue_index;
3484 }
3485 #endif
3486
3487 static int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3488 {
3489 #ifdef CONFIG_XPS
3490         struct xps_dev_maps *dev_maps;
3491         struct sock *sk = skb->sk;
3492         int queue_index = -1;
3493
3494         if (!static_key_false(&xps_needed))
3495                 return -1;
3496
3497         rcu_read_lock();
3498         if (!static_key_false(&xps_rxqs_needed))
3499                 goto get_cpus_map;
3500
3501         dev_maps = rcu_dereference(dev->xps_rxqs_map);
3502         if (dev_maps) {
3503                 int tci = sk_rx_queue_get(sk);
3504
3505                 if (tci >= 0 && tci < dev->num_rx_queues)
3506                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3507                                                           tci);
3508         }
3509
3510 get_cpus_map:
3511         if (queue_index < 0) {
3512                 dev_maps = rcu_dereference(dev->xps_cpus_map);
3513                 if (dev_maps) {
3514                         unsigned int tci = skb->sender_cpu - 1;
3515
3516                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3517                                                           tci);
3518                 }
3519         }
3520         rcu_read_unlock();
3521
3522         return queue_index;
3523 #else
3524         return -1;
3525 #endif
3526 }
3527
3528 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3529 {
3530         struct sock *sk = skb->sk;
3531         int queue_index = sk_tx_queue_get(sk);
3532
3533         if (queue_index < 0 || skb->ooo_okay ||
3534             queue_index >= dev->real_num_tx_queues) {
3535                 int new_index = get_xps_queue(dev, skb);
3536
3537                 if (new_index < 0)
3538                         new_index = skb_tx_hash(dev, skb);
3539
3540                 if (queue_index != new_index && sk &&
3541                     sk_fullsock(sk) &&
3542                     rcu_access_pointer(sk->sk_dst_cache))
3543                         sk_tx_queue_set(sk, new_index);
3544
3545                 queue_index = new_index;
3546         }
3547
3548         return queue_index;
3549 }
3550
3551 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3552                                     struct sk_buff *skb,
3553                                     void *accel_priv)
3554 {
3555         int queue_index = 0;
3556
3557 #ifdef CONFIG_XPS
3558         u32 sender_cpu = skb->sender_cpu - 1;
3559
3560         if (sender_cpu >= (u32)NR_CPUS)
3561                 skb->sender_cpu = raw_smp_processor_id() + 1;
3562 #endif
3563
3564         if (dev->real_num_tx_queues != 1) {
3565                 const struct net_device_ops *ops = dev->netdev_ops;
3566
3567                 if (ops->ndo_select_queue)
3568                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3569                                                             __netdev_pick_tx);
3570                 else
3571                         queue_index = __netdev_pick_tx(dev, skb);
3572
3573                 queue_index = netdev_cap_txqueue(dev, queue_index);
3574         }
3575
3576         skb_set_queue_mapping(skb, queue_index);
3577         return netdev_get_tx_queue(dev, queue_index);
3578 }
3579
3580 /**
3581  *      __dev_queue_xmit - transmit a buffer
3582  *      @skb: buffer to transmit
3583  *      @accel_priv: private data used for L2 forwarding offload
3584  *
3585  *      Queue a buffer for transmission to a network device. The caller must
3586  *      have set the device and priority and built the buffer before calling
3587  *      this function. The function can be called from an interrupt.
3588  *
3589  *      A negative errno code is returned on a failure. A success does not
3590  *      guarantee the frame will be transmitted as it may be dropped due
3591  *      to congestion or traffic shaping.
3592  *
3593  * -----------------------------------------------------------------------------------
3594  *      I notice this method can also return errors from the queue disciplines,
3595  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3596  *      be positive.
3597  *
3598  *      Regardless of the return value, the skb is consumed, so it is currently
3599  *      difficult to retry a send to this method.  (You can bump the ref count
3600  *      before sending to hold a reference for retry if you are careful.)
3601  *
3602  *      When calling this method, interrupts MUST be enabled.  This is because
3603  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3604  *          --BLG
3605  */
3606 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3607 {
3608         struct net_device *dev = skb->dev;
3609         struct netdev_queue *txq;
3610         struct Qdisc *q;
3611         int rc = -ENOMEM;
3612         bool again = false;
3613
3614         skb_reset_mac_header(skb);
3615
3616         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3617                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3618
3619         /* Disable soft irqs for various locks below. Also
3620          * stops preemption for RCU.
3621          */
3622         rcu_read_lock_bh();
3623
3624         skb_update_prio(skb);
3625
3626         qdisc_pkt_len_init(skb);
3627 #ifdef CONFIG_NET_CLS_ACT
3628         skb->tc_at_ingress = 0;
3629 # ifdef CONFIG_NET_EGRESS
3630         if (static_branch_unlikely(&egress_needed_key)) {
3631                 skb = sch_handle_egress(skb, &rc, dev);
3632                 if (!skb)
3633                         goto out;
3634         }
3635 # endif
3636 #endif
3637         /* If device/qdisc don't need skb->dst, release it right now while
3638          * its hot in this cpu cache.
3639          */
3640         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3641                 skb_dst_drop(skb);
3642         else
3643                 skb_dst_force(skb);
3644
3645         txq = netdev_pick_tx(dev, skb, accel_priv);
3646         q = rcu_dereference_bh(txq->qdisc);
3647
3648         trace_net_dev_queue(skb);
3649         if (q->enqueue) {
3650                 rc = __dev_xmit_skb(skb, q, dev, txq);
3651                 goto out;
3652         }
3653
3654         /* The device has no queue. Common case for software devices:
3655          * loopback, all the sorts of tunnels...
3656
3657          * Really, it is unlikely that netif_tx_lock protection is necessary
3658          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3659          * counters.)
3660          * However, it is possible, that they rely on protection
3661          * made by us here.
3662
3663          * Check this and shot the lock. It is not prone from deadlocks.
3664          *Either shot noqueue qdisc, it is even simpler 8)
3665          */
3666         if (dev->flags & IFF_UP) {
3667                 int cpu = smp_processor_id(); /* ok because BHs are off */
3668
3669                 if (txq->xmit_lock_owner != cpu) {
3670                         if (unlikely(__this_cpu_read(xmit_recursion) >
3671                                      XMIT_RECURSION_LIMIT))
3672                                 goto recursion_alert;
3673
3674                         skb = validate_xmit_skb(skb, dev, &again);
3675                         if (!skb)
3676                                 goto out;
3677
3678                         HARD_TX_LOCK(dev, txq, cpu);
3679
3680                         if (!netif_xmit_stopped(txq)) {
3681                                 __this_cpu_inc(xmit_recursion);
3682                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3683                                 __this_cpu_dec(xmit_recursion);
3684                                 if (dev_xmit_complete(rc)) {
3685                                         HARD_TX_UNLOCK(dev, txq);
3686                                         goto out;
3687                                 }
3688                         }
3689                         HARD_TX_UNLOCK(dev, txq);
3690                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3691                                              dev->name);
3692                 } else {
3693                         /* Recursion is detected! It is possible,
3694                          * unfortunately
3695                          */
3696 recursion_alert:
3697                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3698                                              dev->name);
3699                 }
3700         }
3701
3702         rc = -ENETDOWN;
3703         rcu_read_unlock_bh();
3704
3705         atomic_long_inc(&dev->tx_dropped);
3706         kfree_skb_list(skb);
3707         return rc;
3708 out:
3709         rcu_read_unlock_bh();
3710         return rc;
3711 }
3712
3713 int dev_queue_xmit(struct sk_buff *skb)
3714 {
3715         return __dev_queue_xmit(skb, NULL);
3716 }
3717 EXPORT_SYMBOL(dev_queue_xmit);
3718
3719 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3720 {
3721         return __dev_queue_xmit(skb, accel_priv);
3722 }
3723 EXPORT_SYMBOL(dev_queue_xmit_accel);
3724
3725 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3726 {
3727         struct net_device *dev = skb->dev;
3728         struct sk_buff *orig_skb = skb;
3729         struct netdev_queue *txq;
3730         int ret = NETDEV_TX_BUSY;
3731         bool again = false;
3732
3733         if (unlikely(!netif_running(dev) ||
3734                      !netif_carrier_ok(dev)))
3735                 goto drop;
3736
3737         skb = validate_xmit_skb_list(skb, dev, &again);
3738         if (skb != orig_skb)
3739                 goto drop;
3740
3741         skb_set_queue_mapping(skb, queue_id);
3742         txq = skb_get_tx_queue(dev, skb);
3743
3744         local_bh_disable();
3745
3746         HARD_TX_LOCK(dev, txq, smp_processor_id());
3747         if (!netif_xmit_frozen_or_drv_stopped(txq))
3748                 ret = netdev_start_xmit(skb, dev, txq, false);
3749         HARD_TX_UNLOCK(dev, txq);
3750
3751         local_bh_enable();
3752
3753         if (!dev_xmit_complete(ret))
3754                 kfree_skb(skb);
3755
3756         return ret;
3757 drop:
3758         atomic_long_inc(&dev->tx_dropped);
3759         kfree_skb_list(skb);
3760         return NET_XMIT_DROP;
3761 }
3762 EXPORT_SYMBOL(dev_direct_xmit);
3763
3764 /*************************************************************************
3765  *                      Receiver routines
3766  *************************************************************************/
3767
3768 int netdev_max_backlog __read_mostly = 1000;
3769 EXPORT_SYMBOL(netdev_max_backlog);
3770
3771 int netdev_tstamp_prequeue __read_mostly = 1;
3772 int netdev_budget __read_mostly = 300;
3773 unsigned int __read_mostly netdev_budget_usecs = 2000;
3774 int weight_p __read_mostly = 64;           /* old backlog weight */
3775 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3776 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3777 int dev_rx_weight __read_mostly = 64;
3778 int dev_tx_weight __read_mostly = 64;
3779
3780 /* Called with irq disabled */
3781 static inline void ____napi_schedule(struct softnet_data *sd,
3782                                      struct napi_struct *napi)
3783 {
3784         list_add_tail(&napi->poll_list, &sd->poll_list);
3785         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3786 }
3787
3788 #ifdef CONFIG_RPS
3789
3790 /* One global table that all flow-based protocols share. */
3791 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3792 EXPORT_SYMBOL(rps_sock_flow_table);
3793 u32 rps_cpu_mask __read_mostly;
3794 EXPORT_SYMBOL(rps_cpu_mask);
3795
3796 struct static_key rps_needed __read_mostly;
3797 EXPORT_SYMBOL(rps_needed);
3798 struct static_key rfs_needed __read_mostly;
3799 EXPORT_SYMBOL(rfs_needed);
3800
3801 static struct rps_dev_flow *
3802 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3803             struct rps_dev_flow *rflow, u16 next_cpu)
3804 {
3805         if (next_cpu < nr_cpu_ids) {
3806 #ifdef CONFIG_RFS_ACCEL
3807                 struct netdev_rx_queue *rxqueue;
3808                 struct rps_dev_flow_table *flow_table;
3809                 struct rps_dev_flow *old_rflow;
3810                 u32 flow_id;
3811                 u16 rxq_index;
3812                 int rc;
3813
3814                 /* Should we steer this flow to a different hardware queue? */
3815                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3816                     !(dev->features & NETIF_F_NTUPLE))
3817                         goto out;
3818                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3819                 if (rxq_index == skb_get_rx_queue(skb))
3820                         goto out;
3821
3822                 rxqueue = dev->_rx + rxq_index;
3823                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3824                 if (!flow_table)
3825                         goto out;
3826                 flow_id = skb_get_hash(skb) & flow_table->mask;
3827                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3828                                                         rxq_index, flow_id);
3829                 if (rc < 0)
3830                         goto out;
3831                 old_rflow = rflow;
3832                 rflow = &flow_table->flows[flow_id];
3833                 rflow->filter = rc;
3834                 if (old_rflow->filter == rflow->filter)
3835                         old_rflow->filter = RPS_NO_FILTER;
3836         out:
3837 #endif
3838                 rflow->last_qtail =
3839                         per_cpu(softnet_data, next_cpu).input_queue_head;
3840         }
3841
3842         rflow->cpu = next_cpu;
3843         return rflow;
3844 }
3845
3846 /*
3847  * get_rps_cpu is called from netif_receive_skb and returns the target
3848  * CPU from the RPS map of the receiving queue for a given skb.
3849  * rcu_read_lock must be held on entry.
3850  */
3851 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3852                        struct rps_dev_flow **rflowp)
3853 {
3854         const struct rps_sock_flow_table *sock_flow_table;
3855         struct netdev_rx_queue *rxqueue = dev->_rx;
3856         struct rps_dev_flow_table *flow_table;
3857         struct rps_map *map;
3858         int cpu = -1;
3859         u32 tcpu;
3860         u32 hash;
3861
3862         if (skb_rx_queue_recorded(skb)) {
3863                 u16 index = skb_get_rx_queue(skb);
3864
3865                 if (unlikely(index >= dev->real_num_rx_queues)) {
3866                         WARN_ONCE(dev->real_num_rx_queues > 1,
3867                                   "%s received packet on queue %u, but number "
3868                                   "of RX queues is %u\n",
3869                                   dev->name, index, dev->real_num_rx_queues);
3870                         goto done;
3871                 }
3872                 rxqueue += index;
3873         }
3874
3875         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3876
3877         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3878         map = rcu_dereference(rxqueue->rps_map);
3879         if (!flow_table && !map)
3880                 goto done;
3881
3882         skb_reset_network_header(skb);
3883         hash = skb_get_hash(skb);
3884         if (!hash)
3885                 goto done;
3886
3887         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3888         if (flow_table && sock_flow_table) {
3889                 struct rps_dev_flow *rflow;
3890                 u32 next_cpu;
3891                 u32 ident;
3892
3893                 /* First check into global flow table if there is a match */
3894                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3895                 if ((ident ^ hash) & ~rps_cpu_mask)
3896                         goto try_rps;
3897
3898                 next_cpu = ident & rps_cpu_mask;
3899
3900                 /* OK, now we know there is a match,
3901                  * we can look at the local (per receive queue) flow table
3902                  */
3903                 rflow = &flow_table->flows[hash & flow_table->mask];
3904                 tcpu = rflow->cpu;
3905
3906                 /*
3907                  * If the desired CPU (where last recvmsg was done) is
3908                  * different from current CPU (one in the rx-queue flow
3909                  * table entry), switch if one of the following holds:
3910                  *   - Current CPU is unset (>= nr_cpu_ids).
3911                  *   - Current CPU is offline.
3912                  *   - The current CPU's queue tail has advanced beyond the
3913                  *     last packet that was enqueued using this table entry.
3914                  *     This guarantees that all previous packets for the flow
3915                  *     have been dequeued, thus preserving in order delivery.
3916                  */
3917                 if (unlikely(tcpu != next_cpu) &&
3918                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3919                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3920                       rflow->last_qtail)) >= 0)) {
3921                         tcpu = next_cpu;
3922                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3923                 }
3924
3925                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3926                         *rflowp = rflow;
3927                         cpu = tcpu;
3928                         goto done;
3929                 }
3930         }
3931
3932 try_rps:
3933
3934         if (map) {
3935                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3936                 if (cpu_online(tcpu)) {
3937                         cpu = tcpu;
3938                         goto done;
3939                 }
3940         }
3941
3942 done:
3943         return cpu;
3944 }
3945
3946 #ifdef CONFIG_RFS_ACCEL
3947
3948 /**
3949  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3950  * @dev: Device on which the filter was set
3951  * @rxq_index: RX queue index
3952  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3953  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3954  *
3955  * Drivers that implement ndo_rx_flow_steer() should periodically call
3956  * this function for each installed filter and remove the filters for
3957  * which it returns %true.
3958  */
3959 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3960                          u32 flow_id, u16 filter_id)
3961 {
3962         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3963         struct rps_dev_flow_table *flow_table;
3964         struct rps_dev_flow *rflow;
3965         bool expire = true;
3966         unsigned int cpu;
3967
3968         rcu_read_lock();
3969         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3970         if (flow_table && flow_id <= flow_table->mask) {
3971                 rflow = &flow_table->flows[flow_id];
3972                 cpu = READ_ONCE(rflow->cpu);
3973                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3974                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3975                            rflow->last_qtail) <
3976                      (int)(10 * flow_table->mask)))
3977                         expire = false;
3978         }
3979         rcu_read_unlock();
3980         return expire;
3981 }
3982 EXPORT_SYMBOL(rps_may_expire_flow);
3983
3984 #endif /* CONFIG_RFS_ACCEL */
3985
3986 /* Called from hardirq (IPI) context */
3987 static void rps_trigger_softirq(void *data)
3988 {
3989         struct softnet_data *sd = data;
3990
3991         ____napi_schedule(sd, &sd->backlog);
3992         sd->received_rps++;
3993 }
3994
3995 #endif /* CONFIG_RPS */
3996
3997 /*
3998  * Check if this softnet_data structure is another cpu one
3999  * If yes, queue it to our IPI list and return 1
4000  * If no, return 0
4001  */
4002 static int rps_ipi_queued(struct softnet_data *sd)
4003 {
4004 #ifdef CONFIG_RPS
4005         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4006
4007         if (sd != mysd) {
4008                 sd->rps_ipi_next = mysd->rps_ipi_list;
4009                 mysd->rps_ipi_list = sd;
4010
4011                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4012                 return 1;
4013         }
4014 #endif /* CONFIG_RPS */
4015         return 0;
4016 }
4017
4018 #ifdef CONFIG_NET_FLOW_LIMIT
4019 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4020 #endif
4021
4022 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4023 {
4024 #ifdef CONFIG_NET_FLOW_LIMIT
4025         struct sd_flow_limit *fl;
4026         struct softnet_data *sd;
4027         unsigned int old_flow, new_flow;
4028
4029         if (qlen < (netdev_max_backlog >> 1))
4030                 return false;
4031
4032         sd = this_cpu_ptr(&softnet_data);
4033
4034         rcu_read_lock();
4035         fl = rcu_dereference(sd->flow_limit);
4036         if (fl) {
4037                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4038                 old_flow = fl->history[fl->history_head];
4039                 fl->history[fl->history_head] = new_flow;
4040
4041                 fl->history_head++;
4042                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4043
4044                 if (likely(fl->buckets[old_flow]))
4045                         fl->buckets[old_flow]--;
4046
4047                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4048                         fl->count++;
4049                         rcu_read_unlock();
4050                         return true;
4051                 }
4052         }
4053         rcu_read_unlock();
4054 #endif
4055         return false;
4056 }
4057
4058 /*
4059  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4060  * queue (may be a remote CPU queue).
4061  */
4062 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4063                               unsigned int *qtail)
4064 {
4065         struct softnet_data *sd;
4066         unsigned long flags;
4067         unsigned int qlen;
4068
4069         sd = &per_cpu(softnet_data, cpu);
4070
4071         local_irq_save(flags);
4072
4073         rps_lock(sd);
4074         if (!netif_running(skb->dev))
4075                 goto drop;
4076         qlen = skb_queue_len(&sd->input_pkt_queue);
4077         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4078                 if (qlen) {
4079 enqueue:
4080                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4081                         input_queue_tail_incr_save(sd, qtail);
4082                         rps_unlock(sd);
4083                         local_irq_restore(flags);
4084                         return NET_RX_SUCCESS;
4085                 }
4086
4087                 /* Schedule NAPI for backlog device
4088                  * We can use non atomic operation since we own the queue lock
4089                  */
4090                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4091                         if (!rps_ipi_queued(sd))
4092                                 ____napi_schedule(sd, &sd->backlog);
4093                 }
4094                 goto enqueue;
4095         }
4096
4097 drop:
4098         sd->dropped++;
4099         rps_unlock(sd);
4100
4101         local_irq_restore(flags);
4102
4103         atomic_long_inc(&skb->dev->rx_dropped);
4104         kfree_skb(skb);
4105         return NET_RX_DROP;
4106 }
4107
4108 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4109 {
4110         struct net_device *dev = skb->dev;
4111         struct netdev_rx_queue *rxqueue;
4112
4113         rxqueue = dev->_rx;
4114
4115         if (skb_rx_queue_recorded(skb)) {
4116                 u16 index = skb_get_rx_queue(skb);
4117
4118                 if (unlikely(index >= dev->real_num_rx_queues)) {
4119                         WARN_ONCE(dev->real_num_rx_queues > 1,
4120                                   "%s received packet on queue %u, but number "
4121                                   "of RX queues is %u\n",
4122                                   dev->name, index, dev->real_num_rx_queues);
4123
4124                         return rxqueue; /* Return first rxqueue */
4125                 }
4126                 rxqueue += index;
4127         }
4128         return rxqueue;
4129 }
4130
4131 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4132                                      struct xdp_buff *xdp,
4133                                      struct bpf_prog *xdp_prog)
4134 {
4135         struct netdev_rx_queue *rxqueue;
4136         void *orig_data, *orig_data_end;
4137         u32 metalen, act = XDP_DROP;
4138         int hlen, off;
4139         u32 mac_len;
4140
4141         /* Reinjected packets coming from act_mirred or similar should
4142          * not get XDP generic processing.
4143          */
4144         if (skb_cloned(skb))
4145                 return XDP_PASS;
4146
4147         /* XDP packets must be linear and must have sufficient headroom
4148          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4149          * native XDP provides, thus we need to do it here as well.
4150          */
4151         if (skb_is_nonlinear(skb) ||
4152             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4153                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4154                 int troom = skb->tail + skb->data_len - skb->end;
4155
4156                 /* In case we have to go down the path and also linearize,
4157                  * then lets do the pskb_expand_head() work just once here.
4158                  */
4159                 if (pskb_expand_head(skb,
4160                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4161                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4162                         goto do_drop;
4163                 if (skb_linearize(skb))
4164                         goto do_drop;
4165         }
4166
4167         /* The XDP program wants to see the packet starting at the MAC
4168          * header.
4169          */
4170         mac_len = skb->data - skb_mac_header(skb);
4171         hlen = skb_headlen(skb) + mac_len;
4172         xdp->data = skb->data - mac_len;
4173         xdp->data_meta = xdp->data;
4174         xdp->data_end = xdp->data + hlen;
4175         xdp->data_hard_start = skb->data - skb_headroom(skb);
4176         orig_data_end = xdp->data_end;
4177         orig_data = xdp->data;
4178
4179         rxqueue = netif_get_rxqueue(skb);
4180         xdp->rxq = &rxqueue->xdp_rxq;
4181
4182         act = bpf_prog_run_xdp(xdp_prog, xdp);
4183
4184         off = xdp->data - orig_data;
4185         if (off > 0)
4186                 __skb_pull(skb, off);
4187         else if (off < 0)
4188                 __skb_push(skb, -off);
4189         skb->mac_header += off;
4190
4191         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4192          * pckt.
4193          */
4194         off = orig_data_end - xdp->data_end;
4195         if (off != 0) {
4196                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4197                 skb->len -= off;
4198
4199         }
4200
4201         switch (act) {
4202         case XDP_REDIRECT:
4203         case XDP_TX:
4204                 __skb_push(skb, mac_len);
4205                 break;
4206         case XDP_PASS:
4207                 metalen = xdp->data - xdp->data_meta;
4208                 if (metalen)
4209                         skb_metadata_set(skb, metalen);
4210                 break;
4211         default:
4212                 bpf_warn_invalid_xdp_action(act);
4213                 /* fall through */
4214         case XDP_ABORTED:
4215                 trace_xdp_exception(skb->dev, xdp_prog, act);
4216                 /* fall through */
4217         case XDP_DROP:
4218         do_drop:
4219                 kfree_skb(skb);
4220                 break;
4221         }
4222
4223         return act;
4224 }
4225
4226 /* When doing generic XDP we have to bypass the qdisc layer and the
4227  * network taps in order to match in-driver-XDP behavior.
4228  */
4229 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4230 {
4231         struct net_device *dev = skb->dev;
4232         struct netdev_queue *txq;
4233         bool free_skb = true;
4234         int cpu, rc;
4235
4236         txq = netdev_pick_tx(dev, skb, NULL);
4237         cpu = smp_processor_id();
4238         HARD_TX_LOCK(dev, txq, cpu);
4239         if (!netif_xmit_stopped(txq)) {
4240                 rc = netdev_start_xmit(skb, dev, txq, 0);
4241                 if (dev_xmit_complete(rc))
4242                         free_skb = false;
4243         }
4244         HARD_TX_UNLOCK(dev, txq);
4245         if (free_skb) {
4246                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4247                 kfree_skb(skb);
4248         }
4249 }
4250 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4251
4252 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4253
4254 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4255 {
4256         if (xdp_prog) {
4257                 struct xdp_buff xdp;
4258                 u32 act;
4259                 int err;
4260
4261                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4262                 if (act != XDP_PASS) {
4263                         switch (act) {
4264                         case XDP_REDIRECT:
4265                                 err = xdp_do_generic_redirect(skb->dev, skb,
4266                                                               &xdp, xdp_prog);
4267                                 if (err)
4268                                         goto out_redir;
4269                                 break;
4270                         case XDP_TX:
4271                                 generic_xdp_tx(skb, xdp_prog);
4272                                 break;
4273                         }
4274                         return XDP_DROP;
4275                 }
4276         }
4277         return XDP_PASS;
4278 out_redir:
4279         kfree_skb(skb);
4280         return XDP_DROP;
4281 }
4282 EXPORT_SYMBOL_GPL(do_xdp_generic);
4283
4284 static int netif_rx_internal(struct sk_buff *skb)
4285 {
4286         int ret;
4287
4288         net_timestamp_check(netdev_tstamp_prequeue, skb);
4289
4290         trace_netif_rx(skb);
4291
4292         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4293                 int ret;
4294
4295                 preempt_disable();
4296                 rcu_read_lock();
4297                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4298                 rcu_read_unlock();
4299                 preempt_enable();
4300
4301                 /* Consider XDP consuming the packet a success from
4302                  * the netdev point of view we do not want to count
4303                  * this as an error.
4304                  */
4305                 if (ret != XDP_PASS)
4306                         return NET_RX_SUCCESS;
4307         }
4308
4309 #ifdef CONFIG_RPS
4310         if (static_key_false(&rps_needed)) {
4311                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4312                 int cpu;
4313
4314                 preempt_disable();
4315                 rcu_read_lock();
4316
4317                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4318                 if (cpu < 0)
4319                         cpu = smp_processor_id();
4320
4321                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4322
4323                 rcu_read_unlock();
4324                 preempt_enable();
4325         } else
4326 #endif
4327         {
4328                 unsigned int qtail;
4329
4330                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4331                 put_cpu();
4332         }
4333         return ret;
4334 }
4335
4336 /**
4337  *      netif_rx        -       post buffer to the network code
4338  *      @skb: buffer to post
4339  *
4340  *      This function receives a packet from a device driver and queues it for
4341  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4342  *      may be dropped during processing for congestion control or by the
4343  *      protocol layers.
4344  *
4345  *      return values:
4346  *      NET_RX_SUCCESS  (no congestion)
4347  *      NET_RX_DROP     (packet was dropped)
4348  *
4349  */
4350
4351 int netif_rx(struct sk_buff *skb)
4352 {
4353         trace_netif_rx_entry(skb);
4354
4355         return netif_rx_internal(skb);
4356 }
4357 EXPORT_SYMBOL(netif_rx);
4358
4359 int netif_rx_ni(struct sk_buff *skb)
4360 {
4361         int err;
4362
4363         trace_netif_rx_ni_entry(skb);
4364
4365         preempt_disable();
4366         err = netif_rx_internal(skb);
4367         if (local_softirq_pending())
4368                 do_softirq();
4369         preempt_enable();
4370
4371         return err;
4372 }
4373 EXPORT_SYMBOL(netif_rx_ni);
4374
4375 static __latent_entropy void net_tx_action(struct softirq_action *h)
4376 {
4377         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4378
4379         if (sd->completion_queue) {
4380                 struct sk_buff *clist;
4381
4382                 local_irq_disable();
4383                 clist = sd->completion_queue;
4384                 sd->completion_queue = NULL;
4385                 local_irq_enable();
4386
4387                 while (clist) {
4388                         struct sk_buff *skb = clist;
4389
4390                         clist = clist->next;
4391
4392                         WARN_ON(refcount_read(&skb->users));
4393                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4394                                 trace_consume_skb(skb);
4395                         else
4396                                 trace_kfree_skb(skb, net_tx_action);
4397
4398                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4399                                 __kfree_skb(skb);
4400                         else
4401                                 __kfree_skb_defer(skb);
4402                 }
4403
4404                 __kfree_skb_flush();
4405         }
4406
4407         if (sd->output_queue) {
4408                 struct Qdisc *head;
4409
4410                 local_irq_disable();
4411                 head = sd->output_queue;
4412                 sd->output_queue = NULL;
4413                 sd->output_queue_tailp = &sd->output_queue;
4414                 local_irq_enable();
4415
4416                 while (head) {
4417                         struct Qdisc *q = head;
4418                         spinlock_t *root_lock = NULL;
4419
4420                         head = head->next_sched;
4421
4422                         if (!(q->flags & TCQ_F_NOLOCK)) {
4423                                 root_lock = qdisc_lock(q);
4424                                 spin_lock(root_lock);
4425                         }
4426                         /* We need to make sure head->next_sched is read
4427                          * before clearing __QDISC_STATE_SCHED
4428                          */
4429                         smp_mb__before_atomic();
4430                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4431                         qdisc_run(q);
4432                         if (root_lock)
4433                                 spin_unlock(root_lock);
4434                 }
4435         }
4436
4437         xfrm_dev_backlog(sd);
4438 }
4439
4440 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4441 /* This hook is defined here for ATM LANE */
4442 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4443                              unsigned char *addr) __read_mostly;
4444 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4445 #endif
4446
4447 static inline struct sk_buff *
4448 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4449                    struct net_device *orig_dev)
4450 {
4451 #ifdef CONFIG_NET_CLS_ACT
4452         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4453         struct tcf_result cl_res;
4454
4455         /* If there's at least one ingress present somewhere (so
4456          * we get here via enabled static key), remaining devices
4457          * that are not configured with an ingress qdisc will bail
4458          * out here.
4459          */
4460         if (!miniq)
4461                 return skb;
4462
4463         if (*pt_prev) {
4464                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4465                 *pt_prev = NULL;
4466         }
4467
4468         qdisc_skb_cb(skb)->pkt_len = skb->len;
4469         skb->tc_at_ingress = 1;
4470         mini_qdisc_bstats_cpu_update(miniq, skb);
4471
4472         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4473         case TC_ACT_OK:
4474         case TC_ACT_RECLASSIFY:
4475                 skb->tc_index = TC_H_MIN(cl_res.classid);
4476                 break;
4477         case TC_ACT_SHOT:
4478                 mini_qdisc_qstats_cpu_drop(miniq);
4479                 kfree_skb(skb);
4480                 return NULL;
4481         case TC_ACT_STOLEN:
4482         case TC_ACT_QUEUED:
4483         case TC_ACT_TRAP:
4484                 consume_skb(skb);
4485                 return NULL;
4486         case TC_ACT_REDIRECT:
4487                 /* skb_mac_header check was done by cls/act_bpf, so
4488                  * we can safely push the L2 header back before
4489                  * redirecting to another netdev
4490                  */
4491                 __skb_push(skb, skb->mac_len);
4492                 skb_do_redirect(skb);
4493                 return NULL;
4494         default:
4495                 break;
4496         }
4497 #endif /* CONFIG_NET_CLS_ACT */
4498         return skb;
4499 }
4500
4501 /**
4502  *      netdev_is_rx_handler_busy - check if receive handler is registered
4503  *      @dev: device to check
4504  *
4505  *      Check if a receive handler is already registered for a given device.
4506  *      Return true if there one.
4507  *
4508  *      The caller must hold the rtnl_mutex.
4509  */
4510 bool netdev_is_rx_handler_busy(struct net_device *dev)
4511 {
4512         ASSERT_RTNL();
4513         return dev && rtnl_dereference(dev->rx_handler);
4514 }
4515 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4516
4517 /**
4518  *      netdev_rx_handler_register - register receive handler
4519  *      @dev: device to register a handler for
4520  *      @rx_handler: receive handler to register
4521  *      @rx_handler_data: data pointer that is used by rx handler
4522  *
4523  *      Register a receive handler for a device. This handler will then be
4524  *      called from __netif_receive_skb. A negative errno code is returned
4525  *      on a failure.
4526  *
4527  *      The caller must hold the rtnl_mutex.
4528  *
4529  *      For a general description of rx_handler, see enum rx_handler_result.
4530  */
4531 int netdev_rx_handler_register(struct net_device *dev,
4532                                rx_handler_func_t *rx_handler,
4533                                void *rx_handler_data)
4534 {
4535         if (netdev_is_rx_handler_busy(dev))
4536                 return -EBUSY;
4537
4538         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4539                 return -EINVAL;
4540
4541         /* Note: rx_handler_data must be set before rx_handler */
4542         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4543         rcu_assign_pointer(dev->rx_handler, rx_handler);
4544
4545         return 0;
4546 }
4547 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4548
4549 /**
4550  *      netdev_rx_handler_unregister - unregister receive handler
4551  *      @dev: device to unregister a handler from
4552  *
4553  *      Unregister a receive handler from a device.
4554  *
4555  *      The caller must hold the rtnl_mutex.
4556  */
4557 void netdev_rx_handler_unregister(struct net_device *dev)
4558 {
4559
4560         ASSERT_RTNL();
4561         RCU_INIT_POINTER(dev->rx_handler, NULL);
4562         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4563          * section has a guarantee to see a non NULL rx_handler_data
4564          * as well.
4565          */
4566         synchronize_net();
4567         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4568 }
4569 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4570
4571 /*
4572  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4573  * the special handling of PFMEMALLOC skbs.
4574  */
4575 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4576 {
4577         switch (skb->protocol) {
4578         case htons(ETH_P_ARP):
4579         case htons(ETH_P_IP):
4580         case htons(ETH_P_IPV6):
4581         case htons(ETH_P_8021Q):
4582         case htons(ETH_P_8021AD):
4583                 return true;
4584         default:
4585                 return false;
4586         }
4587 }
4588
4589 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4590                              int *ret, struct net_device *orig_dev)
4591 {
4592 #ifdef CONFIG_NETFILTER_INGRESS
4593         if (nf_hook_ingress_active(skb)) {
4594                 int ingress_retval;
4595
4596                 if (*pt_prev) {
4597                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4598                         *pt_prev = NULL;
4599                 }
4600
4601                 rcu_read_lock();
4602                 ingress_retval = nf_hook_ingress(skb);
4603                 rcu_read_unlock();
4604                 return ingress_retval;
4605         }
4606 #endif /* CONFIG_NETFILTER_INGRESS */
4607         return 0;
4608 }
4609
4610 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4611                                     struct packet_type **ppt_prev)
4612 {
4613         struct packet_type *ptype, *pt_prev;
4614         rx_handler_func_t *rx_handler;
4615         struct net_device *orig_dev;
4616         bool deliver_exact = false;
4617         int ret = NET_RX_DROP;
4618         __be16 type;
4619
4620         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4621
4622         trace_netif_receive_skb(skb);
4623
4624         orig_dev = skb->dev;
4625
4626         skb_reset_network_header(skb);
4627         if (!skb_transport_header_was_set(skb))
4628                 skb_reset_transport_header(skb);
4629         skb_reset_mac_len(skb);
4630
4631         pt_prev = NULL;
4632
4633 another_round:
4634         skb->skb_iif = skb->dev->ifindex;
4635
4636         __this_cpu_inc(softnet_data.processed);
4637
4638         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4639             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4640                 skb = skb_vlan_untag(skb);
4641                 if (unlikely(!skb))
4642                         goto out;
4643         }
4644
4645         if (skb_skip_tc_classify(skb))
4646                 goto skip_classify;
4647
4648         if (pfmemalloc)
4649                 goto skip_taps;
4650
4651         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4652                 if (pt_prev)
4653                         ret = deliver_skb(skb, pt_prev, orig_dev);
4654                 pt_prev = ptype;
4655         }
4656
4657         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4658                 if (pt_prev)
4659                         ret = deliver_skb(skb, pt_prev, orig_dev);
4660                 pt_prev = ptype;
4661         }
4662
4663 skip_taps:
4664 #ifdef CONFIG_NET_INGRESS
4665         if (static_branch_unlikely(&ingress_needed_key)) {
4666                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4667                 if (!skb)
4668                         goto out;
4669
4670                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4671                         goto out;
4672         }
4673 #endif
4674         skb_reset_tc(skb);
4675 skip_classify:
4676         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4677                 goto drop;
4678
4679         if (skb_vlan_tag_present(skb)) {
4680                 if (pt_prev) {
4681                         ret = deliver_skb(skb, pt_prev, orig_dev);
4682                         pt_prev = NULL;
4683                 }
4684                 if (vlan_do_receive(&skb))
4685                         goto another_round;
4686                 else if (unlikely(!skb))
4687                         goto out;
4688         }
4689
4690         rx_handler = rcu_dereference(skb->dev->rx_handler);
4691         if (rx_handler) {
4692                 if (pt_prev) {
4693                         ret = deliver_skb(skb, pt_prev, orig_dev);
4694                         pt_prev = NULL;
4695                 }
4696                 switch (rx_handler(&skb)) {
4697                 case RX_HANDLER_CONSUMED:
4698                         ret = NET_RX_SUCCESS;
4699                         goto out;
4700                 case RX_HANDLER_ANOTHER:
4701                         goto another_round;
4702                 case RX_HANDLER_EXACT:
4703                         deliver_exact = true;
4704                 case RX_HANDLER_PASS:
4705                         break;
4706                 default:
4707                         BUG();
4708                 }
4709         }
4710
4711         if (unlikely(skb_vlan_tag_present(skb))) {
4712                 if (skb_vlan_tag_get_id(skb))
4713                         skb->pkt_type = PACKET_OTHERHOST;
4714                 /* Note: we might in the future use prio bits
4715                  * and set skb->priority like in vlan_do_receive()
4716                  * For the time being, just ignore Priority Code Point
4717                  */
4718                 skb->vlan_tci = 0;
4719         }
4720
4721         type = skb->protocol;
4722
4723         /* deliver only exact match when indicated */
4724         if (likely(!deliver_exact)) {
4725                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4726                                        &ptype_base[ntohs(type) &
4727                                                    PTYPE_HASH_MASK]);
4728         }
4729
4730         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4731                                &orig_dev->ptype_specific);
4732
4733         if (unlikely(skb->dev != orig_dev)) {
4734                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4735                                        &skb->dev->ptype_specific);
4736         }
4737
4738         if (pt_prev) {
4739                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4740                         goto drop;
4741                 *ppt_prev = pt_prev;
4742         } else {
4743 drop:
4744                 if (!deliver_exact)
4745                         atomic_long_inc(&skb->dev->rx_dropped);
4746                 else
4747                         atomic_long_inc(&skb->dev->rx_nohandler);
4748                 kfree_skb(skb);
4749                 /* Jamal, now you will not able to escape explaining
4750                  * me how you were going to use this. :-)
4751                  */
4752                 ret = NET_RX_DROP;
4753         }
4754
4755 out:
4756         return ret;
4757 }
4758
4759 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4760 {
4761         struct net_device *orig_dev = skb->dev;
4762         struct packet_type *pt_prev = NULL;
4763         int ret;
4764
4765         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4766         if (pt_prev)
4767                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4768         return ret;
4769 }
4770
4771 /**
4772  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4773  *      @skb: buffer to process
4774  *
4775  *      More direct receive version of netif_receive_skb().  It should
4776  *      only be used by callers that have a need to skip RPS and Generic XDP.
4777  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4778  *
4779  *      This function may only be called from softirq context and interrupts
4780  *      should be enabled.
4781  *
4782  *      Return values (usually ignored):
4783  *      NET_RX_SUCCESS: no congestion
4784  *      NET_RX_DROP: packet was dropped
4785  */
4786 int netif_receive_skb_core(struct sk_buff *skb)
4787 {
4788         int ret;
4789
4790         rcu_read_lock();
4791         ret = __netif_receive_skb_one_core(skb, false);
4792         rcu_read_unlock();
4793
4794         return ret;
4795 }
4796 EXPORT_SYMBOL(netif_receive_skb_core);
4797
4798 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4799                                                   struct packet_type *pt_prev,
4800                                                   struct net_device *orig_dev)
4801 {
4802         struct sk_buff *skb, *next;
4803
4804         if (!pt_prev)
4805                 return;
4806         if (list_empty(head))
4807                 return;
4808         if (pt_prev->list_func != NULL)
4809                 pt_prev->list_func(head, pt_prev, orig_dev);
4810         else
4811                 list_for_each_entry_safe(skb, next, head, list)
4812                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4813 }
4814
4815 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4816 {
4817         /* Fast-path assumptions:
4818          * - There is no RX handler.
4819          * - Only one packet_type matches.
4820          * If either of these fails, we will end up doing some per-packet
4821          * processing in-line, then handling the 'last ptype' for the whole
4822          * sublist.  This can't cause out-of-order delivery to any single ptype,
4823          * because the 'last ptype' must be constant across the sublist, and all
4824          * other ptypes are handled per-packet.
4825          */
4826         /* Current (common) ptype of sublist */
4827         struct packet_type *pt_curr = NULL;
4828         /* Current (common) orig_dev of sublist */
4829         struct net_device *od_curr = NULL;
4830         struct list_head sublist;
4831         struct sk_buff *skb, *next;
4832
4833         list_for_each_entry_safe(skb, next, head, list) {
4834                 struct net_device *orig_dev = skb->dev;
4835                 struct packet_type *pt_prev = NULL;
4836
4837                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4838                 if (pt_curr != pt_prev || od_curr != orig_dev) {
4839                         /* dispatch old sublist */
4840                         list_cut_before(&sublist, head, &skb->list);
4841                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4842                         /* start new sublist */
4843                         pt_curr = pt_prev;
4844                         od_curr = orig_dev;
4845                 }
4846         }
4847
4848         /* dispatch final sublist */
4849         __netif_receive_skb_list_ptype(head, pt_curr, od_curr);
4850 }
4851
4852 static int __netif_receive_skb(struct sk_buff *skb)
4853 {
4854         int ret;
4855
4856         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4857                 unsigned int noreclaim_flag;
4858
4859                 /*
4860                  * PFMEMALLOC skbs are special, they should
4861                  * - be delivered to SOCK_MEMALLOC sockets only
4862                  * - stay away from userspace
4863                  * - have bounded memory usage
4864                  *
4865                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4866                  * context down to all allocation sites.
4867                  */
4868                 noreclaim_flag = memalloc_noreclaim_save();
4869                 ret = __netif_receive_skb_one_core(skb, true);
4870                 memalloc_noreclaim_restore(noreclaim_flag);
4871         } else
4872                 ret = __netif_receive_skb_one_core(skb, false);
4873
4874         return ret;
4875 }
4876
4877 static void __netif_receive_skb_list(struct list_head *head)
4878 {
4879         unsigned long noreclaim_flag = 0;
4880         struct sk_buff *skb, *next;
4881         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
4882
4883         list_for_each_entry_safe(skb, next, head, list) {
4884                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
4885                         struct list_head sublist;
4886
4887                         /* Handle the previous sublist */
4888                         list_cut_before(&sublist, head, &skb->list);
4889                         if (!list_empty(&sublist))
4890                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4891                         pfmemalloc = !pfmemalloc;
4892                         /* See comments in __netif_receive_skb */
4893                         if (pfmemalloc)
4894                                 noreclaim_flag = memalloc_noreclaim_save();
4895                         else
4896                                 memalloc_noreclaim_restore(noreclaim_flag);
4897                 }
4898         }
4899         /* Handle the remaining sublist */
4900         if (!list_empty(head))
4901                 __netif_receive_skb_list_core(head, pfmemalloc);
4902         /* Restore pflags */
4903         if (pfmemalloc)
4904                 memalloc_noreclaim_restore(noreclaim_flag);
4905 }
4906
4907 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4908 {
4909         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4910         struct bpf_prog *new = xdp->prog;
4911         int ret = 0;
4912
4913         switch (xdp->command) {
4914         case XDP_SETUP_PROG:
4915                 rcu_assign_pointer(dev->xdp_prog, new);
4916                 if (old)
4917                         bpf_prog_put(old);
4918
4919                 if (old && !new) {
4920                         static_branch_dec(&generic_xdp_needed_key);
4921                 } else if (new && !old) {
4922                         static_branch_inc(&generic_xdp_needed_key);
4923                         dev_disable_lro(dev);
4924                         dev_disable_gro_hw(dev);
4925                 }
4926                 break;
4927
4928         case XDP_QUERY_PROG:
4929                 xdp->prog_attached = !!old;
4930                 xdp->prog_id = old ? old->aux->id : 0;
4931                 break;
4932
4933         default:
4934                 ret = -EINVAL;
4935                 break;
4936         }
4937
4938         return ret;
4939 }
4940
4941 static int netif_receive_skb_internal(struct sk_buff *skb)
4942 {
4943         int ret;
4944
4945         net_timestamp_check(netdev_tstamp_prequeue, skb);
4946
4947         if (skb_defer_rx_timestamp(skb))
4948                 return NET_RX_SUCCESS;
4949
4950         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4951                 int ret;
4952
4953                 preempt_disable();
4954                 rcu_read_lock();
4955                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4956                 rcu_read_unlock();
4957                 preempt_enable();
4958
4959                 if (ret != XDP_PASS)
4960                         return NET_RX_DROP;
4961         }
4962
4963         rcu_read_lock();
4964 #ifdef CONFIG_RPS
4965         if (static_key_false(&rps_needed)) {
4966                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4967                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4968
4969                 if (cpu >= 0) {
4970                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4971                         rcu_read_unlock();
4972                         return ret;
4973                 }
4974         }
4975 #endif
4976         ret = __netif_receive_skb(skb);
4977         rcu_read_unlock();
4978         return ret;
4979 }
4980
4981 static void netif_receive_skb_list_internal(struct list_head *head)
4982 {
4983         struct bpf_prog *xdp_prog = NULL;
4984         struct sk_buff *skb, *next;
4985
4986         list_for_each_entry_safe(skb, next, head, list) {
4987                 net_timestamp_check(netdev_tstamp_prequeue, skb);
4988                 if (skb_defer_rx_timestamp(skb))
4989                         /* Handled, remove from list */
4990                         list_del(&skb->list);
4991         }
4992
4993         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4994                 preempt_disable();
4995                 rcu_read_lock();
4996                 list_for_each_entry_safe(skb, next, head, list) {
4997                         xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4998                         if (do_xdp_generic(xdp_prog, skb) != XDP_PASS)
4999                                 /* Dropped, remove from list */
5000                                 list_del(&skb->list);
5001                 }
5002                 rcu_read_unlock();
5003                 preempt_enable();
5004         }
5005
5006         rcu_read_lock();
5007 #ifdef CONFIG_RPS
5008         if (static_key_false(&rps_needed)) {
5009                 list_for_each_entry_safe(skb, next, head, list) {
5010                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5011                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5012
5013                         if (cpu >= 0) {
5014                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5015                                 /* Handled, remove from list */
5016                                 list_del(&skb->list);
5017                         }
5018                 }
5019         }
5020 #endif
5021         __netif_receive_skb_list(head);
5022         rcu_read_unlock();
5023 }
5024
5025 /**
5026  *      netif_receive_skb - process receive buffer from network
5027  *      @skb: buffer to process
5028  *
5029  *      netif_receive_skb() is the main receive data processing function.
5030  *      It always succeeds. The buffer may be dropped during processing
5031  *      for congestion control or by the protocol layers.
5032  *
5033  *      This function may only be called from softirq context and interrupts
5034  *      should be enabled.
5035  *
5036  *      Return values (usually ignored):
5037  *      NET_RX_SUCCESS: no congestion
5038  *      NET_RX_DROP: packet was dropped
5039  */
5040 int netif_receive_skb(struct sk_buff *skb)
5041 {
5042         trace_netif_receive_skb_entry(skb);
5043
5044         return netif_receive_skb_internal(skb);
5045 }
5046 EXPORT_SYMBOL(netif_receive_skb);
5047
5048 /**
5049  *      netif_receive_skb_list - process many receive buffers from network
5050  *      @head: list of skbs to process.
5051  *
5052  *      Since return value of netif_receive_skb() is normally ignored, and
5053  *      wouldn't be meaningful for a list, this function returns void.
5054  *
5055  *      This function may only be called from softirq context and interrupts
5056  *      should be enabled.
5057  */
5058 void netif_receive_skb_list(struct list_head *head)
5059 {
5060         struct sk_buff *skb;
5061
5062         if (list_empty(head))
5063                 return;
5064         list_for_each_entry(skb, head, list)
5065                 trace_netif_receive_skb_list_entry(skb);
5066         netif_receive_skb_list_internal(head);
5067 }
5068 EXPORT_SYMBOL(netif_receive_skb_list);
5069
5070 DEFINE_PER_CPU(struct work_struct, flush_works);
5071
5072 /* Network device is going away, flush any packets still pending */
5073 static void flush_backlog(struct work_struct *work)
5074 {
5075         struct sk_buff *skb, *tmp;
5076         struct softnet_data *sd;
5077
5078         local_bh_disable();
5079         sd = this_cpu_ptr(&softnet_data);
5080
5081         local_irq_disable();
5082         rps_lock(sd);
5083         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5084                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5085                         __skb_unlink(skb, &sd->input_pkt_queue);
5086                         kfree_skb(skb);
5087                         input_queue_head_incr(sd);
5088                 }
5089         }
5090         rps_unlock(sd);
5091         local_irq_enable();
5092
5093         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5094                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5095                         __skb_unlink(skb, &sd->process_queue);
5096                         kfree_skb(skb);
5097                         input_queue_head_incr(sd);
5098                 }
5099         }
5100         local_bh_enable();
5101 }
5102
5103 static void flush_all_backlogs(void)
5104 {
5105         unsigned int cpu;
5106
5107         get_online_cpus();
5108
5109         for_each_online_cpu(cpu)
5110                 queue_work_on(cpu, system_highpri_wq,
5111                               per_cpu_ptr(&flush_works, cpu));
5112
5113         for_each_online_cpu(cpu)
5114                 flush_work(per_cpu_ptr(&flush_works, cpu));
5115
5116         put_online_cpus();
5117 }
5118
5119 static int napi_gro_complete(struct sk_buff *skb)
5120 {
5121         struct packet_offload *ptype;
5122         __be16 type = skb->protocol;
5123         struct list_head *head = &offload_base;
5124         int err = -ENOENT;
5125
5126         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5127
5128         if (NAPI_GRO_CB(skb)->count == 1) {
5129                 skb_shinfo(skb)->gso_size = 0;
5130                 goto out;
5131         }
5132
5133         rcu_read_lock();
5134         list_for_each_entry_rcu(ptype, head, list) {
5135                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5136                         continue;
5137
5138                 err = ptype->callbacks.gro_complete(skb, 0);
5139                 break;
5140         }
5141         rcu_read_unlock();
5142
5143         if (err) {
5144                 WARN_ON(&ptype->list == head);
5145                 kfree_skb(skb);
5146                 return NET_RX_SUCCESS;
5147         }
5148
5149 out:
5150         return netif_receive_skb_internal(skb);
5151 }
5152
5153 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5154                                    bool flush_old)
5155 {
5156         struct list_head *head = &napi->gro_hash[index].list;
5157         struct sk_buff *skb, *p;
5158
5159         list_for_each_entry_safe_reverse(skb, p, head, list) {
5160                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5161                         return;
5162                 list_del_init(&skb->list);
5163                 napi_gro_complete(skb);
5164                 napi->gro_count--;
5165                 napi->gro_hash[index].count--;
5166         }
5167 }
5168
5169 /* napi->gro_hash[].list contains packets ordered by age.
5170  * youngest packets at the head of it.
5171  * Complete skbs in reverse order to reduce latencies.
5172  */
5173 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5174 {
5175         u32 i;
5176
5177         for (i = 0; i < GRO_HASH_BUCKETS; i++)
5178                 __napi_gro_flush_chain(napi, i, flush_old);
5179 }
5180 EXPORT_SYMBOL(napi_gro_flush);
5181
5182 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5183                                           struct sk_buff *skb)
5184 {
5185         unsigned int maclen = skb->dev->hard_header_len;
5186         u32 hash = skb_get_hash_raw(skb);
5187         struct list_head *head;
5188         struct sk_buff *p;
5189
5190         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5191         list_for_each_entry(p, head, list) {
5192                 unsigned long diffs;
5193
5194                 NAPI_GRO_CB(p)->flush = 0;
5195
5196                 if (hash != skb_get_hash_raw(p)) {
5197                         NAPI_GRO_CB(p)->same_flow = 0;
5198                         continue;
5199                 }
5200
5201                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5202                 diffs |= p->vlan_tci ^ skb->vlan_tci;
5203                 diffs |= skb_metadata_dst_cmp(p, skb);
5204                 diffs |= skb_metadata_differs(p, skb);
5205                 if (maclen == ETH_HLEN)
5206                         diffs |= compare_ether_header(skb_mac_header(p),
5207                                                       skb_mac_header(skb));
5208                 else if (!diffs)
5209                         diffs = memcmp(skb_mac_header(p),
5210                                        skb_mac_header(skb),
5211                                        maclen);
5212                 NAPI_GRO_CB(p)->same_flow = !diffs;
5213         }
5214
5215         return head;
5216 }
5217
5218 static void skb_gro_reset_offset(struct sk_buff *skb)
5219 {
5220         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5221         const skb_frag_t *frag0 = &pinfo->frags[0];
5222
5223         NAPI_GRO_CB(skb)->data_offset = 0;
5224         NAPI_GRO_CB(skb)->frag0 = NULL;
5225         NAPI_GRO_CB(skb)->frag0_len = 0;
5226
5227         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5228             pinfo->nr_frags &&
5229             !PageHighMem(skb_frag_page(frag0))) {
5230                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5231                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5232                                                     skb_frag_size(frag0),
5233                                                     skb->end - skb->tail);
5234         }
5235 }
5236
5237 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5238 {
5239         struct skb_shared_info *pinfo = skb_shinfo(skb);
5240
5241         BUG_ON(skb->end - skb->tail < grow);
5242
5243         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5244
5245         skb->data_len -= grow;
5246         skb->tail += grow;
5247
5248         pinfo->frags[0].page_offset += grow;
5249         skb_frag_size_sub(&pinfo->frags[0], grow);
5250
5251         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5252                 skb_frag_unref(skb, 0);
5253                 memmove(pinfo->frags, pinfo->frags + 1,
5254                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5255         }
5256 }
5257
5258 static void gro_flush_oldest(struct list_head *head)
5259 {
5260         struct sk_buff *oldest;
5261
5262         oldest = list_last_entry(head, struct sk_buff, list);
5263
5264         /* We are called with head length >= MAX_GRO_SKBS, so this is
5265          * impossible.
5266          */
5267         if (WARN_ON_ONCE(!oldest))
5268                 return;
5269
5270         /* Do not adjust napi->gro_count, caller is adding a new SKB to
5271          * the chain.
5272          */
5273         list_del(&oldest->list);
5274         napi_gro_complete(oldest);
5275 }
5276
5277 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5278 {
5279         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5280         struct list_head *head = &offload_base;
5281         struct packet_offload *ptype;
5282         __be16 type = skb->protocol;
5283         struct list_head *gro_head;
5284         struct sk_buff *pp = NULL;
5285         enum gro_result ret;
5286         int same_flow;
5287         int grow;
5288
5289         if (netif_elide_gro(skb->dev))
5290                 goto normal;
5291
5292         gro_head = gro_list_prepare(napi, skb);
5293
5294         rcu_read_lock();
5295         list_for_each_entry_rcu(ptype, head, list) {
5296                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5297                         continue;
5298
5299                 skb_set_network_header(skb, skb_gro_offset(skb));
5300                 skb_reset_mac_len(skb);
5301                 NAPI_GRO_CB(skb)->same_flow = 0;
5302                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5303                 NAPI_GRO_CB(skb)->free = 0;
5304                 NAPI_GRO_CB(skb)->encap_mark = 0;
5305                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5306                 NAPI_GRO_CB(skb)->is_fou = 0;
5307                 NAPI_GRO_CB(skb)->is_atomic = 1;
5308                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5309
5310                 /* Setup for GRO checksum validation */
5311                 switch (skb->ip_summed) {
5312                 case CHECKSUM_COMPLETE:
5313                         NAPI_GRO_CB(skb)->csum = skb->csum;
5314                         NAPI_GRO_CB(skb)->csum_valid = 1;
5315                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5316                         break;
5317                 case CHECKSUM_UNNECESSARY:
5318                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5319                         NAPI_GRO_CB(skb)->csum_valid = 0;
5320                         break;
5321                 default:
5322                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5323                         NAPI_GRO_CB(skb)->csum_valid = 0;
5324                 }
5325
5326                 pp = ptype->callbacks.gro_receive(gro_head, skb);
5327                 break;
5328         }
5329         rcu_read_unlock();
5330
5331         if (&ptype->list == head)
5332                 goto normal;
5333
5334         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5335                 ret = GRO_CONSUMED;
5336                 goto ok;
5337         }
5338
5339         same_flow = NAPI_GRO_CB(skb)->same_flow;
5340         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5341
5342         if (pp) {
5343                 list_del_init(&pp->list);
5344                 napi_gro_complete(pp);
5345                 napi->gro_count--;
5346                 napi->gro_hash[hash].count--;
5347         }
5348
5349         if (same_flow)
5350                 goto ok;
5351
5352         if (NAPI_GRO_CB(skb)->flush)
5353                 goto normal;
5354
5355         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5356                 gro_flush_oldest(gro_head);
5357         } else {
5358                 napi->gro_count++;
5359                 napi->gro_hash[hash].count++;
5360         }
5361         NAPI_GRO_CB(skb)->count = 1;
5362         NAPI_GRO_CB(skb)->age = jiffies;
5363         NAPI_GRO_CB(skb)->last = skb;
5364         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5365         list_add(&skb->list, gro_head);
5366         ret = GRO_HELD;
5367
5368 pull:
5369         grow = skb_gro_offset(skb) - skb_headlen(skb);
5370         if (grow > 0)
5371                 gro_pull_from_frag0(skb, grow);
5372 ok:
5373         return ret;
5374
5375 normal:
5376         ret = GRO_NORMAL;
5377         goto pull;
5378 }
5379
5380 struct packet_offload *gro_find_receive_by_type(__be16 type)
5381 {
5382         struct list_head *offload_head = &offload_base;
5383         struct packet_offload *ptype;
5384
5385         list_for_each_entry_rcu(ptype, offload_head, list) {
5386                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5387                         continue;
5388                 return ptype;
5389         }
5390         return NULL;
5391 }
5392 EXPORT_SYMBOL(gro_find_receive_by_type);
5393
5394 struct packet_offload *gro_find_complete_by_type(__be16 type)
5395 {
5396         struct list_head *offload_head = &offload_base;
5397         struct packet_offload *ptype;
5398
5399         list_for_each_entry_rcu(ptype, offload_head, list) {
5400                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5401                         continue;
5402                 return ptype;
5403         }
5404         return NULL;
5405 }
5406 EXPORT_SYMBOL(gro_find_complete_by_type);
5407
5408 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5409 {
5410         skb_dst_drop(skb);
5411         secpath_reset(skb);
5412         kmem_cache_free(skbuff_head_cache, skb);
5413 }
5414
5415 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5416 {
5417         switch (ret) {
5418         case GRO_NORMAL:
5419                 if (netif_receive_skb_internal(skb))
5420                         ret = GRO_DROP;
5421                 break;
5422
5423         case GRO_DROP:
5424                 kfree_skb(skb);
5425                 break;
5426
5427         case GRO_MERGED_FREE:
5428                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5429                         napi_skb_free_stolen_head(skb);
5430                 else
5431                         __kfree_skb(skb);
5432                 break;
5433
5434         case GRO_HELD:
5435         case GRO_MERGED:
5436         case GRO_CONSUMED:
5437                 break;
5438         }
5439
5440         return ret;
5441 }
5442
5443 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5444 {
5445         skb_mark_napi_id(skb, napi);
5446         trace_napi_gro_receive_entry(skb);
5447
5448         skb_gro_reset_offset(skb);
5449
5450         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5451 }
5452 EXPORT_SYMBOL(napi_gro_receive);
5453
5454 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5455 {
5456         if (unlikely(skb->pfmemalloc)) {
5457                 consume_skb(skb);
5458                 return;
5459         }
5460         __skb_pull(skb, skb_headlen(skb));
5461         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5462         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5463         skb->vlan_tci = 0;
5464         skb->dev = napi->dev;
5465         skb->skb_iif = 0;
5466         skb->encapsulation = 0;
5467         skb_shinfo(skb)->gso_type = 0;
5468         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5469         secpath_reset(skb);
5470
5471         napi->skb = skb;
5472 }
5473
5474 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5475 {
5476         struct sk_buff *skb = napi->skb;
5477
5478         if (!skb) {
5479                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5480                 if (skb) {
5481                         napi->skb = skb;
5482                         skb_mark_napi_id(skb, napi);
5483                 }
5484         }
5485         return skb;
5486 }
5487 EXPORT_SYMBOL(napi_get_frags);
5488
5489 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5490                                       struct sk_buff *skb,
5491                                       gro_result_t ret)
5492 {
5493         switch (ret) {
5494         case GRO_NORMAL:
5495         case GRO_HELD:
5496                 __skb_push(skb, ETH_HLEN);
5497                 skb->protocol = eth_type_trans(skb, skb->dev);
5498                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5499                         ret = GRO_DROP;
5500                 break;
5501
5502         case GRO_DROP:
5503                 napi_reuse_skb(napi, skb);
5504                 break;
5505
5506         case GRO_MERGED_FREE:
5507                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5508                         napi_skb_free_stolen_head(skb);
5509                 else
5510                         napi_reuse_skb(napi, skb);
5511                 break;
5512
5513         case GRO_MERGED:
5514         case GRO_CONSUMED:
5515                 break;
5516         }
5517
5518         return ret;
5519 }
5520
5521 /* Upper GRO stack assumes network header starts at gro_offset=0
5522  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5523  * We copy ethernet header into skb->data to have a common layout.
5524  */
5525 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5526 {
5527         struct sk_buff *skb = napi->skb;
5528         const struct ethhdr *eth;
5529         unsigned int hlen = sizeof(*eth);
5530
5531         napi->skb = NULL;
5532
5533         skb_reset_mac_header(skb);
5534         skb_gro_reset_offset(skb);
5535
5536         eth = skb_gro_header_fast(skb, 0);
5537         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5538                 eth = skb_gro_header_slow(skb, hlen, 0);
5539                 if (unlikely(!eth)) {
5540                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5541                                              __func__, napi->dev->name);
5542                         napi_reuse_skb(napi, skb);
5543                         return NULL;
5544                 }
5545         } else {
5546                 gro_pull_from_frag0(skb, hlen);
5547                 NAPI_GRO_CB(skb)->frag0 += hlen;
5548                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5549         }
5550         __skb_pull(skb, hlen);
5551
5552         /*
5553          * This works because the only protocols we care about don't require
5554          * special handling.
5555          * We'll fix it up properly in napi_frags_finish()
5556          */
5557         skb->protocol = eth->h_proto;
5558
5559         return skb;
5560 }
5561
5562 gro_result_t napi_gro_frags(struct napi_struct *napi)
5563 {
5564         struct sk_buff *skb = napi_frags_skb(napi);
5565
5566         if (!skb)
5567                 return GRO_DROP;
5568
5569         trace_napi_gro_frags_entry(skb);
5570
5571         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5572 }
5573 EXPORT_SYMBOL(napi_gro_frags);
5574
5575 /* Compute the checksum from gro_offset and return the folded value
5576  * after adding in any pseudo checksum.
5577  */
5578 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5579 {
5580         __wsum wsum;
5581         __sum16 sum;
5582
5583         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5584
5585         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5586         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5587         if (likely(!sum)) {
5588                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5589                     !skb->csum_complete_sw)
5590                         netdev_rx_csum_fault(skb->dev);
5591         }
5592
5593         NAPI_GRO_CB(skb)->csum = wsum;
5594         NAPI_GRO_CB(skb)->csum_valid = 1;
5595
5596         return sum;
5597 }
5598 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5599
5600 static void net_rps_send_ipi(struct softnet_data *remsd)
5601 {
5602 #ifdef CONFIG_RPS
5603         while (remsd) {
5604                 struct softnet_data *next = remsd->rps_ipi_next;
5605
5606                 if (cpu_online(remsd->cpu))
5607                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5608                 remsd = next;
5609         }
5610 #endif
5611 }
5612
5613 /*
5614  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5615  * Note: called with local irq disabled, but exits with local irq enabled.
5616  */
5617 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5618 {
5619 #ifdef CONFIG_RPS
5620         struct softnet_data *remsd = sd->rps_ipi_list;
5621
5622         if (remsd) {
5623                 sd->rps_ipi_list = NULL;
5624
5625                 local_irq_enable();
5626
5627                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5628                 net_rps_send_ipi(remsd);
5629         } else
5630 #endif
5631                 local_irq_enable();
5632 }
5633
5634 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5635 {
5636 #ifdef CONFIG_RPS
5637         return sd->rps_ipi_list != NULL;
5638 #else
5639         return false;
5640 #endif
5641 }
5642
5643 static int process_backlog(struct napi_struct *napi, int quota)
5644 {
5645         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5646         bool again = true;
5647         int work = 0;
5648
5649         /* Check if we have pending ipi, its better to send them now,
5650          * not waiting net_rx_action() end.
5651          */
5652         if (sd_has_rps_ipi_waiting(sd)) {
5653                 local_irq_disable();
5654                 net_rps_action_and_irq_enable(sd);
5655         }
5656
5657         napi->weight = dev_rx_weight;
5658         while (again) {
5659                 struct sk_buff *skb;
5660
5661                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5662                         rcu_read_lock();
5663                         __netif_receive_skb(skb);
5664                         rcu_read_unlock();
5665                         input_queue_head_incr(sd);
5666                         if (++work >= quota)
5667                                 return work;
5668
5669                 }
5670
5671                 local_irq_disable();
5672                 rps_lock(sd);
5673                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5674                         /*
5675                          * Inline a custom version of __napi_complete().
5676                          * only current cpu owns and manipulates this napi,
5677                          * and NAPI_STATE_SCHED is the only possible flag set
5678                          * on backlog.
5679                          * We can use a plain write instead of clear_bit(),
5680                          * and we dont need an smp_mb() memory barrier.
5681                          */
5682                         napi->state = 0;
5683                         again = false;
5684                 } else {
5685                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5686                                                    &sd->process_queue);
5687                 }
5688                 rps_unlock(sd);
5689                 local_irq_enable();
5690         }
5691
5692         return work;
5693 }
5694
5695 /**
5696  * __napi_schedule - schedule for receive
5697  * @n: entry to schedule
5698  *
5699  * The entry's receive function will be scheduled to run.
5700  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5701  */
5702 void __napi_schedule(struct napi_struct *n)
5703 {
5704         unsigned long flags;
5705
5706         local_irq_save(flags);
5707         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5708         local_irq_restore(flags);
5709 }
5710 EXPORT_SYMBOL(__napi_schedule);
5711
5712 /**
5713  *      napi_schedule_prep - check if napi can be scheduled
5714  *      @n: napi context
5715  *
5716  * Test if NAPI routine is already running, and if not mark
5717  * it as running.  This is used as a condition variable
5718  * insure only one NAPI poll instance runs.  We also make
5719  * sure there is no pending NAPI disable.
5720  */
5721 bool napi_schedule_prep(struct napi_struct *n)
5722 {
5723         unsigned long val, new;
5724
5725         do {
5726                 val = READ_ONCE(n->state);
5727                 if (unlikely(val & NAPIF_STATE_DISABLE))
5728                         return false;
5729                 new = val | NAPIF_STATE_SCHED;
5730
5731                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5732                  * This was suggested by Alexander Duyck, as compiler
5733                  * emits better code than :
5734                  * if (val & NAPIF_STATE_SCHED)
5735                  *     new |= NAPIF_STATE_MISSED;
5736                  */
5737                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5738                                                    NAPIF_STATE_MISSED;
5739         } while (cmpxchg(&n->state, val, new) != val);
5740
5741         return !(val & NAPIF_STATE_SCHED);
5742 }
5743 EXPORT_SYMBOL(napi_schedule_prep);
5744
5745 /**
5746  * __napi_schedule_irqoff - schedule for receive
5747  * @n: entry to schedule
5748  *
5749  * Variant of __napi_schedule() assuming hard irqs are masked
5750  */
5751 void __napi_schedule_irqoff(struct napi_struct *n)
5752 {
5753         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5754 }
5755 EXPORT_SYMBOL(__napi_schedule_irqoff);
5756
5757 bool napi_complete_done(struct napi_struct *n, int work_done)
5758 {
5759         unsigned long flags, val, new;
5760
5761         /*
5762          * 1) Don't let napi dequeue from the cpu poll list
5763          *    just in case its running on a different cpu.
5764          * 2) If we are busy polling, do nothing here, we have
5765          *    the guarantee we will be called later.
5766          */
5767         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5768                                  NAPIF_STATE_IN_BUSY_POLL)))
5769                 return false;
5770
5771         if (n->gro_count) {
5772                 unsigned long timeout = 0;
5773
5774                 if (work_done)
5775                         timeout = n->dev->gro_flush_timeout;
5776
5777                 if (timeout)
5778                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5779                                       HRTIMER_MODE_REL_PINNED);
5780                 else
5781                         napi_gro_flush(n, false);
5782         }
5783         if (unlikely(!list_empty(&n->poll_list))) {
5784                 /* If n->poll_list is not empty, we need to mask irqs */
5785                 local_irq_save(flags);
5786                 list_del_init(&n->poll_list);
5787                 local_irq_restore(flags);
5788         }
5789
5790         do {
5791                 val = READ_ONCE(n->state);
5792
5793                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5794
5795                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5796
5797                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5798                  * because we will call napi->poll() one more time.
5799                  * This C code was suggested by Alexander Duyck to help gcc.
5800                  */
5801                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5802                                                     NAPIF_STATE_SCHED;
5803         } while (cmpxchg(&n->state, val, new) != val);
5804
5805         if (unlikely(val & NAPIF_STATE_MISSED)) {
5806                 __napi_schedule(n);
5807                 return false;
5808         }
5809
5810         return true;
5811 }
5812 EXPORT_SYMBOL(napi_complete_done);
5813
5814 /* must be called under rcu_read_lock(), as we dont take a reference */
5815 static struct napi_struct *napi_by_id(unsigned int napi_id)
5816 {
5817         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5818         struct napi_struct *napi;
5819
5820         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5821                 if (napi->napi_id == napi_id)
5822                         return napi;
5823
5824         return NULL;
5825 }
5826
5827 #if defined(CONFIG_NET_RX_BUSY_POLL)
5828
5829 #define BUSY_POLL_BUDGET 8
5830
5831 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5832 {
5833         int rc;
5834
5835         /* Busy polling means there is a high chance device driver hard irq
5836          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5837          * set in napi_schedule_prep().
5838          * Since we are about to call napi->poll() once more, we can safely
5839          * clear NAPI_STATE_MISSED.
5840          *
5841          * Note: x86 could use a single "lock and ..." instruction
5842          * to perform these two clear_bit()
5843          */
5844         clear_bit(NAPI_STATE_MISSED, &napi->state);
5845         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5846
5847         local_bh_disable();
5848
5849         /* All we really want here is to re-enable device interrupts.
5850          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5851          */
5852         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5853         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5854         netpoll_poll_unlock(have_poll_lock);
5855         if (rc == BUSY_POLL_BUDGET)
5856                 __napi_schedule(napi);
5857         local_bh_enable();
5858 }
5859
5860 void napi_busy_loop(unsigned int napi_id,
5861                     bool (*loop_end)(void *, unsigned long),
5862                     void *loop_end_arg)
5863 {
5864         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5865         int (*napi_poll)(struct napi_struct *napi, int budget);
5866         void *have_poll_lock = NULL;
5867         struct napi_struct *napi;
5868
5869 restart:
5870         napi_poll = NULL;
5871
5872         rcu_read_lock();
5873
5874         napi = napi_by_id(napi_id);
5875         if (!napi)
5876                 goto out;
5877
5878         preempt_disable();
5879         for (;;) {
5880                 int work = 0;
5881
5882                 local_bh_disable();
5883                 if (!napi_poll) {
5884                         unsigned long val = READ_ONCE(napi->state);
5885
5886                         /* If multiple threads are competing for this napi,
5887                          * we avoid dirtying napi->state as much as we can.
5888                          */
5889                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5890                                    NAPIF_STATE_IN_BUSY_POLL))
5891                                 goto count;
5892                         if (cmpxchg(&napi->state, val,
5893                                     val | NAPIF_STATE_IN_BUSY_POLL |
5894                                           NAPIF_STATE_SCHED) != val)
5895                                 goto count;
5896                         have_poll_lock = netpoll_poll_lock(napi);
5897                         napi_poll = napi->poll;
5898                 }
5899                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5900                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5901 count:
5902                 if (work > 0)
5903                         __NET_ADD_STATS(dev_net(napi->dev),
5904                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5905                 local_bh_enable();
5906
5907                 if (!loop_end || loop_end(loop_end_arg, start_time))
5908                         break;
5909
5910                 if (unlikely(need_resched())) {
5911                         if (napi_poll)
5912                                 busy_poll_stop(napi, have_poll_lock);
5913                         preempt_enable();
5914                         rcu_read_unlock();
5915                         cond_resched();
5916                         if (loop_end(loop_end_arg, start_time))
5917                                 return;
5918                         goto restart;
5919                 }
5920                 cpu_relax();
5921         }
5922         if (napi_poll)
5923                 busy_poll_stop(napi, have_poll_lock);
5924         preempt_enable();
5925 out:
5926         rcu_read_unlock();
5927 }
5928 EXPORT_SYMBOL(napi_busy_loop);
5929
5930 #endif /* CONFIG_NET_RX_BUSY_POLL */
5931
5932 static void napi_hash_add(struct napi_struct *napi)
5933 {
5934         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5935             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5936                 return;
5937
5938         spin_lock(&napi_hash_lock);
5939
5940         /* 0..NR_CPUS range is reserved for sender_cpu use */
5941         do {
5942                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5943                         napi_gen_id = MIN_NAPI_ID;
5944         } while (napi_by_id(napi_gen_id));
5945         napi->napi_id = napi_gen_id;
5946
5947         hlist_add_head_rcu(&napi->napi_hash_node,
5948                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5949
5950         spin_unlock(&napi_hash_lock);
5951 }
5952
5953 /* Warning : caller is responsible to make sure rcu grace period
5954  * is respected before freeing memory containing @napi
5955  */
5956 bool napi_hash_del(struct napi_struct *napi)
5957 {
5958         bool rcu_sync_needed = false;
5959
5960         spin_lock(&napi_hash_lock);
5961
5962         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5963                 rcu_sync_needed = true;
5964                 hlist_del_rcu(&napi->napi_hash_node);
5965         }
5966         spin_unlock(&napi_hash_lock);
5967         return rcu_sync_needed;
5968 }
5969 EXPORT_SYMBOL_GPL(napi_hash_del);
5970
5971 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5972 {
5973         struct napi_struct *napi;
5974
5975         napi = container_of(timer, struct napi_struct, timer);
5976
5977         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5978          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5979          */
5980         if (napi->gro_count && !napi_disable_pending(napi) &&
5981             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5982                 __napi_schedule_irqoff(napi);
5983
5984         return HRTIMER_NORESTART;
5985 }
5986
5987 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5988                     int (*poll)(struct napi_struct *, int), int weight)
5989 {
5990         int i;
5991
5992         INIT_LIST_HEAD(&napi->poll_list);
5993         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5994         napi->timer.function = napi_watchdog;
5995         napi->gro_count = 0;
5996         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5997                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
5998                 napi->gro_hash[i].count = 0;
5999         }
6000         napi->skb = NULL;
6001         napi->poll = poll;
6002         if (weight > NAPI_POLL_WEIGHT)
6003                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6004                             weight, dev->name);
6005         napi->weight = weight;
6006         list_add(&napi->dev_list, &dev->napi_list);
6007         napi->dev = dev;
6008 #ifdef CONFIG_NETPOLL
6009         napi->poll_owner = -1;
6010 #endif
6011         set_bit(NAPI_STATE_SCHED, &napi->state);
6012         napi_hash_add(napi);
6013 }
6014 EXPORT_SYMBOL(netif_napi_add);
6015
6016 void napi_disable(struct napi_struct *n)
6017 {
6018         might_sleep();
6019         set_bit(NAPI_STATE_DISABLE, &n->state);
6020
6021         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6022                 msleep(1);
6023         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6024                 msleep(1);
6025
6026         hrtimer_cancel(&n->timer);
6027
6028         clear_bit(NAPI_STATE_DISABLE, &n->state);
6029 }
6030 EXPORT_SYMBOL(napi_disable);
6031
6032 static void flush_gro_hash(struct napi_struct *napi)
6033 {
6034         int i;
6035
6036         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6037                 struct sk_buff *skb, *n;
6038
6039                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6040                         kfree_skb(skb);
6041                 napi->gro_hash[i].count = 0;
6042         }
6043 }
6044
6045 /* Must be called in process context */
6046 void netif_napi_del(struct napi_struct *napi)
6047 {
6048         might_sleep();
6049         if (napi_hash_del(napi))
6050                 synchronize_net();
6051         list_del_init(&napi->dev_list);
6052         napi_free_frags(napi);
6053
6054         flush_gro_hash(napi);
6055         napi->gro_count = 0;
6056 }
6057 EXPORT_SYMBOL(netif_napi_del);
6058
6059 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6060 {
6061         void *have;
6062         int work, weight;
6063
6064         list_del_init(&n->poll_list);
6065
6066         have = netpoll_poll_lock(n);
6067
6068         weight = n->weight;
6069
6070         /* This NAPI_STATE_SCHED test is for avoiding a race
6071          * with netpoll's poll_napi().  Only the entity which
6072          * obtains the lock and sees NAPI_STATE_SCHED set will
6073          * actually make the ->poll() call.  Therefore we avoid
6074          * accidentally calling ->poll() when NAPI is not scheduled.
6075          */
6076         work = 0;
6077         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6078                 work = n->poll(n, weight);
6079                 trace_napi_poll(n, work, weight);
6080         }
6081
6082         WARN_ON_ONCE(work > weight);
6083
6084         if (likely(work < weight))
6085                 goto out_unlock;
6086
6087         /* Drivers must not modify the NAPI state if they
6088          * consume the entire weight.  In such cases this code
6089          * still "owns" the NAPI instance and therefore can
6090          * move the instance around on the list at-will.
6091          */
6092         if (unlikely(napi_disable_pending(n))) {
6093                 napi_complete(n);
6094                 goto out_unlock;
6095         }
6096
6097         if (n->gro_count) {
6098                 /* flush too old packets
6099                  * If HZ < 1000, flush all packets.
6100                  */
6101                 napi_gro_flush(n, HZ >= 1000);
6102         }
6103
6104         /* Some drivers may have called napi_schedule
6105          * prior to exhausting their budget.
6106          */
6107         if (unlikely(!list_empty(&n->poll_list))) {
6108                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6109                              n->dev ? n->dev->name : "backlog");
6110                 goto out_unlock;
6111         }
6112
6113         list_add_tail(&n->poll_list, repoll);
6114
6115 out_unlock:
6116         netpoll_poll_unlock(have);
6117
6118         return work;
6119 }
6120
6121 static __latent_entropy void net_rx_action(struct softirq_action *h)
6122 {
6123         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6124         unsigned long time_limit = jiffies +
6125                 usecs_to_jiffies(netdev_budget_usecs);
6126         int budget = netdev_budget;
6127         LIST_HEAD(list);
6128         LIST_HEAD(repoll);
6129
6130         local_irq_disable();
6131         list_splice_init(&sd->poll_list, &list);
6132         local_irq_enable();
6133
6134         for (;;) {
6135                 struct napi_struct *n;
6136
6137                 if (list_empty(&list)) {
6138                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6139                                 goto out;
6140                         break;
6141                 }
6142
6143                 n = list_first_entry(&list, struct napi_struct, poll_list);
6144                 budget -= napi_poll(n, &repoll);
6145
6146                 /* If softirq window is exhausted then punt.
6147                  * Allow this to run for 2 jiffies since which will allow
6148                  * an average latency of 1.5/HZ.
6149                  */
6150                 if (unlikely(budget <= 0 ||
6151                              time_after_eq(jiffies, time_limit))) {
6152                         sd->time_squeeze++;
6153                         break;
6154                 }
6155         }
6156
6157         local_irq_disable();
6158
6159         list_splice_tail_init(&sd->poll_list, &list);
6160         list_splice_tail(&repoll, &list);
6161         list_splice(&list, &sd->poll_list);
6162         if (!list_empty(&sd->poll_list))
6163                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6164
6165         net_rps_action_and_irq_enable(sd);
6166 out:
6167         __kfree_skb_flush();
6168 }
6169
6170 struct netdev_adjacent {
6171         struct net_device *dev;
6172
6173         /* upper master flag, there can only be one master device per list */
6174         bool master;
6175
6176         /* counter for the number of times this device was added to us */
6177         u16 ref_nr;
6178
6179         /* private field for the users */
6180         void *private;
6181
6182         struct list_head list;
6183         struct rcu_head rcu;
6184 };
6185
6186 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6187                                                  struct list_head *adj_list)
6188 {
6189         struct netdev_adjacent *adj;
6190
6191         list_for_each_entry(adj, adj_list, list) {
6192                 if (adj->dev == adj_dev)
6193                         return adj;
6194         }
6195         return NULL;
6196 }
6197
6198 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6199 {
6200         struct net_device *dev = data;
6201
6202         return upper_dev == dev;
6203 }
6204
6205 /**
6206  * netdev_has_upper_dev - Check if device is linked to an upper device
6207  * @dev: device
6208  * @upper_dev: upper device to check
6209  *
6210  * Find out if a device is linked to specified upper device and return true
6211  * in case it is. Note that this checks only immediate upper device,
6212  * not through a complete stack of devices. The caller must hold the RTNL lock.
6213  */
6214 bool netdev_has_upper_dev(struct net_device *dev,
6215                           struct net_device *upper_dev)
6216 {
6217         ASSERT_RTNL();
6218
6219         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6220                                              upper_dev);
6221 }
6222 EXPORT_SYMBOL(netdev_has_upper_dev);
6223
6224 /**
6225  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6226  * @dev: device
6227  * @upper_dev: upper device to check
6228  *
6229  * Find out if a device is linked to specified upper device and return true
6230  * in case it is. Note that this checks the entire upper device chain.
6231  * The caller must hold rcu lock.
6232  */
6233
6234 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6235                                   struct net_device *upper_dev)
6236 {
6237         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6238                                                upper_dev);
6239 }
6240 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6241
6242 /**
6243  * netdev_has_any_upper_dev - Check if device is linked to some device
6244  * @dev: device
6245  *
6246  * Find out if a device is linked to an upper device and return true in case
6247  * it is. The caller must hold the RTNL lock.
6248  */
6249 bool netdev_has_any_upper_dev(struct net_device *dev)
6250 {
6251         ASSERT_RTNL();
6252
6253         return !list_empty(&dev->adj_list.upper);
6254 }
6255 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6256
6257 /**
6258  * netdev_master_upper_dev_get - Get master upper device
6259  * @dev: device
6260  *
6261  * Find a master upper device and return pointer to it or NULL in case
6262  * it's not there. The caller must hold the RTNL lock.
6263  */
6264 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6265 {
6266         struct netdev_adjacent *upper;
6267
6268         ASSERT_RTNL();
6269
6270         if (list_empty(&dev->adj_list.upper))
6271                 return NULL;
6272
6273         upper = list_first_entry(&dev->adj_list.upper,
6274                                  struct netdev_adjacent, list);
6275         if (likely(upper->master))
6276                 return upper->dev;
6277         return NULL;
6278 }
6279 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6280
6281 /**
6282  * netdev_has_any_lower_dev - Check if device is linked to some device
6283  * @dev: device
6284  *
6285  * Find out if a device is linked to a lower device and return true in case
6286  * it is. The caller must hold the RTNL lock.
6287  */
6288 static bool netdev_has_any_lower_dev(struct net_device *dev)
6289 {
6290         ASSERT_RTNL();
6291
6292         return !list_empty(&dev->adj_list.lower);
6293 }
6294
6295 void *netdev_adjacent_get_private(struct list_head *adj_list)
6296 {
6297         struct netdev_adjacent *adj;
6298
6299         adj = list_entry(adj_list, struct netdev_adjacent, list);
6300
6301         return adj->private;
6302 }
6303 EXPORT_SYMBOL(netdev_adjacent_get_private);
6304
6305 /**
6306  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6307  * @dev: device
6308  * @iter: list_head ** of the current position
6309  *
6310  * Gets the next device from the dev's upper list, starting from iter
6311  * position. The caller must hold RCU read lock.
6312  */
6313 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6314                                                  struct list_head **iter)
6315 {
6316         struct netdev_adjacent *upper;
6317
6318         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6319
6320         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6321
6322         if (&upper->list == &dev->adj_list.upper)
6323                 return NULL;
6324
6325         *iter = &upper->list;
6326
6327         return upper->dev;
6328 }
6329 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6330
6331 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6332                                                     struct list_head **iter)
6333 {
6334         struct netdev_adjacent *upper;
6335
6336         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6337
6338         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6339
6340         if (&upper->list == &dev->adj_list.upper)
6341                 return NULL;
6342
6343         *iter = &upper->list;
6344
6345         return upper->dev;
6346 }
6347
6348 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6349                                   int (*fn)(struct net_device *dev,
6350                                             void *data),
6351                                   void *data)
6352 {
6353         struct net_device *udev;
6354         struct list_head *iter;
6355         int ret;
6356
6357         for (iter = &dev->adj_list.upper,
6358              udev = netdev_next_upper_dev_rcu(dev, &iter);
6359              udev;
6360              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6361                 /* first is the upper device itself */
6362                 ret = fn(udev, data);
6363                 if (ret)
6364                         return ret;
6365
6366                 /* then look at all of its upper devices */
6367                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6368                 if (ret)
6369                         return ret;
6370         }
6371
6372         return 0;
6373 }
6374 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6375
6376 /**
6377  * netdev_lower_get_next_private - Get the next ->private from the
6378  *                                 lower neighbour list
6379  * @dev: device
6380  * @iter: list_head ** of the current position
6381  *
6382  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6383  * list, starting from iter position. The caller must hold either hold the
6384  * RTNL lock or its own locking that guarantees that the neighbour lower
6385  * list will remain unchanged.
6386  */
6387 void *netdev_lower_get_next_private(struct net_device *dev,
6388                                     struct list_head **iter)
6389 {
6390         struct netdev_adjacent *lower;
6391
6392         lower = list_entry(*iter, struct netdev_adjacent, list);
6393
6394         if (&lower->list == &dev->adj_list.lower)
6395                 return NULL;
6396
6397         *iter = lower->list.next;
6398
6399         return lower->private;
6400 }
6401 EXPORT_SYMBOL(netdev_lower_get_next_private);
6402
6403 /**
6404  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6405  *                                     lower neighbour list, RCU
6406  *                                     variant
6407  * @dev: device
6408  * @iter: list_head ** of the current position
6409  *
6410  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6411  * list, starting from iter position. The caller must hold RCU read lock.
6412  */
6413 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6414                                         struct list_head **iter)
6415 {
6416         struct netdev_adjacent *lower;
6417
6418         WARN_ON_ONCE(!rcu_read_lock_held());
6419
6420         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6421
6422         if (&lower->list == &dev->adj_list.lower)
6423                 return NULL;
6424
6425         *iter = &lower->list;
6426
6427         return lower->private;
6428 }
6429 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6430
6431 /**
6432  * netdev_lower_get_next - Get the next device from the lower neighbour
6433  *                         list
6434  * @dev: device
6435  * @iter: list_head ** of the current position
6436  *
6437  * Gets the next netdev_adjacent from the dev's lower neighbour
6438  * list, starting from iter position. The caller must hold RTNL lock or
6439  * its own locking that guarantees that the neighbour lower
6440  * list will remain unchanged.
6441  */
6442 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6443 {
6444         struct netdev_adjacent *lower;
6445
6446         lower = list_entry(*iter, struct netdev_adjacent, list);
6447
6448         if (&lower->list == &dev->adj_list.lower)
6449                 return NULL;
6450
6451         *iter = lower->list.next;
6452
6453         return lower->dev;
6454 }
6455 EXPORT_SYMBOL(netdev_lower_get_next);
6456
6457 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6458                                                 struct list_head **iter)
6459 {
6460         struct netdev_adjacent *lower;
6461
6462         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6463
6464         if (&lower->list == &dev->adj_list.lower)
6465                 return NULL;
6466
6467         *iter = &lower->list;
6468
6469         return lower->dev;
6470 }
6471
6472 int netdev_walk_all_lower_dev(struct net_device *dev,
6473                               int (*fn)(struct net_device *dev,
6474                                         void *data),
6475                               void *data)
6476 {
6477         struct net_device *ldev;
6478         struct list_head *iter;
6479         int ret;
6480
6481         for (iter = &dev->adj_list.lower,
6482              ldev = netdev_next_lower_dev(dev, &iter);
6483              ldev;
6484              ldev = netdev_next_lower_dev(dev, &iter)) {
6485                 /* first is the lower device itself */
6486                 ret = fn(ldev, data);
6487                 if (ret)
6488                         return ret;
6489
6490                 /* then look at all of its lower devices */
6491                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6492                 if (ret)
6493                         return ret;
6494         }
6495
6496         return 0;
6497 }
6498 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6499
6500 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6501                                                     struct list_head **iter)
6502 {
6503         struct netdev_adjacent *lower;
6504
6505         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6506         if (&lower->list == &dev->adj_list.lower)
6507                 return NULL;
6508
6509         *iter = &lower->list;
6510
6511         return lower->dev;
6512 }
6513
6514 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6515                                   int (*fn)(struct net_device *dev,
6516                                             void *data),
6517                                   void *data)
6518 {
6519         struct net_device *ldev;
6520         struct list_head *iter;
6521         int ret;
6522
6523         for (iter = &dev->adj_list.lower,
6524              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6525              ldev;
6526              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6527                 /* first is the lower device itself */
6528                 ret = fn(ldev, data);
6529                 if (ret)
6530                         return ret;
6531
6532                 /* then look at all of its lower devices */
6533                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6534                 if (ret)
6535                         return ret;
6536         }
6537
6538         return 0;
6539 }
6540 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6541
6542 /**
6543  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6544  *                                     lower neighbour list, RCU
6545  *                                     variant
6546  * @dev: device
6547  *
6548  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6549  * list. The caller must hold RCU read lock.
6550  */
6551 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6552 {
6553         struct netdev_adjacent *lower;
6554
6555         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6556                         struct netdev_adjacent, list);
6557         if (lower)
6558                 return lower->private;
6559         return NULL;
6560 }
6561 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6562
6563 /**
6564  * netdev_master_upper_dev_get_rcu - Get master upper device
6565  * @dev: device
6566  *
6567  * Find a master upper device and return pointer to it or NULL in case
6568  * it's not there. The caller must hold the RCU read lock.
6569  */
6570 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6571 {
6572         struct netdev_adjacent *upper;
6573
6574         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6575                                        struct netdev_adjacent, list);
6576         if (upper && likely(upper->master))
6577                 return upper->dev;
6578         return NULL;
6579 }
6580 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6581
6582 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6583                               struct net_device *adj_dev,
6584                               struct list_head *dev_list)
6585 {
6586         char linkname[IFNAMSIZ+7];
6587
6588         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6589                 "upper_%s" : "lower_%s", adj_dev->name);
6590         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6591                                  linkname);
6592 }
6593 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6594                                char *name,
6595                                struct list_head *dev_list)
6596 {
6597         char linkname[IFNAMSIZ+7];
6598
6599         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6600                 "upper_%s" : "lower_%s", name);
6601         sysfs_remove_link(&(dev->dev.kobj), linkname);
6602 }
6603
6604 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6605                                                  struct net_device *adj_dev,
6606                                                  struct list_head *dev_list)
6607 {
6608         return (dev_list == &dev->adj_list.upper ||
6609                 dev_list == &dev->adj_list.lower) &&
6610                 net_eq(dev_net(dev), dev_net(adj_dev));
6611 }
6612
6613 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6614                                         struct net_device *adj_dev,
6615                                         struct list_head *dev_list,
6616                                         void *private, bool master)
6617 {
6618         struct netdev_adjacent *adj;
6619         int ret;
6620
6621         adj = __netdev_find_adj(adj_dev, dev_list);
6622
6623         if (adj) {
6624                 adj->ref_nr += 1;
6625                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6626                          dev->name, adj_dev->name, adj->ref_nr);
6627
6628                 return 0;
6629         }
6630
6631         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6632         if (!adj)
6633                 return -ENOMEM;
6634
6635         adj->dev = adj_dev;
6636         adj->master = master;
6637         adj->ref_nr = 1;
6638         adj->private = private;
6639         dev_hold(adj_dev);
6640
6641         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6642                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6643
6644         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6645                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6646                 if (ret)
6647                         goto free_adj;
6648         }
6649
6650         /* Ensure that master link is always the first item in list. */
6651         if (master) {
6652                 ret = sysfs_create_link(&(dev->dev.kobj),
6653                                         &(adj_dev->dev.kobj), "master");
6654                 if (ret)
6655                         goto remove_symlinks;
6656
6657                 list_add_rcu(&adj->list, dev_list);
6658         } else {
6659                 list_add_tail_rcu(&adj->list, dev_list);
6660         }
6661
6662         return 0;
6663
6664 remove_symlinks:
6665         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6666                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6667 free_adj:
6668         kfree(adj);
6669         dev_put(adj_dev);
6670
6671         return ret;
6672 }
6673
6674 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6675                                          struct net_device *adj_dev,
6676                                          u16 ref_nr,
6677                                          struct list_head *dev_list)
6678 {
6679         struct netdev_adjacent *adj;
6680
6681         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6682                  dev->name, adj_dev->name, ref_nr);
6683
6684         adj = __netdev_find_adj(adj_dev, dev_list);
6685
6686         if (!adj) {
6687                 pr_err("Adjacency does not exist for device %s from %s\n",
6688                        dev->name, adj_dev->name);
6689                 WARN_ON(1);
6690                 return;
6691         }
6692
6693         if (adj->ref_nr > ref_nr) {
6694                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6695                          dev->name, adj_dev->name, ref_nr,
6696                          adj->ref_nr - ref_nr);
6697                 adj->ref_nr -= ref_nr;
6698                 return;
6699         }
6700
6701         if (adj->master)
6702                 sysfs_remove_link(&(dev->dev.kobj), "master");
6703
6704         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6705                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6706
6707         list_del_rcu(&adj->list);
6708         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6709                  adj_dev->name, dev->name, adj_dev->name);
6710         dev_put(adj_dev);
6711         kfree_rcu(adj, rcu);
6712 }
6713
6714 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6715                                             struct net_device *upper_dev,
6716                                             struct list_head *up_list,
6717                                             struct list_head *down_list,
6718                                             void *private, bool master)
6719 {
6720         int ret;
6721
6722         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6723                                            private, master);
6724         if (ret)
6725                 return ret;
6726
6727         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6728                                            private, false);
6729         if (ret) {
6730                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6731                 return ret;
6732         }
6733
6734         return 0;
6735 }
6736
6737 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6738                                                struct net_device *upper_dev,
6739                                                u16 ref_nr,
6740                                                struct list_head *up_list,
6741                                                struct list_head *down_list)
6742 {
6743         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6744         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6745 }
6746
6747 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6748                                                 struct net_device *upper_dev,
6749                                                 void *private, bool master)
6750 {
6751         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6752                                                 &dev->adj_list.upper,
6753                                                 &upper_dev->adj_list.lower,
6754                                                 private, master);
6755 }
6756
6757 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6758                                                    struct net_device *upper_dev)
6759 {
6760         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6761                                            &dev->adj_list.upper,
6762                                            &upper_dev->adj_list.lower);
6763 }
6764
6765 static int __netdev_upper_dev_link(struct net_device *dev,
6766                                    struct net_device *upper_dev, bool master,
6767                                    void *upper_priv, void *upper_info,
6768                                    struct netlink_ext_ack *extack)
6769 {
6770         struct netdev_notifier_changeupper_info changeupper_info = {
6771                 .info = {
6772                         .dev = dev,
6773                         .extack = extack,
6774                 },
6775                 .upper_dev = upper_dev,
6776                 .master = master,
6777                 .linking = true,
6778                 .upper_info = upper_info,
6779         };
6780         struct net_device *master_dev;
6781         int ret = 0;
6782
6783         ASSERT_RTNL();
6784
6785         if (dev == upper_dev)
6786                 return -EBUSY;
6787
6788         /* To prevent loops, check if dev is not upper device to upper_dev. */
6789         if (netdev_has_upper_dev(upper_dev, dev))
6790                 return -EBUSY;
6791
6792         if (!master) {
6793                 if (netdev_has_upper_dev(dev, upper_dev))
6794                         return -EEXIST;
6795         } else {
6796                 master_dev = netdev_master_upper_dev_get(dev);
6797                 if (master_dev)
6798                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
6799         }
6800
6801         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6802                                             &changeupper_info.info);
6803         ret = notifier_to_errno(ret);
6804         if (ret)
6805                 return ret;
6806
6807         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6808                                                    master);
6809         if (ret)
6810                 return ret;
6811
6812         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6813                                             &changeupper_info.info);
6814         ret = notifier_to_errno(ret);
6815         if (ret)
6816                 goto rollback;
6817
6818         return 0;
6819
6820 rollback:
6821         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6822
6823         return ret;
6824 }
6825
6826 /**
6827  * netdev_upper_dev_link - Add a link to the upper device
6828  * @dev: device
6829  * @upper_dev: new upper device
6830  * @extack: netlink extended ack
6831  *
6832  * Adds a link to device which is upper to this one. The caller must hold
6833  * the RTNL lock. On a failure a negative errno code is returned.
6834  * On success the reference counts are adjusted and the function
6835  * returns zero.
6836  */
6837 int netdev_upper_dev_link(struct net_device *dev,
6838                           struct net_device *upper_dev,
6839                           struct netlink_ext_ack *extack)
6840 {
6841         return __netdev_upper_dev_link(dev, upper_dev, false,
6842                                        NULL, NULL, extack);
6843 }
6844 EXPORT_SYMBOL(netdev_upper_dev_link);
6845
6846 /**
6847  * netdev_master_upper_dev_link - Add a master link to the upper device
6848  * @dev: device
6849  * @upper_dev: new upper device
6850  * @upper_priv: upper device private
6851  * @upper_info: upper info to be passed down via notifier
6852  * @extack: netlink extended ack
6853  *
6854  * Adds a link to device which is upper to this one. In this case, only
6855  * one master upper device can be linked, although other non-master devices
6856  * might be linked as well. The caller must hold the RTNL lock.
6857  * On a failure a negative errno code is returned. On success the reference
6858  * counts are adjusted and the function returns zero.
6859  */
6860 int netdev_master_upper_dev_link(struct net_device *dev,
6861                                  struct net_device *upper_dev,
6862                                  void *upper_priv, void *upper_info,
6863                                  struct netlink_ext_ack *extack)
6864 {
6865         return __netdev_upper_dev_link(dev, upper_dev, true,
6866                                        upper_priv, upper_info, extack);
6867 }
6868 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6869
6870 /**
6871  * netdev_upper_dev_unlink - Removes a link to upper device
6872  * @dev: device
6873  * @upper_dev: new upper device
6874  *
6875  * Removes a link to device which is upper to this one. The caller must hold
6876  * the RTNL lock.
6877  */
6878 void netdev_upper_dev_unlink(struct net_device *dev,
6879                              struct net_device *upper_dev)
6880 {
6881         struct netdev_notifier_changeupper_info changeupper_info = {
6882                 .info = {
6883                         .dev = dev,
6884                 },
6885                 .upper_dev = upper_dev,
6886                 .linking = false,
6887         };
6888
6889         ASSERT_RTNL();
6890
6891         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6892
6893         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6894                                       &changeupper_info.info);
6895
6896         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6897
6898         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6899                                       &changeupper_info.info);
6900 }
6901 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6902
6903 /**
6904  * netdev_bonding_info_change - Dispatch event about slave change
6905  * @dev: device
6906  * @bonding_info: info to dispatch
6907  *
6908  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6909  * The caller must hold the RTNL lock.
6910  */
6911 void netdev_bonding_info_change(struct net_device *dev,
6912                                 struct netdev_bonding_info *bonding_info)
6913 {
6914         struct netdev_notifier_bonding_info info = {
6915                 .info.dev = dev,
6916         };
6917
6918         memcpy(&info.bonding_info, bonding_info,
6919                sizeof(struct netdev_bonding_info));
6920         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6921                                       &info.info);
6922 }
6923 EXPORT_SYMBOL(netdev_bonding_info_change);
6924
6925 static void netdev_adjacent_add_links(struct net_device *dev)
6926 {
6927         struct netdev_adjacent *iter;
6928
6929         struct net *net = dev_net(dev);
6930
6931         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6932                 if (!net_eq(net, dev_net(iter->dev)))
6933                         continue;
6934                 netdev_adjacent_sysfs_add(iter->dev, dev,
6935                                           &iter->dev->adj_list.lower);
6936                 netdev_adjacent_sysfs_add(dev, iter->dev,
6937                                           &dev->adj_list.upper);
6938         }
6939
6940         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6941                 if (!net_eq(net, dev_net(iter->dev)))
6942                         continue;
6943                 netdev_adjacent_sysfs_add(iter->dev, dev,
6944                                           &iter->dev->adj_list.upper);
6945                 netdev_adjacent_sysfs_add(dev, iter->dev,
6946                                           &dev->adj_list.lower);
6947         }
6948 }
6949
6950 static void netdev_adjacent_del_links(struct net_device *dev)
6951 {
6952         struct netdev_adjacent *iter;
6953
6954         struct net *net = dev_net(dev);
6955
6956         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6957                 if (!net_eq(net, dev_net(iter->dev)))
6958                         continue;
6959                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6960                                           &iter->dev->adj_list.lower);
6961                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6962                                           &dev->adj_list.upper);
6963         }
6964
6965         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6966                 if (!net_eq(net, dev_net(iter->dev)))
6967                         continue;
6968                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6969                                           &iter->dev->adj_list.upper);
6970                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6971                                           &dev->adj_list.lower);
6972         }
6973 }
6974
6975 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6976 {
6977         struct netdev_adjacent *iter;
6978
6979         struct net *net = dev_net(dev);
6980
6981         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6982                 if (!net_eq(net, dev_net(iter->dev)))
6983                         continue;
6984                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6985                                           &iter->dev->adj_list.lower);
6986                 netdev_adjacent_sysfs_add(iter->dev, dev,
6987                                           &iter->dev->adj_list.lower);
6988         }
6989
6990         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6991                 if (!net_eq(net, dev_net(iter->dev)))
6992                         continue;
6993                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6994                                           &iter->dev->adj_list.upper);
6995                 netdev_adjacent_sysfs_add(iter->dev, dev,
6996                                           &iter->dev->adj_list.upper);
6997         }
6998 }
6999
7000 void *netdev_lower_dev_get_private(struct net_device *dev,
7001                                    struct net_device *lower_dev)
7002 {
7003         struct netdev_adjacent *lower;
7004
7005         if (!lower_dev)
7006                 return NULL;
7007         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7008         if (!lower)
7009                 return NULL;
7010
7011         return lower->private;
7012 }
7013 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7014
7015
7016 int dev_get_nest_level(struct net_device *dev)
7017 {
7018         struct net_device *lower = NULL;
7019         struct list_head *iter;
7020         int max_nest = -1;
7021         int nest;
7022
7023         ASSERT_RTNL();
7024
7025         netdev_for_each_lower_dev(dev, lower, iter) {
7026                 nest = dev_get_nest_level(lower);
7027                 if (max_nest < nest)
7028                         max_nest = nest;
7029         }
7030
7031         return max_nest + 1;
7032 }
7033 EXPORT_SYMBOL(dev_get_nest_level);
7034
7035 /**
7036  * netdev_lower_change - Dispatch event about lower device state change
7037  * @lower_dev: device
7038  * @lower_state_info: state to dispatch
7039  *
7040  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7041  * The caller must hold the RTNL lock.
7042  */
7043 void netdev_lower_state_changed(struct net_device *lower_dev,
7044                                 void *lower_state_info)
7045 {
7046         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7047                 .info.dev = lower_dev,
7048         };
7049
7050         ASSERT_RTNL();
7051         changelowerstate_info.lower_state_info = lower_state_info;
7052         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7053                                       &changelowerstate_info.info);
7054 }
7055 EXPORT_SYMBOL(netdev_lower_state_changed);
7056
7057 static void dev_change_rx_flags(struct net_device *dev, int flags)
7058 {
7059         const struct net_device_ops *ops = dev->netdev_ops;
7060
7061         if (ops->ndo_change_rx_flags)
7062                 ops->ndo_change_rx_flags(dev, flags);
7063 }
7064
7065 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7066 {
7067         unsigned int old_flags = dev->flags;
7068         kuid_t uid;
7069         kgid_t gid;
7070
7071         ASSERT_RTNL();
7072
7073         dev->flags |= IFF_PROMISC;
7074         dev->promiscuity += inc;
7075         if (dev->promiscuity == 0) {
7076                 /*
7077                  * Avoid overflow.
7078                  * If inc causes overflow, untouch promisc and return error.
7079                  */
7080                 if (inc < 0)
7081                         dev->flags &= ~IFF_PROMISC;
7082                 else {
7083                         dev->promiscuity -= inc;
7084                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7085                                 dev->name);
7086                         return -EOVERFLOW;
7087                 }
7088         }
7089         if (dev->flags != old_flags) {
7090                 pr_info("device %s %s promiscuous mode\n",
7091                         dev->name,
7092                         dev->flags & IFF_PROMISC ? "entered" : "left");
7093                 if (audit_enabled) {
7094                         current_uid_gid(&uid, &gid);
7095                         audit_log(audit_context(), GFP_ATOMIC,
7096                                   AUDIT_ANOM_PROMISCUOUS,
7097                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7098                                   dev->name, (dev->flags & IFF_PROMISC),
7099                                   (old_flags & IFF_PROMISC),
7100                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7101                                   from_kuid(&init_user_ns, uid),
7102                                   from_kgid(&init_user_ns, gid),
7103                                   audit_get_sessionid(current));
7104                 }
7105
7106                 dev_change_rx_flags(dev, IFF_PROMISC);
7107         }
7108         if (notify)
7109                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7110         return 0;
7111 }
7112
7113 /**
7114  *      dev_set_promiscuity     - update promiscuity count on a device
7115  *      @dev: device
7116  *      @inc: modifier
7117  *
7118  *      Add or remove promiscuity from a device. While the count in the device
7119  *      remains above zero the interface remains promiscuous. Once it hits zero
7120  *      the device reverts back to normal filtering operation. A negative inc
7121  *      value is used to drop promiscuity on the device.
7122  *      Return 0 if successful or a negative errno code on error.
7123  */
7124 int dev_set_promiscuity(struct net_device *dev, int inc)
7125 {
7126         unsigned int old_flags = dev->flags;
7127         int err;
7128
7129         err = __dev_set_promiscuity(dev, inc, true);
7130         if (err < 0)
7131                 return err;
7132         if (dev->flags != old_flags)
7133                 dev_set_rx_mode(dev);
7134         return err;
7135 }
7136 EXPORT_SYMBOL(dev_set_promiscuity);
7137
7138 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7139 {
7140         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7141
7142         ASSERT_RTNL();
7143
7144         dev->flags |= IFF_ALLMULTI;
7145         dev->allmulti += inc;
7146         if (dev->allmulti == 0) {
7147                 /*
7148                  * Avoid overflow.
7149                  * If inc causes overflow, untouch allmulti and return error.
7150                  */
7151                 if (inc < 0)
7152                         dev->flags &= ~IFF_ALLMULTI;
7153                 else {
7154                         dev->allmulti -= inc;
7155                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7156                                 dev->name);
7157                         return -EOVERFLOW;
7158                 }
7159         }
7160         if (dev->flags ^ old_flags) {
7161                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7162                 dev_set_rx_mode(dev);
7163                 if (notify)
7164                         __dev_notify_flags(dev, old_flags,
7165                                            dev->gflags ^ old_gflags);
7166         }
7167         return 0;
7168 }
7169
7170 /**
7171  *      dev_set_allmulti        - update allmulti count on a device
7172  *      @dev: device
7173  *      @inc: modifier
7174  *
7175  *      Add or remove reception of all multicast frames to a device. While the
7176  *      count in the device remains above zero the interface remains listening
7177  *      to all interfaces. Once it hits zero the device reverts back to normal
7178  *      filtering operation. A negative @inc value is used to drop the counter
7179  *      when releasing a resource needing all multicasts.
7180  *      Return 0 if successful or a negative errno code on error.
7181  */
7182
7183 int dev_set_allmulti(struct net_device *dev, int inc)
7184 {
7185         return __dev_set_allmulti(dev, inc, true);
7186 }
7187 EXPORT_SYMBOL(dev_set_allmulti);
7188
7189 /*
7190  *      Upload unicast and multicast address lists to device and
7191  *      configure RX filtering. When the device doesn't support unicast
7192  *      filtering it is put in promiscuous mode while unicast addresses
7193  *      are present.
7194  */
7195 void __dev_set_rx_mode(struct net_device *dev)
7196 {
7197         const struct net_device_ops *ops = dev->netdev_ops;
7198
7199         /* dev_open will call this function so the list will stay sane. */
7200         if (!(dev->flags&IFF_UP))
7201                 return;
7202
7203         if (!netif_device_present(dev))
7204                 return;
7205
7206         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7207                 /* Unicast addresses changes may only happen under the rtnl,
7208                  * therefore calling __dev_set_promiscuity here is safe.
7209                  */
7210                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7211                         __dev_set_promiscuity(dev, 1, false);
7212                         dev->uc_promisc = true;
7213                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7214                         __dev_set_promiscuity(dev, -1, false);
7215                         dev->uc_promisc = false;
7216                 }
7217         }
7218
7219         if (ops->ndo_set_rx_mode)
7220                 ops->ndo_set_rx_mode(dev);
7221 }
7222
7223 void dev_set_rx_mode(struct net_device *dev)
7224 {
7225         netif_addr_lock_bh(dev);
7226         __dev_set_rx_mode(dev);
7227         netif_addr_unlock_bh(dev);
7228 }
7229
7230 /**
7231  *      dev_get_flags - get flags reported to userspace
7232  *      @dev: device
7233  *
7234  *      Get the combination of flag bits exported through APIs to userspace.
7235  */
7236 unsigned int dev_get_flags(const struct net_device *dev)
7237 {
7238         unsigned int flags;
7239
7240         flags = (dev->flags & ~(IFF_PROMISC |
7241                                 IFF_ALLMULTI |
7242                                 IFF_RUNNING |
7243                                 IFF_LOWER_UP |
7244                                 IFF_DORMANT)) |
7245                 (dev->gflags & (IFF_PROMISC |
7246                                 IFF_ALLMULTI));
7247
7248         if (netif_running(dev)) {
7249                 if (netif_oper_up(dev))
7250                         flags |= IFF_RUNNING;
7251                 if (netif_carrier_ok(dev))
7252                         flags |= IFF_LOWER_UP;
7253                 if (netif_dormant(dev))
7254                         flags |= IFF_DORMANT;
7255         }
7256
7257         return flags;
7258 }
7259 EXPORT_SYMBOL(dev_get_flags);
7260
7261 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7262 {
7263         unsigned int old_flags = dev->flags;
7264         int ret;
7265
7266         ASSERT_RTNL();
7267
7268         /*
7269          *      Set the flags on our device.
7270          */
7271
7272         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7273                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7274                                IFF_AUTOMEDIA)) |
7275                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7276                                     IFF_ALLMULTI));
7277
7278         /*
7279          *      Load in the correct multicast list now the flags have changed.
7280          */
7281
7282         if ((old_flags ^ flags) & IFF_MULTICAST)
7283                 dev_change_rx_flags(dev, IFF_MULTICAST);
7284
7285         dev_set_rx_mode(dev);
7286
7287         /*
7288          *      Have we downed the interface. We handle IFF_UP ourselves
7289          *      according to user attempts to set it, rather than blindly
7290          *      setting it.
7291          */
7292
7293         ret = 0;
7294         if ((old_flags ^ flags) & IFF_UP) {
7295                 if (old_flags & IFF_UP)
7296                         __dev_close(dev);
7297                 else
7298                         ret = __dev_open(dev);
7299         }
7300
7301         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7302                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7303                 unsigned int old_flags = dev->flags;
7304
7305                 dev->gflags ^= IFF_PROMISC;
7306
7307                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7308                         if (dev->flags != old_flags)
7309                                 dev_set_rx_mode(dev);
7310         }
7311
7312         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7313          * is important. Some (broken) drivers set IFF_PROMISC, when
7314          * IFF_ALLMULTI is requested not asking us and not reporting.
7315          */
7316         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7317                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7318
7319                 dev->gflags ^= IFF_ALLMULTI;
7320                 __dev_set_allmulti(dev, inc, false);
7321         }
7322
7323         return ret;
7324 }
7325
7326 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7327                         unsigned int gchanges)
7328 {
7329         unsigned int changes = dev->flags ^ old_flags;
7330
7331         if (gchanges)
7332                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7333
7334         if (changes & IFF_UP) {
7335                 if (dev->flags & IFF_UP)
7336                         call_netdevice_notifiers(NETDEV_UP, dev);
7337                 else
7338                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7339         }
7340
7341         if (dev->flags & IFF_UP &&
7342             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7343                 struct netdev_notifier_change_info change_info = {
7344                         .info = {
7345                                 .dev = dev,
7346                         },
7347                         .flags_changed = changes,
7348                 };
7349
7350                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7351         }
7352 }
7353
7354 /**
7355  *      dev_change_flags - change device settings
7356  *      @dev: device
7357  *      @flags: device state flags
7358  *
7359  *      Change settings on device based state flags. The flags are
7360  *      in the userspace exported format.
7361  */
7362 int dev_change_flags(struct net_device *dev, unsigned int flags)
7363 {
7364         int ret;
7365         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7366
7367         ret = __dev_change_flags(dev, flags);
7368         if (ret < 0)
7369                 return ret;
7370
7371         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7372         __dev_notify_flags(dev, old_flags, changes);
7373         return ret;
7374 }
7375 EXPORT_SYMBOL(dev_change_flags);
7376
7377 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7378 {
7379         const struct net_device_ops *ops = dev->netdev_ops;
7380
7381         if (ops->ndo_change_mtu)
7382                 return ops->ndo_change_mtu(dev, new_mtu);
7383
7384         dev->mtu = new_mtu;
7385         return 0;
7386 }
7387 EXPORT_SYMBOL(__dev_set_mtu);
7388
7389 /**
7390  *      dev_set_mtu - Change maximum transfer unit
7391  *      @dev: device
7392  *      @new_mtu: new transfer unit
7393  *
7394  *      Change the maximum transfer size of the network device.
7395  */
7396 int dev_set_mtu(struct net_device *dev, int new_mtu)
7397 {
7398         int err, orig_mtu;
7399
7400         if (new_mtu == dev->mtu)
7401                 return 0;
7402
7403         /* MTU must be positive, and in range */
7404         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7405                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7406                                     dev->name, new_mtu, dev->min_mtu);
7407                 return -EINVAL;
7408         }
7409
7410         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7411                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7412                                     dev->name, new_mtu, dev->max_mtu);
7413                 return -EINVAL;
7414         }
7415
7416         if (!netif_device_present(dev))
7417                 return -ENODEV;
7418
7419         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7420         err = notifier_to_errno(err);
7421         if (err)
7422                 return err;
7423
7424         orig_mtu = dev->mtu;
7425         err = __dev_set_mtu(dev, new_mtu);
7426
7427         if (!err) {
7428                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7429                 err = notifier_to_errno(err);
7430                 if (err) {
7431                         /* setting mtu back and notifying everyone again,
7432                          * so that they have a chance to revert changes.
7433                          */
7434                         __dev_set_mtu(dev, orig_mtu);
7435                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7436                 }
7437         }
7438         return err;
7439 }
7440 EXPORT_SYMBOL(dev_set_mtu);
7441
7442 /**
7443  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7444  *      @dev: device
7445  *      @new_len: new tx queue length
7446  */
7447 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7448 {
7449         unsigned int orig_len = dev->tx_queue_len;
7450         int res;
7451
7452         if (new_len != (unsigned int)new_len)
7453                 return -ERANGE;
7454
7455         if (new_len != orig_len) {
7456                 dev->tx_queue_len = new_len;
7457                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7458                 res = notifier_to_errno(res);
7459                 if (res) {
7460                         netdev_err(dev,
7461                                    "refused to change device tx_queue_len\n");
7462                         dev->tx_queue_len = orig_len;
7463                         return res;
7464                 }
7465                 return dev_qdisc_change_tx_queue_len(dev);
7466         }
7467
7468         return 0;
7469 }
7470
7471 /**
7472  *      dev_set_group - Change group this device belongs to
7473  *      @dev: device
7474  *      @new_group: group this device should belong to
7475  */
7476 void dev_set_group(struct net_device *dev, int new_group)
7477 {
7478         dev->group = new_group;
7479 }
7480 EXPORT_SYMBOL(dev_set_group);
7481
7482 /**
7483  *      dev_set_mac_address - Change Media Access Control Address
7484  *      @dev: device
7485  *      @sa: new address
7486  *
7487  *      Change the hardware (MAC) address of the device
7488  */
7489 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7490 {
7491         const struct net_device_ops *ops = dev->netdev_ops;
7492         int err;
7493
7494         if (!ops->ndo_set_mac_address)
7495                 return -EOPNOTSUPP;
7496         if (sa->sa_family != dev->type)
7497                 return -EINVAL;
7498         if (!netif_device_present(dev))
7499                 return -ENODEV;
7500         err = ops->ndo_set_mac_address(dev, sa);
7501         if (err)
7502                 return err;
7503         dev->addr_assign_type = NET_ADDR_SET;
7504         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7505         add_device_randomness(dev->dev_addr, dev->addr_len);
7506         return 0;
7507 }
7508 EXPORT_SYMBOL(dev_set_mac_address);
7509
7510 /**
7511  *      dev_change_carrier - Change device carrier
7512  *      @dev: device
7513  *      @new_carrier: new value
7514  *
7515  *      Change device carrier
7516  */
7517 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7518 {
7519         const struct net_device_ops *ops = dev->netdev_ops;
7520
7521         if (!ops->ndo_change_carrier)
7522                 return -EOPNOTSUPP;
7523         if (!netif_device_present(dev))
7524                 return -ENODEV;
7525         return ops->ndo_change_carrier(dev, new_carrier);
7526 }
7527 EXPORT_SYMBOL(dev_change_carrier);
7528
7529 /**
7530  *      dev_get_phys_port_id - Get device physical port ID
7531  *      @dev: device
7532  *      @ppid: port ID
7533  *
7534  *      Get device physical port ID
7535  */
7536 int dev_get_phys_port_id(struct net_device *dev,
7537                          struct netdev_phys_item_id *ppid)
7538 {
7539         const struct net_device_ops *ops = dev->netdev_ops;
7540
7541         if (!ops->ndo_get_phys_port_id)
7542                 return -EOPNOTSUPP;
7543         return ops->ndo_get_phys_port_id(dev, ppid);
7544 }
7545 EXPORT_SYMBOL(dev_get_phys_port_id);
7546
7547 /**
7548  *      dev_get_phys_port_name - Get device physical port name
7549  *      @dev: device
7550  *      @name: port name
7551  *      @len: limit of bytes to copy to name
7552  *
7553  *      Get device physical port name
7554  */
7555 int dev_get_phys_port_name(struct net_device *dev,
7556                            char *name, size_t len)
7557 {
7558         const struct net_device_ops *ops = dev->netdev_ops;
7559
7560         if (!ops->ndo_get_phys_port_name)
7561                 return -EOPNOTSUPP;
7562         return ops->ndo_get_phys_port_name(dev, name, len);
7563 }
7564 EXPORT_SYMBOL(dev_get_phys_port_name);
7565
7566 /**
7567  *      dev_change_proto_down - update protocol port state information
7568  *      @dev: device
7569  *      @proto_down: new value
7570  *
7571  *      This info can be used by switch drivers to set the phys state of the
7572  *      port.
7573  */
7574 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7575 {
7576         const struct net_device_ops *ops = dev->netdev_ops;
7577
7578         if (!ops->ndo_change_proto_down)
7579                 return -EOPNOTSUPP;
7580         if (!netif_device_present(dev))
7581                 return -ENODEV;
7582         return ops->ndo_change_proto_down(dev, proto_down);
7583 }
7584 EXPORT_SYMBOL(dev_change_proto_down);
7585
7586 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7587                      struct netdev_bpf *xdp)
7588 {
7589         memset(xdp, 0, sizeof(*xdp));
7590         xdp->command = XDP_QUERY_PROG;
7591
7592         /* Query must always succeed. */
7593         WARN_ON(bpf_op(dev, xdp) < 0);
7594 }
7595
7596 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7597 {
7598         struct netdev_bpf xdp;
7599
7600         __dev_xdp_query(dev, bpf_op, &xdp);
7601
7602         return xdp.prog_attached;
7603 }
7604
7605 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7606                            struct netlink_ext_ack *extack, u32 flags,
7607                            struct bpf_prog *prog)
7608 {
7609         struct netdev_bpf xdp;
7610
7611         memset(&xdp, 0, sizeof(xdp));
7612         if (flags & XDP_FLAGS_HW_MODE)
7613                 xdp.command = XDP_SETUP_PROG_HW;
7614         else
7615                 xdp.command = XDP_SETUP_PROG;
7616         xdp.extack = extack;
7617         xdp.flags = flags;
7618         xdp.prog = prog;
7619
7620         return bpf_op(dev, &xdp);
7621 }
7622
7623 static void dev_xdp_uninstall(struct net_device *dev)
7624 {
7625         struct netdev_bpf xdp;
7626         bpf_op_t ndo_bpf;
7627
7628         /* Remove generic XDP */
7629         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7630
7631         /* Remove from the driver */
7632         ndo_bpf = dev->netdev_ops->ndo_bpf;
7633         if (!ndo_bpf)
7634                 return;
7635
7636         __dev_xdp_query(dev, ndo_bpf, &xdp);
7637         if (xdp.prog_attached == XDP_ATTACHED_NONE)
7638                 return;
7639
7640         /* Program removal should always succeed */
7641         WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7642 }
7643
7644 /**
7645  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7646  *      @dev: device
7647  *      @extack: netlink extended ack
7648  *      @fd: new program fd or negative value to clear
7649  *      @flags: xdp-related flags
7650  *
7651  *      Set or clear a bpf program for a device
7652  */
7653 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7654                       int fd, u32 flags)
7655 {
7656         const struct net_device_ops *ops = dev->netdev_ops;
7657         struct bpf_prog *prog = NULL;
7658         bpf_op_t bpf_op, bpf_chk;
7659         int err;
7660
7661         ASSERT_RTNL();
7662
7663         bpf_op = bpf_chk = ops->ndo_bpf;
7664         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7665                 return -EOPNOTSUPP;
7666         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7667                 bpf_op = generic_xdp_install;
7668         if (bpf_op == bpf_chk)
7669                 bpf_chk = generic_xdp_install;
7670
7671         if (fd >= 0) {
7672                 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7673                         return -EEXIST;
7674                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7675                     __dev_xdp_attached(dev, bpf_op))
7676                         return -EBUSY;
7677
7678                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7679                                              bpf_op == ops->ndo_bpf);
7680                 if (IS_ERR(prog))
7681                         return PTR_ERR(prog);
7682
7683                 if (!(flags & XDP_FLAGS_HW_MODE) &&
7684                     bpf_prog_is_dev_bound(prog->aux)) {
7685                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7686                         bpf_prog_put(prog);
7687                         return -EINVAL;
7688                 }
7689         }
7690
7691         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7692         if (err < 0 && prog)
7693                 bpf_prog_put(prog);
7694
7695         return err;
7696 }
7697
7698 /**
7699  *      dev_new_index   -       allocate an ifindex
7700  *      @net: the applicable net namespace
7701  *
7702  *      Returns a suitable unique value for a new device interface
7703  *      number.  The caller must hold the rtnl semaphore or the
7704  *      dev_base_lock to be sure it remains unique.
7705  */
7706 static int dev_new_index(struct net *net)
7707 {
7708         int ifindex = net->ifindex;
7709
7710         for (;;) {
7711                 if (++ifindex <= 0)
7712                         ifindex = 1;
7713                 if (!__dev_get_by_index(net, ifindex))
7714                         return net->ifindex = ifindex;
7715         }
7716 }
7717
7718 /* Delayed registration/unregisteration */
7719 static LIST_HEAD(net_todo_list);
7720 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7721
7722 static void net_set_todo(struct net_device *dev)
7723 {
7724         list_add_tail(&dev->todo_list, &net_todo_list);
7725         dev_net(dev)->dev_unreg_count++;
7726 }
7727
7728 static void rollback_registered_many(struct list_head *head)
7729 {
7730         struct net_device *dev, *tmp;
7731         LIST_HEAD(close_head);
7732
7733         BUG_ON(dev_boot_phase);
7734         ASSERT_RTNL();
7735
7736         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7737                 /* Some devices call without registering
7738                  * for initialization unwind. Remove those
7739                  * devices and proceed with the remaining.
7740                  */
7741                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7742                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7743                                  dev->name, dev);
7744
7745                         WARN_ON(1);
7746                         list_del(&dev->unreg_list);
7747                         continue;
7748                 }
7749                 dev->dismantle = true;
7750                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7751         }
7752
7753         /* If device is running, close it first. */
7754         list_for_each_entry(dev, head, unreg_list)
7755                 list_add_tail(&dev->close_list, &close_head);
7756         dev_close_many(&close_head, true);
7757
7758         list_for_each_entry(dev, head, unreg_list) {
7759                 /* And unlink it from device chain. */
7760                 unlist_netdevice(dev);
7761
7762                 dev->reg_state = NETREG_UNREGISTERING;
7763         }
7764         flush_all_backlogs();
7765
7766         synchronize_net();
7767
7768         list_for_each_entry(dev, head, unreg_list) {
7769                 struct sk_buff *skb = NULL;
7770
7771                 /* Shutdown queueing discipline. */
7772                 dev_shutdown(dev);
7773
7774                 dev_xdp_uninstall(dev);
7775
7776                 /* Notify protocols, that we are about to destroy
7777                  * this device. They should clean all the things.
7778                  */
7779                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7780
7781                 if (!dev->rtnl_link_ops ||
7782                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7783                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7784                                                      GFP_KERNEL, NULL, 0);
7785
7786                 /*
7787                  *      Flush the unicast and multicast chains
7788                  */
7789                 dev_uc_flush(dev);
7790                 dev_mc_flush(dev);
7791
7792                 if (dev->netdev_ops->ndo_uninit)
7793                         dev->netdev_ops->ndo_uninit(dev);
7794
7795                 if (skb)
7796                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7797
7798                 /* Notifier chain MUST detach us all upper devices. */
7799                 WARN_ON(netdev_has_any_upper_dev(dev));
7800                 WARN_ON(netdev_has_any_lower_dev(dev));
7801
7802                 /* Remove entries from kobject tree */
7803                 netdev_unregister_kobject(dev);
7804 #ifdef CONFIG_XPS
7805                 /* Remove XPS queueing entries */
7806                 netif_reset_xps_queues_gt(dev, 0);
7807 #endif
7808         }
7809
7810         synchronize_net();
7811
7812         list_for_each_entry(dev, head, unreg_list)
7813                 dev_put(dev);
7814 }
7815
7816 static void rollback_registered(struct net_device *dev)
7817 {
7818         LIST_HEAD(single);
7819
7820         list_add(&dev->unreg_list, &single);
7821         rollback_registered_many(&single);
7822         list_del(&single);
7823 }
7824
7825 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7826         struct net_device *upper, netdev_features_t features)
7827 {
7828         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7829         netdev_features_t feature;
7830         int feature_bit;
7831
7832         for_each_netdev_feature(&upper_disables, feature_bit) {
7833                 feature = __NETIF_F_BIT(feature_bit);
7834                 if (!(upper->wanted_features & feature)
7835                     && (features & feature)) {
7836                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7837                                    &feature, upper->name);
7838                         features &= ~feature;
7839                 }
7840         }
7841
7842         return features;
7843 }
7844
7845 static void netdev_sync_lower_features(struct net_device *upper,
7846         struct net_device *lower, netdev_features_t features)
7847 {
7848         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7849         netdev_features_t feature;
7850         int feature_bit;
7851
7852         for_each_netdev_feature(&upper_disables, feature_bit) {
7853                 feature = __NETIF_F_BIT(feature_bit);
7854                 if (!(features & feature) && (lower->features & feature)) {
7855                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7856                                    &feature, lower->name);
7857                         lower->wanted_features &= ~feature;
7858                         netdev_update_features(lower);
7859
7860                         if (unlikely(lower->features & feature))
7861                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7862                                             &feature, lower->name);
7863                 }
7864         }
7865 }
7866
7867 static netdev_features_t netdev_fix_features(struct net_device *dev,
7868         netdev_features_t features)
7869 {
7870         /* Fix illegal checksum combinations */
7871         if ((features & NETIF_F_HW_CSUM) &&
7872             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7873                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7874                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7875         }
7876
7877         /* TSO requires that SG is present as well. */
7878         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7879                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7880                 features &= ~NETIF_F_ALL_TSO;
7881         }
7882
7883         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7884                                         !(features & NETIF_F_IP_CSUM)) {
7885                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7886                 features &= ~NETIF_F_TSO;
7887                 features &= ~NETIF_F_TSO_ECN;
7888         }
7889
7890         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7891                                          !(features & NETIF_F_IPV6_CSUM)) {
7892                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7893                 features &= ~NETIF_F_TSO6;
7894         }
7895
7896         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7897         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7898                 features &= ~NETIF_F_TSO_MANGLEID;
7899
7900         /* TSO ECN requires that TSO is present as well. */
7901         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7902                 features &= ~NETIF_F_TSO_ECN;
7903
7904         /* Software GSO depends on SG. */
7905         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7906                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7907                 features &= ~NETIF_F_GSO;
7908         }
7909
7910         /* GSO partial features require GSO partial be set */
7911         if ((features & dev->gso_partial_features) &&
7912             !(features & NETIF_F_GSO_PARTIAL)) {
7913                 netdev_dbg(dev,
7914                            "Dropping partially supported GSO features since no GSO partial.\n");
7915                 features &= ~dev->gso_partial_features;
7916         }
7917
7918         if (!(features & NETIF_F_RXCSUM)) {
7919                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7920                  * successfully merged by hardware must also have the
7921                  * checksum verified by hardware.  If the user does not
7922                  * want to enable RXCSUM, logically, we should disable GRO_HW.
7923                  */
7924                 if (features & NETIF_F_GRO_HW) {
7925                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7926                         features &= ~NETIF_F_GRO_HW;
7927                 }
7928         }
7929
7930         /* LRO/HW-GRO features cannot be combined with RX-FCS */
7931         if (features & NETIF_F_RXFCS) {
7932                 if (features & NETIF_F_LRO) {
7933                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7934                         features &= ~NETIF_F_LRO;
7935                 }
7936
7937                 if (features & NETIF_F_GRO_HW) {
7938                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7939                         features &= ~NETIF_F_GRO_HW;
7940                 }
7941         }
7942
7943         return features;
7944 }
7945
7946 int __netdev_update_features(struct net_device *dev)
7947 {
7948         struct net_device *upper, *lower;
7949         netdev_features_t features;
7950         struct list_head *iter;
7951         int err = -1;
7952
7953         ASSERT_RTNL();
7954
7955         features = netdev_get_wanted_features(dev);
7956
7957         if (dev->netdev_ops->ndo_fix_features)
7958                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7959
7960         /* driver might be less strict about feature dependencies */
7961         features = netdev_fix_features(dev, features);
7962
7963         /* some features can't be enabled if they're off an an upper device */
7964         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7965                 features = netdev_sync_upper_features(dev, upper, features);
7966
7967         if (dev->features == features)
7968                 goto sync_lower;
7969
7970         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7971                 &dev->features, &features);
7972
7973         if (dev->netdev_ops->ndo_set_features)
7974                 err = dev->netdev_ops->ndo_set_features(dev, features);
7975         else
7976                 err = 0;
7977
7978         if (unlikely(err < 0)) {
7979                 netdev_err(dev,
7980                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7981                         err, &features, &dev->features);
7982                 /* return non-0 since some features might have changed and
7983                  * it's better to fire a spurious notification than miss it
7984                  */
7985                 return -1;
7986         }
7987
7988 sync_lower:
7989         /* some features must be disabled on lower devices when disabled
7990          * on an upper device (think: bonding master or bridge)
7991          */
7992         netdev_for_each_lower_dev(dev, lower, iter)
7993                 netdev_sync_lower_features(dev, lower, features);
7994
7995         if (!err) {
7996                 netdev_features_t diff = features ^ dev->features;
7997
7998                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7999                         /* udp_tunnel_{get,drop}_rx_info both need
8000                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8001                          * device, or they won't do anything.
8002                          * Thus we need to update dev->features
8003                          * *before* calling udp_tunnel_get_rx_info,
8004                          * but *after* calling udp_tunnel_drop_rx_info.
8005                          */
8006                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8007                                 dev->features = features;
8008                                 udp_tunnel_get_rx_info(dev);
8009                         } else {
8010                                 udp_tunnel_drop_rx_info(dev);
8011                         }
8012                 }
8013
8014                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8015                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8016                                 dev->features = features;
8017                                 err |= vlan_get_rx_ctag_filter_info(dev);
8018                         } else {
8019                                 vlan_drop_rx_ctag_filter_info(dev);
8020                         }
8021                 }
8022
8023                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8024                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8025                                 dev->features = features;
8026                                 err |= vlan_get_rx_stag_filter_info(dev);
8027                         } else {
8028                                 vlan_drop_rx_stag_filter_info(dev);
8029                         }
8030                 }
8031
8032                 dev->features = features;
8033         }
8034
8035         return err < 0 ? 0 : 1;
8036 }
8037
8038 /**
8039  *      netdev_update_features - recalculate device features
8040  *      @dev: the device to check
8041  *
8042  *      Recalculate dev->features set and send notifications if it
8043  *      has changed. Should be called after driver or hardware dependent
8044  *      conditions might have changed that influence the features.
8045  */
8046 void netdev_update_features(struct net_device *dev)
8047 {
8048         if (__netdev_update_features(dev))
8049                 netdev_features_change(dev);
8050 }
8051 EXPORT_SYMBOL(netdev_update_features);
8052
8053 /**
8054  *      netdev_change_features - recalculate device features
8055  *      @dev: the device to check
8056  *
8057  *      Recalculate dev->features set and send notifications even
8058  *      if they have not changed. Should be called instead of
8059  *      netdev_update_features() if also dev->vlan_features might
8060  *      have changed to allow the changes to be propagated to stacked
8061  *      VLAN devices.
8062  */
8063 void netdev_change_features(struct net_device *dev)
8064 {
8065         __netdev_update_features(dev);
8066         netdev_features_change(dev);
8067 }
8068 EXPORT_SYMBOL(netdev_change_features);
8069
8070 /**
8071  *      netif_stacked_transfer_operstate -      transfer operstate
8072  *      @rootdev: the root or lower level device to transfer state from
8073  *      @dev: the device to transfer operstate to
8074  *
8075  *      Transfer operational state from root to device. This is normally
8076  *      called when a stacking relationship exists between the root
8077  *      device and the device(a leaf device).
8078  */
8079 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8080                                         struct net_device *dev)
8081 {
8082         if (rootdev->operstate == IF_OPER_DORMANT)
8083                 netif_dormant_on(dev);
8084         else
8085                 netif_dormant_off(dev);
8086
8087         if (netif_carrier_ok(rootdev))
8088                 netif_carrier_on(dev);
8089         else
8090                 netif_carrier_off(dev);
8091 }
8092 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8093
8094 static int netif_alloc_rx_queues(struct net_device *dev)
8095 {
8096         unsigned int i, count = dev->num_rx_queues;
8097         struct netdev_rx_queue *rx;
8098         size_t sz = count * sizeof(*rx);
8099         int err = 0;
8100
8101         BUG_ON(count < 1);
8102
8103         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8104         if (!rx)
8105                 return -ENOMEM;
8106
8107         dev->_rx = rx;
8108
8109         for (i = 0; i < count; i++) {
8110                 rx[i].dev = dev;
8111
8112                 /* XDP RX-queue setup */
8113                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8114                 if (err < 0)
8115                         goto err_rxq_info;
8116         }
8117         return 0;
8118
8119 err_rxq_info:
8120         /* Rollback successful reg's and free other resources */
8121         while (i--)
8122                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8123         kvfree(dev->_rx);
8124         dev->_rx = NULL;
8125         return err;
8126 }
8127
8128 static void netif_free_rx_queues(struct net_device *dev)
8129 {
8130         unsigned int i, count = dev->num_rx_queues;
8131
8132         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8133         if (!dev->_rx)
8134                 return;
8135
8136         for (i = 0; i < count; i++)
8137                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8138
8139         kvfree(dev->_rx);
8140 }
8141
8142 static void netdev_init_one_queue(struct net_device *dev,
8143                                   struct netdev_queue *queue, void *_unused)
8144 {
8145         /* Initialize queue lock */
8146         spin_lock_init(&queue->_xmit_lock);
8147         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8148         queue->xmit_lock_owner = -1;
8149         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8150         queue->dev = dev;
8151 #ifdef CONFIG_BQL
8152         dql_init(&queue->dql, HZ);
8153 #endif
8154 }
8155
8156 static void netif_free_tx_queues(struct net_device *dev)
8157 {
8158         kvfree(dev->_tx);
8159 }
8160
8161 static int netif_alloc_netdev_queues(struct net_device *dev)
8162 {
8163         unsigned int count = dev->num_tx_queues;
8164         struct netdev_queue *tx;
8165         size_t sz = count * sizeof(*tx);
8166
8167         if (count < 1 || count > 0xffff)
8168                 return -EINVAL;
8169
8170         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8171         if (!tx)
8172                 return -ENOMEM;
8173
8174         dev->_tx = tx;
8175
8176         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8177         spin_lock_init(&dev->tx_global_lock);
8178
8179         return 0;
8180 }
8181
8182 void netif_tx_stop_all_queues(struct net_device *dev)
8183 {
8184         unsigned int i;
8185
8186         for (i = 0; i < dev->num_tx_queues; i++) {
8187                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8188
8189                 netif_tx_stop_queue(txq);
8190         }
8191 }
8192 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8193
8194 /**
8195  *      register_netdevice      - register a network device
8196  *      @dev: device to register
8197  *
8198  *      Take a completed network device structure and add it to the kernel
8199  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8200  *      chain. 0 is returned on success. A negative errno code is returned
8201  *      on a failure to set up the device, or if the name is a duplicate.
8202  *
8203  *      Callers must hold the rtnl semaphore. You may want
8204  *      register_netdev() instead of this.
8205  *
8206  *      BUGS:
8207  *      The locking appears insufficient to guarantee two parallel registers
8208  *      will not get the same name.
8209  */
8210
8211 int register_netdevice(struct net_device *dev)
8212 {
8213         int ret;
8214         struct net *net = dev_net(dev);
8215
8216         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8217                      NETDEV_FEATURE_COUNT);
8218         BUG_ON(dev_boot_phase);
8219         ASSERT_RTNL();
8220
8221         might_sleep();
8222
8223         /* When net_device's are persistent, this will be fatal. */
8224         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8225         BUG_ON(!net);
8226
8227         spin_lock_init(&dev->addr_list_lock);
8228         netdev_set_addr_lockdep_class(dev);
8229
8230         ret = dev_get_valid_name(net, dev, dev->name);
8231         if (ret < 0)
8232                 goto out;
8233
8234         /* Init, if this function is available */
8235         if (dev->netdev_ops->ndo_init) {
8236                 ret = dev->netdev_ops->ndo_init(dev);
8237                 if (ret) {
8238                         if (ret > 0)
8239                                 ret = -EIO;
8240                         goto out;
8241                 }
8242         }
8243
8244         if (((dev->hw_features | dev->features) &
8245              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8246             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8247              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8248                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8249                 ret = -EINVAL;
8250                 goto err_uninit;
8251         }
8252
8253         ret = -EBUSY;
8254         if (!dev->ifindex)
8255                 dev->ifindex = dev_new_index(net);
8256         else if (__dev_get_by_index(net, dev->ifindex))
8257                 goto err_uninit;
8258
8259         /* Transfer changeable features to wanted_features and enable
8260          * software offloads (GSO and GRO).
8261          */
8262         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8263         dev->features |= NETIF_F_SOFT_FEATURES;
8264
8265         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8266                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8267                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8268         }
8269
8270         dev->wanted_features = dev->features & dev->hw_features;
8271
8272         if (!(dev->flags & IFF_LOOPBACK))
8273                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8274
8275         /* If IPv4 TCP segmentation offload is supported we should also
8276          * allow the device to enable segmenting the frame with the option
8277          * of ignoring a static IP ID value.  This doesn't enable the
8278          * feature itself but allows the user to enable it later.
8279          */
8280         if (dev->hw_features & NETIF_F_TSO)
8281                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8282         if (dev->vlan_features & NETIF_F_TSO)
8283                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8284         if (dev->mpls_features & NETIF_F_TSO)
8285                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8286         if (dev->hw_enc_features & NETIF_F_TSO)
8287                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8288
8289         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8290          */
8291         dev->vlan_features |= NETIF_F_HIGHDMA;
8292
8293         /* Make NETIF_F_SG inheritable to tunnel devices.
8294          */
8295         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8296
8297         /* Make NETIF_F_SG inheritable to MPLS.
8298          */
8299         dev->mpls_features |= NETIF_F_SG;
8300
8301         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8302         ret = notifier_to_errno(ret);
8303         if (ret)
8304                 goto err_uninit;
8305
8306         ret = netdev_register_kobject(dev);
8307         if (ret)
8308                 goto err_uninit;
8309         dev->reg_state = NETREG_REGISTERED;
8310
8311         __netdev_update_features(dev);
8312
8313         /*
8314          *      Default initial state at registry is that the
8315          *      device is present.
8316          */
8317
8318         set_bit(__LINK_STATE_PRESENT, &dev->state);
8319
8320         linkwatch_init_dev(dev);
8321
8322         dev_init_scheduler(dev);
8323         dev_hold(dev);
8324         list_netdevice(dev);
8325         add_device_randomness(dev->dev_addr, dev->addr_len);
8326
8327         /* If the device has permanent device address, driver should
8328          * set dev_addr and also addr_assign_type should be set to
8329          * NET_ADDR_PERM (default value).
8330          */
8331         if (dev->addr_assign_type == NET_ADDR_PERM)
8332                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8333
8334         /* Notify protocols, that a new device appeared. */
8335         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8336         ret = notifier_to_errno(ret);
8337         if (ret) {
8338                 rollback_registered(dev);
8339                 dev->reg_state = NETREG_UNREGISTERED;
8340         }
8341         /*
8342          *      Prevent userspace races by waiting until the network
8343          *      device is fully setup before sending notifications.
8344          */
8345         if (!dev->rtnl_link_ops ||
8346             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8347                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8348
8349 out:
8350         return ret;
8351
8352 err_uninit:
8353         if (dev->netdev_ops->ndo_uninit)
8354                 dev->netdev_ops->ndo_uninit(dev);
8355         if (dev->priv_destructor)
8356                 dev->priv_destructor(dev);
8357         goto out;
8358 }
8359 EXPORT_SYMBOL(register_netdevice);
8360
8361 /**
8362  *      init_dummy_netdev       - init a dummy network device for NAPI
8363  *      @dev: device to init
8364  *
8365  *      This takes a network device structure and initialize the minimum
8366  *      amount of fields so it can be used to schedule NAPI polls without
8367  *      registering a full blown interface. This is to be used by drivers
8368  *      that need to tie several hardware interfaces to a single NAPI
8369  *      poll scheduler due to HW limitations.
8370  */
8371 int init_dummy_netdev(struct net_device *dev)
8372 {
8373         /* Clear everything. Note we don't initialize spinlocks
8374          * are they aren't supposed to be taken by any of the
8375          * NAPI code and this dummy netdev is supposed to be
8376          * only ever used for NAPI polls
8377          */
8378         memset(dev, 0, sizeof(struct net_device));
8379
8380         /* make sure we BUG if trying to hit standard
8381          * register/unregister code path
8382          */
8383         dev->reg_state = NETREG_DUMMY;
8384
8385         /* NAPI wants this */
8386         INIT_LIST_HEAD(&dev->napi_list);
8387
8388         /* a dummy interface is started by default */
8389         set_bit(__LINK_STATE_PRESENT, &dev->state);
8390         set_bit(__LINK_STATE_START, &dev->state);
8391
8392         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8393          * because users of this 'device' dont need to change
8394          * its refcount.
8395          */
8396
8397         return 0;
8398 }
8399 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8400
8401
8402 /**
8403  *      register_netdev - register a network device
8404  *      @dev: device to register
8405  *
8406  *      Take a completed network device structure and add it to the kernel
8407  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8408  *      chain. 0 is returned on success. A negative errno code is returned
8409  *      on a failure to set up the device, or if the name is a duplicate.
8410  *
8411  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8412  *      and expands the device name if you passed a format string to
8413  *      alloc_netdev.
8414  */
8415 int register_netdev(struct net_device *dev)
8416 {
8417         int err;
8418
8419         if (rtnl_lock_killable())
8420                 return -EINTR;
8421         err = register_netdevice(dev);
8422         rtnl_unlock();
8423         return err;
8424 }
8425 EXPORT_SYMBOL(register_netdev);
8426
8427 int netdev_refcnt_read(const struct net_device *dev)
8428 {
8429         int i, refcnt = 0;
8430
8431         for_each_possible_cpu(i)
8432                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8433         return refcnt;
8434 }
8435 EXPORT_SYMBOL(netdev_refcnt_read);
8436
8437 /**
8438  * netdev_wait_allrefs - wait until all references are gone.
8439  * @dev: target net_device
8440  *
8441  * This is called when unregistering network devices.
8442  *
8443  * Any protocol or device that holds a reference should register
8444  * for netdevice notification, and cleanup and put back the
8445  * reference if they receive an UNREGISTER event.
8446  * We can get stuck here if buggy protocols don't correctly
8447  * call dev_put.
8448  */
8449 static void netdev_wait_allrefs(struct net_device *dev)
8450 {
8451         unsigned long rebroadcast_time, warning_time;
8452         int refcnt;
8453
8454         linkwatch_forget_dev(dev);
8455
8456         rebroadcast_time = warning_time = jiffies;
8457         refcnt = netdev_refcnt_read(dev);
8458
8459         while (refcnt != 0) {
8460                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8461                         rtnl_lock();
8462
8463                         /* Rebroadcast unregister notification */
8464                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8465
8466                         __rtnl_unlock();
8467                         rcu_barrier();
8468                         rtnl_lock();
8469
8470                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8471                                      &dev->state)) {
8472                                 /* We must not have linkwatch events
8473                                  * pending on unregister. If this
8474                                  * happens, we simply run the queue
8475                                  * unscheduled, resulting in a noop
8476                                  * for this device.
8477                                  */
8478                                 linkwatch_run_queue();
8479                         }
8480
8481                         __rtnl_unlock();
8482
8483                         rebroadcast_time = jiffies;
8484                 }
8485
8486                 msleep(250);
8487
8488                 refcnt = netdev_refcnt_read(dev);
8489
8490                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8491                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8492                                  dev->name, refcnt);
8493                         warning_time = jiffies;
8494                 }
8495         }
8496 }
8497
8498 /* The sequence is:
8499  *
8500  *      rtnl_lock();
8501  *      ...
8502  *      register_netdevice(x1);
8503  *      register_netdevice(x2);
8504  *      ...
8505  *      unregister_netdevice(y1);
8506  *      unregister_netdevice(y2);
8507  *      ...
8508  *      rtnl_unlock();
8509  *      free_netdev(y1);
8510  *      free_netdev(y2);
8511  *
8512  * We are invoked by rtnl_unlock().
8513  * This allows us to deal with problems:
8514  * 1) We can delete sysfs objects which invoke hotplug
8515  *    without deadlocking with linkwatch via keventd.
8516  * 2) Since we run with the RTNL semaphore not held, we can sleep
8517  *    safely in order to wait for the netdev refcnt to drop to zero.
8518  *
8519  * We must not return until all unregister events added during
8520  * the interval the lock was held have been completed.
8521  */
8522 void netdev_run_todo(void)
8523 {
8524         struct list_head list;
8525
8526         /* Snapshot list, allow later requests */
8527         list_replace_init(&net_todo_list, &list);
8528
8529         __rtnl_unlock();
8530
8531
8532         /* Wait for rcu callbacks to finish before next phase */
8533         if (!list_empty(&list))
8534                 rcu_barrier();
8535
8536         while (!list_empty(&list)) {
8537                 struct net_device *dev
8538                         = list_first_entry(&list, struct net_device, todo_list);
8539                 list_del(&dev->todo_list);
8540
8541                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8542                         pr_err("network todo '%s' but state %d\n",
8543                                dev->name, dev->reg_state);
8544                         dump_stack();
8545                         continue;
8546                 }
8547
8548                 dev->reg_state = NETREG_UNREGISTERED;
8549
8550                 netdev_wait_allrefs(dev);
8551
8552                 /* paranoia */
8553                 BUG_ON(netdev_refcnt_read(dev));
8554                 BUG_ON(!list_empty(&dev->ptype_all));
8555                 BUG_ON(!list_empty(&dev->ptype_specific));
8556                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8557                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8558 #if IS_ENABLED(CONFIG_DECNET)
8559                 WARN_ON(dev->dn_ptr);
8560 #endif
8561                 if (dev->priv_destructor)
8562                         dev->priv_destructor(dev);
8563                 if (dev->needs_free_netdev)
8564                         free_netdev(dev);
8565
8566                 /* Report a network device has been unregistered */
8567                 rtnl_lock();
8568                 dev_net(dev)->dev_unreg_count--;
8569                 __rtnl_unlock();
8570                 wake_up(&netdev_unregistering_wq);
8571
8572                 /* Free network device */
8573                 kobject_put(&dev->dev.kobj);
8574         }
8575 }
8576
8577 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8578  * all the same fields in the same order as net_device_stats, with only
8579  * the type differing, but rtnl_link_stats64 may have additional fields
8580  * at the end for newer counters.
8581  */
8582 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8583                              const struct net_device_stats *netdev_stats)
8584 {
8585 #if BITS_PER_LONG == 64
8586         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8587         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8588         /* zero out counters that only exist in rtnl_link_stats64 */
8589         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8590                sizeof(*stats64) - sizeof(*netdev_stats));
8591 #else
8592         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8593         const unsigned long *src = (const unsigned long *)netdev_stats;
8594         u64 *dst = (u64 *)stats64;
8595
8596         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8597         for (i = 0; i < n; i++)
8598                 dst[i] = src[i];
8599         /* zero out counters that only exist in rtnl_link_stats64 */
8600         memset((char *)stats64 + n * sizeof(u64), 0,
8601                sizeof(*stats64) - n * sizeof(u64));
8602 #endif
8603 }
8604 EXPORT_SYMBOL(netdev_stats_to_stats64);
8605
8606 /**
8607  *      dev_get_stats   - get network device statistics
8608  *      @dev: device to get statistics from
8609  *      @storage: place to store stats
8610  *
8611  *      Get network statistics from device. Return @storage.
8612  *      The device driver may provide its own method by setting
8613  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8614  *      otherwise the internal statistics structure is used.
8615  */
8616 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8617                                         struct rtnl_link_stats64 *storage)
8618 {
8619         const struct net_device_ops *ops = dev->netdev_ops;
8620
8621         if (ops->ndo_get_stats64) {
8622                 memset(storage, 0, sizeof(*storage));
8623                 ops->ndo_get_stats64(dev, storage);
8624         } else if (ops->ndo_get_stats) {
8625                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8626         } else {
8627                 netdev_stats_to_stats64(storage, &dev->stats);
8628         }
8629         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8630         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8631         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8632         return storage;
8633 }
8634 EXPORT_SYMBOL(dev_get_stats);
8635
8636 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8637 {
8638         struct netdev_queue *queue = dev_ingress_queue(dev);
8639
8640 #ifdef CONFIG_NET_CLS_ACT
8641         if (queue)
8642                 return queue;
8643         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8644         if (!queue)
8645                 return NULL;
8646         netdev_init_one_queue(dev, queue, NULL);
8647         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8648         queue->qdisc_sleeping = &noop_qdisc;
8649         rcu_assign_pointer(dev->ingress_queue, queue);
8650 #endif
8651         return queue;
8652 }
8653
8654 static const struct ethtool_ops default_ethtool_ops;
8655
8656 void netdev_set_default_ethtool_ops(struct net_device *dev,
8657                                     const struct ethtool_ops *ops)
8658 {
8659         if (dev->ethtool_ops == &default_ethtool_ops)
8660                 dev->ethtool_ops = ops;
8661 }
8662 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8663
8664 void netdev_freemem(struct net_device *dev)
8665 {
8666         char *addr = (char *)dev - dev->padded;
8667
8668         kvfree(addr);
8669 }
8670
8671 /**
8672  * alloc_netdev_mqs - allocate network device
8673  * @sizeof_priv: size of private data to allocate space for
8674  * @name: device name format string
8675  * @name_assign_type: origin of device name
8676  * @setup: callback to initialize device
8677  * @txqs: the number of TX subqueues to allocate
8678  * @rxqs: the number of RX subqueues to allocate
8679  *
8680  * Allocates a struct net_device with private data area for driver use
8681  * and performs basic initialization.  Also allocates subqueue structs
8682  * for each queue on the device.
8683  */
8684 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8685                 unsigned char name_assign_type,
8686                 void (*setup)(struct net_device *),
8687                 unsigned int txqs, unsigned int rxqs)
8688 {
8689         struct net_device *dev;
8690         unsigned int alloc_size;
8691         struct net_device *p;
8692
8693         BUG_ON(strlen(name) >= sizeof(dev->name));
8694
8695         if (txqs < 1) {
8696                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8697                 return NULL;
8698         }
8699
8700         if (rxqs < 1) {
8701                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8702                 return NULL;
8703         }
8704
8705         alloc_size = sizeof(struct net_device);
8706         if (sizeof_priv) {
8707                 /* ensure 32-byte alignment of private area */
8708                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8709                 alloc_size += sizeof_priv;
8710         }
8711         /* ensure 32-byte alignment of whole construct */
8712         alloc_size += NETDEV_ALIGN - 1;
8713
8714         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8715         if (!p)
8716                 return NULL;
8717
8718         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8719         dev->padded = (char *)dev - (char *)p;
8720
8721         dev->pcpu_refcnt = alloc_percpu(int);
8722         if (!dev->pcpu_refcnt)
8723                 goto free_dev;
8724
8725         if (dev_addr_init(dev))
8726                 goto free_pcpu;
8727
8728         dev_mc_init(dev);
8729         dev_uc_init(dev);
8730
8731         dev_net_set(dev, &init_net);
8732
8733         dev->gso_max_size = GSO_MAX_SIZE;
8734         dev->gso_max_segs = GSO_MAX_SEGS;
8735
8736         INIT_LIST_HEAD(&dev->napi_list);
8737         INIT_LIST_HEAD(&dev->unreg_list);
8738         INIT_LIST_HEAD(&dev->close_list);
8739         INIT_LIST_HEAD(&dev->link_watch_list);
8740         INIT_LIST_HEAD(&dev->adj_list.upper);
8741         INIT_LIST_HEAD(&dev->adj_list.lower);
8742         INIT_LIST_HEAD(&dev->ptype_all);
8743         INIT_LIST_HEAD(&dev->ptype_specific);
8744 #ifdef CONFIG_NET_SCHED
8745         hash_init(dev->qdisc_hash);
8746 #endif
8747         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8748         setup(dev);
8749
8750         if (!dev->tx_queue_len) {
8751                 dev->priv_flags |= IFF_NO_QUEUE;
8752                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8753         }
8754
8755         dev->num_tx_queues = txqs;
8756         dev->real_num_tx_queues = txqs;
8757         if (netif_alloc_netdev_queues(dev))
8758                 goto free_all;
8759
8760         dev->num_rx_queues = rxqs;
8761         dev->real_num_rx_queues = rxqs;
8762         if (netif_alloc_rx_queues(dev))
8763                 goto free_all;
8764
8765         strcpy(dev->name, name);
8766         dev->name_assign_type = name_assign_type;
8767         dev->group = INIT_NETDEV_GROUP;
8768         if (!dev->ethtool_ops)
8769                 dev->ethtool_ops = &default_ethtool_ops;
8770
8771         nf_hook_ingress_init(dev);
8772
8773         return dev;
8774
8775 free_all:
8776         free_netdev(dev);
8777         return NULL;
8778
8779 free_pcpu:
8780         free_percpu(dev->pcpu_refcnt);
8781 free_dev:
8782         netdev_freemem(dev);
8783         return NULL;
8784 }
8785 EXPORT_SYMBOL(alloc_netdev_mqs);
8786
8787 /**
8788  * free_netdev - free network device
8789  * @dev: device
8790  *
8791  * This function does the last stage of destroying an allocated device
8792  * interface. The reference to the device object is released. If this
8793  * is the last reference then it will be freed.Must be called in process
8794  * context.
8795  */
8796 void free_netdev(struct net_device *dev)
8797 {
8798         struct napi_struct *p, *n;
8799
8800         might_sleep();
8801         netif_free_tx_queues(dev);
8802         netif_free_rx_queues(dev);
8803
8804         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8805
8806         /* Flush device addresses */
8807         dev_addr_flush(dev);
8808
8809         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8810                 netif_napi_del(p);
8811
8812         free_percpu(dev->pcpu_refcnt);
8813         dev->pcpu_refcnt = NULL;
8814
8815         /*  Compatibility with error handling in drivers */
8816         if (dev->reg_state == NETREG_UNINITIALIZED) {
8817                 netdev_freemem(dev);
8818                 return;
8819         }
8820
8821         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8822         dev->reg_state = NETREG_RELEASED;
8823
8824         /* will free via device release */
8825         put_device(&dev->dev);
8826 }
8827 EXPORT_SYMBOL(free_netdev);
8828
8829 /**
8830  *      synchronize_net -  Synchronize with packet receive processing
8831  *
8832  *      Wait for packets currently being received to be done.
8833  *      Does not block later packets from starting.
8834  */
8835 void synchronize_net(void)
8836 {
8837         might_sleep();
8838         if (rtnl_is_locked())
8839                 synchronize_rcu_expedited();
8840         else
8841                 synchronize_rcu();
8842 }
8843 EXPORT_SYMBOL(synchronize_net);
8844
8845 /**
8846  *      unregister_netdevice_queue - remove device from the kernel
8847  *      @dev: device
8848  *      @head: list
8849  *
8850  *      This function shuts down a device interface and removes it
8851  *      from the kernel tables.
8852  *      If head not NULL, device is queued to be unregistered later.
8853  *
8854  *      Callers must hold the rtnl semaphore.  You may want
8855  *      unregister_netdev() instead of this.
8856  */
8857
8858 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8859 {
8860         ASSERT_RTNL();
8861
8862         if (head) {
8863                 list_move_tail(&dev->unreg_list, head);
8864         } else {
8865                 rollback_registered(dev);
8866                 /* Finish processing unregister after unlock */
8867                 net_set_todo(dev);
8868         }
8869 }
8870 EXPORT_SYMBOL(unregister_netdevice_queue);
8871
8872 /**
8873  *      unregister_netdevice_many - unregister many devices
8874  *      @head: list of devices
8875  *
8876  *  Note: As most callers use a stack allocated list_head,
8877  *  we force a list_del() to make sure stack wont be corrupted later.
8878  */
8879 void unregister_netdevice_many(struct list_head *head)
8880 {
8881         struct net_device *dev;
8882
8883         if (!list_empty(head)) {
8884                 rollback_registered_many(head);
8885                 list_for_each_entry(dev, head, unreg_list)
8886                         net_set_todo(dev);
8887                 list_del(head);
8888         }
8889 }
8890 EXPORT_SYMBOL(unregister_netdevice_many);
8891
8892 /**
8893  *      unregister_netdev - remove device from the kernel
8894  *      @dev: device
8895  *
8896  *      This function shuts down a device interface and removes it
8897  *      from the kernel tables.
8898  *
8899  *      This is just a wrapper for unregister_netdevice that takes
8900  *      the rtnl semaphore.  In general you want to use this and not
8901  *      unregister_netdevice.
8902  */
8903 void unregister_netdev(struct net_device *dev)
8904 {
8905         rtnl_lock();
8906         unregister_netdevice(dev);
8907         rtnl_unlock();
8908 }
8909 EXPORT_SYMBOL(unregister_netdev);
8910
8911 /**
8912  *      dev_change_net_namespace - move device to different nethost namespace
8913  *      @dev: device
8914  *      @net: network namespace
8915  *      @pat: If not NULL name pattern to try if the current device name
8916  *            is already taken in the destination network namespace.
8917  *
8918  *      This function shuts down a device interface and moves it
8919  *      to a new network namespace. On success 0 is returned, on
8920  *      a failure a netagive errno code is returned.
8921  *
8922  *      Callers must hold the rtnl semaphore.
8923  */
8924
8925 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8926 {
8927         int err, new_nsid, new_ifindex;
8928
8929         ASSERT_RTNL();
8930
8931         /* Don't allow namespace local devices to be moved. */
8932         err = -EINVAL;
8933         if (dev->features & NETIF_F_NETNS_LOCAL)
8934                 goto out;
8935
8936         /* Ensure the device has been registrered */
8937         if (dev->reg_state != NETREG_REGISTERED)
8938                 goto out;
8939
8940         /* Get out if there is nothing todo */
8941         err = 0;
8942         if (net_eq(dev_net(dev), net))
8943                 goto out;
8944
8945         /* Pick the destination device name, and ensure
8946          * we can use it in the destination network namespace.
8947          */
8948         err = -EEXIST;
8949         if (__dev_get_by_name(net, dev->name)) {
8950                 /* We get here if we can't use the current device name */
8951                 if (!pat)
8952                         goto out;
8953                 err = dev_get_valid_name(net, dev, pat);
8954                 if (err < 0)
8955                         goto out;
8956         }
8957
8958         /*
8959          * And now a mini version of register_netdevice unregister_netdevice.
8960          */
8961
8962         /* If device is running close it first. */
8963         dev_close(dev);
8964
8965         /* And unlink it from device chain */
8966         unlist_netdevice(dev);
8967
8968         synchronize_net();
8969
8970         /* Shutdown queueing discipline. */
8971         dev_shutdown(dev);
8972
8973         /* Notify protocols, that we are about to destroy
8974          * this device. They should clean all the things.
8975          *
8976          * Note that dev->reg_state stays at NETREG_REGISTERED.
8977          * This is wanted because this way 8021q and macvlan know
8978          * the device is just moving and can keep their slaves up.
8979          */
8980         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8981         rcu_barrier();
8982
8983         new_nsid = peernet2id_alloc(dev_net(dev), net);
8984         /* If there is an ifindex conflict assign a new one */
8985         if (__dev_get_by_index(net, dev->ifindex))
8986                 new_ifindex = dev_new_index(net);
8987         else
8988                 new_ifindex = dev->ifindex;
8989
8990         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8991                             new_ifindex);
8992
8993         /*
8994          *      Flush the unicast and multicast chains
8995          */
8996         dev_uc_flush(dev);
8997         dev_mc_flush(dev);
8998
8999         /* Send a netdev-removed uevent to the old namespace */
9000         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9001         netdev_adjacent_del_links(dev);
9002
9003         /* Actually switch the network namespace */
9004         dev_net_set(dev, net);
9005         dev->ifindex = new_ifindex;
9006
9007         /* Send a netdev-add uevent to the new namespace */
9008         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9009         netdev_adjacent_add_links(dev);
9010
9011         /* Fixup kobjects */
9012         err = device_rename(&dev->dev, dev->name);
9013         WARN_ON(err);
9014
9015         /* Add the device back in the hashes */
9016         list_netdevice(dev);
9017
9018         /* Notify protocols, that a new device appeared. */
9019         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9020
9021         /*
9022          *      Prevent userspace races by waiting until the network
9023          *      device is fully setup before sending notifications.
9024          */
9025         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9026
9027         synchronize_net();
9028         err = 0;
9029 out:
9030         return err;
9031 }
9032 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9033
9034 static int dev_cpu_dead(unsigned int oldcpu)
9035 {
9036         struct sk_buff **list_skb;
9037         struct sk_buff *skb;
9038         unsigned int cpu;
9039         struct softnet_data *sd, *oldsd, *remsd = NULL;
9040
9041         local_irq_disable();
9042         cpu = smp_processor_id();
9043         sd = &per_cpu(softnet_data, cpu);
9044         oldsd = &per_cpu(softnet_data, oldcpu);
9045
9046         /* Find end of our completion_queue. */
9047         list_skb = &sd->completion_queue;
9048         while (*list_skb)
9049                 list_skb = &(*list_skb)->next;
9050         /* Append completion queue from offline CPU. */
9051         *list_skb = oldsd->completion_queue;
9052         oldsd->completion_queue = NULL;
9053
9054         /* Append output queue from offline CPU. */
9055         if (oldsd->output_queue) {
9056                 *sd->output_queue_tailp = oldsd->output_queue;
9057                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9058                 oldsd->output_queue = NULL;
9059                 oldsd->output_queue_tailp = &oldsd->output_queue;
9060         }
9061         /* Append NAPI poll list from offline CPU, with one exception :
9062          * process_backlog() must be called by cpu owning percpu backlog.
9063          * We properly handle process_queue & input_pkt_queue later.
9064          */
9065         while (!list_empty(&oldsd->poll_list)) {
9066                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9067                                                             struct napi_struct,
9068                                                             poll_list);
9069
9070                 list_del_init(&napi->poll_list);
9071                 if (napi->poll == process_backlog)
9072                         napi->state = 0;
9073                 else
9074                         ____napi_schedule(sd, napi);
9075         }
9076
9077         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9078         local_irq_enable();
9079
9080 #ifdef CONFIG_RPS
9081         remsd = oldsd->rps_ipi_list;
9082         oldsd->rps_ipi_list = NULL;
9083 #endif
9084         /* send out pending IPI's on offline CPU */
9085         net_rps_send_ipi(remsd);
9086
9087         /* Process offline CPU's input_pkt_queue */
9088         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9089                 netif_rx_ni(skb);
9090                 input_queue_head_incr(oldsd);
9091         }
9092         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9093                 netif_rx_ni(skb);
9094                 input_queue_head_incr(oldsd);
9095         }
9096
9097         return 0;
9098 }
9099
9100 /**
9101  *      netdev_increment_features - increment feature set by one
9102  *      @all: current feature set
9103  *      @one: new feature set
9104  *      @mask: mask feature set
9105  *
9106  *      Computes a new feature set after adding a device with feature set
9107  *      @one to the master device with current feature set @all.  Will not
9108  *      enable anything that is off in @mask. Returns the new feature set.
9109  */
9110 netdev_features_t netdev_increment_features(netdev_features_t all,
9111         netdev_features_t one, netdev_features_t mask)
9112 {
9113         if (mask & NETIF_F_HW_CSUM)
9114                 mask |= NETIF_F_CSUM_MASK;
9115         mask |= NETIF_F_VLAN_CHALLENGED;
9116
9117         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9118         all &= one | ~NETIF_F_ALL_FOR_ALL;
9119
9120         /* If one device supports hw checksumming, set for all. */
9121         if (all & NETIF_F_HW_CSUM)
9122                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9123
9124         return all;
9125 }
9126 EXPORT_SYMBOL(netdev_increment_features);
9127
9128 static struct hlist_head * __net_init netdev_create_hash(void)
9129 {
9130         int i;
9131         struct hlist_head *hash;
9132
9133         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9134         if (hash != NULL)
9135                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9136                         INIT_HLIST_HEAD(&hash[i]);
9137
9138         return hash;
9139 }
9140
9141 /* Initialize per network namespace state */
9142 static int __net_init netdev_init(struct net *net)
9143 {
9144         if (net != &init_net)
9145                 INIT_LIST_HEAD(&net->dev_base_head);
9146
9147         net->dev_name_head = netdev_create_hash();
9148         if (net->dev_name_head == NULL)
9149                 goto err_name;
9150
9151         net->dev_index_head = netdev_create_hash();
9152         if (net->dev_index_head == NULL)
9153                 goto err_idx;
9154
9155         return 0;
9156
9157 err_idx:
9158         kfree(net->dev_name_head);
9159 err_name:
9160         return -ENOMEM;
9161 }
9162
9163 /**
9164  *      netdev_drivername - network driver for the device
9165  *      @dev: network device
9166  *
9167  *      Determine network driver for device.
9168  */
9169 const char *netdev_drivername(const struct net_device *dev)
9170 {
9171         const struct device_driver *driver;
9172         const struct device *parent;
9173         const char *empty = "";
9174
9175         parent = dev->dev.parent;
9176         if (!parent)
9177                 return empty;
9178
9179         driver = parent->driver;
9180         if (driver && driver->name)
9181                 return driver->name;
9182         return empty;
9183 }
9184
9185 static void __netdev_printk(const char *level, const struct net_device *dev,
9186                             struct va_format *vaf)
9187 {
9188         if (dev && dev->dev.parent) {
9189                 dev_printk_emit(level[1] - '0',
9190                                 dev->dev.parent,
9191                                 "%s %s %s%s: %pV",
9192                                 dev_driver_string(dev->dev.parent),
9193                                 dev_name(dev->dev.parent),
9194                                 netdev_name(dev), netdev_reg_state(dev),
9195                                 vaf);
9196         } else if (dev) {
9197                 printk("%s%s%s: %pV",
9198                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9199         } else {
9200                 printk("%s(NULL net_device): %pV", level, vaf);
9201         }
9202 }
9203
9204 void netdev_printk(const char *level, const struct net_device *dev,
9205                    const char *format, ...)
9206 {
9207         struct va_format vaf;
9208         va_list args;
9209
9210         va_start(args, format);
9211
9212         vaf.fmt = format;
9213         vaf.va = &args;
9214
9215         __netdev_printk(level, dev, &vaf);
9216
9217         va_end(args);
9218 }
9219 EXPORT_SYMBOL(netdev_printk);
9220
9221 #define define_netdev_printk_level(func, level)                 \
9222 void func(const struct net_device *dev, const char *fmt, ...)   \
9223 {                                                               \
9224         struct va_format vaf;                                   \
9225         va_list args;                                           \
9226                                                                 \
9227         va_start(args, fmt);                                    \
9228                                                                 \
9229         vaf.fmt = fmt;                                          \
9230         vaf.va = &args;                                         \
9231                                                                 \
9232         __netdev_printk(level, dev, &vaf);                      \
9233                                                                 \
9234         va_end(args);                                           \
9235 }                                                               \
9236 EXPORT_SYMBOL(func);
9237
9238 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9239 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9240 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9241 define_netdev_printk_level(netdev_err, KERN_ERR);
9242 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9243 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9244 define_netdev_printk_level(netdev_info, KERN_INFO);
9245
9246 static void __net_exit netdev_exit(struct net *net)
9247 {
9248         kfree(net->dev_name_head);
9249         kfree(net->dev_index_head);
9250         if (net != &init_net)
9251                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9252 }
9253
9254 static struct pernet_operations __net_initdata netdev_net_ops = {
9255         .init = netdev_init,
9256         .exit = netdev_exit,
9257 };
9258
9259 static void __net_exit default_device_exit(struct net *net)
9260 {
9261         struct net_device *dev, *aux;
9262         /*
9263          * Push all migratable network devices back to the
9264          * initial network namespace
9265          */
9266         rtnl_lock();
9267         for_each_netdev_safe(net, dev, aux) {
9268                 int err;
9269                 char fb_name[IFNAMSIZ];
9270
9271                 /* Ignore unmoveable devices (i.e. loopback) */
9272                 if (dev->features & NETIF_F_NETNS_LOCAL)
9273                         continue;
9274
9275                 /* Leave virtual devices for the generic cleanup */
9276                 if (dev->rtnl_link_ops)
9277                         continue;
9278
9279                 /* Push remaining network devices to init_net */
9280                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9281                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9282                 if (err) {
9283                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9284                                  __func__, dev->name, err);
9285                         BUG();
9286                 }
9287         }
9288         rtnl_unlock();
9289 }
9290
9291 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9292 {
9293         /* Return with the rtnl_lock held when there are no network
9294          * devices unregistering in any network namespace in net_list.
9295          */
9296         struct net *net;
9297         bool unregistering;
9298         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9299
9300         add_wait_queue(&netdev_unregistering_wq, &wait);
9301         for (;;) {
9302                 unregistering = false;
9303                 rtnl_lock();
9304                 list_for_each_entry(net, net_list, exit_list) {
9305                         if (net->dev_unreg_count > 0) {
9306                                 unregistering = true;
9307                                 break;
9308                         }
9309                 }
9310                 if (!unregistering)
9311                         break;
9312                 __rtnl_unlock();
9313
9314                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9315         }
9316         remove_wait_queue(&netdev_unregistering_wq, &wait);
9317 }
9318
9319 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9320 {
9321         /* At exit all network devices most be removed from a network
9322          * namespace.  Do this in the reverse order of registration.
9323          * Do this across as many network namespaces as possible to
9324          * improve batching efficiency.
9325          */
9326         struct net_device *dev;
9327         struct net *net;
9328         LIST_HEAD(dev_kill_list);
9329
9330         /* To prevent network device cleanup code from dereferencing
9331          * loopback devices or network devices that have been freed
9332          * wait here for all pending unregistrations to complete,
9333          * before unregistring the loopback device and allowing the
9334          * network namespace be freed.
9335          *
9336          * The netdev todo list containing all network devices
9337          * unregistrations that happen in default_device_exit_batch
9338          * will run in the rtnl_unlock() at the end of
9339          * default_device_exit_batch.
9340          */
9341         rtnl_lock_unregistering(net_list);
9342         list_for_each_entry(net, net_list, exit_list) {
9343                 for_each_netdev_reverse(net, dev) {
9344                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9345                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9346                         else
9347                                 unregister_netdevice_queue(dev, &dev_kill_list);
9348                 }
9349         }
9350         unregister_netdevice_many(&dev_kill_list);
9351         rtnl_unlock();
9352 }
9353
9354 static struct pernet_operations __net_initdata default_device_ops = {
9355         .exit = default_device_exit,
9356         .exit_batch = default_device_exit_batch,
9357 };
9358
9359 /*
9360  *      Initialize the DEV module. At boot time this walks the device list and
9361  *      unhooks any devices that fail to initialise (normally hardware not
9362  *      present) and leaves us with a valid list of present and active devices.
9363  *
9364  */
9365
9366 /*
9367  *       This is called single threaded during boot, so no need
9368  *       to take the rtnl semaphore.
9369  */
9370 static int __init net_dev_init(void)
9371 {
9372         int i, rc = -ENOMEM;
9373
9374         BUG_ON(!dev_boot_phase);
9375
9376         if (dev_proc_init())
9377                 goto out;
9378
9379         if (netdev_kobject_init())
9380                 goto out;
9381
9382         INIT_LIST_HEAD(&ptype_all);
9383         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9384                 INIT_LIST_HEAD(&ptype_base[i]);
9385
9386         INIT_LIST_HEAD(&offload_base);
9387
9388         if (register_pernet_subsys(&netdev_net_ops))
9389                 goto out;
9390
9391         /*
9392          *      Initialise the packet receive queues.
9393          */
9394
9395         for_each_possible_cpu(i) {
9396                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9397                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9398
9399                 INIT_WORK(flush, flush_backlog);
9400
9401                 skb_queue_head_init(&sd->input_pkt_queue);
9402                 skb_queue_head_init(&sd->process_queue);
9403 #ifdef CONFIG_XFRM_OFFLOAD
9404                 skb_queue_head_init(&sd->xfrm_backlog);
9405 #endif
9406                 INIT_LIST_HEAD(&sd->poll_list);
9407                 sd->output_queue_tailp = &sd->output_queue;
9408 #ifdef CONFIG_RPS
9409                 sd->csd.func = rps_trigger_softirq;
9410                 sd->csd.info = sd;
9411                 sd->cpu = i;
9412 #endif
9413
9414                 sd->backlog.poll = process_backlog;
9415                 sd->backlog.weight = weight_p;
9416         }
9417
9418         dev_boot_phase = 0;
9419
9420         /* The loopback device is special if any other network devices
9421          * is present in a network namespace the loopback device must
9422          * be present. Since we now dynamically allocate and free the
9423          * loopback device ensure this invariant is maintained by
9424          * keeping the loopback device as the first device on the
9425          * list of network devices.  Ensuring the loopback devices
9426          * is the first device that appears and the last network device
9427          * that disappears.
9428          */
9429         if (register_pernet_device(&loopback_net_ops))
9430                 goto out;
9431
9432         if (register_pernet_device(&default_device_ops))
9433                 goto out;
9434
9435         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9436         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9437
9438         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9439                                        NULL, dev_cpu_dead);
9440         WARN_ON(rc < 0);
9441         rc = 0;
9442 out:
9443         return rc;
9444 }
9445
9446 subsys_initcall(net_dev_init);