]> asedeno.scripts.mit.edu Git - linux.git/blob - net/core/dev.c
net: fix generic XDP to handle if eth header was mangled
[linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148
149 #include "net-sysfs.h"
150
151 #define MAX_GRO_SKBS 8
152
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;       /* Taps */
160 static struct list_head offload_base __read_mostly;
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234         struct net *net = dev_net(dev);
235
236         ASSERT_RTNL();
237
238         write_lock_bh(&dev_base_lock);
239         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241         hlist_add_head_rcu(&dev->index_hlist,
242                            dev_index_hash(net, dev->ifindex));
243         write_unlock_bh(&dev_base_lock);
244
245         dev_base_seq_inc(net);
246 }
247
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253         ASSERT_RTNL();
254
255         /* Unlink dev from the device chain */
256         write_lock_bh(&dev_base_lock);
257         list_del_rcu(&dev->dev_list);
258         hlist_del_rcu(&dev->name_hlist);
259         hlist_del_rcu(&dev->index_hlist);
260         write_unlock_bh(&dev_base_lock);
261
262         dev_base_seq_inc(dev_net(dev));
263 }
264
265 /*
266  *      Our notifier list
267  */
268
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270
271 /*
272  *      Device drivers call our routines to queue packets here. We empty the
273  *      queue in the local softnet handler.
274  */
275
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301 static const char *const netdev_lock_name[] = {
302         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323         int i;
324
325         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326                 if (netdev_lock_type[i] == dev_type)
327                         return i;
328         /* the last key is used by default */
329         return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333                                                  unsigned short dev_type)
334 {
335         int i;
336
337         i = netdev_lock_pos(dev_type);
338         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344         int i;
345
346         i = netdev_lock_pos(dev->type);
347         lockdep_set_class_and_name(&dev->addr_list_lock,
348                                    &netdev_addr_lock_key[i],
349                                    netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353                                                  unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360
361 /*******************************************************************************
362  *
363  *              Protocol management and registration routines
364  *
365  *******************************************************************************/
366
367
368 /*
369  *      Add a protocol ID to the list. Now that the input handler is
370  *      smarter we can dispense with all the messy stuff that used to be
371  *      here.
372  *
373  *      BEWARE!!! Protocol handlers, mangling input packets,
374  *      MUST BE last in hash buckets and checking protocol handlers
375  *      MUST start from promiscuous ptype_all chain in net_bh.
376  *      It is true now, do not change it.
377  *      Explanation follows: if protocol handler, mangling packet, will
378  *      be the first on list, it is not able to sense, that packet
379  *      is cloned and should be copied-on-write, so that it will
380  *      change it and subsequent readers will get broken packet.
381  *                                                      --ANK (980803)
382  */
383
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386         if (pt->type == htons(ETH_P_ALL))
387                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388         else
389                 return pt->dev ? &pt->dev->ptype_specific :
390                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392
393 /**
394  *      dev_add_pack - add packet handler
395  *      @pt: packet type declaration
396  *
397  *      Add a protocol handler to the networking stack. The passed &packet_type
398  *      is linked into kernel lists and may not be freed until it has been
399  *      removed from the kernel lists.
400  *
401  *      This call does not sleep therefore it can not
402  *      guarantee all CPU's that are in middle of receiving packets
403  *      will see the new packet type (until the next received packet).
404  */
405
406 void dev_add_pack(struct packet_type *pt)
407 {
408         struct list_head *head = ptype_head(pt);
409
410         spin_lock(&ptype_lock);
411         list_add_rcu(&pt->list, head);
412         spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415
416 /**
417  *      __dev_remove_pack        - remove packet handler
418  *      @pt: packet type declaration
419  *
420  *      Remove a protocol handler that was previously added to the kernel
421  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *      from the kernel lists and can be freed or reused once this function
423  *      returns.
424  *
425  *      The packet type might still be in use by receivers
426  *      and must not be freed until after all the CPU's have gone
427  *      through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431         struct list_head *head = ptype_head(pt);
432         struct packet_type *pt1;
433
434         spin_lock(&ptype_lock);
435
436         list_for_each_entry(pt1, head, list) {
437                 if (pt == pt1) {
438                         list_del_rcu(&pt->list);
439                         goto out;
440                 }
441         }
442
443         pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445         spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448
449 /**
450  *      dev_remove_pack  - remove packet handler
451  *      @pt: packet type declaration
452  *
453  *      Remove a protocol handler that was previously added to the kernel
454  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *      from the kernel lists and can be freed or reused once this function
456  *      returns.
457  *
458  *      This call sleeps to guarantee that no CPU is looking at the packet
459  *      type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463         __dev_remove_pack(pt);
464
465         synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468
469
470 /**
471  *      dev_add_offload - register offload handlers
472  *      @po: protocol offload declaration
473  *
474  *      Add protocol offload handlers to the networking stack. The passed
475  *      &proto_offload is linked into kernel lists and may not be freed until
476  *      it has been removed from the kernel lists.
477  *
478  *      This call does not sleep therefore it can not
479  *      guarantee all CPU's that are in middle of receiving packets
480  *      will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484         struct packet_offload *elem;
485
486         spin_lock(&offload_lock);
487         list_for_each_entry(elem, &offload_base, list) {
488                 if (po->priority < elem->priority)
489                         break;
490         }
491         list_add_rcu(&po->list, elem->list.prev);
492         spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495
496 /**
497  *      __dev_remove_offload     - remove offload handler
498  *      @po: packet offload declaration
499  *
500  *      Remove a protocol offload handler that was previously added to the
501  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *      is removed from the kernel lists and can be freed or reused once this
503  *      function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *      and must not be freed until after all the CPU's have gone
507  *      through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511         struct list_head *head = &offload_base;
512         struct packet_offload *po1;
513
514         spin_lock(&offload_lock);
515
516         list_for_each_entry(po1, head, list) {
517                 if (po == po1) {
518                         list_del_rcu(&po->list);
519                         goto out;
520                 }
521         }
522
523         pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525         spin_unlock(&offload_lock);
526 }
527
528 /**
529  *      dev_remove_offload       - remove packet offload handler
530  *      @po: packet offload declaration
531  *
532  *      Remove a packet offload handler that was previously added to the kernel
533  *      offload handlers by dev_add_offload(). The passed &offload_type is
534  *      removed from the kernel lists and can be freed or reused once this
535  *      function returns.
536  *
537  *      This call sleeps to guarantee that no CPU is looking at the packet
538  *      type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542         __dev_remove_offload(po);
543
544         synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547
548 /******************************************************************************
549  *
550  *                    Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557 /**
558  *      netdev_boot_setup_add   - add new setup entry
559  *      @name: name of the device
560  *      @map: configured settings for the device
561  *
562  *      Adds new setup entry to the dev_boot_setup list.  The function
563  *      returns 0 on error and 1 on success.  This is a generic routine to
564  *      all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568         struct netdev_boot_setup *s;
569         int i;
570
571         s = dev_boot_setup;
572         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574                         memset(s[i].name, 0, sizeof(s[i].name));
575                         strlcpy(s[i].name, name, IFNAMSIZ);
576                         memcpy(&s[i].map, map, sizeof(s[i].map));
577                         break;
578                 }
579         }
580
581         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583
584 /**
585  * netdev_boot_setup_check      - check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595         struct netdev_boot_setup *s = dev_boot_setup;
596         int i;
597
598         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600                     !strcmp(dev->name, s[i].name)) {
601                         dev->irq = s[i].map.irq;
602                         dev->base_addr = s[i].map.base_addr;
603                         dev->mem_start = s[i].map.mem_start;
604                         dev->mem_end = s[i].map.mem_end;
605                         return 1;
606                 }
607         }
608         return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613 /**
614  * netdev_boot_base     - get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625         const struct netdev_boot_setup *s = dev_boot_setup;
626         char name[IFNAMSIZ];
627         int i;
628
629         sprintf(name, "%s%d", prefix, unit);
630
631         /*
632          * If device already registered then return base of 1
633          * to indicate not to probe for this interface
634          */
635         if (__dev_get_by_name(&init_net, name))
636                 return 1;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639                 if (!strcmp(name, s[i].name))
640                         return s[i].map.base_addr;
641         return 0;
642 }
643
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649         int ints[5];
650         struct ifmap map;
651
652         str = get_options(str, ARRAY_SIZE(ints), ints);
653         if (!str || !*str)
654                 return 0;
655
656         /* Save settings */
657         memset(&map, 0, sizeof(map));
658         if (ints[0] > 0)
659                 map.irq = ints[1];
660         if (ints[0] > 1)
661                 map.base_addr = ints[2];
662         if (ints[0] > 2)
663                 map.mem_start = ints[3];
664         if (ints[0] > 3)
665                 map.mem_end = ints[4];
666
667         /* Add new entry to the list */
668         return netdev_boot_setup_add(str, &map);
669 }
670
671 __setup("netdev=", netdev_boot_setup);
672
673 /*******************************************************************************
674  *
675  *                          Device Interface Subroutines
676  *
677  *******************************************************************************/
678
679 /**
680  *      dev_get_iflink  - get 'iflink' value of a interface
681  *      @dev: targeted interface
682  *
683  *      Indicates the ifindex the interface is linked to.
684  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686
687 int dev_get_iflink(const struct net_device *dev)
688 {
689         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690                 return dev->netdev_ops->ndo_get_iflink(dev);
691
692         return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *      @dev: targeted interface
699  *      @skb: The packet.
700  *
701  *      For better visibility of tunnel traffic OVS needs to retrieve
702  *      egress tunnel information for a packet. Following API allows
703  *      user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707         struct ip_tunnel_info *info;
708
709         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710                 return -EINVAL;
711
712         info = skb_tunnel_info_unclone(skb);
713         if (!info)
714                 return -ENOMEM;
715         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716                 return -EINVAL;
717
718         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722 /**
723  *      __dev_get_by_name       - find a device by its name
724  *      @net: the applicable net namespace
725  *      @name: name to find
726  *
727  *      Find an interface by name. Must be called under RTNL semaphore
728  *      or @dev_base_lock. If the name is found a pointer to the device
729  *      is returned. If the name is not found then %NULL is returned. The
730  *      reference counters are not incremented so the caller must be
731  *      careful with locks.
732  */
733
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736         struct net_device *dev;
737         struct hlist_head *head = dev_name_hash(net, name);
738
739         hlist_for_each_entry(dev, head, name_hlist)
740                 if (!strncmp(dev->name, name, IFNAMSIZ))
741                         return dev;
742
743         return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746
747 /**
748  * dev_get_by_name_rcu  - find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761         struct net_device *dev;
762         struct hlist_head *head = dev_name_hash(net, name);
763
764         hlist_for_each_entry_rcu(dev, head, name_hlist)
765                 if (!strncmp(dev->name, name, IFNAMSIZ))
766                         return dev;
767
768         return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772 /**
773  *      dev_get_by_name         - find a device by its name
774  *      @net: the applicable net namespace
775  *      @name: name to find
776  *
777  *      Find an interface by name. This can be called from any
778  *      context and does its own locking. The returned handle has
779  *      the usage count incremented and the caller must use dev_put() to
780  *      release it when it is no longer needed. %NULL is returned if no
781  *      matching device is found.
782  */
783
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786         struct net_device *dev;
787
788         rcu_read_lock();
789         dev = dev_get_by_name_rcu(net, name);
790         if (dev)
791                 dev_hold(dev);
792         rcu_read_unlock();
793         return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796
797 /**
798  *      __dev_get_by_index - find a device by its ifindex
799  *      @net: the applicable net namespace
800  *      @ifindex: index of device
801  *
802  *      Search for an interface by index. Returns %NULL if the device
803  *      is not found or a pointer to the device. The device has not
804  *      had its reference counter increased so the caller must be careful
805  *      about locking. The caller must hold either the RTNL semaphore
806  *      or @dev_base_lock.
807  */
808
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811         struct net_device *dev;
812         struct hlist_head *head = dev_index_hash(net, ifindex);
813
814         hlist_for_each_entry(dev, head, index_hlist)
815                 if (dev->ifindex == ifindex)
816                         return dev;
817
818         return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821
822 /**
823  *      dev_get_by_index_rcu - find a device by its ifindex
824  *      @net: the applicable net namespace
825  *      @ifindex: index of device
826  *
827  *      Search for an interface by index. Returns %NULL if the device
828  *      is not found or a pointer to the device. The device has not
829  *      had its reference counter increased so the caller must be careful
830  *      about locking. The caller must hold RCU lock.
831  */
832
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835         struct net_device *dev;
836         struct hlist_head *head = dev_index_hash(net, ifindex);
837
838         hlist_for_each_entry_rcu(dev, head, index_hlist)
839                 if (dev->ifindex == ifindex)
840                         return dev;
841
842         return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847 /**
848  *      dev_get_by_index - find a device by its ifindex
849  *      @net: the applicable net namespace
850  *      @ifindex: index of device
851  *
852  *      Search for an interface by index. Returns NULL if the device
853  *      is not found or a pointer to the device. The device returned has
854  *      had a reference added and the pointer is safe until the user calls
855  *      dev_put to indicate they have finished with it.
856  */
857
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861
862         rcu_read_lock();
863         dev = dev_get_by_index_rcu(net, ifindex);
864         if (dev)
865                 dev_hold(dev);
866         rcu_read_unlock();
867         return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870
871 /**
872  *      dev_get_by_napi_id - find a device by napi_id
873  *      @napi_id: ID of the NAPI struct
874  *
875  *      Search for an interface by NAPI ID. Returns %NULL if the device
876  *      is not found or a pointer to the device. The device has not had
877  *      its reference counter increased so the caller must be careful
878  *      about locking. The caller must hold RCU lock.
879  */
880
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883         struct napi_struct *napi;
884
885         WARN_ON_ONCE(!rcu_read_lock_held());
886
887         if (napi_id < MIN_NAPI_ID)
888                 return NULL;
889
890         napi = napi_by_id(napi_id);
891
892         return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895
896 /**
897  *      netdev_get_name - get a netdevice name, knowing its ifindex.
898  *      @net: network namespace
899  *      @name: a pointer to the buffer where the name will be stored.
900  *      @ifindex: the ifindex of the interface to get the name from.
901  *
902  *      The use of raw_seqcount_begin() and cond_resched() before
903  *      retrying is required as we want to give the writers a chance
904  *      to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908         struct net_device *dev;
909         unsigned int seq;
910
911 retry:
912         seq = raw_seqcount_begin(&devnet_rename_seq);
913         rcu_read_lock();
914         dev = dev_get_by_index_rcu(net, ifindex);
915         if (!dev) {
916                 rcu_read_unlock();
917                 return -ENODEV;
918         }
919
920         strcpy(name, dev->name);
921         rcu_read_unlock();
922         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923                 cond_resched();
924                 goto retry;
925         }
926
927         return 0;
928 }
929
930 /**
931  *      dev_getbyhwaddr_rcu - find a device by its hardware address
932  *      @net: the applicable net namespace
933  *      @type: media type of device
934  *      @ha: hardware address
935  *
936  *      Search for an interface by MAC address. Returns NULL if the device
937  *      is not found or a pointer to the device.
938  *      The caller must hold RCU or RTNL.
939  *      The returned device has not had its ref count increased
940  *      and the caller must therefore be careful about locking
941  *
942  */
943
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945                                        const char *ha)
946 {
947         struct net_device *dev;
948
949         for_each_netdev_rcu(net, dev)
950                 if (dev->type == type &&
951                     !memcmp(dev->dev_addr, ha, dev->addr_len))
952                         return dev;
953
954         return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960         struct net_device *dev;
961
962         ASSERT_RTNL();
963         for_each_netdev(net, dev)
964                 if (dev->type == type)
965                         return dev;
966
967         return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973         struct net_device *dev, *ret = NULL;
974
975         rcu_read_lock();
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type) {
978                         dev_hold(dev);
979                         ret = dev;
980                         break;
981                 }
982         rcu_read_unlock();
983         return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987 /**
988  *      __dev_get_by_flags - find any device with given flags
989  *      @net: the applicable net namespace
990  *      @if_flags: IFF_* values
991  *      @mask: bitmask of bits in if_flags to check
992  *
993  *      Search for any interface with the given flags. Returns NULL if a device
994  *      is not found or a pointer to the device. Must be called inside
995  *      rtnl_lock(), and result refcount is unchanged.
996  */
997
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999                                       unsigned short mask)
1000 {
1001         struct net_device *dev, *ret;
1002
1003         ASSERT_RTNL();
1004
1005         ret = NULL;
1006         for_each_netdev(net, dev) {
1007                 if (((dev->flags ^ if_flags) & mask) == 0) {
1008                         ret = dev;
1009                         break;
1010                 }
1011         }
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016 /**
1017  *      dev_valid_name - check if name is okay for network device
1018  *      @name: name string
1019  *
1020  *      Network device names need to be valid file names to
1021  *      to allow sysfs to work.  We also disallow any kind of
1022  *      whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026         if (*name == '\0')
1027                 return false;
1028         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029                 return false;
1030         if (!strcmp(name, ".") || !strcmp(name, ".."))
1031                 return false;
1032
1033         while (*name) {
1034                 if (*name == '/' || *name == ':' || isspace(*name))
1035                         return false;
1036                 name++;
1037         }
1038         return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041
1042 /**
1043  *      __dev_alloc_name - allocate a name for a device
1044  *      @net: network namespace to allocate the device name in
1045  *      @name: name format string
1046  *      @buf:  scratch buffer and result name string
1047  *
1048  *      Passed a format string - eg "lt%d" it will try and find a suitable
1049  *      id. It scans list of devices to build up a free map, then chooses
1050  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *      while allocating the name and adding the device in order to avoid
1052  *      duplicates.
1053  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *      Returns the number of the unit assigned or a negative errno code.
1055  */
1056
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059         int i = 0;
1060         const char *p;
1061         const int max_netdevices = 8*PAGE_SIZE;
1062         unsigned long *inuse;
1063         struct net_device *d;
1064
1065         if (!dev_valid_name(name))
1066                 return -EINVAL;
1067
1068         p = strchr(name, '%');
1069         if (p) {
1070                 /*
1071                  * Verify the string as this thing may have come from
1072                  * the user.  There must be either one "%d" and no other "%"
1073                  * characters.
1074                  */
1075                 if (p[1] != 'd' || strchr(p + 2, '%'))
1076                         return -EINVAL;
1077
1078                 /* Use one page as a bit array of possible slots */
1079                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080                 if (!inuse)
1081                         return -ENOMEM;
1082
1083                 for_each_netdev(net, d) {
1084                         if (!sscanf(d->name, name, &i))
1085                                 continue;
1086                         if (i < 0 || i >= max_netdevices)
1087                                 continue;
1088
1089                         /*  avoid cases where sscanf is not exact inverse of printf */
1090                         snprintf(buf, IFNAMSIZ, name, i);
1091                         if (!strncmp(buf, d->name, IFNAMSIZ))
1092                                 set_bit(i, inuse);
1093                 }
1094
1095                 i = find_first_zero_bit(inuse, max_netdevices);
1096                 free_page((unsigned long) inuse);
1097         }
1098
1099         snprintf(buf, IFNAMSIZ, name, i);
1100         if (!__dev_get_by_name(net, buf))
1101                 return i;
1102
1103         /* It is possible to run out of possible slots
1104          * when the name is long and there isn't enough space left
1105          * for the digits, or if all bits are used.
1106          */
1107         return -ENFILE;
1108 }
1109
1110 static int dev_alloc_name_ns(struct net *net,
1111                              struct net_device *dev,
1112                              const char *name)
1113 {
1114         char buf[IFNAMSIZ];
1115         int ret;
1116
1117         BUG_ON(!net);
1118         ret = __dev_alloc_name(net, name, buf);
1119         if (ret >= 0)
1120                 strlcpy(dev->name, buf, IFNAMSIZ);
1121         return ret;
1122 }
1123
1124 /**
1125  *      dev_alloc_name - allocate a name for a device
1126  *      @dev: device
1127  *      @name: name format string
1128  *
1129  *      Passed a format string - eg "lt%d" it will try and find a suitable
1130  *      id. It scans list of devices to build up a free map, then chooses
1131  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *      while allocating the name and adding the device in order to avoid
1133  *      duplicates.
1134  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *      Returns the number of the unit assigned or a negative errno code.
1136  */
1137
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140         return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145                        const char *name)
1146 {
1147         BUG_ON(!net);
1148
1149         if (!dev_valid_name(name))
1150                 return -EINVAL;
1151
1152         if (strchr(name, '%'))
1153                 return dev_alloc_name_ns(net, dev, name);
1154         else if (__dev_get_by_name(net, name))
1155                 return -EEXIST;
1156         else if (dev->name != name)
1157                 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159         return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162
1163 /**
1164  *      dev_change_name - change name of a device
1165  *      @dev: device
1166  *      @newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *      Change name of a device, can pass format strings "eth%d".
1169  *      for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173         unsigned char old_assign_type;
1174         char oldname[IFNAMSIZ];
1175         int err = 0;
1176         int ret;
1177         struct net *net;
1178
1179         ASSERT_RTNL();
1180         BUG_ON(!dev_net(dev));
1181
1182         net = dev_net(dev);
1183         if (dev->flags & IFF_UP)
1184                 return -EBUSY;
1185
1186         write_seqcount_begin(&devnet_rename_seq);
1187
1188         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189                 write_seqcount_end(&devnet_rename_seq);
1190                 return 0;
1191         }
1192
1193         memcpy(oldname, dev->name, IFNAMSIZ);
1194
1195         err = dev_get_valid_name(net, dev, newname);
1196         if (err < 0) {
1197                 write_seqcount_end(&devnet_rename_seq);
1198                 return err;
1199         }
1200
1201         if (oldname[0] && !strchr(oldname, '%'))
1202                 netdev_info(dev, "renamed from %s\n", oldname);
1203
1204         old_assign_type = dev->name_assign_type;
1205         dev->name_assign_type = NET_NAME_RENAMED;
1206
1207 rollback:
1208         ret = device_rename(&dev->dev, dev->name);
1209         if (ret) {
1210                 memcpy(dev->name, oldname, IFNAMSIZ);
1211                 dev->name_assign_type = old_assign_type;
1212                 write_seqcount_end(&devnet_rename_seq);
1213                 return ret;
1214         }
1215
1216         write_seqcount_end(&devnet_rename_seq);
1217
1218         netdev_adjacent_rename_links(dev, oldname);
1219
1220         write_lock_bh(&dev_base_lock);
1221         hlist_del_rcu(&dev->name_hlist);
1222         write_unlock_bh(&dev_base_lock);
1223
1224         synchronize_rcu();
1225
1226         write_lock_bh(&dev_base_lock);
1227         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228         write_unlock_bh(&dev_base_lock);
1229
1230         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231         ret = notifier_to_errno(ret);
1232
1233         if (ret) {
1234                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1235                 if (err >= 0) {
1236                         err = ret;
1237                         write_seqcount_begin(&devnet_rename_seq);
1238                         memcpy(dev->name, oldname, IFNAMSIZ);
1239                         memcpy(oldname, newname, IFNAMSIZ);
1240                         dev->name_assign_type = old_assign_type;
1241                         old_assign_type = NET_NAME_RENAMED;
1242                         goto rollback;
1243                 } else {
1244                         pr_err("%s: name change rollback failed: %d\n",
1245                                dev->name, ret);
1246                 }
1247         }
1248
1249         return err;
1250 }
1251
1252 /**
1253  *      dev_set_alias - change ifalias of a device
1254  *      @dev: device
1255  *      @alias: name up to IFALIASZ
1256  *      @len: limit of bytes to copy from info
1257  *
1258  *      Set ifalias for a device,
1259  */
1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261 {
1262         struct dev_ifalias *new_alias = NULL;
1263
1264         if (len >= IFALIASZ)
1265                 return -EINVAL;
1266
1267         if (len) {
1268                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269                 if (!new_alias)
1270                         return -ENOMEM;
1271
1272                 memcpy(new_alias->ifalias, alias, len);
1273                 new_alias->ifalias[len] = 0;
1274         }
1275
1276         mutex_lock(&ifalias_mutex);
1277         rcu_swap_protected(dev->ifalias, new_alias,
1278                            mutex_is_locked(&ifalias_mutex));
1279         mutex_unlock(&ifalias_mutex);
1280
1281         if (new_alias)
1282                 kfree_rcu(new_alias, rcuhead);
1283
1284         return len;
1285 }
1286 EXPORT_SYMBOL(dev_set_alias);
1287
1288 /**
1289  *      dev_get_alias - get ifalias of a device
1290  *      @dev: device
1291  *      @name: buffer to store name of ifalias
1292  *      @len: size of buffer
1293  *
1294  *      get ifalias for a device.  Caller must make sure dev cannot go
1295  *      away,  e.g. rcu read lock or own a reference count to device.
1296  */
1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298 {
1299         const struct dev_ifalias *alias;
1300         int ret = 0;
1301
1302         rcu_read_lock();
1303         alias = rcu_dereference(dev->ifalias);
1304         if (alias)
1305                 ret = snprintf(name, len, "%s", alias->ifalias);
1306         rcu_read_unlock();
1307
1308         return ret;
1309 }
1310
1311 /**
1312  *      netdev_features_change - device changes features
1313  *      @dev: device to cause notification
1314  *
1315  *      Called to indicate a device has changed features.
1316  */
1317 void netdev_features_change(struct net_device *dev)
1318 {
1319         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320 }
1321 EXPORT_SYMBOL(netdev_features_change);
1322
1323 /**
1324  *      netdev_state_change - device changes state
1325  *      @dev: device to cause notification
1326  *
1327  *      Called to indicate a device has changed state. This function calls
1328  *      the notifier chains for netdev_chain and sends a NEWLINK message
1329  *      to the routing socket.
1330  */
1331 void netdev_state_change(struct net_device *dev)
1332 {
1333         if (dev->flags & IFF_UP) {
1334                 struct netdev_notifier_change_info change_info = {
1335                         .info.dev = dev,
1336                 };
1337
1338                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1339                                               &change_info.info);
1340                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341         }
1342 }
1343 EXPORT_SYMBOL(netdev_state_change);
1344
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357         rtnl_lock();
1358         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360         rtnl_unlock();
1361 }
1362 EXPORT_SYMBOL(netdev_notify_peers);
1363
1364 static int __dev_open(struct net_device *dev)
1365 {
1366         const struct net_device_ops *ops = dev->netdev_ops;
1367         int ret;
1368
1369         ASSERT_RTNL();
1370
1371         if (!netif_device_present(dev))
1372                 return -ENODEV;
1373
1374         /* Block netpoll from trying to do any rx path servicing.
1375          * If we don't do this there is a chance ndo_poll_controller
1376          * or ndo_poll may be running while we open the device
1377          */
1378         netpoll_poll_disable(dev);
1379
1380         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381         ret = notifier_to_errno(ret);
1382         if (ret)
1383                 return ret;
1384
1385         set_bit(__LINK_STATE_START, &dev->state);
1386
1387         if (ops->ndo_validate_addr)
1388                 ret = ops->ndo_validate_addr(dev);
1389
1390         if (!ret && ops->ndo_open)
1391                 ret = ops->ndo_open(dev);
1392
1393         netpoll_poll_enable(dev);
1394
1395         if (ret)
1396                 clear_bit(__LINK_STATE_START, &dev->state);
1397         else {
1398                 dev->flags |= IFF_UP;
1399                 dev_set_rx_mode(dev);
1400                 dev_activate(dev);
1401                 add_device_randomness(dev->dev_addr, dev->addr_len);
1402         }
1403
1404         return ret;
1405 }
1406
1407 /**
1408  *      dev_open        - prepare an interface for use.
1409  *      @dev:   device to open
1410  *
1411  *      Takes a device from down to up state. The device's private open
1412  *      function is invoked and then the multicast lists are loaded. Finally
1413  *      the device is moved into the up state and a %NETDEV_UP message is
1414  *      sent to the netdev notifier chain.
1415  *
1416  *      Calling this function on an active interface is a nop. On a failure
1417  *      a negative errno code is returned.
1418  */
1419 int dev_open(struct net_device *dev)
1420 {
1421         int ret;
1422
1423         if (dev->flags & IFF_UP)
1424                 return 0;
1425
1426         ret = __dev_open(dev);
1427         if (ret < 0)
1428                 return ret;
1429
1430         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431         call_netdevice_notifiers(NETDEV_UP, dev);
1432
1433         return ret;
1434 }
1435 EXPORT_SYMBOL(dev_open);
1436
1437 static void __dev_close_many(struct list_head *head)
1438 {
1439         struct net_device *dev;
1440
1441         ASSERT_RTNL();
1442         might_sleep();
1443
1444         list_for_each_entry(dev, head, close_list) {
1445                 /* Temporarily disable netpoll until the interface is down */
1446                 netpoll_poll_disable(dev);
1447
1448                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449
1450                 clear_bit(__LINK_STATE_START, &dev->state);
1451
1452                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1453                  * can be even on different cpu. So just clear netif_running().
1454                  *
1455                  * dev->stop() will invoke napi_disable() on all of it's
1456                  * napi_struct instances on this device.
1457                  */
1458                 smp_mb__after_atomic(); /* Commit netif_running(). */
1459         }
1460
1461         dev_deactivate_many(head);
1462
1463         list_for_each_entry(dev, head, close_list) {
1464                 const struct net_device_ops *ops = dev->netdev_ops;
1465
1466                 /*
1467                  *      Call the device specific close. This cannot fail.
1468                  *      Only if device is UP
1469                  *
1470                  *      We allow it to be called even after a DETACH hot-plug
1471                  *      event.
1472                  */
1473                 if (ops->ndo_stop)
1474                         ops->ndo_stop(dev);
1475
1476                 dev->flags &= ~IFF_UP;
1477                 netpoll_poll_enable(dev);
1478         }
1479 }
1480
1481 static void __dev_close(struct net_device *dev)
1482 {
1483         LIST_HEAD(single);
1484
1485         list_add(&dev->close_list, &single);
1486         __dev_close_many(&single);
1487         list_del(&single);
1488 }
1489
1490 void dev_close_many(struct list_head *head, bool unlink)
1491 {
1492         struct net_device *dev, *tmp;
1493
1494         /* Remove the devices that don't need to be closed */
1495         list_for_each_entry_safe(dev, tmp, head, close_list)
1496                 if (!(dev->flags & IFF_UP))
1497                         list_del_init(&dev->close_list);
1498
1499         __dev_close_many(head);
1500
1501         list_for_each_entry_safe(dev, tmp, head, close_list) {
1502                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1504                 if (unlink)
1505                         list_del_init(&dev->close_list);
1506         }
1507 }
1508 EXPORT_SYMBOL(dev_close_many);
1509
1510 /**
1511  *      dev_close - shutdown an interface.
1512  *      @dev: device to shutdown
1513  *
1514  *      This function moves an active device into down state. A
1515  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517  *      chain.
1518  */
1519 void dev_close(struct net_device *dev)
1520 {
1521         if (dev->flags & IFF_UP) {
1522                 LIST_HEAD(single);
1523
1524                 list_add(&dev->close_list, &single);
1525                 dev_close_many(&single, true);
1526                 list_del(&single);
1527         }
1528 }
1529 EXPORT_SYMBOL(dev_close);
1530
1531
1532 /**
1533  *      dev_disable_lro - disable Large Receive Offload on a device
1534  *      @dev: device
1535  *
1536  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1537  *      called under RTNL.  This is needed if received packets may be
1538  *      forwarded to another interface.
1539  */
1540 void dev_disable_lro(struct net_device *dev)
1541 {
1542         struct net_device *lower_dev;
1543         struct list_head *iter;
1544
1545         dev->wanted_features &= ~NETIF_F_LRO;
1546         netdev_update_features(dev);
1547
1548         if (unlikely(dev->features & NETIF_F_LRO))
1549                 netdev_WARN(dev, "failed to disable LRO!\n");
1550
1551         netdev_for_each_lower_dev(dev, lower_dev, iter)
1552                 dev_disable_lro(lower_dev);
1553 }
1554 EXPORT_SYMBOL(dev_disable_lro);
1555
1556 /**
1557  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558  *      @dev: device
1559  *
1560  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1561  *      called under RTNL.  This is needed if Generic XDP is installed on
1562  *      the device.
1563  */
1564 static void dev_disable_gro_hw(struct net_device *dev)
1565 {
1566         dev->wanted_features &= ~NETIF_F_GRO_HW;
1567         netdev_update_features(dev);
1568
1569         if (unlikely(dev->features & NETIF_F_GRO_HW))
1570                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571 }
1572
1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574 {
1575 #define N(val)                                          \
1576         case NETDEV_##val:                              \
1577                 return "NETDEV_" __stringify(val);
1578         switch (cmd) {
1579         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588         }
1589 #undef N
1590         return "UNKNOWN_NETDEV_EVENT";
1591 }
1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593
1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595                                    struct net_device *dev)
1596 {
1597         struct netdev_notifier_info info = {
1598                 .dev = dev,
1599         };
1600
1601         return nb->notifier_call(nb, val, &info);
1602 }
1603
1604 static int dev_boot_phase = 1;
1605
1606 /**
1607  * register_netdevice_notifier - register a network notifier block
1608  * @nb: notifier
1609  *
1610  * Register a notifier to be called when network device events occur.
1611  * The notifier passed is linked into the kernel structures and must
1612  * not be reused until it has been unregistered. A negative errno code
1613  * is returned on a failure.
1614  *
1615  * When registered all registration and up events are replayed
1616  * to the new notifier to allow device to have a race free
1617  * view of the network device list.
1618  */
1619
1620 int register_netdevice_notifier(struct notifier_block *nb)
1621 {
1622         struct net_device *dev;
1623         struct net_device *last;
1624         struct net *net;
1625         int err;
1626
1627         /* Close race with setup_net() and cleanup_net() */
1628         down_write(&pernet_ops_rwsem);
1629         rtnl_lock();
1630         err = raw_notifier_chain_register(&netdev_chain, nb);
1631         if (err)
1632                 goto unlock;
1633         if (dev_boot_phase)
1634                 goto unlock;
1635         for_each_net(net) {
1636                 for_each_netdev(net, dev) {
1637                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638                         err = notifier_to_errno(err);
1639                         if (err)
1640                                 goto rollback;
1641
1642                         if (!(dev->flags & IFF_UP))
1643                                 continue;
1644
1645                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1646                 }
1647         }
1648
1649 unlock:
1650         rtnl_unlock();
1651         up_write(&pernet_ops_rwsem);
1652         return err;
1653
1654 rollback:
1655         last = dev;
1656         for_each_net(net) {
1657                 for_each_netdev(net, dev) {
1658                         if (dev == last)
1659                                 goto outroll;
1660
1661                         if (dev->flags & IFF_UP) {
1662                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663                                                         dev);
1664                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665                         }
1666                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667                 }
1668         }
1669
1670 outroll:
1671         raw_notifier_chain_unregister(&netdev_chain, nb);
1672         goto unlock;
1673 }
1674 EXPORT_SYMBOL(register_netdevice_notifier);
1675
1676 /**
1677  * unregister_netdevice_notifier - unregister a network notifier block
1678  * @nb: notifier
1679  *
1680  * Unregister a notifier previously registered by
1681  * register_netdevice_notifier(). The notifier is unlinked into the
1682  * kernel structures and may then be reused. A negative errno code
1683  * is returned on a failure.
1684  *
1685  * After unregistering unregister and down device events are synthesized
1686  * for all devices on the device list to the removed notifier to remove
1687  * the need for special case cleanup code.
1688  */
1689
1690 int unregister_netdevice_notifier(struct notifier_block *nb)
1691 {
1692         struct net_device *dev;
1693         struct net *net;
1694         int err;
1695
1696         /* Close race with setup_net() and cleanup_net() */
1697         down_write(&pernet_ops_rwsem);
1698         rtnl_lock();
1699         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700         if (err)
1701                 goto unlock;
1702
1703         for_each_net(net) {
1704                 for_each_netdev(net, dev) {
1705                         if (dev->flags & IFF_UP) {
1706                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707                                                         dev);
1708                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709                         }
1710                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711                 }
1712         }
1713 unlock:
1714         rtnl_unlock();
1715         up_write(&pernet_ops_rwsem);
1716         return err;
1717 }
1718 EXPORT_SYMBOL(unregister_netdevice_notifier);
1719
1720 /**
1721  *      call_netdevice_notifiers_info - call all network notifier blocks
1722  *      @val: value passed unmodified to notifier function
1723  *      @info: notifier information data
1724  *
1725  *      Call all network notifier blocks.  Parameters and return value
1726  *      are as for raw_notifier_call_chain().
1727  */
1728
1729 static int call_netdevice_notifiers_info(unsigned long val,
1730                                          struct netdev_notifier_info *info)
1731 {
1732         ASSERT_RTNL();
1733         return raw_notifier_call_chain(&netdev_chain, val, info);
1734 }
1735
1736 /**
1737  *      call_netdevice_notifiers - call all network notifier blocks
1738  *      @val: value passed unmodified to notifier function
1739  *      @dev: net_device pointer passed unmodified to notifier function
1740  *
1741  *      Call all network notifier blocks.  Parameters and return value
1742  *      are as for raw_notifier_call_chain().
1743  */
1744
1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746 {
1747         struct netdev_notifier_info info = {
1748                 .dev = dev,
1749         };
1750
1751         return call_netdevice_notifiers_info(val, &info);
1752 }
1753 EXPORT_SYMBOL(call_netdevice_notifiers);
1754
1755 #ifdef CONFIG_NET_INGRESS
1756 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1757
1758 void net_inc_ingress_queue(void)
1759 {
1760         static_branch_inc(&ingress_needed_key);
1761 }
1762 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1763
1764 void net_dec_ingress_queue(void)
1765 {
1766         static_branch_dec(&ingress_needed_key);
1767 }
1768 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1769 #endif
1770
1771 #ifdef CONFIG_NET_EGRESS
1772 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1773
1774 void net_inc_egress_queue(void)
1775 {
1776         static_branch_inc(&egress_needed_key);
1777 }
1778 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1779
1780 void net_dec_egress_queue(void)
1781 {
1782         static_branch_dec(&egress_needed_key);
1783 }
1784 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1785 #endif
1786
1787 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1788 #ifdef HAVE_JUMP_LABEL
1789 static atomic_t netstamp_needed_deferred;
1790 static atomic_t netstamp_wanted;
1791 static void netstamp_clear(struct work_struct *work)
1792 {
1793         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1794         int wanted;
1795
1796         wanted = atomic_add_return(deferred, &netstamp_wanted);
1797         if (wanted > 0)
1798                 static_branch_enable(&netstamp_needed_key);
1799         else
1800                 static_branch_disable(&netstamp_needed_key);
1801 }
1802 static DECLARE_WORK(netstamp_work, netstamp_clear);
1803 #endif
1804
1805 void net_enable_timestamp(void)
1806 {
1807 #ifdef HAVE_JUMP_LABEL
1808         int wanted;
1809
1810         while (1) {
1811                 wanted = atomic_read(&netstamp_wanted);
1812                 if (wanted <= 0)
1813                         break;
1814                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1815                         return;
1816         }
1817         atomic_inc(&netstamp_needed_deferred);
1818         schedule_work(&netstamp_work);
1819 #else
1820         static_branch_inc(&netstamp_needed_key);
1821 #endif
1822 }
1823 EXPORT_SYMBOL(net_enable_timestamp);
1824
1825 void net_disable_timestamp(void)
1826 {
1827 #ifdef HAVE_JUMP_LABEL
1828         int wanted;
1829
1830         while (1) {
1831                 wanted = atomic_read(&netstamp_wanted);
1832                 if (wanted <= 1)
1833                         break;
1834                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1835                         return;
1836         }
1837         atomic_dec(&netstamp_needed_deferred);
1838         schedule_work(&netstamp_work);
1839 #else
1840         static_branch_dec(&netstamp_needed_key);
1841 #endif
1842 }
1843 EXPORT_SYMBOL(net_disable_timestamp);
1844
1845 static inline void net_timestamp_set(struct sk_buff *skb)
1846 {
1847         skb->tstamp = 0;
1848         if (static_branch_unlikely(&netstamp_needed_key))
1849                 __net_timestamp(skb);
1850 }
1851
1852 #define net_timestamp_check(COND, SKB)                          \
1853         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1854                 if ((COND) && !(SKB)->tstamp)                   \
1855                         __net_timestamp(SKB);                   \
1856         }                                                       \
1857
1858 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1859 {
1860         unsigned int len;
1861
1862         if (!(dev->flags & IFF_UP))
1863                 return false;
1864
1865         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1866         if (skb->len <= len)
1867                 return true;
1868
1869         /* if TSO is enabled, we don't care about the length as the packet
1870          * could be forwarded without being segmented before
1871          */
1872         if (skb_is_gso(skb))
1873                 return true;
1874
1875         return false;
1876 }
1877 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1878
1879 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1880 {
1881         int ret = ____dev_forward_skb(dev, skb);
1882
1883         if (likely(!ret)) {
1884                 skb->protocol = eth_type_trans(skb, dev);
1885                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1886         }
1887
1888         return ret;
1889 }
1890 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1891
1892 /**
1893  * dev_forward_skb - loopback an skb to another netif
1894  *
1895  * @dev: destination network device
1896  * @skb: buffer to forward
1897  *
1898  * return values:
1899  *      NET_RX_SUCCESS  (no congestion)
1900  *      NET_RX_DROP     (packet was dropped, but freed)
1901  *
1902  * dev_forward_skb can be used for injecting an skb from the
1903  * start_xmit function of one device into the receive queue
1904  * of another device.
1905  *
1906  * The receiving device may be in another namespace, so
1907  * we have to clear all information in the skb that could
1908  * impact namespace isolation.
1909  */
1910 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1911 {
1912         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1913 }
1914 EXPORT_SYMBOL_GPL(dev_forward_skb);
1915
1916 static inline int deliver_skb(struct sk_buff *skb,
1917                               struct packet_type *pt_prev,
1918                               struct net_device *orig_dev)
1919 {
1920         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1921                 return -ENOMEM;
1922         refcount_inc(&skb->users);
1923         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1924 }
1925
1926 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1927                                           struct packet_type **pt,
1928                                           struct net_device *orig_dev,
1929                                           __be16 type,
1930                                           struct list_head *ptype_list)
1931 {
1932         struct packet_type *ptype, *pt_prev = *pt;
1933
1934         list_for_each_entry_rcu(ptype, ptype_list, list) {
1935                 if (ptype->type != type)
1936                         continue;
1937                 if (pt_prev)
1938                         deliver_skb(skb, pt_prev, orig_dev);
1939                 pt_prev = ptype;
1940         }
1941         *pt = pt_prev;
1942 }
1943
1944 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1945 {
1946         if (!ptype->af_packet_priv || !skb->sk)
1947                 return false;
1948
1949         if (ptype->id_match)
1950                 return ptype->id_match(ptype, skb->sk);
1951         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1952                 return true;
1953
1954         return false;
1955 }
1956
1957 /*
1958  *      Support routine. Sends outgoing frames to any network
1959  *      taps currently in use.
1960  */
1961
1962 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1963 {
1964         struct packet_type *ptype;
1965         struct sk_buff *skb2 = NULL;
1966         struct packet_type *pt_prev = NULL;
1967         struct list_head *ptype_list = &ptype_all;
1968
1969         rcu_read_lock();
1970 again:
1971         list_for_each_entry_rcu(ptype, ptype_list, list) {
1972                 if (ptype->ignore_outgoing)
1973                         continue;
1974
1975                 /* Never send packets back to the socket
1976                  * they originated from - MvS (miquels@drinkel.ow.org)
1977                  */
1978                 if (skb_loop_sk(ptype, skb))
1979                         continue;
1980
1981                 if (pt_prev) {
1982                         deliver_skb(skb2, pt_prev, skb->dev);
1983                         pt_prev = ptype;
1984                         continue;
1985                 }
1986
1987                 /* need to clone skb, done only once */
1988                 skb2 = skb_clone(skb, GFP_ATOMIC);
1989                 if (!skb2)
1990                         goto out_unlock;
1991
1992                 net_timestamp_set(skb2);
1993
1994                 /* skb->nh should be correctly
1995                  * set by sender, so that the second statement is
1996                  * just protection against buggy protocols.
1997                  */
1998                 skb_reset_mac_header(skb2);
1999
2000                 if (skb_network_header(skb2) < skb2->data ||
2001                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2002                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2003                                              ntohs(skb2->protocol),
2004                                              dev->name);
2005                         skb_reset_network_header(skb2);
2006                 }
2007
2008                 skb2->transport_header = skb2->network_header;
2009                 skb2->pkt_type = PACKET_OUTGOING;
2010                 pt_prev = ptype;
2011         }
2012
2013         if (ptype_list == &ptype_all) {
2014                 ptype_list = &dev->ptype_all;
2015                 goto again;
2016         }
2017 out_unlock:
2018         if (pt_prev) {
2019                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2020                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2021                 else
2022                         kfree_skb(skb2);
2023         }
2024         rcu_read_unlock();
2025 }
2026 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2027
2028 /**
2029  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2030  * @dev: Network device
2031  * @txq: number of queues available
2032  *
2033  * If real_num_tx_queues is changed the tc mappings may no longer be
2034  * valid. To resolve this verify the tc mapping remains valid and if
2035  * not NULL the mapping. With no priorities mapping to this
2036  * offset/count pair it will no longer be used. In the worst case TC0
2037  * is invalid nothing can be done so disable priority mappings. If is
2038  * expected that drivers will fix this mapping if they can before
2039  * calling netif_set_real_num_tx_queues.
2040  */
2041 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2042 {
2043         int i;
2044         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2045
2046         /* If TC0 is invalidated disable TC mapping */
2047         if (tc->offset + tc->count > txq) {
2048                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2049                 dev->num_tc = 0;
2050                 return;
2051         }
2052
2053         /* Invalidated prio to tc mappings set to TC0 */
2054         for (i = 1; i < TC_BITMASK + 1; i++) {
2055                 int q = netdev_get_prio_tc_map(dev, i);
2056
2057                 tc = &dev->tc_to_txq[q];
2058                 if (tc->offset + tc->count > txq) {
2059                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2060                                 i, q);
2061                         netdev_set_prio_tc_map(dev, i, 0);
2062                 }
2063         }
2064 }
2065
2066 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2067 {
2068         if (dev->num_tc) {
2069                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2070                 int i;
2071
2072                 /* walk through the TCs and see if it falls into any of them */
2073                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2074                         if ((txq - tc->offset) < tc->count)
2075                                 return i;
2076                 }
2077
2078                 /* didn't find it, just return -1 to indicate no match */
2079                 return -1;
2080         }
2081
2082         return 0;
2083 }
2084 EXPORT_SYMBOL(netdev_txq_to_tc);
2085
2086 #ifdef CONFIG_XPS
2087 struct static_key xps_needed __read_mostly;
2088 EXPORT_SYMBOL(xps_needed);
2089 struct static_key xps_rxqs_needed __read_mostly;
2090 EXPORT_SYMBOL(xps_rxqs_needed);
2091 static DEFINE_MUTEX(xps_map_mutex);
2092 #define xmap_dereference(P)             \
2093         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2094
2095 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2096                              int tci, u16 index)
2097 {
2098         struct xps_map *map = NULL;
2099         int pos;
2100
2101         if (dev_maps)
2102                 map = xmap_dereference(dev_maps->attr_map[tci]);
2103         if (!map)
2104                 return false;
2105
2106         for (pos = map->len; pos--;) {
2107                 if (map->queues[pos] != index)
2108                         continue;
2109
2110                 if (map->len > 1) {
2111                         map->queues[pos] = map->queues[--map->len];
2112                         break;
2113                 }
2114
2115                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2116                 kfree_rcu(map, rcu);
2117                 return false;
2118         }
2119
2120         return true;
2121 }
2122
2123 static bool remove_xps_queue_cpu(struct net_device *dev,
2124                                  struct xps_dev_maps *dev_maps,
2125                                  int cpu, u16 offset, u16 count)
2126 {
2127         int num_tc = dev->num_tc ? : 1;
2128         bool active = false;
2129         int tci;
2130
2131         for (tci = cpu * num_tc; num_tc--; tci++) {
2132                 int i, j;
2133
2134                 for (i = count, j = offset; i--; j++) {
2135                         if (!remove_xps_queue(dev_maps, tci, j))
2136                                 break;
2137                 }
2138
2139                 active |= i < 0;
2140         }
2141
2142         return active;
2143 }
2144
2145 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2146                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2147                            u16 offset, u16 count, bool is_rxqs_map)
2148 {
2149         bool active = false;
2150         int i, j;
2151
2152         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2153              j < nr_ids;)
2154                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2155                                                count);
2156         if (!active) {
2157                 if (is_rxqs_map) {
2158                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2159                 } else {
2160                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2161
2162                         for (i = offset + (count - 1); count--; i--)
2163                                 netdev_queue_numa_node_write(
2164                                         netdev_get_tx_queue(dev, i),
2165                                                         NUMA_NO_NODE);
2166                 }
2167                 kfree_rcu(dev_maps, rcu);
2168         }
2169 }
2170
2171 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2172                                    u16 count)
2173 {
2174         const unsigned long *possible_mask = NULL;
2175         struct xps_dev_maps *dev_maps;
2176         unsigned int nr_ids;
2177
2178         if (!static_key_false(&xps_needed))
2179                 return;
2180
2181         cpus_read_lock();
2182         mutex_lock(&xps_map_mutex);
2183
2184         if (static_key_false(&xps_rxqs_needed)) {
2185                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2186                 if (dev_maps) {
2187                         nr_ids = dev->num_rx_queues;
2188                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2189                                        offset, count, true);
2190                 }
2191         }
2192
2193         dev_maps = xmap_dereference(dev->xps_cpus_map);
2194         if (!dev_maps)
2195                 goto out_no_maps;
2196
2197         if (num_possible_cpus() > 1)
2198                 possible_mask = cpumask_bits(cpu_possible_mask);
2199         nr_ids = nr_cpu_ids;
2200         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2201                        false);
2202
2203 out_no_maps:
2204         if (static_key_enabled(&xps_rxqs_needed))
2205                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2206
2207         static_key_slow_dec_cpuslocked(&xps_needed);
2208         mutex_unlock(&xps_map_mutex);
2209         cpus_read_unlock();
2210 }
2211
2212 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2213 {
2214         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2215 }
2216
2217 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2218                                       u16 index, bool is_rxqs_map)
2219 {
2220         struct xps_map *new_map;
2221         int alloc_len = XPS_MIN_MAP_ALLOC;
2222         int i, pos;
2223
2224         for (pos = 0; map && pos < map->len; pos++) {
2225                 if (map->queues[pos] != index)
2226                         continue;
2227                 return map;
2228         }
2229
2230         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2231         if (map) {
2232                 if (pos < map->alloc_len)
2233                         return map;
2234
2235                 alloc_len = map->alloc_len * 2;
2236         }
2237
2238         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2239          *  map
2240          */
2241         if (is_rxqs_map)
2242                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2243         else
2244                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2245                                        cpu_to_node(attr_index));
2246         if (!new_map)
2247                 return NULL;
2248
2249         for (i = 0; i < pos; i++)
2250                 new_map->queues[i] = map->queues[i];
2251         new_map->alloc_len = alloc_len;
2252         new_map->len = pos;
2253
2254         return new_map;
2255 }
2256
2257 /* Must be called under cpus_read_lock */
2258 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2259                           u16 index, bool is_rxqs_map)
2260 {
2261         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2262         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2263         int i, j, tci, numa_node_id = -2;
2264         int maps_sz, num_tc = 1, tc = 0;
2265         struct xps_map *map, *new_map;
2266         bool active = false;
2267         unsigned int nr_ids;
2268
2269         if (dev->num_tc) {
2270                 /* Do not allow XPS on subordinate device directly */
2271                 num_tc = dev->num_tc;
2272                 if (num_tc < 0)
2273                         return -EINVAL;
2274
2275                 /* If queue belongs to subordinate dev use its map */
2276                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2277
2278                 tc = netdev_txq_to_tc(dev, index);
2279                 if (tc < 0)
2280                         return -EINVAL;
2281         }
2282
2283         mutex_lock(&xps_map_mutex);
2284         if (is_rxqs_map) {
2285                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2286                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2287                 nr_ids = dev->num_rx_queues;
2288         } else {
2289                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2290                 if (num_possible_cpus() > 1) {
2291                         online_mask = cpumask_bits(cpu_online_mask);
2292                         possible_mask = cpumask_bits(cpu_possible_mask);
2293                 }
2294                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2295                 nr_ids = nr_cpu_ids;
2296         }
2297
2298         if (maps_sz < L1_CACHE_BYTES)
2299                 maps_sz = L1_CACHE_BYTES;
2300
2301         /* allocate memory for queue storage */
2302         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2303              j < nr_ids;) {
2304                 if (!new_dev_maps)
2305                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2306                 if (!new_dev_maps) {
2307                         mutex_unlock(&xps_map_mutex);
2308                         return -ENOMEM;
2309                 }
2310
2311                 tci = j * num_tc + tc;
2312                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2313                                  NULL;
2314
2315                 map = expand_xps_map(map, j, index, is_rxqs_map);
2316                 if (!map)
2317                         goto error;
2318
2319                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2320         }
2321
2322         if (!new_dev_maps)
2323                 goto out_no_new_maps;
2324
2325         static_key_slow_inc_cpuslocked(&xps_needed);
2326         if (is_rxqs_map)
2327                 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2328
2329         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2330              j < nr_ids;) {
2331                 /* copy maps belonging to foreign traffic classes */
2332                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2333                         /* fill in the new device map from the old device map */
2334                         map = xmap_dereference(dev_maps->attr_map[tci]);
2335                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2336                 }
2337
2338                 /* We need to explicitly update tci as prevous loop
2339                  * could break out early if dev_maps is NULL.
2340                  */
2341                 tci = j * num_tc + tc;
2342
2343                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2344                     netif_attr_test_online(j, online_mask, nr_ids)) {
2345                         /* add tx-queue to CPU/rx-queue maps */
2346                         int pos = 0;
2347
2348                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2349                         while ((pos < map->len) && (map->queues[pos] != index))
2350                                 pos++;
2351
2352                         if (pos == map->len)
2353                                 map->queues[map->len++] = index;
2354 #ifdef CONFIG_NUMA
2355                         if (!is_rxqs_map) {
2356                                 if (numa_node_id == -2)
2357                                         numa_node_id = cpu_to_node(j);
2358                                 else if (numa_node_id != cpu_to_node(j))
2359                                         numa_node_id = -1;
2360                         }
2361 #endif
2362                 } else if (dev_maps) {
2363                         /* fill in the new device map from the old device map */
2364                         map = xmap_dereference(dev_maps->attr_map[tci]);
2365                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2366                 }
2367
2368                 /* copy maps belonging to foreign traffic classes */
2369                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2370                         /* fill in the new device map from the old device map */
2371                         map = xmap_dereference(dev_maps->attr_map[tci]);
2372                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2373                 }
2374         }
2375
2376         if (is_rxqs_map)
2377                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2378         else
2379                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2380
2381         /* Cleanup old maps */
2382         if (!dev_maps)
2383                 goto out_no_old_maps;
2384
2385         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2386              j < nr_ids;) {
2387                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2388                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2389                         map = xmap_dereference(dev_maps->attr_map[tci]);
2390                         if (map && map != new_map)
2391                                 kfree_rcu(map, rcu);
2392                 }
2393         }
2394
2395         kfree_rcu(dev_maps, rcu);
2396
2397 out_no_old_maps:
2398         dev_maps = new_dev_maps;
2399         active = true;
2400
2401 out_no_new_maps:
2402         if (!is_rxqs_map) {
2403                 /* update Tx queue numa node */
2404                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2405                                              (numa_node_id >= 0) ?
2406                                              numa_node_id : NUMA_NO_NODE);
2407         }
2408
2409         if (!dev_maps)
2410                 goto out_no_maps;
2411
2412         /* removes tx-queue from unused CPUs/rx-queues */
2413         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2414              j < nr_ids;) {
2415                 for (i = tc, tci = j * num_tc; i--; tci++)
2416                         active |= remove_xps_queue(dev_maps, tci, index);
2417                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2418                     !netif_attr_test_online(j, online_mask, nr_ids))
2419                         active |= remove_xps_queue(dev_maps, tci, index);
2420                 for (i = num_tc - tc, tci++; --i; tci++)
2421                         active |= remove_xps_queue(dev_maps, tci, index);
2422         }
2423
2424         /* free map if not active */
2425         if (!active) {
2426                 if (is_rxqs_map)
2427                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2428                 else
2429                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2430                 kfree_rcu(dev_maps, rcu);
2431         }
2432
2433 out_no_maps:
2434         mutex_unlock(&xps_map_mutex);
2435
2436         return 0;
2437 error:
2438         /* remove any maps that we added */
2439         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2440              j < nr_ids;) {
2441                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2442                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2443                         map = dev_maps ?
2444                               xmap_dereference(dev_maps->attr_map[tci]) :
2445                               NULL;
2446                         if (new_map && new_map != map)
2447                                 kfree(new_map);
2448                 }
2449         }
2450
2451         mutex_unlock(&xps_map_mutex);
2452
2453         kfree(new_dev_maps);
2454         return -ENOMEM;
2455 }
2456 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2457
2458 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2459                         u16 index)
2460 {
2461         int ret;
2462
2463         cpus_read_lock();
2464         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2465         cpus_read_unlock();
2466
2467         return ret;
2468 }
2469 EXPORT_SYMBOL(netif_set_xps_queue);
2470
2471 #endif
2472 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2473 {
2474         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2475
2476         /* Unbind any subordinate channels */
2477         while (txq-- != &dev->_tx[0]) {
2478                 if (txq->sb_dev)
2479                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2480         }
2481 }
2482
2483 void netdev_reset_tc(struct net_device *dev)
2484 {
2485 #ifdef CONFIG_XPS
2486         netif_reset_xps_queues_gt(dev, 0);
2487 #endif
2488         netdev_unbind_all_sb_channels(dev);
2489
2490         /* Reset TC configuration of device */
2491         dev->num_tc = 0;
2492         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2493         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2494 }
2495 EXPORT_SYMBOL(netdev_reset_tc);
2496
2497 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2498 {
2499         if (tc >= dev->num_tc)
2500                 return -EINVAL;
2501
2502 #ifdef CONFIG_XPS
2503         netif_reset_xps_queues(dev, offset, count);
2504 #endif
2505         dev->tc_to_txq[tc].count = count;
2506         dev->tc_to_txq[tc].offset = offset;
2507         return 0;
2508 }
2509 EXPORT_SYMBOL(netdev_set_tc_queue);
2510
2511 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2512 {
2513         if (num_tc > TC_MAX_QUEUE)
2514                 return -EINVAL;
2515
2516 #ifdef CONFIG_XPS
2517         netif_reset_xps_queues_gt(dev, 0);
2518 #endif
2519         netdev_unbind_all_sb_channels(dev);
2520
2521         dev->num_tc = num_tc;
2522         return 0;
2523 }
2524 EXPORT_SYMBOL(netdev_set_num_tc);
2525
2526 void netdev_unbind_sb_channel(struct net_device *dev,
2527                               struct net_device *sb_dev)
2528 {
2529         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2530
2531 #ifdef CONFIG_XPS
2532         netif_reset_xps_queues_gt(sb_dev, 0);
2533 #endif
2534         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2535         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2536
2537         while (txq-- != &dev->_tx[0]) {
2538                 if (txq->sb_dev == sb_dev)
2539                         txq->sb_dev = NULL;
2540         }
2541 }
2542 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2543
2544 int netdev_bind_sb_channel_queue(struct net_device *dev,
2545                                  struct net_device *sb_dev,
2546                                  u8 tc, u16 count, u16 offset)
2547 {
2548         /* Make certain the sb_dev and dev are already configured */
2549         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2550                 return -EINVAL;
2551
2552         /* We cannot hand out queues we don't have */
2553         if ((offset + count) > dev->real_num_tx_queues)
2554                 return -EINVAL;
2555
2556         /* Record the mapping */
2557         sb_dev->tc_to_txq[tc].count = count;
2558         sb_dev->tc_to_txq[tc].offset = offset;
2559
2560         /* Provide a way for Tx queue to find the tc_to_txq map or
2561          * XPS map for itself.
2562          */
2563         while (count--)
2564                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2565
2566         return 0;
2567 }
2568 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2569
2570 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2571 {
2572         /* Do not use a multiqueue device to represent a subordinate channel */
2573         if (netif_is_multiqueue(dev))
2574                 return -ENODEV;
2575
2576         /* We allow channels 1 - 32767 to be used for subordinate channels.
2577          * Channel 0 is meant to be "native" mode and used only to represent
2578          * the main root device. We allow writing 0 to reset the device back
2579          * to normal mode after being used as a subordinate channel.
2580          */
2581         if (channel > S16_MAX)
2582                 return -EINVAL;
2583
2584         dev->num_tc = -channel;
2585
2586         return 0;
2587 }
2588 EXPORT_SYMBOL(netdev_set_sb_channel);
2589
2590 /*
2591  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2592  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2593  */
2594 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2595 {
2596         bool disabling;
2597         int rc;
2598
2599         disabling = txq < dev->real_num_tx_queues;
2600
2601         if (txq < 1 || txq > dev->num_tx_queues)
2602                 return -EINVAL;
2603
2604         if (dev->reg_state == NETREG_REGISTERED ||
2605             dev->reg_state == NETREG_UNREGISTERING) {
2606                 ASSERT_RTNL();
2607
2608                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2609                                                   txq);
2610                 if (rc)
2611                         return rc;
2612
2613                 if (dev->num_tc)
2614                         netif_setup_tc(dev, txq);
2615
2616                 dev->real_num_tx_queues = txq;
2617
2618                 if (disabling) {
2619                         synchronize_net();
2620                         qdisc_reset_all_tx_gt(dev, txq);
2621 #ifdef CONFIG_XPS
2622                         netif_reset_xps_queues_gt(dev, txq);
2623 #endif
2624                 }
2625         } else {
2626                 dev->real_num_tx_queues = txq;
2627         }
2628
2629         return 0;
2630 }
2631 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2632
2633 #ifdef CONFIG_SYSFS
2634 /**
2635  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2636  *      @dev: Network device
2637  *      @rxq: Actual number of RX queues
2638  *
2639  *      This must be called either with the rtnl_lock held or before
2640  *      registration of the net device.  Returns 0 on success, or a
2641  *      negative error code.  If called before registration, it always
2642  *      succeeds.
2643  */
2644 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2645 {
2646         int rc;
2647
2648         if (rxq < 1 || rxq > dev->num_rx_queues)
2649                 return -EINVAL;
2650
2651         if (dev->reg_state == NETREG_REGISTERED) {
2652                 ASSERT_RTNL();
2653
2654                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2655                                                   rxq);
2656                 if (rc)
2657                         return rc;
2658         }
2659
2660         dev->real_num_rx_queues = rxq;
2661         return 0;
2662 }
2663 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2664 #endif
2665
2666 /**
2667  * netif_get_num_default_rss_queues - default number of RSS queues
2668  *
2669  * This routine should set an upper limit on the number of RSS queues
2670  * used by default by multiqueue devices.
2671  */
2672 int netif_get_num_default_rss_queues(void)
2673 {
2674         return is_kdump_kernel() ?
2675                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2676 }
2677 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2678
2679 static void __netif_reschedule(struct Qdisc *q)
2680 {
2681         struct softnet_data *sd;
2682         unsigned long flags;
2683
2684         local_irq_save(flags);
2685         sd = this_cpu_ptr(&softnet_data);
2686         q->next_sched = NULL;
2687         *sd->output_queue_tailp = q;
2688         sd->output_queue_tailp = &q->next_sched;
2689         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2690         local_irq_restore(flags);
2691 }
2692
2693 void __netif_schedule(struct Qdisc *q)
2694 {
2695         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2696                 __netif_reschedule(q);
2697 }
2698 EXPORT_SYMBOL(__netif_schedule);
2699
2700 struct dev_kfree_skb_cb {
2701         enum skb_free_reason reason;
2702 };
2703
2704 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2705 {
2706         return (struct dev_kfree_skb_cb *)skb->cb;
2707 }
2708
2709 void netif_schedule_queue(struct netdev_queue *txq)
2710 {
2711         rcu_read_lock();
2712         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2713                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2714
2715                 __netif_schedule(q);
2716         }
2717         rcu_read_unlock();
2718 }
2719 EXPORT_SYMBOL(netif_schedule_queue);
2720
2721 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2722 {
2723         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2724                 struct Qdisc *q;
2725
2726                 rcu_read_lock();
2727                 q = rcu_dereference(dev_queue->qdisc);
2728                 __netif_schedule(q);
2729                 rcu_read_unlock();
2730         }
2731 }
2732 EXPORT_SYMBOL(netif_tx_wake_queue);
2733
2734 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2735 {
2736         unsigned long flags;
2737
2738         if (unlikely(!skb))
2739                 return;
2740
2741         if (likely(refcount_read(&skb->users) == 1)) {
2742                 smp_rmb();
2743                 refcount_set(&skb->users, 0);
2744         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2745                 return;
2746         }
2747         get_kfree_skb_cb(skb)->reason = reason;
2748         local_irq_save(flags);
2749         skb->next = __this_cpu_read(softnet_data.completion_queue);
2750         __this_cpu_write(softnet_data.completion_queue, skb);
2751         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752         local_irq_restore(flags);
2753 }
2754 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2755
2756 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2757 {
2758         if (in_irq() || irqs_disabled())
2759                 __dev_kfree_skb_irq(skb, reason);
2760         else
2761                 dev_kfree_skb(skb);
2762 }
2763 EXPORT_SYMBOL(__dev_kfree_skb_any);
2764
2765
2766 /**
2767  * netif_device_detach - mark device as removed
2768  * @dev: network device
2769  *
2770  * Mark device as removed from system and therefore no longer available.
2771  */
2772 void netif_device_detach(struct net_device *dev)
2773 {
2774         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2775             netif_running(dev)) {
2776                 netif_tx_stop_all_queues(dev);
2777         }
2778 }
2779 EXPORT_SYMBOL(netif_device_detach);
2780
2781 /**
2782  * netif_device_attach - mark device as attached
2783  * @dev: network device
2784  *
2785  * Mark device as attached from system and restart if needed.
2786  */
2787 void netif_device_attach(struct net_device *dev)
2788 {
2789         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2790             netif_running(dev)) {
2791                 netif_tx_wake_all_queues(dev);
2792                 __netdev_watchdog_up(dev);
2793         }
2794 }
2795 EXPORT_SYMBOL(netif_device_attach);
2796
2797 /*
2798  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2799  * to be used as a distribution range.
2800  */
2801 static u16 skb_tx_hash(const struct net_device *dev,
2802                        const struct net_device *sb_dev,
2803                        struct sk_buff *skb)
2804 {
2805         u32 hash;
2806         u16 qoffset = 0;
2807         u16 qcount = dev->real_num_tx_queues;
2808
2809         if (dev->num_tc) {
2810                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2811
2812                 qoffset = sb_dev->tc_to_txq[tc].offset;
2813                 qcount = sb_dev->tc_to_txq[tc].count;
2814         }
2815
2816         if (skb_rx_queue_recorded(skb)) {
2817                 hash = skb_get_rx_queue(skb);
2818                 while (unlikely(hash >= qcount))
2819                         hash -= qcount;
2820                 return hash + qoffset;
2821         }
2822
2823         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2824 }
2825
2826 static void skb_warn_bad_offload(const struct sk_buff *skb)
2827 {
2828         static const netdev_features_t null_features;
2829         struct net_device *dev = skb->dev;
2830         const char *name = "";
2831
2832         if (!net_ratelimit())
2833                 return;
2834
2835         if (dev) {
2836                 if (dev->dev.parent)
2837                         name = dev_driver_string(dev->dev.parent);
2838                 else
2839                         name = netdev_name(dev);
2840         }
2841         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2842              "gso_type=%d ip_summed=%d\n",
2843              name, dev ? &dev->features : &null_features,
2844              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2845              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2846              skb_shinfo(skb)->gso_type, skb->ip_summed);
2847 }
2848
2849 /*
2850  * Invalidate hardware checksum when packet is to be mangled, and
2851  * complete checksum manually on outgoing path.
2852  */
2853 int skb_checksum_help(struct sk_buff *skb)
2854 {
2855         __wsum csum;
2856         int ret = 0, offset;
2857
2858         if (skb->ip_summed == CHECKSUM_COMPLETE)
2859                 goto out_set_summed;
2860
2861         if (unlikely(skb_shinfo(skb)->gso_size)) {
2862                 skb_warn_bad_offload(skb);
2863                 return -EINVAL;
2864         }
2865
2866         /* Before computing a checksum, we should make sure no frag could
2867          * be modified by an external entity : checksum could be wrong.
2868          */
2869         if (skb_has_shared_frag(skb)) {
2870                 ret = __skb_linearize(skb);
2871                 if (ret)
2872                         goto out;
2873         }
2874
2875         offset = skb_checksum_start_offset(skb);
2876         BUG_ON(offset >= skb_headlen(skb));
2877         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2878
2879         offset += skb->csum_offset;
2880         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2881
2882         if (skb_cloned(skb) &&
2883             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2884                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2885                 if (ret)
2886                         goto out;
2887         }
2888
2889         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2890 out_set_summed:
2891         skb->ip_summed = CHECKSUM_NONE;
2892 out:
2893         return ret;
2894 }
2895 EXPORT_SYMBOL(skb_checksum_help);
2896
2897 int skb_crc32c_csum_help(struct sk_buff *skb)
2898 {
2899         __le32 crc32c_csum;
2900         int ret = 0, offset, start;
2901
2902         if (skb->ip_summed != CHECKSUM_PARTIAL)
2903                 goto out;
2904
2905         if (unlikely(skb_is_gso(skb)))
2906                 goto out;
2907
2908         /* Before computing a checksum, we should make sure no frag could
2909          * be modified by an external entity : checksum could be wrong.
2910          */
2911         if (unlikely(skb_has_shared_frag(skb))) {
2912                 ret = __skb_linearize(skb);
2913                 if (ret)
2914                         goto out;
2915         }
2916         start = skb_checksum_start_offset(skb);
2917         offset = start + offsetof(struct sctphdr, checksum);
2918         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2919                 ret = -EINVAL;
2920                 goto out;
2921         }
2922         if (skb_cloned(skb) &&
2923             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2924                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2925                 if (ret)
2926                         goto out;
2927         }
2928         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2929                                                   skb->len - start, ~(__u32)0,
2930                                                   crc32c_csum_stub));
2931         *(__le32 *)(skb->data + offset) = crc32c_csum;
2932         skb->ip_summed = CHECKSUM_NONE;
2933         skb->csum_not_inet = 0;
2934 out:
2935         return ret;
2936 }
2937
2938 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2939 {
2940         __be16 type = skb->protocol;
2941
2942         /* Tunnel gso handlers can set protocol to ethernet. */
2943         if (type == htons(ETH_P_TEB)) {
2944                 struct ethhdr *eth;
2945
2946                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2947                         return 0;
2948
2949                 eth = (struct ethhdr *)skb->data;
2950                 type = eth->h_proto;
2951         }
2952
2953         return __vlan_get_protocol(skb, type, depth);
2954 }
2955
2956 /**
2957  *      skb_mac_gso_segment - mac layer segmentation handler.
2958  *      @skb: buffer to segment
2959  *      @features: features for the output path (see dev->features)
2960  */
2961 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2962                                     netdev_features_t features)
2963 {
2964         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2965         struct packet_offload *ptype;
2966         int vlan_depth = skb->mac_len;
2967         __be16 type = skb_network_protocol(skb, &vlan_depth);
2968
2969         if (unlikely(!type))
2970                 return ERR_PTR(-EINVAL);
2971
2972         __skb_pull(skb, vlan_depth);
2973
2974         rcu_read_lock();
2975         list_for_each_entry_rcu(ptype, &offload_base, list) {
2976                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2977                         segs = ptype->callbacks.gso_segment(skb, features);
2978                         break;
2979                 }
2980         }
2981         rcu_read_unlock();
2982
2983         __skb_push(skb, skb->data - skb_mac_header(skb));
2984
2985         return segs;
2986 }
2987 EXPORT_SYMBOL(skb_mac_gso_segment);
2988
2989
2990 /* openvswitch calls this on rx path, so we need a different check.
2991  */
2992 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2993 {
2994         if (tx_path)
2995                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2996                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2997
2998         return skb->ip_summed == CHECKSUM_NONE;
2999 }
3000
3001 /**
3002  *      __skb_gso_segment - Perform segmentation on skb.
3003  *      @skb: buffer to segment
3004  *      @features: features for the output path (see dev->features)
3005  *      @tx_path: whether it is called in TX path
3006  *
3007  *      This function segments the given skb and returns a list of segments.
3008  *
3009  *      It may return NULL if the skb requires no segmentation.  This is
3010  *      only possible when GSO is used for verifying header integrity.
3011  *
3012  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3013  */
3014 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3015                                   netdev_features_t features, bool tx_path)
3016 {
3017         struct sk_buff *segs;
3018
3019         if (unlikely(skb_needs_check(skb, tx_path))) {
3020                 int err;
3021
3022                 /* We're going to init ->check field in TCP or UDP header */
3023                 err = skb_cow_head(skb, 0);
3024                 if (err < 0)
3025                         return ERR_PTR(err);
3026         }
3027
3028         /* Only report GSO partial support if it will enable us to
3029          * support segmentation on this frame without needing additional
3030          * work.
3031          */
3032         if (features & NETIF_F_GSO_PARTIAL) {
3033                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3034                 struct net_device *dev = skb->dev;
3035
3036                 partial_features |= dev->features & dev->gso_partial_features;
3037                 if (!skb_gso_ok(skb, features | partial_features))
3038                         features &= ~NETIF_F_GSO_PARTIAL;
3039         }
3040
3041         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3042                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3043
3044         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3045         SKB_GSO_CB(skb)->encap_level = 0;
3046
3047         skb_reset_mac_header(skb);
3048         skb_reset_mac_len(skb);
3049
3050         segs = skb_mac_gso_segment(skb, features);
3051
3052         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3053                 skb_warn_bad_offload(skb);
3054
3055         return segs;
3056 }
3057 EXPORT_SYMBOL(__skb_gso_segment);
3058
3059 /* Take action when hardware reception checksum errors are detected. */
3060 #ifdef CONFIG_BUG
3061 void netdev_rx_csum_fault(struct net_device *dev)
3062 {
3063         if (net_ratelimit()) {
3064                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3065                 dump_stack();
3066         }
3067 }
3068 EXPORT_SYMBOL(netdev_rx_csum_fault);
3069 #endif
3070
3071 /* XXX: check that highmem exists at all on the given machine. */
3072 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3073 {
3074 #ifdef CONFIG_HIGHMEM
3075         int i;
3076
3077         if (!(dev->features & NETIF_F_HIGHDMA)) {
3078                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3079                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3080
3081                         if (PageHighMem(skb_frag_page(frag)))
3082                                 return 1;
3083                 }
3084         }
3085 #endif
3086         return 0;
3087 }
3088
3089 /* If MPLS offload request, verify we are testing hardware MPLS features
3090  * instead of standard features for the netdev.
3091  */
3092 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3093 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3094                                            netdev_features_t features,
3095                                            __be16 type)
3096 {
3097         if (eth_p_mpls(type))
3098                 features &= skb->dev->mpls_features;
3099
3100         return features;
3101 }
3102 #else
3103 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3104                                            netdev_features_t features,
3105                                            __be16 type)
3106 {
3107         return features;
3108 }
3109 #endif
3110
3111 static netdev_features_t harmonize_features(struct sk_buff *skb,
3112         netdev_features_t features)
3113 {
3114         int tmp;
3115         __be16 type;
3116
3117         type = skb_network_protocol(skb, &tmp);
3118         features = net_mpls_features(skb, features, type);
3119
3120         if (skb->ip_summed != CHECKSUM_NONE &&
3121             !can_checksum_protocol(features, type)) {
3122                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3123         }
3124         if (illegal_highdma(skb->dev, skb))
3125                 features &= ~NETIF_F_SG;
3126
3127         return features;
3128 }
3129
3130 netdev_features_t passthru_features_check(struct sk_buff *skb,
3131                                           struct net_device *dev,
3132                                           netdev_features_t features)
3133 {
3134         return features;
3135 }
3136 EXPORT_SYMBOL(passthru_features_check);
3137
3138 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3139                                              struct net_device *dev,
3140                                              netdev_features_t features)
3141 {
3142         return vlan_features_check(skb, features);
3143 }
3144
3145 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3146                                             struct net_device *dev,
3147                                             netdev_features_t features)
3148 {
3149         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3150
3151         if (gso_segs > dev->gso_max_segs)
3152                 return features & ~NETIF_F_GSO_MASK;
3153
3154         /* Support for GSO partial features requires software
3155          * intervention before we can actually process the packets
3156          * so we need to strip support for any partial features now
3157          * and we can pull them back in after we have partially
3158          * segmented the frame.
3159          */
3160         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3161                 features &= ~dev->gso_partial_features;
3162
3163         /* Make sure to clear the IPv4 ID mangling feature if the
3164          * IPv4 header has the potential to be fragmented.
3165          */
3166         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3167                 struct iphdr *iph = skb->encapsulation ?
3168                                     inner_ip_hdr(skb) : ip_hdr(skb);
3169
3170                 if (!(iph->frag_off & htons(IP_DF)))
3171                         features &= ~NETIF_F_TSO_MANGLEID;
3172         }
3173
3174         return features;
3175 }
3176
3177 netdev_features_t netif_skb_features(struct sk_buff *skb)
3178 {
3179         struct net_device *dev = skb->dev;
3180         netdev_features_t features = dev->features;
3181
3182         if (skb_is_gso(skb))
3183                 features = gso_features_check(skb, dev, features);
3184
3185         /* If encapsulation offload request, verify we are testing
3186          * hardware encapsulation features instead of standard
3187          * features for the netdev
3188          */
3189         if (skb->encapsulation)
3190                 features &= dev->hw_enc_features;
3191
3192         if (skb_vlan_tagged(skb))
3193                 features = netdev_intersect_features(features,
3194                                                      dev->vlan_features |
3195                                                      NETIF_F_HW_VLAN_CTAG_TX |
3196                                                      NETIF_F_HW_VLAN_STAG_TX);
3197
3198         if (dev->netdev_ops->ndo_features_check)
3199                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3200                                                                 features);
3201         else
3202                 features &= dflt_features_check(skb, dev, features);
3203
3204         return harmonize_features(skb, features);
3205 }
3206 EXPORT_SYMBOL(netif_skb_features);
3207
3208 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3209                     struct netdev_queue *txq, bool more)
3210 {
3211         unsigned int len;
3212         int rc;
3213
3214         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3215                 dev_queue_xmit_nit(skb, dev);
3216
3217         len = skb->len;
3218         trace_net_dev_start_xmit(skb, dev);
3219         rc = netdev_start_xmit(skb, dev, txq, more);
3220         trace_net_dev_xmit(skb, rc, dev, len);
3221
3222         return rc;
3223 }
3224
3225 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3226                                     struct netdev_queue *txq, int *ret)
3227 {
3228         struct sk_buff *skb = first;
3229         int rc = NETDEV_TX_OK;
3230
3231         while (skb) {
3232                 struct sk_buff *next = skb->next;
3233
3234                 skb_mark_not_on_list(skb);
3235                 rc = xmit_one(skb, dev, txq, next != NULL);
3236                 if (unlikely(!dev_xmit_complete(rc))) {
3237                         skb->next = next;
3238                         goto out;
3239                 }
3240
3241                 skb = next;
3242                 if (netif_xmit_stopped(txq) && skb) {
3243                         rc = NETDEV_TX_BUSY;
3244                         break;
3245                 }
3246         }
3247
3248 out:
3249         *ret = rc;
3250         return skb;
3251 }
3252
3253 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3254                                           netdev_features_t features)
3255 {
3256         if (skb_vlan_tag_present(skb) &&
3257             !vlan_hw_offload_capable(features, skb->vlan_proto))
3258                 skb = __vlan_hwaccel_push_inside(skb);
3259         return skb;
3260 }
3261
3262 int skb_csum_hwoffload_help(struct sk_buff *skb,
3263                             const netdev_features_t features)
3264 {
3265         if (unlikely(skb->csum_not_inet))
3266                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3267                         skb_crc32c_csum_help(skb);
3268
3269         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3270 }
3271 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3272
3273 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3274 {
3275         netdev_features_t features;
3276
3277         features = netif_skb_features(skb);
3278         skb = validate_xmit_vlan(skb, features);
3279         if (unlikely(!skb))
3280                 goto out_null;
3281
3282         skb = sk_validate_xmit_skb(skb, dev);
3283         if (unlikely(!skb))
3284                 goto out_null;
3285
3286         if (netif_needs_gso(skb, features)) {
3287                 struct sk_buff *segs;
3288
3289                 segs = skb_gso_segment(skb, features);
3290                 if (IS_ERR(segs)) {
3291                         goto out_kfree_skb;
3292                 } else if (segs) {
3293                         consume_skb(skb);
3294                         skb = segs;
3295                 }
3296         } else {
3297                 if (skb_needs_linearize(skb, features) &&
3298                     __skb_linearize(skb))
3299                         goto out_kfree_skb;
3300
3301                 /* If packet is not checksummed and device does not
3302                  * support checksumming for this protocol, complete
3303                  * checksumming here.
3304                  */
3305                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3306                         if (skb->encapsulation)
3307                                 skb_set_inner_transport_header(skb,
3308                                                                skb_checksum_start_offset(skb));
3309                         else
3310                                 skb_set_transport_header(skb,
3311                                                          skb_checksum_start_offset(skb));
3312                         if (skb_csum_hwoffload_help(skb, features))
3313                                 goto out_kfree_skb;
3314                 }
3315         }
3316
3317         skb = validate_xmit_xfrm(skb, features, again);
3318
3319         return skb;
3320
3321 out_kfree_skb:
3322         kfree_skb(skb);
3323 out_null:
3324         atomic_long_inc(&dev->tx_dropped);
3325         return NULL;
3326 }
3327
3328 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3329 {
3330         struct sk_buff *next, *head = NULL, *tail;
3331
3332         for (; skb != NULL; skb = next) {
3333                 next = skb->next;
3334                 skb_mark_not_on_list(skb);
3335
3336                 /* in case skb wont be segmented, point to itself */
3337                 skb->prev = skb;
3338
3339                 skb = validate_xmit_skb(skb, dev, again);
3340                 if (!skb)
3341                         continue;
3342
3343                 if (!head)
3344                         head = skb;
3345                 else
3346                         tail->next = skb;
3347                 /* If skb was segmented, skb->prev points to
3348                  * the last segment. If not, it still contains skb.
3349                  */
3350                 tail = skb->prev;
3351         }
3352         return head;
3353 }
3354 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3355
3356 static void qdisc_pkt_len_init(struct sk_buff *skb)
3357 {
3358         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3359
3360         qdisc_skb_cb(skb)->pkt_len = skb->len;
3361
3362         /* To get more precise estimation of bytes sent on wire,
3363          * we add to pkt_len the headers size of all segments
3364          */
3365         if (shinfo->gso_size)  {
3366                 unsigned int hdr_len;
3367                 u16 gso_segs = shinfo->gso_segs;
3368
3369                 /* mac layer + network layer */
3370                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3371
3372                 /* + transport layer */
3373                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3374                         const struct tcphdr *th;
3375                         struct tcphdr _tcphdr;
3376
3377                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3378                                                 sizeof(_tcphdr), &_tcphdr);
3379                         if (likely(th))
3380                                 hdr_len += __tcp_hdrlen(th);
3381                 } else {
3382                         struct udphdr _udphdr;
3383
3384                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3385                                                sizeof(_udphdr), &_udphdr))
3386                                 hdr_len += sizeof(struct udphdr);
3387                 }
3388
3389                 if (shinfo->gso_type & SKB_GSO_DODGY)
3390                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3391                                                 shinfo->gso_size);
3392
3393                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3394         }
3395 }
3396
3397 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3398                                  struct net_device *dev,
3399                                  struct netdev_queue *txq)
3400 {
3401         spinlock_t *root_lock = qdisc_lock(q);
3402         struct sk_buff *to_free = NULL;
3403         bool contended;
3404         int rc;
3405
3406         qdisc_calculate_pkt_len(skb, q);
3407
3408         if (q->flags & TCQ_F_NOLOCK) {
3409                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3410                         __qdisc_drop(skb, &to_free);
3411                         rc = NET_XMIT_DROP;
3412                 } else {
3413                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3414                         qdisc_run(q);
3415                 }
3416
3417                 if (unlikely(to_free))
3418                         kfree_skb_list(to_free);
3419                 return rc;
3420         }
3421
3422         /*
3423          * Heuristic to force contended enqueues to serialize on a
3424          * separate lock before trying to get qdisc main lock.
3425          * This permits qdisc->running owner to get the lock more
3426          * often and dequeue packets faster.
3427          */
3428         contended = qdisc_is_running(q);
3429         if (unlikely(contended))
3430                 spin_lock(&q->busylock);
3431
3432         spin_lock(root_lock);
3433         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3434                 __qdisc_drop(skb, &to_free);
3435                 rc = NET_XMIT_DROP;
3436         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3437                    qdisc_run_begin(q)) {
3438                 /*
3439                  * This is a work-conserving queue; there are no old skbs
3440                  * waiting to be sent out; and the qdisc is not running -
3441                  * xmit the skb directly.
3442                  */
3443
3444                 qdisc_bstats_update(q, skb);
3445
3446                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3447                         if (unlikely(contended)) {
3448                                 spin_unlock(&q->busylock);
3449                                 contended = false;
3450                         }
3451                         __qdisc_run(q);
3452                 }
3453
3454                 qdisc_run_end(q);
3455                 rc = NET_XMIT_SUCCESS;
3456         } else {
3457                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3458                 if (qdisc_run_begin(q)) {
3459                         if (unlikely(contended)) {
3460                                 spin_unlock(&q->busylock);
3461                                 contended = false;
3462                         }
3463                         __qdisc_run(q);
3464                         qdisc_run_end(q);
3465                 }
3466         }
3467         spin_unlock(root_lock);
3468         if (unlikely(to_free))
3469                 kfree_skb_list(to_free);
3470         if (unlikely(contended))
3471                 spin_unlock(&q->busylock);
3472         return rc;
3473 }
3474
3475 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3476 static void skb_update_prio(struct sk_buff *skb)
3477 {
3478         const struct netprio_map *map;
3479         const struct sock *sk;
3480         unsigned int prioidx;
3481
3482         if (skb->priority)
3483                 return;
3484         map = rcu_dereference_bh(skb->dev->priomap);
3485         if (!map)
3486                 return;
3487         sk = skb_to_full_sk(skb);
3488         if (!sk)
3489                 return;
3490
3491         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3492
3493         if (prioidx < map->priomap_len)
3494                 skb->priority = map->priomap[prioidx];
3495 }
3496 #else
3497 #define skb_update_prio(skb)
3498 #endif
3499
3500 DEFINE_PER_CPU(int, xmit_recursion);
3501 EXPORT_SYMBOL(xmit_recursion);
3502
3503 /**
3504  *      dev_loopback_xmit - loop back @skb
3505  *      @net: network namespace this loopback is happening in
3506  *      @sk:  sk needed to be a netfilter okfn
3507  *      @skb: buffer to transmit
3508  */
3509 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3510 {
3511         skb_reset_mac_header(skb);
3512         __skb_pull(skb, skb_network_offset(skb));
3513         skb->pkt_type = PACKET_LOOPBACK;
3514         skb->ip_summed = CHECKSUM_UNNECESSARY;
3515         WARN_ON(!skb_dst(skb));
3516         skb_dst_force(skb);
3517         netif_rx_ni(skb);
3518         return 0;
3519 }
3520 EXPORT_SYMBOL(dev_loopback_xmit);
3521
3522 #ifdef CONFIG_NET_EGRESS
3523 static struct sk_buff *
3524 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3525 {
3526         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3527         struct tcf_result cl_res;
3528
3529         if (!miniq)
3530                 return skb;
3531
3532         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3533         mini_qdisc_bstats_cpu_update(miniq, skb);
3534
3535         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3536         case TC_ACT_OK:
3537         case TC_ACT_RECLASSIFY:
3538                 skb->tc_index = TC_H_MIN(cl_res.classid);
3539                 break;
3540         case TC_ACT_SHOT:
3541                 mini_qdisc_qstats_cpu_drop(miniq);
3542                 *ret = NET_XMIT_DROP;
3543                 kfree_skb(skb);
3544                 return NULL;
3545         case TC_ACT_STOLEN:
3546         case TC_ACT_QUEUED:
3547         case TC_ACT_TRAP:
3548                 *ret = NET_XMIT_SUCCESS;
3549                 consume_skb(skb);
3550                 return NULL;
3551         case TC_ACT_REDIRECT:
3552                 /* No need to push/pop skb's mac_header here on egress! */
3553                 skb_do_redirect(skb);
3554                 *ret = NET_XMIT_SUCCESS;
3555                 return NULL;
3556         default:
3557                 break;
3558         }
3559
3560         return skb;
3561 }
3562 #endif /* CONFIG_NET_EGRESS */
3563
3564 #ifdef CONFIG_XPS
3565 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3566                                struct xps_dev_maps *dev_maps, unsigned int tci)
3567 {
3568         struct xps_map *map;
3569         int queue_index = -1;
3570
3571         if (dev->num_tc) {
3572                 tci *= dev->num_tc;
3573                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3574         }
3575
3576         map = rcu_dereference(dev_maps->attr_map[tci]);
3577         if (map) {
3578                 if (map->len == 1)
3579                         queue_index = map->queues[0];
3580                 else
3581                         queue_index = map->queues[reciprocal_scale(
3582                                                 skb_get_hash(skb), map->len)];
3583                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3584                         queue_index = -1;
3585         }
3586         return queue_index;
3587 }
3588 #endif
3589
3590 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3591                          struct sk_buff *skb)
3592 {
3593 #ifdef CONFIG_XPS
3594         struct xps_dev_maps *dev_maps;
3595         struct sock *sk = skb->sk;
3596         int queue_index = -1;
3597
3598         if (!static_key_false(&xps_needed))
3599                 return -1;
3600
3601         rcu_read_lock();
3602         if (!static_key_false(&xps_rxqs_needed))
3603                 goto get_cpus_map;
3604
3605         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3606         if (dev_maps) {
3607                 int tci = sk_rx_queue_get(sk);
3608
3609                 if (tci >= 0 && tci < dev->num_rx_queues)
3610                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3611                                                           tci);
3612         }
3613
3614 get_cpus_map:
3615         if (queue_index < 0) {
3616                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3617                 if (dev_maps) {
3618                         unsigned int tci = skb->sender_cpu - 1;
3619
3620                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3621                                                           tci);
3622                 }
3623         }
3624         rcu_read_unlock();
3625
3626         return queue_index;
3627 #else
3628         return -1;
3629 #endif
3630 }
3631
3632 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3633                      struct net_device *sb_dev,
3634                      select_queue_fallback_t fallback)
3635 {
3636         return 0;
3637 }
3638 EXPORT_SYMBOL(dev_pick_tx_zero);
3639
3640 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3641                        struct net_device *sb_dev,
3642                        select_queue_fallback_t fallback)
3643 {
3644         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3645 }
3646 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3647
3648 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3649                             struct net_device *sb_dev)
3650 {
3651         struct sock *sk = skb->sk;
3652         int queue_index = sk_tx_queue_get(sk);
3653
3654         sb_dev = sb_dev ? : dev;
3655
3656         if (queue_index < 0 || skb->ooo_okay ||
3657             queue_index >= dev->real_num_tx_queues) {
3658                 int new_index = get_xps_queue(dev, sb_dev, skb);
3659
3660                 if (new_index < 0)
3661                         new_index = skb_tx_hash(dev, sb_dev, skb);
3662
3663                 if (queue_index != new_index && sk &&
3664                     sk_fullsock(sk) &&
3665                     rcu_access_pointer(sk->sk_dst_cache))
3666                         sk_tx_queue_set(sk, new_index);
3667
3668                 queue_index = new_index;
3669         }
3670
3671         return queue_index;
3672 }
3673
3674 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3675                                     struct sk_buff *skb,
3676                                     struct net_device *sb_dev)
3677 {
3678         int queue_index = 0;
3679
3680 #ifdef CONFIG_XPS
3681         u32 sender_cpu = skb->sender_cpu - 1;
3682
3683         if (sender_cpu >= (u32)NR_CPUS)
3684                 skb->sender_cpu = raw_smp_processor_id() + 1;
3685 #endif
3686
3687         if (dev->real_num_tx_queues != 1) {
3688                 const struct net_device_ops *ops = dev->netdev_ops;
3689
3690                 if (ops->ndo_select_queue)
3691                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3692                                                             __netdev_pick_tx);
3693                 else
3694                         queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3695
3696                 queue_index = netdev_cap_txqueue(dev, queue_index);
3697         }
3698
3699         skb_set_queue_mapping(skb, queue_index);
3700         return netdev_get_tx_queue(dev, queue_index);
3701 }
3702
3703 /**
3704  *      __dev_queue_xmit - transmit a buffer
3705  *      @skb: buffer to transmit
3706  *      @sb_dev: suboordinate device used for L2 forwarding offload
3707  *
3708  *      Queue a buffer for transmission to a network device. The caller must
3709  *      have set the device and priority and built the buffer before calling
3710  *      this function. The function can be called from an interrupt.
3711  *
3712  *      A negative errno code is returned on a failure. A success does not
3713  *      guarantee the frame will be transmitted as it may be dropped due
3714  *      to congestion or traffic shaping.
3715  *
3716  * -----------------------------------------------------------------------------------
3717  *      I notice this method can also return errors from the queue disciplines,
3718  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3719  *      be positive.
3720  *
3721  *      Regardless of the return value, the skb is consumed, so it is currently
3722  *      difficult to retry a send to this method.  (You can bump the ref count
3723  *      before sending to hold a reference for retry if you are careful.)
3724  *
3725  *      When calling this method, interrupts MUST be enabled.  This is because
3726  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3727  *          --BLG
3728  */
3729 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3730 {
3731         struct net_device *dev = skb->dev;
3732         struct netdev_queue *txq;
3733         struct Qdisc *q;
3734         int rc = -ENOMEM;
3735         bool again = false;
3736
3737         skb_reset_mac_header(skb);
3738
3739         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3740                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3741
3742         /* Disable soft irqs for various locks below. Also
3743          * stops preemption for RCU.
3744          */
3745         rcu_read_lock_bh();
3746
3747         skb_update_prio(skb);
3748
3749         qdisc_pkt_len_init(skb);
3750 #ifdef CONFIG_NET_CLS_ACT
3751         skb->tc_at_ingress = 0;
3752 # ifdef CONFIG_NET_EGRESS
3753         if (static_branch_unlikely(&egress_needed_key)) {
3754                 skb = sch_handle_egress(skb, &rc, dev);
3755                 if (!skb)
3756                         goto out;
3757         }
3758 # endif
3759 #endif
3760         /* If device/qdisc don't need skb->dst, release it right now while
3761          * its hot in this cpu cache.
3762          */
3763         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3764                 skb_dst_drop(skb);
3765         else
3766                 skb_dst_force(skb);
3767
3768         txq = netdev_pick_tx(dev, skb, sb_dev);
3769         q = rcu_dereference_bh(txq->qdisc);
3770
3771         trace_net_dev_queue(skb);
3772         if (q->enqueue) {
3773                 rc = __dev_xmit_skb(skb, q, dev, txq);
3774                 goto out;
3775         }
3776
3777         /* The device has no queue. Common case for software devices:
3778          * loopback, all the sorts of tunnels...
3779
3780          * Really, it is unlikely that netif_tx_lock protection is necessary
3781          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3782          * counters.)
3783          * However, it is possible, that they rely on protection
3784          * made by us here.
3785
3786          * Check this and shot the lock. It is not prone from deadlocks.
3787          *Either shot noqueue qdisc, it is even simpler 8)
3788          */
3789         if (dev->flags & IFF_UP) {
3790                 int cpu = smp_processor_id(); /* ok because BHs are off */
3791
3792                 if (txq->xmit_lock_owner != cpu) {
3793                         if (unlikely(__this_cpu_read(xmit_recursion) >
3794                                      XMIT_RECURSION_LIMIT))
3795                                 goto recursion_alert;
3796
3797                         skb = validate_xmit_skb(skb, dev, &again);
3798                         if (!skb)
3799                                 goto out;
3800
3801                         HARD_TX_LOCK(dev, txq, cpu);
3802
3803                         if (!netif_xmit_stopped(txq)) {
3804                                 __this_cpu_inc(xmit_recursion);
3805                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3806                                 __this_cpu_dec(xmit_recursion);
3807                                 if (dev_xmit_complete(rc)) {
3808                                         HARD_TX_UNLOCK(dev, txq);
3809                                         goto out;
3810                                 }
3811                         }
3812                         HARD_TX_UNLOCK(dev, txq);
3813                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3814                                              dev->name);
3815                 } else {
3816                         /* Recursion is detected! It is possible,
3817                          * unfortunately
3818                          */
3819 recursion_alert:
3820                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3821                                              dev->name);
3822                 }
3823         }
3824
3825         rc = -ENETDOWN;
3826         rcu_read_unlock_bh();
3827
3828         atomic_long_inc(&dev->tx_dropped);
3829         kfree_skb_list(skb);
3830         return rc;
3831 out:
3832         rcu_read_unlock_bh();
3833         return rc;
3834 }
3835
3836 int dev_queue_xmit(struct sk_buff *skb)
3837 {
3838         return __dev_queue_xmit(skb, NULL);
3839 }
3840 EXPORT_SYMBOL(dev_queue_xmit);
3841
3842 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3843 {
3844         return __dev_queue_xmit(skb, sb_dev);
3845 }
3846 EXPORT_SYMBOL(dev_queue_xmit_accel);
3847
3848 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3849 {
3850         struct net_device *dev = skb->dev;
3851         struct sk_buff *orig_skb = skb;
3852         struct netdev_queue *txq;
3853         int ret = NETDEV_TX_BUSY;
3854         bool again = false;
3855
3856         if (unlikely(!netif_running(dev) ||
3857                      !netif_carrier_ok(dev)))
3858                 goto drop;
3859
3860         skb = validate_xmit_skb_list(skb, dev, &again);
3861         if (skb != orig_skb)
3862                 goto drop;
3863
3864         skb_set_queue_mapping(skb, queue_id);
3865         txq = skb_get_tx_queue(dev, skb);
3866
3867         local_bh_disable();
3868
3869         HARD_TX_LOCK(dev, txq, smp_processor_id());
3870         if (!netif_xmit_frozen_or_drv_stopped(txq))
3871                 ret = netdev_start_xmit(skb, dev, txq, false);
3872         HARD_TX_UNLOCK(dev, txq);
3873
3874         local_bh_enable();
3875
3876         if (!dev_xmit_complete(ret))
3877                 kfree_skb(skb);
3878
3879         return ret;
3880 drop:
3881         atomic_long_inc(&dev->tx_dropped);
3882         kfree_skb_list(skb);
3883         return NET_XMIT_DROP;
3884 }
3885 EXPORT_SYMBOL(dev_direct_xmit);
3886
3887 /*************************************************************************
3888  *                      Receiver routines
3889  *************************************************************************/
3890
3891 int netdev_max_backlog __read_mostly = 1000;
3892 EXPORT_SYMBOL(netdev_max_backlog);
3893
3894 int netdev_tstamp_prequeue __read_mostly = 1;
3895 int netdev_budget __read_mostly = 300;
3896 unsigned int __read_mostly netdev_budget_usecs = 2000;
3897 int weight_p __read_mostly = 64;           /* old backlog weight */
3898 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3899 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3900 int dev_rx_weight __read_mostly = 64;
3901 int dev_tx_weight __read_mostly = 64;
3902
3903 /* Called with irq disabled */
3904 static inline void ____napi_schedule(struct softnet_data *sd,
3905                                      struct napi_struct *napi)
3906 {
3907         list_add_tail(&napi->poll_list, &sd->poll_list);
3908         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3909 }
3910
3911 #ifdef CONFIG_RPS
3912
3913 /* One global table that all flow-based protocols share. */
3914 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3915 EXPORT_SYMBOL(rps_sock_flow_table);
3916 u32 rps_cpu_mask __read_mostly;
3917 EXPORT_SYMBOL(rps_cpu_mask);
3918
3919 struct static_key rps_needed __read_mostly;
3920 EXPORT_SYMBOL(rps_needed);
3921 struct static_key rfs_needed __read_mostly;
3922 EXPORT_SYMBOL(rfs_needed);
3923
3924 static struct rps_dev_flow *
3925 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3926             struct rps_dev_flow *rflow, u16 next_cpu)
3927 {
3928         if (next_cpu < nr_cpu_ids) {
3929 #ifdef CONFIG_RFS_ACCEL
3930                 struct netdev_rx_queue *rxqueue;
3931                 struct rps_dev_flow_table *flow_table;
3932                 struct rps_dev_flow *old_rflow;
3933                 u32 flow_id;
3934                 u16 rxq_index;
3935                 int rc;
3936
3937                 /* Should we steer this flow to a different hardware queue? */
3938                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3939                     !(dev->features & NETIF_F_NTUPLE))
3940                         goto out;
3941                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3942                 if (rxq_index == skb_get_rx_queue(skb))
3943                         goto out;
3944
3945                 rxqueue = dev->_rx + rxq_index;
3946                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3947                 if (!flow_table)
3948                         goto out;
3949                 flow_id = skb_get_hash(skb) & flow_table->mask;
3950                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3951                                                         rxq_index, flow_id);
3952                 if (rc < 0)
3953                         goto out;
3954                 old_rflow = rflow;
3955                 rflow = &flow_table->flows[flow_id];
3956                 rflow->filter = rc;
3957                 if (old_rflow->filter == rflow->filter)
3958                         old_rflow->filter = RPS_NO_FILTER;
3959         out:
3960 #endif
3961                 rflow->last_qtail =
3962                         per_cpu(softnet_data, next_cpu).input_queue_head;
3963         }
3964
3965         rflow->cpu = next_cpu;
3966         return rflow;
3967 }
3968
3969 /*
3970  * get_rps_cpu is called from netif_receive_skb and returns the target
3971  * CPU from the RPS map of the receiving queue for a given skb.
3972  * rcu_read_lock must be held on entry.
3973  */
3974 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3975                        struct rps_dev_flow **rflowp)
3976 {
3977         const struct rps_sock_flow_table *sock_flow_table;
3978         struct netdev_rx_queue *rxqueue = dev->_rx;
3979         struct rps_dev_flow_table *flow_table;
3980         struct rps_map *map;
3981         int cpu = -1;
3982         u32 tcpu;
3983         u32 hash;
3984
3985         if (skb_rx_queue_recorded(skb)) {
3986                 u16 index = skb_get_rx_queue(skb);
3987
3988                 if (unlikely(index >= dev->real_num_rx_queues)) {
3989                         WARN_ONCE(dev->real_num_rx_queues > 1,
3990                                   "%s received packet on queue %u, but number "
3991                                   "of RX queues is %u\n",
3992                                   dev->name, index, dev->real_num_rx_queues);
3993                         goto done;
3994                 }
3995                 rxqueue += index;
3996         }
3997
3998         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3999
4000         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4001         map = rcu_dereference(rxqueue->rps_map);
4002         if (!flow_table && !map)
4003                 goto done;
4004
4005         skb_reset_network_header(skb);
4006         hash = skb_get_hash(skb);
4007         if (!hash)
4008                 goto done;
4009
4010         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4011         if (flow_table && sock_flow_table) {
4012                 struct rps_dev_flow *rflow;
4013                 u32 next_cpu;
4014                 u32 ident;
4015
4016                 /* First check into global flow table if there is a match */
4017                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4018                 if ((ident ^ hash) & ~rps_cpu_mask)
4019                         goto try_rps;
4020
4021                 next_cpu = ident & rps_cpu_mask;
4022
4023                 /* OK, now we know there is a match,
4024                  * we can look at the local (per receive queue) flow table
4025                  */
4026                 rflow = &flow_table->flows[hash & flow_table->mask];
4027                 tcpu = rflow->cpu;
4028
4029                 /*
4030                  * If the desired CPU (where last recvmsg was done) is
4031                  * different from current CPU (one in the rx-queue flow
4032                  * table entry), switch if one of the following holds:
4033                  *   - Current CPU is unset (>= nr_cpu_ids).
4034                  *   - Current CPU is offline.
4035                  *   - The current CPU's queue tail has advanced beyond the
4036                  *     last packet that was enqueued using this table entry.
4037                  *     This guarantees that all previous packets for the flow
4038                  *     have been dequeued, thus preserving in order delivery.
4039                  */
4040                 if (unlikely(tcpu != next_cpu) &&
4041                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4042                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4043                       rflow->last_qtail)) >= 0)) {
4044                         tcpu = next_cpu;
4045                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4046                 }
4047
4048                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4049                         *rflowp = rflow;
4050                         cpu = tcpu;
4051                         goto done;
4052                 }
4053         }
4054
4055 try_rps:
4056
4057         if (map) {
4058                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4059                 if (cpu_online(tcpu)) {
4060                         cpu = tcpu;
4061                         goto done;
4062                 }
4063         }
4064
4065 done:
4066         return cpu;
4067 }
4068
4069 #ifdef CONFIG_RFS_ACCEL
4070
4071 /**
4072  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4073  * @dev: Device on which the filter was set
4074  * @rxq_index: RX queue index
4075  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4076  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4077  *
4078  * Drivers that implement ndo_rx_flow_steer() should periodically call
4079  * this function for each installed filter and remove the filters for
4080  * which it returns %true.
4081  */
4082 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4083                          u32 flow_id, u16 filter_id)
4084 {
4085         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4086         struct rps_dev_flow_table *flow_table;
4087         struct rps_dev_flow *rflow;
4088         bool expire = true;
4089         unsigned int cpu;
4090
4091         rcu_read_lock();
4092         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4093         if (flow_table && flow_id <= flow_table->mask) {
4094                 rflow = &flow_table->flows[flow_id];
4095                 cpu = READ_ONCE(rflow->cpu);
4096                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4097                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4098                            rflow->last_qtail) <
4099                      (int)(10 * flow_table->mask)))
4100                         expire = false;
4101         }
4102         rcu_read_unlock();
4103         return expire;
4104 }
4105 EXPORT_SYMBOL(rps_may_expire_flow);
4106
4107 #endif /* CONFIG_RFS_ACCEL */
4108
4109 /* Called from hardirq (IPI) context */
4110 static void rps_trigger_softirq(void *data)
4111 {
4112         struct softnet_data *sd = data;
4113
4114         ____napi_schedule(sd, &sd->backlog);
4115         sd->received_rps++;
4116 }
4117
4118 #endif /* CONFIG_RPS */
4119
4120 /*
4121  * Check if this softnet_data structure is another cpu one
4122  * If yes, queue it to our IPI list and return 1
4123  * If no, return 0
4124  */
4125 static int rps_ipi_queued(struct softnet_data *sd)
4126 {
4127 #ifdef CONFIG_RPS
4128         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4129
4130         if (sd != mysd) {
4131                 sd->rps_ipi_next = mysd->rps_ipi_list;
4132                 mysd->rps_ipi_list = sd;
4133
4134                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4135                 return 1;
4136         }
4137 #endif /* CONFIG_RPS */
4138         return 0;
4139 }
4140
4141 #ifdef CONFIG_NET_FLOW_LIMIT
4142 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4143 #endif
4144
4145 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4146 {
4147 #ifdef CONFIG_NET_FLOW_LIMIT
4148         struct sd_flow_limit *fl;
4149         struct softnet_data *sd;
4150         unsigned int old_flow, new_flow;
4151
4152         if (qlen < (netdev_max_backlog >> 1))
4153                 return false;
4154
4155         sd = this_cpu_ptr(&softnet_data);
4156
4157         rcu_read_lock();
4158         fl = rcu_dereference(sd->flow_limit);
4159         if (fl) {
4160                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4161                 old_flow = fl->history[fl->history_head];
4162                 fl->history[fl->history_head] = new_flow;
4163
4164                 fl->history_head++;
4165                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4166
4167                 if (likely(fl->buckets[old_flow]))
4168                         fl->buckets[old_flow]--;
4169
4170                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4171                         fl->count++;
4172                         rcu_read_unlock();
4173                         return true;
4174                 }
4175         }
4176         rcu_read_unlock();
4177 #endif
4178         return false;
4179 }
4180
4181 /*
4182  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4183  * queue (may be a remote CPU queue).
4184  */
4185 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4186                               unsigned int *qtail)
4187 {
4188         struct softnet_data *sd;
4189         unsigned long flags;
4190         unsigned int qlen;
4191
4192         sd = &per_cpu(softnet_data, cpu);
4193
4194         local_irq_save(flags);
4195
4196         rps_lock(sd);
4197         if (!netif_running(skb->dev))
4198                 goto drop;
4199         qlen = skb_queue_len(&sd->input_pkt_queue);
4200         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4201                 if (qlen) {
4202 enqueue:
4203                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4204                         input_queue_tail_incr_save(sd, qtail);
4205                         rps_unlock(sd);
4206                         local_irq_restore(flags);
4207                         return NET_RX_SUCCESS;
4208                 }
4209
4210                 /* Schedule NAPI for backlog device
4211                  * We can use non atomic operation since we own the queue lock
4212                  */
4213                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4214                         if (!rps_ipi_queued(sd))
4215                                 ____napi_schedule(sd, &sd->backlog);
4216                 }
4217                 goto enqueue;
4218         }
4219
4220 drop:
4221         sd->dropped++;
4222         rps_unlock(sd);
4223
4224         local_irq_restore(flags);
4225
4226         atomic_long_inc(&skb->dev->rx_dropped);
4227         kfree_skb(skb);
4228         return NET_RX_DROP;
4229 }
4230
4231 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4232 {
4233         struct net_device *dev = skb->dev;
4234         struct netdev_rx_queue *rxqueue;
4235
4236         rxqueue = dev->_rx;
4237
4238         if (skb_rx_queue_recorded(skb)) {
4239                 u16 index = skb_get_rx_queue(skb);
4240
4241                 if (unlikely(index >= dev->real_num_rx_queues)) {
4242                         WARN_ONCE(dev->real_num_rx_queues > 1,
4243                                   "%s received packet on queue %u, but number "
4244                                   "of RX queues is %u\n",
4245                                   dev->name, index, dev->real_num_rx_queues);
4246
4247                         return rxqueue; /* Return first rxqueue */
4248                 }
4249                 rxqueue += index;
4250         }
4251         return rxqueue;
4252 }
4253
4254 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4255                                      struct xdp_buff *xdp,
4256                                      struct bpf_prog *xdp_prog)
4257 {
4258         struct netdev_rx_queue *rxqueue;
4259         void *orig_data, *orig_data_end;
4260         u32 metalen, act = XDP_DROP;
4261         __be16 orig_eth_type;
4262         struct ethhdr *eth;
4263         bool orig_bcast;
4264         int hlen, off;
4265         u32 mac_len;
4266
4267         /* Reinjected packets coming from act_mirred or similar should
4268          * not get XDP generic processing.
4269          */
4270         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4271                 return XDP_PASS;
4272
4273         /* XDP packets must be linear and must have sufficient headroom
4274          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4275          * native XDP provides, thus we need to do it here as well.
4276          */
4277         if (skb_is_nonlinear(skb) ||
4278             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4279                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4280                 int troom = skb->tail + skb->data_len - skb->end;
4281
4282                 /* In case we have to go down the path and also linearize,
4283                  * then lets do the pskb_expand_head() work just once here.
4284                  */
4285                 if (pskb_expand_head(skb,
4286                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4287                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4288                         goto do_drop;
4289                 if (skb_linearize(skb))
4290                         goto do_drop;
4291         }
4292
4293         /* The XDP program wants to see the packet starting at the MAC
4294          * header.
4295          */
4296         mac_len = skb->data - skb_mac_header(skb);
4297         hlen = skb_headlen(skb) + mac_len;
4298         xdp->data = skb->data - mac_len;
4299         xdp->data_meta = xdp->data;
4300         xdp->data_end = xdp->data + hlen;
4301         xdp->data_hard_start = skb->data - skb_headroom(skb);
4302         orig_data_end = xdp->data_end;
4303         orig_data = xdp->data;
4304         eth = (struct ethhdr *)xdp->data;
4305         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4306         orig_eth_type = eth->h_proto;
4307
4308         rxqueue = netif_get_rxqueue(skb);
4309         xdp->rxq = &rxqueue->xdp_rxq;
4310
4311         act = bpf_prog_run_xdp(xdp_prog, xdp);
4312
4313         off = xdp->data - orig_data;
4314         if (off > 0)
4315                 __skb_pull(skb, off);
4316         else if (off < 0)
4317                 __skb_push(skb, -off);
4318         skb->mac_header += off;
4319
4320         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4321          * pckt.
4322          */
4323         off = orig_data_end - xdp->data_end;
4324         if (off != 0) {
4325                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4326                 skb->len -= off;
4327
4328         }
4329
4330         /* check if XDP changed eth hdr such SKB needs update */
4331         eth = (struct ethhdr *)xdp->data;
4332         if ((orig_eth_type != eth->h_proto) ||
4333             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4334                 __skb_push(skb, ETH_HLEN);
4335                 skb->protocol = eth_type_trans(skb, skb->dev);
4336         }
4337
4338         switch (act) {
4339         case XDP_REDIRECT:
4340         case XDP_TX:
4341                 __skb_push(skb, mac_len);
4342                 break;
4343         case XDP_PASS:
4344                 metalen = xdp->data - xdp->data_meta;
4345                 if (metalen)
4346                         skb_metadata_set(skb, metalen);
4347                 break;
4348         default:
4349                 bpf_warn_invalid_xdp_action(act);
4350                 /* fall through */
4351         case XDP_ABORTED:
4352                 trace_xdp_exception(skb->dev, xdp_prog, act);
4353                 /* fall through */
4354         case XDP_DROP:
4355         do_drop:
4356                 kfree_skb(skb);
4357                 break;
4358         }
4359
4360         return act;
4361 }
4362
4363 /* When doing generic XDP we have to bypass the qdisc layer and the
4364  * network taps in order to match in-driver-XDP behavior.
4365  */
4366 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4367 {
4368         struct net_device *dev = skb->dev;
4369         struct netdev_queue *txq;
4370         bool free_skb = true;
4371         int cpu, rc;
4372
4373         txq = netdev_pick_tx(dev, skb, NULL);
4374         cpu = smp_processor_id();
4375         HARD_TX_LOCK(dev, txq, cpu);
4376         if (!netif_xmit_stopped(txq)) {
4377                 rc = netdev_start_xmit(skb, dev, txq, 0);
4378                 if (dev_xmit_complete(rc))
4379                         free_skb = false;
4380         }
4381         HARD_TX_UNLOCK(dev, txq);
4382         if (free_skb) {
4383                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4384                 kfree_skb(skb);
4385         }
4386 }
4387 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4388
4389 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4390
4391 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4392 {
4393         if (xdp_prog) {
4394                 struct xdp_buff xdp;
4395                 u32 act;
4396                 int err;
4397
4398                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4399                 if (act != XDP_PASS) {
4400                         switch (act) {
4401                         case XDP_REDIRECT:
4402                                 err = xdp_do_generic_redirect(skb->dev, skb,
4403                                                               &xdp, xdp_prog);
4404                                 if (err)
4405                                         goto out_redir;
4406                                 break;
4407                         case XDP_TX:
4408                                 generic_xdp_tx(skb, xdp_prog);
4409                                 break;
4410                         }
4411                         return XDP_DROP;
4412                 }
4413         }
4414         return XDP_PASS;
4415 out_redir:
4416         kfree_skb(skb);
4417         return XDP_DROP;
4418 }
4419 EXPORT_SYMBOL_GPL(do_xdp_generic);
4420
4421 static int netif_rx_internal(struct sk_buff *skb)
4422 {
4423         int ret;
4424
4425         net_timestamp_check(netdev_tstamp_prequeue, skb);
4426
4427         trace_netif_rx(skb);
4428
4429         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4430                 int ret;
4431
4432                 preempt_disable();
4433                 rcu_read_lock();
4434                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4435                 rcu_read_unlock();
4436                 preempt_enable();
4437
4438                 /* Consider XDP consuming the packet a success from
4439                  * the netdev point of view we do not want to count
4440                  * this as an error.
4441                  */
4442                 if (ret != XDP_PASS)
4443                         return NET_RX_SUCCESS;
4444         }
4445
4446 #ifdef CONFIG_RPS
4447         if (static_key_false(&rps_needed)) {
4448                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4449                 int cpu;
4450
4451                 preempt_disable();
4452                 rcu_read_lock();
4453
4454                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4455                 if (cpu < 0)
4456                         cpu = smp_processor_id();
4457
4458                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4459
4460                 rcu_read_unlock();
4461                 preempt_enable();
4462         } else
4463 #endif
4464         {
4465                 unsigned int qtail;
4466
4467                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4468                 put_cpu();
4469         }
4470         return ret;
4471 }
4472
4473 /**
4474  *      netif_rx        -       post buffer to the network code
4475  *      @skb: buffer to post
4476  *
4477  *      This function receives a packet from a device driver and queues it for
4478  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4479  *      may be dropped during processing for congestion control or by the
4480  *      protocol layers.
4481  *
4482  *      return values:
4483  *      NET_RX_SUCCESS  (no congestion)
4484  *      NET_RX_DROP     (packet was dropped)
4485  *
4486  */
4487
4488 int netif_rx(struct sk_buff *skb)
4489 {
4490         trace_netif_rx_entry(skb);
4491
4492         return netif_rx_internal(skb);
4493 }
4494 EXPORT_SYMBOL(netif_rx);
4495
4496 int netif_rx_ni(struct sk_buff *skb)
4497 {
4498         int err;
4499
4500         trace_netif_rx_ni_entry(skb);
4501
4502         preempt_disable();
4503         err = netif_rx_internal(skb);
4504         if (local_softirq_pending())
4505                 do_softirq();
4506         preempt_enable();
4507
4508         return err;
4509 }
4510 EXPORT_SYMBOL(netif_rx_ni);
4511
4512 static __latent_entropy void net_tx_action(struct softirq_action *h)
4513 {
4514         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4515
4516         if (sd->completion_queue) {
4517                 struct sk_buff *clist;
4518
4519                 local_irq_disable();
4520                 clist = sd->completion_queue;
4521                 sd->completion_queue = NULL;
4522                 local_irq_enable();
4523
4524                 while (clist) {
4525                         struct sk_buff *skb = clist;
4526
4527                         clist = clist->next;
4528
4529                         WARN_ON(refcount_read(&skb->users));
4530                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4531                                 trace_consume_skb(skb);
4532                         else
4533                                 trace_kfree_skb(skb, net_tx_action);
4534
4535                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4536                                 __kfree_skb(skb);
4537                         else
4538                                 __kfree_skb_defer(skb);
4539                 }
4540
4541                 __kfree_skb_flush();
4542         }
4543
4544         if (sd->output_queue) {
4545                 struct Qdisc *head;
4546
4547                 local_irq_disable();
4548                 head = sd->output_queue;
4549                 sd->output_queue = NULL;
4550                 sd->output_queue_tailp = &sd->output_queue;
4551                 local_irq_enable();
4552
4553                 while (head) {
4554                         struct Qdisc *q = head;
4555                         spinlock_t *root_lock = NULL;
4556
4557                         head = head->next_sched;
4558
4559                         if (!(q->flags & TCQ_F_NOLOCK)) {
4560                                 root_lock = qdisc_lock(q);
4561                                 spin_lock(root_lock);
4562                         }
4563                         /* We need to make sure head->next_sched is read
4564                          * before clearing __QDISC_STATE_SCHED
4565                          */
4566                         smp_mb__before_atomic();
4567                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4568                         qdisc_run(q);
4569                         if (root_lock)
4570                                 spin_unlock(root_lock);
4571                 }
4572         }
4573
4574         xfrm_dev_backlog(sd);
4575 }
4576
4577 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4578 /* This hook is defined here for ATM LANE */
4579 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4580                              unsigned char *addr) __read_mostly;
4581 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4582 #endif
4583
4584 static inline struct sk_buff *
4585 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4586                    struct net_device *orig_dev)
4587 {
4588 #ifdef CONFIG_NET_CLS_ACT
4589         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4590         struct tcf_result cl_res;
4591
4592         /* If there's at least one ingress present somewhere (so
4593          * we get here via enabled static key), remaining devices
4594          * that are not configured with an ingress qdisc will bail
4595          * out here.
4596          */
4597         if (!miniq)
4598                 return skb;
4599
4600         if (*pt_prev) {
4601                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4602                 *pt_prev = NULL;
4603         }
4604
4605         qdisc_skb_cb(skb)->pkt_len = skb->len;
4606         skb->tc_at_ingress = 1;
4607         mini_qdisc_bstats_cpu_update(miniq, skb);
4608
4609         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4610         case TC_ACT_OK:
4611         case TC_ACT_RECLASSIFY:
4612                 skb->tc_index = TC_H_MIN(cl_res.classid);
4613                 break;
4614         case TC_ACT_SHOT:
4615                 mini_qdisc_qstats_cpu_drop(miniq);
4616                 kfree_skb(skb);
4617                 return NULL;
4618         case TC_ACT_STOLEN:
4619         case TC_ACT_QUEUED:
4620         case TC_ACT_TRAP:
4621                 consume_skb(skb);
4622                 return NULL;
4623         case TC_ACT_REDIRECT:
4624                 /* skb_mac_header check was done by cls/act_bpf, so
4625                  * we can safely push the L2 header back before
4626                  * redirecting to another netdev
4627                  */
4628                 __skb_push(skb, skb->mac_len);
4629                 skb_do_redirect(skb);
4630                 return NULL;
4631         case TC_ACT_REINSERT:
4632                 /* this does not scrub the packet, and updates stats on error */
4633                 skb_tc_reinsert(skb, &cl_res);
4634                 return NULL;
4635         default:
4636                 break;
4637         }
4638 #endif /* CONFIG_NET_CLS_ACT */
4639         return skb;
4640 }
4641
4642 /**
4643  *      netdev_is_rx_handler_busy - check if receive handler is registered
4644  *      @dev: device to check
4645  *
4646  *      Check if a receive handler is already registered for a given device.
4647  *      Return true if there one.
4648  *
4649  *      The caller must hold the rtnl_mutex.
4650  */
4651 bool netdev_is_rx_handler_busy(struct net_device *dev)
4652 {
4653         ASSERT_RTNL();
4654         return dev && rtnl_dereference(dev->rx_handler);
4655 }
4656 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4657
4658 /**
4659  *      netdev_rx_handler_register - register receive handler
4660  *      @dev: device to register a handler for
4661  *      @rx_handler: receive handler to register
4662  *      @rx_handler_data: data pointer that is used by rx handler
4663  *
4664  *      Register a receive handler for a device. This handler will then be
4665  *      called from __netif_receive_skb. A negative errno code is returned
4666  *      on a failure.
4667  *
4668  *      The caller must hold the rtnl_mutex.
4669  *
4670  *      For a general description of rx_handler, see enum rx_handler_result.
4671  */
4672 int netdev_rx_handler_register(struct net_device *dev,
4673                                rx_handler_func_t *rx_handler,
4674                                void *rx_handler_data)
4675 {
4676         if (netdev_is_rx_handler_busy(dev))
4677                 return -EBUSY;
4678
4679         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4680                 return -EINVAL;
4681
4682         /* Note: rx_handler_data must be set before rx_handler */
4683         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4684         rcu_assign_pointer(dev->rx_handler, rx_handler);
4685
4686         return 0;
4687 }
4688 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4689
4690 /**
4691  *      netdev_rx_handler_unregister - unregister receive handler
4692  *      @dev: device to unregister a handler from
4693  *
4694  *      Unregister a receive handler from a device.
4695  *
4696  *      The caller must hold the rtnl_mutex.
4697  */
4698 void netdev_rx_handler_unregister(struct net_device *dev)
4699 {
4700
4701         ASSERT_RTNL();
4702         RCU_INIT_POINTER(dev->rx_handler, NULL);
4703         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4704          * section has a guarantee to see a non NULL rx_handler_data
4705          * as well.
4706          */
4707         synchronize_net();
4708         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4709 }
4710 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4711
4712 /*
4713  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4714  * the special handling of PFMEMALLOC skbs.
4715  */
4716 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4717 {
4718         switch (skb->protocol) {
4719         case htons(ETH_P_ARP):
4720         case htons(ETH_P_IP):
4721         case htons(ETH_P_IPV6):
4722         case htons(ETH_P_8021Q):
4723         case htons(ETH_P_8021AD):
4724                 return true;
4725         default:
4726                 return false;
4727         }
4728 }
4729
4730 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4731                              int *ret, struct net_device *orig_dev)
4732 {
4733 #ifdef CONFIG_NETFILTER_INGRESS
4734         if (nf_hook_ingress_active(skb)) {
4735                 int ingress_retval;
4736
4737                 if (*pt_prev) {
4738                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4739                         *pt_prev = NULL;
4740                 }
4741
4742                 rcu_read_lock();
4743                 ingress_retval = nf_hook_ingress(skb);
4744                 rcu_read_unlock();
4745                 return ingress_retval;
4746         }
4747 #endif /* CONFIG_NETFILTER_INGRESS */
4748         return 0;
4749 }
4750
4751 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4752                                     struct packet_type **ppt_prev)
4753 {
4754         struct packet_type *ptype, *pt_prev;
4755         rx_handler_func_t *rx_handler;
4756         struct net_device *orig_dev;
4757         bool deliver_exact = false;
4758         int ret = NET_RX_DROP;
4759         __be16 type;
4760
4761         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4762
4763         trace_netif_receive_skb(skb);
4764
4765         orig_dev = skb->dev;
4766
4767         skb_reset_network_header(skb);
4768         if (!skb_transport_header_was_set(skb))
4769                 skb_reset_transport_header(skb);
4770         skb_reset_mac_len(skb);
4771
4772         pt_prev = NULL;
4773
4774 another_round:
4775         skb->skb_iif = skb->dev->ifindex;
4776
4777         __this_cpu_inc(softnet_data.processed);
4778
4779         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4780             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4781                 skb = skb_vlan_untag(skb);
4782                 if (unlikely(!skb))
4783                         goto out;
4784         }
4785
4786         if (skb_skip_tc_classify(skb))
4787                 goto skip_classify;
4788
4789         if (pfmemalloc)
4790                 goto skip_taps;
4791
4792         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4793                 if (pt_prev)
4794                         ret = deliver_skb(skb, pt_prev, orig_dev);
4795                 pt_prev = ptype;
4796         }
4797
4798         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4799                 if (pt_prev)
4800                         ret = deliver_skb(skb, pt_prev, orig_dev);
4801                 pt_prev = ptype;
4802         }
4803
4804 skip_taps:
4805 #ifdef CONFIG_NET_INGRESS
4806         if (static_branch_unlikely(&ingress_needed_key)) {
4807                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4808                 if (!skb)
4809                         goto out;
4810
4811                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4812                         goto out;
4813         }
4814 #endif
4815         skb_reset_tc(skb);
4816 skip_classify:
4817         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4818                 goto drop;
4819
4820         if (skb_vlan_tag_present(skb)) {
4821                 if (pt_prev) {
4822                         ret = deliver_skb(skb, pt_prev, orig_dev);
4823                         pt_prev = NULL;
4824                 }
4825                 if (vlan_do_receive(&skb))
4826                         goto another_round;
4827                 else if (unlikely(!skb))
4828                         goto out;
4829         }
4830
4831         rx_handler = rcu_dereference(skb->dev->rx_handler);
4832         if (rx_handler) {
4833                 if (pt_prev) {
4834                         ret = deliver_skb(skb, pt_prev, orig_dev);
4835                         pt_prev = NULL;
4836                 }
4837                 switch (rx_handler(&skb)) {
4838                 case RX_HANDLER_CONSUMED:
4839                         ret = NET_RX_SUCCESS;
4840                         goto out;
4841                 case RX_HANDLER_ANOTHER:
4842                         goto another_round;
4843                 case RX_HANDLER_EXACT:
4844                         deliver_exact = true;
4845                 case RX_HANDLER_PASS:
4846                         break;
4847                 default:
4848                         BUG();
4849                 }
4850         }
4851
4852         if (unlikely(skb_vlan_tag_present(skb))) {
4853                 if (skb_vlan_tag_get_id(skb))
4854                         skb->pkt_type = PACKET_OTHERHOST;
4855                 /* Note: we might in the future use prio bits
4856                  * and set skb->priority like in vlan_do_receive()
4857                  * For the time being, just ignore Priority Code Point
4858                  */
4859                 skb->vlan_tci = 0;
4860         }
4861
4862         type = skb->protocol;
4863
4864         /* deliver only exact match when indicated */
4865         if (likely(!deliver_exact)) {
4866                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4867                                        &ptype_base[ntohs(type) &
4868                                                    PTYPE_HASH_MASK]);
4869         }
4870
4871         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4872                                &orig_dev->ptype_specific);
4873
4874         if (unlikely(skb->dev != orig_dev)) {
4875                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4876                                        &skb->dev->ptype_specific);
4877         }
4878
4879         if (pt_prev) {
4880                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4881                         goto drop;
4882                 *ppt_prev = pt_prev;
4883         } else {
4884 drop:
4885                 if (!deliver_exact)
4886                         atomic_long_inc(&skb->dev->rx_dropped);
4887                 else
4888                         atomic_long_inc(&skb->dev->rx_nohandler);
4889                 kfree_skb(skb);
4890                 /* Jamal, now you will not able to escape explaining
4891                  * me how you were going to use this. :-)
4892                  */
4893                 ret = NET_RX_DROP;
4894         }
4895
4896 out:
4897         return ret;
4898 }
4899
4900 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4901 {
4902         struct net_device *orig_dev = skb->dev;
4903         struct packet_type *pt_prev = NULL;
4904         int ret;
4905
4906         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4907         if (pt_prev)
4908                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4909         return ret;
4910 }
4911
4912 /**
4913  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4914  *      @skb: buffer to process
4915  *
4916  *      More direct receive version of netif_receive_skb().  It should
4917  *      only be used by callers that have a need to skip RPS and Generic XDP.
4918  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4919  *
4920  *      This function may only be called from softirq context and interrupts
4921  *      should be enabled.
4922  *
4923  *      Return values (usually ignored):
4924  *      NET_RX_SUCCESS: no congestion
4925  *      NET_RX_DROP: packet was dropped
4926  */
4927 int netif_receive_skb_core(struct sk_buff *skb)
4928 {
4929         int ret;
4930
4931         rcu_read_lock();
4932         ret = __netif_receive_skb_one_core(skb, false);
4933         rcu_read_unlock();
4934
4935         return ret;
4936 }
4937 EXPORT_SYMBOL(netif_receive_skb_core);
4938
4939 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4940                                                   struct packet_type *pt_prev,
4941                                                   struct net_device *orig_dev)
4942 {
4943         struct sk_buff *skb, *next;
4944
4945         if (!pt_prev)
4946                 return;
4947         if (list_empty(head))
4948                 return;
4949         if (pt_prev->list_func != NULL)
4950                 pt_prev->list_func(head, pt_prev, orig_dev);
4951         else
4952                 list_for_each_entry_safe(skb, next, head, list)
4953                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4954 }
4955
4956 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4957 {
4958         /* Fast-path assumptions:
4959          * - There is no RX handler.
4960          * - Only one packet_type matches.
4961          * If either of these fails, we will end up doing some per-packet
4962          * processing in-line, then handling the 'last ptype' for the whole
4963          * sublist.  This can't cause out-of-order delivery to any single ptype,
4964          * because the 'last ptype' must be constant across the sublist, and all
4965          * other ptypes are handled per-packet.
4966          */
4967         /* Current (common) ptype of sublist */
4968         struct packet_type *pt_curr = NULL;
4969         /* Current (common) orig_dev of sublist */
4970         struct net_device *od_curr = NULL;
4971         struct list_head sublist;
4972         struct sk_buff *skb, *next;
4973
4974         INIT_LIST_HEAD(&sublist);
4975         list_for_each_entry_safe(skb, next, head, list) {
4976                 struct net_device *orig_dev = skb->dev;
4977                 struct packet_type *pt_prev = NULL;
4978
4979                 list_del(&skb->list);
4980                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4981                 if (!pt_prev)
4982                         continue;
4983                 if (pt_curr != pt_prev || od_curr != orig_dev) {
4984                         /* dispatch old sublist */
4985                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4986                         /* start new sublist */
4987                         INIT_LIST_HEAD(&sublist);
4988                         pt_curr = pt_prev;
4989                         od_curr = orig_dev;
4990                 }
4991                 list_add_tail(&skb->list, &sublist);
4992         }
4993
4994         /* dispatch final sublist */
4995         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4996 }
4997
4998 static int __netif_receive_skb(struct sk_buff *skb)
4999 {
5000         int ret;
5001
5002         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5003                 unsigned int noreclaim_flag;
5004
5005                 /*
5006                  * PFMEMALLOC skbs are special, they should
5007                  * - be delivered to SOCK_MEMALLOC sockets only
5008                  * - stay away from userspace
5009                  * - have bounded memory usage
5010                  *
5011                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5012                  * context down to all allocation sites.
5013                  */
5014                 noreclaim_flag = memalloc_noreclaim_save();
5015                 ret = __netif_receive_skb_one_core(skb, true);
5016                 memalloc_noreclaim_restore(noreclaim_flag);
5017         } else
5018                 ret = __netif_receive_skb_one_core(skb, false);
5019
5020         return ret;
5021 }
5022
5023 static void __netif_receive_skb_list(struct list_head *head)
5024 {
5025         unsigned long noreclaim_flag = 0;
5026         struct sk_buff *skb, *next;
5027         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5028
5029         list_for_each_entry_safe(skb, next, head, list) {
5030                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5031                         struct list_head sublist;
5032
5033                         /* Handle the previous sublist */
5034                         list_cut_before(&sublist, head, &skb->list);
5035                         if (!list_empty(&sublist))
5036                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5037                         pfmemalloc = !pfmemalloc;
5038                         /* See comments in __netif_receive_skb */
5039                         if (pfmemalloc)
5040                                 noreclaim_flag = memalloc_noreclaim_save();
5041                         else
5042                                 memalloc_noreclaim_restore(noreclaim_flag);
5043                 }
5044         }
5045         /* Handle the remaining sublist */
5046         if (!list_empty(head))
5047                 __netif_receive_skb_list_core(head, pfmemalloc);
5048         /* Restore pflags */
5049         if (pfmemalloc)
5050                 memalloc_noreclaim_restore(noreclaim_flag);
5051 }
5052
5053 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5054 {
5055         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5056         struct bpf_prog *new = xdp->prog;
5057         int ret = 0;
5058
5059         switch (xdp->command) {
5060         case XDP_SETUP_PROG:
5061                 rcu_assign_pointer(dev->xdp_prog, new);
5062                 if (old)
5063                         bpf_prog_put(old);
5064
5065                 if (old && !new) {
5066                         static_branch_dec(&generic_xdp_needed_key);
5067                 } else if (new && !old) {
5068                         static_branch_inc(&generic_xdp_needed_key);
5069                         dev_disable_lro(dev);
5070                         dev_disable_gro_hw(dev);
5071                 }
5072                 break;
5073
5074         case XDP_QUERY_PROG:
5075                 xdp->prog_id = old ? old->aux->id : 0;
5076                 break;
5077
5078         default:
5079                 ret = -EINVAL;
5080                 break;
5081         }
5082
5083         return ret;
5084 }
5085
5086 static int netif_receive_skb_internal(struct sk_buff *skb)
5087 {
5088         int ret;
5089
5090         net_timestamp_check(netdev_tstamp_prequeue, skb);
5091
5092         if (skb_defer_rx_timestamp(skb))
5093                 return NET_RX_SUCCESS;
5094
5095         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5096                 int ret;
5097
5098                 preempt_disable();
5099                 rcu_read_lock();
5100                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5101                 rcu_read_unlock();
5102                 preempt_enable();
5103
5104                 if (ret != XDP_PASS)
5105                         return NET_RX_DROP;
5106         }
5107
5108         rcu_read_lock();
5109 #ifdef CONFIG_RPS
5110         if (static_key_false(&rps_needed)) {
5111                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5112                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5113
5114                 if (cpu >= 0) {
5115                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5116                         rcu_read_unlock();
5117                         return ret;
5118                 }
5119         }
5120 #endif
5121         ret = __netif_receive_skb(skb);
5122         rcu_read_unlock();
5123         return ret;
5124 }
5125
5126 static void netif_receive_skb_list_internal(struct list_head *head)
5127 {
5128         struct bpf_prog *xdp_prog = NULL;
5129         struct sk_buff *skb, *next;
5130         struct list_head sublist;
5131
5132         INIT_LIST_HEAD(&sublist);
5133         list_for_each_entry_safe(skb, next, head, list) {
5134                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5135                 list_del(&skb->list);
5136                 if (!skb_defer_rx_timestamp(skb))
5137                         list_add_tail(&skb->list, &sublist);
5138         }
5139         list_splice_init(&sublist, head);
5140
5141         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5142                 preempt_disable();
5143                 rcu_read_lock();
5144                 list_for_each_entry_safe(skb, next, head, list) {
5145                         xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5146                         list_del(&skb->list);
5147                         if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5148                                 list_add_tail(&skb->list, &sublist);
5149                 }
5150                 rcu_read_unlock();
5151                 preempt_enable();
5152                 /* Put passed packets back on main list */
5153                 list_splice_init(&sublist, head);
5154         }
5155
5156         rcu_read_lock();
5157 #ifdef CONFIG_RPS
5158         if (static_key_false(&rps_needed)) {
5159                 list_for_each_entry_safe(skb, next, head, list) {
5160                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5161                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5162
5163                         if (cpu >= 0) {
5164                                 /* Will be handled, remove from list */
5165                                 list_del(&skb->list);
5166                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5167                         }
5168                 }
5169         }
5170 #endif
5171         __netif_receive_skb_list(head);
5172         rcu_read_unlock();
5173 }
5174
5175 /**
5176  *      netif_receive_skb - process receive buffer from network
5177  *      @skb: buffer to process
5178  *
5179  *      netif_receive_skb() is the main receive data processing function.
5180  *      It always succeeds. The buffer may be dropped during processing
5181  *      for congestion control or by the protocol layers.
5182  *
5183  *      This function may only be called from softirq context and interrupts
5184  *      should be enabled.
5185  *
5186  *      Return values (usually ignored):
5187  *      NET_RX_SUCCESS: no congestion
5188  *      NET_RX_DROP: packet was dropped
5189  */
5190 int netif_receive_skb(struct sk_buff *skb)
5191 {
5192         trace_netif_receive_skb_entry(skb);
5193
5194         return netif_receive_skb_internal(skb);
5195 }
5196 EXPORT_SYMBOL(netif_receive_skb);
5197
5198 /**
5199  *      netif_receive_skb_list - process many receive buffers from network
5200  *      @head: list of skbs to process.
5201  *
5202  *      Since return value of netif_receive_skb() is normally ignored, and
5203  *      wouldn't be meaningful for a list, this function returns void.
5204  *
5205  *      This function may only be called from softirq context and interrupts
5206  *      should be enabled.
5207  */
5208 void netif_receive_skb_list(struct list_head *head)
5209 {
5210         struct sk_buff *skb;
5211
5212         if (list_empty(head))
5213                 return;
5214         list_for_each_entry(skb, head, list)
5215                 trace_netif_receive_skb_list_entry(skb);
5216         netif_receive_skb_list_internal(head);
5217 }
5218 EXPORT_SYMBOL(netif_receive_skb_list);
5219
5220 DEFINE_PER_CPU(struct work_struct, flush_works);
5221
5222 /* Network device is going away, flush any packets still pending */
5223 static void flush_backlog(struct work_struct *work)
5224 {
5225         struct sk_buff *skb, *tmp;
5226         struct softnet_data *sd;
5227
5228         local_bh_disable();
5229         sd = this_cpu_ptr(&softnet_data);
5230
5231         local_irq_disable();
5232         rps_lock(sd);
5233         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5234                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5235                         __skb_unlink(skb, &sd->input_pkt_queue);
5236                         kfree_skb(skb);
5237                         input_queue_head_incr(sd);
5238                 }
5239         }
5240         rps_unlock(sd);
5241         local_irq_enable();
5242
5243         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5244                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5245                         __skb_unlink(skb, &sd->process_queue);
5246                         kfree_skb(skb);
5247                         input_queue_head_incr(sd);
5248                 }
5249         }
5250         local_bh_enable();
5251 }
5252
5253 static void flush_all_backlogs(void)
5254 {
5255         unsigned int cpu;
5256
5257         get_online_cpus();
5258
5259         for_each_online_cpu(cpu)
5260                 queue_work_on(cpu, system_highpri_wq,
5261                               per_cpu_ptr(&flush_works, cpu));
5262
5263         for_each_online_cpu(cpu)
5264                 flush_work(per_cpu_ptr(&flush_works, cpu));
5265
5266         put_online_cpus();
5267 }
5268
5269 static int napi_gro_complete(struct sk_buff *skb)
5270 {
5271         struct packet_offload *ptype;
5272         __be16 type = skb->protocol;
5273         struct list_head *head = &offload_base;
5274         int err = -ENOENT;
5275
5276         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5277
5278         if (NAPI_GRO_CB(skb)->count == 1) {
5279                 skb_shinfo(skb)->gso_size = 0;
5280                 goto out;
5281         }
5282
5283         rcu_read_lock();
5284         list_for_each_entry_rcu(ptype, head, list) {
5285                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5286                         continue;
5287
5288                 err = ptype->callbacks.gro_complete(skb, 0);
5289                 break;
5290         }
5291         rcu_read_unlock();
5292
5293         if (err) {
5294                 WARN_ON(&ptype->list == head);
5295                 kfree_skb(skb);
5296                 return NET_RX_SUCCESS;
5297         }
5298
5299 out:
5300         return netif_receive_skb_internal(skb);
5301 }
5302
5303 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5304                                    bool flush_old)
5305 {
5306         struct list_head *head = &napi->gro_hash[index].list;
5307         struct sk_buff *skb, *p;
5308
5309         list_for_each_entry_safe_reverse(skb, p, head, list) {
5310                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5311                         return;
5312                 skb_list_del_init(skb);
5313                 napi_gro_complete(skb);
5314                 napi->gro_hash[index].count--;
5315         }
5316
5317         if (!napi->gro_hash[index].count)
5318                 __clear_bit(index, &napi->gro_bitmask);
5319 }
5320
5321 /* napi->gro_hash[].list contains packets ordered by age.
5322  * youngest packets at the head of it.
5323  * Complete skbs in reverse order to reduce latencies.
5324  */
5325 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5326 {
5327         u32 i;
5328
5329         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5330                 if (test_bit(i, &napi->gro_bitmask))
5331                         __napi_gro_flush_chain(napi, i, flush_old);
5332         }
5333 }
5334 EXPORT_SYMBOL(napi_gro_flush);
5335
5336 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5337                                           struct sk_buff *skb)
5338 {
5339         unsigned int maclen = skb->dev->hard_header_len;
5340         u32 hash = skb_get_hash_raw(skb);
5341         struct list_head *head;
5342         struct sk_buff *p;
5343
5344         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5345         list_for_each_entry(p, head, list) {
5346                 unsigned long diffs;
5347
5348                 NAPI_GRO_CB(p)->flush = 0;
5349
5350                 if (hash != skb_get_hash_raw(p)) {
5351                         NAPI_GRO_CB(p)->same_flow = 0;
5352                         continue;
5353                 }
5354
5355                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5356                 diffs |= p->vlan_tci ^ skb->vlan_tci;
5357                 diffs |= skb_metadata_dst_cmp(p, skb);
5358                 diffs |= skb_metadata_differs(p, skb);
5359                 if (maclen == ETH_HLEN)
5360                         diffs |= compare_ether_header(skb_mac_header(p),
5361                                                       skb_mac_header(skb));
5362                 else if (!diffs)
5363                         diffs = memcmp(skb_mac_header(p),
5364                                        skb_mac_header(skb),
5365                                        maclen);
5366                 NAPI_GRO_CB(p)->same_flow = !diffs;
5367         }
5368
5369         return head;
5370 }
5371
5372 static void skb_gro_reset_offset(struct sk_buff *skb)
5373 {
5374         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5375         const skb_frag_t *frag0 = &pinfo->frags[0];
5376
5377         NAPI_GRO_CB(skb)->data_offset = 0;
5378         NAPI_GRO_CB(skb)->frag0 = NULL;
5379         NAPI_GRO_CB(skb)->frag0_len = 0;
5380
5381         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5382             pinfo->nr_frags &&
5383             !PageHighMem(skb_frag_page(frag0))) {
5384                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5385                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5386                                                     skb_frag_size(frag0),
5387                                                     skb->end - skb->tail);
5388         }
5389 }
5390
5391 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5392 {
5393         struct skb_shared_info *pinfo = skb_shinfo(skb);
5394
5395         BUG_ON(skb->end - skb->tail < grow);
5396
5397         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5398
5399         skb->data_len -= grow;
5400         skb->tail += grow;
5401
5402         pinfo->frags[0].page_offset += grow;
5403         skb_frag_size_sub(&pinfo->frags[0], grow);
5404
5405         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5406                 skb_frag_unref(skb, 0);
5407                 memmove(pinfo->frags, pinfo->frags + 1,
5408                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5409         }
5410 }
5411
5412 static void gro_flush_oldest(struct list_head *head)
5413 {
5414         struct sk_buff *oldest;
5415
5416         oldest = list_last_entry(head, struct sk_buff, list);
5417
5418         /* We are called with head length >= MAX_GRO_SKBS, so this is
5419          * impossible.
5420          */
5421         if (WARN_ON_ONCE(!oldest))
5422                 return;
5423
5424         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5425          * SKB to the chain.
5426          */
5427         list_del(&oldest->list);
5428         napi_gro_complete(oldest);
5429 }
5430
5431 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5432 {
5433         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5434         struct list_head *head = &offload_base;
5435         struct packet_offload *ptype;
5436         __be16 type = skb->protocol;
5437         struct list_head *gro_head;
5438         struct sk_buff *pp = NULL;
5439         enum gro_result ret;
5440         int same_flow;
5441         int grow;
5442
5443         if (netif_elide_gro(skb->dev))
5444                 goto normal;
5445
5446         gro_head = gro_list_prepare(napi, skb);
5447
5448         rcu_read_lock();
5449         list_for_each_entry_rcu(ptype, head, list) {
5450                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5451                         continue;
5452
5453                 skb_set_network_header(skb, skb_gro_offset(skb));
5454                 skb_reset_mac_len(skb);
5455                 NAPI_GRO_CB(skb)->same_flow = 0;
5456                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5457                 NAPI_GRO_CB(skb)->free = 0;
5458                 NAPI_GRO_CB(skb)->encap_mark = 0;
5459                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5460                 NAPI_GRO_CB(skb)->is_fou = 0;
5461                 NAPI_GRO_CB(skb)->is_atomic = 1;
5462                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5463
5464                 /* Setup for GRO checksum validation */
5465                 switch (skb->ip_summed) {
5466                 case CHECKSUM_COMPLETE:
5467                         NAPI_GRO_CB(skb)->csum = skb->csum;
5468                         NAPI_GRO_CB(skb)->csum_valid = 1;
5469                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5470                         break;
5471                 case CHECKSUM_UNNECESSARY:
5472                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5473                         NAPI_GRO_CB(skb)->csum_valid = 0;
5474                         break;
5475                 default:
5476                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5477                         NAPI_GRO_CB(skb)->csum_valid = 0;
5478                 }
5479
5480                 pp = ptype->callbacks.gro_receive(gro_head, skb);
5481                 break;
5482         }
5483         rcu_read_unlock();
5484
5485         if (&ptype->list == head)
5486                 goto normal;
5487
5488         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5489                 ret = GRO_CONSUMED;
5490                 goto ok;
5491         }
5492
5493         same_flow = NAPI_GRO_CB(skb)->same_flow;
5494         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5495
5496         if (pp) {
5497                 skb_list_del_init(pp);
5498                 napi_gro_complete(pp);
5499                 napi->gro_hash[hash].count--;
5500         }
5501
5502         if (same_flow)
5503                 goto ok;
5504
5505         if (NAPI_GRO_CB(skb)->flush)
5506                 goto normal;
5507
5508         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5509                 gro_flush_oldest(gro_head);
5510         } else {
5511                 napi->gro_hash[hash].count++;
5512         }
5513         NAPI_GRO_CB(skb)->count = 1;
5514         NAPI_GRO_CB(skb)->age = jiffies;
5515         NAPI_GRO_CB(skb)->last = skb;
5516         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5517         list_add(&skb->list, gro_head);
5518         ret = GRO_HELD;
5519
5520 pull:
5521         grow = skb_gro_offset(skb) - skb_headlen(skb);
5522         if (grow > 0)
5523                 gro_pull_from_frag0(skb, grow);
5524 ok:
5525         if (napi->gro_hash[hash].count) {
5526                 if (!test_bit(hash, &napi->gro_bitmask))
5527                         __set_bit(hash, &napi->gro_bitmask);
5528         } else if (test_bit(hash, &napi->gro_bitmask)) {
5529                 __clear_bit(hash, &napi->gro_bitmask);
5530         }
5531
5532         return ret;
5533
5534 normal:
5535         ret = GRO_NORMAL;
5536         goto pull;
5537 }
5538
5539 struct packet_offload *gro_find_receive_by_type(__be16 type)
5540 {
5541         struct list_head *offload_head = &offload_base;
5542         struct packet_offload *ptype;
5543
5544         list_for_each_entry_rcu(ptype, offload_head, list) {
5545                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5546                         continue;
5547                 return ptype;
5548         }
5549         return NULL;
5550 }
5551 EXPORT_SYMBOL(gro_find_receive_by_type);
5552
5553 struct packet_offload *gro_find_complete_by_type(__be16 type)
5554 {
5555         struct list_head *offload_head = &offload_base;
5556         struct packet_offload *ptype;
5557
5558         list_for_each_entry_rcu(ptype, offload_head, list) {
5559                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5560                         continue;
5561                 return ptype;
5562         }
5563         return NULL;
5564 }
5565 EXPORT_SYMBOL(gro_find_complete_by_type);
5566
5567 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5568 {
5569         skb_dst_drop(skb);
5570         secpath_reset(skb);
5571         kmem_cache_free(skbuff_head_cache, skb);
5572 }
5573
5574 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5575 {
5576         switch (ret) {
5577         case GRO_NORMAL:
5578                 if (netif_receive_skb_internal(skb))
5579                         ret = GRO_DROP;
5580                 break;
5581
5582         case GRO_DROP:
5583                 kfree_skb(skb);
5584                 break;
5585
5586         case GRO_MERGED_FREE:
5587                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5588                         napi_skb_free_stolen_head(skb);
5589                 else
5590                         __kfree_skb(skb);
5591                 break;
5592
5593         case GRO_HELD:
5594         case GRO_MERGED:
5595         case GRO_CONSUMED:
5596                 break;
5597         }
5598
5599         return ret;
5600 }
5601
5602 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5603 {
5604         skb_mark_napi_id(skb, napi);
5605         trace_napi_gro_receive_entry(skb);
5606
5607         skb_gro_reset_offset(skb);
5608
5609         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5610 }
5611 EXPORT_SYMBOL(napi_gro_receive);
5612
5613 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5614 {
5615         if (unlikely(skb->pfmemalloc)) {
5616                 consume_skb(skb);
5617                 return;
5618         }
5619         __skb_pull(skb, skb_headlen(skb));
5620         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5621         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5622         skb->vlan_tci = 0;
5623         skb->dev = napi->dev;
5624         skb->skb_iif = 0;
5625         skb->encapsulation = 0;
5626         skb_shinfo(skb)->gso_type = 0;
5627         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5628         secpath_reset(skb);
5629
5630         napi->skb = skb;
5631 }
5632
5633 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5634 {
5635         struct sk_buff *skb = napi->skb;
5636
5637         if (!skb) {
5638                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5639                 if (skb) {
5640                         napi->skb = skb;
5641                         skb_mark_napi_id(skb, napi);
5642                 }
5643         }
5644         return skb;
5645 }
5646 EXPORT_SYMBOL(napi_get_frags);
5647
5648 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5649                                       struct sk_buff *skb,
5650                                       gro_result_t ret)
5651 {
5652         switch (ret) {
5653         case GRO_NORMAL:
5654         case GRO_HELD:
5655                 __skb_push(skb, ETH_HLEN);
5656                 skb->protocol = eth_type_trans(skb, skb->dev);
5657                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5658                         ret = GRO_DROP;
5659                 break;
5660
5661         case GRO_DROP:
5662                 napi_reuse_skb(napi, skb);
5663                 break;
5664
5665         case GRO_MERGED_FREE:
5666                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5667                         napi_skb_free_stolen_head(skb);
5668                 else
5669                         napi_reuse_skb(napi, skb);
5670                 break;
5671
5672         case GRO_MERGED:
5673         case GRO_CONSUMED:
5674                 break;
5675         }
5676
5677         return ret;
5678 }
5679
5680 /* Upper GRO stack assumes network header starts at gro_offset=0
5681  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5682  * We copy ethernet header into skb->data to have a common layout.
5683  */
5684 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5685 {
5686         struct sk_buff *skb = napi->skb;
5687         const struct ethhdr *eth;
5688         unsigned int hlen = sizeof(*eth);
5689
5690         napi->skb = NULL;
5691
5692         skb_reset_mac_header(skb);
5693         skb_gro_reset_offset(skb);
5694
5695         eth = skb_gro_header_fast(skb, 0);
5696         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5697                 eth = skb_gro_header_slow(skb, hlen, 0);
5698                 if (unlikely(!eth)) {
5699                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5700                                              __func__, napi->dev->name);
5701                         napi_reuse_skb(napi, skb);
5702                         return NULL;
5703                 }
5704         } else {
5705                 gro_pull_from_frag0(skb, hlen);
5706                 NAPI_GRO_CB(skb)->frag0 += hlen;
5707                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5708         }
5709         __skb_pull(skb, hlen);
5710
5711         /*
5712          * This works because the only protocols we care about don't require
5713          * special handling.
5714          * We'll fix it up properly in napi_frags_finish()
5715          */
5716         skb->protocol = eth->h_proto;
5717
5718         return skb;
5719 }
5720
5721 gro_result_t napi_gro_frags(struct napi_struct *napi)
5722 {
5723         struct sk_buff *skb = napi_frags_skb(napi);
5724
5725         if (!skb)
5726                 return GRO_DROP;
5727
5728         trace_napi_gro_frags_entry(skb);
5729
5730         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5731 }
5732 EXPORT_SYMBOL(napi_gro_frags);
5733
5734 /* Compute the checksum from gro_offset and return the folded value
5735  * after adding in any pseudo checksum.
5736  */
5737 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5738 {
5739         __wsum wsum;
5740         __sum16 sum;
5741
5742         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5743
5744         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5745         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5746         if (likely(!sum)) {
5747                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5748                     !skb->csum_complete_sw)
5749                         netdev_rx_csum_fault(skb->dev);
5750         }
5751
5752         NAPI_GRO_CB(skb)->csum = wsum;
5753         NAPI_GRO_CB(skb)->csum_valid = 1;
5754
5755         return sum;
5756 }
5757 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5758
5759 static void net_rps_send_ipi(struct softnet_data *remsd)
5760 {
5761 #ifdef CONFIG_RPS
5762         while (remsd) {
5763                 struct softnet_data *next = remsd->rps_ipi_next;
5764
5765                 if (cpu_online(remsd->cpu))
5766                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5767                 remsd = next;
5768         }
5769 #endif
5770 }
5771
5772 /*
5773  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5774  * Note: called with local irq disabled, but exits with local irq enabled.
5775  */
5776 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5777 {
5778 #ifdef CONFIG_RPS
5779         struct softnet_data *remsd = sd->rps_ipi_list;
5780
5781         if (remsd) {
5782                 sd->rps_ipi_list = NULL;
5783
5784                 local_irq_enable();
5785
5786                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5787                 net_rps_send_ipi(remsd);
5788         } else
5789 #endif
5790                 local_irq_enable();
5791 }
5792
5793 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5794 {
5795 #ifdef CONFIG_RPS
5796         return sd->rps_ipi_list != NULL;
5797 #else
5798         return false;
5799 #endif
5800 }
5801
5802 static int process_backlog(struct napi_struct *napi, int quota)
5803 {
5804         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5805         bool again = true;
5806         int work = 0;
5807
5808         /* Check if we have pending ipi, its better to send them now,
5809          * not waiting net_rx_action() end.
5810          */
5811         if (sd_has_rps_ipi_waiting(sd)) {
5812                 local_irq_disable();
5813                 net_rps_action_and_irq_enable(sd);
5814         }
5815
5816         napi->weight = dev_rx_weight;
5817         while (again) {
5818                 struct sk_buff *skb;
5819
5820                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5821                         rcu_read_lock();
5822                         __netif_receive_skb(skb);
5823                         rcu_read_unlock();
5824                         input_queue_head_incr(sd);
5825                         if (++work >= quota)
5826                                 return work;
5827
5828                 }
5829
5830                 local_irq_disable();
5831                 rps_lock(sd);
5832                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5833                         /*
5834                          * Inline a custom version of __napi_complete().
5835                          * only current cpu owns and manipulates this napi,
5836                          * and NAPI_STATE_SCHED is the only possible flag set
5837                          * on backlog.
5838                          * We can use a plain write instead of clear_bit(),
5839                          * and we dont need an smp_mb() memory barrier.
5840                          */
5841                         napi->state = 0;
5842                         again = false;
5843                 } else {
5844                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5845                                                    &sd->process_queue);
5846                 }
5847                 rps_unlock(sd);
5848                 local_irq_enable();
5849         }
5850
5851         return work;
5852 }
5853
5854 /**
5855  * __napi_schedule - schedule for receive
5856  * @n: entry to schedule
5857  *
5858  * The entry's receive function will be scheduled to run.
5859  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5860  */
5861 void __napi_schedule(struct napi_struct *n)
5862 {
5863         unsigned long flags;
5864
5865         local_irq_save(flags);
5866         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5867         local_irq_restore(flags);
5868 }
5869 EXPORT_SYMBOL(__napi_schedule);
5870
5871 /**
5872  *      napi_schedule_prep - check if napi can be scheduled
5873  *      @n: napi context
5874  *
5875  * Test if NAPI routine is already running, and if not mark
5876  * it as running.  This is used as a condition variable
5877  * insure only one NAPI poll instance runs.  We also make
5878  * sure there is no pending NAPI disable.
5879  */
5880 bool napi_schedule_prep(struct napi_struct *n)
5881 {
5882         unsigned long val, new;
5883
5884         do {
5885                 val = READ_ONCE(n->state);
5886                 if (unlikely(val & NAPIF_STATE_DISABLE))
5887                         return false;
5888                 new = val | NAPIF_STATE_SCHED;
5889
5890                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5891                  * This was suggested by Alexander Duyck, as compiler
5892                  * emits better code than :
5893                  * if (val & NAPIF_STATE_SCHED)
5894                  *     new |= NAPIF_STATE_MISSED;
5895                  */
5896                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5897                                                    NAPIF_STATE_MISSED;
5898         } while (cmpxchg(&n->state, val, new) != val);
5899
5900         return !(val & NAPIF_STATE_SCHED);
5901 }
5902 EXPORT_SYMBOL(napi_schedule_prep);
5903
5904 /**
5905  * __napi_schedule_irqoff - schedule for receive
5906  * @n: entry to schedule
5907  *
5908  * Variant of __napi_schedule() assuming hard irqs are masked
5909  */
5910 void __napi_schedule_irqoff(struct napi_struct *n)
5911 {
5912         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5913 }
5914 EXPORT_SYMBOL(__napi_schedule_irqoff);
5915
5916 bool napi_complete_done(struct napi_struct *n, int work_done)
5917 {
5918         unsigned long flags, val, new;
5919
5920         /*
5921          * 1) Don't let napi dequeue from the cpu poll list
5922          *    just in case its running on a different cpu.
5923          * 2) If we are busy polling, do nothing here, we have
5924          *    the guarantee we will be called later.
5925          */
5926         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5927                                  NAPIF_STATE_IN_BUSY_POLL)))
5928                 return false;
5929
5930         if (n->gro_bitmask) {
5931                 unsigned long timeout = 0;
5932
5933                 if (work_done)
5934                         timeout = n->dev->gro_flush_timeout;
5935
5936                 if (timeout)
5937                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5938                                       HRTIMER_MODE_REL_PINNED);
5939                 else
5940                         napi_gro_flush(n, false);
5941         }
5942         if (unlikely(!list_empty(&n->poll_list))) {
5943                 /* If n->poll_list is not empty, we need to mask irqs */
5944                 local_irq_save(flags);
5945                 list_del_init(&n->poll_list);
5946                 local_irq_restore(flags);
5947         }
5948
5949         do {
5950                 val = READ_ONCE(n->state);
5951
5952                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5953
5954                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5955
5956                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5957                  * because we will call napi->poll() one more time.
5958                  * This C code was suggested by Alexander Duyck to help gcc.
5959                  */
5960                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5961                                                     NAPIF_STATE_SCHED;
5962         } while (cmpxchg(&n->state, val, new) != val);
5963
5964         if (unlikely(val & NAPIF_STATE_MISSED)) {
5965                 __napi_schedule(n);
5966                 return false;
5967         }
5968
5969         return true;
5970 }
5971 EXPORT_SYMBOL(napi_complete_done);
5972
5973 /* must be called under rcu_read_lock(), as we dont take a reference */
5974 static struct napi_struct *napi_by_id(unsigned int napi_id)
5975 {
5976         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5977         struct napi_struct *napi;
5978
5979         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5980                 if (napi->napi_id == napi_id)
5981                         return napi;
5982
5983         return NULL;
5984 }
5985
5986 #if defined(CONFIG_NET_RX_BUSY_POLL)
5987
5988 #define BUSY_POLL_BUDGET 8
5989
5990 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5991 {
5992         int rc;
5993
5994         /* Busy polling means there is a high chance device driver hard irq
5995          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5996          * set in napi_schedule_prep().
5997          * Since we are about to call napi->poll() once more, we can safely
5998          * clear NAPI_STATE_MISSED.
5999          *
6000          * Note: x86 could use a single "lock and ..." instruction
6001          * to perform these two clear_bit()
6002          */
6003         clear_bit(NAPI_STATE_MISSED, &napi->state);
6004         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6005
6006         local_bh_disable();
6007
6008         /* All we really want here is to re-enable device interrupts.
6009          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6010          */
6011         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6012         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6013         netpoll_poll_unlock(have_poll_lock);
6014         if (rc == BUSY_POLL_BUDGET)
6015                 __napi_schedule(napi);
6016         local_bh_enable();
6017 }
6018
6019 void napi_busy_loop(unsigned int napi_id,
6020                     bool (*loop_end)(void *, unsigned long),
6021                     void *loop_end_arg)
6022 {
6023         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6024         int (*napi_poll)(struct napi_struct *napi, int budget);
6025         void *have_poll_lock = NULL;
6026         struct napi_struct *napi;
6027
6028 restart:
6029         napi_poll = NULL;
6030
6031         rcu_read_lock();
6032
6033         napi = napi_by_id(napi_id);
6034         if (!napi)
6035                 goto out;
6036
6037         preempt_disable();
6038         for (;;) {
6039                 int work = 0;
6040
6041                 local_bh_disable();
6042                 if (!napi_poll) {
6043                         unsigned long val = READ_ONCE(napi->state);
6044
6045                         /* If multiple threads are competing for this napi,
6046                          * we avoid dirtying napi->state as much as we can.
6047                          */
6048                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6049                                    NAPIF_STATE_IN_BUSY_POLL))
6050                                 goto count;
6051                         if (cmpxchg(&napi->state, val,
6052                                     val | NAPIF_STATE_IN_BUSY_POLL |
6053                                           NAPIF_STATE_SCHED) != val)
6054                                 goto count;
6055                         have_poll_lock = netpoll_poll_lock(napi);
6056                         napi_poll = napi->poll;
6057                 }
6058                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6059                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6060 count:
6061                 if (work > 0)
6062                         __NET_ADD_STATS(dev_net(napi->dev),
6063                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6064                 local_bh_enable();
6065
6066                 if (!loop_end || loop_end(loop_end_arg, start_time))
6067                         break;
6068
6069                 if (unlikely(need_resched())) {
6070                         if (napi_poll)
6071                                 busy_poll_stop(napi, have_poll_lock);
6072                         preempt_enable();
6073                         rcu_read_unlock();
6074                         cond_resched();
6075                         if (loop_end(loop_end_arg, start_time))
6076                                 return;
6077                         goto restart;
6078                 }
6079                 cpu_relax();
6080         }
6081         if (napi_poll)
6082                 busy_poll_stop(napi, have_poll_lock);
6083         preempt_enable();
6084 out:
6085         rcu_read_unlock();
6086 }
6087 EXPORT_SYMBOL(napi_busy_loop);
6088
6089 #endif /* CONFIG_NET_RX_BUSY_POLL */
6090
6091 static void napi_hash_add(struct napi_struct *napi)
6092 {
6093         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6094             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6095                 return;
6096
6097         spin_lock(&napi_hash_lock);
6098
6099         /* 0..NR_CPUS range is reserved for sender_cpu use */
6100         do {
6101                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6102                         napi_gen_id = MIN_NAPI_ID;
6103         } while (napi_by_id(napi_gen_id));
6104         napi->napi_id = napi_gen_id;
6105
6106         hlist_add_head_rcu(&napi->napi_hash_node,
6107                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6108
6109         spin_unlock(&napi_hash_lock);
6110 }
6111
6112 /* Warning : caller is responsible to make sure rcu grace period
6113  * is respected before freeing memory containing @napi
6114  */
6115 bool napi_hash_del(struct napi_struct *napi)
6116 {
6117         bool rcu_sync_needed = false;
6118
6119         spin_lock(&napi_hash_lock);
6120
6121         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6122                 rcu_sync_needed = true;
6123                 hlist_del_rcu(&napi->napi_hash_node);
6124         }
6125         spin_unlock(&napi_hash_lock);
6126         return rcu_sync_needed;
6127 }
6128 EXPORT_SYMBOL_GPL(napi_hash_del);
6129
6130 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6131 {
6132         struct napi_struct *napi;
6133
6134         napi = container_of(timer, struct napi_struct, timer);
6135
6136         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6137          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6138          */
6139         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6140             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6141                 __napi_schedule_irqoff(napi);
6142
6143         return HRTIMER_NORESTART;
6144 }
6145
6146 static void init_gro_hash(struct napi_struct *napi)
6147 {
6148         int i;
6149
6150         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6151                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6152                 napi->gro_hash[i].count = 0;
6153         }
6154         napi->gro_bitmask = 0;
6155 }
6156
6157 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6158                     int (*poll)(struct napi_struct *, int), int weight)
6159 {
6160         INIT_LIST_HEAD(&napi->poll_list);
6161         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6162         napi->timer.function = napi_watchdog;
6163         init_gro_hash(napi);
6164         napi->skb = NULL;
6165         napi->poll = poll;
6166         if (weight > NAPI_POLL_WEIGHT)
6167                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6168                             weight, dev->name);
6169         napi->weight = weight;
6170         list_add(&napi->dev_list, &dev->napi_list);
6171         napi->dev = dev;
6172 #ifdef CONFIG_NETPOLL
6173         napi->poll_owner = -1;
6174 #endif
6175         set_bit(NAPI_STATE_SCHED, &napi->state);
6176         napi_hash_add(napi);
6177 }
6178 EXPORT_SYMBOL(netif_napi_add);
6179
6180 void napi_disable(struct napi_struct *n)
6181 {
6182         might_sleep();
6183         set_bit(NAPI_STATE_DISABLE, &n->state);
6184
6185         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6186                 msleep(1);
6187         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6188                 msleep(1);
6189
6190         hrtimer_cancel(&n->timer);
6191
6192         clear_bit(NAPI_STATE_DISABLE, &n->state);
6193 }
6194 EXPORT_SYMBOL(napi_disable);
6195
6196 static void flush_gro_hash(struct napi_struct *napi)
6197 {
6198         int i;
6199
6200         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6201                 struct sk_buff *skb, *n;
6202
6203                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6204                         kfree_skb(skb);
6205                 napi->gro_hash[i].count = 0;
6206         }
6207 }
6208
6209 /* Must be called in process context */
6210 void netif_napi_del(struct napi_struct *napi)
6211 {
6212         might_sleep();
6213         if (napi_hash_del(napi))
6214                 synchronize_net();
6215         list_del_init(&napi->dev_list);
6216         napi_free_frags(napi);
6217
6218         flush_gro_hash(napi);
6219         napi->gro_bitmask = 0;
6220 }
6221 EXPORT_SYMBOL(netif_napi_del);
6222
6223 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6224 {
6225         void *have;
6226         int work, weight;
6227
6228         list_del_init(&n->poll_list);
6229
6230         have = netpoll_poll_lock(n);
6231
6232         weight = n->weight;
6233
6234         /* This NAPI_STATE_SCHED test is for avoiding a race
6235          * with netpoll's poll_napi().  Only the entity which
6236          * obtains the lock and sees NAPI_STATE_SCHED set will
6237          * actually make the ->poll() call.  Therefore we avoid
6238          * accidentally calling ->poll() when NAPI is not scheduled.
6239          */
6240         work = 0;
6241         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6242                 work = n->poll(n, weight);
6243                 trace_napi_poll(n, work, weight);
6244         }
6245
6246         WARN_ON_ONCE(work > weight);
6247
6248         if (likely(work < weight))
6249                 goto out_unlock;
6250
6251         /* Drivers must not modify the NAPI state if they
6252          * consume the entire weight.  In such cases this code
6253          * still "owns" the NAPI instance and therefore can
6254          * move the instance around on the list at-will.
6255          */
6256         if (unlikely(napi_disable_pending(n))) {
6257                 napi_complete(n);
6258                 goto out_unlock;
6259         }
6260
6261         if (n->gro_bitmask) {
6262                 /* flush too old packets
6263                  * If HZ < 1000, flush all packets.
6264                  */
6265                 napi_gro_flush(n, HZ >= 1000);
6266         }
6267
6268         /* Some drivers may have called napi_schedule
6269          * prior to exhausting their budget.
6270          */
6271         if (unlikely(!list_empty(&n->poll_list))) {
6272                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6273                              n->dev ? n->dev->name : "backlog");
6274                 goto out_unlock;
6275         }
6276
6277         list_add_tail(&n->poll_list, repoll);
6278
6279 out_unlock:
6280         netpoll_poll_unlock(have);
6281
6282         return work;
6283 }
6284
6285 static __latent_entropy void net_rx_action(struct softirq_action *h)
6286 {
6287         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6288         unsigned long time_limit = jiffies +
6289                 usecs_to_jiffies(netdev_budget_usecs);
6290         int budget = netdev_budget;
6291         LIST_HEAD(list);
6292         LIST_HEAD(repoll);
6293
6294         local_irq_disable();
6295         list_splice_init(&sd->poll_list, &list);
6296         local_irq_enable();
6297
6298         for (;;) {
6299                 struct napi_struct *n;
6300
6301                 if (list_empty(&list)) {
6302                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6303                                 goto out;
6304                         break;
6305                 }
6306
6307                 n = list_first_entry(&list, struct napi_struct, poll_list);
6308                 budget -= napi_poll(n, &repoll);
6309
6310                 /* If softirq window is exhausted then punt.
6311                  * Allow this to run for 2 jiffies since which will allow
6312                  * an average latency of 1.5/HZ.
6313                  */
6314                 if (unlikely(budget <= 0 ||
6315                              time_after_eq(jiffies, time_limit))) {
6316                         sd->time_squeeze++;
6317                         break;
6318                 }
6319         }
6320
6321         local_irq_disable();
6322
6323         list_splice_tail_init(&sd->poll_list, &list);
6324         list_splice_tail(&repoll, &list);
6325         list_splice(&list, &sd->poll_list);
6326         if (!list_empty(&sd->poll_list))
6327                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6328
6329         net_rps_action_and_irq_enable(sd);
6330 out:
6331         __kfree_skb_flush();
6332 }
6333
6334 struct netdev_adjacent {
6335         struct net_device *dev;
6336
6337         /* upper master flag, there can only be one master device per list */
6338         bool master;
6339
6340         /* counter for the number of times this device was added to us */
6341         u16 ref_nr;
6342
6343         /* private field for the users */
6344         void *private;
6345
6346         struct list_head list;
6347         struct rcu_head rcu;
6348 };
6349
6350 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6351                                                  struct list_head *adj_list)
6352 {
6353         struct netdev_adjacent *adj;
6354
6355         list_for_each_entry(adj, adj_list, list) {
6356                 if (adj->dev == adj_dev)
6357                         return adj;
6358         }
6359         return NULL;
6360 }
6361
6362 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6363 {
6364         struct net_device *dev = data;
6365
6366         return upper_dev == dev;
6367 }
6368
6369 /**
6370  * netdev_has_upper_dev - Check if device is linked to an upper device
6371  * @dev: device
6372  * @upper_dev: upper device to check
6373  *
6374  * Find out if a device is linked to specified upper device and return true
6375  * in case it is. Note that this checks only immediate upper device,
6376  * not through a complete stack of devices. The caller must hold the RTNL lock.
6377  */
6378 bool netdev_has_upper_dev(struct net_device *dev,
6379                           struct net_device *upper_dev)
6380 {
6381         ASSERT_RTNL();
6382
6383         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6384                                              upper_dev);
6385 }
6386 EXPORT_SYMBOL(netdev_has_upper_dev);
6387
6388 /**
6389  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6390  * @dev: device
6391  * @upper_dev: upper device to check
6392  *
6393  * Find out if a device is linked to specified upper device and return true
6394  * in case it is. Note that this checks the entire upper device chain.
6395  * The caller must hold rcu lock.
6396  */
6397
6398 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6399                                   struct net_device *upper_dev)
6400 {
6401         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6402                                                upper_dev);
6403 }
6404 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6405
6406 /**
6407  * netdev_has_any_upper_dev - Check if device is linked to some device
6408  * @dev: device
6409  *
6410  * Find out if a device is linked to an upper device and return true in case
6411  * it is. The caller must hold the RTNL lock.
6412  */
6413 bool netdev_has_any_upper_dev(struct net_device *dev)
6414 {
6415         ASSERT_RTNL();
6416
6417         return !list_empty(&dev->adj_list.upper);
6418 }
6419 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6420
6421 /**
6422  * netdev_master_upper_dev_get - Get master upper device
6423  * @dev: device
6424  *
6425  * Find a master upper device and return pointer to it or NULL in case
6426  * it's not there. The caller must hold the RTNL lock.
6427  */
6428 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6429 {
6430         struct netdev_adjacent *upper;
6431
6432         ASSERT_RTNL();
6433
6434         if (list_empty(&dev->adj_list.upper))
6435                 return NULL;
6436
6437         upper = list_first_entry(&dev->adj_list.upper,
6438                                  struct netdev_adjacent, list);
6439         if (likely(upper->master))
6440                 return upper->dev;
6441         return NULL;
6442 }
6443 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6444
6445 /**
6446  * netdev_has_any_lower_dev - Check if device is linked to some device
6447  * @dev: device
6448  *
6449  * Find out if a device is linked to a lower device and return true in case
6450  * it is. The caller must hold the RTNL lock.
6451  */
6452 static bool netdev_has_any_lower_dev(struct net_device *dev)
6453 {
6454         ASSERT_RTNL();
6455
6456         return !list_empty(&dev->adj_list.lower);
6457 }
6458
6459 void *netdev_adjacent_get_private(struct list_head *adj_list)
6460 {
6461         struct netdev_adjacent *adj;
6462
6463         adj = list_entry(adj_list, struct netdev_adjacent, list);
6464
6465         return adj->private;
6466 }
6467 EXPORT_SYMBOL(netdev_adjacent_get_private);
6468
6469 /**
6470  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6471  * @dev: device
6472  * @iter: list_head ** of the current position
6473  *
6474  * Gets the next device from the dev's upper list, starting from iter
6475  * position. The caller must hold RCU read lock.
6476  */
6477 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6478                                                  struct list_head **iter)
6479 {
6480         struct netdev_adjacent *upper;
6481
6482         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6483
6484         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6485
6486         if (&upper->list == &dev->adj_list.upper)
6487                 return NULL;
6488
6489         *iter = &upper->list;
6490
6491         return upper->dev;
6492 }
6493 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6494
6495 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6496                                                     struct list_head **iter)
6497 {
6498         struct netdev_adjacent *upper;
6499
6500         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6501
6502         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6503
6504         if (&upper->list == &dev->adj_list.upper)
6505                 return NULL;
6506
6507         *iter = &upper->list;
6508
6509         return upper->dev;
6510 }
6511
6512 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6513                                   int (*fn)(struct net_device *dev,
6514                                             void *data),
6515                                   void *data)
6516 {
6517         struct net_device *udev;
6518         struct list_head *iter;
6519         int ret;
6520
6521         for (iter = &dev->adj_list.upper,
6522              udev = netdev_next_upper_dev_rcu(dev, &iter);
6523              udev;
6524              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6525                 /* first is the upper device itself */
6526                 ret = fn(udev, data);
6527                 if (ret)
6528                         return ret;
6529
6530                 /* then look at all of its upper devices */
6531                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6532                 if (ret)
6533                         return ret;
6534         }
6535
6536         return 0;
6537 }
6538 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6539
6540 /**
6541  * netdev_lower_get_next_private - Get the next ->private from the
6542  *                                 lower neighbour list
6543  * @dev: device
6544  * @iter: list_head ** of the current position
6545  *
6546  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6547  * list, starting from iter position. The caller must hold either hold the
6548  * RTNL lock or its own locking that guarantees that the neighbour lower
6549  * list will remain unchanged.
6550  */
6551 void *netdev_lower_get_next_private(struct net_device *dev,
6552                                     struct list_head **iter)
6553 {
6554         struct netdev_adjacent *lower;
6555
6556         lower = list_entry(*iter, struct netdev_adjacent, list);
6557
6558         if (&lower->list == &dev->adj_list.lower)
6559                 return NULL;
6560
6561         *iter = lower->list.next;
6562
6563         return lower->private;
6564 }
6565 EXPORT_SYMBOL(netdev_lower_get_next_private);
6566
6567 /**
6568  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6569  *                                     lower neighbour list, RCU
6570  *                                     variant
6571  * @dev: device
6572  * @iter: list_head ** of the current position
6573  *
6574  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6575  * list, starting from iter position. The caller must hold RCU read lock.
6576  */
6577 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6578                                         struct list_head **iter)
6579 {
6580         struct netdev_adjacent *lower;
6581
6582         WARN_ON_ONCE(!rcu_read_lock_held());
6583
6584         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6585
6586         if (&lower->list == &dev->adj_list.lower)
6587                 return NULL;
6588
6589         *iter = &lower->list;
6590
6591         return lower->private;
6592 }
6593 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6594
6595 /**
6596  * netdev_lower_get_next - Get the next device from the lower neighbour
6597  *                         list
6598  * @dev: device
6599  * @iter: list_head ** of the current position
6600  *
6601  * Gets the next netdev_adjacent from the dev's lower neighbour
6602  * list, starting from iter position. The caller must hold RTNL lock or
6603  * its own locking that guarantees that the neighbour lower
6604  * list will remain unchanged.
6605  */
6606 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6607 {
6608         struct netdev_adjacent *lower;
6609
6610         lower = list_entry(*iter, struct netdev_adjacent, list);
6611
6612         if (&lower->list == &dev->adj_list.lower)
6613                 return NULL;
6614
6615         *iter = lower->list.next;
6616
6617         return lower->dev;
6618 }
6619 EXPORT_SYMBOL(netdev_lower_get_next);
6620
6621 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6622                                                 struct list_head **iter)
6623 {
6624         struct netdev_adjacent *lower;
6625
6626         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6627
6628         if (&lower->list == &dev->adj_list.lower)
6629                 return NULL;
6630
6631         *iter = &lower->list;
6632
6633         return lower->dev;
6634 }
6635
6636 int netdev_walk_all_lower_dev(struct net_device *dev,
6637                               int (*fn)(struct net_device *dev,
6638                                         void *data),
6639                               void *data)
6640 {
6641         struct net_device *ldev;
6642         struct list_head *iter;
6643         int ret;
6644
6645         for (iter = &dev->adj_list.lower,
6646              ldev = netdev_next_lower_dev(dev, &iter);
6647              ldev;
6648              ldev = netdev_next_lower_dev(dev, &iter)) {
6649                 /* first is the lower device itself */
6650                 ret = fn(ldev, data);
6651                 if (ret)
6652                         return ret;
6653
6654                 /* then look at all of its lower devices */
6655                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6656                 if (ret)
6657                         return ret;
6658         }
6659
6660         return 0;
6661 }
6662 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6663
6664 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6665                                                     struct list_head **iter)
6666 {
6667         struct netdev_adjacent *lower;
6668
6669         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6670         if (&lower->list == &dev->adj_list.lower)
6671                 return NULL;
6672
6673         *iter = &lower->list;
6674
6675         return lower->dev;
6676 }
6677
6678 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6679                                   int (*fn)(struct net_device *dev,
6680                                             void *data),
6681                                   void *data)
6682 {
6683         struct net_device *ldev;
6684         struct list_head *iter;
6685         int ret;
6686
6687         for (iter = &dev->adj_list.lower,
6688              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6689              ldev;
6690              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6691                 /* first is the lower device itself */
6692                 ret = fn(ldev, data);
6693                 if (ret)
6694                         return ret;
6695
6696                 /* then look at all of its lower devices */
6697                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6698                 if (ret)
6699                         return ret;
6700         }
6701
6702         return 0;
6703 }
6704 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6705
6706 /**
6707  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6708  *                                     lower neighbour list, RCU
6709  *                                     variant
6710  * @dev: device
6711  *
6712  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6713  * list. The caller must hold RCU read lock.
6714  */
6715 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6716 {
6717         struct netdev_adjacent *lower;
6718
6719         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6720                         struct netdev_adjacent, list);
6721         if (lower)
6722                 return lower->private;
6723         return NULL;
6724 }
6725 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6726
6727 /**
6728  * netdev_master_upper_dev_get_rcu - Get master upper device
6729  * @dev: device
6730  *
6731  * Find a master upper device and return pointer to it or NULL in case
6732  * it's not there. The caller must hold the RCU read lock.
6733  */
6734 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6735 {
6736         struct netdev_adjacent *upper;
6737
6738         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6739                                        struct netdev_adjacent, list);
6740         if (upper && likely(upper->master))
6741                 return upper->dev;
6742         return NULL;
6743 }
6744 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6745
6746 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6747                               struct net_device *adj_dev,
6748                               struct list_head *dev_list)
6749 {
6750         char linkname[IFNAMSIZ+7];
6751
6752         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6753                 "upper_%s" : "lower_%s", adj_dev->name);
6754         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6755                                  linkname);
6756 }
6757 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6758                                char *name,
6759                                struct list_head *dev_list)
6760 {
6761         char linkname[IFNAMSIZ+7];
6762
6763         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6764                 "upper_%s" : "lower_%s", name);
6765         sysfs_remove_link(&(dev->dev.kobj), linkname);
6766 }
6767
6768 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6769                                                  struct net_device *adj_dev,
6770                                                  struct list_head *dev_list)
6771 {
6772         return (dev_list == &dev->adj_list.upper ||
6773                 dev_list == &dev->adj_list.lower) &&
6774                 net_eq(dev_net(dev), dev_net(adj_dev));
6775 }
6776
6777 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6778                                         struct net_device *adj_dev,
6779                                         struct list_head *dev_list,
6780                                         void *private, bool master)
6781 {
6782         struct netdev_adjacent *adj;
6783         int ret;
6784
6785         adj = __netdev_find_adj(adj_dev, dev_list);
6786
6787         if (adj) {
6788                 adj->ref_nr += 1;
6789                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6790                          dev->name, adj_dev->name, adj->ref_nr);
6791
6792                 return 0;
6793         }
6794
6795         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6796         if (!adj)
6797                 return -ENOMEM;
6798
6799         adj->dev = adj_dev;
6800         adj->master = master;
6801         adj->ref_nr = 1;
6802         adj->private = private;
6803         dev_hold(adj_dev);
6804
6805         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6806                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6807
6808         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6809                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6810                 if (ret)
6811                         goto free_adj;
6812         }
6813
6814         /* Ensure that master link is always the first item in list. */
6815         if (master) {
6816                 ret = sysfs_create_link(&(dev->dev.kobj),
6817                                         &(adj_dev->dev.kobj), "master");
6818                 if (ret)
6819                         goto remove_symlinks;
6820
6821                 list_add_rcu(&adj->list, dev_list);
6822         } else {
6823                 list_add_tail_rcu(&adj->list, dev_list);
6824         }
6825
6826         return 0;
6827
6828 remove_symlinks:
6829         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6830                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6831 free_adj:
6832         kfree(adj);
6833         dev_put(adj_dev);
6834
6835         return ret;
6836 }
6837
6838 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6839                                          struct net_device *adj_dev,
6840                                          u16 ref_nr,
6841                                          struct list_head *dev_list)
6842 {
6843         struct netdev_adjacent *adj;
6844
6845         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6846                  dev->name, adj_dev->name, ref_nr);
6847
6848         adj = __netdev_find_adj(adj_dev, dev_list);
6849
6850         if (!adj) {
6851                 pr_err("Adjacency does not exist for device %s from %s\n",
6852                        dev->name, adj_dev->name);
6853                 WARN_ON(1);
6854                 return;
6855         }
6856
6857         if (adj->ref_nr > ref_nr) {
6858                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6859                          dev->name, adj_dev->name, ref_nr,
6860                          adj->ref_nr - ref_nr);
6861                 adj->ref_nr -= ref_nr;
6862                 return;
6863         }
6864
6865         if (adj->master)
6866                 sysfs_remove_link(&(dev->dev.kobj), "master");
6867
6868         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6869                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6870
6871         list_del_rcu(&adj->list);
6872         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6873                  adj_dev->name, dev->name, adj_dev->name);
6874         dev_put(adj_dev);
6875         kfree_rcu(adj, rcu);
6876 }
6877
6878 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6879                                             struct net_device *upper_dev,
6880                                             struct list_head *up_list,
6881                                             struct list_head *down_list,
6882                                             void *private, bool master)
6883 {
6884         int ret;
6885
6886         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6887                                            private, master);
6888         if (ret)
6889                 return ret;
6890
6891         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6892                                            private, false);
6893         if (ret) {
6894                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6895                 return ret;
6896         }
6897
6898         return 0;
6899 }
6900
6901 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6902                                                struct net_device *upper_dev,
6903                                                u16 ref_nr,
6904                                                struct list_head *up_list,
6905                                                struct list_head *down_list)
6906 {
6907         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6908         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6909 }
6910
6911 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6912                                                 struct net_device *upper_dev,
6913                                                 void *private, bool master)
6914 {
6915         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6916                                                 &dev->adj_list.upper,
6917                                                 &upper_dev->adj_list.lower,
6918                                                 private, master);
6919 }
6920
6921 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6922                                                    struct net_device *upper_dev)
6923 {
6924         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6925                                            &dev->adj_list.upper,
6926                                            &upper_dev->adj_list.lower);
6927 }
6928
6929 static int __netdev_upper_dev_link(struct net_device *dev,
6930                                    struct net_device *upper_dev, bool master,
6931                                    void *upper_priv, void *upper_info,
6932                                    struct netlink_ext_ack *extack)
6933 {
6934         struct netdev_notifier_changeupper_info changeupper_info = {
6935                 .info = {
6936                         .dev = dev,
6937                         .extack = extack,
6938                 },
6939                 .upper_dev = upper_dev,
6940                 .master = master,
6941                 .linking = true,
6942                 .upper_info = upper_info,
6943         };
6944         struct net_device *master_dev;
6945         int ret = 0;
6946
6947         ASSERT_RTNL();
6948
6949         if (dev == upper_dev)
6950                 return -EBUSY;
6951
6952         /* To prevent loops, check if dev is not upper device to upper_dev. */
6953         if (netdev_has_upper_dev(upper_dev, dev))
6954                 return -EBUSY;
6955
6956         if (!master) {
6957                 if (netdev_has_upper_dev(dev, upper_dev))
6958                         return -EEXIST;
6959         } else {
6960                 master_dev = netdev_master_upper_dev_get(dev);
6961                 if (master_dev)
6962                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
6963         }
6964
6965         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6966                                             &changeupper_info.info);
6967         ret = notifier_to_errno(ret);
6968         if (ret)
6969                 return ret;
6970
6971         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6972                                                    master);
6973         if (ret)
6974                 return ret;
6975
6976         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6977                                             &changeupper_info.info);
6978         ret = notifier_to_errno(ret);
6979         if (ret)
6980                 goto rollback;
6981
6982         return 0;
6983
6984 rollback:
6985         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6986
6987         return ret;
6988 }
6989
6990 /**
6991  * netdev_upper_dev_link - Add a link to the upper device
6992  * @dev: device
6993  * @upper_dev: new upper device
6994  * @extack: netlink extended ack
6995  *
6996  * Adds a link to device which is upper to this one. The caller must hold
6997  * the RTNL lock. On a failure a negative errno code is returned.
6998  * On success the reference counts are adjusted and the function
6999  * returns zero.
7000  */
7001 int netdev_upper_dev_link(struct net_device *dev,
7002                           struct net_device *upper_dev,
7003                           struct netlink_ext_ack *extack)
7004 {
7005         return __netdev_upper_dev_link(dev, upper_dev, false,
7006                                        NULL, NULL, extack);
7007 }
7008 EXPORT_SYMBOL(netdev_upper_dev_link);
7009
7010 /**
7011  * netdev_master_upper_dev_link - Add a master link to the upper device
7012  * @dev: device
7013  * @upper_dev: new upper device
7014  * @upper_priv: upper device private
7015  * @upper_info: upper info to be passed down via notifier
7016  * @extack: netlink extended ack
7017  *
7018  * Adds a link to device which is upper to this one. In this case, only
7019  * one master upper device can be linked, although other non-master devices
7020  * might be linked as well. The caller must hold the RTNL lock.
7021  * On a failure a negative errno code is returned. On success the reference
7022  * counts are adjusted and the function returns zero.
7023  */
7024 int netdev_master_upper_dev_link(struct net_device *dev,
7025                                  struct net_device *upper_dev,
7026                                  void *upper_priv, void *upper_info,
7027                                  struct netlink_ext_ack *extack)
7028 {
7029         return __netdev_upper_dev_link(dev, upper_dev, true,
7030                                        upper_priv, upper_info, extack);
7031 }
7032 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7033
7034 /**
7035  * netdev_upper_dev_unlink - Removes a link to upper device
7036  * @dev: device
7037  * @upper_dev: new upper device
7038  *
7039  * Removes a link to device which is upper to this one. The caller must hold
7040  * the RTNL lock.
7041  */
7042 void netdev_upper_dev_unlink(struct net_device *dev,
7043                              struct net_device *upper_dev)
7044 {
7045         struct netdev_notifier_changeupper_info changeupper_info = {
7046                 .info = {
7047                         .dev = dev,
7048                 },
7049                 .upper_dev = upper_dev,
7050                 .linking = false,
7051         };
7052
7053         ASSERT_RTNL();
7054
7055         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7056
7057         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7058                                       &changeupper_info.info);
7059
7060         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7061
7062         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7063                                       &changeupper_info.info);
7064 }
7065 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7066
7067 /**
7068  * netdev_bonding_info_change - Dispatch event about slave change
7069  * @dev: device
7070  * @bonding_info: info to dispatch
7071  *
7072  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7073  * The caller must hold the RTNL lock.
7074  */
7075 void netdev_bonding_info_change(struct net_device *dev,
7076                                 struct netdev_bonding_info *bonding_info)
7077 {
7078         struct netdev_notifier_bonding_info info = {
7079                 .info.dev = dev,
7080         };
7081
7082         memcpy(&info.bonding_info, bonding_info,
7083                sizeof(struct netdev_bonding_info));
7084         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7085                                       &info.info);
7086 }
7087 EXPORT_SYMBOL(netdev_bonding_info_change);
7088
7089 static void netdev_adjacent_add_links(struct net_device *dev)
7090 {
7091         struct netdev_adjacent *iter;
7092
7093         struct net *net = dev_net(dev);
7094
7095         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7096                 if (!net_eq(net, dev_net(iter->dev)))
7097                         continue;
7098                 netdev_adjacent_sysfs_add(iter->dev, dev,
7099                                           &iter->dev->adj_list.lower);
7100                 netdev_adjacent_sysfs_add(dev, iter->dev,
7101                                           &dev->adj_list.upper);
7102         }
7103
7104         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7105                 if (!net_eq(net, dev_net(iter->dev)))
7106                         continue;
7107                 netdev_adjacent_sysfs_add(iter->dev, dev,
7108                                           &iter->dev->adj_list.upper);
7109                 netdev_adjacent_sysfs_add(dev, iter->dev,
7110                                           &dev->adj_list.lower);
7111         }
7112 }
7113
7114 static void netdev_adjacent_del_links(struct net_device *dev)
7115 {
7116         struct netdev_adjacent *iter;
7117
7118         struct net *net = dev_net(dev);
7119
7120         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7121                 if (!net_eq(net, dev_net(iter->dev)))
7122                         continue;
7123                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7124                                           &iter->dev->adj_list.lower);
7125                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7126                                           &dev->adj_list.upper);
7127         }
7128
7129         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7130                 if (!net_eq(net, dev_net(iter->dev)))
7131                         continue;
7132                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7133                                           &iter->dev->adj_list.upper);
7134                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7135                                           &dev->adj_list.lower);
7136         }
7137 }
7138
7139 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7140 {
7141         struct netdev_adjacent *iter;
7142
7143         struct net *net = dev_net(dev);
7144
7145         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7146                 if (!net_eq(net, dev_net(iter->dev)))
7147                         continue;
7148                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7149                                           &iter->dev->adj_list.lower);
7150                 netdev_adjacent_sysfs_add(iter->dev, dev,
7151                                           &iter->dev->adj_list.lower);
7152         }
7153
7154         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7155                 if (!net_eq(net, dev_net(iter->dev)))
7156                         continue;
7157                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7158                                           &iter->dev->adj_list.upper);
7159                 netdev_adjacent_sysfs_add(iter->dev, dev,
7160                                           &iter->dev->adj_list.upper);
7161         }
7162 }
7163
7164 void *netdev_lower_dev_get_private(struct net_device *dev,
7165                                    struct net_device *lower_dev)
7166 {
7167         struct netdev_adjacent *lower;
7168
7169         if (!lower_dev)
7170                 return NULL;
7171         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7172         if (!lower)
7173                 return NULL;
7174
7175         return lower->private;
7176 }
7177 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7178
7179
7180 int dev_get_nest_level(struct net_device *dev)
7181 {
7182         struct net_device *lower = NULL;
7183         struct list_head *iter;
7184         int max_nest = -1;
7185         int nest;
7186
7187         ASSERT_RTNL();
7188
7189         netdev_for_each_lower_dev(dev, lower, iter) {
7190                 nest = dev_get_nest_level(lower);
7191                 if (max_nest < nest)
7192                         max_nest = nest;
7193         }
7194
7195         return max_nest + 1;
7196 }
7197 EXPORT_SYMBOL(dev_get_nest_level);
7198
7199 /**
7200  * netdev_lower_change - Dispatch event about lower device state change
7201  * @lower_dev: device
7202  * @lower_state_info: state to dispatch
7203  *
7204  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7205  * The caller must hold the RTNL lock.
7206  */
7207 void netdev_lower_state_changed(struct net_device *lower_dev,
7208                                 void *lower_state_info)
7209 {
7210         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7211                 .info.dev = lower_dev,
7212         };
7213
7214         ASSERT_RTNL();
7215         changelowerstate_info.lower_state_info = lower_state_info;
7216         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7217                                       &changelowerstate_info.info);
7218 }
7219 EXPORT_SYMBOL(netdev_lower_state_changed);
7220
7221 static void dev_change_rx_flags(struct net_device *dev, int flags)
7222 {
7223         const struct net_device_ops *ops = dev->netdev_ops;
7224
7225         if (ops->ndo_change_rx_flags)
7226                 ops->ndo_change_rx_flags(dev, flags);
7227 }
7228
7229 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7230 {
7231         unsigned int old_flags = dev->flags;
7232         kuid_t uid;
7233         kgid_t gid;
7234
7235         ASSERT_RTNL();
7236
7237         dev->flags |= IFF_PROMISC;
7238         dev->promiscuity += inc;
7239         if (dev->promiscuity == 0) {
7240                 /*
7241                  * Avoid overflow.
7242                  * If inc causes overflow, untouch promisc and return error.
7243                  */
7244                 if (inc < 0)
7245                         dev->flags &= ~IFF_PROMISC;
7246                 else {
7247                         dev->promiscuity -= inc;
7248                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7249                                 dev->name);
7250                         return -EOVERFLOW;
7251                 }
7252         }
7253         if (dev->flags != old_flags) {
7254                 pr_info("device %s %s promiscuous mode\n",
7255                         dev->name,
7256                         dev->flags & IFF_PROMISC ? "entered" : "left");
7257                 if (audit_enabled) {
7258                         current_uid_gid(&uid, &gid);
7259                         audit_log(audit_context(), GFP_ATOMIC,
7260                                   AUDIT_ANOM_PROMISCUOUS,
7261                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7262                                   dev->name, (dev->flags & IFF_PROMISC),
7263                                   (old_flags & IFF_PROMISC),
7264                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7265                                   from_kuid(&init_user_ns, uid),
7266                                   from_kgid(&init_user_ns, gid),
7267                                   audit_get_sessionid(current));
7268                 }
7269
7270                 dev_change_rx_flags(dev, IFF_PROMISC);
7271         }
7272         if (notify)
7273                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7274         return 0;
7275 }
7276
7277 /**
7278  *      dev_set_promiscuity     - update promiscuity count on a device
7279  *      @dev: device
7280  *      @inc: modifier
7281  *
7282  *      Add or remove promiscuity from a device. While the count in the device
7283  *      remains above zero the interface remains promiscuous. Once it hits zero
7284  *      the device reverts back to normal filtering operation. A negative inc
7285  *      value is used to drop promiscuity on the device.
7286  *      Return 0 if successful or a negative errno code on error.
7287  */
7288 int dev_set_promiscuity(struct net_device *dev, int inc)
7289 {
7290         unsigned int old_flags = dev->flags;
7291         int err;
7292
7293         err = __dev_set_promiscuity(dev, inc, true);
7294         if (err < 0)
7295                 return err;
7296         if (dev->flags != old_flags)
7297                 dev_set_rx_mode(dev);
7298         return err;
7299 }
7300 EXPORT_SYMBOL(dev_set_promiscuity);
7301
7302 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7303 {
7304         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7305
7306         ASSERT_RTNL();
7307
7308         dev->flags |= IFF_ALLMULTI;
7309         dev->allmulti += inc;
7310         if (dev->allmulti == 0) {
7311                 /*
7312                  * Avoid overflow.
7313                  * If inc causes overflow, untouch allmulti and return error.
7314                  */
7315                 if (inc < 0)
7316                         dev->flags &= ~IFF_ALLMULTI;
7317                 else {
7318                         dev->allmulti -= inc;
7319                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7320                                 dev->name);
7321                         return -EOVERFLOW;
7322                 }
7323         }
7324         if (dev->flags ^ old_flags) {
7325                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7326                 dev_set_rx_mode(dev);
7327                 if (notify)
7328                         __dev_notify_flags(dev, old_flags,
7329                                            dev->gflags ^ old_gflags);
7330         }
7331         return 0;
7332 }
7333
7334 /**
7335  *      dev_set_allmulti        - update allmulti count on a device
7336  *      @dev: device
7337  *      @inc: modifier
7338  *
7339  *      Add or remove reception of all multicast frames to a device. While the
7340  *      count in the device remains above zero the interface remains listening
7341  *      to all interfaces. Once it hits zero the device reverts back to normal
7342  *      filtering operation. A negative @inc value is used to drop the counter
7343  *      when releasing a resource needing all multicasts.
7344  *      Return 0 if successful or a negative errno code on error.
7345  */
7346
7347 int dev_set_allmulti(struct net_device *dev, int inc)
7348 {
7349         return __dev_set_allmulti(dev, inc, true);
7350 }
7351 EXPORT_SYMBOL(dev_set_allmulti);
7352
7353 /*
7354  *      Upload unicast and multicast address lists to device and
7355  *      configure RX filtering. When the device doesn't support unicast
7356  *      filtering it is put in promiscuous mode while unicast addresses
7357  *      are present.
7358  */
7359 void __dev_set_rx_mode(struct net_device *dev)
7360 {
7361         const struct net_device_ops *ops = dev->netdev_ops;
7362
7363         /* dev_open will call this function so the list will stay sane. */
7364         if (!(dev->flags&IFF_UP))
7365                 return;
7366
7367         if (!netif_device_present(dev))
7368                 return;
7369
7370         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7371                 /* Unicast addresses changes may only happen under the rtnl,
7372                  * therefore calling __dev_set_promiscuity here is safe.
7373                  */
7374                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7375                         __dev_set_promiscuity(dev, 1, false);
7376                         dev->uc_promisc = true;
7377                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7378                         __dev_set_promiscuity(dev, -1, false);
7379                         dev->uc_promisc = false;
7380                 }
7381         }
7382
7383         if (ops->ndo_set_rx_mode)
7384                 ops->ndo_set_rx_mode(dev);
7385 }
7386
7387 void dev_set_rx_mode(struct net_device *dev)
7388 {
7389         netif_addr_lock_bh(dev);
7390         __dev_set_rx_mode(dev);
7391         netif_addr_unlock_bh(dev);
7392 }
7393
7394 /**
7395  *      dev_get_flags - get flags reported to userspace
7396  *      @dev: device
7397  *
7398  *      Get the combination of flag bits exported through APIs to userspace.
7399  */
7400 unsigned int dev_get_flags(const struct net_device *dev)
7401 {
7402         unsigned int flags;
7403
7404         flags = (dev->flags & ~(IFF_PROMISC |
7405                                 IFF_ALLMULTI |
7406                                 IFF_RUNNING |
7407                                 IFF_LOWER_UP |
7408                                 IFF_DORMANT)) |
7409                 (dev->gflags & (IFF_PROMISC |
7410                                 IFF_ALLMULTI));
7411
7412         if (netif_running(dev)) {
7413                 if (netif_oper_up(dev))
7414                         flags |= IFF_RUNNING;
7415                 if (netif_carrier_ok(dev))
7416                         flags |= IFF_LOWER_UP;
7417                 if (netif_dormant(dev))
7418                         flags |= IFF_DORMANT;
7419         }
7420
7421         return flags;
7422 }
7423 EXPORT_SYMBOL(dev_get_flags);
7424
7425 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7426 {
7427         unsigned int old_flags = dev->flags;
7428         int ret;
7429
7430         ASSERT_RTNL();
7431
7432         /*
7433          *      Set the flags on our device.
7434          */
7435
7436         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7437                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7438                                IFF_AUTOMEDIA)) |
7439                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7440                                     IFF_ALLMULTI));
7441
7442         /*
7443          *      Load in the correct multicast list now the flags have changed.
7444          */
7445
7446         if ((old_flags ^ flags) & IFF_MULTICAST)
7447                 dev_change_rx_flags(dev, IFF_MULTICAST);
7448
7449         dev_set_rx_mode(dev);
7450
7451         /*
7452          *      Have we downed the interface. We handle IFF_UP ourselves
7453          *      according to user attempts to set it, rather than blindly
7454          *      setting it.
7455          */
7456
7457         ret = 0;
7458         if ((old_flags ^ flags) & IFF_UP) {
7459                 if (old_flags & IFF_UP)
7460                         __dev_close(dev);
7461                 else
7462                         ret = __dev_open(dev);
7463         }
7464
7465         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7466                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7467                 unsigned int old_flags = dev->flags;
7468
7469                 dev->gflags ^= IFF_PROMISC;
7470
7471                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7472                         if (dev->flags != old_flags)
7473                                 dev_set_rx_mode(dev);
7474         }
7475
7476         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7477          * is important. Some (broken) drivers set IFF_PROMISC, when
7478          * IFF_ALLMULTI is requested not asking us and not reporting.
7479          */
7480         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7481                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7482
7483                 dev->gflags ^= IFF_ALLMULTI;
7484                 __dev_set_allmulti(dev, inc, false);
7485         }
7486
7487         return ret;
7488 }
7489
7490 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7491                         unsigned int gchanges)
7492 {
7493         unsigned int changes = dev->flags ^ old_flags;
7494
7495         if (gchanges)
7496                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7497
7498         if (changes & IFF_UP) {
7499                 if (dev->flags & IFF_UP)
7500                         call_netdevice_notifiers(NETDEV_UP, dev);
7501                 else
7502                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7503         }
7504
7505         if (dev->flags & IFF_UP &&
7506             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7507                 struct netdev_notifier_change_info change_info = {
7508                         .info = {
7509                                 .dev = dev,
7510                         },
7511                         .flags_changed = changes,
7512                 };
7513
7514                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7515         }
7516 }
7517
7518 /**
7519  *      dev_change_flags - change device settings
7520  *      @dev: device
7521  *      @flags: device state flags
7522  *
7523  *      Change settings on device based state flags. The flags are
7524  *      in the userspace exported format.
7525  */
7526 int dev_change_flags(struct net_device *dev, unsigned int flags)
7527 {
7528         int ret;
7529         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7530
7531         ret = __dev_change_flags(dev, flags);
7532         if (ret < 0)
7533                 return ret;
7534
7535         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7536         __dev_notify_flags(dev, old_flags, changes);
7537         return ret;
7538 }
7539 EXPORT_SYMBOL(dev_change_flags);
7540
7541 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7542 {
7543         const struct net_device_ops *ops = dev->netdev_ops;
7544
7545         if (ops->ndo_change_mtu)
7546                 return ops->ndo_change_mtu(dev, new_mtu);
7547
7548         dev->mtu = new_mtu;
7549         return 0;
7550 }
7551 EXPORT_SYMBOL(__dev_set_mtu);
7552
7553 /**
7554  *      dev_set_mtu_ext - Change maximum transfer unit
7555  *      @dev: device
7556  *      @new_mtu: new transfer unit
7557  *      @extack: netlink extended ack
7558  *
7559  *      Change the maximum transfer size of the network device.
7560  */
7561 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7562                     struct netlink_ext_ack *extack)
7563 {
7564         int err, orig_mtu;
7565
7566         if (new_mtu == dev->mtu)
7567                 return 0;
7568
7569         /* MTU must be positive, and in range */
7570         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7571                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7572                 return -EINVAL;
7573         }
7574
7575         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7576                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7577                 return -EINVAL;
7578         }
7579
7580         if (!netif_device_present(dev))
7581                 return -ENODEV;
7582
7583         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7584         err = notifier_to_errno(err);
7585         if (err)
7586                 return err;
7587
7588         orig_mtu = dev->mtu;
7589         err = __dev_set_mtu(dev, new_mtu);
7590
7591         if (!err) {
7592                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7593                 err = notifier_to_errno(err);
7594                 if (err) {
7595                         /* setting mtu back and notifying everyone again,
7596                          * so that they have a chance to revert changes.
7597                          */
7598                         __dev_set_mtu(dev, orig_mtu);
7599                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7600                 }
7601         }
7602         return err;
7603 }
7604
7605 int dev_set_mtu(struct net_device *dev, int new_mtu)
7606 {
7607         struct netlink_ext_ack extack;
7608         int err;
7609
7610         memset(&extack, 0, sizeof(extack));
7611         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7612         if (err && extack._msg)
7613                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7614         return err;
7615 }
7616 EXPORT_SYMBOL(dev_set_mtu);
7617
7618 /**
7619  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7620  *      @dev: device
7621  *      @new_len: new tx queue length
7622  */
7623 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7624 {
7625         unsigned int orig_len = dev->tx_queue_len;
7626         int res;
7627
7628         if (new_len != (unsigned int)new_len)
7629                 return -ERANGE;
7630
7631         if (new_len != orig_len) {
7632                 dev->tx_queue_len = new_len;
7633                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7634                 res = notifier_to_errno(res);
7635                 if (res)
7636                         goto err_rollback;
7637                 res = dev_qdisc_change_tx_queue_len(dev);
7638                 if (res)
7639                         goto err_rollback;
7640         }
7641
7642         return 0;
7643
7644 err_rollback:
7645         netdev_err(dev, "refused to change device tx_queue_len\n");
7646         dev->tx_queue_len = orig_len;
7647         return res;
7648 }
7649
7650 /**
7651  *      dev_set_group - Change group this device belongs to
7652  *      @dev: device
7653  *      @new_group: group this device should belong to
7654  */
7655 void dev_set_group(struct net_device *dev, int new_group)
7656 {
7657         dev->group = new_group;
7658 }
7659 EXPORT_SYMBOL(dev_set_group);
7660
7661 /**
7662  *      dev_set_mac_address - Change Media Access Control Address
7663  *      @dev: device
7664  *      @sa: new address
7665  *
7666  *      Change the hardware (MAC) address of the device
7667  */
7668 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7669 {
7670         const struct net_device_ops *ops = dev->netdev_ops;
7671         int err;
7672
7673         if (!ops->ndo_set_mac_address)
7674                 return -EOPNOTSUPP;
7675         if (sa->sa_family != dev->type)
7676                 return -EINVAL;
7677         if (!netif_device_present(dev))
7678                 return -ENODEV;
7679         err = ops->ndo_set_mac_address(dev, sa);
7680         if (err)
7681                 return err;
7682         dev->addr_assign_type = NET_ADDR_SET;
7683         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7684         add_device_randomness(dev->dev_addr, dev->addr_len);
7685         return 0;
7686 }
7687 EXPORT_SYMBOL(dev_set_mac_address);
7688
7689 /**
7690  *      dev_change_carrier - Change device carrier
7691  *      @dev: device
7692  *      @new_carrier: new value
7693  *
7694  *      Change device carrier
7695  */
7696 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7697 {
7698         const struct net_device_ops *ops = dev->netdev_ops;
7699
7700         if (!ops->ndo_change_carrier)
7701                 return -EOPNOTSUPP;
7702         if (!netif_device_present(dev))
7703                 return -ENODEV;
7704         return ops->ndo_change_carrier(dev, new_carrier);
7705 }
7706 EXPORT_SYMBOL(dev_change_carrier);
7707
7708 /**
7709  *      dev_get_phys_port_id - Get device physical port ID
7710  *      @dev: device
7711  *      @ppid: port ID
7712  *
7713  *      Get device physical port ID
7714  */
7715 int dev_get_phys_port_id(struct net_device *dev,
7716                          struct netdev_phys_item_id *ppid)
7717 {
7718         const struct net_device_ops *ops = dev->netdev_ops;
7719
7720         if (!ops->ndo_get_phys_port_id)
7721                 return -EOPNOTSUPP;
7722         return ops->ndo_get_phys_port_id(dev, ppid);
7723 }
7724 EXPORT_SYMBOL(dev_get_phys_port_id);
7725
7726 /**
7727  *      dev_get_phys_port_name - Get device physical port name
7728  *      @dev: device
7729  *      @name: port name
7730  *      @len: limit of bytes to copy to name
7731  *
7732  *      Get device physical port name
7733  */
7734 int dev_get_phys_port_name(struct net_device *dev,
7735                            char *name, size_t len)
7736 {
7737         const struct net_device_ops *ops = dev->netdev_ops;
7738
7739         if (!ops->ndo_get_phys_port_name)
7740                 return -EOPNOTSUPP;
7741         return ops->ndo_get_phys_port_name(dev, name, len);
7742 }
7743 EXPORT_SYMBOL(dev_get_phys_port_name);
7744
7745 /**
7746  *      dev_change_proto_down - update protocol port state information
7747  *      @dev: device
7748  *      @proto_down: new value
7749  *
7750  *      This info can be used by switch drivers to set the phys state of the
7751  *      port.
7752  */
7753 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7754 {
7755         const struct net_device_ops *ops = dev->netdev_ops;
7756
7757         if (!ops->ndo_change_proto_down)
7758                 return -EOPNOTSUPP;
7759         if (!netif_device_present(dev))
7760                 return -ENODEV;
7761         return ops->ndo_change_proto_down(dev, proto_down);
7762 }
7763 EXPORT_SYMBOL(dev_change_proto_down);
7764
7765 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7766                     enum bpf_netdev_command cmd)
7767 {
7768         struct netdev_bpf xdp;
7769
7770         if (!bpf_op)
7771                 return 0;
7772
7773         memset(&xdp, 0, sizeof(xdp));
7774         xdp.command = cmd;
7775
7776         /* Query must always succeed. */
7777         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7778
7779         return xdp.prog_id;
7780 }
7781
7782 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7783                            struct netlink_ext_ack *extack, u32 flags,
7784                            struct bpf_prog *prog)
7785 {
7786         struct netdev_bpf xdp;
7787
7788         memset(&xdp, 0, sizeof(xdp));
7789         if (flags & XDP_FLAGS_HW_MODE)
7790                 xdp.command = XDP_SETUP_PROG_HW;
7791         else
7792                 xdp.command = XDP_SETUP_PROG;
7793         xdp.extack = extack;
7794         xdp.flags = flags;
7795         xdp.prog = prog;
7796
7797         return bpf_op(dev, &xdp);
7798 }
7799
7800 static void dev_xdp_uninstall(struct net_device *dev)
7801 {
7802         struct netdev_bpf xdp;
7803         bpf_op_t ndo_bpf;
7804
7805         /* Remove generic XDP */
7806         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7807
7808         /* Remove from the driver */
7809         ndo_bpf = dev->netdev_ops->ndo_bpf;
7810         if (!ndo_bpf)
7811                 return;
7812
7813         memset(&xdp, 0, sizeof(xdp));
7814         xdp.command = XDP_QUERY_PROG;
7815         WARN_ON(ndo_bpf(dev, &xdp));
7816         if (xdp.prog_id)
7817                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7818                                         NULL));
7819
7820         /* Remove HW offload */
7821         memset(&xdp, 0, sizeof(xdp));
7822         xdp.command = XDP_QUERY_PROG_HW;
7823         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7824                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7825                                         NULL));
7826 }
7827
7828 /**
7829  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7830  *      @dev: device
7831  *      @extack: netlink extended ack
7832  *      @fd: new program fd or negative value to clear
7833  *      @flags: xdp-related flags
7834  *
7835  *      Set or clear a bpf program for a device
7836  */
7837 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7838                       int fd, u32 flags)
7839 {
7840         const struct net_device_ops *ops = dev->netdev_ops;
7841         enum bpf_netdev_command query;
7842         struct bpf_prog *prog = NULL;
7843         bpf_op_t bpf_op, bpf_chk;
7844         int err;
7845
7846         ASSERT_RTNL();
7847
7848         query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7849
7850         bpf_op = bpf_chk = ops->ndo_bpf;
7851         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7852                 return -EOPNOTSUPP;
7853         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7854                 bpf_op = generic_xdp_install;
7855         if (bpf_op == bpf_chk)
7856                 bpf_chk = generic_xdp_install;
7857
7858         if (fd >= 0) {
7859                 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7860                     __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7861                         return -EEXIST;
7862                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7863                     __dev_xdp_query(dev, bpf_op, query))
7864                         return -EBUSY;
7865
7866                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7867                                              bpf_op == ops->ndo_bpf);
7868                 if (IS_ERR(prog))
7869                         return PTR_ERR(prog);
7870
7871                 if (!(flags & XDP_FLAGS_HW_MODE) &&
7872                     bpf_prog_is_dev_bound(prog->aux)) {
7873                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7874                         bpf_prog_put(prog);
7875                         return -EINVAL;
7876                 }
7877         }
7878
7879         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7880         if (err < 0 && prog)
7881                 bpf_prog_put(prog);
7882
7883         return err;
7884 }
7885
7886 /**
7887  *      dev_new_index   -       allocate an ifindex
7888  *      @net: the applicable net namespace
7889  *
7890  *      Returns a suitable unique value for a new device interface
7891  *      number.  The caller must hold the rtnl semaphore or the
7892  *      dev_base_lock to be sure it remains unique.
7893  */
7894 static int dev_new_index(struct net *net)
7895 {
7896         int ifindex = net->ifindex;
7897
7898         for (;;) {
7899                 if (++ifindex <= 0)
7900                         ifindex = 1;
7901                 if (!__dev_get_by_index(net, ifindex))
7902                         return net->ifindex = ifindex;
7903         }
7904 }
7905
7906 /* Delayed registration/unregisteration */
7907 static LIST_HEAD(net_todo_list);
7908 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7909
7910 static void net_set_todo(struct net_device *dev)
7911 {
7912         list_add_tail(&dev->todo_list, &net_todo_list);
7913         dev_net(dev)->dev_unreg_count++;
7914 }
7915
7916 static void rollback_registered_many(struct list_head *head)
7917 {
7918         struct net_device *dev, *tmp;
7919         LIST_HEAD(close_head);
7920
7921         BUG_ON(dev_boot_phase);
7922         ASSERT_RTNL();
7923
7924         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7925                 /* Some devices call without registering
7926                  * for initialization unwind. Remove those
7927                  * devices and proceed with the remaining.
7928                  */
7929                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7930                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7931                                  dev->name, dev);
7932
7933                         WARN_ON(1);
7934                         list_del(&dev->unreg_list);
7935                         continue;
7936                 }
7937                 dev->dismantle = true;
7938                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7939         }
7940
7941         /* If device is running, close it first. */
7942         list_for_each_entry(dev, head, unreg_list)
7943                 list_add_tail(&dev->close_list, &close_head);
7944         dev_close_many(&close_head, true);
7945
7946         list_for_each_entry(dev, head, unreg_list) {
7947                 /* And unlink it from device chain. */
7948                 unlist_netdevice(dev);
7949
7950                 dev->reg_state = NETREG_UNREGISTERING;
7951         }
7952         flush_all_backlogs();
7953
7954         synchronize_net();
7955
7956         list_for_each_entry(dev, head, unreg_list) {
7957                 struct sk_buff *skb = NULL;
7958
7959                 /* Shutdown queueing discipline. */
7960                 dev_shutdown(dev);
7961
7962                 dev_xdp_uninstall(dev);
7963
7964                 /* Notify protocols, that we are about to destroy
7965                  * this device. They should clean all the things.
7966                  */
7967                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7968
7969                 if (!dev->rtnl_link_ops ||
7970                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7971                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7972                                                      GFP_KERNEL, NULL, 0);
7973
7974                 /*
7975                  *      Flush the unicast and multicast chains
7976                  */
7977                 dev_uc_flush(dev);
7978                 dev_mc_flush(dev);
7979
7980                 if (dev->netdev_ops->ndo_uninit)
7981                         dev->netdev_ops->ndo_uninit(dev);
7982
7983                 if (skb)
7984                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7985
7986                 /* Notifier chain MUST detach us all upper devices. */
7987                 WARN_ON(netdev_has_any_upper_dev(dev));
7988                 WARN_ON(netdev_has_any_lower_dev(dev));
7989
7990                 /* Remove entries from kobject tree */
7991                 netdev_unregister_kobject(dev);
7992 #ifdef CONFIG_XPS
7993                 /* Remove XPS queueing entries */
7994                 netif_reset_xps_queues_gt(dev, 0);
7995 #endif
7996         }
7997
7998         synchronize_net();
7999
8000         list_for_each_entry(dev, head, unreg_list)
8001                 dev_put(dev);
8002 }
8003
8004 static void rollback_registered(struct net_device *dev)
8005 {
8006         LIST_HEAD(single);
8007
8008         list_add(&dev->unreg_list, &single);
8009         rollback_registered_many(&single);
8010         list_del(&single);
8011 }
8012
8013 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8014         struct net_device *upper, netdev_features_t features)
8015 {
8016         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8017         netdev_features_t feature;
8018         int feature_bit;
8019
8020         for_each_netdev_feature(&upper_disables, feature_bit) {
8021                 feature = __NETIF_F_BIT(feature_bit);
8022                 if (!(upper->wanted_features & feature)
8023                     && (features & feature)) {
8024                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8025                                    &feature, upper->name);
8026                         features &= ~feature;
8027                 }
8028         }
8029
8030         return features;
8031 }
8032
8033 static void netdev_sync_lower_features(struct net_device *upper,
8034         struct net_device *lower, netdev_features_t features)
8035 {
8036         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8037         netdev_features_t feature;
8038         int feature_bit;
8039
8040         for_each_netdev_feature(&upper_disables, feature_bit) {
8041                 feature = __NETIF_F_BIT(feature_bit);
8042                 if (!(features & feature) && (lower->features & feature)) {
8043                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8044                                    &feature, lower->name);
8045                         lower->wanted_features &= ~feature;
8046                         netdev_update_features(lower);
8047
8048                         if (unlikely(lower->features & feature))
8049                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8050                                             &feature, lower->name);
8051                 }
8052         }
8053 }
8054
8055 static netdev_features_t netdev_fix_features(struct net_device *dev,
8056         netdev_features_t features)
8057 {
8058         /* Fix illegal checksum combinations */
8059         if ((features & NETIF_F_HW_CSUM) &&
8060             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8061                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8062                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8063         }
8064
8065         /* TSO requires that SG is present as well. */
8066         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8067                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8068                 features &= ~NETIF_F_ALL_TSO;
8069         }
8070
8071         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8072                                         !(features & NETIF_F_IP_CSUM)) {
8073                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8074                 features &= ~NETIF_F_TSO;
8075                 features &= ~NETIF_F_TSO_ECN;
8076         }
8077
8078         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8079                                          !(features & NETIF_F_IPV6_CSUM)) {
8080                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8081                 features &= ~NETIF_F_TSO6;
8082         }
8083
8084         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8085         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8086                 features &= ~NETIF_F_TSO_MANGLEID;
8087
8088         /* TSO ECN requires that TSO is present as well. */
8089         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8090                 features &= ~NETIF_F_TSO_ECN;
8091
8092         /* Software GSO depends on SG. */
8093         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8094                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8095                 features &= ~NETIF_F_GSO;
8096         }
8097
8098         /* GSO partial features require GSO partial be set */
8099         if ((features & dev->gso_partial_features) &&
8100             !(features & NETIF_F_GSO_PARTIAL)) {
8101                 netdev_dbg(dev,
8102                            "Dropping partially supported GSO features since no GSO partial.\n");
8103                 features &= ~dev->gso_partial_features;
8104         }
8105
8106         if (!(features & NETIF_F_RXCSUM)) {
8107                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8108                  * successfully merged by hardware must also have the
8109                  * checksum verified by hardware.  If the user does not
8110                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8111                  */
8112                 if (features & NETIF_F_GRO_HW) {
8113                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8114                         features &= ~NETIF_F_GRO_HW;
8115                 }
8116         }
8117
8118         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8119         if (features & NETIF_F_RXFCS) {
8120                 if (features & NETIF_F_LRO) {
8121                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8122                         features &= ~NETIF_F_LRO;
8123                 }
8124
8125                 if (features & NETIF_F_GRO_HW) {
8126                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8127                         features &= ~NETIF_F_GRO_HW;
8128                 }
8129         }
8130
8131         return features;
8132 }
8133
8134 int __netdev_update_features(struct net_device *dev)
8135 {
8136         struct net_device *upper, *lower;
8137         netdev_features_t features;
8138         struct list_head *iter;
8139         int err = -1;
8140
8141         ASSERT_RTNL();
8142
8143         features = netdev_get_wanted_features(dev);
8144
8145         if (dev->netdev_ops->ndo_fix_features)
8146                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8147
8148         /* driver might be less strict about feature dependencies */
8149         features = netdev_fix_features(dev, features);
8150
8151         /* some features can't be enabled if they're off an an upper device */
8152         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8153                 features = netdev_sync_upper_features(dev, upper, features);
8154
8155         if (dev->features == features)
8156                 goto sync_lower;
8157
8158         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8159                 &dev->features, &features);
8160
8161         if (dev->netdev_ops->ndo_set_features)
8162                 err = dev->netdev_ops->ndo_set_features(dev, features);
8163         else
8164                 err = 0;
8165
8166         if (unlikely(err < 0)) {
8167                 netdev_err(dev,
8168                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8169                         err, &features, &dev->features);
8170                 /* return non-0 since some features might have changed and
8171                  * it's better to fire a spurious notification than miss it
8172                  */
8173                 return -1;
8174         }
8175
8176 sync_lower:
8177         /* some features must be disabled on lower devices when disabled
8178          * on an upper device (think: bonding master or bridge)
8179          */
8180         netdev_for_each_lower_dev(dev, lower, iter)
8181                 netdev_sync_lower_features(dev, lower, features);
8182
8183         if (!err) {
8184                 netdev_features_t diff = features ^ dev->features;
8185
8186                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8187                         /* udp_tunnel_{get,drop}_rx_info both need
8188                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8189                          * device, or they won't do anything.
8190                          * Thus we need to update dev->features
8191                          * *before* calling udp_tunnel_get_rx_info,
8192                          * but *after* calling udp_tunnel_drop_rx_info.
8193                          */
8194                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8195                                 dev->features = features;
8196                                 udp_tunnel_get_rx_info(dev);
8197                         } else {
8198                                 udp_tunnel_drop_rx_info(dev);
8199                         }
8200                 }
8201
8202                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8203                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8204                                 dev->features = features;
8205                                 err |= vlan_get_rx_ctag_filter_info(dev);
8206                         } else {
8207                                 vlan_drop_rx_ctag_filter_info(dev);
8208                         }
8209                 }
8210
8211                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8212                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8213                                 dev->features = features;
8214                                 err |= vlan_get_rx_stag_filter_info(dev);
8215                         } else {
8216                                 vlan_drop_rx_stag_filter_info(dev);
8217                         }
8218                 }
8219
8220                 dev->features = features;
8221         }
8222
8223         return err < 0 ? 0 : 1;
8224 }
8225
8226 /**
8227  *      netdev_update_features - recalculate device features
8228  *      @dev: the device to check
8229  *
8230  *      Recalculate dev->features set and send notifications if it
8231  *      has changed. Should be called after driver or hardware dependent
8232  *      conditions might have changed that influence the features.
8233  */
8234 void netdev_update_features(struct net_device *dev)
8235 {
8236         if (__netdev_update_features(dev))
8237                 netdev_features_change(dev);
8238 }
8239 EXPORT_SYMBOL(netdev_update_features);
8240
8241 /**
8242  *      netdev_change_features - recalculate device features
8243  *      @dev: the device to check
8244  *
8245  *      Recalculate dev->features set and send notifications even
8246  *      if they have not changed. Should be called instead of
8247  *      netdev_update_features() if also dev->vlan_features might
8248  *      have changed to allow the changes to be propagated to stacked
8249  *      VLAN devices.
8250  */
8251 void netdev_change_features(struct net_device *dev)
8252 {
8253         __netdev_update_features(dev);
8254         netdev_features_change(dev);
8255 }
8256 EXPORT_SYMBOL(netdev_change_features);
8257
8258 /**
8259  *      netif_stacked_transfer_operstate -      transfer operstate
8260  *      @rootdev: the root or lower level device to transfer state from
8261  *      @dev: the device to transfer operstate to
8262  *
8263  *      Transfer operational state from root to device. This is normally
8264  *      called when a stacking relationship exists between the root
8265  *      device and the device(a leaf device).
8266  */
8267 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8268                                         struct net_device *dev)
8269 {
8270         if (rootdev->operstate == IF_OPER_DORMANT)
8271                 netif_dormant_on(dev);
8272         else
8273                 netif_dormant_off(dev);
8274
8275         if (netif_carrier_ok(rootdev))
8276                 netif_carrier_on(dev);
8277         else
8278                 netif_carrier_off(dev);
8279 }
8280 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8281
8282 static int netif_alloc_rx_queues(struct net_device *dev)
8283 {
8284         unsigned int i, count = dev->num_rx_queues;
8285         struct netdev_rx_queue *rx;
8286         size_t sz = count * sizeof(*rx);
8287         int err = 0;
8288
8289         BUG_ON(count < 1);
8290
8291         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8292         if (!rx)
8293                 return -ENOMEM;
8294
8295         dev->_rx = rx;
8296
8297         for (i = 0; i < count; i++) {
8298                 rx[i].dev = dev;
8299
8300                 /* XDP RX-queue setup */
8301                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8302                 if (err < 0)
8303                         goto err_rxq_info;
8304         }
8305         return 0;
8306
8307 err_rxq_info:
8308         /* Rollback successful reg's and free other resources */
8309         while (i--)
8310                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8311         kvfree(dev->_rx);
8312         dev->_rx = NULL;
8313         return err;
8314 }
8315
8316 static void netif_free_rx_queues(struct net_device *dev)
8317 {
8318         unsigned int i, count = dev->num_rx_queues;
8319
8320         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8321         if (!dev->_rx)
8322                 return;
8323
8324         for (i = 0; i < count; i++)
8325                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8326
8327         kvfree(dev->_rx);
8328 }
8329
8330 static void netdev_init_one_queue(struct net_device *dev,
8331                                   struct netdev_queue *queue, void *_unused)
8332 {
8333         /* Initialize queue lock */
8334         spin_lock_init(&queue->_xmit_lock);
8335         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8336         queue->xmit_lock_owner = -1;
8337         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8338         queue->dev = dev;
8339 #ifdef CONFIG_BQL
8340         dql_init(&queue->dql, HZ);
8341 #endif
8342 }
8343
8344 static void netif_free_tx_queues(struct net_device *dev)
8345 {
8346         kvfree(dev->_tx);
8347 }
8348
8349 static int netif_alloc_netdev_queues(struct net_device *dev)
8350 {
8351         unsigned int count = dev->num_tx_queues;
8352         struct netdev_queue *tx;
8353         size_t sz = count * sizeof(*tx);
8354
8355         if (count < 1 || count > 0xffff)
8356                 return -EINVAL;
8357
8358         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8359         if (!tx)
8360                 return -ENOMEM;
8361
8362         dev->_tx = tx;
8363
8364         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8365         spin_lock_init(&dev->tx_global_lock);
8366
8367         return 0;
8368 }
8369
8370 void netif_tx_stop_all_queues(struct net_device *dev)
8371 {
8372         unsigned int i;
8373
8374         for (i = 0; i < dev->num_tx_queues; i++) {
8375                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8376
8377                 netif_tx_stop_queue(txq);
8378         }
8379 }
8380 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8381
8382 /**
8383  *      register_netdevice      - register a network device
8384  *      @dev: device to register
8385  *
8386  *      Take a completed network device structure and add it to the kernel
8387  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8388  *      chain. 0 is returned on success. A negative errno code is returned
8389  *      on a failure to set up the device, or if the name is a duplicate.
8390  *
8391  *      Callers must hold the rtnl semaphore. You may want
8392  *      register_netdev() instead of this.
8393  *
8394  *      BUGS:
8395  *      The locking appears insufficient to guarantee two parallel registers
8396  *      will not get the same name.
8397  */
8398
8399 int register_netdevice(struct net_device *dev)
8400 {
8401         int ret;
8402         struct net *net = dev_net(dev);
8403
8404         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8405                      NETDEV_FEATURE_COUNT);
8406         BUG_ON(dev_boot_phase);
8407         ASSERT_RTNL();
8408
8409         might_sleep();
8410
8411         /* When net_device's are persistent, this will be fatal. */
8412         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8413         BUG_ON(!net);
8414
8415         spin_lock_init(&dev->addr_list_lock);
8416         netdev_set_addr_lockdep_class(dev);
8417
8418         ret = dev_get_valid_name(net, dev, dev->name);
8419         if (ret < 0)
8420                 goto out;
8421
8422         /* Init, if this function is available */
8423         if (dev->netdev_ops->ndo_init) {
8424                 ret = dev->netdev_ops->ndo_init(dev);
8425                 if (ret) {
8426                         if (ret > 0)
8427                                 ret = -EIO;
8428                         goto out;
8429                 }
8430         }
8431
8432         if (((dev->hw_features | dev->features) &
8433              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8434             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8435              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8436                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8437                 ret = -EINVAL;
8438                 goto err_uninit;
8439         }
8440
8441         ret = -EBUSY;
8442         if (!dev->ifindex)
8443                 dev->ifindex = dev_new_index(net);
8444         else if (__dev_get_by_index(net, dev->ifindex))
8445                 goto err_uninit;
8446
8447         /* Transfer changeable features to wanted_features and enable
8448          * software offloads (GSO and GRO).
8449          */
8450         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8451         dev->features |= NETIF_F_SOFT_FEATURES;
8452
8453         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8454                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8455                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8456         }
8457
8458         dev->wanted_features = dev->features & dev->hw_features;
8459
8460         if (!(dev->flags & IFF_LOOPBACK))
8461                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8462
8463         /* If IPv4 TCP segmentation offload is supported we should also
8464          * allow the device to enable segmenting the frame with the option
8465          * of ignoring a static IP ID value.  This doesn't enable the
8466          * feature itself but allows the user to enable it later.
8467          */
8468         if (dev->hw_features & NETIF_F_TSO)
8469                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8470         if (dev->vlan_features & NETIF_F_TSO)
8471                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8472         if (dev->mpls_features & NETIF_F_TSO)
8473                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8474         if (dev->hw_enc_features & NETIF_F_TSO)
8475                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8476
8477         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8478          */
8479         dev->vlan_features |= NETIF_F_HIGHDMA;
8480
8481         /* Make NETIF_F_SG inheritable to tunnel devices.
8482          */
8483         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8484
8485         /* Make NETIF_F_SG inheritable to MPLS.
8486          */
8487         dev->mpls_features |= NETIF_F_SG;
8488
8489         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8490         ret = notifier_to_errno(ret);
8491         if (ret)
8492                 goto err_uninit;
8493
8494         ret = netdev_register_kobject(dev);
8495         if (ret)
8496                 goto err_uninit;
8497         dev->reg_state = NETREG_REGISTERED;
8498
8499         __netdev_update_features(dev);
8500
8501         /*
8502          *      Default initial state at registry is that the
8503          *      device is present.
8504          */
8505
8506         set_bit(__LINK_STATE_PRESENT, &dev->state);
8507
8508         linkwatch_init_dev(dev);
8509
8510         dev_init_scheduler(dev);
8511         dev_hold(dev);
8512         list_netdevice(dev);
8513         add_device_randomness(dev->dev_addr, dev->addr_len);
8514
8515         /* If the device has permanent device address, driver should
8516          * set dev_addr and also addr_assign_type should be set to
8517          * NET_ADDR_PERM (default value).
8518          */
8519         if (dev->addr_assign_type == NET_ADDR_PERM)
8520                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8521
8522         /* Notify protocols, that a new device appeared. */
8523         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8524         ret = notifier_to_errno(ret);
8525         if (ret) {
8526                 rollback_registered(dev);
8527                 dev->reg_state = NETREG_UNREGISTERED;
8528         }
8529         /*
8530          *      Prevent userspace races by waiting until the network
8531          *      device is fully setup before sending notifications.
8532          */
8533         if (!dev->rtnl_link_ops ||
8534             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8535                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8536
8537 out:
8538         return ret;
8539
8540 err_uninit:
8541         if (dev->netdev_ops->ndo_uninit)
8542                 dev->netdev_ops->ndo_uninit(dev);
8543         if (dev->priv_destructor)
8544                 dev->priv_destructor(dev);
8545         goto out;
8546 }
8547 EXPORT_SYMBOL(register_netdevice);
8548
8549 /**
8550  *      init_dummy_netdev       - init a dummy network device for NAPI
8551  *      @dev: device to init
8552  *
8553  *      This takes a network device structure and initialize the minimum
8554  *      amount of fields so it can be used to schedule NAPI polls without
8555  *      registering a full blown interface. This is to be used by drivers
8556  *      that need to tie several hardware interfaces to a single NAPI
8557  *      poll scheduler due to HW limitations.
8558  */
8559 int init_dummy_netdev(struct net_device *dev)
8560 {
8561         /* Clear everything. Note we don't initialize spinlocks
8562          * are they aren't supposed to be taken by any of the
8563          * NAPI code and this dummy netdev is supposed to be
8564          * only ever used for NAPI polls
8565          */
8566         memset(dev, 0, sizeof(struct net_device));
8567
8568         /* make sure we BUG if trying to hit standard
8569          * register/unregister code path
8570          */
8571         dev->reg_state = NETREG_DUMMY;
8572
8573         /* NAPI wants this */
8574         INIT_LIST_HEAD(&dev->napi_list);
8575
8576         /* a dummy interface is started by default */
8577         set_bit(__LINK_STATE_PRESENT, &dev->state);
8578         set_bit(__LINK_STATE_START, &dev->state);
8579
8580         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8581          * because users of this 'device' dont need to change
8582          * its refcount.
8583          */
8584
8585         return 0;
8586 }
8587 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8588
8589
8590 /**
8591  *      register_netdev - register a network device
8592  *      @dev: device to register
8593  *
8594  *      Take a completed network device structure and add it to the kernel
8595  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8596  *      chain. 0 is returned on success. A negative errno code is returned
8597  *      on a failure to set up the device, or if the name is a duplicate.
8598  *
8599  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8600  *      and expands the device name if you passed a format string to
8601  *      alloc_netdev.
8602  */
8603 int register_netdev(struct net_device *dev)
8604 {
8605         int err;
8606
8607         if (rtnl_lock_killable())
8608                 return -EINTR;
8609         err = register_netdevice(dev);
8610         rtnl_unlock();
8611         return err;
8612 }
8613 EXPORT_SYMBOL(register_netdev);
8614
8615 int netdev_refcnt_read(const struct net_device *dev)
8616 {
8617         int i, refcnt = 0;
8618
8619         for_each_possible_cpu(i)
8620                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8621         return refcnt;
8622 }
8623 EXPORT_SYMBOL(netdev_refcnt_read);
8624
8625 /**
8626  * netdev_wait_allrefs - wait until all references are gone.
8627  * @dev: target net_device
8628  *
8629  * This is called when unregistering network devices.
8630  *
8631  * Any protocol or device that holds a reference should register
8632  * for netdevice notification, and cleanup and put back the
8633  * reference if they receive an UNREGISTER event.
8634  * We can get stuck here if buggy protocols don't correctly
8635  * call dev_put.
8636  */
8637 static void netdev_wait_allrefs(struct net_device *dev)
8638 {
8639         unsigned long rebroadcast_time, warning_time;
8640         int refcnt;
8641
8642         linkwatch_forget_dev(dev);
8643
8644         rebroadcast_time = warning_time = jiffies;
8645         refcnt = netdev_refcnt_read(dev);
8646
8647         while (refcnt != 0) {
8648                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8649                         rtnl_lock();
8650
8651                         /* Rebroadcast unregister notification */
8652                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8653
8654                         __rtnl_unlock();
8655                         rcu_barrier();
8656                         rtnl_lock();
8657
8658                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8659                                      &dev->state)) {
8660                                 /* We must not have linkwatch events
8661                                  * pending on unregister. If this
8662                                  * happens, we simply run the queue
8663                                  * unscheduled, resulting in a noop
8664                                  * for this device.
8665                                  */
8666                                 linkwatch_run_queue();
8667                         }
8668
8669                         __rtnl_unlock();
8670
8671                         rebroadcast_time = jiffies;
8672                 }
8673
8674                 msleep(250);
8675
8676                 refcnt = netdev_refcnt_read(dev);
8677
8678                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8679                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8680                                  dev->name, refcnt);
8681                         warning_time = jiffies;
8682                 }
8683         }
8684 }
8685
8686 /* The sequence is:
8687  *
8688  *      rtnl_lock();
8689  *      ...
8690  *      register_netdevice(x1);
8691  *      register_netdevice(x2);
8692  *      ...
8693  *      unregister_netdevice(y1);
8694  *      unregister_netdevice(y2);
8695  *      ...
8696  *      rtnl_unlock();
8697  *      free_netdev(y1);
8698  *      free_netdev(y2);
8699  *
8700  * We are invoked by rtnl_unlock().
8701  * This allows us to deal with problems:
8702  * 1) We can delete sysfs objects which invoke hotplug
8703  *    without deadlocking with linkwatch via keventd.
8704  * 2) Since we run with the RTNL semaphore not held, we can sleep
8705  *    safely in order to wait for the netdev refcnt to drop to zero.
8706  *
8707  * We must not return until all unregister events added during
8708  * the interval the lock was held have been completed.
8709  */
8710 void netdev_run_todo(void)
8711 {
8712         struct list_head list;
8713
8714         /* Snapshot list, allow later requests */
8715         list_replace_init(&net_todo_list, &list);
8716
8717         __rtnl_unlock();
8718
8719
8720         /* Wait for rcu callbacks to finish before next phase */
8721         if (!list_empty(&list))
8722                 rcu_barrier();
8723
8724         while (!list_empty(&list)) {
8725                 struct net_device *dev
8726                         = list_first_entry(&list, struct net_device, todo_list);
8727                 list_del(&dev->todo_list);
8728
8729                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8730                         pr_err("network todo '%s' but state %d\n",
8731                                dev->name, dev->reg_state);
8732                         dump_stack();
8733                         continue;
8734                 }
8735
8736                 dev->reg_state = NETREG_UNREGISTERED;
8737
8738                 netdev_wait_allrefs(dev);
8739
8740                 /* paranoia */
8741                 BUG_ON(netdev_refcnt_read(dev));
8742                 BUG_ON(!list_empty(&dev->ptype_all));
8743                 BUG_ON(!list_empty(&dev->ptype_specific));
8744                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8745                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8746 #if IS_ENABLED(CONFIG_DECNET)
8747                 WARN_ON(dev->dn_ptr);
8748 #endif
8749                 if (dev->priv_destructor)
8750                         dev->priv_destructor(dev);
8751                 if (dev->needs_free_netdev)
8752                         free_netdev(dev);
8753
8754                 /* Report a network device has been unregistered */
8755                 rtnl_lock();
8756                 dev_net(dev)->dev_unreg_count--;
8757                 __rtnl_unlock();
8758                 wake_up(&netdev_unregistering_wq);
8759
8760                 /* Free network device */
8761                 kobject_put(&dev->dev.kobj);
8762         }
8763 }
8764
8765 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8766  * all the same fields in the same order as net_device_stats, with only
8767  * the type differing, but rtnl_link_stats64 may have additional fields
8768  * at the end for newer counters.
8769  */
8770 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8771                              const struct net_device_stats *netdev_stats)
8772 {
8773 #if BITS_PER_LONG == 64
8774         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8775         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8776         /* zero out counters that only exist in rtnl_link_stats64 */
8777         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8778                sizeof(*stats64) - sizeof(*netdev_stats));
8779 #else
8780         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8781         const unsigned long *src = (const unsigned long *)netdev_stats;
8782         u64 *dst = (u64 *)stats64;
8783
8784         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8785         for (i = 0; i < n; i++)
8786                 dst[i] = src[i];
8787         /* zero out counters that only exist in rtnl_link_stats64 */
8788         memset((char *)stats64 + n * sizeof(u64), 0,
8789                sizeof(*stats64) - n * sizeof(u64));
8790 #endif
8791 }
8792 EXPORT_SYMBOL(netdev_stats_to_stats64);
8793
8794 /**
8795  *      dev_get_stats   - get network device statistics
8796  *      @dev: device to get statistics from
8797  *      @storage: place to store stats
8798  *
8799  *      Get network statistics from device. Return @storage.
8800  *      The device driver may provide its own method by setting
8801  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8802  *      otherwise the internal statistics structure is used.
8803  */
8804 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8805                                         struct rtnl_link_stats64 *storage)
8806 {
8807         const struct net_device_ops *ops = dev->netdev_ops;
8808
8809         if (ops->ndo_get_stats64) {
8810                 memset(storage, 0, sizeof(*storage));
8811                 ops->ndo_get_stats64(dev, storage);
8812         } else if (ops->ndo_get_stats) {
8813                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8814         } else {
8815                 netdev_stats_to_stats64(storage, &dev->stats);
8816         }
8817         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8818         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8819         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8820         return storage;
8821 }
8822 EXPORT_SYMBOL(dev_get_stats);
8823
8824 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8825 {
8826         struct netdev_queue *queue = dev_ingress_queue(dev);
8827
8828 #ifdef CONFIG_NET_CLS_ACT
8829         if (queue)
8830                 return queue;
8831         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8832         if (!queue)
8833                 return NULL;
8834         netdev_init_one_queue(dev, queue, NULL);
8835         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8836         queue->qdisc_sleeping = &noop_qdisc;
8837         rcu_assign_pointer(dev->ingress_queue, queue);
8838 #endif
8839         return queue;
8840 }
8841
8842 static const struct ethtool_ops default_ethtool_ops;
8843
8844 void netdev_set_default_ethtool_ops(struct net_device *dev,
8845                                     const struct ethtool_ops *ops)
8846 {
8847         if (dev->ethtool_ops == &default_ethtool_ops)
8848                 dev->ethtool_ops = ops;
8849 }
8850 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8851
8852 void netdev_freemem(struct net_device *dev)
8853 {
8854         char *addr = (char *)dev - dev->padded;
8855
8856         kvfree(addr);
8857 }
8858
8859 /**
8860  * alloc_netdev_mqs - allocate network device
8861  * @sizeof_priv: size of private data to allocate space for
8862  * @name: device name format string
8863  * @name_assign_type: origin of device name
8864  * @setup: callback to initialize device
8865  * @txqs: the number of TX subqueues to allocate
8866  * @rxqs: the number of RX subqueues to allocate
8867  *
8868  * Allocates a struct net_device with private data area for driver use
8869  * and performs basic initialization.  Also allocates subqueue structs
8870  * for each queue on the device.
8871  */
8872 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8873                 unsigned char name_assign_type,
8874                 void (*setup)(struct net_device *),
8875                 unsigned int txqs, unsigned int rxqs)
8876 {
8877         struct net_device *dev;
8878         unsigned int alloc_size;
8879         struct net_device *p;
8880
8881         BUG_ON(strlen(name) >= sizeof(dev->name));
8882
8883         if (txqs < 1) {
8884                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8885                 return NULL;
8886         }
8887
8888         if (rxqs < 1) {
8889                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8890                 return NULL;
8891         }
8892
8893         alloc_size = sizeof(struct net_device);
8894         if (sizeof_priv) {
8895                 /* ensure 32-byte alignment of private area */
8896                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8897                 alloc_size += sizeof_priv;
8898         }
8899         /* ensure 32-byte alignment of whole construct */
8900         alloc_size += NETDEV_ALIGN - 1;
8901
8902         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8903         if (!p)
8904                 return NULL;
8905
8906         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8907         dev->padded = (char *)dev - (char *)p;
8908
8909         dev->pcpu_refcnt = alloc_percpu(int);
8910         if (!dev->pcpu_refcnt)
8911                 goto free_dev;
8912
8913         if (dev_addr_init(dev))
8914                 goto free_pcpu;
8915
8916         dev_mc_init(dev);
8917         dev_uc_init(dev);
8918
8919         dev_net_set(dev, &init_net);
8920
8921         dev->gso_max_size = GSO_MAX_SIZE;
8922         dev->gso_max_segs = GSO_MAX_SEGS;
8923
8924         INIT_LIST_HEAD(&dev->napi_list);
8925         INIT_LIST_HEAD(&dev->unreg_list);
8926         INIT_LIST_HEAD(&dev->close_list);
8927         INIT_LIST_HEAD(&dev->link_watch_list);
8928         INIT_LIST_HEAD(&dev->adj_list.upper);
8929         INIT_LIST_HEAD(&dev->adj_list.lower);
8930         INIT_LIST_HEAD(&dev->ptype_all);
8931         INIT_LIST_HEAD(&dev->ptype_specific);
8932 #ifdef CONFIG_NET_SCHED
8933         hash_init(dev->qdisc_hash);
8934 #endif
8935         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8936         setup(dev);
8937
8938         if (!dev->tx_queue_len) {
8939                 dev->priv_flags |= IFF_NO_QUEUE;
8940                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8941         }
8942
8943         dev->num_tx_queues = txqs;
8944         dev->real_num_tx_queues = txqs;
8945         if (netif_alloc_netdev_queues(dev))
8946                 goto free_all;
8947
8948         dev->num_rx_queues = rxqs;
8949         dev->real_num_rx_queues = rxqs;
8950         if (netif_alloc_rx_queues(dev))
8951                 goto free_all;
8952
8953         strcpy(dev->name, name);
8954         dev->name_assign_type = name_assign_type;
8955         dev->group = INIT_NETDEV_GROUP;
8956         if (!dev->ethtool_ops)
8957                 dev->ethtool_ops = &default_ethtool_ops;
8958
8959         nf_hook_ingress_init(dev);
8960
8961         return dev;
8962
8963 free_all:
8964         free_netdev(dev);
8965         return NULL;
8966
8967 free_pcpu:
8968         free_percpu(dev->pcpu_refcnt);
8969 free_dev:
8970         netdev_freemem(dev);
8971         return NULL;
8972 }
8973 EXPORT_SYMBOL(alloc_netdev_mqs);
8974
8975 /**
8976  * free_netdev - free network device
8977  * @dev: device
8978  *
8979  * This function does the last stage of destroying an allocated device
8980  * interface. The reference to the device object is released. If this
8981  * is the last reference then it will be freed.Must be called in process
8982  * context.
8983  */
8984 void free_netdev(struct net_device *dev)
8985 {
8986         struct napi_struct *p, *n;
8987
8988         might_sleep();
8989         netif_free_tx_queues(dev);
8990         netif_free_rx_queues(dev);
8991
8992         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8993
8994         /* Flush device addresses */
8995         dev_addr_flush(dev);
8996
8997         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8998                 netif_napi_del(p);
8999
9000         free_percpu(dev->pcpu_refcnt);
9001         dev->pcpu_refcnt = NULL;
9002
9003         /*  Compatibility with error handling in drivers */
9004         if (dev->reg_state == NETREG_UNINITIALIZED) {
9005                 netdev_freemem(dev);
9006                 return;
9007         }
9008
9009         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9010         dev->reg_state = NETREG_RELEASED;
9011
9012         /* will free via device release */
9013         put_device(&dev->dev);
9014 }
9015 EXPORT_SYMBOL(free_netdev);
9016
9017 /**
9018  *      synchronize_net -  Synchronize with packet receive processing
9019  *
9020  *      Wait for packets currently being received to be done.
9021  *      Does not block later packets from starting.
9022  */
9023 void synchronize_net(void)
9024 {
9025         might_sleep();
9026         if (rtnl_is_locked())
9027                 synchronize_rcu_expedited();
9028         else
9029                 synchronize_rcu();
9030 }
9031 EXPORT_SYMBOL(synchronize_net);
9032
9033 /**
9034  *      unregister_netdevice_queue - remove device from the kernel
9035  *      @dev: device
9036  *      @head: list
9037  *
9038  *      This function shuts down a device interface and removes it
9039  *      from the kernel tables.
9040  *      If head not NULL, device is queued to be unregistered later.
9041  *
9042  *      Callers must hold the rtnl semaphore.  You may want
9043  *      unregister_netdev() instead of this.
9044  */
9045
9046 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9047 {
9048         ASSERT_RTNL();
9049
9050         if (head) {
9051                 list_move_tail(&dev->unreg_list, head);
9052         } else {
9053                 rollback_registered(dev);
9054                 /* Finish processing unregister after unlock */
9055                 net_set_todo(dev);
9056         }
9057 }
9058 EXPORT_SYMBOL(unregister_netdevice_queue);
9059
9060 /**
9061  *      unregister_netdevice_many - unregister many devices
9062  *      @head: list of devices
9063  *
9064  *  Note: As most callers use a stack allocated list_head,
9065  *  we force a list_del() to make sure stack wont be corrupted later.
9066  */
9067 void unregister_netdevice_many(struct list_head *head)
9068 {
9069         struct net_device *dev;
9070
9071         if (!list_empty(head)) {
9072                 rollback_registered_many(head);
9073                 list_for_each_entry(dev, head, unreg_list)
9074                         net_set_todo(dev);
9075                 list_del(head);
9076         }
9077 }
9078 EXPORT_SYMBOL(unregister_netdevice_many);
9079
9080 /**
9081  *      unregister_netdev - remove device from the kernel
9082  *      @dev: device
9083  *
9084  *      This function shuts down a device interface and removes it
9085  *      from the kernel tables.
9086  *
9087  *      This is just a wrapper for unregister_netdevice that takes
9088  *      the rtnl semaphore.  In general you want to use this and not
9089  *      unregister_netdevice.
9090  */
9091 void unregister_netdev(struct net_device *dev)
9092 {
9093         rtnl_lock();
9094         unregister_netdevice(dev);
9095         rtnl_unlock();
9096 }
9097 EXPORT_SYMBOL(unregister_netdev);
9098
9099 /**
9100  *      dev_change_net_namespace - move device to different nethost namespace
9101  *      @dev: device
9102  *      @net: network namespace
9103  *      @pat: If not NULL name pattern to try if the current device name
9104  *            is already taken in the destination network namespace.
9105  *
9106  *      This function shuts down a device interface and moves it
9107  *      to a new network namespace. On success 0 is returned, on
9108  *      a failure a netagive errno code is returned.
9109  *
9110  *      Callers must hold the rtnl semaphore.
9111  */
9112
9113 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9114 {
9115         int err, new_nsid, new_ifindex;
9116
9117         ASSERT_RTNL();
9118
9119         /* Don't allow namespace local devices to be moved. */
9120         err = -EINVAL;
9121         if (dev->features & NETIF_F_NETNS_LOCAL)
9122                 goto out;
9123
9124         /* Ensure the device has been registrered */
9125         if (dev->reg_state != NETREG_REGISTERED)
9126                 goto out;
9127
9128         /* Get out if there is nothing todo */
9129         err = 0;
9130         if (net_eq(dev_net(dev), net))
9131                 goto out;
9132
9133         /* Pick the destination device name, and ensure
9134          * we can use it in the destination network namespace.
9135          */
9136         err = -EEXIST;
9137         if (__dev_get_by_name(net, dev->name)) {
9138                 /* We get here if we can't use the current device name */
9139                 if (!pat)
9140                         goto out;
9141                 err = dev_get_valid_name(net, dev, pat);
9142                 if (err < 0)
9143                         goto out;
9144         }
9145
9146         /*
9147          * And now a mini version of register_netdevice unregister_netdevice.
9148          */
9149
9150         /* If device is running close it first. */
9151         dev_close(dev);
9152
9153         /* And unlink it from device chain */
9154         unlist_netdevice(dev);
9155
9156         synchronize_net();
9157
9158         /* Shutdown queueing discipline. */
9159         dev_shutdown(dev);
9160
9161         /* Notify protocols, that we are about to destroy
9162          * this device. They should clean all the things.
9163          *
9164          * Note that dev->reg_state stays at NETREG_REGISTERED.
9165          * This is wanted because this way 8021q and macvlan know
9166          * the device is just moving and can keep their slaves up.
9167          */
9168         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9169         rcu_barrier();
9170
9171         new_nsid = peernet2id_alloc(dev_net(dev), net);
9172         /* If there is an ifindex conflict assign a new one */
9173         if (__dev_get_by_index(net, dev->ifindex))
9174                 new_ifindex = dev_new_index(net);
9175         else
9176                 new_ifindex = dev->ifindex;
9177
9178         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9179                             new_ifindex);
9180
9181         /*
9182          *      Flush the unicast and multicast chains
9183          */
9184         dev_uc_flush(dev);
9185         dev_mc_flush(dev);
9186
9187         /* Send a netdev-removed uevent to the old namespace */
9188         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9189         netdev_adjacent_del_links(dev);
9190
9191         /* Actually switch the network namespace */
9192         dev_net_set(dev, net);
9193         dev->ifindex = new_ifindex;
9194
9195         /* Send a netdev-add uevent to the new namespace */
9196         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9197         netdev_adjacent_add_links(dev);
9198
9199         /* Fixup kobjects */
9200         err = device_rename(&dev->dev, dev->name);
9201         WARN_ON(err);
9202
9203         /* Add the device back in the hashes */
9204         list_netdevice(dev);
9205
9206         /* Notify protocols, that a new device appeared. */
9207         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9208
9209         /*
9210          *      Prevent userspace races by waiting until the network
9211          *      device is fully setup before sending notifications.
9212          */
9213         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9214
9215         synchronize_net();
9216         err = 0;
9217 out:
9218         return err;
9219 }
9220 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9221
9222 static int dev_cpu_dead(unsigned int oldcpu)
9223 {
9224         struct sk_buff **list_skb;
9225         struct sk_buff *skb;
9226         unsigned int cpu;
9227         struct softnet_data *sd, *oldsd, *remsd = NULL;
9228
9229         local_irq_disable();
9230         cpu = smp_processor_id();
9231         sd = &per_cpu(softnet_data, cpu);
9232         oldsd = &per_cpu(softnet_data, oldcpu);
9233
9234         /* Find end of our completion_queue. */
9235         list_skb = &sd->completion_queue;
9236         while (*list_skb)
9237                 list_skb = &(*list_skb)->next;
9238         /* Append completion queue from offline CPU. */
9239         *list_skb = oldsd->completion_queue;
9240         oldsd->completion_queue = NULL;
9241
9242         /* Append output queue from offline CPU. */
9243         if (oldsd->output_queue) {
9244                 *sd->output_queue_tailp = oldsd->output_queue;
9245                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9246                 oldsd->output_queue = NULL;
9247                 oldsd->output_queue_tailp = &oldsd->output_queue;
9248         }
9249         /* Append NAPI poll list from offline CPU, with one exception :
9250          * process_backlog() must be called by cpu owning percpu backlog.
9251          * We properly handle process_queue & input_pkt_queue later.
9252          */
9253         while (!list_empty(&oldsd->poll_list)) {
9254                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9255                                                             struct napi_struct,
9256                                                             poll_list);
9257
9258                 list_del_init(&napi->poll_list);
9259                 if (napi->poll == process_backlog)
9260                         napi->state = 0;
9261                 else
9262                         ____napi_schedule(sd, napi);
9263         }
9264
9265         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9266         local_irq_enable();
9267
9268 #ifdef CONFIG_RPS
9269         remsd = oldsd->rps_ipi_list;
9270         oldsd->rps_ipi_list = NULL;
9271 #endif
9272         /* send out pending IPI's on offline CPU */
9273         net_rps_send_ipi(remsd);
9274
9275         /* Process offline CPU's input_pkt_queue */
9276         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9277                 netif_rx_ni(skb);
9278                 input_queue_head_incr(oldsd);
9279         }
9280         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9281                 netif_rx_ni(skb);
9282                 input_queue_head_incr(oldsd);
9283         }
9284
9285         return 0;
9286 }
9287
9288 /**
9289  *      netdev_increment_features - increment feature set by one
9290  *      @all: current feature set
9291  *      @one: new feature set
9292  *      @mask: mask feature set
9293  *
9294  *      Computes a new feature set after adding a device with feature set
9295  *      @one to the master device with current feature set @all.  Will not
9296  *      enable anything that is off in @mask. Returns the new feature set.
9297  */
9298 netdev_features_t netdev_increment_features(netdev_features_t all,
9299         netdev_features_t one, netdev_features_t mask)
9300 {
9301         if (mask & NETIF_F_HW_CSUM)
9302                 mask |= NETIF_F_CSUM_MASK;
9303         mask |= NETIF_F_VLAN_CHALLENGED;
9304
9305         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9306         all &= one | ~NETIF_F_ALL_FOR_ALL;
9307
9308         /* If one device supports hw checksumming, set for all. */
9309         if (all & NETIF_F_HW_CSUM)
9310                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9311
9312         return all;
9313 }
9314 EXPORT_SYMBOL(netdev_increment_features);
9315
9316 static struct hlist_head * __net_init netdev_create_hash(void)
9317 {
9318         int i;
9319         struct hlist_head *hash;
9320
9321         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9322         if (hash != NULL)
9323                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9324                         INIT_HLIST_HEAD(&hash[i]);
9325
9326         return hash;
9327 }
9328
9329 /* Initialize per network namespace state */
9330 static int __net_init netdev_init(struct net *net)
9331 {
9332         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9333                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9334
9335         if (net != &init_net)
9336                 INIT_LIST_HEAD(&net->dev_base_head);
9337
9338         net->dev_name_head = netdev_create_hash();
9339         if (net->dev_name_head == NULL)
9340                 goto err_name;
9341
9342         net->dev_index_head = netdev_create_hash();
9343         if (net->dev_index_head == NULL)
9344                 goto err_idx;
9345
9346         return 0;
9347
9348 err_idx:
9349         kfree(net->dev_name_head);
9350 err_name:
9351         return -ENOMEM;
9352 }
9353
9354 /**
9355  *      netdev_drivername - network driver for the device
9356  *      @dev: network device
9357  *
9358  *      Determine network driver for device.
9359  */
9360 const char *netdev_drivername(const struct net_device *dev)
9361 {
9362         const struct device_driver *driver;
9363         const struct device *parent;
9364         const char *empty = "";
9365
9366         parent = dev->dev.parent;
9367         if (!parent)
9368                 return empty;
9369
9370         driver = parent->driver;
9371         if (driver && driver->name)
9372                 return driver->name;
9373         return empty;
9374 }
9375
9376 static void __netdev_printk(const char *level, const struct net_device *dev,
9377                             struct va_format *vaf)
9378 {
9379         if (dev && dev->dev.parent) {
9380                 dev_printk_emit(level[1] - '0',
9381                                 dev->dev.parent,
9382                                 "%s %s %s%s: %pV",
9383                                 dev_driver_string(dev->dev.parent),
9384                                 dev_name(dev->dev.parent),
9385                                 netdev_name(dev), netdev_reg_state(dev),
9386                                 vaf);
9387         } else if (dev) {
9388                 printk("%s%s%s: %pV",
9389                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9390         } else {
9391                 printk("%s(NULL net_device): %pV", level, vaf);
9392         }
9393 }
9394
9395 void netdev_printk(const char *level, const struct net_device *dev,
9396                    const char *format, ...)
9397 {
9398         struct va_format vaf;
9399         va_list args;
9400
9401         va_start(args, format);
9402
9403         vaf.fmt = format;
9404         vaf.va = &args;
9405
9406         __netdev_printk(level, dev, &vaf);
9407
9408         va_end(args);
9409 }
9410 EXPORT_SYMBOL(netdev_printk);
9411
9412 #define define_netdev_printk_level(func, level)                 \
9413 void func(const struct net_device *dev, const char *fmt, ...)   \
9414 {                                                               \
9415         struct va_format vaf;                                   \
9416         va_list args;                                           \
9417                                                                 \
9418         va_start(args, fmt);                                    \
9419                                                                 \
9420         vaf.fmt = fmt;                                          \
9421         vaf.va = &args;                                         \
9422                                                                 \
9423         __netdev_printk(level, dev, &vaf);                      \
9424                                                                 \
9425         va_end(args);                                           \
9426 }                                                               \
9427 EXPORT_SYMBOL(func);
9428
9429 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9430 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9431 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9432 define_netdev_printk_level(netdev_err, KERN_ERR);
9433 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9434 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9435 define_netdev_printk_level(netdev_info, KERN_INFO);
9436
9437 static void __net_exit netdev_exit(struct net *net)
9438 {
9439         kfree(net->dev_name_head);
9440         kfree(net->dev_index_head);
9441         if (net != &init_net)
9442                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9443 }
9444
9445 static struct pernet_operations __net_initdata netdev_net_ops = {
9446         .init = netdev_init,
9447         .exit = netdev_exit,
9448 };
9449
9450 static void __net_exit default_device_exit(struct net *net)
9451 {
9452         struct net_device *dev, *aux;
9453         /*
9454          * Push all migratable network devices back to the
9455          * initial network namespace
9456          */
9457         rtnl_lock();
9458         for_each_netdev_safe(net, dev, aux) {
9459                 int err;
9460                 char fb_name[IFNAMSIZ];
9461
9462                 /* Ignore unmoveable devices (i.e. loopback) */
9463                 if (dev->features & NETIF_F_NETNS_LOCAL)
9464                         continue;
9465
9466                 /* Leave virtual devices for the generic cleanup */
9467                 if (dev->rtnl_link_ops)
9468                         continue;
9469
9470                 /* Push remaining network devices to init_net */
9471                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9472                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9473                 if (err) {
9474                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9475                                  __func__, dev->name, err);
9476                         BUG();
9477                 }
9478         }
9479         rtnl_unlock();
9480 }
9481
9482 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9483 {
9484         /* Return with the rtnl_lock held when there are no network
9485          * devices unregistering in any network namespace in net_list.
9486          */
9487         struct net *net;
9488         bool unregistering;
9489         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9490
9491         add_wait_queue(&netdev_unregistering_wq, &wait);
9492         for (;;) {
9493                 unregistering = false;
9494                 rtnl_lock();
9495                 list_for_each_entry(net, net_list, exit_list) {
9496                         if (net->dev_unreg_count > 0) {
9497                                 unregistering = true;
9498                                 break;
9499                         }
9500                 }
9501                 if (!unregistering)
9502                         break;
9503                 __rtnl_unlock();
9504
9505                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9506         }
9507         remove_wait_queue(&netdev_unregistering_wq, &wait);
9508 }
9509
9510 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9511 {
9512         /* At exit all network devices most be removed from a network
9513          * namespace.  Do this in the reverse order of registration.
9514          * Do this across as many network namespaces as possible to
9515          * improve batching efficiency.
9516          */
9517         struct net_device *dev;
9518         struct net *net;
9519         LIST_HEAD(dev_kill_list);
9520
9521         /* To prevent network device cleanup code from dereferencing
9522          * loopback devices or network devices that have been freed
9523          * wait here for all pending unregistrations to complete,
9524          * before unregistring the loopback device and allowing the
9525          * network namespace be freed.
9526          *
9527          * The netdev todo list containing all network devices
9528          * unregistrations that happen in default_device_exit_batch
9529          * will run in the rtnl_unlock() at the end of
9530          * default_device_exit_batch.
9531          */
9532         rtnl_lock_unregistering(net_list);
9533         list_for_each_entry(net, net_list, exit_list) {
9534                 for_each_netdev_reverse(net, dev) {
9535                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9536                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9537                         else
9538                                 unregister_netdevice_queue(dev, &dev_kill_list);
9539                 }
9540         }
9541         unregister_netdevice_many(&dev_kill_list);
9542         rtnl_unlock();
9543 }
9544
9545 static struct pernet_operations __net_initdata default_device_ops = {
9546         .exit = default_device_exit,
9547         .exit_batch = default_device_exit_batch,
9548 };
9549
9550 /*
9551  *      Initialize the DEV module. At boot time this walks the device list and
9552  *      unhooks any devices that fail to initialise (normally hardware not
9553  *      present) and leaves us with a valid list of present and active devices.
9554  *
9555  */
9556
9557 /*
9558  *       This is called single threaded during boot, so no need
9559  *       to take the rtnl semaphore.
9560  */
9561 static int __init net_dev_init(void)
9562 {
9563         int i, rc = -ENOMEM;
9564
9565         BUG_ON(!dev_boot_phase);
9566
9567         if (dev_proc_init())
9568                 goto out;
9569
9570         if (netdev_kobject_init())
9571                 goto out;
9572
9573         INIT_LIST_HEAD(&ptype_all);
9574         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9575                 INIT_LIST_HEAD(&ptype_base[i]);
9576
9577         INIT_LIST_HEAD(&offload_base);
9578
9579         if (register_pernet_subsys(&netdev_net_ops))
9580                 goto out;
9581
9582         /*
9583          *      Initialise the packet receive queues.
9584          */
9585
9586         for_each_possible_cpu(i) {
9587                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9588                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9589
9590                 INIT_WORK(flush, flush_backlog);
9591
9592                 skb_queue_head_init(&sd->input_pkt_queue);
9593                 skb_queue_head_init(&sd->process_queue);
9594 #ifdef CONFIG_XFRM_OFFLOAD
9595                 skb_queue_head_init(&sd->xfrm_backlog);
9596 #endif
9597                 INIT_LIST_HEAD(&sd->poll_list);
9598                 sd->output_queue_tailp = &sd->output_queue;
9599 #ifdef CONFIG_RPS
9600                 sd->csd.func = rps_trigger_softirq;
9601                 sd->csd.info = sd;
9602                 sd->cpu = i;
9603 #endif
9604
9605                 init_gro_hash(&sd->backlog);
9606                 sd->backlog.poll = process_backlog;
9607                 sd->backlog.weight = weight_p;
9608         }
9609
9610         dev_boot_phase = 0;
9611
9612         /* The loopback device is special if any other network devices
9613          * is present in a network namespace the loopback device must
9614          * be present. Since we now dynamically allocate and free the
9615          * loopback device ensure this invariant is maintained by
9616          * keeping the loopback device as the first device on the
9617          * list of network devices.  Ensuring the loopback devices
9618          * is the first device that appears and the last network device
9619          * that disappears.
9620          */
9621         if (register_pernet_device(&loopback_net_ops))
9622                 goto out;
9623
9624         if (register_pernet_device(&default_device_ops))
9625                 goto out;
9626
9627         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9628         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9629
9630         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9631                                        NULL, dev_cpu_dead);
9632         WARN_ON(rc < 0);
9633         rc = 0;
9634 out:
9635         return rc;
9636 }
9637
9638 subsys_initcall(net_dev_init);