]> asedeno.scripts.mit.edu Git - linux.git/blob - net/core/dev.c
ee4b1e64d66334e78f9ca8652a5188d82e3d1853
[linux.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149 #define MAX_NEST_DEV 8
150
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;       /* Taps */
158 static struct list_head offload_base __read_mostly;
159
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162                                          struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164                                            struct net_device *dev,
165                                            struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 static DEFINE_MUTEX(ifalias_mutex);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static seqcount_t devnet_rename_seq;
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202         while (++net->dev_base_seq == 0)
203                 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
233                                                        const char *name)
234 {
235         struct netdev_name_node *name_node;
236
237         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
238         if (!name_node)
239                 return NULL;
240         INIT_HLIST_NODE(&name_node->hlist);
241         name_node->dev = dev;
242         name_node->name = name;
243         return name_node;
244 }
245
246 static struct netdev_name_node *
247 netdev_name_node_head_alloc(struct net_device *dev)
248 {
249         struct netdev_name_node *name_node;
250
251         name_node = netdev_name_node_alloc(dev, dev->name);
252         if (!name_node)
253                 return NULL;
254         INIT_LIST_HEAD(&name_node->list);
255         return name_node;
256 }
257
258 static void netdev_name_node_free(struct netdev_name_node *name_node)
259 {
260         kfree(name_node);
261 }
262
263 static void netdev_name_node_add(struct net *net,
264                                  struct netdev_name_node *name_node)
265 {
266         hlist_add_head_rcu(&name_node->hlist,
267                            dev_name_hash(net, name_node->name));
268 }
269
270 static void netdev_name_node_del(struct netdev_name_node *name_node)
271 {
272         hlist_del_rcu(&name_node->hlist);
273 }
274
275 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
276                                                         const char *name)
277 {
278         struct hlist_head *head = dev_name_hash(net, name);
279         struct netdev_name_node *name_node;
280
281         hlist_for_each_entry(name_node, head, hlist)
282                 if (!strcmp(name_node->name, name))
283                         return name_node;
284         return NULL;
285 }
286
287 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
288                                                             const char *name)
289 {
290         struct hlist_head *head = dev_name_hash(net, name);
291         struct netdev_name_node *name_node;
292
293         hlist_for_each_entry_rcu(name_node, head, hlist)
294                 if (!strcmp(name_node->name, name))
295                         return name_node;
296         return NULL;
297 }
298
299 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
300 {
301         struct netdev_name_node *name_node;
302         struct net *net = dev_net(dev);
303
304         name_node = netdev_name_node_lookup(net, name);
305         if (name_node)
306                 return -EEXIST;
307         name_node = netdev_name_node_alloc(dev, name);
308         if (!name_node)
309                 return -ENOMEM;
310         netdev_name_node_add(net, name_node);
311         /* The node that holds dev->name acts as a head of per-device list. */
312         list_add_tail(&name_node->list, &dev->name_node->list);
313
314         return 0;
315 }
316 EXPORT_SYMBOL(netdev_name_node_alt_create);
317
318 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
319 {
320         list_del(&name_node->list);
321         netdev_name_node_del(name_node);
322         kfree(name_node->name);
323         netdev_name_node_free(name_node);
324 }
325
326 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
327 {
328         struct netdev_name_node *name_node;
329         struct net *net = dev_net(dev);
330
331         name_node = netdev_name_node_lookup(net, name);
332         if (!name_node)
333                 return -ENOENT;
334         __netdev_name_node_alt_destroy(name_node);
335
336         return 0;
337 }
338 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
339
340 static void netdev_name_node_alt_flush(struct net_device *dev)
341 {
342         struct netdev_name_node *name_node, *tmp;
343
344         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
345                 __netdev_name_node_alt_destroy(name_node);
346 }
347
348 /* Device list insertion */
349 static void list_netdevice(struct net_device *dev)
350 {
351         struct net *net = dev_net(dev);
352
353         ASSERT_RTNL();
354
355         write_lock_bh(&dev_base_lock);
356         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
357         netdev_name_node_add(net, dev->name_node);
358         hlist_add_head_rcu(&dev->index_hlist,
359                            dev_index_hash(net, dev->ifindex));
360         write_unlock_bh(&dev_base_lock);
361
362         dev_base_seq_inc(net);
363 }
364
365 /* Device list removal
366  * caller must respect a RCU grace period before freeing/reusing dev
367  */
368 static void unlist_netdevice(struct net_device *dev)
369 {
370         ASSERT_RTNL();
371
372         /* Unlink dev from the device chain */
373         write_lock_bh(&dev_base_lock);
374         list_del_rcu(&dev->dev_list);
375         netdev_name_node_del(dev->name_node);
376         hlist_del_rcu(&dev->index_hlist);
377         write_unlock_bh(&dev_base_lock);
378
379         dev_base_seq_inc(dev_net(dev));
380 }
381
382 /*
383  *      Our notifier list
384  */
385
386 static RAW_NOTIFIER_HEAD(netdev_chain);
387
388 /*
389  *      Device drivers call our routines to queue packets here. We empty the
390  *      queue in the local softnet handler.
391  */
392
393 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
394 EXPORT_PER_CPU_SYMBOL(softnet_data);
395
396 /*******************************************************************************
397  *
398  *              Protocol management and registration routines
399  *
400  *******************************************************************************/
401
402
403 /*
404  *      Add a protocol ID to the list. Now that the input handler is
405  *      smarter we can dispense with all the messy stuff that used to be
406  *      here.
407  *
408  *      BEWARE!!! Protocol handlers, mangling input packets,
409  *      MUST BE last in hash buckets and checking protocol handlers
410  *      MUST start from promiscuous ptype_all chain in net_bh.
411  *      It is true now, do not change it.
412  *      Explanation follows: if protocol handler, mangling packet, will
413  *      be the first on list, it is not able to sense, that packet
414  *      is cloned and should be copied-on-write, so that it will
415  *      change it and subsequent readers will get broken packet.
416  *                                                      --ANK (980803)
417  */
418
419 static inline struct list_head *ptype_head(const struct packet_type *pt)
420 {
421         if (pt->type == htons(ETH_P_ALL))
422                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
423         else
424                 return pt->dev ? &pt->dev->ptype_specific :
425                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
426 }
427
428 /**
429  *      dev_add_pack - add packet handler
430  *      @pt: packet type declaration
431  *
432  *      Add a protocol handler to the networking stack. The passed &packet_type
433  *      is linked into kernel lists and may not be freed until it has been
434  *      removed from the kernel lists.
435  *
436  *      This call does not sleep therefore it can not
437  *      guarantee all CPU's that are in middle of receiving packets
438  *      will see the new packet type (until the next received packet).
439  */
440
441 void dev_add_pack(struct packet_type *pt)
442 {
443         struct list_head *head = ptype_head(pt);
444
445         spin_lock(&ptype_lock);
446         list_add_rcu(&pt->list, head);
447         spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(dev_add_pack);
450
451 /**
452  *      __dev_remove_pack        - remove packet handler
453  *      @pt: packet type declaration
454  *
455  *      Remove a protocol handler that was previously added to the kernel
456  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *      from the kernel lists and can be freed or reused once this function
458  *      returns.
459  *
460  *      The packet type might still be in use by receivers
461  *      and must not be freed until after all the CPU's have gone
462  *      through a quiescent state.
463  */
464 void __dev_remove_pack(struct packet_type *pt)
465 {
466         struct list_head *head = ptype_head(pt);
467         struct packet_type *pt1;
468
469         spin_lock(&ptype_lock);
470
471         list_for_each_entry(pt1, head, list) {
472                 if (pt == pt1) {
473                         list_del_rcu(&pt->list);
474                         goto out;
475                 }
476         }
477
478         pr_warn("dev_remove_pack: %p not found\n", pt);
479 out:
480         spin_unlock(&ptype_lock);
481 }
482 EXPORT_SYMBOL(__dev_remove_pack);
483
484 /**
485  *      dev_remove_pack  - remove packet handler
486  *      @pt: packet type declaration
487  *
488  *      Remove a protocol handler that was previously added to the kernel
489  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
490  *      from the kernel lists and can be freed or reused once this function
491  *      returns.
492  *
493  *      This call sleeps to guarantee that no CPU is looking at the packet
494  *      type after return.
495  */
496 void dev_remove_pack(struct packet_type *pt)
497 {
498         __dev_remove_pack(pt);
499
500         synchronize_net();
501 }
502 EXPORT_SYMBOL(dev_remove_pack);
503
504
505 /**
506  *      dev_add_offload - register offload handlers
507  *      @po: protocol offload declaration
508  *
509  *      Add protocol offload handlers to the networking stack. The passed
510  *      &proto_offload is linked into kernel lists and may not be freed until
511  *      it has been removed from the kernel lists.
512  *
513  *      This call does not sleep therefore it can not
514  *      guarantee all CPU's that are in middle of receiving packets
515  *      will see the new offload handlers (until the next received packet).
516  */
517 void dev_add_offload(struct packet_offload *po)
518 {
519         struct packet_offload *elem;
520
521         spin_lock(&offload_lock);
522         list_for_each_entry(elem, &offload_base, list) {
523                 if (po->priority < elem->priority)
524                         break;
525         }
526         list_add_rcu(&po->list, elem->list.prev);
527         spin_unlock(&offload_lock);
528 }
529 EXPORT_SYMBOL(dev_add_offload);
530
531 /**
532  *      __dev_remove_offload     - remove offload handler
533  *      @po: packet offload declaration
534  *
535  *      Remove a protocol offload handler that was previously added to the
536  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
537  *      is removed from the kernel lists and can be freed or reused once this
538  *      function returns.
539  *
540  *      The packet type might still be in use by receivers
541  *      and must not be freed until after all the CPU's have gone
542  *      through a quiescent state.
543  */
544 static void __dev_remove_offload(struct packet_offload *po)
545 {
546         struct list_head *head = &offload_base;
547         struct packet_offload *po1;
548
549         spin_lock(&offload_lock);
550
551         list_for_each_entry(po1, head, list) {
552                 if (po == po1) {
553                         list_del_rcu(&po->list);
554                         goto out;
555                 }
556         }
557
558         pr_warn("dev_remove_offload: %p not found\n", po);
559 out:
560         spin_unlock(&offload_lock);
561 }
562
563 /**
564  *      dev_remove_offload       - remove packet offload handler
565  *      @po: packet offload declaration
566  *
567  *      Remove a packet offload handler that was previously added to the kernel
568  *      offload handlers by dev_add_offload(). The passed &offload_type is
569  *      removed from the kernel lists and can be freed or reused once this
570  *      function returns.
571  *
572  *      This call sleeps to guarantee that no CPU is looking at the packet
573  *      type after return.
574  */
575 void dev_remove_offload(struct packet_offload *po)
576 {
577         __dev_remove_offload(po);
578
579         synchronize_net();
580 }
581 EXPORT_SYMBOL(dev_remove_offload);
582
583 /******************************************************************************
584  *
585  *                    Device Boot-time Settings Routines
586  *
587  ******************************************************************************/
588
589 /* Boot time configuration table */
590 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
591
592 /**
593  *      netdev_boot_setup_add   - add new setup entry
594  *      @name: name of the device
595  *      @map: configured settings for the device
596  *
597  *      Adds new setup entry to the dev_boot_setup list.  The function
598  *      returns 0 on error and 1 on success.  This is a generic routine to
599  *      all netdevices.
600  */
601 static int netdev_boot_setup_add(char *name, struct ifmap *map)
602 {
603         struct netdev_boot_setup *s;
604         int i;
605
606         s = dev_boot_setup;
607         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
608                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
609                         memset(s[i].name, 0, sizeof(s[i].name));
610                         strlcpy(s[i].name, name, IFNAMSIZ);
611                         memcpy(&s[i].map, map, sizeof(s[i].map));
612                         break;
613                 }
614         }
615
616         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
617 }
618
619 /**
620  * netdev_boot_setup_check      - check boot time settings
621  * @dev: the netdevice
622  *
623  * Check boot time settings for the device.
624  * The found settings are set for the device to be used
625  * later in the device probing.
626  * Returns 0 if no settings found, 1 if they are.
627  */
628 int netdev_boot_setup_check(struct net_device *dev)
629 {
630         struct netdev_boot_setup *s = dev_boot_setup;
631         int i;
632
633         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
634                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
635                     !strcmp(dev->name, s[i].name)) {
636                         dev->irq = s[i].map.irq;
637                         dev->base_addr = s[i].map.base_addr;
638                         dev->mem_start = s[i].map.mem_start;
639                         dev->mem_end = s[i].map.mem_end;
640                         return 1;
641                 }
642         }
643         return 0;
644 }
645 EXPORT_SYMBOL(netdev_boot_setup_check);
646
647
648 /**
649  * netdev_boot_base     - get address from boot time settings
650  * @prefix: prefix for network device
651  * @unit: id for network device
652  *
653  * Check boot time settings for the base address of device.
654  * The found settings are set for the device to be used
655  * later in the device probing.
656  * Returns 0 if no settings found.
657  */
658 unsigned long netdev_boot_base(const char *prefix, int unit)
659 {
660         const struct netdev_boot_setup *s = dev_boot_setup;
661         char name[IFNAMSIZ];
662         int i;
663
664         sprintf(name, "%s%d", prefix, unit);
665
666         /*
667          * If device already registered then return base of 1
668          * to indicate not to probe for this interface
669          */
670         if (__dev_get_by_name(&init_net, name))
671                 return 1;
672
673         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
674                 if (!strcmp(name, s[i].name))
675                         return s[i].map.base_addr;
676         return 0;
677 }
678
679 /*
680  * Saves at boot time configured settings for any netdevice.
681  */
682 int __init netdev_boot_setup(char *str)
683 {
684         int ints[5];
685         struct ifmap map;
686
687         str = get_options(str, ARRAY_SIZE(ints), ints);
688         if (!str || !*str)
689                 return 0;
690
691         /* Save settings */
692         memset(&map, 0, sizeof(map));
693         if (ints[0] > 0)
694                 map.irq = ints[1];
695         if (ints[0] > 1)
696                 map.base_addr = ints[2];
697         if (ints[0] > 2)
698                 map.mem_start = ints[3];
699         if (ints[0] > 3)
700                 map.mem_end = ints[4];
701
702         /* Add new entry to the list */
703         return netdev_boot_setup_add(str, &map);
704 }
705
706 __setup("netdev=", netdev_boot_setup);
707
708 /*******************************************************************************
709  *
710  *                          Device Interface Subroutines
711  *
712  *******************************************************************************/
713
714 /**
715  *      dev_get_iflink  - get 'iflink' value of a interface
716  *      @dev: targeted interface
717  *
718  *      Indicates the ifindex the interface is linked to.
719  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
720  */
721
722 int dev_get_iflink(const struct net_device *dev)
723 {
724         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
725                 return dev->netdev_ops->ndo_get_iflink(dev);
726
727         return dev->ifindex;
728 }
729 EXPORT_SYMBOL(dev_get_iflink);
730
731 /**
732  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
733  *      @dev: targeted interface
734  *      @skb: The packet.
735  *
736  *      For better visibility of tunnel traffic OVS needs to retrieve
737  *      egress tunnel information for a packet. Following API allows
738  *      user to get this info.
739  */
740 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
741 {
742         struct ip_tunnel_info *info;
743
744         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
745                 return -EINVAL;
746
747         info = skb_tunnel_info_unclone(skb);
748         if (!info)
749                 return -ENOMEM;
750         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
751                 return -EINVAL;
752
753         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
754 }
755 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
756
757 /**
758  *      __dev_get_by_name       - find a device by its name
759  *      @net: the applicable net namespace
760  *      @name: name to find
761  *
762  *      Find an interface by name. Must be called under RTNL semaphore
763  *      or @dev_base_lock. If the name is found a pointer to the device
764  *      is returned. If the name is not found then %NULL is returned. The
765  *      reference counters are not incremented so the caller must be
766  *      careful with locks.
767  */
768
769 struct net_device *__dev_get_by_name(struct net *net, const char *name)
770 {
771         struct netdev_name_node *node_name;
772
773         node_name = netdev_name_node_lookup(net, name);
774         return node_name ? node_name->dev : NULL;
775 }
776 EXPORT_SYMBOL(__dev_get_by_name);
777
778 /**
779  * dev_get_by_name_rcu  - find a device by its name
780  * @net: the applicable net namespace
781  * @name: name to find
782  *
783  * Find an interface by name.
784  * If the name is found a pointer to the device is returned.
785  * If the name is not found then %NULL is returned.
786  * The reference counters are not incremented so the caller must be
787  * careful with locks. The caller must hold RCU lock.
788  */
789
790 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
791 {
792         struct netdev_name_node *node_name;
793
794         node_name = netdev_name_node_lookup_rcu(net, name);
795         return node_name ? node_name->dev : NULL;
796 }
797 EXPORT_SYMBOL(dev_get_by_name_rcu);
798
799 /**
800  *      dev_get_by_name         - find a device by its name
801  *      @net: the applicable net namespace
802  *      @name: name to find
803  *
804  *      Find an interface by name. This can be called from any
805  *      context and does its own locking. The returned handle has
806  *      the usage count incremented and the caller must use dev_put() to
807  *      release it when it is no longer needed. %NULL is returned if no
808  *      matching device is found.
809  */
810
811 struct net_device *dev_get_by_name(struct net *net, const char *name)
812 {
813         struct net_device *dev;
814
815         rcu_read_lock();
816         dev = dev_get_by_name_rcu(net, name);
817         if (dev)
818                 dev_hold(dev);
819         rcu_read_unlock();
820         return dev;
821 }
822 EXPORT_SYMBOL(dev_get_by_name);
823
824 /**
825  *      __dev_get_by_index - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold either the RTNL semaphore
833  *      or @dev_base_lock.
834  */
835
836 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
837 {
838         struct net_device *dev;
839         struct hlist_head *head = dev_index_hash(net, ifindex);
840
841         hlist_for_each_entry(dev, head, index_hlist)
842                 if (dev->ifindex == ifindex)
843                         return dev;
844
845         return NULL;
846 }
847 EXPORT_SYMBOL(__dev_get_by_index);
848
849 /**
850  *      dev_get_by_index_rcu - find a device by its ifindex
851  *      @net: the applicable net namespace
852  *      @ifindex: index of device
853  *
854  *      Search for an interface by index. Returns %NULL if the device
855  *      is not found or a pointer to the device. The device has not
856  *      had its reference counter increased so the caller must be careful
857  *      about locking. The caller must hold RCU lock.
858  */
859
860 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863         struct hlist_head *head = dev_index_hash(net, ifindex);
864
865         hlist_for_each_entry_rcu(dev, head, index_hlist)
866                 if (dev->ifindex == ifindex)
867                         return dev;
868
869         return NULL;
870 }
871 EXPORT_SYMBOL(dev_get_by_index_rcu);
872
873
874 /**
875  *      dev_get_by_index - find a device by its ifindex
876  *      @net: the applicable net namespace
877  *      @ifindex: index of device
878  *
879  *      Search for an interface by index. Returns NULL if the device
880  *      is not found or a pointer to the device. The device returned has
881  *      had a reference added and the pointer is safe until the user calls
882  *      dev_put to indicate they have finished with it.
883  */
884
885 struct net_device *dev_get_by_index(struct net *net, int ifindex)
886 {
887         struct net_device *dev;
888
889         rcu_read_lock();
890         dev = dev_get_by_index_rcu(net, ifindex);
891         if (dev)
892                 dev_hold(dev);
893         rcu_read_unlock();
894         return dev;
895 }
896 EXPORT_SYMBOL(dev_get_by_index);
897
898 /**
899  *      dev_get_by_napi_id - find a device by napi_id
900  *      @napi_id: ID of the NAPI struct
901  *
902  *      Search for an interface by NAPI ID. Returns %NULL if the device
903  *      is not found or a pointer to the device. The device has not had
904  *      its reference counter increased so the caller must be careful
905  *      about locking. The caller must hold RCU lock.
906  */
907
908 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
909 {
910         struct napi_struct *napi;
911
912         WARN_ON_ONCE(!rcu_read_lock_held());
913
914         if (napi_id < MIN_NAPI_ID)
915                 return NULL;
916
917         napi = napi_by_id(napi_id);
918
919         return napi ? napi->dev : NULL;
920 }
921 EXPORT_SYMBOL(dev_get_by_napi_id);
922
923 /**
924  *      netdev_get_name - get a netdevice name, knowing its ifindex.
925  *      @net: network namespace
926  *      @name: a pointer to the buffer where the name will be stored.
927  *      @ifindex: the ifindex of the interface to get the name from.
928  *
929  *      The use of raw_seqcount_begin() and cond_resched() before
930  *      retrying is required as we want to give the writers a chance
931  *      to complete when CONFIG_PREEMPT is not set.
932  */
933 int netdev_get_name(struct net *net, char *name, int ifindex)
934 {
935         struct net_device *dev;
936         unsigned int seq;
937
938 retry:
939         seq = raw_seqcount_begin(&devnet_rename_seq);
940         rcu_read_lock();
941         dev = dev_get_by_index_rcu(net, ifindex);
942         if (!dev) {
943                 rcu_read_unlock();
944                 return -ENODEV;
945         }
946
947         strcpy(name, dev->name);
948         rcu_read_unlock();
949         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
950                 cond_resched();
951                 goto retry;
952         }
953
954         return 0;
955 }
956
957 /**
958  *      dev_getbyhwaddr_rcu - find a device by its hardware address
959  *      @net: the applicable net namespace
960  *      @type: media type of device
961  *      @ha: hardware address
962  *
963  *      Search for an interface by MAC address. Returns NULL if the device
964  *      is not found or a pointer to the device.
965  *      The caller must hold RCU or RTNL.
966  *      The returned device has not had its ref count increased
967  *      and the caller must therefore be careful about locking
968  *
969  */
970
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972                                        const char *ha)
973 {
974         struct net_device *dev;
975
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type &&
978                     !memcmp(dev->dev_addr, ha, dev->addr_len))
979                         return dev;
980
981         return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
985 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987         struct net_device *dev;
988
989         ASSERT_RTNL();
990         for_each_netdev(net, dev)
991                 if (dev->type == type)
992                         return dev;
993
994         return NULL;
995 }
996 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
997
998 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
999 {
1000         struct net_device *dev, *ret = NULL;
1001
1002         rcu_read_lock();
1003         for_each_netdev_rcu(net, dev)
1004                 if (dev->type == type) {
1005                         dev_hold(dev);
1006                         ret = dev;
1007                         break;
1008                 }
1009         rcu_read_unlock();
1010         return ret;
1011 }
1012 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1013
1014 /**
1015  *      __dev_get_by_flags - find any device with given flags
1016  *      @net: the applicable net namespace
1017  *      @if_flags: IFF_* values
1018  *      @mask: bitmask of bits in if_flags to check
1019  *
1020  *      Search for any interface with the given flags. Returns NULL if a device
1021  *      is not found or a pointer to the device. Must be called inside
1022  *      rtnl_lock(), and result refcount is unchanged.
1023  */
1024
1025 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1026                                       unsigned short mask)
1027 {
1028         struct net_device *dev, *ret;
1029
1030         ASSERT_RTNL();
1031
1032         ret = NULL;
1033         for_each_netdev(net, dev) {
1034                 if (((dev->flags ^ if_flags) & mask) == 0) {
1035                         ret = dev;
1036                         break;
1037                 }
1038         }
1039         return ret;
1040 }
1041 EXPORT_SYMBOL(__dev_get_by_flags);
1042
1043 /**
1044  *      dev_valid_name - check if name is okay for network device
1045  *      @name: name string
1046  *
1047  *      Network device names need to be valid file names to
1048  *      to allow sysfs to work.  We also disallow any kind of
1049  *      whitespace.
1050  */
1051 bool dev_valid_name(const char *name)
1052 {
1053         if (*name == '\0')
1054                 return false;
1055         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1056                 return false;
1057         if (!strcmp(name, ".") || !strcmp(name, ".."))
1058                 return false;
1059
1060         while (*name) {
1061                 if (*name == '/' || *name == ':' || isspace(*name))
1062                         return false;
1063                 name++;
1064         }
1065         return true;
1066 }
1067 EXPORT_SYMBOL(dev_valid_name);
1068
1069 /**
1070  *      __dev_alloc_name - allocate a name for a device
1071  *      @net: network namespace to allocate the device name in
1072  *      @name: name format string
1073  *      @buf:  scratch buffer and result name string
1074  *
1075  *      Passed a format string - eg "lt%d" it will try and find a suitable
1076  *      id. It scans list of devices to build up a free map, then chooses
1077  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1078  *      while allocating the name and adding the device in order to avoid
1079  *      duplicates.
1080  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1081  *      Returns the number of the unit assigned or a negative errno code.
1082  */
1083
1084 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1085 {
1086         int i = 0;
1087         const char *p;
1088         const int max_netdevices = 8*PAGE_SIZE;
1089         unsigned long *inuse;
1090         struct net_device *d;
1091
1092         if (!dev_valid_name(name))
1093                 return -EINVAL;
1094
1095         p = strchr(name, '%');
1096         if (p) {
1097                 /*
1098                  * Verify the string as this thing may have come from
1099                  * the user.  There must be either one "%d" and no other "%"
1100                  * characters.
1101                  */
1102                 if (p[1] != 'd' || strchr(p + 2, '%'))
1103                         return -EINVAL;
1104
1105                 /* Use one page as a bit array of possible slots */
1106                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1107                 if (!inuse)
1108                         return -ENOMEM;
1109
1110                 for_each_netdev(net, d) {
1111                         if (!sscanf(d->name, name, &i))
1112                                 continue;
1113                         if (i < 0 || i >= max_netdevices)
1114                                 continue;
1115
1116                         /*  avoid cases where sscanf is not exact inverse of printf */
1117                         snprintf(buf, IFNAMSIZ, name, i);
1118                         if (!strncmp(buf, d->name, IFNAMSIZ))
1119                                 set_bit(i, inuse);
1120                 }
1121
1122                 i = find_first_zero_bit(inuse, max_netdevices);
1123                 free_page((unsigned long) inuse);
1124         }
1125
1126         snprintf(buf, IFNAMSIZ, name, i);
1127         if (!__dev_get_by_name(net, buf))
1128                 return i;
1129
1130         /* It is possible to run out of possible slots
1131          * when the name is long and there isn't enough space left
1132          * for the digits, or if all bits are used.
1133          */
1134         return -ENFILE;
1135 }
1136
1137 static int dev_alloc_name_ns(struct net *net,
1138                              struct net_device *dev,
1139                              const char *name)
1140 {
1141         char buf[IFNAMSIZ];
1142         int ret;
1143
1144         BUG_ON(!net);
1145         ret = __dev_alloc_name(net, name, buf);
1146         if (ret >= 0)
1147                 strlcpy(dev->name, buf, IFNAMSIZ);
1148         return ret;
1149 }
1150
1151 /**
1152  *      dev_alloc_name - allocate a name for a device
1153  *      @dev: device
1154  *      @name: name format string
1155  *
1156  *      Passed a format string - eg "lt%d" it will try and find a suitable
1157  *      id. It scans list of devices to build up a free map, then chooses
1158  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1159  *      while allocating the name and adding the device in order to avoid
1160  *      duplicates.
1161  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1162  *      Returns the number of the unit assigned or a negative errno code.
1163  */
1164
1165 int dev_alloc_name(struct net_device *dev, const char *name)
1166 {
1167         return dev_alloc_name_ns(dev_net(dev), dev, name);
1168 }
1169 EXPORT_SYMBOL(dev_alloc_name);
1170
1171 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1172                               const char *name)
1173 {
1174         BUG_ON(!net);
1175
1176         if (!dev_valid_name(name))
1177                 return -EINVAL;
1178
1179         if (strchr(name, '%'))
1180                 return dev_alloc_name_ns(net, dev, name);
1181         else if (__dev_get_by_name(net, name))
1182                 return -EEXIST;
1183         else if (dev->name != name)
1184                 strlcpy(dev->name, name, IFNAMSIZ);
1185
1186         return 0;
1187 }
1188
1189 /**
1190  *      dev_change_name - change name of a device
1191  *      @dev: device
1192  *      @newname: name (or format string) must be at least IFNAMSIZ
1193  *
1194  *      Change name of a device, can pass format strings "eth%d".
1195  *      for wildcarding.
1196  */
1197 int dev_change_name(struct net_device *dev, const char *newname)
1198 {
1199         unsigned char old_assign_type;
1200         char oldname[IFNAMSIZ];
1201         int err = 0;
1202         int ret;
1203         struct net *net;
1204
1205         ASSERT_RTNL();
1206         BUG_ON(!dev_net(dev));
1207
1208         net = dev_net(dev);
1209
1210         /* Some auto-enslaved devices e.g. failover slaves are
1211          * special, as userspace might rename the device after
1212          * the interface had been brought up and running since
1213          * the point kernel initiated auto-enslavement. Allow
1214          * live name change even when these slave devices are
1215          * up and running.
1216          *
1217          * Typically, users of these auto-enslaving devices
1218          * don't actually care about slave name change, as
1219          * they are supposed to operate on master interface
1220          * directly.
1221          */
1222         if (dev->flags & IFF_UP &&
1223             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1224                 return -EBUSY;
1225
1226         write_seqcount_begin(&devnet_rename_seq);
1227
1228         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1229                 write_seqcount_end(&devnet_rename_seq);
1230                 return 0;
1231         }
1232
1233         memcpy(oldname, dev->name, IFNAMSIZ);
1234
1235         err = dev_get_valid_name(net, dev, newname);
1236         if (err < 0) {
1237                 write_seqcount_end(&devnet_rename_seq);
1238                 return err;
1239         }
1240
1241         if (oldname[0] && !strchr(oldname, '%'))
1242                 netdev_info(dev, "renamed from %s\n", oldname);
1243
1244         old_assign_type = dev->name_assign_type;
1245         dev->name_assign_type = NET_NAME_RENAMED;
1246
1247 rollback:
1248         ret = device_rename(&dev->dev, dev->name);
1249         if (ret) {
1250                 memcpy(dev->name, oldname, IFNAMSIZ);
1251                 dev->name_assign_type = old_assign_type;
1252                 write_seqcount_end(&devnet_rename_seq);
1253                 return ret;
1254         }
1255
1256         write_seqcount_end(&devnet_rename_seq);
1257
1258         netdev_adjacent_rename_links(dev, oldname);
1259
1260         write_lock_bh(&dev_base_lock);
1261         netdev_name_node_del(dev->name_node);
1262         write_unlock_bh(&dev_base_lock);
1263
1264         synchronize_rcu();
1265
1266         write_lock_bh(&dev_base_lock);
1267         netdev_name_node_add(net, dev->name_node);
1268         write_unlock_bh(&dev_base_lock);
1269
1270         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1271         ret = notifier_to_errno(ret);
1272
1273         if (ret) {
1274                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1275                 if (err >= 0) {
1276                         err = ret;
1277                         write_seqcount_begin(&devnet_rename_seq);
1278                         memcpy(dev->name, oldname, IFNAMSIZ);
1279                         memcpy(oldname, newname, IFNAMSIZ);
1280                         dev->name_assign_type = old_assign_type;
1281                         old_assign_type = NET_NAME_RENAMED;
1282                         goto rollback;
1283                 } else {
1284                         pr_err("%s: name change rollback failed: %d\n",
1285                                dev->name, ret);
1286                 }
1287         }
1288
1289         return err;
1290 }
1291
1292 /**
1293  *      dev_set_alias - change ifalias of a device
1294  *      @dev: device
1295  *      @alias: name up to IFALIASZ
1296  *      @len: limit of bytes to copy from info
1297  *
1298  *      Set ifalias for a device,
1299  */
1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301 {
1302         struct dev_ifalias *new_alias = NULL;
1303
1304         if (len >= IFALIASZ)
1305                 return -EINVAL;
1306
1307         if (len) {
1308                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309                 if (!new_alias)
1310                         return -ENOMEM;
1311
1312                 memcpy(new_alias->ifalias, alias, len);
1313                 new_alias->ifalias[len] = 0;
1314         }
1315
1316         mutex_lock(&ifalias_mutex);
1317         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318                                         mutex_is_locked(&ifalias_mutex));
1319         mutex_unlock(&ifalias_mutex);
1320
1321         if (new_alias)
1322                 kfree_rcu(new_alias, rcuhead);
1323
1324         return len;
1325 }
1326 EXPORT_SYMBOL(dev_set_alias);
1327
1328 /**
1329  *      dev_get_alias - get ifalias of a device
1330  *      @dev: device
1331  *      @name: buffer to store name of ifalias
1332  *      @len: size of buffer
1333  *
1334  *      get ifalias for a device.  Caller must make sure dev cannot go
1335  *      away,  e.g. rcu read lock or own a reference count to device.
1336  */
1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338 {
1339         const struct dev_ifalias *alias;
1340         int ret = 0;
1341
1342         rcu_read_lock();
1343         alias = rcu_dereference(dev->ifalias);
1344         if (alias)
1345                 ret = snprintf(name, len, "%s", alias->ifalias);
1346         rcu_read_unlock();
1347
1348         return ret;
1349 }
1350
1351 /**
1352  *      netdev_features_change - device changes features
1353  *      @dev: device to cause notification
1354  *
1355  *      Called to indicate a device has changed features.
1356  */
1357 void netdev_features_change(struct net_device *dev)
1358 {
1359         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360 }
1361 EXPORT_SYMBOL(netdev_features_change);
1362
1363 /**
1364  *      netdev_state_change - device changes state
1365  *      @dev: device to cause notification
1366  *
1367  *      Called to indicate a device has changed state. This function calls
1368  *      the notifier chains for netdev_chain and sends a NEWLINK message
1369  *      to the routing socket.
1370  */
1371 void netdev_state_change(struct net_device *dev)
1372 {
1373         if (dev->flags & IFF_UP) {
1374                 struct netdev_notifier_change_info change_info = {
1375                         .info.dev = dev,
1376                 };
1377
1378                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1379                                               &change_info.info);
1380                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1381         }
1382 }
1383 EXPORT_SYMBOL(netdev_state_change);
1384
1385 /**
1386  * netdev_notify_peers - notify network peers about existence of @dev
1387  * @dev: network device
1388  *
1389  * Generate traffic such that interested network peers are aware of
1390  * @dev, such as by generating a gratuitous ARP. This may be used when
1391  * a device wants to inform the rest of the network about some sort of
1392  * reconfiguration such as a failover event or virtual machine
1393  * migration.
1394  */
1395 void netdev_notify_peers(struct net_device *dev)
1396 {
1397         rtnl_lock();
1398         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400         rtnl_unlock();
1401 }
1402 EXPORT_SYMBOL(netdev_notify_peers);
1403
1404 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1405 {
1406         const struct net_device_ops *ops = dev->netdev_ops;
1407         int ret;
1408
1409         ASSERT_RTNL();
1410
1411         if (!netif_device_present(dev))
1412                 return -ENODEV;
1413
1414         /* Block netpoll from trying to do any rx path servicing.
1415          * If we don't do this there is a chance ndo_poll_controller
1416          * or ndo_poll may be running while we open the device
1417          */
1418         netpoll_poll_disable(dev);
1419
1420         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1421         ret = notifier_to_errno(ret);
1422         if (ret)
1423                 return ret;
1424
1425         set_bit(__LINK_STATE_START, &dev->state);
1426
1427         if (ops->ndo_validate_addr)
1428                 ret = ops->ndo_validate_addr(dev);
1429
1430         if (!ret && ops->ndo_open)
1431                 ret = ops->ndo_open(dev);
1432
1433         netpoll_poll_enable(dev);
1434
1435         if (ret)
1436                 clear_bit(__LINK_STATE_START, &dev->state);
1437         else {
1438                 dev->flags |= IFF_UP;
1439                 dev_set_rx_mode(dev);
1440                 dev_activate(dev);
1441                 add_device_randomness(dev->dev_addr, dev->addr_len);
1442         }
1443
1444         return ret;
1445 }
1446
1447 /**
1448  *      dev_open        - prepare an interface for use.
1449  *      @dev: device to open
1450  *      @extack: netlink extended ack
1451  *
1452  *      Takes a device from down to up state. The device's private open
1453  *      function is invoked and then the multicast lists are loaded. Finally
1454  *      the device is moved into the up state and a %NETDEV_UP message is
1455  *      sent to the netdev notifier chain.
1456  *
1457  *      Calling this function on an active interface is a nop. On a failure
1458  *      a negative errno code is returned.
1459  */
1460 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1461 {
1462         int ret;
1463
1464         if (dev->flags & IFF_UP)
1465                 return 0;
1466
1467         ret = __dev_open(dev, extack);
1468         if (ret < 0)
1469                 return ret;
1470
1471         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1472         call_netdevice_notifiers(NETDEV_UP, dev);
1473
1474         return ret;
1475 }
1476 EXPORT_SYMBOL(dev_open);
1477
1478 static void __dev_close_many(struct list_head *head)
1479 {
1480         struct net_device *dev;
1481
1482         ASSERT_RTNL();
1483         might_sleep();
1484
1485         list_for_each_entry(dev, head, close_list) {
1486                 /* Temporarily disable netpoll until the interface is down */
1487                 netpoll_poll_disable(dev);
1488
1489                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1490
1491                 clear_bit(__LINK_STATE_START, &dev->state);
1492
1493                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1494                  * can be even on different cpu. So just clear netif_running().
1495                  *
1496                  * dev->stop() will invoke napi_disable() on all of it's
1497                  * napi_struct instances on this device.
1498                  */
1499                 smp_mb__after_atomic(); /* Commit netif_running(). */
1500         }
1501
1502         dev_deactivate_many(head);
1503
1504         list_for_each_entry(dev, head, close_list) {
1505                 const struct net_device_ops *ops = dev->netdev_ops;
1506
1507                 /*
1508                  *      Call the device specific close. This cannot fail.
1509                  *      Only if device is UP
1510                  *
1511                  *      We allow it to be called even after a DETACH hot-plug
1512                  *      event.
1513                  */
1514                 if (ops->ndo_stop)
1515                         ops->ndo_stop(dev);
1516
1517                 dev->flags &= ~IFF_UP;
1518                 netpoll_poll_enable(dev);
1519         }
1520 }
1521
1522 static void __dev_close(struct net_device *dev)
1523 {
1524         LIST_HEAD(single);
1525
1526         list_add(&dev->close_list, &single);
1527         __dev_close_many(&single);
1528         list_del(&single);
1529 }
1530
1531 void dev_close_many(struct list_head *head, bool unlink)
1532 {
1533         struct net_device *dev, *tmp;
1534
1535         /* Remove the devices that don't need to be closed */
1536         list_for_each_entry_safe(dev, tmp, head, close_list)
1537                 if (!(dev->flags & IFF_UP))
1538                         list_del_init(&dev->close_list);
1539
1540         __dev_close_many(head);
1541
1542         list_for_each_entry_safe(dev, tmp, head, close_list) {
1543                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1544                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1545                 if (unlink)
1546                         list_del_init(&dev->close_list);
1547         }
1548 }
1549 EXPORT_SYMBOL(dev_close_many);
1550
1551 /**
1552  *      dev_close - shutdown an interface.
1553  *      @dev: device to shutdown
1554  *
1555  *      This function moves an active device into down state. A
1556  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1557  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1558  *      chain.
1559  */
1560 void dev_close(struct net_device *dev)
1561 {
1562         if (dev->flags & IFF_UP) {
1563                 LIST_HEAD(single);
1564
1565                 list_add(&dev->close_list, &single);
1566                 dev_close_many(&single, true);
1567                 list_del(&single);
1568         }
1569 }
1570 EXPORT_SYMBOL(dev_close);
1571
1572
1573 /**
1574  *      dev_disable_lro - disable Large Receive Offload on a device
1575  *      @dev: device
1576  *
1577  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1578  *      called under RTNL.  This is needed if received packets may be
1579  *      forwarded to another interface.
1580  */
1581 void dev_disable_lro(struct net_device *dev)
1582 {
1583         struct net_device *lower_dev;
1584         struct list_head *iter;
1585
1586         dev->wanted_features &= ~NETIF_F_LRO;
1587         netdev_update_features(dev);
1588
1589         if (unlikely(dev->features & NETIF_F_LRO))
1590                 netdev_WARN(dev, "failed to disable LRO!\n");
1591
1592         netdev_for_each_lower_dev(dev, lower_dev, iter)
1593                 dev_disable_lro(lower_dev);
1594 }
1595 EXPORT_SYMBOL(dev_disable_lro);
1596
1597 /**
1598  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1599  *      @dev: device
1600  *
1601  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1602  *      called under RTNL.  This is needed if Generic XDP is installed on
1603  *      the device.
1604  */
1605 static void dev_disable_gro_hw(struct net_device *dev)
1606 {
1607         dev->wanted_features &= ~NETIF_F_GRO_HW;
1608         netdev_update_features(dev);
1609
1610         if (unlikely(dev->features & NETIF_F_GRO_HW))
1611                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1612 }
1613
1614 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1615 {
1616 #define N(val)                                          \
1617         case NETDEV_##val:                              \
1618                 return "NETDEV_" __stringify(val);
1619         switch (cmd) {
1620         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1621         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1622         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1623         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1624         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1625         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1626         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1627         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1628         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1629         N(PRE_CHANGEADDR)
1630         }
1631 #undef N
1632         return "UNKNOWN_NETDEV_EVENT";
1633 }
1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1635
1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1637                                    struct net_device *dev)
1638 {
1639         struct netdev_notifier_info info = {
1640                 .dev = dev,
1641         };
1642
1643         return nb->notifier_call(nb, val, &info);
1644 }
1645
1646 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1647                                              struct net_device *dev)
1648 {
1649         int err;
1650
1651         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1652         err = notifier_to_errno(err);
1653         if (err)
1654                 return err;
1655
1656         if (!(dev->flags & IFF_UP))
1657                 return 0;
1658
1659         call_netdevice_notifier(nb, NETDEV_UP, dev);
1660         return 0;
1661 }
1662
1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1664                                                 struct net_device *dev)
1665 {
1666         if (dev->flags & IFF_UP) {
1667                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1668                                         dev);
1669                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1670         }
1671         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1672 }
1673
1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1675                                                  struct net *net)
1676 {
1677         struct net_device *dev;
1678         int err;
1679
1680         for_each_netdev(net, dev) {
1681                 err = call_netdevice_register_notifiers(nb, dev);
1682                 if (err)
1683                         goto rollback;
1684         }
1685         return 0;
1686
1687 rollback:
1688         for_each_netdev_continue_reverse(net, dev)
1689                 call_netdevice_unregister_notifiers(nb, dev);
1690         return err;
1691 }
1692
1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1694                                                     struct net *net)
1695 {
1696         struct net_device *dev;
1697
1698         for_each_netdev(net, dev)
1699                 call_netdevice_unregister_notifiers(nb, dev);
1700 }
1701
1702 static int dev_boot_phase = 1;
1703
1704 /**
1705  * register_netdevice_notifier - register a network notifier block
1706  * @nb: notifier
1707  *
1708  * Register a notifier to be called when network device events occur.
1709  * The notifier passed is linked into the kernel structures and must
1710  * not be reused until it has been unregistered. A negative errno code
1711  * is returned on a failure.
1712  *
1713  * When registered all registration and up events are replayed
1714  * to the new notifier to allow device to have a race free
1715  * view of the network device list.
1716  */
1717
1718 int register_netdevice_notifier(struct notifier_block *nb)
1719 {
1720         struct net *net;
1721         int err;
1722
1723         /* Close race with setup_net() and cleanup_net() */
1724         down_write(&pernet_ops_rwsem);
1725         rtnl_lock();
1726         err = raw_notifier_chain_register(&netdev_chain, nb);
1727         if (err)
1728                 goto unlock;
1729         if (dev_boot_phase)
1730                 goto unlock;
1731         for_each_net(net) {
1732                 err = call_netdevice_register_net_notifiers(nb, net);
1733                 if (err)
1734                         goto rollback;
1735         }
1736
1737 unlock:
1738         rtnl_unlock();
1739         up_write(&pernet_ops_rwsem);
1740         return err;
1741
1742 rollback:
1743         for_each_net_continue_reverse(net)
1744                 call_netdevice_unregister_net_notifiers(nb, net);
1745
1746         raw_notifier_chain_unregister(&netdev_chain, nb);
1747         goto unlock;
1748 }
1749 EXPORT_SYMBOL(register_netdevice_notifier);
1750
1751 /**
1752  * unregister_netdevice_notifier - unregister a network notifier block
1753  * @nb: notifier
1754  *
1755  * Unregister a notifier previously registered by
1756  * register_netdevice_notifier(). The notifier is unlinked into the
1757  * kernel structures and may then be reused. A negative errno code
1758  * is returned on a failure.
1759  *
1760  * After unregistering unregister and down device events are synthesized
1761  * for all devices on the device list to the removed notifier to remove
1762  * the need for special case cleanup code.
1763  */
1764
1765 int unregister_netdevice_notifier(struct notifier_block *nb)
1766 {
1767         struct net *net;
1768         int err;
1769
1770         /* Close race with setup_net() and cleanup_net() */
1771         down_write(&pernet_ops_rwsem);
1772         rtnl_lock();
1773         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1774         if (err)
1775                 goto unlock;
1776
1777         for_each_net(net)
1778                 call_netdevice_unregister_net_notifiers(nb, net);
1779
1780 unlock:
1781         rtnl_unlock();
1782         up_write(&pernet_ops_rwsem);
1783         return err;
1784 }
1785 EXPORT_SYMBOL(unregister_netdevice_notifier);
1786
1787 /**
1788  * register_netdevice_notifier_net - register a per-netns network notifier block
1789  * @net: network namespace
1790  * @nb: notifier
1791  *
1792  * Register a notifier to be called when network device events occur.
1793  * The notifier passed is linked into the kernel structures and must
1794  * not be reused until it has been unregistered. A negative errno code
1795  * is returned on a failure.
1796  *
1797  * When registered all registration and up events are replayed
1798  * to the new notifier to allow device to have a race free
1799  * view of the network device list.
1800  */
1801
1802 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1803 {
1804         int err;
1805
1806         rtnl_lock();
1807         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1808         if (err)
1809                 goto unlock;
1810         if (dev_boot_phase)
1811                 goto unlock;
1812
1813         err = call_netdevice_register_net_notifiers(nb, net);
1814         if (err)
1815                 goto chain_unregister;
1816
1817 unlock:
1818         rtnl_unlock();
1819         return err;
1820
1821 chain_unregister:
1822         raw_notifier_chain_unregister(&netdev_chain, nb);
1823         goto unlock;
1824 }
1825 EXPORT_SYMBOL(register_netdevice_notifier_net);
1826
1827 /**
1828  * unregister_netdevice_notifier_net - unregister a per-netns
1829  *                                     network notifier block
1830  * @net: network namespace
1831  * @nb: notifier
1832  *
1833  * Unregister a notifier previously registered by
1834  * register_netdevice_notifier(). The notifier is unlinked into the
1835  * kernel structures and may then be reused. A negative errno code
1836  * is returned on a failure.
1837  *
1838  * After unregistering unregister and down device events are synthesized
1839  * for all devices on the device list to the removed notifier to remove
1840  * the need for special case cleanup code.
1841  */
1842
1843 int unregister_netdevice_notifier_net(struct net *net,
1844                                       struct notifier_block *nb)
1845 {
1846         int err;
1847
1848         rtnl_lock();
1849         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1850         if (err)
1851                 goto unlock;
1852
1853         call_netdevice_unregister_net_notifiers(nb, net);
1854
1855 unlock:
1856         rtnl_unlock();
1857         return err;
1858 }
1859 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1860
1861 /**
1862  *      call_netdevice_notifiers_info - call all network notifier blocks
1863  *      @val: value passed unmodified to notifier function
1864  *      @info: notifier information data
1865  *
1866  *      Call all network notifier blocks.  Parameters and return value
1867  *      are as for raw_notifier_call_chain().
1868  */
1869
1870 static int call_netdevice_notifiers_info(unsigned long val,
1871                                          struct netdev_notifier_info *info)
1872 {
1873         struct net *net = dev_net(info->dev);
1874         int ret;
1875
1876         ASSERT_RTNL();
1877
1878         /* Run per-netns notifier block chain first, then run the global one.
1879          * Hopefully, one day, the global one is going to be removed after
1880          * all notifier block registrators get converted to be per-netns.
1881          */
1882         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1883         if (ret & NOTIFY_STOP_MASK)
1884                 return ret;
1885         return raw_notifier_call_chain(&netdev_chain, val, info);
1886 }
1887
1888 static int call_netdevice_notifiers_extack(unsigned long val,
1889                                            struct net_device *dev,
1890                                            struct netlink_ext_ack *extack)
1891 {
1892         struct netdev_notifier_info info = {
1893                 .dev = dev,
1894                 .extack = extack,
1895         };
1896
1897         return call_netdevice_notifiers_info(val, &info);
1898 }
1899
1900 /**
1901  *      call_netdevice_notifiers - call all network notifier blocks
1902  *      @val: value passed unmodified to notifier function
1903  *      @dev: net_device pointer passed unmodified to notifier function
1904  *
1905  *      Call all network notifier blocks.  Parameters and return value
1906  *      are as for raw_notifier_call_chain().
1907  */
1908
1909 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1910 {
1911         return call_netdevice_notifiers_extack(val, dev, NULL);
1912 }
1913 EXPORT_SYMBOL(call_netdevice_notifiers);
1914
1915 /**
1916  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1917  *      @val: value passed unmodified to notifier function
1918  *      @dev: net_device pointer passed unmodified to notifier function
1919  *      @arg: additional u32 argument passed to the notifier function
1920  *
1921  *      Call all network notifier blocks.  Parameters and return value
1922  *      are as for raw_notifier_call_chain().
1923  */
1924 static int call_netdevice_notifiers_mtu(unsigned long val,
1925                                         struct net_device *dev, u32 arg)
1926 {
1927         struct netdev_notifier_info_ext info = {
1928                 .info.dev = dev,
1929                 .ext.mtu = arg,
1930         };
1931
1932         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1933
1934         return call_netdevice_notifiers_info(val, &info.info);
1935 }
1936
1937 #ifdef CONFIG_NET_INGRESS
1938 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1939
1940 void net_inc_ingress_queue(void)
1941 {
1942         static_branch_inc(&ingress_needed_key);
1943 }
1944 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1945
1946 void net_dec_ingress_queue(void)
1947 {
1948         static_branch_dec(&ingress_needed_key);
1949 }
1950 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1951 #endif
1952
1953 #ifdef CONFIG_NET_EGRESS
1954 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1955
1956 void net_inc_egress_queue(void)
1957 {
1958         static_branch_inc(&egress_needed_key);
1959 }
1960 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1961
1962 void net_dec_egress_queue(void)
1963 {
1964         static_branch_dec(&egress_needed_key);
1965 }
1966 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1967 #endif
1968
1969 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1970 #ifdef CONFIG_JUMP_LABEL
1971 static atomic_t netstamp_needed_deferred;
1972 static atomic_t netstamp_wanted;
1973 static void netstamp_clear(struct work_struct *work)
1974 {
1975         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1976         int wanted;
1977
1978         wanted = atomic_add_return(deferred, &netstamp_wanted);
1979         if (wanted > 0)
1980                 static_branch_enable(&netstamp_needed_key);
1981         else
1982                 static_branch_disable(&netstamp_needed_key);
1983 }
1984 static DECLARE_WORK(netstamp_work, netstamp_clear);
1985 #endif
1986
1987 void net_enable_timestamp(void)
1988 {
1989 #ifdef CONFIG_JUMP_LABEL
1990         int wanted;
1991
1992         while (1) {
1993                 wanted = atomic_read(&netstamp_wanted);
1994                 if (wanted <= 0)
1995                         break;
1996                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1997                         return;
1998         }
1999         atomic_inc(&netstamp_needed_deferred);
2000         schedule_work(&netstamp_work);
2001 #else
2002         static_branch_inc(&netstamp_needed_key);
2003 #endif
2004 }
2005 EXPORT_SYMBOL(net_enable_timestamp);
2006
2007 void net_disable_timestamp(void)
2008 {
2009 #ifdef CONFIG_JUMP_LABEL
2010         int wanted;
2011
2012         while (1) {
2013                 wanted = atomic_read(&netstamp_wanted);
2014                 if (wanted <= 1)
2015                         break;
2016                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2017                         return;
2018         }
2019         atomic_dec(&netstamp_needed_deferred);
2020         schedule_work(&netstamp_work);
2021 #else
2022         static_branch_dec(&netstamp_needed_key);
2023 #endif
2024 }
2025 EXPORT_SYMBOL(net_disable_timestamp);
2026
2027 static inline void net_timestamp_set(struct sk_buff *skb)
2028 {
2029         skb->tstamp = 0;
2030         if (static_branch_unlikely(&netstamp_needed_key))
2031                 __net_timestamp(skb);
2032 }
2033
2034 #define net_timestamp_check(COND, SKB)                          \
2035         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2036                 if ((COND) && !(SKB)->tstamp)                   \
2037                         __net_timestamp(SKB);                   \
2038         }                                                       \
2039
2040 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2041 {
2042         unsigned int len;
2043
2044         if (!(dev->flags & IFF_UP))
2045                 return false;
2046
2047         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2048         if (skb->len <= len)
2049                 return true;
2050
2051         /* if TSO is enabled, we don't care about the length as the packet
2052          * could be forwarded without being segmented before
2053          */
2054         if (skb_is_gso(skb))
2055                 return true;
2056
2057         return false;
2058 }
2059 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2060
2061 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2062 {
2063         int ret = ____dev_forward_skb(dev, skb);
2064
2065         if (likely(!ret)) {
2066                 skb->protocol = eth_type_trans(skb, dev);
2067                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2068         }
2069
2070         return ret;
2071 }
2072 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2073
2074 /**
2075  * dev_forward_skb - loopback an skb to another netif
2076  *
2077  * @dev: destination network device
2078  * @skb: buffer to forward
2079  *
2080  * return values:
2081  *      NET_RX_SUCCESS  (no congestion)
2082  *      NET_RX_DROP     (packet was dropped, but freed)
2083  *
2084  * dev_forward_skb can be used for injecting an skb from the
2085  * start_xmit function of one device into the receive queue
2086  * of another device.
2087  *
2088  * The receiving device may be in another namespace, so
2089  * we have to clear all information in the skb that could
2090  * impact namespace isolation.
2091  */
2092 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2093 {
2094         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2095 }
2096 EXPORT_SYMBOL_GPL(dev_forward_skb);
2097
2098 static inline int deliver_skb(struct sk_buff *skb,
2099                               struct packet_type *pt_prev,
2100                               struct net_device *orig_dev)
2101 {
2102         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2103                 return -ENOMEM;
2104         refcount_inc(&skb->users);
2105         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2106 }
2107
2108 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2109                                           struct packet_type **pt,
2110                                           struct net_device *orig_dev,
2111                                           __be16 type,
2112                                           struct list_head *ptype_list)
2113 {
2114         struct packet_type *ptype, *pt_prev = *pt;
2115
2116         list_for_each_entry_rcu(ptype, ptype_list, list) {
2117                 if (ptype->type != type)
2118                         continue;
2119                 if (pt_prev)
2120                         deliver_skb(skb, pt_prev, orig_dev);
2121                 pt_prev = ptype;
2122         }
2123         *pt = pt_prev;
2124 }
2125
2126 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2127 {
2128         if (!ptype->af_packet_priv || !skb->sk)
2129                 return false;
2130
2131         if (ptype->id_match)
2132                 return ptype->id_match(ptype, skb->sk);
2133         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2134                 return true;
2135
2136         return false;
2137 }
2138
2139 /**
2140  * dev_nit_active - return true if any network interface taps are in use
2141  *
2142  * @dev: network device to check for the presence of taps
2143  */
2144 bool dev_nit_active(struct net_device *dev)
2145 {
2146         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2147 }
2148 EXPORT_SYMBOL_GPL(dev_nit_active);
2149
2150 /*
2151  *      Support routine. Sends outgoing frames to any network
2152  *      taps currently in use.
2153  */
2154
2155 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2156 {
2157         struct packet_type *ptype;
2158         struct sk_buff *skb2 = NULL;
2159         struct packet_type *pt_prev = NULL;
2160         struct list_head *ptype_list = &ptype_all;
2161
2162         rcu_read_lock();
2163 again:
2164         list_for_each_entry_rcu(ptype, ptype_list, list) {
2165                 if (ptype->ignore_outgoing)
2166                         continue;
2167
2168                 /* Never send packets back to the socket
2169                  * they originated from - MvS (miquels@drinkel.ow.org)
2170                  */
2171                 if (skb_loop_sk(ptype, skb))
2172                         continue;
2173
2174                 if (pt_prev) {
2175                         deliver_skb(skb2, pt_prev, skb->dev);
2176                         pt_prev = ptype;
2177                         continue;
2178                 }
2179
2180                 /* need to clone skb, done only once */
2181                 skb2 = skb_clone(skb, GFP_ATOMIC);
2182                 if (!skb2)
2183                         goto out_unlock;
2184
2185                 net_timestamp_set(skb2);
2186
2187                 /* skb->nh should be correctly
2188                  * set by sender, so that the second statement is
2189                  * just protection against buggy protocols.
2190                  */
2191                 skb_reset_mac_header(skb2);
2192
2193                 if (skb_network_header(skb2) < skb2->data ||
2194                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2195                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2196                                              ntohs(skb2->protocol),
2197                                              dev->name);
2198                         skb_reset_network_header(skb2);
2199                 }
2200
2201                 skb2->transport_header = skb2->network_header;
2202                 skb2->pkt_type = PACKET_OUTGOING;
2203                 pt_prev = ptype;
2204         }
2205
2206         if (ptype_list == &ptype_all) {
2207                 ptype_list = &dev->ptype_all;
2208                 goto again;
2209         }
2210 out_unlock:
2211         if (pt_prev) {
2212                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2213                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2214                 else
2215                         kfree_skb(skb2);
2216         }
2217         rcu_read_unlock();
2218 }
2219 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2220
2221 /**
2222  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2223  * @dev: Network device
2224  * @txq: number of queues available
2225  *
2226  * If real_num_tx_queues is changed the tc mappings may no longer be
2227  * valid. To resolve this verify the tc mapping remains valid and if
2228  * not NULL the mapping. With no priorities mapping to this
2229  * offset/count pair it will no longer be used. In the worst case TC0
2230  * is invalid nothing can be done so disable priority mappings. If is
2231  * expected that drivers will fix this mapping if they can before
2232  * calling netif_set_real_num_tx_queues.
2233  */
2234 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2235 {
2236         int i;
2237         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2238
2239         /* If TC0 is invalidated disable TC mapping */
2240         if (tc->offset + tc->count > txq) {
2241                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2242                 dev->num_tc = 0;
2243                 return;
2244         }
2245
2246         /* Invalidated prio to tc mappings set to TC0 */
2247         for (i = 1; i < TC_BITMASK + 1; i++) {
2248                 int q = netdev_get_prio_tc_map(dev, i);
2249
2250                 tc = &dev->tc_to_txq[q];
2251                 if (tc->offset + tc->count > txq) {
2252                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2253                                 i, q);
2254                         netdev_set_prio_tc_map(dev, i, 0);
2255                 }
2256         }
2257 }
2258
2259 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2260 {
2261         if (dev->num_tc) {
2262                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2263                 int i;
2264
2265                 /* walk through the TCs and see if it falls into any of them */
2266                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2267                         if ((txq - tc->offset) < tc->count)
2268                                 return i;
2269                 }
2270
2271                 /* didn't find it, just return -1 to indicate no match */
2272                 return -1;
2273         }
2274
2275         return 0;
2276 }
2277 EXPORT_SYMBOL(netdev_txq_to_tc);
2278
2279 #ifdef CONFIG_XPS
2280 struct static_key xps_needed __read_mostly;
2281 EXPORT_SYMBOL(xps_needed);
2282 struct static_key xps_rxqs_needed __read_mostly;
2283 EXPORT_SYMBOL(xps_rxqs_needed);
2284 static DEFINE_MUTEX(xps_map_mutex);
2285 #define xmap_dereference(P)             \
2286         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2287
2288 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2289                              int tci, u16 index)
2290 {
2291         struct xps_map *map = NULL;
2292         int pos;
2293
2294         if (dev_maps)
2295                 map = xmap_dereference(dev_maps->attr_map[tci]);
2296         if (!map)
2297                 return false;
2298
2299         for (pos = map->len; pos--;) {
2300                 if (map->queues[pos] != index)
2301                         continue;
2302
2303                 if (map->len > 1) {
2304                         map->queues[pos] = map->queues[--map->len];
2305                         break;
2306                 }
2307
2308                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2309                 kfree_rcu(map, rcu);
2310                 return false;
2311         }
2312
2313         return true;
2314 }
2315
2316 static bool remove_xps_queue_cpu(struct net_device *dev,
2317                                  struct xps_dev_maps *dev_maps,
2318                                  int cpu, u16 offset, u16 count)
2319 {
2320         int num_tc = dev->num_tc ? : 1;
2321         bool active = false;
2322         int tci;
2323
2324         for (tci = cpu * num_tc; num_tc--; tci++) {
2325                 int i, j;
2326
2327                 for (i = count, j = offset; i--; j++) {
2328                         if (!remove_xps_queue(dev_maps, tci, j))
2329                                 break;
2330                 }
2331
2332                 active |= i < 0;
2333         }
2334
2335         return active;
2336 }
2337
2338 static void reset_xps_maps(struct net_device *dev,
2339                            struct xps_dev_maps *dev_maps,
2340                            bool is_rxqs_map)
2341 {
2342         if (is_rxqs_map) {
2343                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2344                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2345         } else {
2346                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2347         }
2348         static_key_slow_dec_cpuslocked(&xps_needed);
2349         kfree_rcu(dev_maps, rcu);
2350 }
2351
2352 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2353                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2354                            u16 offset, u16 count, bool is_rxqs_map)
2355 {
2356         bool active = false;
2357         int i, j;
2358
2359         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2360              j < nr_ids;)
2361                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2362                                                count);
2363         if (!active)
2364                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2365
2366         if (!is_rxqs_map) {
2367                 for (i = offset + (count - 1); count--; i--) {
2368                         netdev_queue_numa_node_write(
2369                                 netdev_get_tx_queue(dev, i),
2370                                 NUMA_NO_NODE);
2371                 }
2372         }
2373 }
2374
2375 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2376                                    u16 count)
2377 {
2378         const unsigned long *possible_mask = NULL;
2379         struct xps_dev_maps *dev_maps;
2380         unsigned int nr_ids;
2381
2382         if (!static_key_false(&xps_needed))
2383                 return;
2384
2385         cpus_read_lock();
2386         mutex_lock(&xps_map_mutex);
2387
2388         if (static_key_false(&xps_rxqs_needed)) {
2389                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2390                 if (dev_maps) {
2391                         nr_ids = dev->num_rx_queues;
2392                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2393                                        offset, count, true);
2394                 }
2395         }
2396
2397         dev_maps = xmap_dereference(dev->xps_cpus_map);
2398         if (!dev_maps)
2399                 goto out_no_maps;
2400
2401         if (num_possible_cpus() > 1)
2402                 possible_mask = cpumask_bits(cpu_possible_mask);
2403         nr_ids = nr_cpu_ids;
2404         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2405                        false);
2406
2407 out_no_maps:
2408         mutex_unlock(&xps_map_mutex);
2409         cpus_read_unlock();
2410 }
2411
2412 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2413 {
2414         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2415 }
2416
2417 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2418                                       u16 index, bool is_rxqs_map)
2419 {
2420         struct xps_map *new_map;
2421         int alloc_len = XPS_MIN_MAP_ALLOC;
2422         int i, pos;
2423
2424         for (pos = 0; map && pos < map->len; pos++) {
2425                 if (map->queues[pos] != index)
2426                         continue;
2427                 return map;
2428         }
2429
2430         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2431         if (map) {
2432                 if (pos < map->alloc_len)
2433                         return map;
2434
2435                 alloc_len = map->alloc_len * 2;
2436         }
2437
2438         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2439          *  map
2440          */
2441         if (is_rxqs_map)
2442                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2443         else
2444                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2445                                        cpu_to_node(attr_index));
2446         if (!new_map)
2447                 return NULL;
2448
2449         for (i = 0; i < pos; i++)
2450                 new_map->queues[i] = map->queues[i];
2451         new_map->alloc_len = alloc_len;
2452         new_map->len = pos;
2453
2454         return new_map;
2455 }
2456
2457 /* Must be called under cpus_read_lock */
2458 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2459                           u16 index, bool is_rxqs_map)
2460 {
2461         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2462         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2463         int i, j, tci, numa_node_id = -2;
2464         int maps_sz, num_tc = 1, tc = 0;
2465         struct xps_map *map, *new_map;
2466         bool active = false;
2467         unsigned int nr_ids;
2468
2469         if (dev->num_tc) {
2470                 /* Do not allow XPS on subordinate device directly */
2471                 num_tc = dev->num_tc;
2472                 if (num_tc < 0)
2473                         return -EINVAL;
2474
2475                 /* If queue belongs to subordinate dev use its map */
2476                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2477
2478                 tc = netdev_txq_to_tc(dev, index);
2479                 if (tc < 0)
2480                         return -EINVAL;
2481         }
2482
2483         mutex_lock(&xps_map_mutex);
2484         if (is_rxqs_map) {
2485                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2486                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2487                 nr_ids = dev->num_rx_queues;
2488         } else {
2489                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2490                 if (num_possible_cpus() > 1) {
2491                         online_mask = cpumask_bits(cpu_online_mask);
2492                         possible_mask = cpumask_bits(cpu_possible_mask);
2493                 }
2494                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2495                 nr_ids = nr_cpu_ids;
2496         }
2497
2498         if (maps_sz < L1_CACHE_BYTES)
2499                 maps_sz = L1_CACHE_BYTES;
2500
2501         /* allocate memory for queue storage */
2502         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2503              j < nr_ids;) {
2504                 if (!new_dev_maps)
2505                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2506                 if (!new_dev_maps) {
2507                         mutex_unlock(&xps_map_mutex);
2508                         return -ENOMEM;
2509                 }
2510
2511                 tci = j * num_tc + tc;
2512                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2513                                  NULL;
2514
2515                 map = expand_xps_map(map, j, index, is_rxqs_map);
2516                 if (!map)
2517                         goto error;
2518
2519                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2520         }
2521
2522         if (!new_dev_maps)
2523                 goto out_no_new_maps;
2524
2525         if (!dev_maps) {
2526                 /* Increment static keys at most once per type */
2527                 static_key_slow_inc_cpuslocked(&xps_needed);
2528                 if (is_rxqs_map)
2529                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2530         }
2531
2532         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2533              j < nr_ids;) {
2534                 /* copy maps belonging to foreign traffic classes */
2535                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2536                         /* fill in the new device map from the old device map */
2537                         map = xmap_dereference(dev_maps->attr_map[tci]);
2538                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2539                 }
2540
2541                 /* We need to explicitly update tci as prevous loop
2542                  * could break out early if dev_maps is NULL.
2543                  */
2544                 tci = j * num_tc + tc;
2545
2546                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2547                     netif_attr_test_online(j, online_mask, nr_ids)) {
2548                         /* add tx-queue to CPU/rx-queue maps */
2549                         int pos = 0;
2550
2551                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2552                         while ((pos < map->len) && (map->queues[pos] != index))
2553                                 pos++;
2554
2555                         if (pos == map->len)
2556                                 map->queues[map->len++] = index;
2557 #ifdef CONFIG_NUMA
2558                         if (!is_rxqs_map) {
2559                                 if (numa_node_id == -2)
2560                                         numa_node_id = cpu_to_node(j);
2561                                 else if (numa_node_id != cpu_to_node(j))
2562                                         numa_node_id = -1;
2563                         }
2564 #endif
2565                 } else if (dev_maps) {
2566                         /* fill in the new device map from the old device map */
2567                         map = xmap_dereference(dev_maps->attr_map[tci]);
2568                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2569                 }
2570
2571                 /* copy maps belonging to foreign traffic classes */
2572                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2573                         /* fill in the new device map from the old device map */
2574                         map = xmap_dereference(dev_maps->attr_map[tci]);
2575                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2576                 }
2577         }
2578
2579         if (is_rxqs_map)
2580                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2581         else
2582                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2583
2584         /* Cleanup old maps */
2585         if (!dev_maps)
2586                 goto out_no_old_maps;
2587
2588         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2589              j < nr_ids;) {
2590                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2591                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2592                         map = xmap_dereference(dev_maps->attr_map[tci]);
2593                         if (map && map != new_map)
2594                                 kfree_rcu(map, rcu);
2595                 }
2596         }
2597
2598         kfree_rcu(dev_maps, rcu);
2599
2600 out_no_old_maps:
2601         dev_maps = new_dev_maps;
2602         active = true;
2603
2604 out_no_new_maps:
2605         if (!is_rxqs_map) {
2606                 /* update Tx queue numa node */
2607                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2608                                              (numa_node_id >= 0) ?
2609                                              numa_node_id : NUMA_NO_NODE);
2610         }
2611
2612         if (!dev_maps)
2613                 goto out_no_maps;
2614
2615         /* removes tx-queue from unused CPUs/rx-queues */
2616         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2617              j < nr_ids;) {
2618                 for (i = tc, tci = j * num_tc; i--; tci++)
2619                         active |= remove_xps_queue(dev_maps, tci, index);
2620                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2621                     !netif_attr_test_online(j, online_mask, nr_ids))
2622                         active |= remove_xps_queue(dev_maps, tci, index);
2623                 for (i = num_tc - tc, tci++; --i; tci++)
2624                         active |= remove_xps_queue(dev_maps, tci, index);
2625         }
2626
2627         /* free map if not active */
2628         if (!active)
2629                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2630
2631 out_no_maps:
2632         mutex_unlock(&xps_map_mutex);
2633
2634         return 0;
2635 error:
2636         /* remove any maps that we added */
2637         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2638              j < nr_ids;) {
2639                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2640                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2641                         map = dev_maps ?
2642                               xmap_dereference(dev_maps->attr_map[tci]) :
2643                               NULL;
2644                         if (new_map && new_map != map)
2645                                 kfree(new_map);
2646                 }
2647         }
2648
2649         mutex_unlock(&xps_map_mutex);
2650
2651         kfree(new_dev_maps);
2652         return -ENOMEM;
2653 }
2654 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2655
2656 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2657                         u16 index)
2658 {
2659         int ret;
2660
2661         cpus_read_lock();
2662         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2663         cpus_read_unlock();
2664
2665         return ret;
2666 }
2667 EXPORT_SYMBOL(netif_set_xps_queue);
2668
2669 #endif
2670 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2671 {
2672         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2673
2674         /* Unbind any subordinate channels */
2675         while (txq-- != &dev->_tx[0]) {
2676                 if (txq->sb_dev)
2677                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2678         }
2679 }
2680
2681 void netdev_reset_tc(struct net_device *dev)
2682 {
2683 #ifdef CONFIG_XPS
2684         netif_reset_xps_queues_gt(dev, 0);
2685 #endif
2686         netdev_unbind_all_sb_channels(dev);
2687
2688         /* Reset TC configuration of device */
2689         dev->num_tc = 0;
2690         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2691         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2692 }
2693 EXPORT_SYMBOL(netdev_reset_tc);
2694
2695 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2696 {
2697         if (tc >= dev->num_tc)
2698                 return -EINVAL;
2699
2700 #ifdef CONFIG_XPS
2701         netif_reset_xps_queues(dev, offset, count);
2702 #endif
2703         dev->tc_to_txq[tc].count = count;
2704         dev->tc_to_txq[tc].offset = offset;
2705         return 0;
2706 }
2707 EXPORT_SYMBOL(netdev_set_tc_queue);
2708
2709 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2710 {
2711         if (num_tc > TC_MAX_QUEUE)
2712                 return -EINVAL;
2713
2714 #ifdef CONFIG_XPS
2715         netif_reset_xps_queues_gt(dev, 0);
2716 #endif
2717         netdev_unbind_all_sb_channels(dev);
2718
2719         dev->num_tc = num_tc;
2720         return 0;
2721 }
2722 EXPORT_SYMBOL(netdev_set_num_tc);
2723
2724 void netdev_unbind_sb_channel(struct net_device *dev,
2725                               struct net_device *sb_dev)
2726 {
2727         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2728
2729 #ifdef CONFIG_XPS
2730         netif_reset_xps_queues_gt(sb_dev, 0);
2731 #endif
2732         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2733         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2734
2735         while (txq-- != &dev->_tx[0]) {
2736                 if (txq->sb_dev == sb_dev)
2737                         txq->sb_dev = NULL;
2738         }
2739 }
2740 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2741
2742 int netdev_bind_sb_channel_queue(struct net_device *dev,
2743                                  struct net_device *sb_dev,
2744                                  u8 tc, u16 count, u16 offset)
2745 {
2746         /* Make certain the sb_dev and dev are already configured */
2747         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2748                 return -EINVAL;
2749
2750         /* We cannot hand out queues we don't have */
2751         if ((offset + count) > dev->real_num_tx_queues)
2752                 return -EINVAL;
2753
2754         /* Record the mapping */
2755         sb_dev->tc_to_txq[tc].count = count;
2756         sb_dev->tc_to_txq[tc].offset = offset;
2757
2758         /* Provide a way for Tx queue to find the tc_to_txq map or
2759          * XPS map for itself.
2760          */
2761         while (count--)
2762                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2763
2764         return 0;
2765 }
2766 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2767
2768 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2769 {
2770         /* Do not use a multiqueue device to represent a subordinate channel */
2771         if (netif_is_multiqueue(dev))
2772                 return -ENODEV;
2773
2774         /* We allow channels 1 - 32767 to be used for subordinate channels.
2775          * Channel 0 is meant to be "native" mode and used only to represent
2776          * the main root device. We allow writing 0 to reset the device back
2777          * to normal mode after being used as a subordinate channel.
2778          */
2779         if (channel > S16_MAX)
2780                 return -EINVAL;
2781
2782         dev->num_tc = -channel;
2783
2784         return 0;
2785 }
2786 EXPORT_SYMBOL(netdev_set_sb_channel);
2787
2788 /*
2789  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2790  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2791  */
2792 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2793 {
2794         bool disabling;
2795         int rc;
2796
2797         disabling = txq < dev->real_num_tx_queues;
2798
2799         if (txq < 1 || txq > dev->num_tx_queues)
2800                 return -EINVAL;
2801
2802         if (dev->reg_state == NETREG_REGISTERED ||
2803             dev->reg_state == NETREG_UNREGISTERING) {
2804                 ASSERT_RTNL();
2805
2806                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2807                                                   txq);
2808                 if (rc)
2809                         return rc;
2810
2811                 if (dev->num_tc)
2812                         netif_setup_tc(dev, txq);
2813
2814                 dev->real_num_tx_queues = txq;
2815
2816                 if (disabling) {
2817                         synchronize_net();
2818                         qdisc_reset_all_tx_gt(dev, txq);
2819 #ifdef CONFIG_XPS
2820                         netif_reset_xps_queues_gt(dev, txq);
2821 #endif
2822                 }
2823         } else {
2824                 dev->real_num_tx_queues = txq;
2825         }
2826
2827         return 0;
2828 }
2829 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2830
2831 #ifdef CONFIG_SYSFS
2832 /**
2833  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2834  *      @dev: Network device
2835  *      @rxq: Actual number of RX queues
2836  *
2837  *      This must be called either with the rtnl_lock held or before
2838  *      registration of the net device.  Returns 0 on success, or a
2839  *      negative error code.  If called before registration, it always
2840  *      succeeds.
2841  */
2842 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2843 {
2844         int rc;
2845
2846         if (rxq < 1 || rxq > dev->num_rx_queues)
2847                 return -EINVAL;
2848
2849         if (dev->reg_state == NETREG_REGISTERED) {
2850                 ASSERT_RTNL();
2851
2852                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2853                                                   rxq);
2854                 if (rc)
2855                         return rc;
2856         }
2857
2858         dev->real_num_rx_queues = rxq;
2859         return 0;
2860 }
2861 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2862 #endif
2863
2864 /**
2865  * netif_get_num_default_rss_queues - default number of RSS queues
2866  *
2867  * This routine should set an upper limit on the number of RSS queues
2868  * used by default by multiqueue devices.
2869  */
2870 int netif_get_num_default_rss_queues(void)
2871 {
2872         return is_kdump_kernel() ?
2873                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2874 }
2875 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2876
2877 static void __netif_reschedule(struct Qdisc *q)
2878 {
2879         struct softnet_data *sd;
2880         unsigned long flags;
2881
2882         local_irq_save(flags);
2883         sd = this_cpu_ptr(&softnet_data);
2884         q->next_sched = NULL;
2885         *sd->output_queue_tailp = q;
2886         sd->output_queue_tailp = &q->next_sched;
2887         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2888         local_irq_restore(flags);
2889 }
2890
2891 void __netif_schedule(struct Qdisc *q)
2892 {
2893         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2894                 __netif_reschedule(q);
2895 }
2896 EXPORT_SYMBOL(__netif_schedule);
2897
2898 struct dev_kfree_skb_cb {
2899         enum skb_free_reason reason;
2900 };
2901
2902 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2903 {
2904         return (struct dev_kfree_skb_cb *)skb->cb;
2905 }
2906
2907 void netif_schedule_queue(struct netdev_queue *txq)
2908 {
2909         rcu_read_lock();
2910         if (!netif_xmit_stopped(txq)) {
2911                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2912
2913                 __netif_schedule(q);
2914         }
2915         rcu_read_unlock();
2916 }
2917 EXPORT_SYMBOL(netif_schedule_queue);
2918
2919 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2920 {
2921         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2922                 struct Qdisc *q;
2923
2924                 rcu_read_lock();
2925                 q = rcu_dereference(dev_queue->qdisc);
2926                 __netif_schedule(q);
2927                 rcu_read_unlock();
2928         }
2929 }
2930 EXPORT_SYMBOL(netif_tx_wake_queue);
2931
2932 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2933 {
2934         unsigned long flags;
2935
2936         if (unlikely(!skb))
2937                 return;
2938
2939         if (likely(refcount_read(&skb->users) == 1)) {
2940                 smp_rmb();
2941                 refcount_set(&skb->users, 0);
2942         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2943                 return;
2944         }
2945         get_kfree_skb_cb(skb)->reason = reason;
2946         local_irq_save(flags);
2947         skb->next = __this_cpu_read(softnet_data.completion_queue);
2948         __this_cpu_write(softnet_data.completion_queue, skb);
2949         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2950         local_irq_restore(flags);
2951 }
2952 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2953
2954 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2955 {
2956         if (in_irq() || irqs_disabled())
2957                 __dev_kfree_skb_irq(skb, reason);
2958         else
2959                 dev_kfree_skb(skb);
2960 }
2961 EXPORT_SYMBOL(__dev_kfree_skb_any);
2962
2963
2964 /**
2965  * netif_device_detach - mark device as removed
2966  * @dev: network device
2967  *
2968  * Mark device as removed from system and therefore no longer available.
2969  */
2970 void netif_device_detach(struct net_device *dev)
2971 {
2972         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2973             netif_running(dev)) {
2974                 netif_tx_stop_all_queues(dev);
2975         }
2976 }
2977 EXPORT_SYMBOL(netif_device_detach);
2978
2979 /**
2980  * netif_device_attach - mark device as attached
2981  * @dev: network device
2982  *
2983  * Mark device as attached from system and restart if needed.
2984  */
2985 void netif_device_attach(struct net_device *dev)
2986 {
2987         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2988             netif_running(dev)) {
2989                 netif_tx_wake_all_queues(dev);
2990                 __netdev_watchdog_up(dev);
2991         }
2992 }
2993 EXPORT_SYMBOL(netif_device_attach);
2994
2995 /*
2996  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2997  * to be used as a distribution range.
2998  */
2999 static u16 skb_tx_hash(const struct net_device *dev,
3000                        const struct net_device *sb_dev,
3001                        struct sk_buff *skb)
3002 {
3003         u32 hash;
3004         u16 qoffset = 0;
3005         u16 qcount = dev->real_num_tx_queues;
3006
3007         if (dev->num_tc) {
3008                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3009
3010                 qoffset = sb_dev->tc_to_txq[tc].offset;
3011                 qcount = sb_dev->tc_to_txq[tc].count;
3012         }
3013
3014         if (skb_rx_queue_recorded(skb)) {
3015                 hash = skb_get_rx_queue(skb);
3016                 while (unlikely(hash >= qcount))
3017                         hash -= qcount;
3018                 return hash + qoffset;
3019         }
3020
3021         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3022 }
3023
3024 static void skb_warn_bad_offload(const struct sk_buff *skb)
3025 {
3026         static const netdev_features_t null_features;
3027         struct net_device *dev = skb->dev;
3028         const char *name = "";
3029
3030         if (!net_ratelimit())
3031                 return;
3032
3033         if (dev) {
3034                 if (dev->dev.parent)
3035                         name = dev_driver_string(dev->dev.parent);
3036                 else
3037                         name = netdev_name(dev);
3038         }
3039         skb_dump(KERN_WARNING, skb, false);
3040         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3041              name, dev ? &dev->features : &null_features,
3042              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3043 }
3044
3045 /*
3046  * Invalidate hardware checksum when packet is to be mangled, and
3047  * complete checksum manually on outgoing path.
3048  */
3049 int skb_checksum_help(struct sk_buff *skb)
3050 {
3051         __wsum csum;
3052         int ret = 0, offset;
3053
3054         if (skb->ip_summed == CHECKSUM_COMPLETE)
3055                 goto out_set_summed;
3056
3057         if (unlikely(skb_shinfo(skb)->gso_size)) {
3058                 skb_warn_bad_offload(skb);
3059                 return -EINVAL;
3060         }
3061
3062         /* Before computing a checksum, we should make sure no frag could
3063          * be modified by an external entity : checksum could be wrong.
3064          */
3065         if (skb_has_shared_frag(skb)) {
3066                 ret = __skb_linearize(skb);
3067                 if (ret)
3068                         goto out;
3069         }
3070
3071         offset = skb_checksum_start_offset(skb);
3072         BUG_ON(offset >= skb_headlen(skb));
3073         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3074
3075         offset += skb->csum_offset;
3076         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3077
3078         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3079         if (ret)
3080                 goto out;
3081
3082         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3083 out_set_summed:
3084         skb->ip_summed = CHECKSUM_NONE;
3085 out:
3086         return ret;
3087 }
3088 EXPORT_SYMBOL(skb_checksum_help);
3089
3090 int skb_crc32c_csum_help(struct sk_buff *skb)
3091 {
3092         __le32 crc32c_csum;
3093         int ret = 0, offset, start;
3094
3095         if (skb->ip_summed != CHECKSUM_PARTIAL)
3096                 goto out;
3097
3098         if (unlikely(skb_is_gso(skb)))
3099                 goto out;
3100
3101         /* Before computing a checksum, we should make sure no frag could
3102          * be modified by an external entity : checksum could be wrong.
3103          */
3104         if (unlikely(skb_has_shared_frag(skb))) {
3105                 ret = __skb_linearize(skb);
3106                 if (ret)
3107                         goto out;
3108         }
3109         start = skb_checksum_start_offset(skb);
3110         offset = start + offsetof(struct sctphdr, checksum);
3111         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3112                 ret = -EINVAL;
3113                 goto out;
3114         }
3115
3116         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3117         if (ret)
3118                 goto out;
3119
3120         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3121                                                   skb->len - start, ~(__u32)0,
3122                                                   crc32c_csum_stub));
3123         *(__le32 *)(skb->data + offset) = crc32c_csum;
3124         skb->ip_summed = CHECKSUM_NONE;
3125         skb->csum_not_inet = 0;
3126 out:
3127         return ret;
3128 }
3129
3130 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3131 {
3132         __be16 type = skb->protocol;
3133
3134         /* Tunnel gso handlers can set protocol to ethernet. */
3135         if (type == htons(ETH_P_TEB)) {
3136                 struct ethhdr *eth;
3137
3138                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3139                         return 0;
3140
3141                 eth = (struct ethhdr *)skb->data;
3142                 type = eth->h_proto;
3143         }
3144
3145         return __vlan_get_protocol(skb, type, depth);
3146 }
3147
3148 /**
3149  *      skb_mac_gso_segment - mac layer segmentation handler.
3150  *      @skb: buffer to segment
3151  *      @features: features for the output path (see dev->features)
3152  */
3153 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3154                                     netdev_features_t features)
3155 {
3156         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3157         struct packet_offload *ptype;
3158         int vlan_depth = skb->mac_len;
3159         __be16 type = skb_network_protocol(skb, &vlan_depth);
3160
3161         if (unlikely(!type))
3162                 return ERR_PTR(-EINVAL);
3163
3164         __skb_pull(skb, vlan_depth);
3165
3166         rcu_read_lock();
3167         list_for_each_entry_rcu(ptype, &offload_base, list) {
3168                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3169                         segs = ptype->callbacks.gso_segment(skb, features);
3170                         break;
3171                 }
3172         }
3173         rcu_read_unlock();
3174
3175         __skb_push(skb, skb->data - skb_mac_header(skb));
3176
3177         return segs;
3178 }
3179 EXPORT_SYMBOL(skb_mac_gso_segment);
3180
3181
3182 /* openvswitch calls this on rx path, so we need a different check.
3183  */
3184 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3185 {
3186         if (tx_path)
3187                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3188                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3189
3190         return skb->ip_summed == CHECKSUM_NONE;
3191 }
3192
3193 /**
3194  *      __skb_gso_segment - Perform segmentation on skb.
3195  *      @skb: buffer to segment
3196  *      @features: features for the output path (see dev->features)
3197  *      @tx_path: whether it is called in TX path
3198  *
3199  *      This function segments the given skb and returns a list of segments.
3200  *
3201  *      It may return NULL if the skb requires no segmentation.  This is
3202  *      only possible when GSO is used for verifying header integrity.
3203  *
3204  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3205  */
3206 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3207                                   netdev_features_t features, bool tx_path)
3208 {
3209         struct sk_buff *segs;
3210
3211         if (unlikely(skb_needs_check(skb, tx_path))) {
3212                 int err;
3213
3214                 /* We're going to init ->check field in TCP or UDP header */
3215                 err = skb_cow_head(skb, 0);
3216                 if (err < 0)
3217                         return ERR_PTR(err);
3218         }
3219
3220         /* Only report GSO partial support if it will enable us to
3221          * support segmentation on this frame without needing additional
3222          * work.
3223          */
3224         if (features & NETIF_F_GSO_PARTIAL) {
3225                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3226                 struct net_device *dev = skb->dev;
3227
3228                 partial_features |= dev->features & dev->gso_partial_features;
3229                 if (!skb_gso_ok(skb, features | partial_features))
3230                         features &= ~NETIF_F_GSO_PARTIAL;
3231         }
3232
3233         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3234                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3235
3236         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3237         SKB_GSO_CB(skb)->encap_level = 0;
3238
3239         skb_reset_mac_header(skb);
3240         skb_reset_mac_len(skb);
3241
3242         segs = skb_mac_gso_segment(skb, features);
3243
3244         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3245                 skb_warn_bad_offload(skb);
3246
3247         return segs;
3248 }
3249 EXPORT_SYMBOL(__skb_gso_segment);
3250
3251 /* Take action when hardware reception checksum errors are detected. */
3252 #ifdef CONFIG_BUG
3253 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3254 {
3255         if (net_ratelimit()) {
3256                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3257                 skb_dump(KERN_ERR, skb, true);
3258                 dump_stack();
3259         }
3260 }
3261 EXPORT_SYMBOL(netdev_rx_csum_fault);
3262 #endif
3263
3264 /* XXX: check that highmem exists at all on the given machine. */
3265 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3266 {
3267 #ifdef CONFIG_HIGHMEM
3268         int i;
3269
3270         if (!(dev->features & NETIF_F_HIGHDMA)) {
3271                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3272                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3273
3274                         if (PageHighMem(skb_frag_page(frag)))
3275                                 return 1;
3276                 }
3277         }
3278 #endif
3279         return 0;
3280 }
3281
3282 /* If MPLS offload request, verify we are testing hardware MPLS features
3283  * instead of standard features for the netdev.
3284  */
3285 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3286 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3287                                            netdev_features_t features,
3288                                            __be16 type)
3289 {
3290         if (eth_p_mpls(type))
3291                 features &= skb->dev->mpls_features;
3292
3293         return features;
3294 }
3295 #else
3296 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3297                                            netdev_features_t features,
3298                                            __be16 type)
3299 {
3300         return features;
3301 }
3302 #endif
3303
3304 static netdev_features_t harmonize_features(struct sk_buff *skb,
3305         netdev_features_t features)
3306 {
3307         int tmp;
3308         __be16 type;
3309
3310         type = skb_network_protocol(skb, &tmp);
3311         features = net_mpls_features(skb, features, type);
3312
3313         if (skb->ip_summed != CHECKSUM_NONE &&
3314             !can_checksum_protocol(features, type)) {
3315                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3316         }
3317         if (illegal_highdma(skb->dev, skb))
3318                 features &= ~NETIF_F_SG;
3319
3320         return features;
3321 }
3322
3323 netdev_features_t passthru_features_check(struct sk_buff *skb,
3324                                           struct net_device *dev,
3325                                           netdev_features_t features)
3326 {
3327         return features;
3328 }
3329 EXPORT_SYMBOL(passthru_features_check);
3330
3331 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3332                                              struct net_device *dev,
3333                                              netdev_features_t features)
3334 {
3335         return vlan_features_check(skb, features);
3336 }
3337
3338 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3339                                             struct net_device *dev,
3340                                             netdev_features_t features)
3341 {
3342         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3343
3344         if (gso_segs > dev->gso_max_segs)
3345                 return features & ~NETIF_F_GSO_MASK;
3346
3347         /* Support for GSO partial features requires software
3348          * intervention before we can actually process the packets
3349          * so we need to strip support for any partial features now
3350          * and we can pull them back in after we have partially
3351          * segmented the frame.
3352          */
3353         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3354                 features &= ~dev->gso_partial_features;
3355
3356         /* Make sure to clear the IPv4 ID mangling feature if the
3357          * IPv4 header has the potential to be fragmented.
3358          */
3359         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3360                 struct iphdr *iph = skb->encapsulation ?
3361                                     inner_ip_hdr(skb) : ip_hdr(skb);
3362
3363                 if (!(iph->frag_off & htons(IP_DF)))
3364                         features &= ~NETIF_F_TSO_MANGLEID;
3365         }
3366
3367         return features;
3368 }
3369
3370 netdev_features_t netif_skb_features(struct sk_buff *skb)
3371 {
3372         struct net_device *dev = skb->dev;
3373         netdev_features_t features = dev->features;
3374
3375         if (skb_is_gso(skb))
3376                 features = gso_features_check(skb, dev, features);
3377
3378         /* If encapsulation offload request, verify we are testing
3379          * hardware encapsulation features instead of standard
3380          * features for the netdev
3381          */
3382         if (skb->encapsulation)
3383                 features &= dev->hw_enc_features;
3384
3385         if (skb_vlan_tagged(skb))
3386                 features = netdev_intersect_features(features,
3387                                                      dev->vlan_features |
3388                                                      NETIF_F_HW_VLAN_CTAG_TX |
3389                                                      NETIF_F_HW_VLAN_STAG_TX);
3390
3391         if (dev->netdev_ops->ndo_features_check)
3392                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3393                                                                 features);
3394         else
3395                 features &= dflt_features_check(skb, dev, features);
3396
3397         return harmonize_features(skb, features);
3398 }
3399 EXPORT_SYMBOL(netif_skb_features);
3400
3401 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3402                     struct netdev_queue *txq, bool more)
3403 {
3404         unsigned int len;
3405         int rc;
3406
3407         if (dev_nit_active(dev))
3408                 dev_queue_xmit_nit(skb, dev);
3409
3410         len = skb->len;
3411         trace_net_dev_start_xmit(skb, dev);
3412         rc = netdev_start_xmit(skb, dev, txq, more);
3413         trace_net_dev_xmit(skb, rc, dev, len);
3414
3415         return rc;
3416 }
3417
3418 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3419                                     struct netdev_queue *txq, int *ret)
3420 {
3421         struct sk_buff *skb = first;
3422         int rc = NETDEV_TX_OK;
3423
3424         while (skb) {
3425                 struct sk_buff *next = skb->next;
3426
3427                 skb_mark_not_on_list(skb);
3428                 rc = xmit_one(skb, dev, txq, next != NULL);
3429                 if (unlikely(!dev_xmit_complete(rc))) {
3430                         skb->next = next;
3431                         goto out;
3432                 }
3433
3434                 skb = next;
3435                 if (netif_tx_queue_stopped(txq) && skb) {
3436                         rc = NETDEV_TX_BUSY;
3437                         break;
3438                 }
3439         }
3440
3441 out:
3442         *ret = rc;
3443         return skb;
3444 }
3445
3446 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3447                                           netdev_features_t features)
3448 {
3449         if (skb_vlan_tag_present(skb) &&
3450             !vlan_hw_offload_capable(features, skb->vlan_proto))
3451                 skb = __vlan_hwaccel_push_inside(skb);
3452         return skb;
3453 }
3454
3455 int skb_csum_hwoffload_help(struct sk_buff *skb,
3456                             const netdev_features_t features)
3457 {
3458         if (unlikely(skb->csum_not_inet))
3459                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3460                         skb_crc32c_csum_help(skb);
3461
3462         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3463 }
3464 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3465
3466 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3467 {
3468         netdev_features_t features;
3469
3470         features = netif_skb_features(skb);
3471         skb = validate_xmit_vlan(skb, features);
3472         if (unlikely(!skb))
3473                 goto out_null;
3474
3475         skb = sk_validate_xmit_skb(skb, dev);
3476         if (unlikely(!skb))
3477                 goto out_null;
3478
3479         if (netif_needs_gso(skb, features)) {
3480                 struct sk_buff *segs;
3481
3482                 segs = skb_gso_segment(skb, features);
3483                 if (IS_ERR(segs)) {
3484                         goto out_kfree_skb;
3485                 } else if (segs) {
3486                         consume_skb(skb);
3487                         skb = segs;
3488                 }
3489         } else {
3490                 if (skb_needs_linearize(skb, features) &&
3491                     __skb_linearize(skb))
3492                         goto out_kfree_skb;
3493
3494                 /* If packet is not checksummed and device does not
3495                  * support checksumming for this protocol, complete
3496                  * checksumming here.
3497                  */
3498                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3499                         if (skb->encapsulation)
3500                                 skb_set_inner_transport_header(skb,
3501                                                                skb_checksum_start_offset(skb));
3502                         else
3503                                 skb_set_transport_header(skb,
3504                                                          skb_checksum_start_offset(skb));
3505                         if (skb_csum_hwoffload_help(skb, features))
3506                                 goto out_kfree_skb;
3507                 }
3508         }
3509
3510         skb = validate_xmit_xfrm(skb, features, again);
3511
3512         return skb;
3513
3514 out_kfree_skb:
3515         kfree_skb(skb);
3516 out_null:
3517         atomic_long_inc(&dev->tx_dropped);
3518         return NULL;
3519 }
3520
3521 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3522 {
3523         struct sk_buff *next, *head = NULL, *tail;
3524
3525         for (; skb != NULL; skb = next) {
3526                 next = skb->next;
3527                 skb_mark_not_on_list(skb);
3528
3529                 /* in case skb wont be segmented, point to itself */
3530                 skb->prev = skb;
3531
3532                 skb = validate_xmit_skb(skb, dev, again);
3533                 if (!skb)
3534                         continue;
3535
3536                 if (!head)
3537                         head = skb;
3538                 else
3539                         tail->next = skb;
3540                 /* If skb was segmented, skb->prev points to
3541                  * the last segment. If not, it still contains skb.
3542                  */
3543                 tail = skb->prev;
3544         }
3545         return head;
3546 }
3547 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3548
3549 static void qdisc_pkt_len_init(struct sk_buff *skb)
3550 {
3551         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3552
3553         qdisc_skb_cb(skb)->pkt_len = skb->len;
3554
3555         /* To get more precise estimation of bytes sent on wire,
3556          * we add to pkt_len the headers size of all segments
3557          */
3558         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3559                 unsigned int hdr_len;
3560                 u16 gso_segs = shinfo->gso_segs;
3561
3562                 /* mac layer + network layer */
3563                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3564
3565                 /* + transport layer */
3566                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3567                         const struct tcphdr *th;
3568                         struct tcphdr _tcphdr;
3569
3570                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3571                                                 sizeof(_tcphdr), &_tcphdr);
3572                         if (likely(th))
3573                                 hdr_len += __tcp_hdrlen(th);
3574                 } else {
3575                         struct udphdr _udphdr;
3576
3577                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3578                                                sizeof(_udphdr), &_udphdr))
3579                                 hdr_len += sizeof(struct udphdr);
3580                 }
3581
3582                 if (shinfo->gso_type & SKB_GSO_DODGY)
3583                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3584                                                 shinfo->gso_size);
3585
3586                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3587         }
3588 }
3589
3590 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3591                                  struct net_device *dev,
3592                                  struct netdev_queue *txq)
3593 {
3594         spinlock_t *root_lock = qdisc_lock(q);
3595         struct sk_buff *to_free = NULL;
3596         bool contended;
3597         int rc;
3598
3599         qdisc_calculate_pkt_len(skb, q);
3600
3601         if (q->flags & TCQ_F_NOLOCK) {
3602                 if ((q->flags & TCQ_F_CAN_BYPASS) && READ_ONCE(q->empty) &&
3603                     qdisc_run_begin(q)) {
3604                         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3605                                               &q->state))) {
3606                                 __qdisc_drop(skb, &to_free);
3607                                 rc = NET_XMIT_DROP;
3608                                 goto end_run;
3609                         }
3610                         qdisc_bstats_cpu_update(q, skb);
3611
3612                         rc = NET_XMIT_SUCCESS;
3613                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3614                                 __qdisc_run(q);
3615
3616 end_run:
3617                         qdisc_run_end(q);
3618                 } else {
3619                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3620                         qdisc_run(q);
3621                 }
3622
3623                 if (unlikely(to_free))
3624                         kfree_skb_list(to_free);
3625                 return rc;
3626         }
3627
3628         /*
3629          * Heuristic to force contended enqueues to serialize on a
3630          * separate lock before trying to get qdisc main lock.
3631          * This permits qdisc->running owner to get the lock more
3632          * often and dequeue packets faster.
3633          */
3634         contended = qdisc_is_running(q);
3635         if (unlikely(contended))
3636                 spin_lock(&q->busylock);
3637
3638         spin_lock(root_lock);
3639         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3640                 __qdisc_drop(skb, &to_free);
3641                 rc = NET_XMIT_DROP;
3642         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3643                    qdisc_run_begin(q)) {
3644                 /*
3645                  * This is a work-conserving queue; there are no old skbs
3646                  * waiting to be sent out; and the qdisc is not running -
3647                  * xmit the skb directly.
3648                  */
3649
3650                 qdisc_bstats_update(q, skb);
3651
3652                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3653                         if (unlikely(contended)) {
3654                                 spin_unlock(&q->busylock);
3655                                 contended = false;
3656                         }
3657                         __qdisc_run(q);
3658                 }
3659
3660                 qdisc_run_end(q);
3661                 rc = NET_XMIT_SUCCESS;
3662         } else {
3663                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3664                 if (qdisc_run_begin(q)) {
3665                         if (unlikely(contended)) {
3666                                 spin_unlock(&q->busylock);
3667                                 contended = false;
3668                         }
3669                         __qdisc_run(q);
3670                         qdisc_run_end(q);
3671                 }
3672         }
3673         spin_unlock(root_lock);
3674         if (unlikely(to_free))
3675                 kfree_skb_list(to_free);
3676         if (unlikely(contended))
3677                 spin_unlock(&q->busylock);
3678         return rc;
3679 }
3680
3681 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3682 static void skb_update_prio(struct sk_buff *skb)
3683 {
3684         const struct netprio_map *map;
3685         const struct sock *sk;
3686         unsigned int prioidx;
3687
3688         if (skb->priority)
3689                 return;
3690         map = rcu_dereference_bh(skb->dev->priomap);
3691         if (!map)
3692                 return;
3693         sk = skb_to_full_sk(skb);
3694         if (!sk)
3695                 return;
3696
3697         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3698
3699         if (prioidx < map->priomap_len)
3700                 skb->priority = map->priomap[prioidx];
3701 }
3702 #else
3703 #define skb_update_prio(skb)
3704 #endif
3705
3706 /**
3707  *      dev_loopback_xmit - loop back @skb
3708  *      @net: network namespace this loopback is happening in
3709  *      @sk:  sk needed to be a netfilter okfn
3710  *      @skb: buffer to transmit
3711  */
3712 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3713 {
3714         skb_reset_mac_header(skb);
3715         __skb_pull(skb, skb_network_offset(skb));
3716         skb->pkt_type = PACKET_LOOPBACK;
3717         skb->ip_summed = CHECKSUM_UNNECESSARY;
3718         WARN_ON(!skb_dst(skb));
3719         skb_dst_force(skb);
3720         netif_rx_ni(skb);
3721         return 0;
3722 }
3723 EXPORT_SYMBOL(dev_loopback_xmit);
3724
3725 #ifdef CONFIG_NET_EGRESS
3726 static struct sk_buff *
3727 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3728 {
3729         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3730         struct tcf_result cl_res;
3731
3732         if (!miniq)
3733                 return skb;
3734
3735         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3736         mini_qdisc_bstats_cpu_update(miniq, skb);
3737
3738         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3739         case TC_ACT_OK:
3740         case TC_ACT_RECLASSIFY:
3741                 skb->tc_index = TC_H_MIN(cl_res.classid);
3742                 break;
3743         case TC_ACT_SHOT:
3744                 mini_qdisc_qstats_cpu_drop(miniq);
3745                 *ret = NET_XMIT_DROP;
3746                 kfree_skb(skb);
3747                 return NULL;
3748         case TC_ACT_STOLEN:
3749         case TC_ACT_QUEUED:
3750         case TC_ACT_TRAP:
3751                 *ret = NET_XMIT_SUCCESS;
3752                 consume_skb(skb);
3753                 return NULL;
3754         case TC_ACT_REDIRECT:
3755                 /* No need to push/pop skb's mac_header here on egress! */
3756                 skb_do_redirect(skb);
3757                 *ret = NET_XMIT_SUCCESS;
3758                 return NULL;
3759         default:
3760                 break;
3761         }
3762
3763         return skb;
3764 }
3765 #endif /* CONFIG_NET_EGRESS */
3766
3767 #ifdef CONFIG_XPS
3768 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3769                                struct xps_dev_maps *dev_maps, unsigned int tci)
3770 {
3771         struct xps_map *map;
3772         int queue_index = -1;
3773
3774         if (dev->num_tc) {
3775                 tci *= dev->num_tc;
3776                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3777         }
3778
3779         map = rcu_dereference(dev_maps->attr_map[tci]);
3780         if (map) {
3781                 if (map->len == 1)
3782                         queue_index = map->queues[0];
3783                 else
3784                         queue_index = map->queues[reciprocal_scale(
3785                                                 skb_get_hash(skb), map->len)];
3786                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3787                         queue_index = -1;
3788         }
3789         return queue_index;
3790 }
3791 #endif
3792
3793 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3794                          struct sk_buff *skb)
3795 {
3796 #ifdef CONFIG_XPS
3797         struct xps_dev_maps *dev_maps;
3798         struct sock *sk = skb->sk;
3799         int queue_index = -1;
3800
3801         if (!static_key_false(&xps_needed))
3802                 return -1;
3803
3804         rcu_read_lock();
3805         if (!static_key_false(&xps_rxqs_needed))
3806                 goto get_cpus_map;
3807
3808         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3809         if (dev_maps) {
3810                 int tci = sk_rx_queue_get(sk);
3811
3812                 if (tci >= 0 && tci < dev->num_rx_queues)
3813                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3814                                                           tci);
3815         }
3816
3817 get_cpus_map:
3818         if (queue_index < 0) {
3819                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3820                 if (dev_maps) {
3821                         unsigned int tci = skb->sender_cpu - 1;
3822
3823                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3824                                                           tci);
3825                 }
3826         }
3827         rcu_read_unlock();
3828
3829         return queue_index;
3830 #else
3831         return -1;
3832 #endif
3833 }
3834
3835 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3836                      struct net_device *sb_dev)
3837 {
3838         return 0;
3839 }
3840 EXPORT_SYMBOL(dev_pick_tx_zero);
3841
3842 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3843                        struct net_device *sb_dev)
3844 {
3845         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3846 }
3847 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3848
3849 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3850                      struct net_device *sb_dev)
3851 {
3852         struct sock *sk = skb->sk;
3853         int queue_index = sk_tx_queue_get(sk);
3854
3855         sb_dev = sb_dev ? : dev;
3856
3857         if (queue_index < 0 || skb->ooo_okay ||
3858             queue_index >= dev->real_num_tx_queues) {
3859                 int new_index = get_xps_queue(dev, sb_dev, skb);
3860
3861                 if (new_index < 0)
3862                         new_index = skb_tx_hash(dev, sb_dev, skb);
3863
3864                 if (queue_index != new_index && sk &&
3865                     sk_fullsock(sk) &&
3866                     rcu_access_pointer(sk->sk_dst_cache))
3867                         sk_tx_queue_set(sk, new_index);
3868
3869                 queue_index = new_index;
3870         }
3871
3872         return queue_index;
3873 }
3874 EXPORT_SYMBOL(netdev_pick_tx);
3875
3876 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3877                                          struct sk_buff *skb,
3878                                          struct net_device *sb_dev)
3879 {
3880         int queue_index = 0;
3881
3882 #ifdef CONFIG_XPS
3883         u32 sender_cpu = skb->sender_cpu - 1;
3884
3885         if (sender_cpu >= (u32)NR_CPUS)
3886                 skb->sender_cpu = raw_smp_processor_id() + 1;
3887 #endif
3888
3889         if (dev->real_num_tx_queues != 1) {
3890                 const struct net_device_ops *ops = dev->netdev_ops;
3891
3892                 if (ops->ndo_select_queue)
3893                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3894                 else
3895                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3896
3897                 queue_index = netdev_cap_txqueue(dev, queue_index);
3898         }
3899
3900         skb_set_queue_mapping(skb, queue_index);
3901         return netdev_get_tx_queue(dev, queue_index);
3902 }
3903
3904 /**
3905  *      __dev_queue_xmit - transmit a buffer
3906  *      @skb: buffer to transmit
3907  *      @sb_dev: suboordinate device used for L2 forwarding offload
3908  *
3909  *      Queue a buffer for transmission to a network device. The caller must
3910  *      have set the device and priority and built the buffer before calling
3911  *      this function. The function can be called from an interrupt.
3912  *
3913  *      A negative errno code is returned on a failure. A success does not
3914  *      guarantee the frame will be transmitted as it may be dropped due
3915  *      to congestion or traffic shaping.
3916  *
3917  * -----------------------------------------------------------------------------------
3918  *      I notice this method can also return errors from the queue disciplines,
3919  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3920  *      be positive.
3921  *
3922  *      Regardless of the return value, the skb is consumed, so it is currently
3923  *      difficult to retry a send to this method.  (You can bump the ref count
3924  *      before sending to hold a reference for retry if you are careful.)
3925  *
3926  *      When calling this method, interrupts MUST be enabled.  This is because
3927  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3928  *          --BLG
3929  */
3930 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3931 {
3932         struct net_device *dev = skb->dev;
3933         struct netdev_queue *txq;
3934         struct Qdisc *q;
3935         int rc = -ENOMEM;
3936         bool again = false;
3937
3938         skb_reset_mac_header(skb);
3939
3940         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3941                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3942
3943         /* Disable soft irqs for various locks below. Also
3944          * stops preemption for RCU.
3945          */
3946         rcu_read_lock_bh();
3947
3948         skb_update_prio(skb);
3949
3950         qdisc_pkt_len_init(skb);
3951 #ifdef CONFIG_NET_CLS_ACT
3952         skb->tc_at_ingress = 0;
3953 # ifdef CONFIG_NET_EGRESS
3954         if (static_branch_unlikely(&egress_needed_key)) {
3955                 skb = sch_handle_egress(skb, &rc, dev);
3956                 if (!skb)
3957                         goto out;
3958         }
3959 # endif
3960 #endif
3961         /* If device/qdisc don't need skb->dst, release it right now while
3962          * its hot in this cpu cache.
3963          */
3964         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3965                 skb_dst_drop(skb);
3966         else
3967                 skb_dst_force(skb);
3968
3969         txq = netdev_core_pick_tx(dev, skb, sb_dev);
3970         q = rcu_dereference_bh(txq->qdisc);
3971
3972         trace_net_dev_queue(skb);
3973         if (q->enqueue) {
3974                 rc = __dev_xmit_skb(skb, q, dev, txq);
3975                 goto out;
3976         }
3977
3978         /* The device has no queue. Common case for software devices:
3979          * loopback, all the sorts of tunnels...
3980
3981          * Really, it is unlikely that netif_tx_lock protection is necessary
3982          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3983          * counters.)
3984          * However, it is possible, that they rely on protection
3985          * made by us here.
3986
3987          * Check this and shot the lock. It is not prone from deadlocks.
3988          *Either shot noqueue qdisc, it is even simpler 8)
3989          */
3990         if (dev->flags & IFF_UP) {
3991                 int cpu = smp_processor_id(); /* ok because BHs are off */
3992
3993                 if (txq->xmit_lock_owner != cpu) {
3994                         if (dev_xmit_recursion())
3995                                 goto recursion_alert;
3996
3997                         skb = validate_xmit_skb(skb, dev, &again);
3998                         if (!skb)
3999                                 goto out;
4000
4001                         HARD_TX_LOCK(dev, txq, cpu);
4002
4003                         if (!netif_xmit_stopped(txq)) {
4004                                 dev_xmit_recursion_inc();
4005                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4006                                 dev_xmit_recursion_dec();
4007                                 if (dev_xmit_complete(rc)) {
4008                                         HARD_TX_UNLOCK(dev, txq);
4009                                         goto out;
4010                                 }
4011                         }
4012                         HARD_TX_UNLOCK(dev, txq);
4013                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4014                                              dev->name);
4015                 } else {
4016                         /* Recursion is detected! It is possible,
4017                          * unfortunately
4018                          */
4019 recursion_alert:
4020                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4021                                              dev->name);
4022                 }
4023         }
4024
4025         rc = -ENETDOWN;
4026         rcu_read_unlock_bh();
4027
4028         atomic_long_inc(&dev->tx_dropped);
4029         kfree_skb_list(skb);
4030         return rc;
4031 out:
4032         rcu_read_unlock_bh();
4033         return rc;
4034 }
4035
4036 int dev_queue_xmit(struct sk_buff *skb)
4037 {
4038         return __dev_queue_xmit(skb, NULL);
4039 }
4040 EXPORT_SYMBOL(dev_queue_xmit);
4041
4042 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4043 {
4044         return __dev_queue_xmit(skb, sb_dev);
4045 }
4046 EXPORT_SYMBOL(dev_queue_xmit_accel);
4047
4048 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4049 {
4050         struct net_device *dev = skb->dev;
4051         struct sk_buff *orig_skb = skb;
4052         struct netdev_queue *txq;
4053         int ret = NETDEV_TX_BUSY;
4054         bool again = false;
4055
4056         if (unlikely(!netif_running(dev) ||
4057                      !netif_carrier_ok(dev)))
4058                 goto drop;
4059
4060         skb = validate_xmit_skb_list(skb, dev, &again);
4061         if (skb != orig_skb)
4062                 goto drop;
4063
4064         skb_set_queue_mapping(skb, queue_id);
4065         txq = skb_get_tx_queue(dev, skb);
4066
4067         local_bh_disable();
4068
4069         HARD_TX_LOCK(dev, txq, smp_processor_id());
4070         if (!netif_xmit_frozen_or_drv_stopped(txq))
4071                 ret = netdev_start_xmit(skb, dev, txq, false);
4072         HARD_TX_UNLOCK(dev, txq);
4073
4074         local_bh_enable();
4075
4076         if (!dev_xmit_complete(ret))
4077                 kfree_skb(skb);
4078
4079         return ret;
4080 drop:
4081         atomic_long_inc(&dev->tx_dropped);
4082         kfree_skb_list(skb);
4083         return NET_XMIT_DROP;
4084 }
4085 EXPORT_SYMBOL(dev_direct_xmit);
4086
4087 /*************************************************************************
4088  *                      Receiver routines
4089  *************************************************************************/
4090
4091 int netdev_max_backlog __read_mostly = 1000;
4092 EXPORT_SYMBOL(netdev_max_backlog);
4093
4094 int netdev_tstamp_prequeue __read_mostly = 1;
4095 int netdev_budget __read_mostly = 300;
4096 unsigned int __read_mostly netdev_budget_usecs = 2000;
4097 int weight_p __read_mostly = 64;           /* old backlog weight */
4098 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4099 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4100 int dev_rx_weight __read_mostly = 64;
4101 int dev_tx_weight __read_mostly = 64;
4102 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4103 int gro_normal_batch __read_mostly = 8;
4104
4105 /* Called with irq disabled */
4106 static inline void ____napi_schedule(struct softnet_data *sd,
4107                                      struct napi_struct *napi)
4108 {
4109         list_add_tail(&napi->poll_list, &sd->poll_list);
4110         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4111 }
4112
4113 #ifdef CONFIG_RPS
4114
4115 /* One global table that all flow-based protocols share. */
4116 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4117 EXPORT_SYMBOL(rps_sock_flow_table);
4118 u32 rps_cpu_mask __read_mostly;
4119 EXPORT_SYMBOL(rps_cpu_mask);
4120
4121 struct static_key_false rps_needed __read_mostly;
4122 EXPORT_SYMBOL(rps_needed);
4123 struct static_key_false rfs_needed __read_mostly;
4124 EXPORT_SYMBOL(rfs_needed);
4125
4126 static struct rps_dev_flow *
4127 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4128             struct rps_dev_flow *rflow, u16 next_cpu)
4129 {
4130         if (next_cpu < nr_cpu_ids) {
4131 #ifdef CONFIG_RFS_ACCEL
4132                 struct netdev_rx_queue *rxqueue;
4133                 struct rps_dev_flow_table *flow_table;
4134                 struct rps_dev_flow *old_rflow;
4135                 u32 flow_id;
4136                 u16 rxq_index;
4137                 int rc;
4138
4139                 /* Should we steer this flow to a different hardware queue? */
4140                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4141                     !(dev->features & NETIF_F_NTUPLE))
4142                         goto out;
4143                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4144                 if (rxq_index == skb_get_rx_queue(skb))
4145                         goto out;
4146
4147                 rxqueue = dev->_rx + rxq_index;
4148                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4149                 if (!flow_table)
4150                         goto out;
4151                 flow_id = skb_get_hash(skb) & flow_table->mask;
4152                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4153                                                         rxq_index, flow_id);
4154                 if (rc < 0)
4155                         goto out;
4156                 old_rflow = rflow;
4157                 rflow = &flow_table->flows[flow_id];
4158                 rflow->filter = rc;
4159                 if (old_rflow->filter == rflow->filter)
4160                         old_rflow->filter = RPS_NO_FILTER;
4161         out:
4162 #endif
4163                 rflow->last_qtail =
4164                         per_cpu(softnet_data, next_cpu).input_queue_head;
4165         }
4166
4167         rflow->cpu = next_cpu;
4168         return rflow;
4169 }
4170
4171 /*
4172  * get_rps_cpu is called from netif_receive_skb and returns the target
4173  * CPU from the RPS map of the receiving queue for a given skb.
4174  * rcu_read_lock must be held on entry.
4175  */
4176 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4177                        struct rps_dev_flow **rflowp)
4178 {
4179         const struct rps_sock_flow_table *sock_flow_table;
4180         struct netdev_rx_queue *rxqueue = dev->_rx;
4181         struct rps_dev_flow_table *flow_table;
4182         struct rps_map *map;
4183         int cpu = -1;
4184         u32 tcpu;
4185         u32 hash;
4186
4187         if (skb_rx_queue_recorded(skb)) {
4188                 u16 index = skb_get_rx_queue(skb);
4189
4190                 if (unlikely(index >= dev->real_num_rx_queues)) {
4191                         WARN_ONCE(dev->real_num_rx_queues > 1,
4192                                   "%s received packet on queue %u, but number "
4193                                   "of RX queues is %u\n",
4194                                   dev->name, index, dev->real_num_rx_queues);
4195                         goto done;
4196                 }
4197                 rxqueue += index;
4198         }
4199
4200         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4201
4202         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4203         map = rcu_dereference(rxqueue->rps_map);
4204         if (!flow_table && !map)
4205                 goto done;
4206
4207         skb_reset_network_header(skb);
4208         hash = skb_get_hash(skb);
4209         if (!hash)
4210                 goto done;
4211
4212         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4213         if (flow_table && sock_flow_table) {
4214                 struct rps_dev_flow *rflow;
4215                 u32 next_cpu;
4216                 u32 ident;
4217
4218                 /* First check into global flow table if there is a match */
4219                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4220                 if ((ident ^ hash) & ~rps_cpu_mask)
4221                         goto try_rps;
4222
4223                 next_cpu = ident & rps_cpu_mask;
4224
4225                 /* OK, now we know there is a match,
4226                  * we can look at the local (per receive queue) flow table
4227                  */
4228                 rflow = &flow_table->flows[hash & flow_table->mask];
4229                 tcpu = rflow->cpu;
4230
4231                 /*
4232                  * If the desired CPU (where last recvmsg was done) is
4233                  * different from current CPU (one in the rx-queue flow
4234                  * table entry), switch if one of the following holds:
4235                  *   - Current CPU is unset (>= nr_cpu_ids).
4236                  *   - Current CPU is offline.
4237                  *   - The current CPU's queue tail has advanced beyond the
4238                  *     last packet that was enqueued using this table entry.
4239                  *     This guarantees that all previous packets for the flow
4240                  *     have been dequeued, thus preserving in order delivery.
4241                  */
4242                 if (unlikely(tcpu != next_cpu) &&
4243                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4244                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4245                       rflow->last_qtail)) >= 0)) {
4246                         tcpu = next_cpu;
4247                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4248                 }
4249
4250                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4251                         *rflowp = rflow;
4252                         cpu = tcpu;
4253                         goto done;
4254                 }
4255         }
4256
4257 try_rps:
4258
4259         if (map) {
4260                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4261                 if (cpu_online(tcpu)) {
4262                         cpu = tcpu;
4263                         goto done;
4264                 }
4265         }
4266
4267 done:
4268         return cpu;
4269 }
4270
4271 #ifdef CONFIG_RFS_ACCEL
4272
4273 /**
4274  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4275  * @dev: Device on which the filter was set
4276  * @rxq_index: RX queue index
4277  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4278  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4279  *
4280  * Drivers that implement ndo_rx_flow_steer() should periodically call
4281  * this function for each installed filter and remove the filters for
4282  * which it returns %true.
4283  */
4284 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4285                          u32 flow_id, u16 filter_id)
4286 {
4287         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4288         struct rps_dev_flow_table *flow_table;
4289         struct rps_dev_flow *rflow;
4290         bool expire = true;
4291         unsigned int cpu;
4292
4293         rcu_read_lock();
4294         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4295         if (flow_table && flow_id <= flow_table->mask) {
4296                 rflow = &flow_table->flows[flow_id];
4297                 cpu = READ_ONCE(rflow->cpu);
4298                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4299                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4300                            rflow->last_qtail) <
4301                      (int)(10 * flow_table->mask)))
4302                         expire = false;
4303         }
4304         rcu_read_unlock();
4305         return expire;
4306 }
4307 EXPORT_SYMBOL(rps_may_expire_flow);
4308
4309 #endif /* CONFIG_RFS_ACCEL */
4310
4311 /* Called from hardirq (IPI) context */
4312 static void rps_trigger_softirq(void *data)
4313 {
4314         struct softnet_data *sd = data;
4315
4316         ____napi_schedule(sd, &sd->backlog);
4317         sd->received_rps++;
4318 }
4319
4320 #endif /* CONFIG_RPS */
4321
4322 /*
4323  * Check if this softnet_data structure is another cpu one
4324  * If yes, queue it to our IPI list and return 1
4325  * If no, return 0
4326  */
4327 static int rps_ipi_queued(struct softnet_data *sd)
4328 {
4329 #ifdef CONFIG_RPS
4330         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4331
4332         if (sd != mysd) {
4333                 sd->rps_ipi_next = mysd->rps_ipi_list;
4334                 mysd->rps_ipi_list = sd;
4335
4336                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4337                 return 1;
4338         }
4339 #endif /* CONFIG_RPS */
4340         return 0;
4341 }
4342
4343 #ifdef CONFIG_NET_FLOW_LIMIT
4344 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4345 #endif
4346
4347 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4348 {
4349 #ifdef CONFIG_NET_FLOW_LIMIT
4350         struct sd_flow_limit *fl;
4351         struct softnet_data *sd;
4352         unsigned int old_flow, new_flow;
4353
4354         if (qlen < (netdev_max_backlog >> 1))
4355                 return false;
4356
4357         sd = this_cpu_ptr(&softnet_data);
4358
4359         rcu_read_lock();
4360         fl = rcu_dereference(sd->flow_limit);
4361         if (fl) {
4362                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4363                 old_flow = fl->history[fl->history_head];
4364                 fl->history[fl->history_head] = new_flow;
4365
4366                 fl->history_head++;
4367                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4368
4369                 if (likely(fl->buckets[old_flow]))
4370                         fl->buckets[old_flow]--;
4371
4372                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4373                         fl->count++;
4374                         rcu_read_unlock();
4375                         return true;
4376                 }
4377         }
4378         rcu_read_unlock();
4379 #endif
4380         return false;
4381 }
4382
4383 /*
4384  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4385  * queue (may be a remote CPU queue).
4386  */
4387 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4388                               unsigned int *qtail)
4389 {
4390         struct softnet_data *sd;
4391         unsigned long flags;
4392         unsigned int qlen;
4393
4394         sd = &per_cpu(softnet_data, cpu);
4395
4396         local_irq_save(flags);
4397
4398         rps_lock(sd);
4399         if (!netif_running(skb->dev))
4400                 goto drop;
4401         qlen = skb_queue_len(&sd->input_pkt_queue);
4402         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4403                 if (qlen) {
4404 enqueue:
4405                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4406                         input_queue_tail_incr_save(sd, qtail);
4407                         rps_unlock(sd);
4408                         local_irq_restore(flags);
4409                         return NET_RX_SUCCESS;
4410                 }
4411
4412                 /* Schedule NAPI for backlog device
4413                  * We can use non atomic operation since we own the queue lock
4414                  */
4415                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4416                         if (!rps_ipi_queued(sd))
4417                                 ____napi_schedule(sd, &sd->backlog);
4418                 }
4419                 goto enqueue;
4420         }
4421
4422 drop:
4423         sd->dropped++;
4424         rps_unlock(sd);
4425
4426         local_irq_restore(flags);
4427
4428         atomic_long_inc(&skb->dev->rx_dropped);
4429         kfree_skb(skb);
4430         return NET_RX_DROP;
4431 }
4432
4433 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4434 {
4435         struct net_device *dev = skb->dev;
4436         struct netdev_rx_queue *rxqueue;
4437
4438         rxqueue = dev->_rx;
4439
4440         if (skb_rx_queue_recorded(skb)) {
4441                 u16 index = skb_get_rx_queue(skb);
4442
4443                 if (unlikely(index >= dev->real_num_rx_queues)) {
4444                         WARN_ONCE(dev->real_num_rx_queues > 1,
4445                                   "%s received packet on queue %u, but number "
4446                                   "of RX queues is %u\n",
4447                                   dev->name, index, dev->real_num_rx_queues);
4448
4449                         return rxqueue; /* Return first rxqueue */
4450                 }
4451                 rxqueue += index;
4452         }
4453         return rxqueue;
4454 }
4455
4456 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4457                                      struct xdp_buff *xdp,
4458                                      struct bpf_prog *xdp_prog)
4459 {
4460         struct netdev_rx_queue *rxqueue;
4461         void *orig_data, *orig_data_end;
4462         u32 metalen, act = XDP_DROP;
4463         __be16 orig_eth_type;
4464         struct ethhdr *eth;
4465         bool orig_bcast;
4466         int hlen, off;
4467         u32 mac_len;
4468
4469         /* Reinjected packets coming from act_mirred or similar should
4470          * not get XDP generic processing.
4471          */
4472         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4473                 return XDP_PASS;
4474
4475         /* XDP packets must be linear and must have sufficient headroom
4476          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4477          * native XDP provides, thus we need to do it here as well.
4478          */
4479         if (skb_is_nonlinear(skb) ||
4480             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4481                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4482                 int troom = skb->tail + skb->data_len - skb->end;
4483
4484                 /* In case we have to go down the path and also linearize,
4485                  * then lets do the pskb_expand_head() work just once here.
4486                  */
4487                 if (pskb_expand_head(skb,
4488                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4489                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4490                         goto do_drop;
4491                 if (skb_linearize(skb))
4492                         goto do_drop;
4493         }
4494
4495         /* The XDP program wants to see the packet starting at the MAC
4496          * header.
4497          */
4498         mac_len = skb->data - skb_mac_header(skb);
4499         hlen = skb_headlen(skb) + mac_len;
4500         xdp->data = skb->data - mac_len;
4501         xdp->data_meta = xdp->data;
4502         xdp->data_end = xdp->data + hlen;
4503         xdp->data_hard_start = skb->data - skb_headroom(skb);
4504         orig_data_end = xdp->data_end;
4505         orig_data = xdp->data;
4506         eth = (struct ethhdr *)xdp->data;
4507         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4508         orig_eth_type = eth->h_proto;
4509
4510         rxqueue = netif_get_rxqueue(skb);
4511         xdp->rxq = &rxqueue->xdp_rxq;
4512
4513         act = bpf_prog_run_xdp(xdp_prog, xdp);
4514
4515         /* check if bpf_xdp_adjust_head was used */
4516         off = xdp->data - orig_data;
4517         if (off) {
4518                 if (off > 0)
4519                         __skb_pull(skb, off);
4520                 else if (off < 0)
4521                         __skb_push(skb, -off);
4522
4523                 skb->mac_header += off;
4524                 skb_reset_network_header(skb);
4525         }
4526
4527         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4528          * pckt.
4529          */
4530         off = orig_data_end - xdp->data_end;
4531         if (off != 0) {
4532                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4533                 skb->len -= off;
4534
4535         }
4536
4537         /* check if XDP changed eth hdr such SKB needs update */
4538         eth = (struct ethhdr *)xdp->data;
4539         if ((orig_eth_type != eth->h_proto) ||
4540             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4541                 __skb_push(skb, ETH_HLEN);
4542                 skb->protocol = eth_type_trans(skb, skb->dev);
4543         }
4544
4545         switch (act) {
4546         case XDP_REDIRECT:
4547         case XDP_TX:
4548                 __skb_push(skb, mac_len);
4549                 break;
4550         case XDP_PASS:
4551                 metalen = xdp->data - xdp->data_meta;
4552                 if (metalen)
4553                         skb_metadata_set(skb, metalen);
4554                 break;
4555         default:
4556                 bpf_warn_invalid_xdp_action(act);
4557                 /* fall through */
4558         case XDP_ABORTED:
4559                 trace_xdp_exception(skb->dev, xdp_prog, act);
4560                 /* fall through */
4561         case XDP_DROP:
4562         do_drop:
4563                 kfree_skb(skb);
4564                 break;
4565         }
4566
4567         return act;
4568 }
4569
4570 /* When doing generic XDP we have to bypass the qdisc layer and the
4571  * network taps in order to match in-driver-XDP behavior.
4572  */
4573 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4574 {
4575         struct net_device *dev = skb->dev;
4576         struct netdev_queue *txq;
4577         bool free_skb = true;
4578         int cpu, rc;
4579
4580         txq = netdev_core_pick_tx(dev, skb, NULL);
4581         cpu = smp_processor_id();
4582         HARD_TX_LOCK(dev, txq, cpu);
4583         if (!netif_xmit_stopped(txq)) {
4584                 rc = netdev_start_xmit(skb, dev, txq, 0);
4585                 if (dev_xmit_complete(rc))
4586                         free_skb = false;
4587         }
4588         HARD_TX_UNLOCK(dev, txq);
4589         if (free_skb) {
4590                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4591                 kfree_skb(skb);
4592         }
4593 }
4594 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4595
4596 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4597
4598 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4599 {
4600         if (xdp_prog) {
4601                 struct xdp_buff xdp;
4602                 u32 act;
4603                 int err;
4604
4605                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4606                 if (act != XDP_PASS) {
4607                         switch (act) {
4608                         case XDP_REDIRECT:
4609                                 err = xdp_do_generic_redirect(skb->dev, skb,
4610                                                               &xdp, xdp_prog);
4611                                 if (err)
4612                                         goto out_redir;
4613                                 break;
4614                         case XDP_TX:
4615                                 generic_xdp_tx(skb, xdp_prog);
4616                                 break;
4617                         }
4618                         return XDP_DROP;
4619                 }
4620         }
4621         return XDP_PASS;
4622 out_redir:
4623         kfree_skb(skb);
4624         return XDP_DROP;
4625 }
4626 EXPORT_SYMBOL_GPL(do_xdp_generic);
4627
4628 static int netif_rx_internal(struct sk_buff *skb)
4629 {
4630         int ret;
4631
4632         net_timestamp_check(netdev_tstamp_prequeue, skb);
4633
4634         trace_netif_rx(skb);
4635
4636 #ifdef CONFIG_RPS
4637         if (static_branch_unlikely(&rps_needed)) {
4638                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4639                 int cpu;
4640
4641                 preempt_disable();
4642                 rcu_read_lock();
4643
4644                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4645                 if (cpu < 0)
4646                         cpu = smp_processor_id();
4647
4648                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4649
4650                 rcu_read_unlock();
4651                 preempt_enable();
4652         } else
4653 #endif
4654         {
4655                 unsigned int qtail;
4656
4657                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4658                 put_cpu();
4659         }
4660         return ret;
4661 }
4662
4663 /**
4664  *      netif_rx        -       post buffer to the network code
4665  *      @skb: buffer to post
4666  *
4667  *      This function receives a packet from a device driver and queues it for
4668  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4669  *      may be dropped during processing for congestion control or by the
4670  *      protocol layers.
4671  *
4672  *      return values:
4673  *      NET_RX_SUCCESS  (no congestion)
4674  *      NET_RX_DROP     (packet was dropped)
4675  *
4676  */
4677
4678 int netif_rx(struct sk_buff *skb)
4679 {
4680         int ret;
4681
4682         trace_netif_rx_entry(skb);
4683
4684         ret = netif_rx_internal(skb);
4685         trace_netif_rx_exit(ret);
4686
4687         return ret;
4688 }
4689 EXPORT_SYMBOL(netif_rx);
4690
4691 int netif_rx_ni(struct sk_buff *skb)
4692 {
4693         int err;
4694
4695         trace_netif_rx_ni_entry(skb);
4696
4697         preempt_disable();
4698         err = netif_rx_internal(skb);
4699         if (local_softirq_pending())
4700                 do_softirq();
4701         preempt_enable();
4702         trace_netif_rx_ni_exit(err);
4703
4704         return err;
4705 }
4706 EXPORT_SYMBOL(netif_rx_ni);
4707
4708 static __latent_entropy void net_tx_action(struct softirq_action *h)
4709 {
4710         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4711
4712         if (sd->completion_queue) {
4713                 struct sk_buff *clist;
4714
4715                 local_irq_disable();
4716                 clist = sd->completion_queue;
4717                 sd->completion_queue = NULL;
4718                 local_irq_enable();
4719
4720                 while (clist) {
4721                         struct sk_buff *skb = clist;
4722
4723                         clist = clist->next;
4724
4725                         WARN_ON(refcount_read(&skb->users));
4726                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4727                                 trace_consume_skb(skb);
4728                         else
4729                                 trace_kfree_skb(skb, net_tx_action);
4730
4731                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4732                                 __kfree_skb(skb);
4733                         else
4734                                 __kfree_skb_defer(skb);
4735                 }
4736
4737                 __kfree_skb_flush();
4738         }
4739
4740         if (sd->output_queue) {
4741                 struct Qdisc *head;
4742
4743                 local_irq_disable();
4744                 head = sd->output_queue;
4745                 sd->output_queue = NULL;
4746                 sd->output_queue_tailp = &sd->output_queue;
4747                 local_irq_enable();
4748
4749                 while (head) {
4750                         struct Qdisc *q = head;
4751                         spinlock_t *root_lock = NULL;
4752
4753                         head = head->next_sched;
4754
4755                         if (!(q->flags & TCQ_F_NOLOCK)) {
4756                                 root_lock = qdisc_lock(q);
4757                                 spin_lock(root_lock);
4758                         }
4759                         /* We need to make sure head->next_sched is read
4760                          * before clearing __QDISC_STATE_SCHED
4761                          */
4762                         smp_mb__before_atomic();
4763                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4764                         qdisc_run(q);
4765                         if (root_lock)
4766                                 spin_unlock(root_lock);
4767                 }
4768         }
4769
4770         xfrm_dev_backlog(sd);
4771 }
4772
4773 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4774 /* This hook is defined here for ATM LANE */
4775 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4776                              unsigned char *addr) __read_mostly;
4777 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4778 #endif
4779
4780 static inline struct sk_buff *
4781 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4782                    struct net_device *orig_dev)
4783 {
4784 #ifdef CONFIG_NET_CLS_ACT
4785         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4786         struct tcf_result cl_res;
4787
4788         /* If there's at least one ingress present somewhere (so
4789          * we get here via enabled static key), remaining devices
4790          * that are not configured with an ingress qdisc will bail
4791          * out here.
4792          */
4793         if (!miniq)
4794                 return skb;
4795
4796         if (*pt_prev) {
4797                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4798                 *pt_prev = NULL;
4799         }
4800
4801         qdisc_skb_cb(skb)->pkt_len = skb->len;
4802         skb->tc_at_ingress = 1;
4803         mini_qdisc_bstats_cpu_update(miniq, skb);
4804
4805         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4806         case TC_ACT_OK:
4807         case TC_ACT_RECLASSIFY:
4808                 skb->tc_index = TC_H_MIN(cl_res.classid);
4809                 break;
4810         case TC_ACT_SHOT:
4811                 mini_qdisc_qstats_cpu_drop(miniq);
4812                 kfree_skb(skb);
4813                 return NULL;
4814         case TC_ACT_STOLEN:
4815         case TC_ACT_QUEUED:
4816         case TC_ACT_TRAP:
4817                 consume_skb(skb);
4818                 return NULL;
4819         case TC_ACT_REDIRECT:
4820                 /* skb_mac_header check was done by cls/act_bpf, so
4821                  * we can safely push the L2 header back before
4822                  * redirecting to another netdev
4823                  */
4824                 __skb_push(skb, skb->mac_len);
4825                 skb_do_redirect(skb);
4826                 return NULL;
4827         case TC_ACT_CONSUMED:
4828                 return NULL;
4829         default:
4830                 break;
4831         }
4832 #endif /* CONFIG_NET_CLS_ACT */
4833         return skb;
4834 }
4835
4836 /**
4837  *      netdev_is_rx_handler_busy - check if receive handler is registered
4838  *      @dev: device to check
4839  *
4840  *      Check if a receive handler is already registered for a given device.
4841  *      Return true if there one.
4842  *
4843  *      The caller must hold the rtnl_mutex.
4844  */
4845 bool netdev_is_rx_handler_busy(struct net_device *dev)
4846 {
4847         ASSERT_RTNL();
4848         return dev && rtnl_dereference(dev->rx_handler);
4849 }
4850 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4851
4852 /**
4853  *      netdev_rx_handler_register - register receive handler
4854  *      @dev: device to register a handler for
4855  *      @rx_handler: receive handler to register
4856  *      @rx_handler_data: data pointer that is used by rx handler
4857  *
4858  *      Register a receive handler for a device. This handler will then be
4859  *      called from __netif_receive_skb. A negative errno code is returned
4860  *      on a failure.
4861  *
4862  *      The caller must hold the rtnl_mutex.
4863  *
4864  *      For a general description of rx_handler, see enum rx_handler_result.
4865  */
4866 int netdev_rx_handler_register(struct net_device *dev,
4867                                rx_handler_func_t *rx_handler,
4868                                void *rx_handler_data)
4869 {
4870         if (netdev_is_rx_handler_busy(dev))
4871                 return -EBUSY;
4872
4873         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4874                 return -EINVAL;
4875
4876         /* Note: rx_handler_data must be set before rx_handler */
4877         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4878         rcu_assign_pointer(dev->rx_handler, rx_handler);
4879
4880         return 0;
4881 }
4882 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4883
4884 /**
4885  *      netdev_rx_handler_unregister - unregister receive handler
4886  *      @dev: device to unregister a handler from
4887  *
4888  *      Unregister a receive handler from a device.
4889  *
4890  *      The caller must hold the rtnl_mutex.
4891  */
4892 void netdev_rx_handler_unregister(struct net_device *dev)
4893 {
4894
4895         ASSERT_RTNL();
4896         RCU_INIT_POINTER(dev->rx_handler, NULL);
4897         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4898          * section has a guarantee to see a non NULL rx_handler_data
4899          * as well.
4900          */
4901         synchronize_net();
4902         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4903 }
4904 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4905
4906 /*
4907  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4908  * the special handling of PFMEMALLOC skbs.
4909  */
4910 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4911 {
4912         switch (skb->protocol) {
4913         case htons(ETH_P_ARP):
4914         case htons(ETH_P_IP):
4915         case htons(ETH_P_IPV6):
4916         case htons(ETH_P_8021Q):
4917         case htons(ETH_P_8021AD):
4918                 return true;
4919         default:
4920                 return false;
4921         }
4922 }
4923
4924 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4925                              int *ret, struct net_device *orig_dev)
4926 {
4927         if (nf_hook_ingress_active(skb)) {
4928                 int ingress_retval;
4929
4930                 if (*pt_prev) {
4931                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4932                         *pt_prev = NULL;
4933                 }
4934
4935                 rcu_read_lock();
4936                 ingress_retval = nf_hook_ingress(skb);
4937                 rcu_read_unlock();
4938                 return ingress_retval;
4939         }
4940         return 0;
4941 }
4942
4943 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4944                                     struct packet_type **ppt_prev)
4945 {
4946         struct packet_type *ptype, *pt_prev;
4947         rx_handler_func_t *rx_handler;
4948         struct net_device *orig_dev;
4949         bool deliver_exact = false;
4950         int ret = NET_RX_DROP;
4951         __be16 type;
4952
4953         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4954
4955         trace_netif_receive_skb(skb);
4956
4957         orig_dev = skb->dev;
4958
4959         skb_reset_network_header(skb);
4960         if (!skb_transport_header_was_set(skb))
4961                 skb_reset_transport_header(skb);
4962         skb_reset_mac_len(skb);
4963
4964         pt_prev = NULL;
4965
4966 another_round:
4967         skb->skb_iif = skb->dev->ifindex;
4968
4969         __this_cpu_inc(softnet_data.processed);
4970
4971         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4972                 int ret2;
4973
4974                 preempt_disable();
4975                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4976                 preempt_enable();
4977
4978                 if (ret2 != XDP_PASS)
4979                         return NET_RX_DROP;
4980                 skb_reset_mac_len(skb);
4981         }
4982
4983         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4984             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4985                 skb = skb_vlan_untag(skb);
4986                 if (unlikely(!skb))
4987                         goto out;
4988         }
4989
4990         if (skb_skip_tc_classify(skb))
4991                 goto skip_classify;
4992
4993         if (pfmemalloc)
4994                 goto skip_taps;
4995
4996         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4997                 if (pt_prev)
4998                         ret = deliver_skb(skb, pt_prev, orig_dev);
4999                 pt_prev = ptype;
5000         }
5001
5002         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5003                 if (pt_prev)
5004                         ret = deliver_skb(skb, pt_prev, orig_dev);
5005                 pt_prev = ptype;
5006         }
5007
5008 skip_taps:
5009 #ifdef CONFIG_NET_INGRESS
5010         if (static_branch_unlikely(&ingress_needed_key)) {
5011                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5012                 if (!skb)
5013                         goto out;
5014
5015                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5016                         goto out;
5017         }
5018 #endif
5019         skb_reset_tc(skb);
5020 skip_classify:
5021         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5022                 goto drop;
5023
5024         if (skb_vlan_tag_present(skb)) {
5025                 if (pt_prev) {
5026                         ret = deliver_skb(skb, pt_prev, orig_dev);
5027                         pt_prev = NULL;
5028                 }
5029                 if (vlan_do_receive(&skb))
5030                         goto another_round;
5031                 else if (unlikely(!skb))
5032                         goto out;
5033         }
5034
5035         rx_handler = rcu_dereference(skb->dev->rx_handler);
5036         if (rx_handler) {
5037                 if (pt_prev) {
5038                         ret = deliver_skb(skb, pt_prev, orig_dev);
5039                         pt_prev = NULL;
5040                 }
5041                 switch (rx_handler(&skb)) {
5042                 case RX_HANDLER_CONSUMED:
5043                         ret = NET_RX_SUCCESS;
5044                         goto out;
5045                 case RX_HANDLER_ANOTHER:
5046                         goto another_round;
5047                 case RX_HANDLER_EXACT:
5048                         deliver_exact = true;
5049                 case RX_HANDLER_PASS:
5050                         break;
5051                 default:
5052                         BUG();
5053                 }
5054         }
5055
5056         if (unlikely(skb_vlan_tag_present(skb))) {
5057 check_vlan_id:
5058                 if (skb_vlan_tag_get_id(skb)) {
5059                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5060                          * find vlan device.
5061                          */
5062                         skb->pkt_type = PACKET_OTHERHOST;
5063                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5064                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5065                         /* Outer header is 802.1P with vlan 0, inner header is
5066                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5067                          * not find vlan dev for vlan id 0.
5068                          */
5069                         __vlan_hwaccel_clear_tag(skb);
5070                         skb = skb_vlan_untag(skb);
5071                         if (unlikely(!skb))
5072                                 goto out;
5073                         if (vlan_do_receive(&skb))
5074                                 /* After stripping off 802.1P header with vlan 0
5075                                  * vlan dev is found for inner header.
5076                                  */
5077                                 goto another_round;
5078                         else if (unlikely(!skb))
5079                                 goto out;
5080                         else
5081                                 /* We have stripped outer 802.1P vlan 0 header.
5082                                  * But could not find vlan dev.
5083                                  * check again for vlan id to set OTHERHOST.
5084                                  */
5085                                 goto check_vlan_id;
5086                 }
5087                 /* Note: we might in the future use prio bits
5088                  * and set skb->priority like in vlan_do_receive()
5089                  * For the time being, just ignore Priority Code Point
5090                  */
5091                 __vlan_hwaccel_clear_tag(skb);
5092         }
5093
5094         type = skb->protocol;
5095
5096         /* deliver only exact match when indicated */
5097         if (likely(!deliver_exact)) {
5098                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5099                                        &ptype_base[ntohs(type) &
5100                                                    PTYPE_HASH_MASK]);
5101         }
5102
5103         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5104                                &orig_dev->ptype_specific);
5105
5106         if (unlikely(skb->dev != orig_dev)) {
5107                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5108                                        &skb->dev->ptype_specific);
5109         }
5110
5111         if (pt_prev) {
5112                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5113                         goto drop;
5114                 *ppt_prev = pt_prev;
5115         } else {
5116 drop:
5117                 if (!deliver_exact)
5118                         atomic_long_inc(&skb->dev->rx_dropped);
5119                 else
5120                         atomic_long_inc(&skb->dev->rx_nohandler);
5121                 kfree_skb(skb);
5122                 /* Jamal, now you will not able to escape explaining
5123                  * me how you were going to use this. :-)
5124                  */
5125                 ret = NET_RX_DROP;
5126         }
5127
5128 out:
5129         return ret;
5130 }
5131
5132 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5133 {
5134         struct net_device *orig_dev = skb->dev;
5135         struct packet_type *pt_prev = NULL;
5136         int ret;
5137
5138         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5139         if (pt_prev)
5140                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5141                                          skb->dev, pt_prev, orig_dev);
5142         return ret;
5143 }
5144
5145 /**
5146  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5147  *      @skb: buffer to process
5148  *
5149  *      More direct receive version of netif_receive_skb().  It should
5150  *      only be used by callers that have a need to skip RPS and Generic XDP.
5151  *      Caller must also take care of handling if (page_is_)pfmemalloc.
5152  *
5153  *      This function may only be called from softirq context and interrupts
5154  *      should be enabled.
5155  *
5156  *      Return values (usually ignored):
5157  *      NET_RX_SUCCESS: no congestion
5158  *      NET_RX_DROP: packet was dropped
5159  */
5160 int netif_receive_skb_core(struct sk_buff *skb)
5161 {
5162         int ret;
5163
5164         rcu_read_lock();
5165         ret = __netif_receive_skb_one_core(skb, false);
5166         rcu_read_unlock();
5167
5168         return ret;
5169 }
5170 EXPORT_SYMBOL(netif_receive_skb_core);
5171
5172 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5173                                                   struct packet_type *pt_prev,
5174                                                   struct net_device *orig_dev)
5175 {
5176         struct sk_buff *skb, *next;
5177
5178         if (!pt_prev)
5179                 return;
5180         if (list_empty(head))
5181                 return;
5182         if (pt_prev->list_func != NULL)
5183                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5184                                    ip_list_rcv, head, pt_prev, orig_dev);
5185         else
5186                 list_for_each_entry_safe(skb, next, head, list) {
5187                         skb_list_del_init(skb);
5188                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5189                 }
5190 }
5191
5192 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5193 {
5194         /* Fast-path assumptions:
5195          * - There is no RX handler.
5196          * - Only one packet_type matches.
5197          * If either of these fails, we will end up doing some per-packet
5198          * processing in-line, then handling the 'last ptype' for the whole
5199          * sublist.  This can't cause out-of-order delivery to any single ptype,
5200          * because the 'last ptype' must be constant across the sublist, and all
5201          * other ptypes are handled per-packet.
5202          */
5203         /* Current (common) ptype of sublist */
5204         struct packet_type *pt_curr = NULL;
5205         /* Current (common) orig_dev of sublist */
5206         struct net_device *od_curr = NULL;
5207         struct list_head sublist;
5208         struct sk_buff *skb, *next;
5209
5210         INIT_LIST_HEAD(&sublist);
5211         list_for_each_entry_safe(skb, next, head, list) {
5212                 struct net_device *orig_dev = skb->dev;
5213                 struct packet_type *pt_prev = NULL;
5214
5215                 skb_list_del_init(skb);
5216                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5217                 if (!pt_prev)
5218                         continue;
5219                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5220                         /* dispatch old sublist */
5221                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5222                         /* start new sublist */
5223                         INIT_LIST_HEAD(&sublist);
5224                         pt_curr = pt_prev;
5225                         od_curr = orig_dev;
5226                 }
5227                 list_add_tail(&skb->list, &sublist);
5228         }
5229
5230         /* dispatch final sublist */
5231         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5232 }
5233
5234 static int __netif_receive_skb(struct sk_buff *skb)
5235 {
5236         int ret;
5237
5238         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5239                 unsigned int noreclaim_flag;
5240
5241                 /*
5242                  * PFMEMALLOC skbs are special, they should
5243                  * - be delivered to SOCK_MEMALLOC sockets only
5244                  * - stay away from userspace
5245                  * - have bounded memory usage
5246                  *
5247                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5248                  * context down to all allocation sites.
5249                  */
5250                 noreclaim_flag = memalloc_noreclaim_save();
5251                 ret = __netif_receive_skb_one_core(skb, true);
5252                 memalloc_noreclaim_restore(noreclaim_flag);
5253         } else
5254                 ret = __netif_receive_skb_one_core(skb, false);
5255
5256         return ret;
5257 }
5258
5259 static void __netif_receive_skb_list(struct list_head *head)
5260 {
5261         unsigned long noreclaim_flag = 0;
5262         struct sk_buff *skb, *next;
5263         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5264
5265         list_for_each_entry_safe(skb, next, head, list) {
5266                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5267                         struct list_head sublist;
5268
5269                         /* Handle the previous sublist */
5270                         list_cut_before(&sublist, head, &skb->list);
5271                         if (!list_empty(&sublist))
5272                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5273                         pfmemalloc = !pfmemalloc;
5274                         /* See comments in __netif_receive_skb */
5275                         if (pfmemalloc)
5276                                 noreclaim_flag = memalloc_noreclaim_save();
5277                         else
5278                                 memalloc_noreclaim_restore(noreclaim_flag);
5279                 }
5280         }
5281         /* Handle the remaining sublist */
5282         if (!list_empty(head))
5283                 __netif_receive_skb_list_core(head, pfmemalloc);
5284         /* Restore pflags */
5285         if (pfmemalloc)
5286                 memalloc_noreclaim_restore(noreclaim_flag);
5287 }
5288
5289 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5290 {
5291         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5292         struct bpf_prog *new = xdp->prog;
5293         int ret = 0;
5294
5295         switch (xdp->command) {
5296         case XDP_SETUP_PROG:
5297                 rcu_assign_pointer(dev->xdp_prog, new);
5298                 if (old)
5299                         bpf_prog_put(old);
5300
5301                 if (old && !new) {
5302                         static_branch_dec(&generic_xdp_needed_key);
5303                 } else if (new && !old) {
5304                         static_branch_inc(&generic_xdp_needed_key);
5305                         dev_disable_lro(dev);
5306                         dev_disable_gro_hw(dev);
5307                 }
5308                 break;
5309
5310         case XDP_QUERY_PROG:
5311                 xdp->prog_id = old ? old->aux->id : 0;
5312                 break;
5313
5314         default:
5315                 ret = -EINVAL;
5316                 break;
5317         }
5318
5319         return ret;
5320 }
5321
5322 static int netif_receive_skb_internal(struct sk_buff *skb)
5323 {
5324         int ret;
5325
5326         net_timestamp_check(netdev_tstamp_prequeue, skb);
5327
5328         if (skb_defer_rx_timestamp(skb))
5329                 return NET_RX_SUCCESS;
5330
5331         rcu_read_lock();
5332 #ifdef CONFIG_RPS
5333         if (static_branch_unlikely(&rps_needed)) {
5334                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5335                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5336
5337                 if (cpu >= 0) {
5338                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5339                         rcu_read_unlock();
5340                         return ret;
5341                 }
5342         }
5343 #endif
5344         ret = __netif_receive_skb(skb);
5345         rcu_read_unlock();
5346         return ret;
5347 }
5348
5349 static void netif_receive_skb_list_internal(struct list_head *head)
5350 {
5351         struct sk_buff *skb, *next;
5352         struct list_head sublist;
5353
5354         INIT_LIST_HEAD(&sublist);
5355         list_for_each_entry_safe(skb, next, head, list) {
5356                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5357                 skb_list_del_init(skb);
5358                 if (!skb_defer_rx_timestamp(skb))
5359                         list_add_tail(&skb->list, &sublist);
5360         }
5361         list_splice_init(&sublist, head);
5362
5363         rcu_read_lock();
5364 #ifdef CONFIG_RPS
5365         if (static_branch_unlikely(&rps_needed)) {
5366                 list_for_each_entry_safe(skb, next, head, list) {
5367                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5368                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5369
5370                         if (cpu >= 0) {
5371                                 /* Will be handled, remove from list */
5372                                 skb_list_del_init(skb);
5373                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5374                         }
5375                 }
5376         }
5377 #endif
5378         __netif_receive_skb_list(head);
5379         rcu_read_unlock();
5380 }
5381
5382 /**
5383  *      netif_receive_skb - process receive buffer from network
5384  *      @skb: buffer to process
5385  *
5386  *      netif_receive_skb() is the main receive data processing function.
5387  *      It always succeeds. The buffer may be dropped during processing
5388  *      for congestion control or by the protocol layers.
5389  *
5390  *      This function may only be called from softirq context and interrupts
5391  *      should be enabled.
5392  *
5393  *      Return values (usually ignored):
5394  *      NET_RX_SUCCESS: no congestion
5395  *      NET_RX_DROP: packet was dropped
5396  */
5397 int netif_receive_skb(struct sk_buff *skb)
5398 {
5399         int ret;
5400
5401         trace_netif_receive_skb_entry(skb);
5402
5403         ret = netif_receive_skb_internal(skb);
5404         trace_netif_receive_skb_exit(ret);
5405
5406         return ret;
5407 }
5408 EXPORT_SYMBOL(netif_receive_skb);
5409
5410 /**
5411  *      netif_receive_skb_list - process many receive buffers from network
5412  *      @head: list of skbs to process.
5413  *
5414  *      Since return value of netif_receive_skb() is normally ignored, and
5415  *      wouldn't be meaningful for a list, this function returns void.
5416  *
5417  *      This function may only be called from softirq context and interrupts
5418  *      should be enabled.
5419  */
5420 void netif_receive_skb_list(struct list_head *head)
5421 {
5422         struct sk_buff *skb;
5423
5424         if (list_empty(head))
5425                 return;
5426         if (trace_netif_receive_skb_list_entry_enabled()) {
5427                 list_for_each_entry(skb, head, list)
5428                         trace_netif_receive_skb_list_entry(skb);
5429         }
5430         netif_receive_skb_list_internal(head);
5431         trace_netif_receive_skb_list_exit(0);
5432 }
5433 EXPORT_SYMBOL(netif_receive_skb_list);
5434
5435 DEFINE_PER_CPU(struct work_struct, flush_works);
5436
5437 /* Network device is going away, flush any packets still pending */
5438 static void flush_backlog(struct work_struct *work)
5439 {
5440         struct sk_buff *skb, *tmp;
5441         struct softnet_data *sd;
5442
5443         local_bh_disable();
5444         sd = this_cpu_ptr(&softnet_data);
5445
5446         local_irq_disable();
5447         rps_lock(sd);
5448         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5449                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5450                         __skb_unlink(skb, &sd->input_pkt_queue);
5451                         kfree_skb(skb);
5452                         input_queue_head_incr(sd);
5453                 }
5454         }
5455         rps_unlock(sd);
5456         local_irq_enable();
5457
5458         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5459                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5460                         __skb_unlink(skb, &sd->process_queue);
5461                         kfree_skb(skb);
5462                         input_queue_head_incr(sd);
5463                 }
5464         }
5465         local_bh_enable();
5466 }
5467
5468 static void flush_all_backlogs(void)
5469 {
5470         unsigned int cpu;
5471
5472         get_online_cpus();
5473
5474         for_each_online_cpu(cpu)
5475                 queue_work_on(cpu, system_highpri_wq,
5476                               per_cpu_ptr(&flush_works, cpu));
5477
5478         for_each_online_cpu(cpu)
5479                 flush_work(per_cpu_ptr(&flush_works, cpu));
5480
5481         put_online_cpus();
5482 }
5483
5484 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5485 static void gro_normal_list(struct napi_struct *napi)
5486 {
5487         if (!napi->rx_count)
5488                 return;
5489         netif_receive_skb_list_internal(&napi->rx_list);
5490         INIT_LIST_HEAD(&napi->rx_list);
5491         napi->rx_count = 0;
5492 }
5493
5494 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5495  * pass the whole batch up to the stack.
5496  */
5497 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5498 {
5499         list_add_tail(&skb->list, &napi->rx_list);
5500         if (++napi->rx_count >= gro_normal_batch)
5501                 gro_normal_list(napi);
5502 }
5503
5504 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5505 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5506 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5507 {
5508         struct packet_offload *ptype;
5509         __be16 type = skb->protocol;
5510         struct list_head *head = &offload_base;
5511         int err = -ENOENT;
5512
5513         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5514
5515         if (NAPI_GRO_CB(skb)->count == 1) {
5516                 skb_shinfo(skb)->gso_size = 0;
5517                 goto out;
5518         }
5519
5520         rcu_read_lock();
5521         list_for_each_entry_rcu(ptype, head, list) {
5522                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5523                         continue;
5524
5525                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5526                                          ipv6_gro_complete, inet_gro_complete,
5527                                          skb, 0);
5528                 break;
5529         }
5530         rcu_read_unlock();
5531
5532         if (err) {
5533                 WARN_ON(&ptype->list == head);
5534                 kfree_skb(skb);
5535                 return NET_RX_SUCCESS;
5536         }
5537
5538 out:
5539         gro_normal_one(napi, skb);
5540         return NET_RX_SUCCESS;
5541 }
5542
5543 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5544                                    bool flush_old)
5545 {
5546         struct list_head *head = &napi->gro_hash[index].list;
5547         struct sk_buff *skb, *p;
5548
5549         list_for_each_entry_safe_reverse(skb, p, head, list) {
5550                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5551                         return;
5552                 skb_list_del_init(skb);
5553                 napi_gro_complete(napi, skb);
5554                 napi->gro_hash[index].count--;
5555         }
5556
5557         if (!napi->gro_hash[index].count)
5558                 __clear_bit(index, &napi->gro_bitmask);
5559 }
5560
5561 /* napi->gro_hash[].list contains packets ordered by age.
5562  * youngest packets at the head of it.
5563  * Complete skbs in reverse order to reduce latencies.
5564  */
5565 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5566 {
5567         unsigned long bitmask = napi->gro_bitmask;
5568         unsigned int i, base = ~0U;
5569
5570         while ((i = ffs(bitmask)) != 0) {
5571                 bitmask >>= i;
5572                 base += i;
5573                 __napi_gro_flush_chain(napi, base, flush_old);
5574         }
5575 }
5576 EXPORT_SYMBOL(napi_gro_flush);
5577
5578 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5579                                           struct sk_buff *skb)
5580 {
5581         unsigned int maclen = skb->dev->hard_header_len;
5582         u32 hash = skb_get_hash_raw(skb);
5583         struct list_head *head;
5584         struct sk_buff *p;
5585
5586         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5587         list_for_each_entry(p, head, list) {
5588                 unsigned long diffs;
5589
5590                 NAPI_GRO_CB(p)->flush = 0;
5591
5592                 if (hash != skb_get_hash_raw(p)) {
5593                         NAPI_GRO_CB(p)->same_flow = 0;
5594                         continue;
5595                 }
5596
5597                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5598                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5599                 if (skb_vlan_tag_present(p))
5600                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5601                 diffs |= skb_metadata_dst_cmp(p, skb);
5602                 diffs |= skb_metadata_differs(p, skb);
5603                 if (maclen == ETH_HLEN)
5604                         diffs |= compare_ether_header(skb_mac_header(p),
5605                                                       skb_mac_header(skb));
5606                 else if (!diffs)
5607                         diffs = memcmp(skb_mac_header(p),
5608                                        skb_mac_header(skb),
5609                                        maclen);
5610                 NAPI_GRO_CB(p)->same_flow = !diffs;
5611         }
5612
5613         return head;
5614 }
5615
5616 static void skb_gro_reset_offset(struct sk_buff *skb)
5617 {
5618         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5619         const skb_frag_t *frag0 = &pinfo->frags[0];
5620
5621         NAPI_GRO_CB(skb)->data_offset = 0;
5622         NAPI_GRO_CB(skb)->frag0 = NULL;
5623         NAPI_GRO_CB(skb)->frag0_len = 0;
5624
5625         if (!skb_headlen(skb) && pinfo->nr_frags &&
5626             !PageHighMem(skb_frag_page(frag0))) {
5627                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5628                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5629                                                     skb_frag_size(frag0),
5630                                                     skb->end - skb->tail);
5631         }
5632 }
5633
5634 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5635 {
5636         struct skb_shared_info *pinfo = skb_shinfo(skb);
5637
5638         BUG_ON(skb->end - skb->tail < grow);
5639
5640         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5641
5642         skb->data_len -= grow;
5643         skb->tail += grow;
5644
5645         skb_frag_off_add(&pinfo->frags[0], grow);
5646         skb_frag_size_sub(&pinfo->frags[0], grow);
5647
5648         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5649                 skb_frag_unref(skb, 0);
5650                 memmove(pinfo->frags, pinfo->frags + 1,
5651                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5652         }
5653 }
5654
5655 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5656 {
5657         struct sk_buff *oldest;
5658
5659         oldest = list_last_entry(head, struct sk_buff, list);
5660
5661         /* We are called with head length >= MAX_GRO_SKBS, so this is
5662          * impossible.
5663          */
5664         if (WARN_ON_ONCE(!oldest))
5665                 return;
5666
5667         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5668          * SKB to the chain.
5669          */
5670         skb_list_del_init(oldest);
5671         napi_gro_complete(napi, oldest);
5672 }
5673
5674 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5675                                                            struct sk_buff *));
5676 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5677                                                            struct sk_buff *));
5678 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5679 {
5680         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5681         struct list_head *head = &offload_base;
5682         struct packet_offload *ptype;
5683         __be16 type = skb->protocol;
5684         struct list_head *gro_head;
5685         struct sk_buff *pp = NULL;
5686         enum gro_result ret;
5687         int same_flow;
5688         int grow;
5689
5690         if (netif_elide_gro(skb->dev))
5691                 goto normal;
5692
5693         gro_head = gro_list_prepare(napi, skb);
5694
5695         rcu_read_lock();
5696         list_for_each_entry_rcu(ptype, head, list) {
5697                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5698                         continue;
5699
5700                 skb_set_network_header(skb, skb_gro_offset(skb));
5701                 skb_reset_mac_len(skb);
5702                 NAPI_GRO_CB(skb)->same_flow = 0;
5703                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5704                 NAPI_GRO_CB(skb)->free = 0;
5705                 NAPI_GRO_CB(skb)->encap_mark = 0;
5706                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5707                 NAPI_GRO_CB(skb)->is_fou = 0;
5708                 NAPI_GRO_CB(skb)->is_atomic = 1;
5709                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5710
5711                 /* Setup for GRO checksum validation */
5712                 switch (skb->ip_summed) {
5713                 case CHECKSUM_COMPLETE:
5714                         NAPI_GRO_CB(skb)->csum = skb->csum;
5715                         NAPI_GRO_CB(skb)->csum_valid = 1;
5716                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5717                         break;
5718                 case CHECKSUM_UNNECESSARY:
5719                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5720                         NAPI_GRO_CB(skb)->csum_valid = 0;
5721                         break;
5722                 default:
5723                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5724                         NAPI_GRO_CB(skb)->csum_valid = 0;
5725                 }
5726
5727                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5728                                         ipv6_gro_receive, inet_gro_receive,
5729                                         gro_head, skb);
5730                 break;
5731         }
5732         rcu_read_unlock();
5733
5734         if (&ptype->list == head)
5735                 goto normal;
5736
5737         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5738                 ret = GRO_CONSUMED;
5739                 goto ok;
5740         }
5741
5742         same_flow = NAPI_GRO_CB(skb)->same_flow;
5743         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5744
5745         if (pp) {
5746                 skb_list_del_init(pp);
5747                 napi_gro_complete(napi, pp);
5748                 napi->gro_hash[hash].count--;
5749         }
5750
5751         if (same_flow)
5752                 goto ok;
5753
5754         if (NAPI_GRO_CB(skb)->flush)
5755                 goto normal;
5756
5757         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5758                 gro_flush_oldest(napi, gro_head);
5759         } else {
5760                 napi->gro_hash[hash].count++;
5761         }
5762         NAPI_GRO_CB(skb)->count = 1;
5763         NAPI_GRO_CB(skb)->age = jiffies;
5764         NAPI_GRO_CB(skb)->last = skb;
5765         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5766         list_add(&skb->list, gro_head);
5767         ret = GRO_HELD;
5768
5769 pull:
5770         grow = skb_gro_offset(skb) - skb_headlen(skb);
5771         if (grow > 0)
5772                 gro_pull_from_frag0(skb, grow);
5773 ok:
5774         if (napi->gro_hash[hash].count) {
5775                 if (!test_bit(hash, &napi->gro_bitmask))
5776                         __set_bit(hash, &napi->gro_bitmask);
5777         } else if (test_bit(hash, &napi->gro_bitmask)) {
5778                 __clear_bit(hash, &napi->gro_bitmask);
5779         }
5780
5781         return ret;
5782
5783 normal:
5784         ret = GRO_NORMAL;
5785         goto pull;
5786 }
5787
5788 struct packet_offload *gro_find_receive_by_type(__be16 type)
5789 {
5790         struct list_head *offload_head = &offload_base;
5791         struct packet_offload *ptype;
5792
5793         list_for_each_entry_rcu(ptype, offload_head, list) {
5794                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5795                         continue;
5796                 return ptype;
5797         }
5798         return NULL;
5799 }
5800 EXPORT_SYMBOL(gro_find_receive_by_type);
5801
5802 struct packet_offload *gro_find_complete_by_type(__be16 type)
5803 {
5804         struct list_head *offload_head = &offload_base;
5805         struct packet_offload *ptype;
5806
5807         list_for_each_entry_rcu(ptype, offload_head, list) {
5808                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5809                         continue;
5810                 return ptype;
5811         }
5812         return NULL;
5813 }
5814 EXPORT_SYMBOL(gro_find_complete_by_type);
5815
5816 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5817 {
5818         skb_dst_drop(skb);
5819         skb_ext_put(skb);
5820         kmem_cache_free(skbuff_head_cache, skb);
5821 }
5822
5823 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5824                                     struct sk_buff *skb,
5825                                     gro_result_t ret)
5826 {
5827         switch (ret) {
5828         case GRO_NORMAL:
5829                 gro_normal_one(napi, skb);
5830                 break;
5831
5832         case GRO_DROP:
5833                 kfree_skb(skb);
5834                 break;
5835
5836         case GRO_MERGED_FREE:
5837                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5838                         napi_skb_free_stolen_head(skb);
5839                 else
5840                         __kfree_skb(skb);
5841                 break;
5842
5843         case GRO_HELD:
5844         case GRO_MERGED:
5845         case GRO_CONSUMED:
5846                 break;
5847         }
5848
5849         return ret;
5850 }
5851
5852 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5853 {
5854         gro_result_t ret;
5855
5856         skb_mark_napi_id(skb, napi);
5857         trace_napi_gro_receive_entry(skb);
5858
5859         skb_gro_reset_offset(skb);
5860
5861         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5862         trace_napi_gro_receive_exit(ret);
5863
5864         return ret;
5865 }
5866 EXPORT_SYMBOL(napi_gro_receive);
5867
5868 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5869 {
5870         if (unlikely(skb->pfmemalloc)) {
5871                 consume_skb(skb);
5872                 return;
5873         }
5874         __skb_pull(skb, skb_headlen(skb));
5875         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5876         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5877         __vlan_hwaccel_clear_tag(skb);
5878         skb->dev = napi->dev;
5879         skb->skb_iif = 0;
5880
5881         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5882         skb->pkt_type = PACKET_HOST;
5883
5884         skb->encapsulation = 0;
5885         skb_shinfo(skb)->gso_type = 0;
5886         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5887         skb_ext_reset(skb);
5888
5889         napi->skb = skb;
5890 }
5891
5892 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5893 {
5894         struct sk_buff *skb = napi->skb;
5895
5896         if (!skb) {
5897                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5898                 if (skb) {
5899                         napi->skb = skb;
5900                         skb_mark_napi_id(skb, napi);
5901                 }
5902         }
5903         return skb;
5904 }
5905 EXPORT_SYMBOL(napi_get_frags);
5906
5907 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5908                                       struct sk_buff *skb,
5909                                       gro_result_t ret)
5910 {
5911         switch (ret) {
5912         case GRO_NORMAL:
5913         case GRO_HELD:
5914                 __skb_push(skb, ETH_HLEN);
5915                 skb->protocol = eth_type_trans(skb, skb->dev);
5916                 if (ret == GRO_NORMAL)
5917                         gro_normal_one(napi, skb);
5918                 break;
5919
5920         case GRO_DROP:
5921                 napi_reuse_skb(napi, skb);
5922                 break;
5923
5924         case GRO_MERGED_FREE:
5925                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5926                         napi_skb_free_stolen_head(skb);
5927                 else
5928                         napi_reuse_skb(napi, skb);
5929                 break;
5930
5931         case GRO_MERGED:
5932         case GRO_CONSUMED:
5933                 break;
5934         }
5935
5936         return ret;
5937 }
5938
5939 /* Upper GRO stack assumes network header starts at gro_offset=0
5940  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5941  * We copy ethernet header into skb->data to have a common layout.
5942  */
5943 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5944 {
5945         struct sk_buff *skb = napi->skb;
5946         const struct ethhdr *eth;
5947         unsigned int hlen = sizeof(*eth);
5948
5949         napi->skb = NULL;
5950
5951         skb_reset_mac_header(skb);
5952         skb_gro_reset_offset(skb);
5953
5954         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5955                 eth = skb_gro_header_slow(skb, hlen, 0);
5956                 if (unlikely(!eth)) {
5957                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5958                                              __func__, napi->dev->name);
5959                         napi_reuse_skb(napi, skb);
5960                         return NULL;
5961                 }
5962         } else {
5963                 eth = (const struct ethhdr *)skb->data;
5964                 gro_pull_from_frag0(skb, hlen);
5965                 NAPI_GRO_CB(skb)->frag0 += hlen;
5966                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5967         }
5968         __skb_pull(skb, hlen);
5969
5970         /*
5971          * This works because the only protocols we care about don't require
5972          * special handling.
5973          * We'll fix it up properly in napi_frags_finish()
5974          */
5975         skb->protocol = eth->h_proto;
5976
5977         return skb;
5978 }
5979
5980 gro_result_t napi_gro_frags(struct napi_struct *napi)
5981 {
5982         gro_result_t ret;
5983         struct sk_buff *skb = napi_frags_skb(napi);
5984
5985         if (!skb)
5986                 return GRO_DROP;
5987
5988         trace_napi_gro_frags_entry(skb);
5989
5990         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5991         trace_napi_gro_frags_exit(ret);
5992
5993         return ret;
5994 }
5995 EXPORT_SYMBOL(napi_gro_frags);
5996
5997 /* Compute the checksum from gro_offset and return the folded value
5998  * after adding in any pseudo checksum.
5999  */
6000 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6001 {
6002         __wsum wsum;
6003         __sum16 sum;
6004
6005         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6006
6007         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6008         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6009         /* See comments in __skb_checksum_complete(). */
6010         if (likely(!sum)) {
6011                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6012                     !skb->csum_complete_sw)
6013                         netdev_rx_csum_fault(skb->dev, skb);
6014         }
6015
6016         NAPI_GRO_CB(skb)->csum = wsum;
6017         NAPI_GRO_CB(skb)->csum_valid = 1;
6018
6019         return sum;
6020 }
6021 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6022
6023 static void net_rps_send_ipi(struct softnet_data *remsd)
6024 {
6025 #ifdef CONFIG_RPS
6026         while (remsd) {
6027                 struct softnet_data *next = remsd->rps_ipi_next;
6028
6029                 if (cpu_online(remsd->cpu))
6030                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6031                 remsd = next;
6032         }
6033 #endif
6034 }
6035
6036 /*
6037  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6038  * Note: called with local irq disabled, but exits with local irq enabled.
6039  */
6040 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6041 {
6042 #ifdef CONFIG_RPS
6043         struct softnet_data *remsd = sd->rps_ipi_list;
6044
6045         if (remsd) {
6046                 sd->rps_ipi_list = NULL;
6047
6048                 local_irq_enable();
6049
6050                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6051                 net_rps_send_ipi(remsd);
6052         } else
6053 #endif
6054                 local_irq_enable();
6055 }
6056
6057 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6058 {
6059 #ifdef CONFIG_RPS
6060         return sd->rps_ipi_list != NULL;
6061 #else
6062         return false;
6063 #endif
6064 }
6065
6066 static int process_backlog(struct napi_struct *napi, int quota)
6067 {
6068         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6069         bool again = true;
6070         int work = 0;
6071
6072         /* Check if we have pending ipi, its better to send them now,
6073          * not waiting net_rx_action() end.
6074          */
6075         if (sd_has_rps_ipi_waiting(sd)) {
6076                 local_irq_disable();
6077                 net_rps_action_and_irq_enable(sd);
6078         }
6079
6080         napi->weight = dev_rx_weight;
6081         while (again) {
6082                 struct sk_buff *skb;
6083
6084                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6085                         rcu_read_lock();
6086                         __netif_receive_skb(skb);
6087                         rcu_read_unlock();
6088                         input_queue_head_incr(sd);
6089                         if (++work >= quota)
6090                                 return work;
6091
6092                 }
6093
6094                 local_irq_disable();
6095                 rps_lock(sd);
6096                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6097                         /*
6098                          * Inline a custom version of __napi_complete().
6099                          * only current cpu owns and manipulates this napi,
6100                          * and NAPI_STATE_SCHED is the only possible flag set
6101                          * on backlog.
6102                          * We can use a plain write instead of clear_bit(),
6103                          * and we dont need an smp_mb() memory barrier.
6104                          */
6105                         napi->state = 0;
6106                         again = false;
6107                 } else {
6108                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6109                                                    &sd->process_queue);
6110                 }
6111                 rps_unlock(sd);
6112                 local_irq_enable();
6113         }
6114
6115         return work;
6116 }
6117
6118 /**
6119  * __napi_schedule - schedule for receive
6120  * @n: entry to schedule
6121  *
6122  * The entry's receive function will be scheduled to run.
6123  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6124  */
6125 void __napi_schedule(struct napi_struct *n)
6126 {
6127         unsigned long flags;
6128
6129         local_irq_save(flags);
6130         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6131         local_irq_restore(flags);
6132 }
6133 EXPORT_SYMBOL(__napi_schedule);
6134
6135 /**
6136  *      napi_schedule_prep - check if napi can be scheduled
6137  *      @n: napi context
6138  *
6139  * Test if NAPI routine is already running, and if not mark
6140  * it as running.  This is used as a condition variable
6141  * insure only one NAPI poll instance runs.  We also make
6142  * sure there is no pending NAPI disable.
6143  */
6144 bool napi_schedule_prep(struct napi_struct *n)
6145 {
6146         unsigned long val, new;
6147
6148         do {
6149                 val = READ_ONCE(n->state);
6150                 if (unlikely(val & NAPIF_STATE_DISABLE))
6151                         return false;
6152                 new = val | NAPIF_STATE_SCHED;
6153
6154                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6155                  * This was suggested by Alexander Duyck, as compiler
6156                  * emits better code than :
6157                  * if (val & NAPIF_STATE_SCHED)
6158                  *     new |= NAPIF_STATE_MISSED;
6159                  */
6160                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6161                                                    NAPIF_STATE_MISSED;
6162         } while (cmpxchg(&n->state, val, new) != val);
6163
6164         return !(val & NAPIF_STATE_SCHED);
6165 }
6166 EXPORT_SYMBOL(napi_schedule_prep);
6167
6168 /**
6169  * __napi_schedule_irqoff - schedule for receive
6170  * @n: entry to schedule
6171  *
6172  * Variant of __napi_schedule() assuming hard irqs are masked
6173  */
6174 void __napi_schedule_irqoff(struct napi_struct *n)
6175 {
6176         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6177 }
6178 EXPORT_SYMBOL(__napi_schedule_irqoff);
6179
6180 bool napi_complete_done(struct napi_struct *n, int work_done)
6181 {
6182         unsigned long flags, val, new;
6183
6184         /*
6185          * 1) Don't let napi dequeue from the cpu poll list
6186          *    just in case its running on a different cpu.
6187          * 2) If we are busy polling, do nothing here, we have
6188          *    the guarantee we will be called later.
6189          */
6190         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6191                                  NAPIF_STATE_IN_BUSY_POLL)))
6192                 return false;
6193
6194         if (n->gro_bitmask) {
6195                 unsigned long timeout = 0;
6196
6197                 if (work_done)
6198                         timeout = n->dev->gro_flush_timeout;
6199
6200                 /* When the NAPI instance uses a timeout and keeps postponing
6201                  * it, we need to bound somehow the time packets are kept in
6202                  * the GRO layer
6203                  */
6204                 napi_gro_flush(n, !!timeout);
6205                 if (timeout)
6206                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6207                                       HRTIMER_MODE_REL_PINNED);
6208         }
6209
6210         gro_normal_list(n);
6211
6212         if (unlikely(!list_empty(&n->poll_list))) {
6213                 /* If n->poll_list is not empty, we need to mask irqs */
6214                 local_irq_save(flags);
6215                 list_del_init(&n->poll_list);
6216                 local_irq_restore(flags);
6217         }
6218
6219         do {
6220                 val = READ_ONCE(n->state);
6221
6222                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6223
6224                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6225
6226                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6227                  * because we will call napi->poll() one more time.
6228                  * This C code was suggested by Alexander Duyck to help gcc.
6229                  */
6230                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6231                                                     NAPIF_STATE_SCHED;
6232         } while (cmpxchg(&n->state, val, new) != val);
6233
6234         if (unlikely(val & NAPIF_STATE_MISSED)) {
6235                 __napi_schedule(n);
6236                 return false;
6237         }
6238
6239         return true;
6240 }
6241 EXPORT_SYMBOL(napi_complete_done);
6242
6243 /* must be called under rcu_read_lock(), as we dont take a reference */
6244 static struct napi_struct *napi_by_id(unsigned int napi_id)
6245 {
6246         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6247         struct napi_struct *napi;
6248
6249         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6250                 if (napi->napi_id == napi_id)
6251                         return napi;
6252
6253         return NULL;
6254 }
6255
6256 #if defined(CONFIG_NET_RX_BUSY_POLL)
6257
6258 #define BUSY_POLL_BUDGET 8
6259
6260 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6261 {
6262         int rc;
6263
6264         /* Busy polling means there is a high chance device driver hard irq
6265          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6266          * set in napi_schedule_prep().
6267          * Since we are about to call napi->poll() once more, we can safely
6268          * clear NAPI_STATE_MISSED.
6269          *
6270          * Note: x86 could use a single "lock and ..." instruction
6271          * to perform these two clear_bit()
6272          */
6273         clear_bit(NAPI_STATE_MISSED, &napi->state);
6274         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6275
6276         local_bh_disable();
6277
6278         /* All we really want here is to re-enable device interrupts.
6279          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6280          */
6281         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6282         /* We can't gro_normal_list() here, because napi->poll() might have
6283          * rearmed the napi (napi_complete_done()) in which case it could
6284          * already be running on another CPU.
6285          */
6286         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6287         netpoll_poll_unlock(have_poll_lock);
6288         if (rc == BUSY_POLL_BUDGET) {
6289                 /* As the whole budget was spent, we still own the napi so can
6290                  * safely handle the rx_list.
6291                  */
6292                 gro_normal_list(napi);
6293                 __napi_schedule(napi);
6294         }
6295         local_bh_enable();
6296 }
6297
6298 void napi_busy_loop(unsigned int napi_id,
6299                     bool (*loop_end)(void *, unsigned long),
6300                     void *loop_end_arg)
6301 {
6302         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6303         int (*napi_poll)(struct napi_struct *napi, int budget);
6304         void *have_poll_lock = NULL;
6305         struct napi_struct *napi;
6306
6307 restart:
6308         napi_poll = NULL;
6309
6310         rcu_read_lock();
6311
6312         napi = napi_by_id(napi_id);
6313         if (!napi)
6314                 goto out;
6315
6316         preempt_disable();
6317         for (;;) {
6318                 int work = 0;
6319
6320                 local_bh_disable();
6321                 if (!napi_poll) {
6322                         unsigned long val = READ_ONCE(napi->state);
6323
6324                         /* If multiple threads are competing for this napi,
6325                          * we avoid dirtying napi->state as much as we can.
6326                          */
6327                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6328                                    NAPIF_STATE_IN_BUSY_POLL))
6329                                 goto count;
6330                         if (cmpxchg(&napi->state, val,
6331                                     val | NAPIF_STATE_IN_BUSY_POLL |
6332                                           NAPIF_STATE_SCHED) != val)
6333                                 goto count;
6334                         have_poll_lock = netpoll_poll_lock(napi);
6335                         napi_poll = napi->poll;
6336                 }
6337                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6338                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6339                 gro_normal_list(napi);
6340 count:
6341                 if (work > 0)
6342                         __NET_ADD_STATS(dev_net(napi->dev),
6343                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6344                 local_bh_enable();
6345
6346                 if (!loop_end || loop_end(loop_end_arg, start_time))
6347                         break;
6348
6349                 if (unlikely(need_resched())) {
6350                         if (napi_poll)
6351                                 busy_poll_stop(napi, have_poll_lock);
6352                         preempt_enable();
6353                         rcu_read_unlock();
6354                         cond_resched();
6355                         if (loop_end(loop_end_arg, start_time))
6356                                 return;
6357                         goto restart;
6358                 }
6359                 cpu_relax();
6360         }
6361         if (napi_poll)
6362                 busy_poll_stop(napi, have_poll_lock);
6363         preempt_enable();
6364 out:
6365         rcu_read_unlock();
6366 }
6367 EXPORT_SYMBOL(napi_busy_loop);
6368
6369 #endif /* CONFIG_NET_RX_BUSY_POLL */
6370
6371 static void napi_hash_add(struct napi_struct *napi)
6372 {
6373         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6374             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6375                 return;
6376
6377         spin_lock(&napi_hash_lock);
6378
6379         /* 0..NR_CPUS range is reserved for sender_cpu use */
6380         do {
6381                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6382                         napi_gen_id = MIN_NAPI_ID;
6383         } while (napi_by_id(napi_gen_id));
6384         napi->napi_id = napi_gen_id;
6385
6386         hlist_add_head_rcu(&napi->napi_hash_node,
6387                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6388
6389         spin_unlock(&napi_hash_lock);
6390 }
6391
6392 /* Warning : caller is responsible to make sure rcu grace period
6393  * is respected before freeing memory containing @napi
6394  */
6395 bool napi_hash_del(struct napi_struct *napi)
6396 {
6397         bool rcu_sync_needed = false;
6398
6399         spin_lock(&napi_hash_lock);
6400
6401         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6402                 rcu_sync_needed = true;
6403                 hlist_del_rcu(&napi->napi_hash_node);
6404         }
6405         spin_unlock(&napi_hash_lock);
6406         return rcu_sync_needed;
6407 }
6408 EXPORT_SYMBOL_GPL(napi_hash_del);
6409
6410 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6411 {
6412         struct napi_struct *napi;
6413
6414         napi = container_of(timer, struct napi_struct, timer);
6415
6416         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6417          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6418          */
6419         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6420             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6421                 __napi_schedule_irqoff(napi);
6422
6423         return HRTIMER_NORESTART;
6424 }
6425
6426 static void init_gro_hash(struct napi_struct *napi)
6427 {
6428         int i;
6429
6430         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6431                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6432                 napi->gro_hash[i].count = 0;
6433         }
6434         napi->gro_bitmask = 0;
6435 }
6436
6437 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6438                     int (*poll)(struct napi_struct *, int), int weight)
6439 {
6440         INIT_LIST_HEAD(&napi->poll_list);
6441         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6442         napi->timer.function = napi_watchdog;
6443         init_gro_hash(napi);
6444         napi->skb = NULL;
6445         INIT_LIST_HEAD(&napi->rx_list);
6446         napi->rx_count = 0;
6447         napi->poll = poll;
6448         if (weight > NAPI_POLL_WEIGHT)
6449                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6450                                 weight);
6451         napi->weight = weight;
6452         list_add(&napi->dev_list, &dev->napi_list);
6453         napi->dev = dev;
6454 #ifdef CONFIG_NETPOLL
6455         napi->poll_owner = -1;
6456 #endif
6457         set_bit(NAPI_STATE_SCHED, &napi->state);
6458         napi_hash_add(napi);
6459 }
6460 EXPORT_SYMBOL(netif_napi_add);
6461
6462 void napi_disable(struct napi_struct *n)
6463 {
6464         might_sleep();
6465         set_bit(NAPI_STATE_DISABLE, &n->state);
6466
6467         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6468                 msleep(1);
6469         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6470                 msleep(1);
6471
6472         hrtimer_cancel(&n->timer);
6473
6474         clear_bit(NAPI_STATE_DISABLE, &n->state);
6475 }
6476 EXPORT_SYMBOL(napi_disable);
6477
6478 static void flush_gro_hash(struct napi_struct *napi)
6479 {
6480         int i;
6481
6482         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6483                 struct sk_buff *skb, *n;
6484
6485                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6486                         kfree_skb(skb);
6487                 napi->gro_hash[i].count = 0;
6488         }
6489 }
6490
6491 /* Must be called in process context */
6492 void netif_napi_del(struct napi_struct *napi)
6493 {
6494         might_sleep();
6495         if (napi_hash_del(napi))
6496                 synchronize_net();
6497         list_del_init(&napi->dev_list);
6498         napi_free_frags(napi);
6499
6500         flush_gro_hash(napi);
6501         napi->gro_bitmask = 0;
6502 }
6503 EXPORT_SYMBOL(netif_napi_del);
6504
6505 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6506 {
6507         void *have;
6508         int work, weight;
6509
6510         list_del_init(&n->poll_list);
6511
6512         have = netpoll_poll_lock(n);
6513
6514         weight = n->weight;
6515
6516         /* This NAPI_STATE_SCHED test is for avoiding a race
6517          * with netpoll's poll_napi().  Only the entity which
6518          * obtains the lock and sees NAPI_STATE_SCHED set will
6519          * actually make the ->poll() call.  Therefore we avoid
6520          * accidentally calling ->poll() when NAPI is not scheduled.
6521          */
6522         work = 0;
6523         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6524                 work = n->poll(n, weight);
6525                 trace_napi_poll(n, work, weight);
6526         }
6527
6528         WARN_ON_ONCE(work > weight);
6529
6530         if (likely(work < weight))
6531                 goto out_unlock;
6532
6533         /* Drivers must not modify the NAPI state if they
6534          * consume the entire weight.  In such cases this code
6535          * still "owns" the NAPI instance and therefore can
6536          * move the instance around on the list at-will.
6537          */
6538         if (unlikely(napi_disable_pending(n))) {
6539                 napi_complete(n);
6540                 goto out_unlock;
6541         }
6542
6543         if (n->gro_bitmask) {
6544                 /* flush too old packets
6545                  * If HZ < 1000, flush all packets.
6546                  */
6547                 napi_gro_flush(n, HZ >= 1000);
6548         }
6549
6550         gro_normal_list(n);
6551
6552         /* Some drivers may have called napi_schedule
6553          * prior to exhausting their budget.
6554          */
6555         if (unlikely(!list_empty(&n->poll_list))) {
6556                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6557                              n->dev ? n->dev->name : "backlog");
6558                 goto out_unlock;
6559         }
6560
6561         list_add_tail(&n->poll_list, repoll);
6562
6563 out_unlock:
6564         netpoll_poll_unlock(have);
6565
6566         return work;
6567 }
6568
6569 static __latent_entropy void net_rx_action(struct softirq_action *h)
6570 {
6571         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6572         unsigned long time_limit = jiffies +
6573                 usecs_to_jiffies(netdev_budget_usecs);
6574         int budget = netdev_budget;
6575         LIST_HEAD(list);
6576         LIST_HEAD(repoll);
6577
6578         local_irq_disable();
6579         list_splice_init(&sd->poll_list, &list);
6580         local_irq_enable();
6581
6582         for (;;) {
6583                 struct napi_struct *n;
6584
6585                 if (list_empty(&list)) {
6586                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6587                                 goto out;
6588                         break;
6589                 }
6590
6591                 n = list_first_entry(&list, struct napi_struct, poll_list);
6592                 budget -= napi_poll(n, &repoll);
6593
6594                 /* If softirq window is exhausted then punt.
6595                  * Allow this to run for 2 jiffies since which will allow
6596                  * an average latency of 1.5/HZ.
6597                  */
6598                 if (unlikely(budget <= 0 ||
6599                              time_after_eq(jiffies, time_limit))) {
6600                         sd->time_squeeze++;
6601                         break;
6602                 }
6603         }
6604
6605         local_irq_disable();
6606
6607         list_splice_tail_init(&sd->poll_list, &list);
6608         list_splice_tail(&repoll, &list);
6609         list_splice(&list, &sd->poll_list);
6610         if (!list_empty(&sd->poll_list))
6611                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6612
6613         net_rps_action_and_irq_enable(sd);
6614 out:
6615         __kfree_skb_flush();
6616 }
6617
6618 struct netdev_adjacent {
6619         struct net_device *dev;
6620
6621         /* upper master flag, there can only be one master device per list */
6622         bool master;
6623
6624         /* lookup ignore flag */
6625         bool ignore;
6626
6627         /* counter for the number of times this device was added to us */
6628         u16 ref_nr;
6629
6630         /* private field for the users */
6631         void *private;
6632
6633         struct list_head list;
6634         struct rcu_head rcu;
6635 };
6636
6637 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6638                                                  struct list_head *adj_list)
6639 {
6640         struct netdev_adjacent *adj;
6641
6642         list_for_each_entry(adj, adj_list, list) {
6643                 if (adj->dev == adj_dev)
6644                         return adj;
6645         }
6646         return NULL;
6647 }
6648
6649 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6650 {
6651         struct net_device *dev = data;
6652
6653         return upper_dev == dev;
6654 }
6655
6656 /**
6657  * netdev_has_upper_dev - Check if device is linked to an upper device
6658  * @dev: device
6659  * @upper_dev: upper device to check
6660  *
6661  * Find out if a device is linked to specified upper device and return true
6662  * in case it is. Note that this checks only immediate upper device,
6663  * not through a complete stack of devices. The caller must hold the RTNL lock.
6664  */
6665 bool netdev_has_upper_dev(struct net_device *dev,
6666                           struct net_device *upper_dev)
6667 {
6668         ASSERT_RTNL();
6669
6670         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6671                                              upper_dev);
6672 }
6673 EXPORT_SYMBOL(netdev_has_upper_dev);
6674
6675 /**
6676  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6677  * @dev: device
6678  * @upper_dev: upper device to check
6679  *
6680  * Find out if a device is linked to specified upper device and return true
6681  * in case it is. Note that this checks the entire upper device chain.
6682  * The caller must hold rcu lock.
6683  */
6684
6685 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6686                                   struct net_device *upper_dev)
6687 {
6688         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6689                                                upper_dev);
6690 }
6691 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6692
6693 /**
6694  * netdev_has_any_upper_dev - Check if device is linked to some device
6695  * @dev: device
6696  *
6697  * Find out if a device is linked to an upper device and return true in case
6698  * it is. The caller must hold the RTNL lock.
6699  */
6700 bool netdev_has_any_upper_dev(struct net_device *dev)
6701 {
6702         ASSERT_RTNL();
6703
6704         return !list_empty(&dev->adj_list.upper);
6705 }
6706 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6707
6708 /**
6709  * netdev_master_upper_dev_get - Get master upper device
6710  * @dev: device
6711  *
6712  * Find a master upper device and return pointer to it or NULL in case
6713  * it's not there. The caller must hold the RTNL lock.
6714  */
6715 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6716 {
6717         struct netdev_adjacent *upper;
6718
6719         ASSERT_RTNL();
6720
6721         if (list_empty(&dev->adj_list.upper))
6722                 return NULL;
6723
6724         upper = list_first_entry(&dev->adj_list.upper,
6725                                  struct netdev_adjacent, list);
6726         if (likely(upper->master))
6727                 return upper->dev;
6728         return NULL;
6729 }
6730 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6731
6732 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6733 {
6734         struct netdev_adjacent *upper;
6735
6736         ASSERT_RTNL();
6737
6738         if (list_empty(&dev->adj_list.upper))
6739                 return NULL;
6740
6741         upper = list_first_entry(&dev->adj_list.upper,
6742                                  struct netdev_adjacent, list);
6743         if (likely(upper->master) && !upper->ignore)
6744                 return upper->dev;
6745         return NULL;
6746 }
6747
6748 /**
6749  * netdev_has_any_lower_dev - Check if device is linked to some device
6750  * @dev: device
6751  *
6752  * Find out if a device is linked to a lower device and return true in case
6753  * it is. The caller must hold the RTNL lock.
6754  */
6755 static bool netdev_has_any_lower_dev(struct net_device *dev)
6756 {
6757         ASSERT_RTNL();
6758
6759         return !list_empty(&dev->adj_list.lower);
6760 }
6761
6762 void *netdev_adjacent_get_private(struct list_head *adj_list)
6763 {
6764         struct netdev_adjacent *adj;
6765
6766         adj = list_entry(adj_list, struct netdev_adjacent, list);
6767
6768         return adj->private;
6769 }
6770 EXPORT_SYMBOL(netdev_adjacent_get_private);
6771
6772 /**
6773  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6774  * @dev: device
6775  * @iter: list_head ** of the current position
6776  *
6777  * Gets the next device from the dev's upper list, starting from iter
6778  * position. The caller must hold RCU read lock.
6779  */
6780 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6781                                                  struct list_head **iter)
6782 {
6783         struct netdev_adjacent *upper;
6784
6785         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6786
6787         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6788
6789         if (&upper->list == &dev->adj_list.upper)
6790                 return NULL;
6791
6792         *iter = &upper->list;
6793
6794         return upper->dev;
6795 }
6796 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6797
6798 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6799                                                   struct list_head **iter,
6800                                                   bool *ignore)
6801 {
6802         struct netdev_adjacent *upper;
6803
6804         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6805
6806         if (&upper->list == &dev->adj_list.upper)
6807                 return NULL;
6808
6809         *iter = &upper->list;
6810         *ignore = upper->ignore;
6811
6812         return upper->dev;
6813 }
6814
6815 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6816                                                     struct list_head **iter)
6817 {
6818         struct netdev_adjacent *upper;
6819
6820         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6821
6822         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6823
6824         if (&upper->list == &dev->adj_list.upper)
6825                 return NULL;
6826
6827         *iter = &upper->list;
6828
6829         return upper->dev;
6830 }
6831
6832 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6833                                        int (*fn)(struct net_device *dev,
6834                                                  void *data),
6835                                        void *data)
6836 {
6837         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6838         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6839         int ret, cur = 0;
6840         bool ignore;
6841
6842         now = dev;
6843         iter = &dev->adj_list.upper;
6844
6845         while (1) {
6846                 if (now != dev) {
6847                         ret = fn(now, data);
6848                         if (ret)
6849                                 return ret;
6850                 }
6851
6852                 next = NULL;
6853                 while (1) {
6854                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6855                         if (!udev)
6856                                 break;
6857                         if (ignore)
6858                                 continue;
6859
6860                         next = udev;
6861                         niter = &udev->adj_list.upper;
6862                         dev_stack[cur] = now;
6863                         iter_stack[cur++] = iter;
6864                         break;
6865                 }
6866
6867                 if (!next) {
6868                         if (!cur)
6869                                 return 0;
6870                         next = dev_stack[--cur];
6871                         niter = iter_stack[cur];
6872                 }
6873
6874                 now = next;
6875                 iter = niter;
6876         }
6877
6878         return 0;
6879 }
6880
6881 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6882                                   int (*fn)(struct net_device *dev,
6883                                             void *data),
6884                                   void *data)
6885 {
6886         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6887         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6888         int ret, cur = 0;
6889
6890         now = dev;
6891         iter = &dev->adj_list.upper;
6892
6893         while (1) {
6894                 if (now != dev) {
6895                         ret = fn(now, data);
6896                         if (ret)
6897                                 return ret;
6898                 }
6899
6900                 next = NULL;
6901                 while (1) {
6902                         udev = netdev_next_upper_dev_rcu(now, &iter);
6903                         if (!udev)
6904                                 break;
6905
6906                         next = udev;
6907                         niter = &udev->adj_list.upper;
6908                         dev_stack[cur] = now;
6909                         iter_stack[cur++] = iter;
6910                         break;
6911                 }
6912
6913                 if (!next) {
6914                         if (!cur)
6915                                 return 0;
6916                         next = dev_stack[--cur];
6917                         niter = iter_stack[cur];
6918                 }
6919
6920                 now = next;
6921                 iter = niter;
6922         }
6923
6924         return 0;
6925 }
6926 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6927
6928 static bool __netdev_has_upper_dev(struct net_device *dev,
6929                                    struct net_device *upper_dev)
6930 {
6931         ASSERT_RTNL();
6932
6933         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6934                                            upper_dev);
6935 }
6936
6937 /**
6938  * netdev_lower_get_next_private - Get the next ->private from the
6939  *                                 lower neighbour list
6940  * @dev: device
6941  * @iter: list_head ** of the current position
6942  *
6943  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6944  * list, starting from iter position. The caller must hold either hold the
6945  * RTNL lock or its own locking that guarantees that the neighbour lower
6946  * list will remain unchanged.
6947  */
6948 void *netdev_lower_get_next_private(struct net_device *dev,
6949                                     struct list_head **iter)
6950 {
6951         struct netdev_adjacent *lower;
6952
6953         lower = list_entry(*iter, struct netdev_adjacent, list);
6954
6955         if (&lower->list == &dev->adj_list.lower)
6956                 return NULL;
6957
6958         *iter = lower->list.next;
6959
6960         return lower->private;
6961 }
6962 EXPORT_SYMBOL(netdev_lower_get_next_private);
6963
6964 /**
6965  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6966  *                                     lower neighbour list, RCU
6967  *                                     variant
6968  * @dev: device
6969  * @iter: list_head ** of the current position
6970  *
6971  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6972  * list, starting from iter position. The caller must hold RCU read lock.
6973  */
6974 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6975                                         struct list_head **iter)
6976 {
6977         struct netdev_adjacent *lower;
6978
6979         WARN_ON_ONCE(!rcu_read_lock_held());
6980
6981         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6982
6983         if (&lower->list == &dev->adj_list.lower)
6984                 return NULL;
6985
6986         *iter = &lower->list;
6987
6988         return lower->private;
6989 }
6990 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6991
6992 /**
6993  * netdev_lower_get_next - Get the next device from the lower neighbour
6994  *                         list
6995  * @dev: device
6996  * @iter: list_head ** of the current position
6997  *
6998  * Gets the next netdev_adjacent from the dev's lower neighbour
6999  * list, starting from iter position. The caller must hold RTNL lock or
7000  * its own locking that guarantees that the neighbour lower
7001  * list will remain unchanged.
7002  */
7003 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7004 {
7005         struct netdev_adjacent *lower;
7006
7007         lower = list_entry(*iter, struct netdev_adjacent, list);
7008
7009         if (&lower->list == &dev->adj_list.lower)
7010                 return NULL;
7011
7012         *iter = lower->list.next;
7013
7014         return lower->dev;
7015 }
7016 EXPORT_SYMBOL(netdev_lower_get_next);
7017
7018 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7019                                                 struct list_head **iter)
7020 {
7021         struct netdev_adjacent *lower;
7022
7023         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7024
7025         if (&lower->list == &dev->adj_list.lower)
7026                 return NULL;
7027
7028         *iter = &lower->list;
7029
7030         return lower->dev;
7031 }
7032
7033 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7034                                                   struct list_head **iter,
7035                                                   bool *ignore)
7036 {
7037         struct netdev_adjacent *lower;
7038
7039         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7040
7041         if (&lower->list == &dev->adj_list.lower)
7042                 return NULL;
7043
7044         *iter = &lower->list;
7045         *ignore = lower->ignore;
7046
7047         return lower->dev;
7048 }
7049
7050 int netdev_walk_all_lower_dev(struct net_device *dev,
7051                               int (*fn)(struct net_device *dev,
7052                                         void *data),
7053                               void *data)
7054 {
7055         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7056         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7057         int ret, cur = 0;
7058
7059         now = dev;
7060         iter = &dev->adj_list.lower;
7061
7062         while (1) {
7063                 if (now != dev) {
7064                         ret = fn(now, data);
7065                         if (ret)
7066                                 return ret;
7067                 }
7068
7069                 next = NULL;
7070                 while (1) {
7071                         ldev = netdev_next_lower_dev(now, &iter);
7072                         if (!ldev)
7073                                 break;
7074
7075                         next = ldev;
7076                         niter = &ldev->adj_list.lower;
7077                         dev_stack[cur] = now;
7078                         iter_stack[cur++] = iter;
7079                         break;
7080                 }
7081
7082                 if (!next) {
7083                         if (!cur)
7084                                 return 0;
7085                         next = dev_stack[--cur];
7086                         niter = iter_stack[cur];
7087                 }
7088
7089                 now = next;
7090                 iter = niter;
7091         }
7092
7093         return 0;
7094 }
7095 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7096
7097 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7098                                        int (*fn)(struct net_device *dev,
7099                                                  void *data),
7100                                        void *data)
7101 {
7102         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7103         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7104         int ret, cur = 0;
7105         bool ignore;
7106
7107         now = dev;
7108         iter = &dev->adj_list.lower;
7109
7110         while (1) {
7111                 if (now != dev) {
7112                         ret = fn(now, data);
7113                         if (ret)
7114                                 return ret;
7115                 }
7116
7117                 next = NULL;
7118                 while (1) {
7119                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7120                         if (!ldev)
7121                                 break;
7122                         if (ignore)
7123                                 continue;
7124
7125                         next = ldev;
7126                         niter = &ldev->adj_list.lower;
7127                         dev_stack[cur] = now;
7128                         iter_stack[cur++] = iter;
7129                         break;
7130                 }
7131
7132                 if (!next) {
7133                         if (!cur)
7134                                 return 0;
7135                         next = dev_stack[--cur];
7136                         niter = iter_stack[cur];
7137                 }
7138
7139                 now = next;
7140                 iter = niter;
7141         }
7142
7143         return 0;
7144 }
7145
7146 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7147                                                     struct list_head **iter)
7148 {
7149         struct netdev_adjacent *lower;
7150
7151         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7152         if (&lower->list == &dev->adj_list.lower)
7153                 return NULL;
7154
7155         *iter = &lower->list;
7156
7157         return lower->dev;
7158 }
7159
7160 static u8 __netdev_upper_depth(struct net_device *dev)
7161 {
7162         struct net_device *udev;
7163         struct list_head *iter;
7164         u8 max_depth = 0;
7165         bool ignore;
7166
7167         for (iter = &dev->adj_list.upper,
7168              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7169              udev;
7170              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7171                 if (ignore)
7172                         continue;
7173                 if (max_depth < udev->upper_level)
7174                         max_depth = udev->upper_level;
7175         }
7176
7177         return max_depth;
7178 }
7179
7180 static u8 __netdev_lower_depth(struct net_device *dev)
7181 {
7182         struct net_device *ldev;
7183         struct list_head *iter;
7184         u8 max_depth = 0;
7185         bool ignore;
7186
7187         for (iter = &dev->adj_list.lower,
7188              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7189              ldev;
7190              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7191                 if (ignore)
7192                         continue;
7193                 if (max_depth < ldev->lower_level)
7194                         max_depth = ldev->lower_level;
7195         }
7196
7197         return max_depth;
7198 }
7199
7200 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7201 {
7202         dev->upper_level = __netdev_upper_depth(dev) + 1;
7203         return 0;
7204 }
7205
7206 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7207 {
7208         dev->lower_level = __netdev_lower_depth(dev) + 1;
7209         return 0;
7210 }
7211
7212 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7213                                   int (*fn)(struct net_device *dev,
7214                                             void *data),
7215                                   void *data)
7216 {
7217         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7218         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7219         int ret, cur = 0;
7220
7221         now = dev;
7222         iter = &dev->adj_list.lower;
7223
7224         while (1) {
7225                 if (now != dev) {
7226                         ret = fn(now, data);
7227                         if (ret)
7228                                 return ret;
7229                 }
7230
7231                 next = NULL;
7232                 while (1) {
7233                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7234                         if (!ldev)
7235                                 break;
7236
7237                         next = ldev;
7238                         niter = &ldev->adj_list.lower;
7239                         dev_stack[cur] = now;
7240                         iter_stack[cur++] = iter;
7241                         break;
7242                 }
7243
7244                 if (!next) {
7245                         if (!cur)
7246                                 return 0;
7247                         next = dev_stack[--cur];
7248                         niter = iter_stack[cur];
7249                 }
7250
7251                 now = next;
7252                 iter = niter;
7253         }
7254
7255         return 0;
7256 }
7257 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7258
7259 /**
7260  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7261  *                                     lower neighbour list, RCU
7262  *                                     variant
7263  * @dev: device
7264  *
7265  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7266  * list. The caller must hold RCU read lock.
7267  */
7268 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7269 {
7270         struct netdev_adjacent *lower;
7271
7272         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7273                         struct netdev_adjacent, list);
7274         if (lower)
7275                 return lower->private;
7276         return NULL;
7277 }
7278 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7279
7280 /**
7281  * netdev_master_upper_dev_get_rcu - Get master upper device
7282  * @dev: device
7283  *
7284  * Find a master upper device and return pointer to it or NULL in case
7285  * it's not there. The caller must hold the RCU read lock.
7286  */
7287 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7288 {
7289         struct netdev_adjacent *upper;
7290
7291         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7292                                        struct netdev_adjacent, list);
7293         if (upper && likely(upper->master))
7294                 return upper->dev;
7295         return NULL;
7296 }
7297 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7298
7299 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7300                               struct net_device *adj_dev,
7301                               struct list_head *dev_list)
7302 {
7303         char linkname[IFNAMSIZ+7];
7304
7305         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7306                 "upper_%s" : "lower_%s", adj_dev->name);
7307         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7308                                  linkname);
7309 }
7310 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7311                                char *name,
7312                                struct list_head *dev_list)
7313 {
7314         char linkname[IFNAMSIZ+7];
7315
7316         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7317                 "upper_%s" : "lower_%s", name);
7318         sysfs_remove_link(&(dev->dev.kobj), linkname);
7319 }
7320
7321 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7322                                                  struct net_device *adj_dev,
7323                                                  struct list_head *dev_list)
7324 {
7325         return (dev_list == &dev->adj_list.upper ||
7326                 dev_list == &dev->adj_list.lower) &&
7327                 net_eq(dev_net(dev), dev_net(adj_dev));
7328 }
7329
7330 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7331                                         struct net_device *adj_dev,
7332                                         struct list_head *dev_list,
7333                                         void *private, bool master)
7334 {
7335         struct netdev_adjacent *adj;
7336         int ret;
7337
7338         adj = __netdev_find_adj(adj_dev, dev_list);
7339
7340         if (adj) {
7341                 adj->ref_nr += 1;
7342                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7343                          dev->name, adj_dev->name, adj->ref_nr);
7344
7345                 return 0;
7346         }
7347
7348         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7349         if (!adj)
7350                 return -ENOMEM;
7351
7352         adj->dev = adj_dev;
7353         adj->master = master;
7354         adj->ref_nr = 1;
7355         adj->private = private;
7356         adj->ignore = false;
7357         dev_hold(adj_dev);
7358
7359         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7360                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7361
7362         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7363                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7364                 if (ret)
7365                         goto free_adj;
7366         }
7367
7368         /* Ensure that master link is always the first item in list. */
7369         if (master) {
7370                 ret = sysfs_create_link(&(dev->dev.kobj),
7371                                         &(adj_dev->dev.kobj), "master");
7372                 if (ret)
7373                         goto remove_symlinks;
7374
7375                 list_add_rcu(&adj->list, dev_list);
7376         } else {
7377                 list_add_tail_rcu(&adj->list, dev_list);
7378         }
7379
7380         return 0;
7381
7382 remove_symlinks:
7383         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7384                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7385 free_adj:
7386         kfree(adj);
7387         dev_put(adj_dev);
7388
7389         return ret;
7390 }
7391
7392 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7393                                          struct net_device *adj_dev,
7394                                          u16 ref_nr,
7395                                          struct list_head *dev_list)
7396 {
7397         struct netdev_adjacent *adj;
7398
7399         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7400                  dev->name, adj_dev->name, ref_nr);
7401
7402         adj = __netdev_find_adj(adj_dev, dev_list);
7403
7404         if (!adj) {
7405                 pr_err("Adjacency does not exist for device %s from %s\n",
7406                        dev->name, adj_dev->name);
7407                 WARN_ON(1);
7408                 return;
7409         }
7410
7411         if (adj->ref_nr > ref_nr) {
7412                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7413                          dev->name, adj_dev->name, ref_nr,
7414                          adj->ref_nr - ref_nr);
7415                 adj->ref_nr -= ref_nr;
7416                 return;
7417         }
7418
7419         if (adj->master)
7420                 sysfs_remove_link(&(dev->dev.kobj), "master");
7421
7422         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7423                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7424
7425         list_del_rcu(&adj->list);
7426         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7427                  adj_dev->name, dev->name, adj_dev->name);
7428         dev_put(adj_dev);
7429         kfree_rcu(adj, rcu);
7430 }
7431
7432 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7433                                             struct net_device *upper_dev,
7434                                             struct list_head *up_list,
7435                                             struct list_head *down_list,
7436                                             void *private, bool master)
7437 {
7438         int ret;
7439
7440         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7441                                            private, master);
7442         if (ret)
7443                 return ret;
7444
7445         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7446                                            private, false);
7447         if (ret) {
7448                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7449                 return ret;
7450         }
7451
7452         return 0;
7453 }
7454
7455 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7456                                                struct net_device *upper_dev,
7457                                                u16 ref_nr,
7458                                                struct list_head *up_list,
7459                                                struct list_head *down_list)
7460 {
7461         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7462         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7463 }
7464
7465 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7466                                                 struct net_device *upper_dev,
7467                                                 void *private, bool master)
7468 {
7469         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7470                                                 &dev->adj_list.upper,
7471                                                 &upper_dev->adj_list.lower,
7472                                                 private, master);
7473 }
7474
7475 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7476                                                    struct net_device *upper_dev)
7477 {
7478         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7479                                            &dev->adj_list.upper,
7480                                            &upper_dev->adj_list.lower);
7481 }
7482
7483 static int __netdev_upper_dev_link(struct net_device *dev,
7484                                    struct net_device *upper_dev, bool master,
7485                                    void *upper_priv, void *upper_info,
7486                                    struct netlink_ext_ack *extack)
7487 {
7488         struct netdev_notifier_changeupper_info changeupper_info = {
7489                 .info = {
7490                         .dev = dev,
7491                         .extack = extack,
7492                 },
7493                 .upper_dev = upper_dev,
7494                 .master = master,
7495                 .linking = true,
7496                 .upper_info = upper_info,
7497         };
7498         struct net_device *master_dev;
7499         int ret = 0;
7500
7501         ASSERT_RTNL();
7502
7503         if (dev == upper_dev)
7504                 return -EBUSY;
7505
7506         /* To prevent loops, check if dev is not upper device to upper_dev. */
7507         if (__netdev_has_upper_dev(upper_dev, dev))
7508                 return -EBUSY;
7509
7510         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7511                 return -EMLINK;
7512
7513         if (!master) {
7514                 if (__netdev_has_upper_dev(dev, upper_dev))
7515                         return -EEXIST;
7516         } else {
7517                 master_dev = __netdev_master_upper_dev_get(dev);
7518                 if (master_dev)
7519                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7520         }
7521
7522         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7523                                             &changeupper_info.info);
7524         ret = notifier_to_errno(ret);
7525         if (ret)
7526                 return ret;
7527
7528         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7529                                                    master);
7530         if (ret)
7531                 return ret;
7532
7533         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7534                                             &changeupper_info.info);
7535         ret = notifier_to_errno(ret);
7536         if (ret)
7537                 goto rollback;
7538
7539         __netdev_update_upper_level(dev, NULL);
7540         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7541
7542         __netdev_update_lower_level(upper_dev, NULL);
7543         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7544                                     NULL);
7545
7546         return 0;
7547
7548 rollback:
7549         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7550
7551         return ret;
7552 }
7553
7554 /**
7555  * netdev_upper_dev_link - Add a link to the upper device
7556  * @dev: device
7557  * @upper_dev: new upper device
7558  * @extack: netlink extended ack
7559  *
7560  * Adds a link to device which is upper to this one. The caller must hold
7561  * the RTNL lock. On a failure a negative errno code is returned.
7562  * On success the reference counts are adjusted and the function
7563  * returns zero.
7564  */
7565 int netdev_upper_dev_link(struct net_device *dev,
7566                           struct net_device *upper_dev,
7567                           struct netlink_ext_ack *extack)
7568 {
7569         return __netdev_upper_dev_link(dev, upper_dev, false,
7570                                        NULL, NULL, extack);
7571 }
7572 EXPORT_SYMBOL(netdev_upper_dev_link);
7573
7574 /**
7575  * netdev_master_upper_dev_link - Add a master link to the upper device
7576  * @dev: device
7577  * @upper_dev: new upper device
7578  * @upper_priv: upper device private
7579  * @upper_info: upper info to be passed down via notifier
7580  * @extack: netlink extended ack
7581  *
7582  * Adds a link to device which is upper to this one. In this case, only
7583  * one master upper device can be linked, although other non-master devices
7584  * might be linked as well. The caller must hold the RTNL lock.
7585  * On a failure a negative errno code is returned. On success the reference
7586  * counts are adjusted and the function returns zero.
7587  */
7588 int netdev_master_upper_dev_link(struct net_device *dev,
7589                                  struct net_device *upper_dev,
7590                                  void *upper_priv, void *upper_info,
7591                                  struct netlink_ext_ack *extack)
7592 {
7593         return __netdev_upper_dev_link(dev, upper_dev, true,
7594                                        upper_priv, upper_info, extack);
7595 }
7596 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7597
7598 /**
7599  * netdev_upper_dev_unlink - Removes a link to upper device
7600  * @dev: device
7601  * @upper_dev: new upper device
7602  *
7603  * Removes a link to device which is upper to this one. The caller must hold
7604  * the RTNL lock.
7605  */
7606 void netdev_upper_dev_unlink(struct net_device *dev,
7607                              struct net_device *upper_dev)
7608 {
7609         struct netdev_notifier_changeupper_info changeupper_info = {
7610                 .info = {
7611                         .dev = dev,
7612                 },
7613                 .upper_dev = upper_dev,
7614                 .linking = false,
7615         };
7616
7617         ASSERT_RTNL();
7618
7619         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7620
7621         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7622                                       &changeupper_info.info);
7623
7624         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7625
7626         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7627                                       &changeupper_info.info);
7628
7629         __netdev_update_upper_level(dev, NULL);
7630         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7631
7632         __netdev_update_lower_level(upper_dev, NULL);
7633         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7634                                     NULL);
7635 }
7636 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7637
7638 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7639                                       struct net_device *lower_dev,
7640                                       bool val)
7641 {
7642         struct netdev_adjacent *adj;
7643
7644         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7645         if (adj)
7646                 adj->ignore = val;
7647
7648         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7649         if (adj)
7650                 adj->ignore = val;
7651 }
7652
7653 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7654                                         struct net_device *lower_dev)
7655 {
7656         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7657 }
7658
7659 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7660                                        struct net_device *lower_dev)
7661 {
7662         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7663 }
7664
7665 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7666                                    struct net_device *new_dev,
7667                                    struct net_device *dev,
7668                                    struct netlink_ext_ack *extack)
7669 {
7670         int err;
7671
7672         if (!new_dev)
7673                 return 0;
7674
7675         if (old_dev && new_dev != old_dev)
7676                 netdev_adjacent_dev_disable(dev, old_dev);
7677
7678         err = netdev_upper_dev_link(new_dev, dev, extack);
7679         if (err) {
7680                 if (old_dev && new_dev != old_dev)
7681                         netdev_adjacent_dev_enable(dev, old_dev);
7682                 return err;
7683         }
7684
7685         return 0;
7686 }
7687 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7688
7689 void netdev_adjacent_change_commit(struct net_device *old_dev,
7690                                    struct net_device *new_dev,
7691                                    struct net_device *dev)
7692 {
7693         if (!new_dev || !old_dev)
7694                 return;
7695
7696         if (new_dev == old_dev)
7697                 return;
7698
7699         netdev_adjacent_dev_enable(dev, old_dev);
7700         netdev_upper_dev_unlink(old_dev, dev);
7701 }
7702 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7703
7704 void netdev_adjacent_change_abort(struct net_device *old_dev,
7705                                   struct net_device *new_dev,
7706                                   struct net_device *dev)
7707 {
7708         if (!new_dev)
7709                 return;
7710
7711         if (old_dev && new_dev != old_dev)
7712                 netdev_adjacent_dev_enable(dev, old_dev);
7713
7714         netdev_upper_dev_unlink(new_dev, dev);
7715 }
7716 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7717
7718 /**
7719  * netdev_bonding_info_change - Dispatch event about slave change
7720  * @dev: device
7721  * @bonding_info: info to dispatch
7722  *
7723  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7724  * The caller must hold the RTNL lock.
7725  */
7726 void netdev_bonding_info_change(struct net_device *dev,
7727                                 struct netdev_bonding_info *bonding_info)
7728 {
7729         struct netdev_notifier_bonding_info info = {
7730                 .info.dev = dev,
7731         };
7732
7733         memcpy(&info.bonding_info, bonding_info,
7734                sizeof(struct netdev_bonding_info));
7735         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7736                                       &info.info);
7737 }
7738 EXPORT_SYMBOL(netdev_bonding_info_change);
7739
7740 static void netdev_adjacent_add_links(struct net_device *dev)
7741 {
7742         struct netdev_adjacent *iter;
7743
7744         struct net *net = dev_net(dev);
7745
7746         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7747                 if (!net_eq(net, dev_net(iter->dev)))
7748                         continue;
7749                 netdev_adjacent_sysfs_add(iter->dev, dev,
7750                                           &iter->dev->adj_list.lower);
7751                 netdev_adjacent_sysfs_add(dev, iter->dev,
7752                                           &dev->adj_list.upper);
7753         }
7754
7755         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7756                 if (!net_eq(net, dev_net(iter->dev)))
7757                         continue;
7758                 netdev_adjacent_sysfs_add(iter->dev, dev,
7759                                           &iter->dev->adj_list.upper);
7760                 netdev_adjacent_sysfs_add(dev, iter->dev,
7761                                           &dev->adj_list.lower);
7762         }
7763 }
7764
7765 static void netdev_adjacent_del_links(struct net_device *dev)
7766 {
7767         struct netdev_adjacent *iter;
7768
7769         struct net *net = dev_net(dev);
7770
7771         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7772                 if (!net_eq(net, dev_net(iter->dev)))
7773                         continue;
7774                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7775                                           &iter->dev->adj_list.lower);
7776                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7777                                           &dev->adj_list.upper);
7778         }
7779
7780         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7781                 if (!net_eq(net, dev_net(iter->dev)))
7782                         continue;
7783                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7784                                           &iter->dev->adj_list.upper);
7785                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7786                                           &dev->adj_list.lower);
7787         }
7788 }
7789
7790 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7791 {
7792         struct netdev_adjacent *iter;
7793
7794         struct net *net = dev_net(dev);
7795
7796         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7797                 if (!net_eq(net, dev_net(iter->dev)))
7798                         continue;
7799                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7800                                           &iter->dev->adj_list.lower);
7801                 netdev_adjacent_sysfs_add(iter->dev, dev,
7802                                           &iter->dev->adj_list.lower);
7803         }
7804
7805         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7806                 if (!net_eq(net, dev_net(iter->dev)))
7807                         continue;
7808                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7809                                           &iter->dev->adj_list.upper);
7810                 netdev_adjacent_sysfs_add(iter->dev, dev,
7811                                           &iter->dev->adj_list.upper);
7812         }
7813 }
7814
7815 void *netdev_lower_dev_get_private(struct net_device *dev,
7816                                    struct net_device *lower_dev)
7817 {
7818         struct netdev_adjacent *lower;
7819
7820         if (!lower_dev)
7821                 return NULL;
7822         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7823         if (!lower)
7824                 return NULL;
7825
7826         return lower->private;
7827 }
7828 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7829
7830
7831 /**
7832  * netdev_lower_change - Dispatch event about lower device state change
7833  * @lower_dev: device
7834  * @lower_state_info: state to dispatch
7835  *
7836  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7837  * The caller must hold the RTNL lock.
7838  */
7839 void netdev_lower_state_changed(struct net_device *lower_dev,
7840                                 void *lower_state_info)
7841 {
7842         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7843                 .info.dev = lower_dev,
7844         };
7845
7846         ASSERT_RTNL();
7847         changelowerstate_info.lower_state_info = lower_state_info;
7848         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7849                                       &changelowerstate_info.info);
7850 }
7851 EXPORT_SYMBOL(netdev_lower_state_changed);
7852
7853 static void dev_change_rx_flags(struct net_device *dev, int flags)
7854 {
7855         const struct net_device_ops *ops = dev->netdev_ops;
7856
7857         if (ops->ndo_change_rx_flags)
7858                 ops->ndo_change_rx_flags(dev, flags);
7859 }
7860
7861 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7862 {
7863         unsigned int old_flags = dev->flags;
7864         kuid_t uid;
7865         kgid_t gid;
7866
7867         ASSERT_RTNL();
7868
7869         dev->flags |= IFF_PROMISC;
7870         dev->promiscuity += inc;
7871         if (dev->promiscuity == 0) {
7872                 /*
7873                  * Avoid overflow.
7874                  * If inc causes overflow, untouch promisc and return error.
7875                  */
7876                 if (inc < 0)
7877                         dev->flags &= ~IFF_PROMISC;
7878                 else {
7879                         dev->promiscuity -= inc;
7880                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7881                                 dev->name);
7882                         return -EOVERFLOW;
7883                 }
7884         }
7885         if (dev->flags != old_flags) {
7886                 pr_info("device %s %s promiscuous mode\n",
7887                         dev->name,
7888                         dev->flags & IFF_PROMISC ? "entered" : "left");
7889                 if (audit_enabled) {
7890                         current_uid_gid(&uid, &gid);
7891                         audit_log(audit_context(), GFP_ATOMIC,
7892                                   AUDIT_ANOM_PROMISCUOUS,
7893                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7894                                   dev->name, (dev->flags & IFF_PROMISC),
7895                                   (old_flags & IFF_PROMISC),
7896                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7897                                   from_kuid(&init_user_ns, uid),
7898                                   from_kgid(&init_user_ns, gid),
7899                                   audit_get_sessionid(current));
7900                 }
7901
7902                 dev_change_rx_flags(dev, IFF_PROMISC);
7903         }
7904         if (notify)
7905                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7906         return 0;
7907 }
7908
7909 /**
7910  *      dev_set_promiscuity     - update promiscuity count on a device
7911  *      @dev: device
7912  *      @inc: modifier
7913  *
7914  *      Add or remove promiscuity from a device. While the count in the device
7915  *      remains above zero the interface remains promiscuous. Once it hits zero
7916  *      the device reverts back to normal filtering operation. A negative inc
7917  *      value is used to drop promiscuity on the device.
7918  *      Return 0 if successful or a negative errno code on error.
7919  */
7920 int dev_set_promiscuity(struct net_device *dev, int inc)
7921 {
7922         unsigned int old_flags = dev->flags;
7923         int err;
7924
7925         err = __dev_set_promiscuity(dev, inc, true);
7926         if (err < 0)
7927                 return err;
7928         if (dev->flags != old_flags)
7929                 dev_set_rx_mode(dev);
7930         return err;
7931 }
7932 EXPORT_SYMBOL(dev_set_promiscuity);
7933
7934 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7935 {
7936         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7937
7938         ASSERT_RTNL();
7939
7940         dev->flags |= IFF_ALLMULTI;
7941         dev->allmulti += inc;
7942         if (dev->allmulti == 0) {
7943                 /*
7944                  * Avoid overflow.
7945                  * If inc causes overflow, untouch allmulti and return error.
7946                  */
7947                 if (inc < 0)
7948                         dev->flags &= ~IFF_ALLMULTI;
7949                 else {
7950                         dev->allmulti -= inc;
7951                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7952                                 dev->name);
7953                         return -EOVERFLOW;
7954                 }
7955         }
7956         if (dev->flags ^ old_flags) {
7957                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7958                 dev_set_rx_mode(dev);
7959                 if (notify)
7960                         __dev_notify_flags(dev, old_flags,
7961                                            dev->gflags ^ old_gflags);
7962         }
7963         return 0;
7964 }
7965
7966 /**
7967  *      dev_set_allmulti        - update allmulti count on a device
7968  *      @dev: device
7969  *      @inc: modifier
7970  *
7971  *      Add or remove reception of all multicast frames to a device. While the
7972  *      count in the device remains above zero the interface remains listening
7973  *      to all interfaces. Once it hits zero the device reverts back to normal
7974  *      filtering operation. A negative @inc value is used to drop the counter
7975  *      when releasing a resource needing all multicasts.
7976  *      Return 0 if successful or a negative errno code on error.
7977  */
7978
7979 int dev_set_allmulti(struct net_device *dev, int inc)
7980 {
7981         return __dev_set_allmulti(dev, inc, true);
7982 }
7983 EXPORT_SYMBOL(dev_set_allmulti);
7984
7985 /*
7986  *      Upload unicast and multicast address lists to device and
7987  *      configure RX filtering. When the device doesn't support unicast
7988  *      filtering it is put in promiscuous mode while unicast addresses
7989  *      are present.
7990  */
7991 void __dev_set_rx_mode(struct net_device *dev)
7992 {
7993         const struct net_device_ops *ops = dev->netdev_ops;
7994
7995         /* dev_open will call this function so the list will stay sane. */
7996         if (!(dev->flags&IFF_UP))
7997                 return;
7998
7999         if (!netif_device_present(dev))
8000                 return;
8001
8002         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8003                 /* Unicast addresses changes may only happen under the rtnl,
8004                  * therefore calling __dev_set_promiscuity here is safe.
8005                  */
8006                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8007                         __dev_set_promiscuity(dev, 1, false);
8008                         dev->uc_promisc = true;
8009                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8010                         __dev_set_promiscuity(dev, -1, false);
8011                         dev->uc_promisc = false;
8012                 }
8013         }
8014
8015         if (ops->ndo_set_rx_mode)
8016                 ops->ndo_set_rx_mode(dev);
8017 }
8018
8019 void dev_set_rx_mode(struct net_device *dev)
8020 {
8021         netif_addr_lock_bh(dev);
8022         __dev_set_rx_mode(dev);
8023         netif_addr_unlock_bh(dev);
8024 }
8025
8026 /**
8027  *      dev_get_flags - get flags reported to userspace
8028  *      @dev: device
8029  *
8030  *      Get the combination of flag bits exported through APIs to userspace.
8031  */
8032 unsigned int dev_get_flags(const struct net_device *dev)
8033 {
8034         unsigned int flags;
8035
8036         flags = (dev->flags & ~(IFF_PROMISC |
8037                                 IFF_ALLMULTI |
8038                                 IFF_RUNNING |
8039                                 IFF_LOWER_UP |
8040                                 IFF_DORMANT)) |
8041                 (dev->gflags & (IFF_PROMISC |
8042                                 IFF_ALLMULTI));
8043
8044         if (netif_running(dev)) {
8045                 if (netif_oper_up(dev))
8046                         flags |= IFF_RUNNING;
8047                 if (netif_carrier_ok(dev))
8048                         flags |= IFF_LOWER_UP;
8049                 if (netif_dormant(dev))
8050                         flags |= IFF_DORMANT;
8051         }
8052
8053         return flags;
8054 }
8055 EXPORT_SYMBOL(dev_get_flags);
8056
8057 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8058                        struct netlink_ext_ack *extack)
8059 {
8060         unsigned int old_flags = dev->flags;
8061         int ret;
8062
8063         ASSERT_RTNL();
8064
8065         /*
8066          *      Set the flags on our device.
8067          */
8068
8069         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8070                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8071                                IFF_AUTOMEDIA)) |
8072                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8073                                     IFF_ALLMULTI));
8074
8075         /*
8076          *      Load in the correct multicast list now the flags have changed.
8077          */
8078
8079         if ((old_flags ^ flags) & IFF_MULTICAST)
8080                 dev_change_rx_flags(dev, IFF_MULTICAST);
8081
8082         dev_set_rx_mode(dev);
8083
8084         /*
8085          *      Have we downed the interface. We handle IFF_UP ourselves
8086          *      according to user attempts to set it, rather than blindly
8087          *      setting it.
8088          */
8089
8090         ret = 0;
8091         if ((old_flags ^ flags) & IFF_UP) {
8092                 if (old_flags & IFF_UP)
8093                         __dev_close(dev);
8094                 else
8095                         ret = __dev_open(dev, extack);
8096         }
8097
8098         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8099                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8100                 unsigned int old_flags = dev->flags;
8101
8102                 dev->gflags ^= IFF_PROMISC;
8103
8104                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8105                         if (dev->flags != old_flags)
8106                                 dev_set_rx_mode(dev);
8107         }
8108
8109         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8110          * is important. Some (broken) drivers set IFF_PROMISC, when
8111          * IFF_ALLMULTI is requested not asking us and not reporting.
8112          */
8113         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8114                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8115
8116                 dev->gflags ^= IFF_ALLMULTI;
8117                 __dev_set_allmulti(dev, inc, false);
8118         }
8119
8120         return ret;
8121 }
8122
8123 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8124                         unsigned int gchanges)
8125 {
8126         unsigned int changes = dev->flags ^ old_flags;
8127
8128         if (gchanges)
8129                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8130
8131         if (changes & IFF_UP) {
8132                 if (dev->flags & IFF_UP)
8133                         call_netdevice_notifiers(NETDEV_UP, dev);
8134                 else
8135                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8136         }
8137
8138         if (dev->flags & IFF_UP &&
8139             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8140                 struct netdev_notifier_change_info change_info = {
8141                         .info = {
8142                                 .dev = dev,
8143                         },
8144                         .flags_changed = changes,
8145                 };
8146
8147                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8148         }
8149 }
8150
8151 /**
8152  *      dev_change_flags - change device settings
8153  *      @dev: device
8154  *      @flags: device state flags
8155  *      @extack: netlink extended ack
8156  *
8157  *      Change settings on device based state flags. The flags are
8158  *      in the userspace exported format.
8159  */
8160 int dev_change_flags(struct net_device *dev, unsigned int flags,
8161                      struct netlink_ext_ack *extack)
8162 {
8163         int ret;
8164         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8165
8166         ret = __dev_change_flags(dev, flags, extack);
8167         if (ret < 0)
8168                 return ret;
8169
8170         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8171         __dev_notify_flags(dev, old_flags, changes);
8172         return ret;
8173 }
8174 EXPORT_SYMBOL(dev_change_flags);
8175
8176 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8177 {
8178         const struct net_device_ops *ops = dev->netdev_ops;
8179
8180         if (ops->ndo_change_mtu)
8181                 return ops->ndo_change_mtu(dev, new_mtu);
8182
8183         /* Pairs with all the lockless reads of dev->mtu in the stack */
8184         WRITE_ONCE(dev->mtu, new_mtu);
8185         return 0;
8186 }
8187 EXPORT_SYMBOL(__dev_set_mtu);
8188
8189 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8190                      struct netlink_ext_ack *extack)
8191 {
8192         /* MTU must be positive, and in range */
8193         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8194                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8195                 return -EINVAL;
8196         }
8197
8198         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8199                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8200                 return -EINVAL;
8201         }
8202         return 0;
8203 }
8204
8205 /**
8206  *      dev_set_mtu_ext - Change maximum transfer unit
8207  *      @dev: device
8208  *      @new_mtu: new transfer unit
8209  *      @extack: netlink extended ack
8210  *
8211  *      Change the maximum transfer size of the network device.
8212  */
8213 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8214                     struct netlink_ext_ack *extack)
8215 {
8216         int err, orig_mtu;
8217
8218         if (new_mtu == dev->mtu)
8219                 return 0;
8220
8221         err = dev_validate_mtu(dev, new_mtu, extack);
8222         if (err)
8223                 return err;
8224
8225         if (!netif_device_present(dev))
8226                 return -ENODEV;
8227
8228         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8229         err = notifier_to_errno(err);
8230         if (err)
8231                 return err;
8232
8233         orig_mtu = dev->mtu;
8234         err = __dev_set_mtu(dev, new_mtu);
8235
8236         if (!err) {
8237                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8238                                                    orig_mtu);
8239                 err = notifier_to_errno(err);
8240                 if (err) {
8241                         /* setting mtu back and notifying everyone again,
8242                          * so that they have a chance to revert changes.
8243                          */
8244                         __dev_set_mtu(dev, orig_mtu);
8245                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8246                                                      new_mtu);
8247                 }
8248         }
8249         return err;
8250 }
8251
8252 int dev_set_mtu(struct net_device *dev, int new_mtu)
8253 {
8254         struct netlink_ext_ack extack;
8255         int err;
8256
8257         memset(&extack, 0, sizeof(extack));
8258         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8259         if (err && extack._msg)
8260                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8261         return err;
8262 }
8263 EXPORT_SYMBOL(dev_set_mtu);
8264
8265 /**
8266  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8267  *      @dev: device
8268  *      @new_len: new tx queue length
8269  */
8270 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8271 {
8272         unsigned int orig_len = dev->tx_queue_len;
8273         int res;
8274
8275         if (new_len != (unsigned int)new_len)
8276                 return -ERANGE;
8277
8278         if (new_len != orig_len) {
8279                 dev->tx_queue_len = new_len;
8280                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8281                 res = notifier_to_errno(res);
8282                 if (res)
8283                         goto err_rollback;
8284                 res = dev_qdisc_change_tx_queue_len(dev);
8285                 if (res)
8286                         goto err_rollback;
8287         }
8288
8289         return 0;
8290
8291 err_rollback:
8292         netdev_err(dev, "refused to change device tx_queue_len\n");
8293         dev->tx_queue_len = orig_len;
8294         return res;
8295 }
8296
8297 /**
8298  *      dev_set_group - Change group this device belongs to
8299  *      @dev: device
8300  *      @new_group: group this device should belong to
8301  */
8302 void dev_set_group(struct net_device *dev, int new_group)
8303 {
8304         dev->group = new_group;
8305 }
8306 EXPORT_SYMBOL(dev_set_group);
8307
8308 /**
8309  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8310  *      @dev: device
8311  *      @addr: new address
8312  *      @extack: netlink extended ack
8313  */
8314 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8315                               struct netlink_ext_ack *extack)
8316 {
8317         struct netdev_notifier_pre_changeaddr_info info = {
8318                 .info.dev = dev,
8319                 .info.extack = extack,
8320                 .dev_addr = addr,
8321         };
8322         int rc;
8323
8324         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8325         return notifier_to_errno(rc);
8326 }
8327 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8328
8329 /**
8330  *      dev_set_mac_address - Change Media Access Control Address
8331  *      @dev: device
8332  *      @sa: new address
8333  *      @extack: netlink extended ack
8334  *
8335  *      Change the hardware (MAC) address of the device
8336  */
8337 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8338                         struct netlink_ext_ack *extack)
8339 {
8340         const struct net_device_ops *ops = dev->netdev_ops;
8341         int err;
8342
8343         if (!ops->ndo_set_mac_address)
8344                 return -EOPNOTSUPP;
8345         if (sa->sa_family != dev->type)
8346                 return -EINVAL;
8347         if (!netif_device_present(dev))
8348                 return -ENODEV;
8349         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8350         if (err)
8351                 return err;
8352         err = ops->ndo_set_mac_address(dev, sa);
8353         if (err)
8354                 return err;
8355         dev->addr_assign_type = NET_ADDR_SET;
8356         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8357         add_device_randomness(dev->dev_addr, dev->addr_len);
8358         return 0;
8359 }
8360 EXPORT_SYMBOL(dev_set_mac_address);
8361
8362 /**
8363  *      dev_change_carrier - Change device carrier
8364  *      @dev: device
8365  *      @new_carrier: new value
8366  *
8367  *      Change device carrier
8368  */
8369 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8370 {
8371         const struct net_device_ops *ops = dev->netdev_ops;
8372
8373         if (!ops->ndo_change_carrier)
8374                 return -EOPNOTSUPP;
8375         if (!netif_device_present(dev))
8376                 return -ENODEV;
8377         return ops->ndo_change_carrier(dev, new_carrier);
8378 }
8379 EXPORT_SYMBOL(dev_change_carrier);
8380
8381 /**
8382  *      dev_get_phys_port_id - Get device physical port ID
8383  *      @dev: device
8384  *      @ppid: port ID
8385  *
8386  *      Get device physical port ID
8387  */
8388 int dev_get_phys_port_id(struct net_device *dev,
8389                          struct netdev_phys_item_id *ppid)
8390 {
8391         const struct net_device_ops *ops = dev->netdev_ops;
8392
8393         if (!ops->ndo_get_phys_port_id)
8394                 return -EOPNOTSUPP;
8395         return ops->ndo_get_phys_port_id(dev, ppid);
8396 }
8397 EXPORT_SYMBOL(dev_get_phys_port_id);
8398
8399 /**
8400  *      dev_get_phys_port_name - Get device physical port name
8401  *      @dev: device
8402  *      @name: port name
8403  *      @len: limit of bytes to copy to name
8404  *
8405  *      Get device physical port name
8406  */
8407 int dev_get_phys_port_name(struct net_device *dev,
8408                            char *name, size_t len)
8409 {
8410         const struct net_device_ops *ops = dev->netdev_ops;
8411         int err;
8412
8413         if (ops->ndo_get_phys_port_name) {
8414                 err = ops->ndo_get_phys_port_name(dev, name, len);
8415                 if (err != -EOPNOTSUPP)
8416                         return err;
8417         }
8418         return devlink_compat_phys_port_name_get(dev, name, len);
8419 }
8420 EXPORT_SYMBOL(dev_get_phys_port_name);
8421
8422 /**
8423  *      dev_get_port_parent_id - Get the device's port parent identifier
8424  *      @dev: network device
8425  *      @ppid: pointer to a storage for the port's parent identifier
8426  *      @recurse: allow/disallow recursion to lower devices
8427  *
8428  *      Get the devices's port parent identifier
8429  */
8430 int dev_get_port_parent_id(struct net_device *dev,
8431                            struct netdev_phys_item_id *ppid,
8432                            bool recurse)
8433 {
8434         const struct net_device_ops *ops = dev->netdev_ops;
8435         struct netdev_phys_item_id first = { };
8436         struct net_device *lower_dev;
8437         struct list_head *iter;
8438         int err;
8439
8440         if (ops->ndo_get_port_parent_id) {
8441                 err = ops->ndo_get_port_parent_id(dev, ppid);
8442                 if (err != -EOPNOTSUPP)
8443                         return err;
8444         }
8445
8446         err = devlink_compat_switch_id_get(dev, ppid);
8447         if (!err || err != -EOPNOTSUPP)
8448                 return err;
8449
8450         if (!recurse)
8451                 return -EOPNOTSUPP;
8452
8453         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8454                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8455                 if (err)
8456                         break;
8457                 if (!first.id_len)
8458                         first = *ppid;
8459                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8460                         return -ENODATA;
8461         }
8462
8463         return err;
8464 }
8465 EXPORT_SYMBOL(dev_get_port_parent_id);
8466
8467 /**
8468  *      netdev_port_same_parent_id - Indicate if two network devices have
8469  *      the same port parent identifier
8470  *      @a: first network device
8471  *      @b: second network device
8472  */
8473 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8474 {
8475         struct netdev_phys_item_id a_id = { };
8476         struct netdev_phys_item_id b_id = { };
8477
8478         if (dev_get_port_parent_id(a, &a_id, true) ||
8479             dev_get_port_parent_id(b, &b_id, true))
8480                 return false;
8481
8482         return netdev_phys_item_id_same(&a_id, &b_id);
8483 }
8484 EXPORT_SYMBOL(netdev_port_same_parent_id);
8485
8486 /**
8487  *      dev_change_proto_down - update protocol port state information
8488  *      @dev: device
8489  *      @proto_down: new value
8490  *
8491  *      This info can be used by switch drivers to set the phys state of the
8492  *      port.
8493  */
8494 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8495 {
8496         const struct net_device_ops *ops = dev->netdev_ops;
8497
8498         if (!ops->ndo_change_proto_down)
8499                 return -EOPNOTSUPP;
8500         if (!netif_device_present(dev))
8501                 return -ENODEV;
8502         return ops->ndo_change_proto_down(dev, proto_down);
8503 }
8504 EXPORT_SYMBOL(dev_change_proto_down);
8505
8506 /**
8507  *      dev_change_proto_down_generic - generic implementation for
8508  *      ndo_change_proto_down that sets carrier according to
8509  *      proto_down.
8510  *
8511  *      @dev: device
8512  *      @proto_down: new value
8513  */
8514 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8515 {
8516         if (proto_down)
8517                 netif_carrier_off(dev);
8518         else
8519                 netif_carrier_on(dev);
8520         dev->proto_down = proto_down;
8521         return 0;
8522 }
8523 EXPORT_SYMBOL(dev_change_proto_down_generic);
8524
8525 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8526                     enum bpf_netdev_command cmd)
8527 {
8528         struct netdev_bpf xdp;
8529
8530         if (!bpf_op)
8531                 return 0;
8532
8533         memset(&xdp, 0, sizeof(xdp));
8534         xdp.command = cmd;
8535
8536         /* Query must always succeed. */
8537         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8538
8539         return xdp.prog_id;
8540 }
8541
8542 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8543                            struct netlink_ext_ack *extack, u32 flags,
8544                            struct bpf_prog *prog)
8545 {
8546         bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8547         struct bpf_prog *prev_prog = NULL;
8548         struct netdev_bpf xdp;
8549         int err;
8550
8551         if (non_hw) {
8552                 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8553                                                            XDP_QUERY_PROG));
8554                 if (IS_ERR(prev_prog))
8555                         prev_prog = NULL;
8556         }
8557
8558         memset(&xdp, 0, sizeof(xdp));
8559         if (flags & XDP_FLAGS_HW_MODE)
8560                 xdp.command = XDP_SETUP_PROG_HW;
8561         else
8562                 xdp.command = XDP_SETUP_PROG;
8563         xdp.extack = extack;
8564         xdp.flags = flags;
8565         xdp.prog = prog;
8566
8567         err = bpf_op(dev, &xdp);
8568         if (!err && non_hw)
8569                 bpf_prog_change_xdp(prev_prog, prog);
8570
8571         if (prev_prog)
8572                 bpf_prog_put(prev_prog);
8573
8574         return err;
8575 }
8576
8577 static void dev_xdp_uninstall(struct net_device *dev)
8578 {
8579         struct netdev_bpf xdp;
8580         bpf_op_t ndo_bpf;
8581
8582         /* Remove generic XDP */
8583         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8584
8585         /* Remove from the driver */
8586         ndo_bpf = dev->netdev_ops->ndo_bpf;
8587         if (!ndo_bpf)
8588                 return;
8589
8590         memset(&xdp, 0, sizeof(xdp));
8591         xdp.command = XDP_QUERY_PROG;
8592         WARN_ON(ndo_bpf(dev, &xdp));
8593         if (xdp.prog_id)
8594                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8595                                         NULL));
8596
8597         /* Remove HW offload */
8598         memset(&xdp, 0, sizeof(xdp));
8599         xdp.command = XDP_QUERY_PROG_HW;
8600         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8601                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8602                                         NULL));
8603 }
8604
8605 /**
8606  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8607  *      @dev: device
8608  *      @extack: netlink extended ack
8609  *      @fd: new program fd or negative value to clear
8610  *      @flags: xdp-related flags
8611  *
8612  *      Set or clear a bpf program for a device
8613  */
8614 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8615                       int fd, u32 flags)
8616 {
8617         const struct net_device_ops *ops = dev->netdev_ops;
8618         enum bpf_netdev_command query;
8619         struct bpf_prog *prog = NULL;
8620         bpf_op_t bpf_op, bpf_chk;
8621         bool offload;
8622         int err;
8623
8624         ASSERT_RTNL();
8625
8626         offload = flags & XDP_FLAGS_HW_MODE;
8627         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8628
8629         bpf_op = bpf_chk = ops->ndo_bpf;
8630         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8631                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8632                 return -EOPNOTSUPP;
8633         }
8634         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8635                 bpf_op = generic_xdp_install;
8636         if (bpf_op == bpf_chk)
8637                 bpf_chk = generic_xdp_install;
8638
8639         if (fd >= 0) {
8640                 u32 prog_id;
8641
8642                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8643                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8644                         return -EEXIST;
8645                 }
8646
8647                 prog_id = __dev_xdp_query(dev, bpf_op, query);
8648                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8649                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8650                         return -EBUSY;
8651                 }
8652
8653                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8654                                              bpf_op == ops->ndo_bpf);
8655                 if (IS_ERR(prog))
8656                         return PTR_ERR(prog);
8657
8658                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8659                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8660                         bpf_prog_put(prog);
8661                         return -EINVAL;
8662                 }
8663
8664                 /* prog->aux->id may be 0 for orphaned device-bound progs */
8665                 if (prog->aux->id && prog->aux->id == prog_id) {
8666                         bpf_prog_put(prog);
8667                         return 0;
8668                 }
8669         } else {
8670                 if (!__dev_xdp_query(dev, bpf_op, query))
8671                         return 0;
8672         }
8673
8674         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8675         if (err < 0 && prog)
8676                 bpf_prog_put(prog);
8677
8678         return err;
8679 }
8680
8681 /**
8682  *      dev_new_index   -       allocate an ifindex
8683  *      @net: the applicable net namespace
8684  *
8685  *      Returns a suitable unique value for a new device interface
8686  *      number.  The caller must hold the rtnl semaphore or the
8687  *      dev_base_lock to be sure it remains unique.
8688  */
8689 static int dev_new_index(struct net *net)
8690 {
8691         int ifindex = net->ifindex;
8692
8693         for (;;) {
8694                 if (++ifindex <= 0)
8695                         ifindex = 1;
8696                 if (!__dev_get_by_index(net, ifindex))
8697                         return net->ifindex = ifindex;
8698         }
8699 }
8700
8701 /* Delayed registration/unregisteration */
8702 static LIST_HEAD(net_todo_list);
8703 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8704
8705 static void net_set_todo(struct net_device *dev)
8706 {
8707         list_add_tail(&dev->todo_list, &net_todo_list);
8708         dev_net(dev)->dev_unreg_count++;
8709 }
8710
8711 static void rollback_registered_many(struct list_head *head)
8712 {
8713         struct net_device *dev, *tmp;
8714         LIST_HEAD(close_head);
8715
8716         BUG_ON(dev_boot_phase);
8717         ASSERT_RTNL();
8718
8719         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8720                 /* Some devices call without registering
8721                  * for initialization unwind. Remove those
8722                  * devices and proceed with the remaining.
8723                  */
8724                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8725                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8726                                  dev->name, dev);
8727
8728                         WARN_ON(1);
8729                         list_del(&dev->unreg_list);
8730                         continue;
8731                 }
8732                 dev->dismantle = true;
8733                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8734         }
8735
8736         /* If device is running, close it first. */
8737         list_for_each_entry(dev, head, unreg_list)
8738                 list_add_tail(&dev->close_list, &close_head);
8739         dev_close_many(&close_head, true);
8740
8741         list_for_each_entry(dev, head, unreg_list) {
8742                 /* And unlink it from device chain. */
8743                 unlist_netdevice(dev);
8744
8745                 dev->reg_state = NETREG_UNREGISTERING;
8746         }
8747         flush_all_backlogs();
8748
8749         synchronize_net();
8750
8751         list_for_each_entry(dev, head, unreg_list) {
8752                 struct sk_buff *skb = NULL;
8753
8754                 /* Shutdown queueing discipline. */
8755                 dev_shutdown(dev);
8756
8757                 dev_xdp_uninstall(dev);
8758
8759                 /* Notify protocols, that we are about to destroy
8760                  * this device. They should clean all the things.
8761                  */
8762                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8763
8764                 if (!dev->rtnl_link_ops ||
8765                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8766                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8767                                                      GFP_KERNEL, NULL, 0);
8768
8769                 /*
8770                  *      Flush the unicast and multicast chains
8771                  */
8772                 dev_uc_flush(dev);
8773                 dev_mc_flush(dev);
8774
8775                 netdev_name_node_alt_flush(dev);
8776                 netdev_name_node_free(dev->name_node);
8777
8778                 if (dev->netdev_ops->ndo_uninit)
8779                         dev->netdev_ops->ndo_uninit(dev);
8780
8781                 if (skb)
8782                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8783
8784                 /* Notifier chain MUST detach us all upper devices. */
8785                 WARN_ON(netdev_has_any_upper_dev(dev));
8786                 WARN_ON(netdev_has_any_lower_dev(dev));
8787
8788                 /* Remove entries from kobject tree */
8789                 netdev_unregister_kobject(dev);
8790 #ifdef CONFIG_XPS
8791                 /* Remove XPS queueing entries */
8792                 netif_reset_xps_queues_gt(dev, 0);
8793 #endif
8794         }
8795
8796         synchronize_net();
8797
8798         list_for_each_entry(dev, head, unreg_list)
8799                 dev_put(dev);
8800 }
8801
8802 static void rollback_registered(struct net_device *dev)
8803 {
8804         LIST_HEAD(single);
8805
8806         list_add(&dev->unreg_list, &single);
8807         rollback_registered_many(&single);
8808         list_del(&single);
8809 }
8810
8811 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8812         struct net_device *upper, netdev_features_t features)
8813 {
8814         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8815         netdev_features_t feature;
8816         int feature_bit;
8817
8818         for_each_netdev_feature(upper_disables, feature_bit) {
8819                 feature = __NETIF_F_BIT(feature_bit);
8820                 if (!(upper->wanted_features & feature)
8821                     && (features & feature)) {
8822                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8823                                    &feature, upper->name);
8824                         features &= ~feature;
8825                 }
8826         }
8827
8828         return features;
8829 }
8830
8831 static void netdev_sync_lower_features(struct net_device *upper,
8832         struct net_device *lower, netdev_features_t features)
8833 {
8834         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8835         netdev_features_t feature;
8836         int feature_bit;
8837
8838         for_each_netdev_feature(upper_disables, feature_bit) {
8839                 feature = __NETIF_F_BIT(feature_bit);
8840                 if (!(features & feature) && (lower->features & feature)) {
8841                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8842                                    &feature, lower->name);
8843                         lower->wanted_features &= ~feature;
8844                         netdev_update_features(lower);
8845
8846                         if (unlikely(lower->features & feature))
8847                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8848                                             &feature, lower->name);
8849                 }
8850         }
8851 }
8852
8853 static netdev_features_t netdev_fix_features(struct net_device *dev,
8854         netdev_features_t features)
8855 {
8856         /* Fix illegal checksum combinations */
8857         if ((features & NETIF_F_HW_CSUM) &&
8858             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8859                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8860                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8861         }
8862
8863         /* TSO requires that SG is present as well. */
8864         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8865                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8866                 features &= ~NETIF_F_ALL_TSO;
8867         }
8868
8869         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8870                                         !(features & NETIF_F_IP_CSUM)) {
8871                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8872                 features &= ~NETIF_F_TSO;
8873                 features &= ~NETIF_F_TSO_ECN;
8874         }
8875
8876         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8877                                          !(features & NETIF_F_IPV6_CSUM)) {
8878                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8879                 features &= ~NETIF_F_TSO6;
8880         }
8881
8882         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8883         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8884                 features &= ~NETIF_F_TSO_MANGLEID;
8885
8886         /* TSO ECN requires that TSO is present as well. */
8887         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8888                 features &= ~NETIF_F_TSO_ECN;
8889
8890         /* Software GSO depends on SG. */
8891         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8892                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8893                 features &= ~NETIF_F_GSO;
8894         }
8895
8896         /* GSO partial features require GSO partial be set */
8897         if ((features & dev->gso_partial_features) &&
8898             !(features & NETIF_F_GSO_PARTIAL)) {
8899                 netdev_dbg(dev,
8900                            "Dropping partially supported GSO features since no GSO partial.\n");
8901                 features &= ~dev->gso_partial_features;
8902         }
8903
8904         if (!(features & NETIF_F_RXCSUM)) {
8905                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8906                  * successfully merged by hardware must also have the
8907                  * checksum verified by hardware.  If the user does not
8908                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8909                  */
8910                 if (features & NETIF_F_GRO_HW) {
8911                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8912                         features &= ~NETIF_F_GRO_HW;
8913                 }
8914         }
8915
8916         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8917         if (features & NETIF_F_RXFCS) {
8918                 if (features & NETIF_F_LRO) {
8919                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8920                         features &= ~NETIF_F_LRO;
8921                 }
8922
8923                 if (features & NETIF_F_GRO_HW) {
8924                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8925                         features &= ~NETIF_F_GRO_HW;
8926                 }
8927         }
8928
8929         return features;
8930 }
8931
8932 int __netdev_update_features(struct net_device *dev)
8933 {
8934         struct net_device *upper, *lower;
8935         netdev_features_t features;
8936         struct list_head *iter;
8937         int err = -1;
8938
8939         ASSERT_RTNL();
8940
8941         features = netdev_get_wanted_features(dev);
8942
8943         if (dev->netdev_ops->ndo_fix_features)
8944                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8945
8946         /* driver might be less strict about feature dependencies */
8947         features = netdev_fix_features(dev, features);
8948
8949         /* some features can't be enabled if they're off an an upper device */
8950         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8951                 features = netdev_sync_upper_features(dev, upper, features);
8952
8953         if (dev->features == features)
8954                 goto sync_lower;
8955
8956         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8957                 &dev->features, &features);
8958
8959         if (dev->netdev_ops->ndo_set_features)
8960                 err = dev->netdev_ops->ndo_set_features(dev, features);
8961         else
8962                 err = 0;
8963
8964         if (unlikely(err < 0)) {
8965                 netdev_err(dev,
8966                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8967                         err, &features, &dev->features);
8968                 /* return non-0 since some features might have changed and
8969                  * it's better to fire a spurious notification than miss it
8970                  */
8971                 return -1;
8972         }
8973
8974 sync_lower:
8975         /* some features must be disabled on lower devices when disabled
8976          * on an upper device (think: bonding master or bridge)
8977          */
8978         netdev_for_each_lower_dev(dev, lower, iter)
8979                 netdev_sync_lower_features(dev, lower, features);
8980
8981         if (!err) {
8982                 netdev_features_t diff = features ^ dev->features;
8983
8984                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8985                         /* udp_tunnel_{get,drop}_rx_info both need
8986                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8987                          * device, or they won't do anything.
8988                          * Thus we need to update dev->features
8989                          * *before* calling udp_tunnel_get_rx_info,
8990                          * but *after* calling udp_tunnel_drop_rx_info.
8991                          */
8992                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8993                                 dev->features = features;
8994                                 udp_tunnel_get_rx_info(dev);
8995                         } else {
8996                                 udp_tunnel_drop_rx_info(dev);
8997                         }
8998                 }
8999
9000                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9001                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9002                                 dev->features = features;
9003                                 err |= vlan_get_rx_ctag_filter_info(dev);
9004                         } else {
9005                                 vlan_drop_rx_ctag_filter_info(dev);
9006                         }
9007                 }
9008
9009                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9010                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9011                                 dev->features = features;
9012                                 err |= vlan_get_rx_stag_filter_info(dev);
9013                         } else {
9014                                 vlan_drop_rx_stag_filter_info(dev);
9015                         }
9016                 }
9017
9018                 dev->features = features;
9019         }
9020
9021         return err < 0 ? 0 : 1;
9022 }
9023
9024 /**
9025  *      netdev_update_features - recalculate device features
9026  *      @dev: the device to check
9027  *
9028  *      Recalculate dev->features set and send notifications if it
9029  *      has changed. Should be called after driver or hardware dependent
9030  *      conditions might have changed that influence the features.
9031  */
9032 void netdev_update_features(struct net_device *dev)
9033 {
9034         if (__netdev_update_features(dev))
9035                 netdev_features_change(dev);
9036 }
9037 EXPORT_SYMBOL(netdev_update_features);
9038
9039 /**
9040  *      netdev_change_features - recalculate device features
9041  *      @dev: the device to check
9042  *
9043  *      Recalculate dev->features set and send notifications even
9044  *      if they have not changed. Should be called instead of
9045  *      netdev_update_features() if also dev->vlan_features might
9046  *      have changed to allow the changes to be propagated to stacked
9047  *      VLAN devices.
9048  */
9049 void netdev_change_features(struct net_device *dev)
9050 {
9051         __netdev_update_features(dev);
9052         netdev_features_change(dev);
9053 }
9054 EXPORT_SYMBOL(netdev_change_features);
9055
9056 /**
9057  *      netif_stacked_transfer_operstate -      transfer operstate
9058  *      @rootdev: the root or lower level device to transfer state from
9059  *      @dev: the device to transfer operstate to
9060  *
9061  *      Transfer operational state from root to device. This is normally
9062  *      called when a stacking relationship exists between the root
9063  *      device and the device(a leaf device).
9064  */
9065 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9066                                         struct net_device *dev)
9067 {
9068         if (rootdev->operstate == IF_OPER_DORMANT)
9069                 netif_dormant_on(dev);
9070         else
9071                 netif_dormant_off(dev);
9072
9073         if (netif_carrier_ok(rootdev))
9074                 netif_carrier_on(dev);
9075         else
9076                 netif_carrier_off(dev);
9077 }
9078 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9079
9080 static int netif_alloc_rx_queues(struct net_device *dev)
9081 {
9082         unsigned int i, count = dev->num_rx_queues;
9083         struct netdev_rx_queue *rx;
9084         size_t sz = count * sizeof(*rx);
9085         int err = 0;
9086
9087         BUG_ON(count < 1);
9088
9089         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9090         if (!rx)
9091                 return -ENOMEM;
9092
9093         dev->_rx = rx;
9094
9095         for (i = 0; i < count; i++) {
9096                 rx[i].dev = dev;
9097
9098                 /* XDP RX-queue setup */
9099                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9100                 if (err < 0)
9101                         goto err_rxq_info;
9102         }
9103         return 0;
9104
9105 err_rxq_info:
9106         /* Rollback successful reg's and free other resources */
9107         while (i--)
9108                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9109         kvfree(dev->_rx);
9110         dev->_rx = NULL;
9111         return err;
9112 }
9113
9114 static void netif_free_rx_queues(struct net_device *dev)
9115 {
9116         unsigned int i, count = dev->num_rx_queues;
9117
9118         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9119         if (!dev->_rx)
9120                 return;
9121
9122         for (i = 0; i < count; i++)
9123                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9124
9125         kvfree(dev->_rx);
9126 }
9127
9128 static void netdev_init_one_queue(struct net_device *dev,
9129                                   struct netdev_queue *queue, void *_unused)
9130 {
9131         /* Initialize queue lock */
9132         spin_lock_init(&queue->_xmit_lock);
9133         lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9134         queue->xmit_lock_owner = -1;
9135         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9136         queue->dev = dev;
9137 #ifdef CONFIG_BQL
9138         dql_init(&queue->dql, HZ);
9139 #endif
9140 }
9141
9142 static void netif_free_tx_queues(struct net_device *dev)
9143 {
9144         kvfree(dev->_tx);
9145 }
9146
9147 static int netif_alloc_netdev_queues(struct net_device *dev)
9148 {
9149         unsigned int count = dev->num_tx_queues;
9150         struct netdev_queue *tx;
9151         size_t sz = count * sizeof(*tx);
9152
9153         if (count < 1 || count > 0xffff)
9154                 return -EINVAL;
9155
9156         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9157         if (!tx)
9158                 return -ENOMEM;
9159
9160         dev->_tx = tx;
9161
9162         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9163         spin_lock_init(&dev->tx_global_lock);
9164
9165         return 0;
9166 }
9167
9168 void netif_tx_stop_all_queues(struct net_device *dev)
9169 {
9170         unsigned int i;
9171
9172         for (i = 0; i < dev->num_tx_queues; i++) {
9173                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9174
9175                 netif_tx_stop_queue(txq);
9176         }
9177 }
9178 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9179
9180 static void netdev_register_lockdep_key(struct net_device *dev)
9181 {
9182         lockdep_register_key(&dev->qdisc_tx_busylock_key);
9183         lockdep_register_key(&dev->qdisc_running_key);
9184         lockdep_register_key(&dev->qdisc_xmit_lock_key);
9185         lockdep_register_key(&dev->addr_list_lock_key);
9186 }
9187
9188 static void netdev_unregister_lockdep_key(struct net_device *dev)
9189 {
9190         lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9191         lockdep_unregister_key(&dev->qdisc_running_key);
9192         lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9193         lockdep_unregister_key(&dev->addr_list_lock_key);
9194 }
9195
9196 void netdev_update_lockdep_key(struct net_device *dev)
9197 {
9198         lockdep_unregister_key(&dev->addr_list_lock_key);
9199         lockdep_register_key(&dev->addr_list_lock_key);
9200
9201         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9202 }
9203 EXPORT_SYMBOL(netdev_update_lockdep_key);
9204
9205 /**
9206  *      register_netdevice      - register a network device
9207  *      @dev: device to register
9208  *
9209  *      Take a completed network device structure and add it to the kernel
9210  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9211  *      chain. 0 is returned on success. A negative errno code is returned
9212  *      on a failure to set up the device, or if the name is a duplicate.
9213  *
9214  *      Callers must hold the rtnl semaphore. You may want
9215  *      register_netdev() instead of this.
9216  *
9217  *      BUGS:
9218  *      The locking appears insufficient to guarantee two parallel registers
9219  *      will not get the same name.
9220  */
9221
9222 int register_netdevice(struct net_device *dev)
9223 {
9224         int ret;
9225         struct net *net = dev_net(dev);
9226
9227         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9228                      NETDEV_FEATURE_COUNT);
9229         BUG_ON(dev_boot_phase);
9230         ASSERT_RTNL();
9231
9232         might_sleep();
9233
9234         /* When net_device's are persistent, this will be fatal. */
9235         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9236         BUG_ON(!net);
9237
9238         spin_lock_init(&dev->addr_list_lock);
9239         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9240
9241         ret = dev_get_valid_name(net, dev, dev->name);
9242         if (ret < 0)
9243                 goto out;
9244
9245         ret = -ENOMEM;
9246         dev->name_node = netdev_name_node_head_alloc(dev);
9247         if (!dev->name_node)
9248                 goto out;
9249
9250         /* Init, if this function is available */
9251         if (dev->netdev_ops->ndo_init) {
9252                 ret = dev->netdev_ops->ndo_init(dev);
9253                 if (ret) {
9254                         if (ret > 0)
9255                                 ret = -EIO;
9256                         goto err_free_name;
9257                 }
9258         }
9259
9260         if (((dev->hw_features | dev->features) &
9261              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9262             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9263              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9264                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9265                 ret = -EINVAL;
9266                 goto err_uninit;
9267         }
9268
9269         ret = -EBUSY;
9270         if (!dev->ifindex)
9271                 dev->ifindex = dev_new_index(net);
9272         else if (__dev_get_by_index(net, dev->ifindex))
9273                 goto err_uninit;
9274
9275         /* Transfer changeable features to wanted_features and enable
9276          * software offloads (GSO and GRO).
9277          */
9278         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9279         dev->features |= NETIF_F_SOFT_FEATURES;
9280
9281         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9282                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9283                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9284         }
9285
9286         dev->wanted_features = dev->features & dev->hw_features;
9287
9288         if (!(dev->flags & IFF_LOOPBACK))
9289                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9290
9291         /* If IPv4 TCP segmentation offload is supported we should also
9292          * allow the device to enable segmenting the frame with the option
9293          * of ignoring a static IP ID value.  This doesn't enable the
9294          * feature itself but allows the user to enable it later.
9295          */
9296         if (dev->hw_features & NETIF_F_TSO)
9297                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9298         if (dev->vlan_features & NETIF_F_TSO)
9299                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9300         if (dev->mpls_features & NETIF_F_TSO)
9301                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9302         if (dev->hw_enc_features & NETIF_F_TSO)
9303                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9304
9305         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9306          */
9307         dev->vlan_features |= NETIF_F_HIGHDMA;
9308
9309         /* Make NETIF_F_SG inheritable to tunnel devices.
9310          */
9311         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9312
9313         /* Make NETIF_F_SG inheritable to MPLS.
9314          */
9315         dev->mpls_features |= NETIF_F_SG;
9316
9317         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9318         ret = notifier_to_errno(ret);
9319         if (ret)
9320                 goto err_uninit;
9321
9322         ret = netdev_register_kobject(dev);
9323         if (ret) {
9324                 dev->reg_state = NETREG_UNREGISTERED;
9325                 goto err_uninit;
9326         }
9327         dev->reg_state = NETREG_REGISTERED;
9328
9329         __netdev_update_features(dev);
9330
9331         /*
9332          *      Default initial state at registry is that the
9333          *      device is present.
9334          */
9335
9336         set_bit(__LINK_STATE_PRESENT, &dev->state);
9337
9338         linkwatch_init_dev(dev);
9339
9340         dev_init_scheduler(dev);
9341         dev_hold(dev);
9342         list_netdevice(dev);
9343         add_device_randomness(dev->dev_addr, dev->addr_len);
9344
9345         /* If the device has permanent device address, driver should
9346          * set dev_addr and also addr_assign_type should be set to
9347          * NET_ADDR_PERM (default value).
9348          */
9349         if (dev->addr_assign_type == NET_ADDR_PERM)
9350                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9351
9352         /* Notify protocols, that a new device appeared. */
9353         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9354         ret = notifier_to_errno(ret);
9355         if (ret) {
9356                 rollback_registered(dev);
9357                 rcu_barrier();
9358
9359                 dev->reg_state = NETREG_UNREGISTERED;
9360         }
9361         /*
9362          *      Prevent userspace races by waiting until the network
9363          *      device is fully setup before sending notifications.
9364          */
9365         if (!dev->rtnl_link_ops ||
9366             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9367                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9368
9369 out:
9370         return ret;
9371
9372 err_uninit:
9373         if (dev->netdev_ops->ndo_uninit)
9374                 dev->netdev_ops->ndo_uninit(dev);
9375         if (dev->priv_destructor)
9376                 dev->priv_destructor(dev);
9377 err_free_name:
9378         netdev_name_node_free(dev->name_node);
9379         goto out;
9380 }
9381 EXPORT_SYMBOL(register_netdevice);
9382
9383 /**
9384  *      init_dummy_netdev       - init a dummy network device for NAPI
9385  *      @dev: device to init
9386  *
9387  *      This takes a network device structure and initialize the minimum
9388  *      amount of fields so it can be used to schedule NAPI polls without
9389  *      registering a full blown interface. This is to be used by drivers
9390  *      that need to tie several hardware interfaces to a single NAPI
9391  *      poll scheduler due to HW limitations.
9392  */
9393 int init_dummy_netdev(struct net_device *dev)
9394 {
9395         /* Clear everything. Note we don't initialize spinlocks
9396          * are they aren't supposed to be taken by any of the
9397          * NAPI code and this dummy netdev is supposed to be
9398          * only ever used for NAPI polls
9399          */
9400         memset(dev, 0, sizeof(struct net_device));
9401
9402         /* make sure we BUG if trying to hit standard
9403          * register/unregister code path
9404          */
9405         dev->reg_state = NETREG_DUMMY;
9406
9407         /* NAPI wants this */
9408         INIT_LIST_HEAD(&dev->napi_list);
9409
9410         /* a dummy interface is started by default */
9411         set_bit(__LINK_STATE_PRESENT, &dev->state);
9412         set_bit(__LINK_STATE_START, &dev->state);
9413
9414         /* napi_busy_loop stats accounting wants this */
9415         dev_net_set(dev, &init_net);
9416
9417         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9418          * because users of this 'device' dont need to change
9419          * its refcount.
9420          */
9421
9422         return 0;
9423 }
9424 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9425
9426
9427 /**
9428  *      register_netdev - register a network device
9429  *      @dev: device to register
9430  *
9431  *      Take a completed network device structure and add it to the kernel
9432  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9433  *      chain. 0 is returned on success. A negative errno code is returned
9434  *      on a failure to set up the device, or if the name is a duplicate.
9435  *
9436  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9437  *      and expands the device name if you passed a format string to
9438  *      alloc_netdev.
9439  */
9440 int register_netdev(struct net_device *dev)
9441 {
9442         int err;
9443
9444         if (rtnl_lock_killable())
9445                 return -EINTR;
9446         err = register_netdevice(dev);
9447         rtnl_unlock();
9448         return err;
9449 }
9450 EXPORT_SYMBOL(register_netdev);
9451
9452 int netdev_refcnt_read(const struct net_device *dev)
9453 {
9454         int i, refcnt = 0;
9455
9456         for_each_possible_cpu(i)
9457                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9458         return refcnt;
9459 }
9460 EXPORT_SYMBOL(netdev_refcnt_read);
9461
9462 /**
9463  * netdev_wait_allrefs - wait until all references are gone.
9464  * @dev: target net_device
9465  *
9466  * This is called when unregistering network devices.
9467  *
9468  * Any protocol or device that holds a reference should register
9469  * for netdevice notification, and cleanup and put back the
9470  * reference if they receive an UNREGISTER event.
9471  * We can get stuck here if buggy protocols don't correctly
9472  * call dev_put.
9473  */
9474 static void netdev_wait_allrefs(struct net_device *dev)
9475 {
9476         unsigned long rebroadcast_time, warning_time;
9477         int refcnt;
9478
9479         linkwatch_forget_dev(dev);
9480
9481         rebroadcast_time = warning_time = jiffies;
9482         refcnt = netdev_refcnt_read(dev);
9483
9484         while (refcnt != 0) {
9485                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9486                         rtnl_lock();
9487
9488                         /* Rebroadcast unregister notification */
9489                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9490
9491                         __rtnl_unlock();
9492                         rcu_barrier();
9493                         rtnl_lock();
9494
9495                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9496                                      &dev->state)) {
9497                                 /* We must not have linkwatch events
9498                                  * pending on unregister. If this
9499                                  * happens, we simply run the queue
9500                                  * unscheduled, resulting in a noop
9501                                  * for this device.
9502                                  */
9503                                 linkwatch_run_queue();
9504                         }
9505
9506                         __rtnl_unlock();
9507
9508                         rebroadcast_time = jiffies;
9509                 }
9510
9511                 msleep(250);
9512
9513                 refcnt = netdev_refcnt_read(dev);
9514
9515                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9516                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9517                                  dev->name, refcnt);
9518                         warning_time = jiffies;
9519                 }
9520         }
9521 }
9522
9523 /* The sequence is:
9524  *
9525  *      rtnl_lock();
9526  *      ...
9527  *      register_netdevice(x1);
9528  *      register_netdevice(x2);
9529  *      ...
9530  *      unregister_netdevice(y1);
9531  *      unregister_netdevice(y2);
9532  *      ...
9533  *      rtnl_unlock();
9534  *      free_netdev(y1);
9535  *      free_netdev(y2);
9536  *
9537  * We are invoked by rtnl_unlock().
9538  * This allows us to deal with problems:
9539  * 1) We can delete sysfs objects which invoke hotplug
9540  *    without deadlocking with linkwatch via keventd.
9541  * 2) Since we run with the RTNL semaphore not held, we can sleep
9542  *    safely in order to wait for the netdev refcnt to drop to zero.
9543  *
9544  * We must not return until all unregister events added during
9545  * the interval the lock was held have been completed.
9546  */
9547 void netdev_run_todo(void)
9548 {
9549         struct list_head list;
9550
9551         /* Snapshot list, allow later requests */
9552         list_replace_init(&net_todo_list, &list);
9553
9554         __rtnl_unlock();
9555
9556
9557         /* Wait for rcu callbacks to finish before next phase */
9558         if (!list_empty(&list))
9559                 rcu_barrier();
9560
9561         while (!list_empty(&list)) {
9562                 struct net_device *dev
9563                         = list_first_entry(&list, struct net_device, todo_list);
9564                 list_del(&dev->todo_list);
9565
9566                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9567                         pr_err("network todo '%s' but state %d\n",
9568                                dev->name, dev->reg_state);
9569                         dump_stack();
9570                         continue;
9571                 }
9572
9573                 dev->reg_state = NETREG_UNREGISTERED;
9574
9575                 netdev_wait_allrefs(dev);
9576
9577                 /* paranoia */
9578                 BUG_ON(netdev_refcnt_read(dev));
9579                 BUG_ON(!list_empty(&dev->ptype_all));
9580                 BUG_ON(!list_empty(&dev->ptype_specific));
9581                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9582                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9583 #if IS_ENABLED(CONFIG_DECNET)
9584                 WARN_ON(dev->dn_ptr);
9585 #endif
9586                 if (dev->priv_destructor)
9587                         dev->priv_destructor(dev);
9588                 if (dev->needs_free_netdev)
9589                         free_netdev(dev);
9590
9591                 /* Report a network device has been unregistered */
9592                 rtnl_lock();
9593                 dev_net(dev)->dev_unreg_count--;
9594                 __rtnl_unlock();
9595                 wake_up(&netdev_unregistering_wq);
9596
9597                 /* Free network device */
9598                 kobject_put(&dev->dev.kobj);
9599         }
9600 }
9601
9602 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9603  * all the same fields in the same order as net_device_stats, with only
9604  * the type differing, but rtnl_link_stats64 may have additional fields
9605  * at the end for newer counters.
9606  */
9607 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9608                              const struct net_device_stats *netdev_stats)
9609 {
9610 #if BITS_PER_LONG == 64
9611         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9612         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9613         /* zero out counters that only exist in rtnl_link_stats64 */
9614         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9615                sizeof(*stats64) - sizeof(*netdev_stats));
9616 #else
9617         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9618         const unsigned long *src = (const unsigned long *)netdev_stats;
9619         u64 *dst = (u64 *)stats64;
9620
9621         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9622         for (i = 0; i < n; i++)
9623                 dst[i] = src[i];
9624         /* zero out counters that only exist in rtnl_link_stats64 */
9625         memset((char *)stats64 + n * sizeof(u64), 0,
9626                sizeof(*stats64) - n * sizeof(u64));
9627 #endif
9628 }
9629 EXPORT_SYMBOL(netdev_stats_to_stats64);
9630
9631 /**
9632  *      dev_get_stats   - get network device statistics
9633  *      @dev: device to get statistics from
9634  *      @storage: place to store stats
9635  *
9636  *      Get network statistics from device. Return @storage.
9637  *      The device driver may provide its own method by setting
9638  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9639  *      otherwise the internal statistics structure is used.
9640  */
9641 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9642                                         struct rtnl_link_stats64 *storage)
9643 {
9644         const struct net_device_ops *ops = dev->netdev_ops;
9645
9646         if (ops->ndo_get_stats64) {
9647                 memset(storage, 0, sizeof(*storage));
9648                 ops->ndo_get_stats64(dev, storage);
9649         } else if (ops->ndo_get_stats) {
9650                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9651         } else {
9652                 netdev_stats_to_stats64(storage, &dev->stats);
9653         }
9654         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9655         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9656         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9657         return storage;
9658 }
9659 EXPORT_SYMBOL(dev_get_stats);
9660
9661 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9662 {
9663         struct netdev_queue *queue = dev_ingress_queue(dev);
9664
9665 #ifdef CONFIG_NET_CLS_ACT
9666         if (queue)
9667                 return queue;
9668         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9669         if (!queue)
9670                 return NULL;
9671         netdev_init_one_queue(dev, queue, NULL);
9672         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9673         queue->qdisc_sleeping = &noop_qdisc;
9674         rcu_assign_pointer(dev->ingress_queue, queue);
9675 #endif
9676         return queue;
9677 }
9678
9679 static const struct ethtool_ops default_ethtool_ops;
9680
9681 void netdev_set_default_ethtool_ops(struct net_device *dev,
9682                                     const struct ethtool_ops *ops)
9683 {
9684         if (dev->ethtool_ops == &default_ethtool_ops)
9685                 dev->ethtool_ops = ops;
9686 }
9687 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9688
9689 void netdev_freemem(struct net_device *dev)
9690 {
9691         char *addr = (char *)dev - dev->padded;
9692
9693         kvfree(addr);
9694 }
9695
9696 /**
9697  * alloc_netdev_mqs - allocate network device
9698  * @sizeof_priv: size of private data to allocate space for
9699  * @name: device name format string
9700  * @name_assign_type: origin of device name
9701  * @setup: callback to initialize device
9702  * @txqs: the number of TX subqueues to allocate
9703  * @rxqs: the number of RX subqueues to allocate
9704  *
9705  * Allocates a struct net_device with private data area for driver use
9706  * and performs basic initialization.  Also allocates subqueue structs
9707  * for each queue on the device.
9708  */
9709 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9710                 unsigned char name_assign_type,
9711                 void (*setup)(struct net_device *),
9712                 unsigned int txqs, unsigned int rxqs)
9713 {
9714         struct net_device *dev;
9715         unsigned int alloc_size;
9716         struct net_device *p;
9717
9718         BUG_ON(strlen(name) >= sizeof(dev->name));
9719
9720         if (txqs < 1) {
9721                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9722                 return NULL;
9723         }
9724
9725         if (rxqs < 1) {
9726                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9727                 return NULL;
9728         }
9729
9730         alloc_size = sizeof(struct net_device);
9731         if (sizeof_priv) {
9732                 /* ensure 32-byte alignment of private area */
9733                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9734                 alloc_size += sizeof_priv;
9735         }
9736         /* ensure 32-byte alignment of whole construct */
9737         alloc_size += NETDEV_ALIGN - 1;
9738
9739         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9740         if (!p)
9741                 return NULL;
9742
9743         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9744         dev->padded = (char *)dev - (char *)p;
9745
9746         dev->pcpu_refcnt = alloc_percpu(int);
9747         if (!dev->pcpu_refcnt)
9748                 goto free_dev;
9749
9750         if (dev_addr_init(dev))
9751                 goto free_pcpu;
9752
9753         dev_mc_init(dev);
9754         dev_uc_init(dev);
9755
9756         dev_net_set(dev, &init_net);
9757
9758         netdev_register_lockdep_key(dev);
9759
9760         dev->gso_max_size = GSO_MAX_SIZE;
9761         dev->gso_max_segs = GSO_MAX_SEGS;
9762         dev->upper_level = 1;
9763         dev->lower_level = 1;
9764
9765         INIT_LIST_HEAD(&dev->napi_list);
9766         INIT_LIST_HEAD(&dev->unreg_list);
9767         INIT_LIST_HEAD(&dev->close_list);
9768         INIT_LIST_HEAD(&dev->link_watch_list);
9769         INIT_LIST_HEAD(&dev->adj_list.upper);
9770         INIT_LIST_HEAD(&dev->adj_list.lower);
9771         INIT_LIST_HEAD(&dev->ptype_all);
9772         INIT_LIST_HEAD(&dev->ptype_specific);
9773 #ifdef CONFIG_NET_SCHED
9774         hash_init(dev->qdisc_hash);
9775 #endif
9776         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9777         setup(dev);
9778
9779         if (!dev->tx_queue_len) {
9780                 dev->priv_flags |= IFF_NO_QUEUE;
9781                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9782         }
9783
9784         dev->num_tx_queues = txqs;
9785         dev->real_num_tx_queues = txqs;
9786         if (netif_alloc_netdev_queues(dev))
9787                 goto free_all;
9788
9789         dev->num_rx_queues = rxqs;
9790         dev->real_num_rx_queues = rxqs;
9791         if (netif_alloc_rx_queues(dev))
9792                 goto free_all;
9793
9794         strcpy(dev->name, name);
9795         dev->name_assign_type = name_assign_type;
9796         dev->group = INIT_NETDEV_GROUP;
9797         if (!dev->ethtool_ops)
9798                 dev->ethtool_ops = &default_ethtool_ops;
9799
9800         nf_hook_ingress_init(dev);
9801
9802         return dev;
9803
9804 free_all:
9805         free_netdev(dev);
9806         return NULL;
9807
9808 free_pcpu:
9809         free_percpu(dev->pcpu_refcnt);
9810 free_dev:
9811         netdev_freemem(dev);
9812         return NULL;
9813 }
9814 EXPORT_SYMBOL(alloc_netdev_mqs);
9815
9816 /**
9817  * free_netdev - free network device
9818  * @dev: device
9819  *
9820  * This function does the last stage of destroying an allocated device
9821  * interface. The reference to the device object is released. If this
9822  * is the last reference then it will be freed.Must be called in process
9823  * context.
9824  */
9825 void free_netdev(struct net_device *dev)
9826 {
9827         struct napi_struct *p, *n;
9828
9829         might_sleep();
9830         netif_free_tx_queues(dev);
9831         netif_free_rx_queues(dev);
9832
9833         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9834
9835         /* Flush device addresses */
9836         dev_addr_flush(dev);
9837
9838         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9839                 netif_napi_del(p);
9840
9841         free_percpu(dev->pcpu_refcnt);
9842         dev->pcpu_refcnt = NULL;
9843         free_percpu(dev->xdp_bulkq);
9844         dev->xdp_bulkq = NULL;
9845
9846         netdev_unregister_lockdep_key(dev);
9847
9848         /*  Compatibility with error handling in drivers */
9849         if (dev->reg_state == NETREG_UNINITIALIZED) {
9850                 netdev_freemem(dev);
9851                 return;
9852         }
9853
9854         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9855         dev->reg_state = NETREG_RELEASED;
9856
9857         /* will free via device release */
9858         put_device(&dev->dev);
9859 }
9860 EXPORT_SYMBOL(free_netdev);
9861
9862 /**
9863  *      synchronize_net -  Synchronize with packet receive processing
9864  *
9865  *      Wait for packets currently being received to be done.
9866  *      Does not block later packets from starting.
9867  */
9868 void synchronize_net(void)
9869 {
9870         might_sleep();
9871         if (rtnl_is_locked())
9872                 synchronize_rcu_expedited();
9873         else
9874                 synchronize_rcu();
9875 }
9876 EXPORT_SYMBOL(synchronize_net);
9877
9878 /**
9879  *      unregister_netdevice_queue - remove device from the kernel
9880  *      @dev: device
9881  *      @head: list
9882  *
9883  *      This function shuts down a device interface and removes it
9884  *      from the kernel tables.
9885  *      If head not NULL, device is queued to be unregistered later.
9886  *
9887  *      Callers must hold the rtnl semaphore.  You may want
9888  *      unregister_netdev() instead of this.
9889  */
9890
9891 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9892 {
9893         ASSERT_RTNL();
9894
9895         if (head) {
9896                 list_move_tail(&dev->unreg_list, head);
9897         } else {
9898                 rollback_registered(dev);
9899                 /* Finish processing unregister after unlock */
9900                 net_set_todo(dev);
9901         }
9902 }
9903 EXPORT_SYMBOL(unregister_netdevice_queue);
9904
9905 /**
9906  *      unregister_netdevice_many - unregister many devices
9907  *      @head: list of devices
9908  *
9909  *  Note: As most callers use a stack allocated list_head,
9910  *  we force a list_del() to make sure stack wont be corrupted later.
9911  */
9912 void unregister_netdevice_many(struct list_head *head)
9913 {
9914         struct net_device *dev;
9915
9916         if (!list_empty(head)) {
9917                 rollback_registered_many(head);
9918                 list_for_each_entry(dev, head, unreg_list)
9919                         net_set_todo(dev);
9920                 list_del(head);
9921         }
9922 }
9923 EXPORT_SYMBOL(unregister_netdevice_many);
9924
9925 /**
9926  *      unregister_netdev - remove device from the kernel
9927  *      @dev: device
9928  *
9929  *      This function shuts down a device interface and removes it
9930  *      from the kernel tables.
9931  *
9932  *      This is just a wrapper for unregister_netdevice that takes
9933  *      the rtnl semaphore.  In general you want to use this and not
9934  *      unregister_netdevice.
9935  */
9936 void unregister_netdev(struct net_device *dev)
9937 {
9938         rtnl_lock();
9939         unregister_netdevice(dev);
9940         rtnl_unlock();
9941 }
9942 EXPORT_SYMBOL(unregister_netdev);
9943
9944 /**
9945  *      dev_change_net_namespace - move device to different nethost namespace
9946  *      @dev: device
9947  *      @net: network namespace
9948  *      @pat: If not NULL name pattern to try if the current device name
9949  *            is already taken in the destination network namespace.
9950  *
9951  *      This function shuts down a device interface and moves it
9952  *      to a new network namespace. On success 0 is returned, on
9953  *      a failure a netagive errno code is returned.
9954  *
9955  *      Callers must hold the rtnl semaphore.
9956  */
9957
9958 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9959 {
9960         int err, new_nsid, new_ifindex;
9961
9962         ASSERT_RTNL();
9963
9964         /* Don't allow namespace local devices to be moved. */
9965         err = -EINVAL;
9966         if (dev->features & NETIF_F_NETNS_LOCAL)
9967                 goto out;
9968
9969         /* Ensure the device has been registrered */
9970         if (dev->reg_state != NETREG_REGISTERED)
9971                 goto out;
9972
9973         /* Get out if there is nothing todo */
9974         err = 0;
9975         if (net_eq(dev_net(dev), net))
9976                 goto out;
9977
9978         /* Pick the destination device name, and ensure
9979          * we can use it in the destination network namespace.
9980          */
9981         err = -EEXIST;
9982         if (__dev_get_by_name(net, dev->name)) {
9983                 /* We get here if we can't use the current device name */
9984                 if (!pat)
9985                         goto out;
9986                 err = dev_get_valid_name(net, dev, pat);
9987                 if (err < 0)
9988                         goto out;
9989         }
9990
9991         /*
9992          * And now a mini version of register_netdevice unregister_netdevice.
9993          */
9994
9995         /* If device is running close it first. */
9996         dev_close(dev);
9997
9998         /* And unlink it from device chain */
9999         unlist_netdevice(dev);
10000
10001         synchronize_net();
10002
10003         /* Shutdown queueing discipline. */
10004         dev_shutdown(dev);
10005
10006         /* Notify protocols, that we are about to destroy
10007          * this device. They should clean all the things.
10008          *
10009          * Note that dev->reg_state stays at NETREG_REGISTERED.
10010          * This is wanted because this way 8021q and macvlan know
10011          * the device is just moving and can keep their slaves up.
10012          */
10013         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10014         rcu_barrier();
10015
10016         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10017         /* If there is an ifindex conflict assign a new one */
10018         if (__dev_get_by_index(net, dev->ifindex))
10019                 new_ifindex = dev_new_index(net);
10020         else
10021                 new_ifindex = dev->ifindex;
10022
10023         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10024                             new_ifindex);
10025
10026         /*
10027          *      Flush the unicast and multicast chains
10028          */
10029         dev_uc_flush(dev);
10030         dev_mc_flush(dev);
10031
10032         /* Send a netdev-removed uevent to the old namespace */
10033         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10034         netdev_adjacent_del_links(dev);
10035
10036         /* Actually switch the network namespace */
10037         dev_net_set(dev, net);
10038         dev->ifindex = new_ifindex;
10039
10040         /* Send a netdev-add uevent to the new namespace */
10041         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10042         netdev_adjacent_add_links(dev);
10043
10044         /* Fixup kobjects */
10045         err = device_rename(&dev->dev, dev->name);
10046         WARN_ON(err);
10047
10048         /* Add the device back in the hashes */
10049         list_netdevice(dev);
10050
10051         /* Notify protocols, that a new device appeared. */
10052         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10053
10054         /*
10055          *      Prevent userspace races by waiting until the network
10056          *      device is fully setup before sending notifications.
10057          */
10058         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10059
10060         synchronize_net();
10061         err = 0;
10062 out:
10063         return err;
10064 }
10065 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10066
10067 static int dev_cpu_dead(unsigned int oldcpu)
10068 {
10069         struct sk_buff **list_skb;
10070         struct sk_buff *skb;
10071         unsigned int cpu;
10072         struct softnet_data *sd, *oldsd, *remsd = NULL;
10073
10074         local_irq_disable();
10075         cpu = smp_processor_id();
10076         sd = &per_cpu(softnet_data, cpu);
10077         oldsd = &per_cpu(softnet_data, oldcpu);
10078
10079         /* Find end of our completion_queue. */
10080         list_skb = &sd->completion_queue;
10081         while (*list_skb)
10082                 list_skb = &(*list_skb)->next;
10083         /* Append completion queue from offline CPU. */
10084         *list_skb = oldsd->completion_queue;
10085         oldsd->completion_queue = NULL;
10086
10087         /* Append output queue from offline CPU. */
10088         if (oldsd->output_queue) {
10089                 *sd->output_queue_tailp = oldsd->output_queue;
10090                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10091                 oldsd->output_queue = NULL;
10092                 oldsd->output_queue_tailp = &oldsd->output_queue;
10093         }
10094         /* Append NAPI poll list from offline CPU, with one exception :
10095          * process_backlog() must be called by cpu owning percpu backlog.
10096          * We properly handle process_queue & input_pkt_queue later.
10097          */
10098         while (!list_empty(&oldsd->poll_list)) {
10099                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10100                                                             struct napi_struct,
10101                                                             poll_list);
10102
10103                 list_del_init(&napi->poll_list);
10104                 if (napi->poll == process_backlog)
10105                         napi->state = 0;
10106                 else
10107                         ____napi_schedule(sd, napi);
10108         }
10109
10110         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10111         local_irq_enable();
10112
10113 #ifdef CONFIG_RPS
10114         remsd = oldsd->rps_ipi_list;
10115         oldsd->rps_ipi_list = NULL;
10116 #endif
10117         /* send out pending IPI's on offline CPU */
10118         net_rps_send_ipi(remsd);
10119
10120         /* Process offline CPU's input_pkt_queue */
10121         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10122                 netif_rx_ni(skb);
10123                 input_queue_head_incr(oldsd);
10124         }
10125         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10126                 netif_rx_ni(skb);
10127                 input_queue_head_incr(oldsd);
10128         }
10129
10130         return 0;
10131 }
10132
10133 /**
10134  *      netdev_increment_features - increment feature set by one
10135  *      @all: current feature set
10136  *      @one: new feature set
10137  *      @mask: mask feature set
10138  *
10139  *      Computes a new feature set after adding a device with feature set
10140  *      @one to the master device with current feature set @all.  Will not
10141  *      enable anything that is off in @mask. Returns the new feature set.
10142  */
10143 netdev_features_t netdev_increment_features(netdev_features_t all,
10144         netdev_features_t one, netdev_features_t mask)
10145 {
10146         if (mask & NETIF_F_HW_CSUM)
10147                 mask |= NETIF_F_CSUM_MASK;
10148         mask |= NETIF_F_VLAN_CHALLENGED;
10149
10150         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10151         all &= one | ~NETIF_F_ALL_FOR_ALL;
10152
10153         /* If one device supports hw checksumming, set for all. */
10154         if (all & NETIF_F_HW_CSUM)
10155                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10156
10157         return all;
10158 }
10159 EXPORT_SYMBOL(netdev_increment_features);
10160
10161 static struct hlist_head * __net_init netdev_create_hash(void)
10162 {
10163         int i;
10164         struct hlist_head *hash;
10165
10166         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10167         if (hash != NULL)
10168                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10169                         INIT_HLIST_HEAD(&hash[i]);
10170
10171         return hash;
10172 }
10173
10174 /* Initialize per network namespace state */
10175 static int __net_init netdev_init(struct net *net)
10176 {
10177         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10178                      8 * sizeof_field(struct napi_struct, gro_bitmask));
10179
10180         if (net != &init_net)
10181                 INIT_LIST_HEAD(&net->dev_base_head);
10182
10183         net->dev_name_head = netdev_create_hash();
10184         if (net->dev_name_head == NULL)
10185                 goto err_name;
10186
10187         net->dev_index_head = netdev_create_hash();
10188         if (net->dev_index_head == NULL)
10189                 goto err_idx;
10190
10191         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10192
10193         return 0;
10194
10195 err_idx:
10196         kfree(net->dev_name_head);
10197 err_name:
10198         return -ENOMEM;
10199 }
10200
10201 /**
10202  *      netdev_drivername - network driver for the device
10203  *      @dev: network device
10204  *
10205  *      Determine network driver for device.
10206  */
10207 const char *netdev_drivername(const struct net_device *dev)
10208 {
10209         const struct device_driver *driver;
10210         const struct device *parent;
10211         const char *empty = "";
10212
10213         parent = dev->dev.parent;
10214         if (!parent)
10215                 return empty;
10216
10217         driver = parent->driver;
10218         if (driver && driver->name)
10219                 return driver->name;
10220         return empty;
10221 }
10222
10223 static void __netdev_printk(const char *level, const struct net_device *dev,
10224                             struct va_format *vaf)
10225 {
10226         if (dev && dev->dev.parent) {
10227                 dev_printk_emit(level[1] - '0',
10228                                 dev->dev.parent,
10229                                 "%s %s %s%s: %pV",
10230                                 dev_driver_string(dev->dev.parent),
10231                                 dev_name(dev->dev.parent),
10232                                 netdev_name(dev), netdev_reg_state(dev),
10233                                 vaf);
10234         } else if (dev) {
10235                 printk("%s%s%s: %pV",
10236                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
10237         } else {
10238                 printk("%s(NULL net_device): %pV", level, vaf);
10239         }
10240 }
10241
10242 void netdev_printk(const char *level, const struct net_device *dev,
10243                    const char *format, ...)
10244 {
10245         struct va_format vaf;
10246         va_list args;
10247
10248         va_start(args, format);
10249
10250         vaf.fmt = format;
10251         vaf.va = &args;
10252
10253         __netdev_printk(level, dev, &vaf);
10254
10255         va_end(args);
10256 }
10257 EXPORT_SYMBOL(netdev_printk);
10258
10259 #define define_netdev_printk_level(func, level)                 \
10260 void func(const struct net_device *dev, const char *fmt, ...)   \
10261 {                                                               \
10262         struct va_format vaf;                                   \
10263         va_list args;                                           \
10264                                                                 \
10265         va_start(args, fmt);                                    \
10266                                                                 \
10267         vaf.fmt = fmt;                                          \
10268         vaf.va = &args;                                         \
10269                                                                 \
10270         __netdev_printk(level, dev, &vaf);                      \
10271                                                                 \
10272         va_end(args);                                           \
10273 }                                                               \
10274 EXPORT_SYMBOL(func);
10275
10276 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10277 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10278 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10279 define_netdev_printk_level(netdev_err, KERN_ERR);
10280 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10281 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10282 define_netdev_printk_level(netdev_info, KERN_INFO);
10283
10284 static void __net_exit netdev_exit(struct net *net)
10285 {
10286         kfree(net->dev_name_head);
10287         kfree(net->dev_index_head);
10288         if (net != &init_net)
10289                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10290 }
10291
10292 static struct pernet_operations __net_initdata netdev_net_ops = {
10293         .init = netdev_init,
10294         .exit = netdev_exit,
10295 };
10296
10297 static void __net_exit default_device_exit(struct net *net)
10298 {
10299         struct net_device *dev, *aux;
10300         /*
10301          * Push all migratable network devices back to the
10302          * initial network namespace
10303          */
10304         rtnl_lock();
10305         for_each_netdev_safe(net, dev, aux) {
10306                 int err;
10307                 char fb_name[IFNAMSIZ];
10308
10309                 /* Ignore unmoveable devices (i.e. loopback) */
10310                 if (dev->features & NETIF_F_NETNS_LOCAL)
10311                         continue;
10312
10313                 /* Leave virtual devices for the generic cleanup */
10314                 if (dev->rtnl_link_ops)
10315                         continue;
10316
10317                 /* Push remaining network devices to init_net */
10318                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10319                 if (__dev_get_by_name(&init_net, fb_name))
10320                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10321                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10322                 if (err) {
10323                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10324                                  __func__, dev->name, err);
10325                         BUG();
10326                 }
10327         }
10328         rtnl_unlock();
10329 }
10330
10331 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10332 {
10333         /* Return with the rtnl_lock held when there are no network
10334          * devices unregistering in any network namespace in net_list.
10335          */
10336         struct net *net;
10337         bool unregistering;
10338         DEFINE_WAIT_FUNC(wait, woken_wake_function);
10339
10340         add_wait_queue(&netdev_unregistering_wq, &wait);
10341         for (;;) {
10342                 unregistering = false;
10343                 rtnl_lock();
10344                 list_for_each_entry(net, net_list, exit_list) {
10345                         if (net->dev_unreg_count > 0) {
10346                                 unregistering = true;
10347                                 break;
10348                         }
10349                 }
10350                 if (!unregistering)
10351                         break;
10352                 __rtnl_unlock();
10353
10354                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10355         }
10356         remove_wait_queue(&netdev_unregistering_wq, &wait);
10357 }
10358
10359 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10360 {
10361         /* At exit all network devices most be removed from a network
10362          * namespace.  Do this in the reverse order of registration.
10363          * Do this across as many network namespaces as possible to
10364          * improve batching efficiency.
10365          */
10366         struct net_device *dev;
10367         struct net *net;
10368         LIST_HEAD(dev_kill_list);
10369
10370         /* To prevent network device cleanup code from dereferencing
10371          * loopback devices or network devices that have been freed
10372          * wait here for all pending unregistrations to complete,
10373          * before unregistring the loopback device and allowing the
10374          * network namespace be freed.
10375          *
10376          * The netdev todo list containing all network devices
10377          * unregistrations that happen in default_device_exit_batch
10378          * will run in the rtnl_unlock() at the end of
10379          * default_device_exit_batch.
10380          */
10381         rtnl_lock_unregistering(net_list);
10382         list_for_each_entry(net, net_list, exit_list) {
10383                 for_each_netdev_reverse(net, dev) {
10384                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10385                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10386                         else
10387                                 unregister_netdevice_queue(dev, &dev_kill_list);
10388                 }
10389         }
10390         unregister_netdevice_many(&dev_kill_list);
10391         rtnl_unlock();
10392 }
10393
10394 static struct pernet_operations __net_initdata default_device_ops = {
10395         .exit = default_device_exit,
10396         .exit_batch = default_device_exit_batch,
10397 };
10398
10399 /*
10400  *      Initialize the DEV module. At boot time this walks the device list and
10401  *      unhooks any devices that fail to initialise (normally hardware not
10402  *      present) and leaves us with a valid list of present and active devices.
10403  *
10404  */
10405
10406 /*
10407  *       This is called single threaded during boot, so no need
10408  *       to take the rtnl semaphore.
10409  */
10410 static int __init net_dev_init(void)
10411 {
10412         int i, rc = -ENOMEM;
10413
10414         BUG_ON(!dev_boot_phase);
10415
10416         if (dev_proc_init())
10417                 goto out;
10418
10419         if (netdev_kobject_init())
10420                 goto out;
10421
10422         INIT_LIST_HEAD(&ptype_all);
10423         for (i = 0; i < PTYPE_HASH_SIZE; i++)
10424                 INIT_LIST_HEAD(&ptype_base[i]);
10425
10426         INIT_LIST_HEAD(&offload_base);
10427
10428         if (register_pernet_subsys(&netdev_net_ops))
10429                 goto out;
10430
10431         /*
10432          *      Initialise the packet receive queues.
10433          */
10434
10435         for_each_possible_cpu(i) {
10436                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10437                 struct softnet_data *sd = &per_cpu(softnet_data, i);
10438
10439                 INIT_WORK(flush, flush_backlog);
10440
10441                 skb_queue_head_init(&sd->input_pkt_queue);
10442                 skb_queue_head_init(&sd->process_queue);
10443 #ifdef CONFIG_XFRM_OFFLOAD
10444                 skb_queue_head_init(&sd->xfrm_backlog);
10445 #endif
10446                 INIT_LIST_HEAD(&sd->poll_list);
10447                 sd->output_queue_tailp = &sd->output_queue;
10448 #ifdef CONFIG_RPS
10449                 sd->csd.func = rps_trigger_softirq;
10450                 sd->csd.info = sd;
10451                 sd->cpu = i;
10452 #endif
10453
10454                 init_gro_hash(&sd->backlog);
10455                 sd->backlog.poll = process_backlog;
10456                 sd->backlog.weight = weight_p;
10457         }
10458
10459         dev_boot_phase = 0;
10460
10461         /* The loopback device is special if any other network devices
10462          * is present in a network namespace the loopback device must
10463          * be present. Since we now dynamically allocate and free the
10464          * loopback device ensure this invariant is maintained by
10465          * keeping the loopback device as the first device on the
10466          * list of network devices.  Ensuring the loopback devices
10467          * is the first device that appears and the last network device
10468          * that disappears.
10469          */
10470         if (register_pernet_device(&loopback_net_ops))
10471                 goto out;
10472
10473         if (register_pernet_device(&default_device_ops))
10474                 goto out;
10475
10476         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10477         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10478
10479         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10480                                        NULL, dev_cpu_dead);
10481         WARN_ON(rc < 0);
10482         rc = 0;
10483 out:
10484         return rc;
10485 }
10486
10487 subsys_initcall(net_dev_init);