]> asedeno.scripts.mit.edu Git - linux.git/blob - net/core/dev.c
fcddccb6be41e028c3da53e4e07d831f1e5d075f
[linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;       /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166                                          struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static seqcount_t devnet_rename_seq;
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222         spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229         spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236         struct net *net = dev_net(dev);
237
238         ASSERT_RTNL();
239
240         write_lock_bh(&dev_base_lock);
241         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243         hlist_add_head_rcu(&dev->index_hlist,
244                            dev_index_hash(net, dev->ifindex));
245         write_unlock_bh(&dev_base_lock);
246
247         dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255         ASSERT_RTNL();
256
257         /* Unlink dev from the device chain */
258         write_lock_bh(&dev_base_lock);
259         list_del_rcu(&dev->dev_list);
260         hlist_del_rcu(&dev->name_hlist);
261         hlist_del_rcu(&dev->index_hlist);
262         write_unlock_bh(&dev_base_lock);
263
264         dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268  *      Our notifier list
269  */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274  *      Device drivers call our routines to queue packets here. We empty the
275  *      queue in the local softnet handler.
276  */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303 static const char *const netdev_lock_name[] = {
304         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325         int i;
326
327         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328                 if (netdev_lock_type[i] == dev_type)
329                         return i;
330         /* the last key is used by default */
331         return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335                                                  unsigned short dev_type)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev_type);
340         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341                                    netdev_lock_name[i]);
342 }
343
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346         int i;
347
348         i = netdev_lock_pos(dev->type);
349         lockdep_set_class_and_name(&dev->addr_list_lock,
350                                    &netdev_addr_lock_key[i],
351                                    netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355                                                  unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362
363 /*******************************************************************************
364  *
365  *              Protocol management and registration routines
366  *
367  *******************************************************************************/
368
369
370 /*
371  *      Add a protocol ID to the list. Now that the input handler is
372  *      smarter we can dispense with all the messy stuff that used to be
373  *      here.
374  *
375  *      BEWARE!!! Protocol handlers, mangling input packets,
376  *      MUST BE last in hash buckets and checking protocol handlers
377  *      MUST start from promiscuous ptype_all chain in net_bh.
378  *      It is true now, do not change it.
379  *      Explanation follows: if protocol handler, mangling packet, will
380  *      be the first on list, it is not able to sense, that packet
381  *      is cloned and should be copied-on-write, so that it will
382  *      change it and subsequent readers will get broken packet.
383  *                                                      --ANK (980803)
384  */
385
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388         if (pt->type == htons(ETH_P_ALL))
389                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390         else
391                 return pt->dev ? &pt->dev->ptype_specific :
392                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394
395 /**
396  *      dev_add_pack - add packet handler
397  *      @pt: packet type declaration
398  *
399  *      Add a protocol handler to the networking stack. The passed &packet_type
400  *      is linked into kernel lists and may not be freed until it has been
401  *      removed from the kernel lists.
402  *
403  *      This call does not sleep therefore it can not
404  *      guarantee all CPU's that are in middle of receiving packets
405  *      will see the new packet type (until the next received packet).
406  */
407
408 void dev_add_pack(struct packet_type *pt)
409 {
410         struct list_head *head = ptype_head(pt);
411
412         spin_lock(&ptype_lock);
413         list_add_rcu(&pt->list, head);
414         spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417
418 /**
419  *      __dev_remove_pack        - remove packet handler
420  *      @pt: packet type declaration
421  *
422  *      Remove a protocol handler that was previously added to the kernel
423  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *      from the kernel lists and can be freed or reused once this function
425  *      returns.
426  *
427  *      The packet type might still be in use by receivers
428  *      and must not be freed until after all the CPU's have gone
429  *      through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433         struct list_head *head = ptype_head(pt);
434         struct packet_type *pt1;
435
436         spin_lock(&ptype_lock);
437
438         list_for_each_entry(pt1, head, list) {
439                 if (pt == pt1) {
440                         list_del_rcu(&pt->list);
441                         goto out;
442                 }
443         }
444
445         pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447         spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450
451 /**
452  *      dev_remove_pack  - remove packet handler
453  *      @pt: packet type declaration
454  *
455  *      Remove a protocol handler that was previously added to the kernel
456  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *      from the kernel lists and can be freed or reused once this function
458  *      returns.
459  *
460  *      This call sleeps to guarantee that no CPU is looking at the packet
461  *      type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465         __dev_remove_pack(pt);
466
467         synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470
471
472 /**
473  *      dev_add_offload - register offload handlers
474  *      @po: protocol offload declaration
475  *
476  *      Add protocol offload handlers to the networking stack. The passed
477  *      &proto_offload is linked into kernel lists and may not be freed until
478  *      it has been removed from the kernel lists.
479  *
480  *      This call does not sleep therefore it can not
481  *      guarantee all CPU's that are in middle of receiving packets
482  *      will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486         struct packet_offload *elem;
487
488         spin_lock(&offload_lock);
489         list_for_each_entry(elem, &offload_base, list) {
490                 if (po->priority < elem->priority)
491                         break;
492         }
493         list_add_rcu(&po->list, elem->list.prev);
494         spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499  *      __dev_remove_offload     - remove offload handler
500  *      @po: packet offload declaration
501  *
502  *      Remove a protocol offload handler that was previously added to the
503  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *      is removed from the kernel lists and can be freed or reused once this
505  *      function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *      and must not be freed until after all the CPU's have gone
509  *      through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513         struct list_head *head = &offload_base;
514         struct packet_offload *po1;
515
516         spin_lock(&offload_lock);
517
518         list_for_each_entry(po1, head, list) {
519                 if (po == po1) {
520                         list_del_rcu(&po->list);
521                         goto out;
522                 }
523         }
524
525         pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527         spin_unlock(&offload_lock);
528 }
529
530 /**
531  *      dev_remove_offload       - remove packet offload handler
532  *      @po: packet offload declaration
533  *
534  *      Remove a packet offload handler that was previously added to the kernel
535  *      offload handlers by dev_add_offload(). The passed &offload_type is
536  *      removed from the kernel lists and can be freed or reused once this
537  *      function returns.
538  *
539  *      This call sleeps to guarantee that no CPU is looking at the packet
540  *      type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544         __dev_remove_offload(po);
545
546         synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549
550 /******************************************************************************
551  *
552  *                    Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559 /**
560  *      netdev_boot_setup_add   - add new setup entry
561  *      @name: name of the device
562  *      @map: configured settings for the device
563  *
564  *      Adds new setup entry to the dev_boot_setup list.  The function
565  *      returns 0 on error and 1 on success.  This is a generic routine to
566  *      all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570         struct netdev_boot_setup *s;
571         int i;
572
573         s = dev_boot_setup;
574         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576                         memset(s[i].name, 0, sizeof(s[i].name));
577                         strlcpy(s[i].name, name, IFNAMSIZ);
578                         memcpy(&s[i].map, map, sizeof(s[i].map));
579                         break;
580                 }
581         }
582
583         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585
586 /**
587  * netdev_boot_setup_check      - check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597         struct netdev_boot_setup *s = dev_boot_setup;
598         int i;
599
600         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602                     !strcmp(dev->name, s[i].name)) {
603                         dev->irq = s[i].map.irq;
604                         dev->base_addr = s[i].map.base_addr;
605                         dev->mem_start = s[i].map.mem_start;
606                         dev->mem_end = s[i].map.mem_end;
607                         return 1;
608                 }
609         }
610         return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615 /**
616  * netdev_boot_base     - get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627         const struct netdev_boot_setup *s = dev_boot_setup;
628         char name[IFNAMSIZ];
629         int i;
630
631         sprintf(name, "%s%d", prefix, unit);
632
633         /*
634          * If device already registered then return base of 1
635          * to indicate not to probe for this interface
636          */
637         if (__dev_get_by_name(&init_net, name))
638                 return 1;
639
640         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641                 if (!strcmp(name, s[i].name))
642                         return s[i].map.base_addr;
643         return 0;
644 }
645
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651         int ints[5];
652         struct ifmap map;
653
654         str = get_options(str, ARRAY_SIZE(ints), ints);
655         if (!str || !*str)
656                 return 0;
657
658         /* Save settings */
659         memset(&map, 0, sizeof(map));
660         if (ints[0] > 0)
661                 map.irq = ints[1];
662         if (ints[0] > 1)
663                 map.base_addr = ints[2];
664         if (ints[0] > 2)
665                 map.mem_start = ints[3];
666         if (ints[0] > 3)
667                 map.mem_end = ints[4];
668
669         /* Add new entry to the list */
670         return netdev_boot_setup_add(str, &map);
671 }
672
673 __setup("netdev=", netdev_boot_setup);
674
675 /*******************************************************************************
676  *
677  *                          Device Interface Subroutines
678  *
679  *******************************************************************************/
680
681 /**
682  *      dev_get_iflink  - get 'iflink' value of a interface
683  *      @dev: targeted interface
684  *
685  *      Indicates the ifindex the interface is linked to.
686  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688
689 int dev_get_iflink(const struct net_device *dev)
690 {
691         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692                 return dev->netdev_ops->ndo_get_iflink(dev);
693
694         return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *      @dev: targeted interface
701  *      @skb: The packet.
702  *
703  *      For better visibility of tunnel traffic OVS needs to retrieve
704  *      egress tunnel information for a packet. Following API allows
705  *      user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709         struct ip_tunnel_info *info;
710
711         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712                 return -EINVAL;
713
714         info = skb_tunnel_info_unclone(skb);
715         if (!info)
716                 return -ENOMEM;
717         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718                 return -EINVAL;
719
720         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724 /**
725  *      __dev_get_by_name       - find a device by its name
726  *      @net: the applicable net namespace
727  *      @name: name to find
728  *
729  *      Find an interface by name. Must be called under RTNL semaphore
730  *      or @dev_base_lock. If the name is found a pointer to the device
731  *      is returned. If the name is not found then %NULL is returned. The
732  *      reference counters are not incremented so the caller must be
733  *      careful with locks.
734  */
735
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738         struct net_device *dev;
739         struct hlist_head *head = dev_name_hash(net, name);
740
741         hlist_for_each_entry(dev, head, name_hlist)
742                 if (!strncmp(dev->name, name, IFNAMSIZ))
743                         return dev;
744
745         return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748
749 /**
750  * dev_get_by_name_rcu  - find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763         struct net_device *dev;
764         struct hlist_head *head = dev_name_hash(net, name);
765
766         hlist_for_each_entry_rcu(dev, head, name_hlist)
767                 if (!strncmp(dev->name, name, IFNAMSIZ))
768                         return dev;
769
770         return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774 /**
775  *      dev_get_by_name         - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. This can be called from any
780  *      context and does its own locking. The returned handle has
781  *      the usage count incremented and the caller must use dev_put() to
782  *      release it when it is no longer needed. %NULL is returned if no
783  *      matching device is found.
784  */
785
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788         struct net_device *dev;
789
790         rcu_read_lock();
791         dev = dev_get_by_name_rcu(net, name);
792         if (dev)
793                 dev_hold(dev);
794         rcu_read_unlock();
795         return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800  *      __dev_get_by_index - find a device by its ifindex
801  *      @net: the applicable net namespace
802  *      @ifindex: index of device
803  *
804  *      Search for an interface by index. Returns %NULL if the device
805  *      is not found or a pointer to the device. The device has not
806  *      had its reference counter increased so the caller must be careful
807  *      about locking. The caller must hold either the RTNL semaphore
808  *      or @dev_base_lock.
809  */
810
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813         struct net_device *dev;
814         struct hlist_head *head = dev_index_hash(net, ifindex);
815
816         hlist_for_each_entry(dev, head, index_hlist)
817                 if (dev->ifindex == ifindex)
818                         return dev;
819
820         return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825  *      dev_get_by_index_rcu - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold RCU lock.
833  */
834
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837         struct net_device *dev;
838         struct hlist_head *head = dev_index_hash(net, ifindex);
839
840         hlist_for_each_entry_rcu(dev, head, index_hlist)
841                 if (dev->ifindex == ifindex)
842                         return dev;
843
844         return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849 /**
850  *      dev_get_by_index - find a device by its ifindex
851  *      @net: the applicable net namespace
852  *      @ifindex: index of device
853  *
854  *      Search for an interface by index. Returns NULL if the device
855  *      is not found or a pointer to the device. The device returned has
856  *      had a reference added and the pointer is safe until the user calls
857  *      dev_put to indicate they have finished with it.
858  */
859
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863
864         rcu_read_lock();
865         dev = dev_get_by_index_rcu(net, ifindex);
866         if (dev)
867                 dev_hold(dev);
868         rcu_read_unlock();
869         return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872
873 /**
874  *      dev_get_by_napi_id - find a device by napi_id
875  *      @napi_id: ID of the NAPI struct
876  *
877  *      Search for an interface by NAPI ID. Returns %NULL if the device
878  *      is not found or a pointer to the device. The device has not had
879  *      its reference counter increased so the caller must be careful
880  *      about locking. The caller must hold RCU lock.
881  */
882
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885         struct napi_struct *napi;
886
887         WARN_ON_ONCE(!rcu_read_lock_held());
888
889         if (napi_id < MIN_NAPI_ID)
890                 return NULL;
891
892         napi = napi_by_id(napi_id);
893
894         return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897
898 /**
899  *      netdev_get_name - get a netdevice name, knowing its ifindex.
900  *      @net: network namespace
901  *      @name: a pointer to the buffer where the name will be stored.
902  *      @ifindex: the ifindex of the interface to get the name from.
903  *
904  *      The use of raw_seqcount_begin() and cond_resched() before
905  *      retrying is required as we want to give the writers a chance
906  *      to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910         struct net_device *dev;
911         unsigned int seq;
912
913 retry:
914         seq = raw_seqcount_begin(&devnet_rename_seq);
915         rcu_read_lock();
916         dev = dev_get_by_index_rcu(net, ifindex);
917         if (!dev) {
918                 rcu_read_unlock();
919                 return -ENODEV;
920         }
921
922         strcpy(name, dev->name);
923         rcu_read_unlock();
924         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925                 cond_resched();
926                 goto retry;
927         }
928
929         return 0;
930 }
931
932 /**
933  *      dev_getbyhwaddr_rcu - find a device by its hardware address
934  *      @net: the applicable net namespace
935  *      @type: media type of device
936  *      @ha: hardware address
937  *
938  *      Search for an interface by MAC address. Returns NULL if the device
939  *      is not found or a pointer to the device.
940  *      The caller must hold RCU or RTNL.
941  *      The returned device has not had its ref count increased
942  *      and the caller must therefore be careful about locking
943  *
944  */
945
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947                                        const char *ha)
948 {
949         struct net_device *dev;
950
951         for_each_netdev_rcu(net, dev)
952                 if (dev->type == type &&
953                     !memcmp(dev->dev_addr, ha, dev->addr_len))
954                         return dev;
955
956         return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962         struct net_device *dev;
963
964         ASSERT_RTNL();
965         for_each_netdev(net, dev)
966                 if (dev->type == type)
967                         return dev;
968
969         return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975         struct net_device *dev, *ret = NULL;
976
977         rcu_read_lock();
978         for_each_netdev_rcu(net, dev)
979                 if (dev->type == type) {
980                         dev_hold(dev);
981                         ret = dev;
982                         break;
983                 }
984         rcu_read_unlock();
985         return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989 /**
990  *      __dev_get_by_flags - find any device with given flags
991  *      @net: the applicable net namespace
992  *      @if_flags: IFF_* values
993  *      @mask: bitmask of bits in if_flags to check
994  *
995  *      Search for any interface with the given flags. Returns NULL if a device
996  *      is not found or a pointer to the device. Must be called inside
997  *      rtnl_lock(), and result refcount is unchanged.
998  */
999
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001                                       unsigned short mask)
1002 {
1003         struct net_device *dev, *ret;
1004
1005         ASSERT_RTNL();
1006
1007         ret = NULL;
1008         for_each_netdev(net, dev) {
1009                 if (((dev->flags ^ if_flags) & mask) == 0) {
1010                         ret = dev;
1011                         break;
1012                 }
1013         }
1014         return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018 /**
1019  *      dev_valid_name - check if name is okay for network device
1020  *      @name: name string
1021  *
1022  *      Network device names need to be valid file names to
1023  *      to allow sysfs to work.  We also disallow any kind of
1024  *      whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028         if (*name == '\0')
1029                 return false;
1030         if (strlen(name) >= IFNAMSIZ)
1031                 return false;
1032         if (!strcmp(name, ".") || !strcmp(name, ".."))
1033                 return false;
1034
1035         while (*name) {
1036                 if (*name == '/' || *name == ':' || isspace(*name))
1037                         return false;
1038                 name++;
1039         }
1040         return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043
1044 /**
1045  *      __dev_alloc_name - allocate a name for a device
1046  *      @net: network namespace to allocate the device name in
1047  *      @name: name format string
1048  *      @buf:  scratch buffer and result name string
1049  *
1050  *      Passed a format string - eg "lt%d" it will try and find a suitable
1051  *      id. It scans list of devices to build up a free map, then chooses
1052  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *      while allocating the name and adding the device in order to avoid
1054  *      duplicates.
1055  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *      Returns the number of the unit assigned or a negative errno code.
1057  */
1058
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061         int i = 0;
1062         const char *p;
1063         const int max_netdevices = 8*PAGE_SIZE;
1064         unsigned long *inuse;
1065         struct net_device *d;
1066
1067         p = strnchr(name, IFNAMSIZ-1, '%');
1068         if (p) {
1069                 /*
1070                  * Verify the string as this thing may have come from
1071                  * the user.  There must be either one "%d" and no other "%"
1072                  * characters.
1073                  */
1074                 if (p[1] != 'd' || strchr(p + 2, '%'))
1075                         return -EINVAL;
1076
1077                 /* Use one page as a bit array of possible slots */
1078                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1079                 if (!inuse)
1080                         return -ENOMEM;
1081
1082                 for_each_netdev(net, d) {
1083                         if (!sscanf(d->name, name, &i))
1084                                 continue;
1085                         if (i < 0 || i >= max_netdevices)
1086                                 continue;
1087
1088                         /*  avoid cases where sscanf is not exact inverse of printf */
1089                         snprintf(buf, IFNAMSIZ, name, i);
1090                         if (!strncmp(buf, d->name, IFNAMSIZ))
1091                                 set_bit(i, inuse);
1092                 }
1093
1094                 i = find_first_zero_bit(inuse, max_netdevices);
1095                 free_page((unsigned long) inuse);
1096         }
1097
1098         if (buf != name)
1099                 snprintf(buf, IFNAMSIZ, name, i);
1100         if (!__dev_get_by_name(net, buf))
1101                 return i;
1102
1103         /* It is possible to run out of possible slots
1104          * when the name is long and there isn't enough space left
1105          * for the digits, or if all bits are used.
1106          */
1107         return -ENFILE;
1108 }
1109
1110 /**
1111  *      dev_alloc_name - allocate a name for a device
1112  *      @dev: device
1113  *      @name: name format string
1114  *
1115  *      Passed a format string - eg "lt%d" it will try and find a suitable
1116  *      id. It scans list of devices to build up a free map, then chooses
1117  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1118  *      while allocating the name and adding the device in order to avoid
1119  *      duplicates.
1120  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1121  *      Returns the number of the unit assigned or a negative errno code.
1122  */
1123
1124 int dev_alloc_name(struct net_device *dev, const char *name)
1125 {
1126         char buf[IFNAMSIZ];
1127         struct net *net;
1128         int ret;
1129
1130         BUG_ON(!dev_net(dev));
1131         net = dev_net(dev);
1132         ret = __dev_alloc_name(net, name, buf);
1133         if (ret >= 0)
1134                 strlcpy(dev->name, buf, IFNAMSIZ);
1135         return ret;
1136 }
1137 EXPORT_SYMBOL(dev_alloc_name);
1138
1139 static int dev_alloc_name_ns(struct net *net,
1140                              struct net_device *dev,
1141                              const char *name)
1142 {
1143         char buf[IFNAMSIZ];
1144         int ret;
1145
1146         ret = __dev_alloc_name(net, name, buf);
1147         if (ret >= 0)
1148                 strlcpy(dev->name, buf, IFNAMSIZ);
1149         return ret;
1150 }
1151
1152 static int dev_get_valid_name(struct net *net,
1153                               struct net_device *dev,
1154                               const char *name)
1155 {
1156         BUG_ON(!net);
1157
1158         if (!dev_valid_name(name))
1159                 return -EINVAL;
1160
1161         if (strchr(name, '%'))
1162                 return dev_alloc_name_ns(net, dev, name);
1163         else if (__dev_get_by_name(net, name))
1164                 return -EEXIST;
1165         else if (dev->name != name)
1166                 strlcpy(dev->name, name, IFNAMSIZ);
1167
1168         return 0;
1169 }
1170
1171 /**
1172  *      dev_change_name - change name of a device
1173  *      @dev: device
1174  *      @newname: name (or format string) must be at least IFNAMSIZ
1175  *
1176  *      Change name of a device, can pass format strings "eth%d".
1177  *      for wildcarding.
1178  */
1179 int dev_change_name(struct net_device *dev, const char *newname)
1180 {
1181         unsigned char old_assign_type;
1182         char oldname[IFNAMSIZ];
1183         int err = 0;
1184         int ret;
1185         struct net *net;
1186
1187         ASSERT_RTNL();
1188         BUG_ON(!dev_net(dev));
1189
1190         net = dev_net(dev);
1191         if (dev->flags & IFF_UP)
1192                 return -EBUSY;
1193
1194         write_seqcount_begin(&devnet_rename_seq);
1195
1196         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1197                 write_seqcount_end(&devnet_rename_seq);
1198                 return 0;
1199         }
1200
1201         memcpy(oldname, dev->name, IFNAMSIZ);
1202
1203         err = dev_get_valid_name(net, dev, newname);
1204         if (err < 0) {
1205                 write_seqcount_end(&devnet_rename_seq);
1206                 return err;
1207         }
1208
1209         if (oldname[0] && !strchr(oldname, '%'))
1210                 netdev_info(dev, "renamed from %s\n", oldname);
1211
1212         old_assign_type = dev->name_assign_type;
1213         dev->name_assign_type = NET_NAME_RENAMED;
1214
1215 rollback:
1216         ret = device_rename(&dev->dev, dev->name);
1217         if (ret) {
1218                 memcpy(dev->name, oldname, IFNAMSIZ);
1219                 dev->name_assign_type = old_assign_type;
1220                 write_seqcount_end(&devnet_rename_seq);
1221                 return ret;
1222         }
1223
1224         write_seqcount_end(&devnet_rename_seq);
1225
1226         netdev_adjacent_rename_links(dev, oldname);
1227
1228         write_lock_bh(&dev_base_lock);
1229         hlist_del_rcu(&dev->name_hlist);
1230         write_unlock_bh(&dev_base_lock);
1231
1232         synchronize_rcu();
1233
1234         write_lock_bh(&dev_base_lock);
1235         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1236         write_unlock_bh(&dev_base_lock);
1237
1238         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1239         ret = notifier_to_errno(ret);
1240
1241         if (ret) {
1242                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1243                 if (err >= 0) {
1244                         err = ret;
1245                         write_seqcount_begin(&devnet_rename_seq);
1246                         memcpy(dev->name, oldname, IFNAMSIZ);
1247                         memcpy(oldname, newname, IFNAMSIZ);
1248                         dev->name_assign_type = old_assign_type;
1249                         old_assign_type = NET_NAME_RENAMED;
1250                         goto rollback;
1251                 } else {
1252                         pr_err("%s: name change rollback failed: %d\n",
1253                                dev->name, ret);
1254                 }
1255         }
1256
1257         return err;
1258 }
1259
1260 /**
1261  *      dev_set_alias - change ifalias of a device
1262  *      @dev: device
1263  *      @alias: name up to IFALIASZ
1264  *      @len: limit of bytes to copy from info
1265  *
1266  *      Set ifalias for a device,
1267  */
1268 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1269 {
1270         struct dev_ifalias *new_alias = NULL;
1271
1272         if (len >= IFALIASZ)
1273                 return -EINVAL;
1274
1275         if (len) {
1276                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1277                 if (!new_alias)
1278                         return -ENOMEM;
1279
1280                 memcpy(new_alias->ifalias, alias, len);
1281                 new_alias->ifalias[len] = 0;
1282         }
1283
1284         mutex_lock(&ifalias_mutex);
1285         rcu_swap_protected(dev->ifalias, new_alias,
1286                            mutex_is_locked(&ifalias_mutex));
1287         mutex_unlock(&ifalias_mutex);
1288
1289         if (new_alias)
1290                 kfree_rcu(new_alias, rcuhead);
1291
1292         return len;
1293 }
1294
1295 /**
1296  *      dev_get_alias - get ifalias of a device
1297  *      @dev: device
1298  *      @name: buffer to store name of ifalias
1299  *      @len: size of buffer
1300  *
1301  *      get ifalias for a device.  Caller must make sure dev cannot go
1302  *      away,  e.g. rcu read lock or own a reference count to device.
1303  */
1304 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1305 {
1306         const struct dev_ifalias *alias;
1307         int ret = 0;
1308
1309         rcu_read_lock();
1310         alias = rcu_dereference(dev->ifalias);
1311         if (alias)
1312                 ret = snprintf(name, len, "%s", alias->ifalias);
1313         rcu_read_unlock();
1314
1315         return ret;
1316 }
1317
1318 /**
1319  *      netdev_features_change - device changes features
1320  *      @dev: device to cause notification
1321  *
1322  *      Called to indicate a device has changed features.
1323  */
1324 void netdev_features_change(struct net_device *dev)
1325 {
1326         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1327 }
1328 EXPORT_SYMBOL(netdev_features_change);
1329
1330 /**
1331  *      netdev_state_change - device changes state
1332  *      @dev: device to cause notification
1333  *
1334  *      Called to indicate a device has changed state. This function calls
1335  *      the notifier chains for netdev_chain and sends a NEWLINK message
1336  *      to the routing socket.
1337  */
1338 void netdev_state_change(struct net_device *dev)
1339 {
1340         if (dev->flags & IFF_UP) {
1341                 struct netdev_notifier_change_info change_info = {
1342                         .info.dev = dev,
1343                 };
1344
1345                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1346                                               &change_info.info);
1347                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1348         }
1349 }
1350 EXPORT_SYMBOL(netdev_state_change);
1351
1352 /**
1353  * netdev_notify_peers - notify network peers about existence of @dev
1354  * @dev: network device
1355  *
1356  * Generate traffic such that interested network peers are aware of
1357  * @dev, such as by generating a gratuitous ARP. This may be used when
1358  * a device wants to inform the rest of the network about some sort of
1359  * reconfiguration such as a failover event or virtual machine
1360  * migration.
1361  */
1362 void netdev_notify_peers(struct net_device *dev)
1363 {
1364         rtnl_lock();
1365         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1366         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1367         rtnl_unlock();
1368 }
1369 EXPORT_SYMBOL(netdev_notify_peers);
1370
1371 static int __dev_open(struct net_device *dev)
1372 {
1373         const struct net_device_ops *ops = dev->netdev_ops;
1374         int ret;
1375
1376         ASSERT_RTNL();
1377
1378         if (!netif_device_present(dev))
1379                 return -ENODEV;
1380
1381         /* Block netpoll from trying to do any rx path servicing.
1382          * If we don't do this there is a chance ndo_poll_controller
1383          * or ndo_poll may be running while we open the device
1384          */
1385         netpoll_poll_disable(dev);
1386
1387         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1388         ret = notifier_to_errno(ret);
1389         if (ret)
1390                 return ret;
1391
1392         set_bit(__LINK_STATE_START, &dev->state);
1393
1394         if (ops->ndo_validate_addr)
1395                 ret = ops->ndo_validate_addr(dev);
1396
1397         if (!ret && ops->ndo_open)
1398                 ret = ops->ndo_open(dev);
1399
1400         netpoll_poll_enable(dev);
1401
1402         if (ret)
1403                 clear_bit(__LINK_STATE_START, &dev->state);
1404         else {
1405                 dev->flags |= IFF_UP;
1406                 dev_set_rx_mode(dev);
1407                 dev_activate(dev);
1408                 add_device_randomness(dev->dev_addr, dev->addr_len);
1409         }
1410
1411         return ret;
1412 }
1413
1414 /**
1415  *      dev_open        - prepare an interface for use.
1416  *      @dev:   device to open
1417  *
1418  *      Takes a device from down to up state. The device's private open
1419  *      function is invoked and then the multicast lists are loaded. Finally
1420  *      the device is moved into the up state and a %NETDEV_UP message is
1421  *      sent to the netdev notifier chain.
1422  *
1423  *      Calling this function on an active interface is a nop. On a failure
1424  *      a negative errno code is returned.
1425  */
1426 int dev_open(struct net_device *dev)
1427 {
1428         int ret;
1429
1430         if (dev->flags & IFF_UP)
1431                 return 0;
1432
1433         ret = __dev_open(dev);
1434         if (ret < 0)
1435                 return ret;
1436
1437         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1438         call_netdevice_notifiers(NETDEV_UP, dev);
1439
1440         return ret;
1441 }
1442 EXPORT_SYMBOL(dev_open);
1443
1444 static void __dev_close_many(struct list_head *head)
1445 {
1446         struct net_device *dev;
1447
1448         ASSERT_RTNL();
1449         might_sleep();
1450
1451         list_for_each_entry(dev, head, close_list) {
1452                 /* Temporarily disable netpoll until the interface is down */
1453                 netpoll_poll_disable(dev);
1454
1455                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1456
1457                 clear_bit(__LINK_STATE_START, &dev->state);
1458
1459                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1460                  * can be even on different cpu. So just clear netif_running().
1461                  *
1462                  * dev->stop() will invoke napi_disable() on all of it's
1463                  * napi_struct instances on this device.
1464                  */
1465                 smp_mb__after_atomic(); /* Commit netif_running(). */
1466         }
1467
1468         dev_deactivate_many(head);
1469
1470         list_for_each_entry(dev, head, close_list) {
1471                 const struct net_device_ops *ops = dev->netdev_ops;
1472
1473                 /*
1474                  *      Call the device specific close. This cannot fail.
1475                  *      Only if device is UP
1476                  *
1477                  *      We allow it to be called even after a DETACH hot-plug
1478                  *      event.
1479                  */
1480                 if (ops->ndo_stop)
1481                         ops->ndo_stop(dev);
1482
1483                 dev->flags &= ~IFF_UP;
1484                 netpoll_poll_enable(dev);
1485         }
1486 }
1487
1488 static void __dev_close(struct net_device *dev)
1489 {
1490         LIST_HEAD(single);
1491
1492         list_add(&dev->close_list, &single);
1493         __dev_close_many(&single);
1494         list_del(&single);
1495 }
1496
1497 void dev_close_many(struct list_head *head, bool unlink)
1498 {
1499         struct net_device *dev, *tmp;
1500
1501         /* Remove the devices that don't need to be closed */
1502         list_for_each_entry_safe(dev, tmp, head, close_list)
1503                 if (!(dev->flags & IFF_UP))
1504                         list_del_init(&dev->close_list);
1505
1506         __dev_close_many(head);
1507
1508         list_for_each_entry_safe(dev, tmp, head, close_list) {
1509                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1510                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1511                 if (unlink)
1512                         list_del_init(&dev->close_list);
1513         }
1514 }
1515 EXPORT_SYMBOL(dev_close_many);
1516
1517 /**
1518  *      dev_close - shutdown an interface.
1519  *      @dev: device to shutdown
1520  *
1521  *      This function moves an active device into down state. A
1522  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1523  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1524  *      chain.
1525  */
1526 void dev_close(struct net_device *dev)
1527 {
1528         if (dev->flags & IFF_UP) {
1529                 LIST_HEAD(single);
1530
1531                 list_add(&dev->close_list, &single);
1532                 dev_close_many(&single, true);
1533                 list_del(&single);
1534         }
1535 }
1536 EXPORT_SYMBOL(dev_close);
1537
1538
1539 /**
1540  *      dev_disable_lro - disable Large Receive Offload on a device
1541  *      @dev: device
1542  *
1543  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1544  *      called under RTNL.  This is needed if received packets may be
1545  *      forwarded to another interface.
1546  */
1547 void dev_disable_lro(struct net_device *dev)
1548 {
1549         struct net_device *lower_dev;
1550         struct list_head *iter;
1551
1552         dev->wanted_features &= ~NETIF_F_LRO;
1553         netdev_update_features(dev);
1554
1555         if (unlikely(dev->features & NETIF_F_LRO))
1556                 netdev_WARN(dev, "failed to disable LRO!\n");
1557
1558         netdev_for_each_lower_dev(dev, lower_dev, iter)
1559                 dev_disable_lro(lower_dev);
1560 }
1561 EXPORT_SYMBOL(dev_disable_lro);
1562
1563 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1564                                    struct net_device *dev)
1565 {
1566         struct netdev_notifier_info info = {
1567                 .dev = dev,
1568         };
1569
1570         return nb->notifier_call(nb, val, &info);
1571 }
1572
1573 static int dev_boot_phase = 1;
1574
1575 /**
1576  * register_netdevice_notifier - register a network notifier block
1577  * @nb: notifier
1578  *
1579  * Register a notifier to be called when network device events occur.
1580  * The notifier passed is linked into the kernel structures and must
1581  * not be reused until it has been unregistered. A negative errno code
1582  * is returned on a failure.
1583  *
1584  * When registered all registration and up events are replayed
1585  * to the new notifier to allow device to have a race free
1586  * view of the network device list.
1587  */
1588
1589 int register_netdevice_notifier(struct notifier_block *nb)
1590 {
1591         struct net_device *dev;
1592         struct net_device *last;
1593         struct net *net;
1594         int err;
1595
1596         rtnl_lock();
1597         err = raw_notifier_chain_register(&netdev_chain, nb);
1598         if (err)
1599                 goto unlock;
1600         if (dev_boot_phase)
1601                 goto unlock;
1602         for_each_net(net) {
1603                 for_each_netdev(net, dev) {
1604                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1605                         err = notifier_to_errno(err);
1606                         if (err)
1607                                 goto rollback;
1608
1609                         if (!(dev->flags & IFF_UP))
1610                                 continue;
1611
1612                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1613                 }
1614         }
1615
1616 unlock:
1617         rtnl_unlock();
1618         return err;
1619
1620 rollback:
1621         last = dev;
1622         for_each_net(net) {
1623                 for_each_netdev(net, dev) {
1624                         if (dev == last)
1625                                 goto outroll;
1626
1627                         if (dev->flags & IFF_UP) {
1628                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1629                                                         dev);
1630                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1631                         }
1632                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1633                 }
1634         }
1635
1636 outroll:
1637         raw_notifier_chain_unregister(&netdev_chain, nb);
1638         goto unlock;
1639 }
1640 EXPORT_SYMBOL(register_netdevice_notifier);
1641
1642 /**
1643  * unregister_netdevice_notifier - unregister a network notifier block
1644  * @nb: notifier
1645  *
1646  * Unregister a notifier previously registered by
1647  * register_netdevice_notifier(). The notifier is unlinked into the
1648  * kernel structures and may then be reused. A negative errno code
1649  * is returned on a failure.
1650  *
1651  * After unregistering unregister and down device events are synthesized
1652  * for all devices on the device list to the removed notifier to remove
1653  * the need for special case cleanup code.
1654  */
1655
1656 int unregister_netdevice_notifier(struct notifier_block *nb)
1657 {
1658         struct net_device *dev;
1659         struct net *net;
1660         int err;
1661
1662         rtnl_lock();
1663         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1664         if (err)
1665                 goto unlock;
1666
1667         for_each_net(net) {
1668                 for_each_netdev(net, dev) {
1669                         if (dev->flags & IFF_UP) {
1670                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1671                                                         dev);
1672                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1673                         }
1674                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1675                 }
1676         }
1677 unlock:
1678         rtnl_unlock();
1679         return err;
1680 }
1681 EXPORT_SYMBOL(unregister_netdevice_notifier);
1682
1683 /**
1684  *      call_netdevice_notifiers_info - call all network notifier blocks
1685  *      @val: value passed unmodified to notifier function
1686  *      @dev: net_device pointer passed unmodified to notifier function
1687  *      @info: notifier information data
1688  *
1689  *      Call all network notifier blocks.  Parameters and return value
1690  *      are as for raw_notifier_call_chain().
1691  */
1692
1693 static int call_netdevice_notifiers_info(unsigned long val,
1694                                          struct netdev_notifier_info *info)
1695 {
1696         ASSERT_RTNL();
1697         return raw_notifier_call_chain(&netdev_chain, val, info);
1698 }
1699
1700 /**
1701  *      call_netdevice_notifiers - call all network notifier blocks
1702  *      @val: value passed unmodified to notifier function
1703  *      @dev: net_device pointer passed unmodified to notifier function
1704  *
1705  *      Call all network notifier blocks.  Parameters and return value
1706  *      are as for raw_notifier_call_chain().
1707  */
1708
1709 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1710 {
1711         struct netdev_notifier_info info = {
1712                 .dev = dev,
1713         };
1714
1715         return call_netdevice_notifiers_info(val, &info);
1716 }
1717 EXPORT_SYMBOL(call_netdevice_notifiers);
1718
1719 #ifdef CONFIG_NET_INGRESS
1720 static struct static_key ingress_needed __read_mostly;
1721
1722 void net_inc_ingress_queue(void)
1723 {
1724         static_key_slow_inc(&ingress_needed);
1725 }
1726 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1727
1728 void net_dec_ingress_queue(void)
1729 {
1730         static_key_slow_dec(&ingress_needed);
1731 }
1732 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1733 #endif
1734
1735 #ifdef CONFIG_NET_EGRESS
1736 static struct static_key egress_needed __read_mostly;
1737
1738 void net_inc_egress_queue(void)
1739 {
1740         static_key_slow_inc(&egress_needed);
1741 }
1742 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1743
1744 void net_dec_egress_queue(void)
1745 {
1746         static_key_slow_dec(&egress_needed);
1747 }
1748 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1749 #endif
1750
1751 static struct static_key netstamp_needed __read_mostly;
1752 #ifdef HAVE_JUMP_LABEL
1753 static atomic_t netstamp_needed_deferred;
1754 static atomic_t netstamp_wanted;
1755 static void netstamp_clear(struct work_struct *work)
1756 {
1757         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1758         int wanted;
1759
1760         wanted = atomic_add_return(deferred, &netstamp_wanted);
1761         if (wanted > 0)
1762                 static_key_enable(&netstamp_needed);
1763         else
1764                 static_key_disable(&netstamp_needed);
1765 }
1766 static DECLARE_WORK(netstamp_work, netstamp_clear);
1767 #endif
1768
1769 void net_enable_timestamp(void)
1770 {
1771 #ifdef HAVE_JUMP_LABEL
1772         int wanted;
1773
1774         while (1) {
1775                 wanted = atomic_read(&netstamp_wanted);
1776                 if (wanted <= 0)
1777                         break;
1778                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1779                         return;
1780         }
1781         atomic_inc(&netstamp_needed_deferred);
1782         schedule_work(&netstamp_work);
1783 #else
1784         static_key_slow_inc(&netstamp_needed);
1785 #endif
1786 }
1787 EXPORT_SYMBOL(net_enable_timestamp);
1788
1789 void net_disable_timestamp(void)
1790 {
1791 #ifdef HAVE_JUMP_LABEL
1792         int wanted;
1793
1794         while (1) {
1795                 wanted = atomic_read(&netstamp_wanted);
1796                 if (wanted <= 1)
1797                         break;
1798                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1799                         return;
1800         }
1801         atomic_dec(&netstamp_needed_deferred);
1802         schedule_work(&netstamp_work);
1803 #else
1804         static_key_slow_dec(&netstamp_needed);
1805 #endif
1806 }
1807 EXPORT_SYMBOL(net_disable_timestamp);
1808
1809 static inline void net_timestamp_set(struct sk_buff *skb)
1810 {
1811         skb->tstamp = 0;
1812         if (static_key_false(&netstamp_needed))
1813                 __net_timestamp(skb);
1814 }
1815
1816 #define net_timestamp_check(COND, SKB)                  \
1817         if (static_key_false(&netstamp_needed)) {               \
1818                 if ((COND) && !(SKB)->tstamp)   \
1819                         __net_timestamp(SKB);           \
1820         }                                               \
1821
1822 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1823 {
1824         unsigned int len;
1825
1826         if (!(dev->flags & IFF_UP))
1827                 return false;
1828
1829         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1830         if (skb->len <= len)
1831                 return true;
1832
1833         /* if TSO is enabled, we don't care about the length as the packet
1834          * could be forwarded without being segmented before
1835          */
1836         if (skb_is_gso(skb))
1837                 return true;
1838
1839         return false;
1840 }
1841 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1842
1843 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1844 {
1845         int ret = ____dev_forward_skb(dev, skb);
1846
1847         if (likely(!ret)) {
1848                 skb->protocol = eth_type_trans(skb, dev);
1849                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1850         }
1851
1852         return ret;
1853 }
1854 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1855
1856 /**
1857  * dev_forward_skb - loopback an skb to another netif
1858  *
1859  * @dev: destination network device
1860  * @skb: buffer to forward
1861  *
1862  * return values:
1863  *      NET_RX_SUCCESS  (no congestion)
1864  *      NET_RX_DROP     (packet was dropped, but freed)
1865  *
1866  * dev_forward_skb can be used for injecting an skb from the
1867  * start_xmit function of one device into the receive queue
1868  * of another device.
1869  *
1870  * The receiving device may be in another namespace, so
1871  * we have to clear all information in the skb that could
1872  * impact namespace isolation.
1873  */
1874 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1875 {
1876         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1877 }
1878 EXPORT_SYMBOL_GPL(dev_forward_skb);
1879
1880 static inline int deliver_skb(struct sk_buff *skb,
1881                               struct packet_type *pt_prev,
1882                               struct net_device *orig_dev)
1883 {
1884         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1885                 return -ENOMEM;
1886         refcount_inc(&skb->users);
1887         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1888 }
1889
1890 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1891                                           struct packet_type **pt,
1892                                           struct net_device *orig_dev,
1893                                           __be16 type,
1894                                           struct list_head *ptype_list)
1895 {
1896         struct packet_type *ptype, *pt_prev = *pt;
1897
1898         list_for_each_entry_rcu(ptype, ptype_list, list) {
1899                 if (ptype->type != type)
1900                         continue;
1901                 if (pt_prev)
1902                         deliver_skb(skb, pt_prev, orig_dev);
1903                 pt_prev = ptype;
1904         }
1905         *pt = pt_prev;
1906 }
1907
1908 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1909 {
1910         if (!ptype->af_packet_priv || !skb->sk)
1911                 return false;
1912
1913         if (ptype->id_match)
1914                 return ptype->id_match(ptype, skb->sk);
1915         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1916                 return true;
1917
1918         return false;
1919 }
1920
1921 /*
1922  *      Support routine. Sends outgoing frames to any network
1923  *      taps currently in use.
1924  */
1925
1926 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1927 {
1928         struct packet_type *ptype;
1929         struct sk_buff *skb2 = NULL;
1930         struct packet_type *pt_prev = NULL;
1931         struct list_head *ptype_list = &ptype_all;
1932
1933         rcu_read_lock();
1934 again:
1935         list_for_each_entry_rcu(ptype, ptype_list, list) {
1936                 /* Never send packets back to the socket
1937                  * they originated from - MvS (miquels@drinkel.ow.org)
1938                  */
1939                 if (skb_loop_sk(ptype, skb))
1940                         continue;
1941
1942                 if (pt_prev) {
1943                         deliver_skb(skb2, pt_prev, skb->dev);
1944                         pt_prev = ptype;
1945                         continue;
1946                 }
1947
1948                 /* need to clone skb, done only once */
1949                 skb2 = skb_clone(skb, GFP_ATOMIC);
1950                 if (!skb2)
1951                         goto out_unlock;
1952
1953                 net_timestamp_set(skb2);
1954
1955                 /* skb->nh should be correctly
1956                  * set by sender, so that the second statement is
1957                  * just protection against buggy protocols.
1958                  */
1959                 skb_reset_mac_header(skb2);
1960
1961                 if (skb_network_header(skb2) < skb2->data ||
1962                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1963                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1964                                              ntohs(skb2->protocol),
1965                                              dev->name);
1966                         skb_reset_network_header(skb2);
1967                 }
1968
1969                 skb2->transport_header = skb2->network_header;
1970                 skb2->pkt_type = PACKET_OUTGOING;
1971                 pt_prev = ptype;
1972         }
1973
1974         if (ptype_list == &ptype_all) {
1975                 ptype_list = &dev->ptype_all;
1976                 goto again;
1977         }
1978 out_unlock:
1979         if (pt_prev) {
1980                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1981                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1982                 else
1983                         kfree_skb(skb2);
1984         }
1985         rcu_read_unlock();
1986 }
1987 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1988
1989 /**
1990  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1991  * @dev: Network device
1992  * @txq: number of queues available
1993  *
1994  * If real_num_tx_queues is changed the tc mappings may no longer be
1995  * valid. To resolve this verify the tc mapping remains valid and if
1996  * not NULL the mapping. With no priorities mapping to this
1997  * offset/count pair it will no longer be used. In the worst case TC0
1998  * is invalid nothing can be done so disable priority mappings. If is
1999  * expected that drivers will fix this mapping if they can before
2000  * calling netif_set_real_num_tx_queues.
2001  */
2002 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2003 {
2004         int i;
2005         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2006
2007         /* If TC0 is invalidated disable TC mapping */
2008         if (tc->offset + tc->count > txq) {
2009                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2010                 dev->num_tc = 0;
2011                 return;
2012         }
2013
2014         /* Invalidated prio to tc mappings set to TC0 */
2015         for (i = 1; i < TC_BITMASK + 1; i++) {
2016                 int q = netdev_get_prio_tc_map(dev, i);
2017
2018                 tc = &dev->tc_to_txq[q];
2019                 if (tc->offset + tc->count > txq) {
2020                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2021                                 i, q);
2022                         netdev_set_prio_tc_map(dev, i, 0);
2023                 }
2024         }
2025 }
2026
2027 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2028 {
2029         if (dev->num_tc) {
2030                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2031                 int i;
2032
2033                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2034                         if ((txq - tc->offset) < tc->count)
2035                                 return i;
2036                 }
2037
2038                 return -1;
2039         }
2040
2041         return 0;
2042 }
2043
2044 #ifdef CONFIG_XPS
2045 static DEFINE_MUTEX(xps_map_mutex);
2046 #define xmap_dereference(P)             \
2047         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2048
2049 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2050                              int tci, u16 index)
2051 {
2052         struct xps_map *map = NULL;
2053         int pos;
2054
2055         if (dev_maps)
2056                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2057         if (!map)
2058                 return false;
2059
2060         for (pos = map->len; pos--;) {
2061                 if (map->queues[pos] != index)
2062                         continue;
2063
2064                 if (map->len > 1) {
2065                         map->queues[pos] = map->queues[--map->len];
2066                         break;
2067                 }
2068
2069                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2070                 kfree_rcu(map, rcu);
2071                 return false;
2072         }
2073
2074         return true;
2075 }
2076
2077 static bool remove_xps_queue_cpu(struct net_device *dev,
2078                                  struct xps_dev_maps *dev_maps,
2079                                  int cpu, u16 offset, u16 count)
2080 {
2081         int num_tc = dev->num_tc ? : 1;
2082         bool active = false;
2083         int tci;
2084
2085         for (tci = cpu * num_tc; num_tc--; tci++) {
2086                 int i, j;
2087
2088                 for (i = count, j = offset; i--; j++) {
2089                         if (!remove_xps_queue(dev_maps, cpu, j))
2090                                 break;
2091                 }
2092
2093                 active |= i < 0;
2094         }
2095
2096         return active;
2097 }
2098
2099 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2100                                    u16 count)
2101 {
2102         struct xps_dev_maps *dev_maps;
2103         int cpu, i;
2104         bool active = false;
2105
2106         mutex_lock(&xps_map_mutex);
2107         dev_maps = xmap_dereference(dev->xps_maps);
2108
2109         if (!dev_maps)
2110                 goto out_no_maps;
2111
2112         for_each_possible_cpu(cpu)
2113                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2114                                                offset, count);
2115
2116         if (!active) {
2117                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2118                 kfree_rcu(dev_maps, rcu);
2119         }
2120
2121         for (i = offset + (count - 1); count--; i--)
2122                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2123                                              NUMA_NO_NODE);
2124
2125 out_no_maps:
2126         mutex_unlock(&xps_map_mutex);
2127 }
2128
2129 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2130 {
2131         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2132 }
2133
2134 static struct xps_map *expand_xps_map(struct xps_map *map,
2135                                       int cpu, u16 index)
2136 {
2137         struct xps_map *new_map;
2138         int alloc_len = XPS_MIN_MAP_ALLOC;
2139         int i, pos;
2140
2141         for (pos = 0; map && pos < map->len; pos++) {
2142                 if (map->queues[pos] != index)
2143                         continue;
2144                 return map;
2145         }
2146
2147         /* Need to add queue to this CPU's existing map */
2148         if (map) {
2149                 if (pos < map->alloc_len)
2150                         return map;
2151
2152                 alloc_len = map->alloc_len * 2;
2153         }
2154
2155         /* Need to allocate new map to store queue on this CPU's map */
2156         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2157                                cpu_to_node(cpu));
2158         if (!new_map)
2159                 return NULL;
2160
2161         for (i = 0; i < pos; i++)
2162                 new_map->queues[i] = map->queues[i];
2163         new_map->alloc_len = alloc_len;
2164         new_map->len = pos;
2165
2166         return new_map;
2167 }
2168
2169 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2170                         u16 index)
2171 {
2172         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2173         int i, cpu, tci, numa_node_id = -2;
2174         int maps_sz, num_tc = 1, tc = 0;
2175         struct xps_map *map, *new_map;
2176         bool active = false;
2177
2178         if (dev->num_tc) {
2179                 num_tc = dev->num_tc;
2180                 tc = netdev_txq_to_tc(dev, index);
2181                 if (tc < 0)
2182                         return -EINVAL;
2183         }
2184
2185         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2186         if (maps_sz < L1_CACHE_BYTES)
2187                 maps_sz = L1_CACHE_BYTES;
2188
2189         mutex_lock(&xps_map_mutex);
2190
2191         dev_maps = xmap_dereference(dev->xps_maps);
2192
2193         /* allocate memory for queue storage */
2194         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2195                 if (!new_dev_maps)
2196                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2197                 if (!new_dev_maps) {
2198                         mutex_unlock(&xps_map_mutex);
2199                         return -ENOMEM;
2200                 }
2201
2202                 tci = cpu * num_tc + tc;
2203                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2204                                  NULL;
2205
2206                 map = expand_xps_map(map, cpu, index);
2207                 if (!map)
2208                         goto error;
2209
2210                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2211         }
2212
2213         if (!new_dev_maps)
2214                 goto out_no_new_maps;
2215
2216         for_each_possible_cpu(cpu) {
2217                 /* copy maps belonging to foreign traffic classes */
2218                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2219                         /* fill in the new device map from the old device map */
2220                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2221                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2222                 }
2223
2224                 /* We need to explicitly update tci as prevous loop
2225                  * could break out early if dev_maps is NULL.
2226                  */
2227                 tci = cpu * num_tc + tc;
2228
2229                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2230                         /* add queue to CPU maps */
2231                         int pos = 0;
2232
2233                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2234                         while ((pos < map->len) && (map->queues[pos] != index))
2235                                 pos++;
2236
2237                         if (pos == map->len)
2238                                 map->queues[map->len++] = index;
2239 #ifdef CONFIG_NUMA
2240                         if (numa_node_id == -2)
2241                                 numa_node_id = cpu_to_node(cpu);
2242                         else if (numa_node_id != cpu_to_node(cpu))
2243                                 numa_node_id = -1;
2244 #endif
2245                 } else if (dev_maps) {
2246                         /* fill in the new device map from the old device map */
2247                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2248                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2249                 }
2250
2251                 /* copy maps belonging to foreign traffic classes */
2252                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2253                         /* fill in the new device map from the old device map */
2254                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2255                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2256                 }
2257         }
2258
2259         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2260
2261         /* Cleanup old maps */
2262         if (!dev_maps)
2263                 goto out_no_old_maps;
2264
2265         for_each_possible_cpu(cpu) {
2266                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2267                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2268                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2269                         if (map && map != new_map)
2270                                 kfree_rcu(map, rcu);
2271                 }
2272         }
2273
2274         kfree_rcu(dev_maps, rcu);
2275
2276 out_no_old_maps:
2277         dev_maps = new_dev_maps;
2278         active = true;
2279
2280 out_no_new_maps:
2281         /* update Tx queue numa node */
2282         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2283                                      (numa_node_id >= 0) ? numa_node_id :
2284                                      NUMA_NO_NODE);
2285
2286         if (!dev_maps)
2287                 goto out_no_maps;
2288
2289         /* removes queue from unused CPUs */
2290         for_each_possible_cpu(cpu) {
2291                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2292                         active |= remove_xps_queue(dev_maps, tci, index);
2293                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2294                         active |= remove_xps_queue(dev_maps, tci, index);
2295                 for (i = num_tc - tc, tci++; --i; tci++)
2296                         active |= remove_xps_queue(dev_maps, tci, index);
2297         }
2298
2299         /* free map if not active */
2300         if (!active) {
2301                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2302                 kfree_rcu(dev_maps, rcu);
2303         }
2304
2305 out_no_maps:
2306         mutex_unlock(&xps_map_mutex);
2307
2308         return 0;
2309 error:
2310         /* remove any maps that we added */
2311         for_each_possible_cpu(cpu) {
2312                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2313                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2314                         map = dev_maps ?
2315                               xmap_dereference(dev_maps->cpu_map[tci]) :
2316                               NULL;
2317                         if (new_map && new_map != map)
2318                                 kfree(new_map);
2319                 }
2320         }
2321
2322         mutex_unlock(&xps_map_mutex);
2323
2324         kfree(new_dev_maps);
2325         return -ENOMEM;
2326 }
2327 EXPORT_SYMBOL(netif_set_xps_queue);
2328
2329 #endif
2330 void netdev_reset_tc(struct net_device *dev)
2331 {
2332 #ifdef CONFIG_XPS
2333         netif_reset_xps_queues_gt(dev, 0);
2334 #endif
2335         dev->num_tc = 0;
2336         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2337         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2338 }
2339 EXPORT_SYMBOL(netdev_reset_tc);
2340
2341 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2342 {
2343         if (tc >= dev->num_tc)
2344                 return -EINVAL;
2345
2346 #ifdef CONFIG_XPS
2347         netif_reset_xps_queues(dev, offset, count);
2348 #endif
2349         dev->tc_to_txq[tc].count = count;
2350         dev->tc_to_txq[tc].offset = offset;
2351         return 0;
2352 }
2353 EXPORT_SYMBOL(netdev_set_tc_queue);
2354
2355 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2356 {
2357         if (num_tc > TC_MAX_QUEUE)
2358                 return -EINVAL;
2359
2360 #ifdef CONFIG_XPS
2361         netif_reset_xps_queues_gt(dev, 0);
2362 #endif
2363         dev->num_tc = num_tc;
2364         return 0;
2365 }
2366 EXPORT_SYMBOL(netdev_set_num_tc);
2367
2368 /*
2369  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2370  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2371  */
2372 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2373 {
2374         int rc;
2375
2376         if (txq < 1 || txq > dev->num_tx_queues)
2377                 return -EINVAL;
2378
2379         if (dev->reg_state == NETREG_REGISTERED ||
2380             dev->reg_state == NETREG_UNREGISTERING) {
2381                 ASSERT_RTNL();
2382
2383                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2384                                                   txq);
2385                 if (rc)
2386                         return rc;
2387
2388                 if (dev->num_tc)
2389                         netif_setup_tc(dev, txq);
2390
2391                 if (txq < dev->real_num_tx_queues) {
2392                         qdisc_reset_all_tx_gt(dev, txq);
2393 #ifdef CONFIG_XPS
2394                         netif_reset_xps_queues_gt(dev, txq);
2395 #endif
2396                 }
2397         }
2398
2399         dev->real_num_tx_queues = txq;
2400         return 0;
2401 }
2402 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2403
2404 #ifdef CONFIG_SYSFS
2405 /**
2406  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2407  *      @dev: Network device
2408  *      @rxq: Actual number of RX queues
2409  *
2410  *      This must be called either with the rtnl_lock held or before
2411  *      registration of the net device.  Returns 0 on success, or a
2412  *      negative error code.  If called before registration, it always
2413  *      succeeds.
2414  */
2415 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2416 {
2417         int rc;
2418
2419         if (rxq < 1 || rxq > dev->num_rx_queues)
2420                 return -EINVAL;
2421
2422         if (dev->reg_state == NETREG_REGISTERED) {
2423                 ASSERT_RTNL();
2424
2425                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2426                                                   rxq);
2427                 if (rc)
2428                         return rc;
2429         }
2430
2431         dev->real_num_rx_queues = rxq;
2432         return 0;
2433 }
2434 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2435 #endif
2436
2437 /**
2438  * netif_get_num_default_rss_queues - default number of RSS queues
2439  *
2440  * This routine should set an upper limit on the number of RSS queues
2441  * used by default by multiqueue devices.
2442  */
2443 int netif_get_num_default_rss_queues(void)
2444 {
2445         return is_kdump_kernel() ?
2446                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2447 }
2448 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2449
2450 static void __netif_reschedule(struct Qdisc *q)
2451 {
2452         struct softnet_data *sd;
2453         unsigned long flags;
2454
2455         local_irq_save(flags);
2456         sd = this_cpu_ptr(&softnet_data);
2457         q->next_sched = NULL;
2458         *sd->output_queue_tailp = q;
2459         sd->output_queue_tailp = &q->next_sched;
2460         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461         local_irq_restore(flags);
2462 }
2463
2464 void __netif_schedule(struct Qdisc *q)
2465 {
2466         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2467                 __netif_reschedule(q);
2468 }
2469 EXPORT_SYMBOL(__netif_schedule);
2470
2471 struct dev_kfree_skb_cb {
2472         enum skb_free_reason reason;
2473 };
2474
2475 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2476 {
2477         return (struct dev_kfree_skb_cb *)skb->cb;
2478 }
2479
2480 void netif_schedule_queue(struct netdev_queue *txq)
2481 {
2482         rcu_read_lock();
2483         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2484                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2485
2486                 __netif_schedule(q);
2487         }
2488         rcu_read_unlock();
2489 }
2490 EXPORT_SYMBOL(netif_schedule_queue);
2491
2492 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2493 {
2494         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2495                 struct Qdisc *q;
2496
2497                 rcu_read_lock();
2498                 q = rcu_dereference(dev_queue->qdisc);
2499                 __netif_schedule(q);
2500                 rcu_read_unlock();
2501         }
2502 }
2503 EXPORT_SYMBOL(netif_tx_wake_queue);
2504
2505 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2506 {
2507         unsigned long flags;
2508
2509         if (unlikely(!skb))
2510                 return;
2511
2512         if (likely(refcount_read(&skb->users) == 1)) {
2513                 smp_rmb();
2514                 refcount_set(&skb->users, 0);
2515         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2516                 return;
2517         }
2518         get_kfree_skb_cb(skb)->reason = reason;
2519         local_irq_save(flags);
2520         skb->next = __this_cpu_read(softnet_data.completion_queue);
2521         __this_cpu_write(softnet_data.completion_queue, skb);
2522         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2523         local_irq_restore(flags);
2524 }
2525 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2526
2527 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2528 {
2529         if (in_irq() || irqs_disabled())
2530                 __dev_kfree_skb_irq(skb, reason);
2531         else
2532                 dev_kfree_skb(skb);
2533 }
2534 EXPORT_SYMBOL(__dev_kfree_skb_any);
2535
2536
2537 /**
2538  * netif_device_detach - mark device as removed
2539  * @dev: network device
2540  *
2541  * Mark device as removed from system and therefore no longer available.
2542  */
2543 void netif_device_detach(struct net_device *dev)
2544 {
2545         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2546             netif_running(dev)) {
2547                 netif_tx_stop_all_queues(dev);
2548         }
2549 }
2550 EXPORT_SYMBOL(netif_device_detach);
2551
2552 /**
2553  * netif_device_attach - mark device as attached
2554  * @dev: network device
2555  *
2556  * Mark device as attached from system and restart if needed.
2557  */
2558 void netif_device_attach(struct net_device *dev)
2559 {
2560         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2561             netif_running(dev)) {
2562                 netif_tx_wake_all_queues(dev);
2563                 __netdev_watchdog_up(dev);
2564         }
2565 }
2566 EXPORT_SYMBOL(netif_device_attach);
2567
2568 /*
2569  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2570  * to be used as a distribution range.
2571  */
2572 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2573                   unsigned int num_tx_queues)
2574 {
2575         u32 hash;
2576         u16 qoffset = 0;
2577         u16 qcount = num_tx_queues;
2578
2579         if (skb_rx_queue_recorded(skb)) {
2580                 hash = skb_get_rx_queue(skb);
2581                 while (unlikely(hash >= num_tx_queues))
2582                         hash -= num_tx_queues;
2583                 return hash;
2584         }
2585
2586         if (dev->num_tc) {
2587                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2588
2589                 qoffset = dev->tc_to_txq[tc].offset;
2590                 qcount = dev->tc_to_txq[tc].count;
2591         }
2592
2593         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2594 }
2595 EXPORT_SYMBOL(__skb_tx_hash);
2596
2597 static void skb_warn_bad_offload(const struct sk_buff *skb)
2598 {
2599         static const netdev_features_t null_features;
2600         struct net_device *dev = skb->dev;
2601         const char *name = "";
2602
2603         if (!net_ratelimit())
2604                 return;
2605
2606         if (dev) {
2607                 if (dev->dev.parent)
2608                         name = dev_driver_string(dev->dev.parent);
2609                 else
2610                         name = netdev_name(dev);
2611         }
2612         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2613              "gso_type=%d ip_summed=%d\n",
2614              name, dev ? &dev->features : &null_features,
2615              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2616              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2617              skb_shinfo(skb)->gso_type, skb->ip_summed);
2618 }
2619
2620 /*
2621  * Invalidate hardware checksum when packet is to be mangled, and
2622  * complete checksum manually on outgoing path.
2623  */
2624 int skb_checksum_help(struct sk_buff *skb)
2625 {
2626         __wsum csum;
2627         int ret = 0, offset;
2628
2629         if (skb->ip_summed == CHECKSUM_COMPLETE)
2630                 goto out_set_summed;
2631
2632         if (unlikely(skb_shinfo(skb)->gso_size)) {
2633                 skb_warn_bad_offload(skb);
2634                 return -EINVAL;
2635         }
2636
2637         /* Before computing a checksum, we should make sure no frag could
2638          * be modified by an external entity : checksum could be wrong.
2639          */
2640         if (skb_has_shared_frag(skb)) {
2641                 ret = __skb_linearize(skb);
2642                 if (ret)
2643                         goto out;
2644         }
2645
2646         offset = skb_checksum_start_offset(skb);
2647         BUG_ON(offset >= skb_headlen(skb));
2648         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2649
2650         offset += skb->csum_offset;
2651         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2652
2653         if (skb_cloned(skb) &&
2654             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2655                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2656                 if (ret)
2657                         goto out;
2658         }
2659
2660         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2661 out_set_summed:
2662         skb->ip_summed = CHECKSUM_NONE;
2663 out:
2664         return ret;
2665 }
2666 EXPORT_SYMBOL(skb_checksum_help);
2667
2668 int skb_crc32c_csum_help(struct sk_buff *skb)
2669 {
2670         __le32 crc32c_csum;
2671         int ret = 0, offset, start;
2672
2673         if (skb->ip_summed != CHECKSUM_PARTIAL)
2674                 goto out;
2675
2676         if (unlikely(skb_is_gso(skb)))
2677                 goto out;
2678
2679         /* Before computing a checksum, we should make sure no frag could
2680          * be modified by an external entity : checksum could be wrong.
2681          */
2682         if (unlikely(skb_has_shared_frag(skb))) {
2683                 ret = __skb_linearize(skb);
2684                 if (ret)
2685                         goto out;
2686         }
2687         start = skb_checksum_start_offset(skb);
2688         offset = start + offsetof(struct sctphdr, checksum);
2689         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2690                 ret = -EINVAL;
2691                 goto out;
2692         }
2693         if (skb_cloned(skb) &&
2694             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2695                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2696                 if (ret)
2697                         goto out;
2698         }
2699         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2700                                                   skb->len - start, ~(__u32)0,
2701                                                   crc32c_csum_stub));
2702         *(__le32 *)(skb->data + offset) = crc32c_csum;
2703         skb->ip_summed = CHECKSUM_NONE;
2704         skb->csum_not_inet = 0;
2705 out:
2706         return ret;
2707 }
2708
2709 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2710 {
2711         __be16 type = skb->protocol;
2712
2713         /* Tunnel gso handlers can set protocol to ethernet. */
2714         if (type == htons(ETH_P_TEB)) {
2715                 struct ethhdr *eth;
2716
2717                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2718                         return 0;
2719
2720                 eth = (struct ethhdr *)skb_mac_header(skb);
2721                 type = eth->h_proto;
2722         }
2723
2724         return __vlan_get_protocol(skb, type, depth);
2725 }
2726
2727 /**
2728  *      skb_mac_gso_segment - mac layer segmentation handler.
2729  *      @skb: buffer to segment
2730  *      @features: features for the output path (see dev->features)
2731  */
2732 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2733                                     netdev_features_t features)
2734 {
2735         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2736         struct packet_offload *ptype;
2737         int vlan_depth = skb->mac_len;
2738         __be16 type = skb_network_protocol(skb, &vlan_depth);
2739
2740         if (unlikely(!type))
2741                 return ERR_PTR(-EINVAL);
2742
2743         __skb_pull(skb, vlan_depth);
2744
2745         rcu_read_lock();
2746         list_for_each_entry_rcu(ptype, &offload_base, list) {
2747                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2748                         segs = ptype->callbacks.gso_segment(skb, features);
2749                         break;
2750                 }
2751         }
2752         rcu_read_unlock();
2753
2754         __skb_push(skb, skb->data - skb_mac_header(skb));
2755
2756         return segs;
2757 }
2758 EXPORT_SYMBOL(skb_mac_gso_segment);
2759
2760
2761 /* openvswitch calls this on rx path, so we need a different check.
2762  */
2763 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2764 {
2765         if (tx_path)
2766                 return skb->ip_summed != CHECKSUM_PARTIAL;
2767
2768         return skb->ip_summed == CHECKSUM_NONE;
2769 }
2770
2771 /**
2772  *      __skb_gso_segment - Perform segmentation on skb.
2773  *      @skb: buffer to segment
2774  *      @features: features for the output path (see dev->features)
2775  *      @tx_path: whether it is called in TX path
2776  *
2777  *      This function segments the given skb and returns a list of segments.
2778  *
2779  *      It may return NULL if the skb requires no segmentation.  This is
2780  *      only possible when GSO is used for verifying header integrity.
2781  *
2782  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2783  */
2784 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2785                                   netdev_features_t features, bool tx_path)
2786 {
2787         struct sk_buff *segs;
2788
2789         if (unlikely(skb_needs_check(skb, tx_path))) {
2790                 int err;
2791
2792                 /* We're going to init ->check field in TCP or UDP header */
2793                 err = skb_cow_head(skb, 0);
2794                 if (err < 0)
2795                         return ERR_PTR(err);
2796         }
2797
2798         /* Only report GSO partial support if it will enable us to
2799          * support segmentation on this frame without needing additional
2800          * work.
2801          */
2802         if (features & NETIF_F_GSO_PARTIAL) {
2803                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2804                 struct net_device *dev = skb->dev;
2805
2806                 partial_features |= dev->features & dev->gso_partial_features;
2807                 if (!skb_gso_ok(skb, features | partial_features))
2808                         features &= ~NETIF_F_GSO_PARTIAL;
2809         }
2810
2811         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2812                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2813
2814         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2815         SKB_GSO_CB(skb)->encap_level = 0;
2816
2817         skb_reset_mac_header(skb);
2818         skb_reset_mac_len(skb);
2819
2820         segs = skb_mac_gso_segment(skb, features);
2821
2822         if (unlikely(skb_needs_check(skb, tx_path)))
2823                 skb_warn_bad_offload(skb);
2824
2825         return segs;
2826 }
2827 EXPORT_SYMBOL(__skb_gso_segment);
2828
2829 /* Take action when hardware reception checksum errors are detected. */
2830 #ifdef CONFIG_BUG
2831 void netdev_rx_csum_fault(struct net_device *dev)
2832 {
2833         if (net_ratelimit()) {
2834                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2835                 dump_stack();
2836         }
2837 }
2838 EXPORT_SYMBOL(netdev_rx_csum_fault);
2839 #endif
2840
2841 /* Actually, we should eliminate this check as soon as we know, that:
2842  * 1. IOMMU is present and allows to map all the memory.
2843  * 2. No high memory really exists on this machine.
2844  */
2845
2846 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2847 {
2848 #ifdef CONFIG_HIGHMEM
2849         int i;
2850
2851         if (!(dev->features & NETIF_F_HIGHDMA)) {
2852                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2853                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2854
2855                         if (PageHighMem(skb_frag_page(frag)))
2856                                 return 1;
2857                 }
2858         }
2859
2860         if (PCI_DMA_BUS_IS_PHYS) {
2861                 struct device *pdev = dev->dev.parent;
2862
2863                 if (!pdev)
2864                         return 0;
2865                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2866                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2867                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2868
2869                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2870                                 return 1;
2871                 }
2872         }
2873 #endif
2874         return 0;
2875 }
2876
2877 /* If MPLS offload request, verify we are testing hardware MPLS features
2878  * instead of standard features for the netdev.
2879  */
2880 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2881 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2882                                            netdev_features_t features,
2883                                            __be16 type)
2884 {
2885         if (eth_p_mpls(type))
2886                 features &= skb->dev->mpls_features;
2887
2888         return features;
2889 }
2890 #else
2891 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2892                                            netdev_features_t features,
2893                                            __be16 type)
2894 {
2895         return features;
2896 }
2897 #endif
2898
2899 static netdev_features_t harmonize_features(struct sk_buff *skb,
2900         netdev_features_t features)
2901 {
2902         int tmp;
2903         __be16 type;
2904
2905         type = skb_network_protocol(skb, &tmp);
2906         features = net_mpls_features(skb, features, type);
2907
2908         if (skb->ip_summed != CHECKSUM_NONE &&
2909             !can_checksum_protocol(features, type)) {
2910                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2911         }
2912         if (illegal_highdma(skb->dev, skb))
2913                 features &= ~NETIF_F_SG;
2914
2915         return features;
2916 }
2917
2918 netdev_features_t passthru_features_check(struct sk_buff *skb,
2919                                           struct net_device *dev,
2920                                           netdev_features_t features)
2921 {
2922         return features;
2923 }
2924 EXPORT_SYMBOL(passthru_features_check);
2925
2926 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2927                                              struct net_device *dev,
2928                                              netdev_features_t features)
2929 {
2930         return vlan_features_check(skb, features);
2931 }
2932
2933 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2934                                             struct net_device *dev,
2935                                             netdev_features_t features)
2936 {
2937         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2938
2939         if (gso_segs > dev->gso_max_segs)
2940                 return features & ~NETIF_F_GSO_MASK;
2941
2942         /* Support for GSO partial features requires software
2943          * intervention before we can actually process the packets
2944          * so we need to strip support for any partial features now
2945          * and we can pull them back in after we have partially
2946          * segmented the frame.
2947          */
2948         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2949                 features &= ~dev->gso_partial_features;
2950
2951         /* Make sure to clear the IPv4 ID mangling feature if the
2952          * IPv4 header has the potential to be fragmented.
2953          */
2954         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2955                 struct iphdr *iph = skb->encapsulation ?
2956                                     inner_ip_hdr(skb) : ip_hdr(skb);
2957
2958                 if (!(iph->frag_off & htons(IP_DF)))
2959                         features &= ~NETIF_F_TSO_MANGLEID;
2960         }
2961
2962         return features;
2963 }
2964
2965 netdev_features_t netif_skb_features(struct sk_buff *skb)
2966 {
2967         struct net_device *dev = skb->dev;
2968         netdev_features_t features = dev->features;
2969
2970         if (skb_is_gso(skb))
2971                 features = gso_features_check(skb, dev, features);
2972
2973         /* If encapsulation offload request, verify we are testing
2974          * hardware encapsulation features instead of standard
2975          * features for the netdev
2976          */
2977         if (skb->encapsulation)
2978                 features &= dev->hw_enc_features;
2979
2980         if (skb_vlan_tagged(skb))
2981                 features = netdev_intersect_features(features,
2982                                                      dev->vlan_features |
2983                                                      NETIF_F_HW_VLAN_CTAG_TX |
2984                                                      NETIF_F_HW_VLAN_STAG_TX);
2985
2986         if (dev->netdev_ops->ndo_features_check)
2987                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2988                                                                 features);
2989         else
2990                 features &= dflt_features_check(skb, dev, features);
2991
2992         return harmonize_features(skb, features);
2993 }
2994 EXPORT_SYMBOL(netif_skb_features);
2995
2996 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2997                     struct netdev_queue *txq, bool more)
2998 {
2999         unsigned int len;
3000         int rc;
3001
3002         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3003                 dev_queue_xmit_nit(skb, dev);
3004
3005         len = skb->len;
3006         trace_net_dev_start_xmit(skb, dev);
3007         rc = netdev_start_xmit(skb, dev, txq, more);
3008         trace_net_dev_xmit(skb, rc, dev, len);
3009
3010         return rc;
3011 }
3012
3013 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3014                                     struct netdev_queue *txq, int *ret)
3015 {
3016         struct sk_buff *skb = first;
3017         int rc = NETDEV_TX_OK;
3018
3019         while (skb) {
3020                 struct sk_buff *next = skb->next;
3021
3022                 skb->next = NULL;
3023                 rc = xmit_one(skb, dev, txq, next != NULL);
3024                 if (unlikely(!dev_xmit_complete(rc))) {
3025                         skb->next = next;
3026                         goto out;
3027                 }
3028
3029                 skb = next;
3030                 if (netif_xmit_stopped(txq) && skb) {
3031                         rc = NETDEV_TX_BUSY;
3032                         break;
3033                 }
3034         }
3035
3036 out:
3037         *ret = rc;
3038         return skb;
3039 }
3040
3041 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3042                                           netdev_features_t features)
3043 {
3044         if (skb_vlan_tag_present(skb) &&
3045             !vlan_hw_offload_capable(features, skb->vlan_proto))
3046                 skb = __vlan_hwaccel_push_inside(skb);
3047         return skb;
3048 }
3049
3050 int skb_csum_hwoffload_help(struct sk_buff *skb,
3051                             const netdev_features_t features)
3052 {
3053         if (unlikely(skb->csum_not_inet))
3054                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3055                         skb_crc32c_csum_help(skb);
3056
3057         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3058 }
3059 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3060
3061 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3062 {
3063         netdev_features_t features;
3064
3065         features = netif_skb_features(skb);
3066         skb = validate_xmit_vlan(skb, features);
3067         if (unlikely(!skb))
3068                 goto out_null;
3069
3070         if (netif_needs_gso(skb, features)) {
3071                 struct sk_buff *segs;
3072
3073                 segs = skb_gso_segment(skb, features);
3074                 if (IS_ERR(segs)) {
3075                         goto out_kfree_skb;
3076                 } else if (segs) {
3077                         consume_skb(skb);
3078                         skb = segs;
3079                 }
3080         } else {
3081                 if (skb_needs_linearize(skb, features) &&
3082                     __skb_linearize(skb))
3083                         goto out_kfree_skb;
3084
3085                 if (validate_xmit_xfrm(skb, features))
3086                         goto out_kfree_skb;
3087
3088                 /* If packet is not checksummed and device does not
3089                  * support checksumming for this protocol, complete
3090                  * checksumming here.
3091                  */
3092                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3093                         if (skb->encapsulation)
3094                                 skb_set_inner_transport_header(skb,
3095                                                                skb_checksum_start_offset(skb));
3096                         else
3097                                 skb_set_transport_header(skb,
3098                                                          skb_checksum_start_offset(skb));
3099                         if (skb_csum_hwoffload_help(skb, features))
3100                                 goto out_kfree_skb;
3101                 }
3102         }
3103
3104         return skb;
3105
3106 out_kfree_skb:
3107         kfree_skb(skb);
3108 out_null:
3109         atomic_long_inc(&dev->tx_dropped);
3110         return NULL;
3111 }
3112
3113 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3114 {
3115         struct sk_buff *next, *head = NULL, *tail;
3116
3117         for (; skb != NULL; skb = next) {
3118                 next = skb->next;
3119                 skb->next = NULL;
3120
3121                 /* in case skb wont be segmented, point to itself */
3122                 skb->prev = skb;
3123
3124                 skb = validate_xmit_skb(skb, dev);
3125                 if (!skb)
3126                         continue;
3127
3128                 if (!head)
3129                         head = skb;
3130                 else
3131                         tail->next = skb;
3132                 /* If skb was segmented, skb->prev points to
3133                  * the last segment. If not, it still contains skb.
3134                  */
3135                 tail = skb->prev;
3136         }
3137         return head;
3138 }
3139 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3140
3141 static void qdisc_pkt_len_init(struct sk_buff *skb)
3142 {
3143         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3144
3145         qdisc_skb_cb(skb)->pkt_len = skb->len;
3146
3147         /* To get more precise estimation of bytes sent on wire,
3148          * we add to pkt_len the headers size of all segments
3149          */
3150         if (shinfo->gso_size)  {
3151                 unsigned int hdr_len;
3152                 u16 gso_segs = shinfo->gso_segs;
3153
3154                 /* mac layer + network layer */
3155                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3156
3157                 /* + transport layer */
3158                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3159                         hdr_len += tcp_hdrlen(skb);
3160                 else
3161                         hdr_len += sizeof(struct udphdr);
3162
3163                 if (shinfo->gso_type & SKB_GSO_DODGY)
3164                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3165                                                 shinfo->gso_size);
3166
3167                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3168         }
3169 }
3170
3171 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3172                                  struct net_device *dev,
3173                                  struct netdev_queue *txq)
3174 {
3175         spinlock_t *root_lock = qdisc_lock(q);
3176         struct sk_buff *to_free = NULL;
3177         bool contended;
3178         int rc;
3179
3180         qdisc_calculate_pkt_len(skb, q);
3181         /*
3182          * Heuristic to force contended enqueues to serialize on a
3183          * separate lock before trying to get qdisc main lock.
3184          * This permits qdisc->running owner to get the lock more
3185          * often and dequeue packets faster.
3186          */
3187         contended = qdisc_is_running(q);
3188         if (unlikely(contended))
3189                 spin_lock(&q->busylock);
3190
3191         spin_lock(root_lock);
3192         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3193                 __qdisc_drop(skb, &to_free);
3194                 rc = NET_XMIT_DROP;
3195         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3196                    qdisc_run_begin(q)) {
3197                 /*
3198                  * This is a work-conserving queue; there are no old skbs
3199                  * waiting to be sent out; and the qdisc is not running -
3200                  * xmit the skb directly.
3201                  */
3202
3203                 qdisc_bstats_update(q, skb);
3204
3205                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3206                         if (unlikely(contended)) {
3207                                 spin_unlock(&q->busylock);
3208                                 contended = false;
3209                         }
3210                         __qdisc_run(q);
3211                 } else
3212                         qdisc_run_end(q);
3213
3214                 rc = NET_XMIT_SUCCESS;
3215         } else {
3216                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3217                 if (qdisc_run_begin(q)) {
3218                         if (unlikely(contended)) {
3219                                 spin_unlock(&q->busylock);
3220                                 contended = false;
3221                         }
3222                         __qdisc_run(q);
3223                 }
3224         }
3225         spin_unlock(root_lock);
3226         if (unlikely(to_free))
3227                 kfree_skb_list(to_free);
3228         if (unlikely(contended))
3229                 spin_unlock(&q->busylock);
3230         return rc;
3231 }
3232
3233 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3234 static void skb_update_prio(struct sk_buff *skb)
3235 {
3236         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3237
3238         if (!skb->priority && skb->sk && map) {
3239                 unsigned int prioidx =
3240                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3241
3242                 if (prioidx < map->priomap_len)
3243                         skb->priority = map->priomap[prioidx];
3244         }
3245 }
3246 #else
3247 #define skb_update_prio(skb)
3248 #endif
3249
3250 DEFINE_PER_CPU(int, xmit_recursion);
3251 EXPORT_SYMBOL(xmit_recursion);
3252
3253 /**
3254  *      dev_loopback_xmit - loop back @skb
3255  *      @net: network namespace this loopback is happening in
3256  *      @sk:  sk needed to be a netfilter okfn
3257  *      @skb: buffer to transmit
3258  */
3259 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3260 {
3261         skb_reset_mac_header(skb);
3262         __skb_pull(skb, skb_network_offset(skb));
3263         skb->pkt_type = PACKET_LOOPBACK;
3264         skb->ip_summed = CHECKSUM_UNNECESSARY;
3265         WARN_ON(!skb_dst(skb));
3266         skb_dst_force(skb);
3267         netif_rx_ni(skb);
3268         return 0;
3269 }
3270 EXPORT_SYMBOL(dev_loopback_xmit);
3271
3272 #ifdef CONFIG_NET_EGRESS
3273 static struct sk_buff *
3274 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3275 {
3276         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3277         struct tcf_result cl_res;
3278
3279         if (!cl)
3280                 return skb;
3281
3282         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3283         qdisc_bstats_cpu_update(cl->q, skb);
3284
3285         switch (tcf_classify(skb, cl, &cl_res, false)) {
3286         case TC_ACT_OK:
3287         case TC_ACT_RECLASSIFY:
3288                 skb->tc_index = TC_H_MIN(cl_res.classid);
3289                 break;
3290         case TC_ACT_SHOT:
3291                 qdisc_qstats_cpu_drop(cl->q);
3292                 *ret = NET_XMIT_DROP;
3293                 kfree_skb(skb);
3294                 return NULL;
3295         case TC_ACT_STOLEN:
3296         case TC_ACT_QUEUED:
3297         case TC_ACT_TRAP:
3298                 *ret = NET_XMIT_SUCCESS;
3299                 consume_skb(skb);
3300                 return NULL;
3301         case TC_ACT_REDIRECT:
3302                 /* No need to push/pop skb's mac_header here on egress! */
3303                 skb_do_redirect(skb);
3304                 *ret = NET_XMIT_SUCCESS;
3305                 return NULL;
3306         default:
3307                 break;
3308         }
3309
3310         return skb;
3311 }
3312 #endif /* CONFIG_NET_EGRESS */
3313
3314 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3315 {
3316 #ifdef CONFIG_XPS
3317         struct xps_dev_maps *dev_maps;
3318         struct xps_map *map;
3319         int queue_index = -1;
3320
3321         rcu_read_lock();
3322         dev_maps = rcu_dereference(dev->xps_maps);
3323         if (dev_maps) {
3324                 unsigned int tci = skb->sender_cpu - 1;
3325
3326                 if (dev->num_tc) {
3327                         tci *= dev->num_tc;
3328                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3329                 }
3330
3331                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3332                 if (map) {
3333                         if (map->len == 1)
3334                                 queue_index = map->queues[0];
3335                         else
3336                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3337                                                                            map->len)];
3338                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3339                                 queue_index = -1;
3340                 }
3341         }
3342         rcu_read_unlock();
3343
3344         return queue_index;
3345 #else
3346         return -1;
3347 #endif
3348 }
3349
3350 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3351 {
3352         struct sock *sk = skb->sk;
3353         int queue_index = sk_tx_queue_get(sk);
3354
3355         if (queue_index < 0 || skb->ooo_okay ||
3356             queue_index >= dev->real_num_tx_queues) {
3357                 int new_index = get_xps_queue(dev, skb);
3358
3359                 if (new_index < 0)
3360                         new_index = skb_tx_hash(dev, skb);
3361
3362                 if (queue_index != new_index && sk &&
3363                     sk_fullsock(sk) &&
3364                     rcu_access_pointer(sk->sk_dst_cache))
3365                         sk_tx_queue_set(sk, new_index);
3366
3367                 queue_index = new_index;
3368         }
3369
3370         return queue_index;
3371 }
3372
3373 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3374                                     struct sk_buff *skb,
3375                                     void *accel_priv)
3376 {
3377         int queue_index = 0;
3378
3379 #ifdef CONFIG_XPS
3380         u32 sender_cpu = skb->sender_cpu - 1;
3381
3382         if (sender_cpu >= (u32)NR_CPUS)
3383                 skb->sender_cpu = raw_smp_processor_id() + 1;
3384 #endif
3385
3386         if (dev->real_num_tx_queues != 1) {
3387                 const struct net_device_ops *ops = dev->netdev_ops;
3388
3389                 if (ops->ndo_select_queue)
3390                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3391                                                             __netdev_pick_tx);
3392                 else
3393                         queue_index = __netdev_pick_tx(dev, skb);
3394
3395                 if (!accel_priv)
3396                         queue_index = netdev_cap_txqueue(dev, queue_index);
3397         }
3398
3399         skb_set_queue_mapping(skb, queue_index);
3400         return netdev_get_tx_queue(dev, queue_index);
3401 }
3402
3403 /**
3404  *      __dev_queue_xmit - transmit a buffer
3405  *      @skb: buffer to transmit
3406  *      @accel_priv: private data used for L2 forwarding offload
3407  *
3408  *      Queue a buffer for transmission to a network device. The caller must
3409  *      have set the device and priority and built the buffer before calling
3410  *      this function. The function can be called from an interrupt.
3411  *
3412  *      A negative errno code is returned on a failure. A success does not
3413  *      guarantee the frame will be transmitted as it may be dropped due
3414  *      to congestion or traffic shaping.
3415  *
3416  * -----------------------------------------------------------------------------------
3417  *      I notice this method can also return errors from the queue disciplines,
3418  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3419  *      be positive.
3420  *
3421  *      Regardless of the return value, the skb is consumed, so it is currently
3422  *      difficult to retry a send to this method.  (You can bump the ref count
3423  *      before sending to hold a reference for retry if you are careful.)
3424  *
3425  *      When calling this method, interrupts MUST be enabled.  This is because
3426  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3427  *          --BLG
3428  */
3429 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3430 {
3431         struct net_device *dev = skb->dev;
3432         struct netdev_queue *txq;
3433         struct Qdisc *q;
3434         int rc = -ENOMEM;
3435
3436         skb_reset_mac_header(skb);
3437
3438         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3439                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3440
3441         /* Disable soft irqs for various locks below. Also
3442          * stops preemption for RCU.
3443          */
3444         rcu_read_lock_bh();
3445
3446         skb_update_prio(skb);
3447
3448         qdisc_pkt_len_init(skb);
3449 #ifdef CONFIG_NET_CLS_ACT
3450         skb->tc_at_ingress = 0;
3451 # ifdef CONFIG_NET_EGRESS
3452         if (static_key_false(&egress_needed)) {
3453                 skb = sch_handle_egress(skb, &rc, dev);
3454                 if (!skb)
3455                         goto out;
3456         }
3457 # endif
3458 #endif
3459         /* If device/qdisc don't need skb->dst, release it right now while
3460          * its hot in this cpu cache.
3461          */
3462         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3463                 skb_dst_drop(skb);
3464         else
3465                 skb_dst_force(skb);
3466
3467         txq = netdev_pick_tx(dev, skb, accel_priv);
3468         q = rcu_dereference_bh(txq->qdisc);
3469
3470         trace_net_dev_queue(skb);
3471         if (q->enqueue) {
3472                 rc = __dev_xmit_skb(skb, q, dev, txq);
3473                 goto out;
3474         }
3475
3476         /* The device has no queue. Common case for software devices:
3477          * loopback, all the sorts of tunnels...
3478
3479          * Really, it is unlikely that netif_tx_lock protection is necessary
3480          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3481          * counters.)
3482          * However, it is possible, that they rely on protection
3483          * made by us here.
3484
3485          * Check this and shot the lock. It is not prone from deadlocks.
3486          *Either shot noqueue qdisc, it is even simpler 8)
3487          */
3488         if (dev->flags & IFF_UP) {
3489                 int cpu = smp_processor_id(); /* ok because BHs are off */
3490
3491                 if (txq->xmit_lock_owner != cpu) {
3492                         if (unlikely(__this_cpu_read(xmit_recursion) >
3493                                      XMIT_RECURSION_LIMIT))
3494                                 goto recursion_alert;
3495
3496                         skb = validate_xmit_skb(skb, dev);
3497                         if (!skb)
3498                                 goto out;
3499
3500                         HARD_TX_LOCK(dev, txq, cpu);
3501
3502                         if (!netif_xmit_stopped(txq)) {
3503                                 __this_cpu_inc(xmit_recursion);
3504                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3505                                 __this_cpu_dec(xmit_recursion);
3506                                 if (dev_xmit_complete(rc)) {
3507                                         HARD_TX_UNLOCK(dev, txq);
3508                                         goto out;
3509                                 }
3510                         }
3511                         HARD_TX_UNLOCK(dev, txq);
3512                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3513                                              dev->name);
3514                 } else {
3515                         /* Recursion is detected! It is possible,
3516                          * unfortunately
3517                          */
3518 recursion_alert:
3519                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3520                                              dev->name);
3521                 }
3522         }
3523
3524         rc = -ENETDOWN;
3525         rcu_read_unlock_bh();
3526
3527         atomic_long_inc(&dev->tx_dropped);
3528         kfree_skb_list(skb);
3529         return rc;
3530 out:
3531         rcu_read_unlock_bh();
3532         return rc;
3533 }
3534
3535 int dev_queue_xmit(struct sk_buff *skb)
3536 {
3537         return __dev_queue_xmit(skb, NULL);
3538 }
3539 EXPORT_SYMBOL(dev_queue_xmit);
3540
3541 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3542 {
3543         return __dev_queue_xmit(skb, accel_priv);
3544 }
3545 EXPORT_SYMBOL(dev_queue_xmit_accel);
3546
3547
3548 /*************************************************************************
3549  *                      Receiver routines
3550  *************************************************************************/
3551
3552 int netdev_max_backlog __read_mostly = 1000;
3553 EXPORT_SYMBOL(netdev_max_backlog);
3554
3555 int netdev_tstamp_prequeue __read_mostly = 1;
3556 int netdev_budget __read_mostly = 300;
3557 unsigned int __read_mostly netdev_budget_usecs = 2000;
3558 int weight_p __read_mostly = 64;           /* old backlog weight */
3559 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3560 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3561 int dev_rx_weight __read_mostly = 64;
3562 int dev_tx_weight __read_mostly = 64;
3563
3564 /* Called with irq disabled */
3565 static inline void ____napi_schedule(struct softnet_data *sd,
3566                                      struct napi_struct *napi)
3567 {
3568         list_add_tail(&napi->poll_list, &sd->poll_list);
3569         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3570 }
3571
3572 #ifdef CONFIG_RPS
3573
3574 /* One global table that all flow-based protocols share. */
3575 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3576 EXPORT_SYMBOL(rps_sock_flow_table);
3577 u32 rps_cpu_mask __read_mostly;
3578 EXPORT_SYMBOL(rps_cpu_mask);
3579
3580 struct static_key rps_needed __read_mostly;
3581 EXPORT_SYMBOL(rps_needed);
3582 struct static_key rfs_needed __read_mostly;
3583 EXPORT_SYMBOL(rfs_needed);
3584
3585 static struct rps_dev_flow *
3586 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3587             struct rps_dev_flow *rflow, u16 next_cpu)
3588 {
3589         if (next_cpu < nr_cpu_ids) {
3590 #ifdef CONFIG_RFS_ACCEL
3591                 struct netdev_rx_queue *rxqueue;
3592                 struct rps_dev_flow_table *flow_table;
3593                 struct rps_dev_flow *old_rflow;
3594                 u32 flow_id;
3595                 u16 rxq_index;
3596                 int rc;
3597
3598                 /* Should we steer this flow to a different hardware queue? */
3599                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3600                     !(dev->features & NETIF_F_NTUPLE))
3601                         goto out;
3602                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3603                 if (rxq_index == skb_get_rx_queue(skb))
3604                         goto out;
3605
3606                 rxqueue = dev->_rx + rxq_index;
3607                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3608                 if (!flow_table)
3609                         goto out;
3610                 flow_id = skb_get_hash(skb) & flow_table->mask;
3611                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3612                                                         rxq_index, flow_id);
3613                 if (rc < 0)
3614                         goto out;
3615                 old_rflow = rflow;
3616                 rflow = &flow_table->flows[flow_id];
3617                 rflow->filter = rc;
3618                 if (old_rflow->filter == rflow->filter)
3619                         old_rflow->filter = RPS_NO_FILTER;
3620         out:
3621 #endif
3622                 rflow->last_qtail =
3623                         per_cpu(softnet_data, next_cpu).input_queue_head;
3624         }
3625
3626         rflow->cpu = next_cpu;
3627         return rflow;
3628 }
3629
3630 /*
3631  * get_rps_cpu is called from netif_receive_skb and returns the target
3632  * CPU from the RPS map of the receiving queue for a given skb.
3633  * rcu_read_lock must be held on entry.
3634  */
3635 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3636                        struct rps_dev_flow **rflowp)
3637 {
3638         const struct rps_sock_flow_table *sock_flow_table;
3639         struct netdev_rx_queue *rxqueue = dev->_rx;
3640         struct rps_dev_flow_table *flow_table;
3641         struct rps_map *map;
3642         int cpu = -1;
3643         u32 tcpu;
3644         u32 hash;
3645
3646         if (skb_rx_queue_recorded(skb)) {
3647                 u16 index = skb_get_rx_queue(skb);
3648
3649                 if (unlikely(index >= dev->real_num_rx_queues)) {
3650                         WARN_ONCE(dev->real_num_rx_queues > 1,
3651                                   "%s received packet on queue %u, but number "
3652                                   "of RX queues is %u\n",
3653                                   dev->name, index, dev->real_num_rx_queues);
3654                         goto done;
3655                 }
3656                 rxqueue += index;
3657         }
3658
3659         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3660
3661         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3662         map = rcu_dereference(rxqueue->rps_map);
3663         if (!flow_table && !map)
3664                 goto done;
3665
3666         skb_reset_network_header(skb);
3667         hash = skb_get_hash(skb);
3668         if (!hash)
3669                 goto done;
3670
3671         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3672         if (flow_table && sock_flow_table) {
3673                 struct rps_dev_flow *rflow;
3674                 u32 next_cpu;
3675                 u32 ident;
3676
3677                 /* First check into global flow table if there is a match */
3678                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3679                 if ((ident ^ hash) & ~rps_cpu_mask)
3680                         goto try_rps;
3681
3682                 next_cpu = ident & rps_cpu_mask;
3683
3684                 /* OK, now we know there is a match,
3685                  * we can look at the local (per receive queue) flow table
3686                  */
3687                 rflow = &flow_table->flows[hash & flow_table->mask];
3688                 tcpu = rflow->cpu;
3689
3690                 /*
3691                  * If the desired CPU (where last recvmsg was done) is
3692                  * different from current CPU (one in the rx-queue flow
3693                  * table entry), switch if one of the following holds:
3694                  *   - Current CPU is unset (>= nr_cpu_ids).
3695                  *   - Current CPU is offline.
3696                  *   - The current CPU's queue tail has advanced beyond the
3697                  *     last packet that was enqueued using this table entry.
3698                  *     This guarantees that all previous packets for the flow
3699                  *     have been dequeued, thus preserving in order delivery.
3700                  */
3701                 if (unlikely(tcpu != next_cpu) &&
3702                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3703                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3704                       rflow->last_qtail)) >= 0)) {
3705                         tcpu = next_cpu;
3706                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3707                 }
3708
3709                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3710                         *rflowp = rflow;
3711                         cpu = tcpu;
3712                         goto done;
3713                 }
3714         }
3715
3716 try_rps:
3717
3718         if (map) {
3719                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3720                 if (cpu_online(tcpu)) {
3721                         cpu = tcpu;
3722                         goto done;
3723                 }
3724         }
3725
3726 done:
3727         return cpu;
3728 }
3729
3730 #ifdef CONFIG_RFS_ACCEL
3731
3732 /**
3733  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3734  * @dev: Device on which the filter was set
3735  * @rxq_index: RX queue index
3736  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3737  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3738  *
3739  * Drivers that implement ndo_rx_flow_steer() should periodically call
3740  * this function for each installed filter and remove the filters for
3741  * which it returns %true.
3742  */
3743 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3744                          u32 flow_id, u16 filter_id)
3745 {
3746         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3747         struct rps_dev_flow_table *flow_table;
3748         struct rps_dev_flow *rflow;
3749         bool expire = true;
3750         unsigned int cpu;
3751
3752         rcu_read_lock();
3753         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3754         if (flow_table && flow_id <= flow_table->mask) {
3755                 rflow = &flow_table->flows[flow_id];
3756                 cpu = ACCESS_ONCE(rflow->cpu);
3757                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3758                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3759                            rflow->last_qtail) <
3760                      (int)(10 * flow_table->mask)))
3761                         expire = false;
3762         }
3763         rcu_read_unlock();
3764         return expire;
3765 }
3766 EXPORT_SYMBOL(rps_may_expire_flow);
3767
3768 #endif /* CONFIG_RFS_ACCEL */
3769
3770 /* Called from hardirq (IPI) context */
3771 static void rps_trigger_softirq(void *data)
3772 {
3773         struct softnet_data *sd = data;
3774
3775         ____napi_schedule(sd, &sd->backlog);
3776         sd->received_rps++;
3777 }
3778
3779 #endif /* CONFIG_RPS */
3780
3781 /*
3782  * Check if this softnet_data structure is another cpu one
3783  * If yes, queue it to our IPI list and return 1
3784  * If no, return 0
3785  */
3786 static int rps_ipi_queued(struct softnet_data *sd)
3787 {
3788 #ifdef CONFIG_RPS
3789         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3790
3791         if (sd != mysd) {
3792                 sd->rps_ipi_next = mysd->rps_ipi_list;
3793                 mysd->rps_ipi_list = sd;
3794
3795                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3796                 return 1;
3797         }
3798 #endif /* CONFIG_RPS */
3799         return 0;
3800 }
3801
3802 #ifdef CONFIG_NET_FLOW_LIMIT
3803 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3804 #endif
3805
3806 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3807 {
3808 #ifdef CONFIG_NET_FLOW_LIMIT
3809         struct sd_flow_limit *fl;
3810         struct softnet_data *sd;
3811         unsigned int old_flow, new_flow;
3812
3813         if (qlen < (netdev_max_backlog >> 1))
3814                 return false;
3815
3816         sd = this_cpu_ptr(&softnet_data);
3817
3818         rcu_read_lock();
3819         fl = rcu_dereference(sd->flow_limit);
3820         if (fl) {
3821                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3822                 old_flow = fl->history[fl->history_head];
3823                 fl->history[fl->history_head] = new_flow;
3824
3825                 fl->history_head++;
3826                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3827
3828                 if (likely(fl->buckets[old_flow]))
3829                         fl->buckets[old_flow]--;
3830
3831                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3832                         fl->count++;
3833                         rcu_read_unlock();
3834                         return true;
3835                 }
3836         }
3837         rcu_read_unlock();
3838 #endif
3839         return false;
3840 }
3841
3842 /*
3843  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3844  * queue (may be a remote CPU queue).
3845  */
3846 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3847                               unsigned int *qtail)
3848 {
3849         struct softnet_data *sd;
3850         unsigned long flags;
3851         unsigned int qlen;
3852
3853         sd = &per_cpu(softnet_data, cpu);
3854
3855         local_irq_save(flags);
3856
3857         rps_lock(sd);
3858         if (!netif_running(skb->dev))
3859                 goto drop;
3860         qlen = skb_queue_len(&sd->input_pkt_queue);
3861         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3862                 if (qlen) {
3863 enqueue:
3864                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3865                         input_queue_tail_incr_save(sd, qtail);
3866                         rps_unlock(sd);
3867                         local_irq_restore(flags);
3868                         return NET_RX_SUCCESS;
3869                 }
3870
3871                 /* Schedule NAPI for backlog device
3872                  * We can use non atomic operation since we own the queue lock
3873                  */
3874                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3875                         if (!rps_ipi_queued(sd))
3876                                 ____napi_schedule(sd, &sd->backlog);
3877                 }
3878                 goto enqueue;
3879         }
3880
3881 drop:
3882         sd->dropped++;
3883         rps_unlock(sd);
3884
3885         local_irq_restore(flags);
3886
3887         atomic_long_inc(&skb->dev->rx_dropped);
3888         kfree_skb(skb);
3889         return NET_RX_DROP;
3890 }
3891
3892 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3893                                      struct bpf_prog *xdp_prog)
3894 {
3895         u32 metalen, act = XDP_DROP;
3896         struct xdp_buff xdp;
3897         void *orig_data;
3898         int hlen, off;
3899         u32 mac_len;
3900
3901         /* Reinjected packets coming from act_mirred or similar should
3902          * not get XDP generic processing.
3903          */
3904         if (skb_cloned(skb))
3905                 return XDP_PASS;
3906
3907         /* XDP packets must be linear and must have sufficient headroom
3908          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3909          * native XDP provides, thus we need to do it here as well.
3910          */
3911         if (skb_is_nonlinear(skb) ||
3912             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3913                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3914                 int troom = skb->tail + skb->data_len - skb->end;
3915
3916                 /* In case we have to go down the path and also linearize,
3917                  * then lets do the pskb_expand_head() work just once here.
3918                  */
3919                 if (pskb_expand_head(skb,
3920                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3921                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3922                         goto do_drop;
3923                 if (troom > 0 && __skb_linearize(skb))
3924                         goto do_drop;
3925         }
3926
3927         /* The XDP program wants to see the packet starting at the MAC
3928          * header.
3929          */
3930         mac_len = skb->data - skb_mac_header(skb);
3931         hlen = skb_headlen(skb) + mac_len;
3932         xdp.data = skb->data - mac_len;
3933         xdp.data_meta = xdp.data;
3934         xdp.data_end = xdp.data + hlen;
3935         xdp.data_hard_start = skb->data - skb_headroom(skb);
3936         orig_data = xdp.data;
3937
3938         act = bpf_prog_run_xdp(xdp_prog, &xdp);
3939
3940         off = xdp.data - orig_data;
3941         if (off > 0)
3942                 __skb_pull(skb, off);
3943         else if (off < 0)
3944                 __skb_push(skb, -off);
3945         skb->mac_header += off;
3946
3947         switch (act) {
3948         case XDP_REDIRECT:
3949         case XDP_TX:
3950                 __skb_push(skb, mac_len);
3951                 break;
3952         case XDP_PASS:
3953                 metalen = xdp.data - xdp.data_meta;
3954                 if (metalen)
3955                         skb_metadata_set(skb, metalen);
3956                 break;
3957         default:
3958                 bpf_warn_invalid_xdp_action(act);
3959                 /* fall through */
3960         case XDP_ABORTED:
3961                 trace_xdp_exception(skb->dev, xdp_prog, act);
3962                 /* fall through */
3963         case XDP_DROP:
3964         do_drop:
3965                 kfree_skb(skb);
3966                 break;
3967         }
3968
3969         return act;
3970 }
3971
3972 /* When doing generic XDP we have to bypass the qdisc layer and the
3973  * network taps in order to match in-driver-XDP behavior.
3974  */
3975 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3976 {
3977         struct net_device *dev = skb->dev;
3978         struct netdev_queue *txq;
3979         bool free_skb = true;
3980         int cpu, rc;
3981
3982         txq = netdev_pick_tx(dev, skb, NULL);
3983         cpu = smp_processor_id();
3984         HARD_TX_LOCK(dev, txq, cpu);
3985         if (!netif_xmit_stopped(txq)) {
3986                 rc = netdev_start_xmit(skb, dev, txq, 0);
3987                 if (dev_xmit_complete(rc))
3988                         free_skb = false;
3989         }
3990         HARD_TX_UNLOCK(dev, txq);
3991         if (free_skb) {
3992                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3993                 kfree_skb(skb);
3994         }
3995 }
3996 EXPORT_SYMBOL_GPL(generic_xdp_tx);
3997
3998 static struct static_key generic_xdp_needed __read_mostly;
3999
4000 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4001 {
4002         if (xdp_prog) {
4003                 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4004                 int err;
4005
4006                 if (act != XDP_PASS) {
4007                         switch (act) {
4008                         case XDP_REDIRECT:
4009                                 err = xdp_do_generic_redirect(skb->dev, skb,
4010                                                               xdp_prog);
4011                                 if (err)
4012                                         goto out_redir;
4013                         /* fallthru to submit skb */
4014                         case XDP_TX:
4015                                 generic_xdp_tx(skb, xdp_prog);
4016                                 break;
4017                         }
4018                         return XDP_DROP;
4019                 }
4020         }
4021         return XDP_PASS;
4022 out_redir:
4023         kfree_skb(skb);
4024         return XDP_DROP;
4025 }
4026 EXPORT_SYMBOL_GPL(do_xdp_generic);
4027
4028 static int netif_rx_internal(struct sk_buff *skb)
4029 {
4030         int ret;
4031
4032         net_timestamp_check(netdev_tstamp_prequeue, skb);
4033
4034         trace_netif_rx(skb);
4035
4036         if (static_key_false(&generic_xdp_needed)) {
4037                 int ret;
4038
4039                 preempt_disable();
4040                 rcu_read_lock();
4041                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4042                 rcu_read_unlock();
4043                 preempt_enable();
4044
4045                 /* Consider XDP consuming the packet a success from
4046                  * the netdev point of view we do not want to count
4047                  * this as an error.
4048                  */
4049                 if (ret != XDP_PASS)
4050                         return NET_RX_SUCCESS;
4051         }
4052
4053 #ifdef CONFIG_RPS
4054         if (static_key_false(&rps_needed)) {
4055                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4056                 int cpu;
4057
4058                 preempt_disable();
4059                 rcu_read_lock();
4060
4061                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4062                 if (cpu < 0)
4063                         cpu = smp_processor_id();
4064
4065                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4066
4067                 rcu_read_unlock();
4068                 preempt_enable();
4069         } else
4070 #endif
4071         {
4072                 unsigned int qtail;
4073
4074                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4075                 put_cpu();
4076         }
4077         return ret;
4078 }
4079
4080 /**
4081  *      netif_rx        -       post buffer to the network code
4082  *      @skb: buffer to post
4083  *
4084  *      This function receives a packet from a device driver and queues it for
4085  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4086  *      may be dropped during processing for congestion control or by the
4087  *      protocol layers.
4088  *
4089  *      return values:
4090  *      NET_RX_SUCCESS  (no congestion)
4091  *      NET_RX_DROP     (packet was dropped)
4092  *
4093  */
4094
4095 int netif_rx(struct sk_buff *skb)
4096 {
4097         trace_netif_rx_entry(skb);
4098
4099         return netif_rx_internal(skb);
4100 }
4101 EXPORT_SYMBOL(netif_rx);
4102
4103 int netif_rx_ni(struct sk_buff *skb)
4104 {
4105         int err;
4106
4107         trace_netif_rx_ni_entry(skb);
4108
4109         preempt_disable();
4110         err = netif_rx_internal(skb);
4111         if (local_softirq_pending())
4112                 do_softirq();
4113         preempt_enable();
4114
4115         return err;
4116 }
4117 EXPORT_SYMBOL(netif_rx_ni);
4118
4119 static __latent_entropy void net_tx_action(struct softirq_action *h)
4120 {
4121         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4122
4123         if (sd->completion_queue) {
4124                 struct sk_buff *clist;
4125
4126                 local_irq_disable();
4127                 clist = sd->completion_queue;
4128                 sd->completion_queue = NULL;
4129                 local_irq_enable();
4130
4131                 while (clist) {
4132                         struct sk_buff *skb = clist;
4133
4134                         clist = clist->next;
4135
4136                         WARN_ON(refcount_read(&skb->users));
4137                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4138                                 trace_consume_skb(skb);
4139                         else
4140                                 trace_kfree_skb(skb, net_tx_action);
4141
4142                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4143                                 __kfree_skb(skb);
4144                         else
4145                                 __kfree_skb_defer(skb);
4146                 }
4147
4148                 __kfree_skb_flush();
4149         }
4150
4151         if (sd->output_queue) {
4152                 struct Qdisc *head;
4153
4154                 local_irq_disable();
4155                 head = sd->output_queue;
4156                 sd->output_queue = NULL;
4157                 sd->output_queue_tailp = &sd->output_queue;
4158                 local_irq_enable();
4159
4160                 while (head) {
4161                         struct Qdisc *q = head;
4162                         spinlock_t *root_lock;
4163
4164                         head = head->next_sched;
4165
4166                         root_lock = qdisc_lock(q);
4167                         spin_lock(root_lock);
4168                         /* We need to make sure head->next_sched is read
4169                          * before clearing __QDISC_STATE_SCHED
4170                          */
4171                         smp_mb__before_atomic();
4172                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4173                         qdisc_run(q);
4174                         spin_unlock(root_lock);
4175                 }
4176         }
4177 }
4178
4179 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4180 /* This hook is defined here for ATM LANE */
4181 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4182                              unsigned char *addr) __read_mostly;
4183 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4184 #endif
4185
4186 static inline struct sk_buff *
4187 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4188                    struct net_device *orig_dev)
4189 {
4190 #ifdef CONFIG_NET_CLS_ACT
4191         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4192         struct tcf_result cl_res;
4193
4194         /* If there's at least one ingress present somewhere (so
4195          * we get here via enabled static key), remaining devices
4196          * that are not configured with an ingress qdisc will bail
4197          * out here.
4198          */
4199         if (!cl)
4200                 return skb;
4201         if (*pt_prev) {
4202                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4203                 *pt_prev = NULL;
4204         }
4205
4206         qdisc_skb_cb(skb)->pkt_len = skb->len;
4207         skb->tc_at_ingress = 1;
4208         qdisc_bstats_cpu_update(cl->q, skb);
4209
4210         switch (tcf_classify(skb, cl, &cl_res, false)) {
4211         case TC_ACT_OK:
4212         case TC_ACT_RECLASSIFY:
4213                 skb->tc_index = TC_H_MIN(cl_res.classid);
4214                 break;
4215         case TC_ACT_SHOT:
4216                 qdisc_qstats_cpu_drop(cl->q);
4217                 kfree_skb(skb);
4218                 return NULL;
4219         case TC_ACT_STOLEN:
4220         case TC_ACT_QUEUED:
4221         case TC_ACT_TRAP:
4222                 consume_skb(skb);
4223                 return NULL;
4224         case TC_ACT_REDIRECT:
4225                 /* skb_mac_header check was done by cls/act_bpf, so
4226                  * we can safely push the L2 header back before
4227                  * redirecting to another netdev
4228                  */
4229                 __skb_push(skb, skb->mac_len);
4230                 skb_do_redirect(skb);
4231                 return NULL;
4232         default:
4233                 break;
4234         }
4235 #endif /* CONFIG_NET_CLS_ACT */
4236         return skb;
4237 }
4238
4239 /**
4240  *      netdev_is_rx_handler_busy - check if receive handler is registered
4241  *      @dev: device to check
4242  *
4243  *      Check if a receive handler is already registered for a given device.
4244  *      Return true if there one.
4245  *
4246  *      The caller must hold the rtnl_mutex.
4247  */
4248 bool netdev_is_rx_handler_busy(struct net_device *dev)
4249 {
4250         ASSERT_RTNL();
4251         return dev && rtnl_dereference(dev->rx_handler);
4252 }
4253 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4254
4255 /**
4256  *      netdev_rx_handler_register - register receive handler
4257  *      @dev: device to register a handler for
4258  *      @rx_handler: receive handler to register
4259  *      @rx_handler_data: data pointer that is used by rx handler
4260  *
4261  *      Register a receive handler for a device. This handler will then be
4262  *      called from __netif_receive_skb. A negative errno code is returned
4263  *      on a failure.
4264  *
4265  *      The caller must hold the rtnl_mutex.
4266  *
4267  *      For a general description of rx_handler, see enum rx_handler_result.
4268  */
4269 int netdev_rx_handler_register(struct net_device *dev,
4270                                rx_handler_func_t *rx_handler,
4271                                void *rx_handler_data)
4272 {
4273         if (netdev_is_rx_handler_busy(dev))
4274                 return -EBUSY;
4275
4276         /* Note: rx_handler_data must be set before rx_handler */
4277         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4278         rcu_assign_pointer(dev->rx_handler, rx_handler);
4279
4280         return 0;
4281 }
4282 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4283
4284 /**
4285  *      netdev_rx_handler_unregister - unregister receive handler
4286  *      @dev: device to unregister a handler from
4287  *
4288  *      Unregister a receive handler from a device.
4289  *
4290  *      The caller must hold the rtnl_mutex.
4291  */
4292 void netdev_rx_handler_unregister(struct net_device *dev)
4293 {
4294
4295         ASSERT_RTNL();
4296         RCU_INIT_POINTER(dev->rx_handler, NULL);
4297         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4298          * section has a guarantee to see a non NULL rx_handler_data
4299          * as well.
4300          */
4301         synchronize_net();
4302         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4303 }
4304 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4305
4306 /*
4307  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4308  * the special handling of PFMEMALLOC skbs.
4309  */
4310 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4311 {
4312         switch (skb->protocol) {
4313         case htons(ETH_P_ARP):
4314         case htons(ETH_P_IP):
4315         case htons(ETH_P_IPV6):
4316         case htons(ETH_P_8021Q):
4317         case htons(ETH_P_8021AD):
4318                 return true;
4319         default:
4320                 return false;
4321         }
4322 }
4323
4324 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4325                              int *ret, struct net_device *orig_dev)
4326 {
4327 #ifdef CONFIG_NETFILTER_INGRESS
4328         if (nf_hook_ingress_active(skb)) {
4329                 int ingress_retval;
4330
4331                 if (*pt_prev) {
4332                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4333                         *pt_prev = NULL;
4334                 }
4335
4336                 rcu_read_lock();
4337                 ingress_retval = nf_hook_ingress(skb);
4338                 rcu_read_unlock();
4339                 return ingress_retval;
4340         }
4341 #endif /* CONFIG_NETFILTER_INGRESS */
4342         return 0;
4343 }
4344
4345 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4346 {
4347         struct packet_type *ptype, *pt_prev;
4348         rx_handler_func_t *rx_handler;
4349         struct net_device *orig_dev;
4350         bool deliver_exact = false;
4351         int ret = NET_RX_DROP;
4352         __be16 type;
4353
4354         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4355
4356         trace_netif_receive_skb(skb);
4357
4358         orig_dev = skb->dev;
4359
4360         skb_reset_network_header(skb);
4361         if (!skb_transport_header_was_set(skb))
4362                 skb_reset_transport_header(skb);
4363         skb_reset_mac_len(skb);
4364
4365         pt_prev = NULL;
4366
4367 another_round:
4368         skb->skb_iif = skb->dev->ifindex;
4369
4370         __this_cpu_inc(softnet_data.processed);
4371
4372         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4373             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4374                 skb = skb_vlan_untag(skb);
4375                 if (unlikely(!skb))
4376                         goto out;
4377         }
4378
4379         if (skb_skip_tc_classify(skb))
4380                 goto skip_classify;
4381
4382         if (pfmemalloc)
4383                 goto skip_taps;
4384
4385         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4386                 if (pt_prev)
4387                         ret = deliver_skb(skb, pt_prev, orig_dev);
4388                 pt_prev = ptype;
4389         }
4390
4391         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4392                 if (pt_prev)
4393                         ret = deliver_skb(skb, pt_prev, orig_dev);
4394                 pt_prev = ptype;
4395         }
4396
4397 skip_taps:
4398 #ifdef CONFIG_NET_INGRESS
4399         if (static_key_false(&ingress_needed)) {
4400                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4401                 if (!skb)
4402                         goto out;
4403
4404                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4405                         goto out;
4406         }
4407 #endif
4408         skb_reset_tc(skb);
4409 skip_classify:
4410         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4411                 goto drop;
4412
4413         if (skb_vlan_tag_present(skb)) {
4414                 if (pt_prev) {
4415                         ret = deliver_skb(skb, pt_prev, orig_dev);
4416                         pt_prev = NULL;
4417                 }
4418                 if (vlan_do_receive(&skb))
4419                         goto another_round;
4420                 else if (unlikely(!skb))
4421                         goto out;
4422         }
4423
4424         rx_handler = rcu_dereference(skb->dev->rx_handler);
4425         if (rx_handler) {
4426                 if (pt_prev) {
4427                         ret = deliver_skb(skb, pt_prev, orig_dev);
4428                         pt_prev = NULL;
4429                 }
4430                 switch (rx_handler(&skb)) {
4431                 case RX_HANDLER_CONSUMED:
4432                         ret = NET_RX_SUCCESS;
4433                         goto out;
4434                 case RX_HANDLER_ANOTHER:
4435                         goto another_round;
4436                 case RX_HANDLER_EXACT:
4437                         deliver_exact = true;
4438                 case RX_HANDLER_PASS:
4439                         break;
4440                 default:
4441                         BUG();
4442                 }
4443         }
4444
4445         if (unlikely(skb_vlan_tag_present(skb))) {
4446                 if (skb_vlan_tag_get_id(skb))
4447                         skb->pkt_type = PACKET_OTHERHOST;
4448                 /* Note: we might in the future use prio bits
4449                  * and set skb->priority like in vlan_do_receive()
4450                  * For the time being, just ignore Priority Code Point
4451                  */
4452                 skb->vlan_tci = 0;
4453         }
4454
4455         type = skb->protocol;
4456
4457         /* deliver only exact match when indicated */
4458         if (likely(!deliver_exact)) {
4459                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4460                                        &ptype_base[ntohs(type) &
4461                                                    PTYPE_HASH_MASK]);
4462         }
4463
4464         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4465                                &orig_dev->ptype_specific);
4466
4467         if (unlikely(skb->dev != orig_dev)) {
4468                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4469                                        &skb->dev->ptype_specific);
4470         }
4471
4472         if (pt_prev) {
4473                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4474                         goto drop;
4475                 else
4476                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4477         } else {
4478 drop:
4479                 if (!deliver_exact)
4480                         atomic_long_inc(&skb->dev->rx_dropped);
4481                 else
4482                         atomic_long_inc(&skb->dev->rx_nohandler);
4483                 kfree_skb(skb);
4484                 /* Jamal, now you will not able to escape explaining
4485                  * me how you were going to use this. :-)
4486                  */
4487                 ret = NET_RX_DROP;
4488         }
4489
4490 out:
4491         return ret;
4492 }
4493
4494 static int __netif_receive_skb(struct sk_buff *skb)
4495 {
4496         int ret;
4497
4498         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4499                 unsigned int noreclaim_flag;
4500
4501                 /*
4502                  * PFMEMALLOC skbs are special, they should
4503                  * - be delivered to SOCK_MEMALLOC sockets only
4504                  * - stay away from userspace
4505                  * - have bounded memory usage
4506                  *
4507                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4508                  * context down to all allocation sites.
4509                  */
4510                 noreclaim_flag = memalloc_noreclaim_save();
4511                 ret = __netif_receive_skb_core(skb, true);
4512                 memalloc_noreclaim_restore(noreclaim_flag);
4513         } else
4514                 ret = __netif_receive_skb_core(skb, false);
4515
4516         return ret;
4517 }
4518
4519 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4520 {
4521         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4522         struct bpf_prog *new = xdp->prog;
4523         int ret = 0;
4524
4525         switch (xdp->command) {
4526         case XDP_SETUP_PROG:
4527                 rcu_assign_pointer(dev->xdp_prog, new);
4528                 if (old)
4529                         bpf_prog_put(old);
4530
4531                 if (old && !new) {
4532                         static_key_slow_dec(&generic_xdp_needed);
4533                 } else if (new && !old) {
4534                         static_key_slow_inc(&generic_xdp_needed);
4535                         dev_disable_lro(dev);
4536                 }
4537                 break;
4538
4539         case XDP_QUERY_PROG:
4540                 xdp->prog_attached = !!old;
4541                 xdp->prog_id = old ? old->aux->id : 0;
4542                 break;
4543
4544         default:
4545                 ret = -EINVAL;
4546                 break;
4547         }
4548
4549         return ret;
4550 }
4551
4552 static int netif_receive_skb_internal(struct sk_buff *skb)
4553 {
4554         int ret;
4555
4556         net_timestamp_check(netdev_tstamp_prequeue, skb);
4557
4558         if (skb_defer_rx_timestamp(skb))
4559                 return NET_RX_SUCCESS;
4560
4561         if (static_key_false(&generic_xdp_needed)) {
4562                 int ret;
4563
4564                 preempt_disable();
4565                 rcu_read_lock();
4566                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4567                 rcu_read_unlock();
4568                 preempt_enable();
4569
4570                 if (ret != XDP_PASS)
4571                         return NET_RX_DROP;
4572         }
4573
4574         rcu_read_lock();
4575 #ifdef CONFIG_RPS
4576         if (static_key_false(&rps_needed)) {
4577                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4578                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4579
4580                 if (cpu >= 0) {
4581                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4582                         rcu_read_unlock();
4583                         return ret;
4584                 }
4585         }
4586 #endif
4587         ret = __netif_receive_skb(skb);
4588         rcu_read_unlock();
4589         return ret;
4590 }
4591
4592 /**
4593  *      netif_receive_skb - process receive buffer from network
4594  *      @skb: buffer to process
4595  *
4596  *      netif_receive_skb() is the main receive data processing function.
4597  *      It always succeeds. The buffer may be dropped during processing
4598  *      for congestion control or by the protocol layers.
4599  *
4600  *      This function may only be called from softirq context and interrupts
4601  *      should be enabled.
4602  *
4603  *      Return values (usually ignored):
4604  *      NET_RX_SUCCESS: no congestion
4605  *      NET_RX_DROP: packet was dropped
4606  */
4607 int netif_receive_skb(struct sk_buff *skb)
4608 {
4609         trace_netif_receive_skb_entry(skb);
4610
4611         return netif_receive_skb_internal(skb);
4612 }
4613 EXPORT_SYMBOL(netif_receive_skb);
4614
4615 DEFINE_PER_CPU(struct work_struct, flush_works);
4616
4617 /* Network device is going away, flush any packets still pending */
4618 static void flush_backlog(struct work_struct *work)
4619 {
4620         struct sk_buff *skb, *tmp;
4621         struct softnet_data *sd;
4622
4623         local_bh_disable();
4624         sd = this_cpu_ptr(&softnet_data);
4625
4626         local_irq_disable();
4627         rps_lock(sd);
4628         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4629                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4630                         __skb_unlink(skb, &sd->input_pkt_queue);
4631                         kfree_skb(skb);
4632                         input_queue_head_incr(sd);
4633                 }
4634         }
4635         rps_unlock(sd);
4636         local_irq_enable();
4637
4638         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4639                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4640                         __skb_unlink(skb, &sd->process_queue);
4641                         kfree_skb(skb);
4642                         input_queue_head_incr(sd);
4643                 }
4644         }
4645         local_bh_enable();
4646 }
4647
4648 static void flush_all_backlogs(void)
4649 {
4650         unsigned int cpu;
4651
4652         get_online_cpus();
4653
4654         for_each_online_cpu(cpu)
4655                 queue_work_on(cpu, system_highpri_wq,
4656                               per_cpu_ptr(&flush_works, cpu));
4657
4658         for_each_online_cpu(cpu)
4659                 flush_work(per_cpu_ptr(&flush_works, cpu));
4660
4661         put_online_cpus();
4662 }
4663
4664 static int napi_gro_complete(struct sk_buff *skb)
4665 {
4666         struct packet_offload *ptype;
4667         __be16 type = skb->protocol;
4668         struct list_head *head = &offload_base;
4669         int err = -ENOENT;
4670
4671         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4672
4673         if (NAPI_GRO_CB(skb)->count == 1) {
4674                 skb_shinfo(skb)->gso_size = 0;
4675                 goto out;
4676         }
4677
4678         rcu_read_lock();
4679         list_for_each_entry_rcu(ptype, head, list) {
4680                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4681                         continue;
4682
4683                 err = ptype->callbacks.gro_complete(skb, 0);
4684                 break;
4685         }
4686         rcu_read_unlock();
4687
4688         if (err) {
4689                 WARN_ON(&ptype->list == head);
4690                 kfree_skb(skb);
4691                 return NET_RX_SUCCESS;
4692         }
4693
4694 out:
4695         return netif_receive_skb_internal(skb);
4696 }
4697
4698 /* napi->gro_list contains packets ordered by age.
4699  * youngest packets at the head of it.
4700  * Complete skbs in reverse order to reduce latencies.
4701  */
4702 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4703 {
4704         struct sk_buff *skb, *prev = NULL;
4705
4706         /* scan list and build reverse chain */
4707         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4708                 skb->prev = prev;
4709                 prev = skb;
4710         }
4711
4712         for (skb = prev; skb; skb = prev) {
4713                 skb->next = NULL;
4714
4715                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4716                         return;
4717
4718                 prev = skb->prev;
4719                 napi_gro_complete(skb);
4720                 napi->gro_count--;
4721         }
4722
4723         napi->gro_list = NULL;
4724 }
4725 EXPORT_SYMBOL(napi_gro_flush);
4726
4727 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4728 {
4729         struct sk_buff *p;
4730         unsigned int maclen = skb->dev->hard_header_len;
4731         u32 hash = skb_get_hash_raw(skb);
4732
4733         for (p = napi->gro_list; p; p = p->next) {
4734                 unsigned long diffs;
4735
4736                 NAPI_GRO_CB(p)->flush = 0;
4737
4738                 if (hash != skb_get_hash_raw(p)) {
4739                         NAPI_GRO_CB(p)->same_flow = 0;
4740                         continue;
4741                 }
4742
4743                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4744                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4745                 diffs |= skb_metadata_dst_cmp(p, skb);
4746                 diffs |= skb_metadata_differs(p, skb);
4747                 if (maclen == ETH_HLEN)
4748                         diffs |= compare_ether_header(skb_mac_header(p),
4749                                                       skb_mac_header(skb));
4750                 else if (!diffs)
4751                         diffs = memcmp(skb_mac_header(p),
4752                                        skb_mac_header(skb),
4753                                        maclen);
4754                 NAPI_GRO_CB(p)->same_flow = !diffs;
4755         }
4756 }
4757
4758 static void skb_gro_reset_offset(struct sk_buff *skb)
4759 {
4760         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4761         const skb_frag_t *frag0 = &pinfo->frags[0];
4762
4763         NAPI_GRO_CB(skb)->data_offset = 0;
4764         NAPI_GRO_CB(skb)->frag0 = NULL;
4765         NAPI_GRO_CB(skb)->frag0_len = 0;
4766
4767         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4768             pinfo->nr_frags &&
4769             !PageHighMem(skb_frag_page(frag0))) {
4770                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4771                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4772                                                     skb_frag_size(frag0),
4773                                                     skb->end - skb->tail);
4774         }
4775 }
4776
4777 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4778 {
4779         struct skb_shared_info *pinfo = skb_shinfo(skb);
4780
4781         BUG_ON(skb->end - skb->tail < grow);
4782
4783         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4784
4785         skb->data_len -= grow;
4786         skb->tail += grow;
4787
4788         pinfo->frags[0].page_offset += grow;
4789         skb_frag_size_sub(&pinfo->frags[0], grow);
4790
4791         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4792                 skb_frag_unref(skb, 0);
4793                 memmove(pinfo->frags, pinfo->frags + 1,
4794                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4795         }
4796 }
4797
4798 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4799 {
4800         struct sk_buff **pp = NULL;
4801         struct packet_offload *ptype;
4802         __be16 type = skb->protocol;
4803         struct list_head *head = &offload_base;
4804         int same_flow;
4805         enum gro_result ret;
4806         int grow;
4807
4808         if (netif_elide_gro(skb->dev))
4809                 goto normal;
4810
4811         gro_list_prepare(napi, skb);
4812
4813         rcu_read_lock();
4814         list_for_each_entry_rcu(ptype, head, list) {
4815                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4816                         continue;
4817
4818                 skb_set_network_header(skb, skb_gro_offset(skb));
4819                 skb_reset_mac_len(skb);
4820                 NAPI_GRO_CB(skb)->same_flow = 0;
4821                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4822                 NAPI_GRO_CB(skb)->free = 0;
4823                 NAPI_GRO_CB(skb)->encap_mark = 0;
4824                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4825                 NAPI_GRO_CB(skb)->is_fou = 0;
4826                 NAPI_GRO_CB(skb)->is_atomic = 1;
4827                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4828
4829                 /* Setup for GRO checksum validation */
4830                 switch (skb->ip_summed) {
4831                 case CHECKSUM_COMPLETE:
4832                         NAPI_GRO_CB(skb)->csum = skb->csum;
4833                         NAPI_GRO_CB(skb)->csum_valid = 1;
4834                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4835                         break;
4836                 case CHECKSUM_UNNECESSARY:
4837                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4838                         NAPI_GRO_CB(skb)->csum_valid = 0;
4839                         break;
4840                 default:
4841                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4842                         NAPI_GRO_CB(skb)->csum_valid = 0;
4843                 }
4844
4845                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4846                 break;
4847         }
4848         rcu_read_unlock();
4849
4850         if (&ptype->list == head)
4851                 goto normal;
4852
4853         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4854                 ret = GRO_CONSUMED;
4855                 goto ok;
4856         }
4857
4858         same_flow = NAPI_GRO_CB(skb)->same_flow;
4859         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4860
4861         if (pp) {
4862                 struct sk_buff *nskb = *pp;
4863
4864                 *pp = nskb->next;
4865                 nskb->next = NULL;
4866                 napi_gro_complete(nskb);
4867                 napi->gro_count--;
4868         }
4869
4870         if (same_flow)
4871                 goto ok;
4872
4873         if (NAPI_GRO_CB(skb)->flush)
4874                 goto normal;
4875
4876         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4877                 struct sk_buff *nskb = napi->gro_list;
4878
4879                 /* locate the end of the list to select the 'oldest' flow */
4880                 while (nskb->next) {
4881                         pp = &nskb->next;
4882                         nskb = *pp;
4883                 }
4884                 *pp = NULL;
4885                 nskb->next = NULL;
4886                 napi_gro_complete(nskb);
4887         } else {
4888                 napi->gro_count++;
4889         }
4890         NAPI_GRO_CB(skb)->count = 1;
4891         NAPI_GRO_CB(skb)->age = jiffies;
4892         NAPI_GRO_CB(skb)->last = skb;
4893         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4894         skb->next = napi->gro_list;
4895         napi->gro_list = skb;
4896         ret = GRO_HELD;
4897
4898 pull:
4899         grow = skb_gro_offset(skb) - skb_headlen(skb);
4900         if (grow > 0)
4901                 gro_pull_from_frag0(skb, grow);
4902 ok:
4903         return ret;
4904
4905 normal:
4906         ret = GRO_NORMAL;
4907         goto pull;
4908 }
4909
4910 struct packet_offload *gro_find_receive_by_type(__be16 type)
4911 {
4912         struct list_head *offload_head = &offload_base;
4913         struct packet_offload *ptype;
4914
4915         list_for_each_entry_rcu(ptype, offload_head, list) {
4916                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4917                         continue;
4918                 return ptype;
4919         }
4920         return NULL;
4921 }
4922 EXPORT_SYMBOL(gro_find_receive_by_type);
4923
4924 struct packet_offload *gro_find_complete_by_type(__be16 type)
4925 {
4926         struct list_head *offload_head = &offload_base;
4927         struct packet_offload *ptype;
4928
4929         list_for_each_entry_rcu(ptype, offload_head, list) {
4930                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4931                         continue;
4932                 return ptype;
4933         }
4934         return NULL;
4935 }
4936 EXPORT_SYMBOL(gro_find_complete_by_type);
4937
4938 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4939 {
4940         skb_dst_drop(skb);
4941         secpath_reset(skb);
4942         kmem_cache_free(skbuff_head_cache, skb);
4943 }
4944
4945 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4946 {
4947         switch (ret) {
4948         case GRO_NORMAL:
4949                 if (netif_receive_skb_internal(skb))
4950                         ret = GRO_DROP;
4951                 break;
4952
4953         case GRO_DROP:
4954                 kfree_skb(skb);
4955                 break;
4956
4957         case GRO_MERGED_FREE:
4958                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4959                         napi_skb_free_stolen_head(skb);
4960                 else
4961                         __kfree_skb(skb);
4962                 break;
4963
4964         case GRO_HELD:
4965         case GRO_MERGED:
4966         case GRO_CONSUMED:
4967                 break;
4968         }
4969
4970         return ret;
4971 }
4972
4973 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4974 {
4975         skb_mark_napi_id(skb, napi);
4976         trace_napi_gro_receive_entry(skb);
4977
4978         skb_gro_reset_offset(skb);
4979
4980         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4981 }
4982 EXPORT_SYMBOL(napi_gro_receive);
4983
4984 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4985 {
4986         if (unlikely(skb->pfmemalloc)) {
4987                 consume_skb(skb);
4988                 return;
4989         }
4990         __skb_pull(skb, skb_headlen(skb));
4991         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4992         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4993         skb->vlan_tci = 0;
4994         skb->dev = napi->dev;
4995         skb->skb_iif = 0;
4996         skb->encapsulation = 0;
4997         skb_shinfo(skb)->gso_type = 0;
4998         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4999         secpath_reset(skb);
5000
5001         napi->skb = skb;
5002 }
5003
5004 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5005 {
5006         struct sk_buff *skb = napi->skb;
5007
5008         if (!skb) {
5009                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5010                 if (skb) {
5011                         napi->skb = skb;
5012                         skb_mark_napi_id(skb, napi);
5013                 }
5014         }
5015         return skb;
5016 }
5017 EXPORT_SYMBOL(napi_get_frags);
5018
5019 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5020                                       struct sk_buff *skb,
5021                                       gro_result_t ret)
5022 {
5023         switch (ret) {
5024         case GRO_NORMAL:
5025         case GRO_HELD:
5026                 __skb_push(skb, ETH_HLEN);
5027                 skb->protocol = eth_type_trans(skb, skb->dev);
5028                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5029                         ret = GRO_DROP;
5030                 break;
5031
5032         case GRO_DROP:
5033                 napi_reuse_skb(napi, skb);
5034                 break;
5035
5036         case GRO_MERGED_FREE:
5037                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5038                         napi_skb_free_stolen_head(skb);
5039                 else
5040                         napi_reuse_skb(napi, skb);
5041                 break;
5042
5043         case GRO_MERGED:
5044         case GRO_CONSUMED:
5045                 break;
5046         }
5047
5048         return ret;
5049 }
5050
5051 /* Upper GRO stack assumes network header starts at gro_offset=0
5052  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5053  * We copy ethernet header into skb->data to have a common layout.
5054  */
5055 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5056 {
5057         struct sk_buff *skb = napi->skb;
5058         const struct ethhdr *eth;
5059         unsigned int hlen = sizeof(*eth);
5060
5061         napi->skb = NULL;
5062
5063         skb_reset_mac_header(skb);
5064         skb_gro_reset_offset(skb);
5065
5066         eth = skb_gro_header_fast(skb, 0);
5067         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5068                 eth = skb_gro_header_slow(skb, hlen, 0);
5069                 if (unlikely(!eth)) {
5070                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5071                                              __func__, napi->dev->name);
5072                         napi_reuse_skb(napi, skb);
5073                         return NULL;
5074                 }
5075         } else {
5076                 gro_pull_from_frag0(skb, hlen);
5077                 NAPI_GRO_CB(skb)->frag0 += hlen;
5078                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5079         }
5080         __skb_pull(skb, hlen);
5081
5082         /*
5083          * This works because the only protocols we care about don't require
5084          * special handling.
5085          * We'll fix it up properly in napi_frags_finish()
5086          */
5087         skb->protocol = eth->h_proto;
5088
5089         return skb;
5090 }
5091
5092 gro_result_t napi_gro_frags(struct napi_struct *napi)
5093 {
5094         struct sk_buff *skb = napi_frags_skb(napi);
5095
5096         if (!skb)
5097                 return GRO_DROP;
5098
5099         trace_napi_gro_frags_entry(skb);
5100
5101         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5102 }
5103 EXPORT_SYMBOL(napi_gro_frags);
5104
5105 /* Compute the checksum from gro_offset and return the folded value
5106  * after adding in any pseudo checksum.
5107  */
5108 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5109 {
5110         __wsum wsum;
5111         __sum16 sum;
5112
5113         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5114
5115         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5116         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5117         if (likely(!sum)) {
5118                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5119                     !skb->csum_complete_sw)
5120                         netdev_rx_csum_fault(skb->dev);
5121         }
5122
5123         NAPI_GRO_CB(skb)->csum = wsum;
5124         NAPI_GRO_CB(skb)->csum_valid = 1;
5125
5126         return sum;
5127 }
5128 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5129
5130 static void net_rps_send_ipi(struct softnet_data *remsd)
5131 {
5132 #ifdef CONFIG_RPS
5133         while (remsd) {
5134                 struct softnet_data *next = remsd->rps_ipi_next;
5135
5136                 if (cpu_online(remsd->cpu))
5137                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5138                 remsd = next;
5139         }
5140 #endif
5141 }
5142
5143 /*
5144  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5145  * Note: called with local irq disabled, but exits with local irq enabled.
5146  */
5147 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5148 {
5149 #ifdef CONFIG_RPS
5150         struct softnet_data *remsd = sd->rps_ipi_list;
5151
5152         if (remsd) {
5153                 sd->rps_ipi_list = NULL;
5154
5155                 local_irq_enable();
5156
5157                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5158                 net_rps_send_ipi(remsd);
5159         } else
5160 #endif
5161                 local_irq_enable();
5162 }
5163
5164 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5165 {
5166 #ifdef CONFIG_RPS
5167         return sd->rps_ipi_list != NULL;
5168 #else
5169         return false;
5170 #endif
5171 }
5172
5173 static int process_backlog(struct napi_struct *napi, int quota)
5174 {
5175         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5176         bool again = true;
5177         int work = 0;
5178
5179         /* Check if we have pending ipi, its better to send them now,
5180          * not waiting net_rx_action() end.
5181          */
5182         if (sd_has_rps_ipi_waiting(sd)) {
5183                 local_irq_disable();
5184                 net_rps_action_and_irq_enable(sd);
5185         }
5186
5187         napi->weight = dev_rx_weight;
5188         while (again) {
5189                 struct sk_buff *skb;
5190
5191                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5192                         rcu_read_lock();
5193                         __netif_receive_skb(skb);
5194                         rcu_read_unlock();
5195                         input_queue_head_incr(sd);
5196                         if (++work >= quota)
5197                                 return work;
5198
5199                 }
5200
5201                 local_irq_disable();
5202                 rps_lock(sd);
5203                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5204                         /*
5205                          * Inline a custom version of __napi_complete().
5206                          * only current cpu owns and manipulates this napi,
5207                          * and NAPI_STATE_SCHED is the only possible flag set
5208                          * on backlog.
5209                          * We can use a plain write instead of clear_bit(),
5210                          * and we dont need an smp_mb() memory barrier.
5211                          */
5212                         napi->state = 0;
5213                         again = false;
5214                 } else {
5215                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5216                                                    &sd->process_queue);
5217                 }
5218                 rps_unlock(sd);
5219                 local_irq_enable();
5220         }
5221
5222         return work;
5223 }
5224
5225 /**
5226  * __napi_schedule - schedule for receive
5227  * @n: entry to schedule
5228  *
5229  * The entry's receive function will be scheduled to run.
5230  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5231  */
5232 void __napi_schedule(struct napi_struct *n)
5233 {
5234         unsigned long flags;
5235
5236         local_irq_save(flags);
5237         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5238         local_irq_restore(flags);
5239 }
5240 EXPORT_SYMBOL(__napi_schedule);
5241
5242 /**
5243  *      napi_schedule_prep - check if napi can be scheduled
5244  *      @n: napi context
5245  *
5246  * Test if NAPI routine is already running, and if not mark
5247  * it as running.  This is used as a condition variable
5248  * insure only one NAPI poll instance runs.  We also make
5249  * sure there is no pending NAPI disable.
5250  */
5251 bool napi_schedule_prep(struct napi_struct *n)
5252 {
5253         unsigned long val, new;
5254
5255         do {
5256                 val = READ_ONCE(n->state);
5257                 if (unlikely(val & NAPIF_STATE_DISABLE))
5258                         return false;
5259                 new = val | NAPIF_STATE_SCHED;
5260
5261                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5262                  * This was suggested by Alexander Duyck, as compiler
5263                  * emits better code than :
5264                  * if (val & NAPIF_STATE_SCHED)
5265                  *     new |= NAPIF_STATE_MISSED;
5266                  */
5267                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5268                                                    NAPIF_STATE_MISSED;
5269         } while (cmpxchg(&n->state, val, new) != val);
5270
5271         return !(val & NAPIF_STATE_SCHED);
5272 }
5273 EXPORT_SYMBOL(napi_schedule_prep);
5274
5275 /**
5276  * __napi_schedule_irqoff - schedule for receive
5277  * @n: entry to schedule
5278  *
5279  * Variant of __napi_schedule() assuming hard irqs are masked
5280  */
5281 void __napi_schedule_irqoff(struct napi_struct *n)
5282 {
5283         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5284 }
5285 EXPORT_SYMBOL(__napi_schedule_irqoff);
5286
5287 bool napi_complete_done(struct napi_struct *n, int work_done)
5288 {
5289         unsigned long flags, val, new;
5290
5291         /*
5292          * 1) Don't let napi dequeue from the cpu poll list
5293          *    just in case its running on a different cpu.
5294          * 2) If we are busy polling, do nothing here, we have
5295          *    the guarantee we will be called later.
5296          */
5297         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5298                                  NAPIF_STATE_IN_BUSY_POLL)))
5299                 return false;
5300
5301         if (n->gro_list) {
5302                 unsigned long timeout = 0;
5303
5304                 if (work_done)
5305                         timeout = n->dev->gro_flush_timeout;
5306
5307                 if (timeout)
5308                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5309                                       HRTIMER_MODE_REL_PINNED);
5310                 else
5311                         napi_gro_flush(n, false);
5312         }
5313         if (unlikely(!list_empty(&n->poll_list))) {
5314                 /* If n->poll_list is not empty, we need to mask irqs */
5315                 local_irq_save(flags);
5316                 list_del_init(&n->poll_list);
5317                 local_irq_restore(flags);
5318         }
5319
5320         do {
5321                 val = READ_ONCE(n->state);
5322
5323                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5324
5325                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5326
5327                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5328                  * because we will call napi->poll() one more time.
5329                  * This C code was suggested by Alexander Duyck to help gcc.
5330                  */
5331                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5332                                                     NAPIF_STATE_SCHED;
5333         } while (cmpxchg(&n->state, val, new) != val);
5334
5335         if (unlikely(val & NAPIF_STATE_MISSED)) {
5336                 __napi_schedule(n);
5337                 return false;
5338         }
5339
5340         return true;
5341 }
5342 EXPORT_SYMBOL(napi_complete_done);
5343
5344 /* must be called under rcu_read_lock(), as we dont take a reference */
5345 static struct napi_struct *napi_by_id(unsigned int napi_id)
5346 {
5347         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5348         struct napi_struct *napi;
5349
5350         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5351                 if (napi->napi_id == napi_id)
5352                         return napi;
5353
5354         return NULL;
5355 }
5356
5357 #if defined(CONFIG_NET_RX_BUSY_POLL)
5358
5359 #define BUSY_POLL_BUDGET 8
5360
5361 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5362 {
5363         int rc;
5364
5365         /* Busy polling means there is a high chance device driver hard irq
5366          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5367          * set in napi_schedule_prep().
5368          * Since we are about to call napi->poll() once more, we can safely
5369          * clear NAPI_STATE_MISSED.
5370          *
5371          * Note: x86 could use a single "lock and ..." instruction
5372          * to perform these two clear_bit()
5373          */
5374         clear_bit(NAPI_STATE_MISSED, &napi->state);
5375         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5376
5377         local_bh_disable();
5378
5379         /* All we really want here is to re-enable device interrupts.
5380          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5381          */
5382         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5383         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5384         netpoll_poll_unlock(have_poll_lock);
5385         if (rc == BUSY_POLL_BUDGET)
5386                 __napi_schedule(napi);
5387         local_bh_enable();
5388 }
5389
5390 void napi_busy_loop(unsigned int napi_id,
5391                     bool (*loop_end)(void *, unsigned long),
5392                     void *loop_end_arg)
5393 {
5394         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5395         int (*napi_poll)(struct napi_struct *napi, int budget);
5396         void *have_poll_lock = NULL;
5397         struct napi_struct *napi;
5398
5399 restart:
5400         napi_poll = NULL;
5401
5402         rcu_read_lock();
5403
5404         napi = napi_by_id(napi_id);
5405         if (!napi)
5406                 goto out;
5407
5408         preempt_disable();
5409         for (;;) {
5410                 int work = 0;
5411
5412                 local_bh_disable();
5413                 if (!napi_poll) {
5414                         unsigned long val = READ_ONCE(napi->state);
5415
5416                         /* If multiple threads are competing for this napi,
5417                          * we avoid dirtying napi->state as much as we can.
5418                          */
5419                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5420                                    NAPIF_STATE_IN_BUSY_POLL))
5421                                 goto count;
5422                         if (cmpxchg(&napi->state, val,
5423                                     val | NAPIF_STATE_IN_BUSY_POLL |
5424                                           NAPIF_STATE_SCHED) != val)
5425                                 goto count;
5426                         have_poll_lock = netpoll_poll_lock(napi);
5427                         napi_poll = napi->poll;
5428                 }
5429                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5430                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5431 count:
5432                 if (work > 0)
5433                         __NET_ADD_STATS(dev_net(napi->dev),
5434                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5435                 local_bh_enable();
5436
5437                 if (!loop_end || loop_end(loop_end_arg, start_time))
5438                         break;
5439
5440                 if (unlikely(need_resched())) {
5441                         if (napi_poll)
5442                                 busy_poll_stop(napi, have_poll_lock);
5443                         preempt_enable();
5444                         rcu_read_unlock();
5445                         cond_resched();
5446                         if (loop_end(loop_end_arg, start_time))
5447                                 return;
5448                         goto restart;
5449                 }
5450                 cpu_relax();
5451         }
5452         if (napi_poll)
5453                 busy_poll_stop(napi, have_poll_lock);
5454         preempt_enable();
5455 out:
5456         rcu_read_unlock();
5457 }
5458 EXPORT_SYMBOL(napi_busy_loop);
5459
5460 #endif /* CONFIG_NET_RX_BUSY_POLL */
5461
5462 static void napi_hash_add(struct napi_struct *napi)
5463 {
5464         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5465             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5466                 return;
5467
5468         spin_lock(&napi_hash_lock);
5469
5470         /* 0..NR_CPUS range is reserved for sender_cpu use */
5471         do {
5472                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5473                         napi_gen_id = MIN_NAPI_ID;
5474         } while (napi_by_id(napi_gen_id));
5475         napi->napi_id = napi_gen_id;
5476
5477         hlist_add_head_rcu(&napi->napi_hash_node,
5478                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5479
5480         spin_unlock(&napi_hash_lock);
5481 }
5482
5483 /* Warning : caller is responsible to make sure rcu grace period
5484  * is respected before freeing memory containing @napi
5485  */
5486 bool napi_hash_del(struct napi_struct *napi)
5487 {
5488         bool rcu_sync_needed = false;
5489
5490         spin_lock(&napi_hash_lock);
5491
5492         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5493                 rcu_sync_needed = true;
5494                 hlist_del_rcu(&napi->napi_hash_node);
5495         }
5496         spin_unlock(&napi_hash_lock);
5497         return rcu_sync_needed;
5498 }
5499 EXPORT_SYMBOL_GPL(napi_hash_del);
5500
5501 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5502 {
5503         struct napi_struct *napi;
5504
5505         napi = container_of(timer, struct napi_struct, timer);
5506
5507         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5508          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5509          */
5510         if (napi->gro_list && !napi_disable_pending(napi) &&
5511             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5512                 __napi_schedule_irqoff(napi);
5513
5514         return HRTIMER_NORESTART;
5515 }
5516
5517 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5518                     int (*poll)(struct napi_struct *, int), int weight)
5519 {
5520         INIT_LIST_HEAD(&napi->poll_list);
5521         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5522         napi->timer.function = napi_watchdog;
5523         napi->gro_count = 0;
5524         napi->gro_list = NULL;
5525         napi->skb = NULL;
5526         napi->poll = poll;
5527         if (weight > NAPI_POLL_WEIGHT)
5528                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5529                             weight, dev->name);
5530         napi->weight = weight;
5531         list_add(&napi->dev_list, &dev->napi_list);
5532         napi->dev = dev;
5533 #ifdef CONFIG_NETPOLL
5534         napi->poll_owner = -1;
5535 #endif
5536         set_bit(NAPI_STATE_SCHED, &napi->state);
5537         napi_hash_add(napi);
5538 }
5539 EXPORT_SYMBOL(netif_napi_add);
5540
5541 void napi_disable(struct napi_struct *n)
5542 {
5543         might_sleep();
5544         set_bit(NAPI_STATE_DISABLE, &n->state);
5545
5546         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5547                 msleep(1);
5548         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5549                 msleep(1);
5550
5551         hrtimer_cancel(&n->timer);
5552
5553         clear_bit(NAPI_STATE_DISABLE, &n->state);
5554 }
5555 EXPORT_SYMBOL(napi_disable);
5556
5557 /* Must be called in process context */
5558 void netif_napi_del(struct napi_struct *napi)
5559 {
5560         might_sleep();
5561         if (napi_hash_del(napi))
5562                 synchronize_net();
5563         list_del_init(&napi->dev_list);
5564         napi_free_frags(napi);
5565
5566         kfree_skb_list(napi->gro_list);
5567         napi->gro_list = NULL;
5568         napi->gro_count = 0;
5569 }
5570 EXPORT_SYMBOL(netif_napi_del);
5571
5572 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5573 {
5574         void *have;
5575         int work, weight;
5576
5577         list_del_init(&n->poll_list);
5578
5579         have = netpoll_poll_lock(n);
5580
5581         weight = n->weight;
5582
5583         /* This NAPI_STATE_SCHED test is for avoiding a race
5584          * with netpoll's poll_napi().  Only the entity which
5585          * obtains the lock and sees NAPI_STATE_SCHED set will
5586          * actually make the ->poll() call.  Therefore we avoid
5587          * accidentally calling ->poll() when NAPI is not scheduled.
5588          */
5589         work = 0;
5590         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5591                 work = n->poll(n, weight);
5592                 trace_napi_poll(n, work, weight);
5593         }
5594
5595         WARN_ON_ONCE(work > weight);
5596
5597         if (likely(work < weight))
5598                 goto out_unlock;
5599
5600         /* Drivers must not modify the NAPI state if they
5601          * consume the entire weight.  In such cases this code
5602          * still "owns" the NAPI instance and therefore can
5603          * move the instance around on the list at-will.
5604          */
5605         if (unlikely(napi_disable_pending(n))) {
5606                 napi_complete(n);
5607                 goto out_unlock;
5608         }
5609
5610         if (n->gro_list) {
5611                 /* flush too old packets
5612                  * If HZ < 1000, flush all packets.
5613                  */
5614                 napi_gro_flush(n, HZ >= 1000);
5615         }
5616
5617         /* Some drivers may have called napi_schedule
5618          * prior to exhausting their budget.
5619          */
5620         if (unlikely(!list_empty(&n->poll_list))) {
5621                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5622                              n->dev ? n->dev->name : "backlog");
5623                 goto out_unlock;
5624         }
5625
5626         list_add_tail(&n->poll_list, repoll);
5627
5628 out_unlock:
5629         netpoll_poll_unlock(have);
5630
5631         return work;
5632 }
5633
5634 static __latent_entropy void net_rx_action(struct softirq_action *h)
5635 {
5636         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5637         unsigned long time_limit = jiffies +
5638                 usecs_to_jiffies(netdev_budget_usecs);
5639         int budget = netdev_budget;
5640         LIST_HEAD(list);
5641         LIST_HEAD(repoll);
5642
5643         local_irq_disable();
5644         list_splice_init(&sd->poll_list, &list);
5645         local_irq_enable();
5646
5647         for (;;) {
5648                 struct napi_struct *n;
5649
5650                 if (list_empty(&list)) {
5651                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5652                                 goto out;
5653                         break;
5654                 }
5655
5656                 n = list_first_entry(&list, struct napi_struct, poll_list);
5657                 budget -= napi_poll(n, &repoll);
5658
5659                 /* If softirq window is exhausted then punt.
5660                  * Allow this to run for 2 jiffies since which will allow
5661                  * an average latency of 1.5/HZ.
5662                  */
5663                 if (unlikely(budget <= 0 ||
5664                              time_after_eq(jiffies, time_limit))) {
5665                         sd->time_squeeze++;
5666                         break;
5667                 }
5668         }
5669
5670         local_irq_disable();
5671
5672         list_splice_tail_init(&sd->poll_list, &list);
5673         list_splice_tail(&repoll, &list);
5674         list_splice(&list, &sd->poll_list);
5675         if (!list_empty(&sd->poll_list))
5676                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5677
5678         net_rps_action_and_irq_enable(sd);
5679 out:
5680         __kfree_skb_flush();
5681 }
5682
5683 struct netdev_adjacent {
5684         struct net_device *dev;
5685
5686         /* upper master flag, there can only be one master device per list */
5687         bool master;
5688
5689         /* counter for the number of times this device was added to us */
5690         u16 ref_nr;
5691
5692         /* private field for the users */
5693         void *private;
5694
5695         struct list_head list;
5696         struct rcu_head rcu;
5697 };
5698
5699 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5700                                                  struct list_head *adj_list)
5701 {
5702         struct netdev_adjacent *adj;
5703
5704         list_for_each_entry(adj, adj_list, list) {
5705                 if (adj->dev == adj_dev)
5706                         return adj;
5707         }
5708         return NULL;
5709 }
5710
5711 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5712 {
5713         struct net_device *dev = data;
5714
5715         return upper_dev == dev;
5716 }
5717
5718 /**
5719  * netdev_has_upper_dev - Check if device is linked to an upper device
5720  * @dev: device
5721  * @upper_dev: upper device to check
5722  *
5723  * Find out if a device is linked to specified upper device and return true
5724  * in case it is. Note that this checks only immediate upper device,
5725  * not through a complete stack of devices. The caller must hold the RTNL lock.
5726  */
5727 bool netdev_has_upper_dev(struct net_device *dev,
5728                           struct net_device *upper_dev)
5729 {
5730         ASSERT_RTNL();
5731
5732         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5733                                              upper_dev);
5734 }
5735 EXPORT_SYMBOL(netdev_has_upper_dev);
5736
5737 /**
5738  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5739  * @dev: device
5740  * @upper_dev: upper device to check
5741  *
5742  * Find out if a device is linked to specified upper device and return true
5743  * in case it is. Note that this checks the entire upper device chain.
5744  * The caller must hold rcu lock.
5745  */
5746
5747 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5748                                   struct net_device *upper_dev)
5749 {
5750         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5751                                                upper_dev);
5752 }
5753 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5754
5755 /**
5756  * netdev_has_any_upper_dev - Check if device is linked to some device
5757  * @dev: device
5758  *
5759  * Find out if a device is linked to an upper device and return true in case
5760  * it is. The caller must hold the RTNL lock.
5761  */
5762 bool netdev_has_any_upper_dev(struct net_device *dev)
5763 {
5764         ASSERT_RTNL();
5765
5766         return !list_empty(&dev->adj_list.upper);
5767 }
5768 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5769
5770 /**
5771  * netdev_master_upper_dev_get - Get master upper device
5772  * @dev: device
5773  *
5774  * Find a master upper device and return pointer to it or NULL in case
5775  * it's not there. The caller must hold the RTNL lock.
5776  */
5777 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5778 {
5779         struct netdev_adjacent *upper;
5780
5781         ASSERT_RTNL();
5782
5783         if (list_empty(&dev->adj_list.upper))
5784                 return NULL;
5785
5786         upper = list_first_entry(&dev->adj_list.upper,
5787                                  struct netdev_adjacent, list);
5788         if (likely(upper->master))
5789                 return upper->dev;
5790         return NULL;
5791 }
5792 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5793
5794 /**
5795  * netdev_has_any_lower_dev - Check if device is linked to some device
5796  * @dev: device
5797  *
5798  * Find out if a device is linked to a lower device and return true in case
5799  * it is. The caller must hold the RTNL lock.
5800  */
5801 static bool netdev_has_any_lower_dev(struct net_device *dev)
5802 {
5803         ASSERT_RTNL();
5804
5805         return !list_empty(&dev->adj_list.lower);
5806 }
5807
5808 void *netdev_adjacent_get_private(struct list_head *adj_list)
5809 {
5810         struct netdev_adjacent *adj;
5811
5812         adj = list_entry(adj_list, struct netdev_adjacent, list);
5813
5814         return adj->private;
5815 }
5816 EXPORT_SYMBOL(netdev_adjacent_get_private);
5817
5818 /**
5819  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5820  * @dev: device
5821  * @iter: list_head ** of the current position
5822  *
5823  * Gets the next device from the dev's upper list, starting from iter
5824  * position. The caller must hold RCU read lock.
5825  */
5826 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5827                                                  struct list_head **iter)
5828 {
5829         struct netdev_adjacent *upper;
5830
5831         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5832
5833         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5834
5835         if (&upper->list == &dev->adj_list.upper)
5836                 return NULL;
5837
5838         *iter = &upper->list;
5839
5840         return upper->dev;
5841 }
5842 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5843
5844 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5845                                                     struct list_head **iter)
5846 {
5847         struct netdev_adjacent *upper;
5848
5849         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5850
5851         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5852
5853         if (&upper->list == &dev->adj_list.upper)
5854                 return NULL;
5855
5856         *iter = &upper->list;
5857
5858         return upper->dev;
5859 }
5860
5861 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5862                                   int (*fn)(struct net_device *dev,
5863                                             void *data),
5864                                   void *data)
5865 {
5866         struct net_device *udev;
5867         struct list_head *iter;
5868         int ret;
5869
5870         for (iter = &dev->adj_list.upper,
5871              udev = netdev_next_upper_dev_rcu(dev, &iter);
5872              udev;
5873              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5874                 /* first is the upper device itself */
5875                 ret = fn(udev, data);
5876                 if (ret)
5877                         return ret;
5878
5879                 /* then look at all of its upper devices */
5880                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5881                 if (ret)
5882                         return ret;
5883         }
5884
5885         return 0;
5886 }
5887 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5888
5889 /**
5890  * netdev_lower_get_next_private - Get the next ->private from the
5891  *                                 lower neighbour list
5892  * @dev: device
5893  * @iter: list_head ** of the current position
5894  *
5895  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5896  * list, starting from iter position. The caller must hold either hold the
5897  * RTNL lock or its own locking that guarantees that the neighbour lower
5898  * list will remain unchanged.
5899  */
5900 void *netdev_lower_get_next_private(struct net_device *dev,
5901                                     struct list_head **iter)
5902 {
5903         struct netdev_adjacent *lower;
5904
5905         lower = list_entry(*iter, struct netdev_adjacent, list);
5906
5907         if (&lower->list == &dev->adj_list.lower)
5908                 return NULL;
5909
5910         *iter = lower->list.next;
5911
5912         return lower->private;
5913 }
5914 EXPORT_SYMBOL(netdev_lower_get_next_private);
5915
5916 /**
5917  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5918  *                                     lower neighbour list, RCU
5919  *                                     variant
5920  * @dev: device
5921  * @iter: list_head ** of the current position
5922  *
5923  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5924  * list, starting from iter position. The caller must hold RCU read lock.
5925  */
5926 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5927                                         struct list_head **iter)
5928 {
5929         struct netdev_adjacent *lower;
5930
5931         WARN_ON_ONCE(!rcu_read_lock_held());
5932
5933         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5934
5935         if (&lower->list == &dev->adj_list.lower)
5936                 return NULL;
5937
5938         *iter = &lower->list;
5939
5940         return lower->private;
5941 }
5942 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5943
5944 /**
5945  * netdev_lower_get_next - Get the next device from the lower neighbour
5946  *                         list
5947  * @dev: device
5948  * @iter: list_head ** of the current position
5949  *
5950  * Gets the next netdev_adjacent from the dev's lower neighbour
5951  * list, starting from iter position. The caller must hold RTNL lock or
5952  * its own locking that guarantees that the neighbour lower
5953  * list will remain unchanged.
5954  */
5955 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5956 {
5957         struct netdev_adjacent *lower;
5958
5959         lower = list_entry(*iter, struct netdev_adjacent, list);
5960
5961         if (&lower->list == &dev->adj_list.lower)
5962                 return NULL;
5963
5964         *iter = lower->list.next;
5965
5966         return lower->dev;
5967 }
5968 EXPORT_SYMBOL(netdev_lower_get_next);
5969
5970 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5971                                                 struct list_head **iter)
5972 {
5973         struct netdev_adjacent *lower;
5974
5975         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5976
5977         if (&lower->list == &dev->adj_list.lower)
5978                 return NULL;
5979
5980         *iter = &lower->list;
5981
5982         return lower->dev;
5983 }
5984
5985 int netdev_walk_all_lower_dev(struct net_device *dev,
5986                               int (*fn)(struct net_device *dev,
5987                                         void *data),
5988                               void *data)
5989 {
5990         struct net_device *ldev;
5991         struct list_head *iter;
5992         int ret;
5993
5994         for (iter = &dev->adj_list.lower,
5995              ldev = netdev_next_lower_dev(dev, &iter);
5996              ldev;
5997              ldev = netdev_next_lower_dev(dev, &iter)) {
5998                 /* first is the lower device itself */
5999                 ret = fn(ldev, data);
6000                 if (ret)
6001                         return ret;
6002
6003                 /* then look at all of its lower devices */
6004                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6005                 if (ret)
6006                         return ret;
6007         }
6008
6009         return 0;
6010 }
6011 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6012
6013 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6014                                                     struct list_head **iter)
6015 {
6016         struct netdev_adjacent *lower;
6017
6018         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6019         if (&lower->list == &dev->adj_list.lower)
6020                 return NULL;
6021
6022         *iter = &lower->list;
6023
6024         return lower->dev;
6025 }
6026
6027 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6028                                   int (*fn)(struct net_device *dev,
6029                                             void *data),
6030                                   void *data)
6031 {
6032         struct net_device *ldev;
6033         struct list_head *iter;
6034         int ret;
6035
6036         for (iter = &dev->adj_list.lower,
6037              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6038              ldev;
6039              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6040                 /* first is the lower device itself */
6041                 ret = fn(ldev, data);
6042                 if (ret)
6043                         return ret;
6044
6045                 /* then look at all of its lower devices */
6046                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6047                 if (ret)
6048                         return ret;
6049         }
6050
6051         return 0;
6052 }
6053 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6054
6055 /**
6056  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6057  *                                     lower neighbour list, RCU
6058  *                                     variant
6059  * @dev: device
6060  *
6061  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6062  * list. The caller must hold RCU read lock.
6063  */
6064 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6065 {
6066         struct netdev_adjacent *lower;
6067
6068         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6069                         struct netdev_adjacent, list);
6070         if (lower)
6071                 return lower->private;
6072         return NULL;
6073 }
6074 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6075
6076 /**
6077  * netdev_master_upper_dev_get_rcu - Get master upper device
6078  * @dev: device
6079  *
6080  * Find a master upper device and return pointer to it or NULL in case
6081  * it's not there. The caller must hold the RCU read lock.
6082  */
6083 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6084 {
6085         struct netdev_adjacent *upper;
6086
6087         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6088                                        struct netdev_adjacent, list);
6089         if (upper && likely(upper->master))
6090                 return upper->dev;
6091         return NULL;
6092 }
6093 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6094
6095 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6096                               struct net_device *adj_dev,
6097                               struct list_head *dev_list)
6098 {
6099         char linkname[IFNAMSIZ+7];
6100
6101         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6102                 "upper_%s" : "lower_%s", adj_dev->name);
6103         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6104                                  linkname);
6105 }
6106 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6107                                char *name,
6108                                struct list_head *dev_list)
6109 {
6110         char linkname[IFNAMSIZ+7];
6111
6112         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6113                 "upper_%s" : "lower_%s", name);
6114         sysfs_remove_link(&(dev->dev.kobj), linkname);
6115 }
6116
6117 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6118                                                  struct net_device *adj_dev,
6119                                                  struct list_head *dev_list)
6120 {
6121         return (dev_list == &dev->adj_list.upper ||
6122                 dev_list == &dev->adj_list.lower) &&
6123                 net_eq(dev_net(dev), dev_net(adj_dev));
6124 }
6125
6126 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6127                                         struct net_device *adj_dev,
6128                                         struct list_head *dev_list,
6129                                         void *private, bool master)
6130 {
6131         struct netdev_adjacent *adj;
6132         int ret;
6133
6134         adj = __netdev_find_adj(adj_dev, dev_list);
6135
6136         if (adj) {
6137                 adj->ref_nr += 1;
6138                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6139                          dev->name, adj_dev->name, adj->ref_nr);
6140
6141                 return 0;
6142         }
6143
6144         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6145         if (!adj)
6146                 return -ENOMEM;
6147
6148         adj->dev = adj_dev;
6149         adj->master = master;
6150         adj->ref_nr = 1;
6151         adj->private = private;
6152         dev_hold(adj_dev);
6153
6154         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6155                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6156
6157         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6158                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6159                 if (ret)
6160                         goto free_adj;
6161         }
6162
6163         /* Ensure that master link is always the first item in list. */
6164         if (master) {
6165                 ret = sysfs_create_link(&(dev->dev.kobj),
6166                                         &(adj_dev->dev.kobj), "master");
6167                 if (ret)
6168                         goto remove_symlinks;
6169
6170                 list_add_rcu(&adj->list, dev_list);
6171         } else {
6172                 list_add_tail_rcu(&adj->list, dev_list);
6173         }
6174
6175         return 0;
6176
6177 remove_symlinks:
6178         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6179                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6180 free_adj:
6181         kfree(adj);
6182         dev_put(adj_dev);
6183
6184         return ret;
6185 }
6186
6187 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6188                                          struct net_device *adj_dev,
6189                                          u16 ref_nr,
6190                                          struct list_head *dev_list)
6191 {
6192         struct netdev_adjacent *adj;
6193
6194         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6195                  dev->name, adj_dev->name, ref_nr);
6196
6197         adj = __netdev_find_adj(adj_dev, dev_list);
6198
6199         if (!adj) {
6200                 pr_err("Adjacency does not exist for device %s from %s\n",
6201                        dev->name, adj_dev->name);
6202                 WARN_ON(1);
6203                 return;
6204         }
6205
6206         if (adj->ref_nr > ref_nr) {
6207                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6208                          dev->name, adj_dev->name, ref_nr,
6209                          adj->ref_nr - ref_nr);
6210                 adj->ref_nr -= ref_nr;
6211                 return;
6212         }
6213
6214         if (adj->master)
6215                 sysfs_remove_link(&(dev->dev.kobj), "master");
6216
6217         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6218                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6219
6220         list_del_rcu(&adj->list);
6221         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6222                  adj_dev->name, dev->name, adj_dev->name);
6223         dev_put(adj_dev);
6224         kfree_rcu(adj, rcu);
6225 }
6226
6227 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6228                                             struct net_device *upper_dev,
6229                                             struct list_head *up_list,
6230                                             struct list_head *down_list,
6231                                             void *private, bool master)
6232 {
6233         int ret;
6234
6235         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6236                                            private, master);
6237         if (ret)
6238                 return ret;
6239
6240         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6241                                            private, false);
6242         if (ret) {
6243                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6244                 return ret;
6245         }
6246
6247         return 0;
6248 }
6249
6250 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6251                                                struct net_device *upper_dev,
6252                                                u16 ref_nr,
6253                                                struct list_head *up_list,
6254                                                struct list_head *down_list)
6255 {
6256         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6257         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6258 }
6259
6260 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6261                                                 struct net_device *upper_dev,
6262                                                 void *private, bool master)
6263 {
6264         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6265                                                 &dev->adj_list.upper,
6266                                                 &upper_dev->adj_list.lower,
6267                                                 private, master);
6268 }
6269
6270 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6271                                                    struct net_device *upper_dev)
6272 {
6273         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6274                                            &dev->adj_list.upper,
6275                                            &upper_dev->adj_list.lower);
6276 }
6277
6278 static int __netdev_upper_dev_link(struct net_device *dev,
6279                                    struct net_device *upper_dev, bool master,
6280                                    void *upper_priv, void *upper_info,
6281                                    struct netlink_ext_ack *extack)
6282 {
6283         struct netdev_notifier_changeupper_info changeupper_info = {
6284                 .info = {
6285                         .dev = dev,
6286                         .extack = extack,
6287                 },
6288                 .upper_dev = upper_dev,
6289                 .master = master,
6290                 .linking = true,
6291                 .upper_info = upper_info,
6292         };
6293         int ret = 0;
6294
6295         ASSERT_RTNL();
6296
6297         if (dev == upper_dev)
6298                 return -EBUSY;
6299
6300         /* To prevent loops, check if dev is not upper device to upper_dev. */
6301         if (netdev_has_upper_dev(upper_dev, dev))
6302                 return -EBUSY;
6303
6304         if (netdev_has_upper_dev(dev, upper_dev))
6305                 return -EEXIST;
6306
6307         if (master && netdev_master_upper_dev_get(dev))
6308                 return -EBUSY;
6309
6310         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6311                                             &changeupper_info.info);
6312         ret = notifier_to_errno(ret);
6313         if (ret)
6314                 return ret;
6315
6316         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6317                                                    master);
6318         if (ret)
6319                 return ret;
6320
6321         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6322                                             &changeupper_info.info);
6323         ret = notifier_to_errno(ret);
6324         if (ret)
6325                 goto rollback;
6326
6327         return 0;
6328
6329 rollback:
6330         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6331
6332         return ret;
6333 }
6334
6335 /**
6336  * netdev_upper_dev_link - Add a link to the upper device
6337  * @dev: device
6338  * @upper_dev: new upper device
6339  *
6340  * Adds a link to device which is upper to this one. The caller must hold
6341  * the RTNL lock. On a failure a negative errno code is returned.
6342  * On success the reference counts are adjusted and the function
6343  * returns zero.
6344  */
6345 int netdev_upper_dev_link(struct net_device *dev,
6346                           struct net_device *upper_dev,
6347                           struct netlink_ext_ack *extack)
6348 {
6349         return __netdev_upper_dev_link(dev, upper_dev, false,
6350                                        NULL, NULL, extack);
6351 }
6352 EXPORT_SYMBOL(netdev_upper_dev_link);
6353
6354 /**
6355  * netdev_master_upper_dev_link - Add a master link to the upper device
6356  * @dev: device
6357  * @upper_dev: new upper device
6358  * @upper_priv: upper device private
6359  * @upper_info: upper info to be passed down via notifier
6360  *
6361  * Adds a link to device which is upper to this one. In this case, only
6362  * one master upper device can be linked, although other non-master devices
6363  * might be linked as well. The caller must hold the RTNL lock.
6364  * On a failure a negative errno code is returned. On success the reference
6365  * counts are adjusted and the function returns zero.
6366  */
6367 int netdev_master_upper_dev_link(struct net_device *dev,
6368                                  struct net_device *upper_dev,
6369                                  void *upper_priv, void *upper_info,
6370                                  struct netlink_ext_ack *extack)
6371 {
6372         return __netdev_upper_dev_link(dev, upper_dev, true,
6373                                        upper_priv, upper_info, extack);
6374 }
6375 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6376
6377 /**
6378  * netdev_upper_dev_unlink - Removes a link to upper device
6379  * @dev: device
6380  * @upper_dev: new upper device
6381  *
6382  * Removes a link to device which is upper to this one. The caller must hold
6383  * the RTNL lock.
6384  */
6385 void netdev_upper_dev_unlink(struct net_device *dev,
6386                              struct net_device *upper_dev)
6387 {
6388         struct netdev_notifier_changeupper_info changeupper_info = {
6389                 .info = {
6390                         .dev = dev,
6391                 },
6392                 .upper_dev = upper_dev,
6393                 .linking = false,
6394         };
6395
6396         ASSERT_RTNL();
6397
6398         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6399
6400         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6401                                       &changeupper_info.info);
6402
6403         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6404
6405         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6406                                       &changeupper_info.info);
6407 }
6408 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6409
6410 /**
6411  * netdev_bonding_info_change - Dispatch event about slave change
6412  * @dev: device
6413  * @bonding_info: info to dispatch
6414  *
6415  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6416  * The caller must hold the RTNL lock.
6417  */
6418 void netdev_bonding_info_change(struct net_device *dev,
6419                                 struct netdev_bonding_info *bonding_info)
6420 {
6421         struct netdev_notifier_bonding_info info = {
6422                 .info.dev = dev,
6423         };
6424
6425         memcpy(&info.bonding_info, bonding_info,
6426                sizeof(struct netdev_bonding_info));
6427         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6428                                       &info.info);
6429 }
6430 EXPORT_SYMBOL(netdev_bonding_info_change);
6431
6432 static void netdev_adjacent_add_links(struct net_device *dev)
6433 {
6434         struct netdev_adjacent *iter;
6435
6436         struct net *net = dev_net(dev);
6437
6438         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6439                 if (!net_eq(net, dev_net(iter->dev)))
6440                         continue;
6441                 netdev_adjacent_sysfs_add(iter->dev, dev,
6442                                           &iter->dev->adj_list.lower);
6443                 netdev_adjacent_sysfs_add(dev, iter->dev,
6444                                           &dev->adj_list.upper);
6445         }
6446
6447         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6448                 if (!net_eq(net, dev_net(iter->dev)))
6449                         continue;
6450                 netdev_adjacent_sysfs_add(iter->dev, dev,
6451                                           &iter->dev->adj_list.upper);
6452                 netdev_adjacent_sysfs_add(dev, iter->dev,
6453                                           &dev->adj_list.lower);
6454         }
6455 }
6456
6457 static void netdev_adjacent_del_links(struct net_device *dev)
6458 {
6459         struct netdev_adjacent *iter;
6460
6461         struct net *net = dev_net(dev);
6462
6463         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6464                 if (!net_eq(net, dev_net(iter->dev)))
6465                         continue;
6466                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6467                                           &iter->dev->adj_list.lower);
6468                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6469                                           &dev->adj_list.upper);
6470         }
6471
6472         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6473                 if (!net_eq(net, dev_net(iter->dev)))
6474                         continue;
6475                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6476                                           &iter->dev->adj_list.upper);
6477                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6478                                           &dev->adj_list.lower);
6479         }
6480 }
6481
6482 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6483 {
6484         struct netdev_adjacent *iter;
6485
6486         struct net *net = dev_net(dev);
6487
6488         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6489                 if (!net_eq(net, dev_net(iter->dev)))
6490                         continue;
6491                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6492                                           &iter->dev->adj_list.lower);
6493                 netdev_adjacent_sysfs_add(iter->dev, dev,
6494                                           &iter->dev->adj_list.lower);
6495         }
6496
6497         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6498                 if (!net_eq(net, dev_net(iter->dev)))
6499                         continue;
6500                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6501                                           &iter->dev->adj_list.upper);
6502                 netdev_adjacent_sysfs_add(iter->dev, dev,
6503                                           &iter->dev->adj_list.upper);
6504         }
6505 }
6506
6507 void *netdev_lower_dev_get_private(struct net_device *dev,
6508                                    struct net_device *lower_dev)
6509 {
6510         struct netdev_adjacent *lower;
6511
6512         if (!lower_dev)
6513                 return NULL;
6514         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6515         if (!lower)
6516                 return NULL;
6517
6518         return lower->private;
6519 }
6520 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6521
6522
6523 int dev_get_nest_level(struct net_device *dev)
6524 {
6525         struct net_device *lower = NULL;
6526         struct list_head *iter;
6527         int max_nest = -1;
6528         int nest;
6529
6530         ASSERT_RTNL();
6531
6532         netdev_for_each_lower_dev(dev, lower, iter) {
6533                 nest = dev_get_nest_level(lower);
6534                 if (max_nest < nest)
6535                         max_nest = nest;
6536         }
6537
6538         return max_nest + 1;
6539 }
6540 EXPORT_SYMBOL(dev_get_nest_level);
6541
6542 /**
6543  * netdev_lower_change - Dispatch event about lower device state change
6544  * @lower_dev: device
6545  * @lower_state_info: state to dispatch
6546  *
6547  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6548  * The caller must hold the RTNL lock.
6549  */
6550 void netdev_lower_state_changed(struct net_device *lower_dev,
6551                                 void *lower_state_info)
6552 {
6553         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6554                 .info.dev = lower_dev,
6555         };
6556
6557         ASSERT_RTNL();
6558         changelowerstate_info.lower_state_info = lower_state_info;
6559         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6560                                       &changelowerstate_info.info);
6561 }
6562 EXPORT_SYMBOL(netdev_lower_state_changed);
6563
6564 static void dev_change_rx_flags(struct net_device *dev, int flags)
6565 {
6566         const struct net_device_ops *ops = dev->netdev_ops;
6567
6568         if (ops->ndo_change_rx_flags)
6569                 ops->ndo_change_rx_flags(dev, flags);
6570 }
6571
6572 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6573 {
6574         unsigned int old_flags = dev->flags;
6575         kuid_t uid;
6576         kgid_t gid;
6577
6578         ASSERT_RTNL();
6579
6580         dev->flags |= IFF_PROMISC;
6581         dev->promiscuity += inc;
6582         if (dev->promiscuity == 0) {
6583                 /*
6584                  * Avoid overflow.
6585                  * If inc causes overflow, untouch promisc and return error.
6586                  */
6587                 if (inc < 0)
6588                         dev->flags &= ~IFF_PROMISC;
6589                 else {
6590                         dev->promiscuity -= inc;
6591                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6592                                 dev->name);
6593                         return -EOVERFLOW;
6594                 }
6595         }
6596         if (dev->flags != old_flags) {
6597                 pr_info("device %s %s promiscuous mode\n",
6598                         dev->name,
6599                         dev->flags & IFF_PROMISC ? "entered" : "left");
6600                 if (audit_enabled) {
6601                         current_uid_gid(&uid, &gid);
6602                         audit_log(current->audit_context, GFP_ATOMIC,
6603                                 AUDIT_ANOM_PROMISCUOUS,
6604                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6605                                 dev->name, (dev->flags & IFF_PROMISC),
6606                                 (old_flags & IFF_PROMISC),
6607                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6608                                 from_kuid(&init_user_ns, uid),
6609                                 from_kgid(&init_user_ns, gid),
6610                                 audit_get_sessionid(current));
6611                 }
6612
6613                 dev_change_rx_flags(dev, IFF_PROMISC);
6614         }
6615         if (notify)
6616                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6617         return 0;
6618 }
6619
6620 /**
6621  *      dev_set_promiscuity     - update promiscuity count on a device
6622  *      @dev: device
6623  *      @inc: modifier
6624  *
6625  *      Add or remove promiscuity from a device. While the count in the device
6626  *      remains above zero the interface remains promiscuous. Once it hits zero
6627  *      the device reverts back to normal filtering operation. A negative inc
6628  *      value is used to drop promiscuity on the device.
6629  *      Return 0 if successful or a negative errno code on error.
6630  */
6631 int dev_set_promiscuity(struct net_device *dev, int inc)
6632 {
6633         unsigned int old_flags = dev->flags;
6634         int err;
6635
6636         err = __dev_set_promiscuity(dev, inc, true);
6637         if (err < 0)
6638                 return err;
6639         if (dev->flags != old_flags)
6640                 dev_set_rx_mode(dev);
6641         return err;
6642 }
6643 EXPORT_SYMBOL(dev_set_promiscuity);
6644
6645 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6646 {
6647         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6648
6649         ASSERT_RTNL();
6650
6651         dev->flags |= IFF_ALLMULTI;
6652         dev->allmulti += inc;
6653         if (dev->allmulti == 0) {
6654                 /*
6655                  * Avoid overflow.
6656                  * If inc causes overflow, untouch allmulti and return error.
6657                  */
6658                 if (inc < 0)
6659                         dev->flags &= ~IFF_ALLMULTI;
6660                 else {
6661                         dev->allmulti -= inc;
6662                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6663                                 dev->name);
6664                         return -EOVERFLOW;
6665                 }
6666         }
6667         if (dev->flags ^ old_flags) {
6668                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6669                 dev_set_rx_mode(dev);
6670                 if (notify)
6671                         __dev_notify_flags(dev, old_flags,
6672                                            dev->gflags ^ old_gflags);
6673         }
6674         return 0;
6675 }
6676
6677 /**
6678  *      dev_set_allmulti        - update allmulti count on a device
6679  *      @dev: device
6680  *      @inc: modifier
6681  *
6682  *      Add or remove reception of all multicast frames to a device. While the
6683  *      count in the device remains above zero the interface remains listening
6684  *      to all interfaces. Once it hits zero the device reverts back to normal
6685  *      filtering operation. A negative @inc value is used to drop the counter
6686  *      when releasing a resource needing all multicasts.
6687  *      Return 0 if successful or a negative errno code on error.
6688  */
6689
6690 int dev_set_allmulti(struct net_device *dev, int inc)
6691 {
6692         return __dev_set_allmulti(dev, inc, true);
6693 }
6694 EXPORT_SYMBOL(dev_set_allmulti);
6695
6696 /*
6697  *      Upload unicast and multicast address lists to device and
6698  *      configure RX filtering. When the device doesn't support unicast
6699  *      filtering it is put in promiscuous mode while unicast addresses
6700  *      are present.
6701  */
6702 void __dev_set_rx_mode(struct net_device *dev)
6703 {
6704         const struct net_device_ops *ops = dev->netdev_ops;
6705
6706         /* dev_open will call this function so the list will stay sane. */
6707         if (!(dev->flags&IFF_UP))
6708                 return;
6709
6710         if (!netif_device_present(dev))
6711                 return;
6712
6713         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6714                 /* Unicast addresses changes may only happen under the rtnl,
6715                  * therefore calling __dev_set_promiscuity here is safe.
6716                  */
6717                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6718                         __dev_set_promiscuity(dev, 1, false);
6719                         dev->uc_promisc = true;
6720                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6721                         __dev_set_promiscuity(dev, -1, false);
6722                         dev->uc_promisc = false;
6723                 }
6724         }
6725
6726         if (ops->ndo_set_rx_mode)
6727                 ops->ndo_set_rx_mode(dev);
6728 }
6729
6730 void dev_set_rx_mode(struct net_device *dev)
6731 {
6732         netif_addr_lock_bh(dev);
6733         __dev_set_rx_mode(dev);
6734         netif_addr_unlock_bh(dev);
6735 }
6736
6737 /**
6738  *      dev_get_flags - get flags reported to userspace
6739  *      @dev: device
6740  *
6741  *      Get the combination of flag bits exported through APIs to userspace.
6742  */
6743 unsigned int dev_get_flags(const struct net_device *dev)
6744 {
6745         unsigned int flags;
6746
6747         flags = (dev->flags & ~(IFF_PROMISC |
6748                                 IFF_ALLMULTI |
6749                                 IFF_RUNNING |
6750                                 IFF_LOWER_UP |
6751                                 IFF_DORMANT)) |
6752                 (dev->gflags & (IFF_PROMISC |
6753                                 IFF_ALLMULTI));
6754
6755         if (netif_running(dev)) {
6756                 if (netif_oper_up(dev))
6757                         flags |= IFF_RUNNING;
6758                 if (netif_carrier_ok(dev))
6759                         flags |= IFF_LOWER_UP;
6760                 if (netif_dormant(dev))
6761                         flags |= IFF_DORMANT;
6762         }
6763
6764         return flags;
6765 }
6766 EXPORT_SYMBOL(dev_get_flags);
6767
6768 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6769 {
6770         unsigned int old_flags = dev->flags;
6771         int ret;
6772
6773         ASSERT_RTNL();
6774
6775         /*
6776          *      Set the flags on our device.
6777          */
6778
6779         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6780                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6781                                IFF_AUTOMEDIA)) |
6782                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6783                                     IFF_ALLMULTI));
6784
6785         /*
6786          *      Load in the correct multicast list now the flags have changed.
6787          */
6788
6789         if ((old_flags ^ flags) & IFF_MULTICAST)
6790                 dev_change_rx_flags(dev, IFF_MULTICAST);
6791
6792         dev_set_rx_mode(dev);
6793
6794         /*
6795          *      Have we downed the interface. We handle IFF_UP ourselves
6796          *      according to user attempts to set it, rather than blindly
6797          *      setting it.
6798          */
6799
6800         ret = 0;
6801         if ((old_flags ^ flags) & IFF_UP) {
6802                 if (old_flags & IFF_UP)
6803                         __dev_close(dev);
6804                 else
6805                         ret = __dev_open(dev);
6806         }
6807
6808         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6809                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6810                 unsigned int old_flags = dev->flags;
6811
6812                 dev->gflags ^= IFF_PROMISC;
6813
6814                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6815                         if (dev->flags != old_flags)
6816                                 dev_set_rx_mode(dev);
6817         }
6818
6819         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6820          * is important. Some (broken) drivers set IFF_PROMISC, when
6821          * IFF_ALLMULTI is requested not asking us and not reporting.
6822          */
6823         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6824                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6825
6826                 dev->gflags ^= IFF_ALLMULTI;
6827                 __dev_set_allmulti(dev, inc, false);
6828         }
6829
6830         return ret;
6831 }
6832
6833 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6834                         unsigned int gchanges)
6835 {
6836         unsigned int changes = dev->flags ^ old_flags;
6837
6838         if (gchanges)
6839                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6840
6841         if (changes & IFF_UP) {
6842                 if (dev->flags & IFF_UP)
6843                         call_netdevice_notifiers(NETDEV_UP, dev);
6844                 else
6845                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6846         }
6847
6848         if (dev->flags & IFF_UP &&
6849             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6850                 struct netdev_notifier_change_info change_info = {
6851                         .info = {
6852                                 .dev = dev,
6853                         },
6854                         .flags_changed = changes,
6855                 };
6856
6857                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6858         }
6859 }
6860
6861 /**
6862  *      dev_change_flags - change device settings
6863  *      @dev: device
6864  *      @flags: device state flags
6865  *
6866  *      Change settings on device based state flags. The flags are
6867  *      in the userspace exported format.
6868  */
6869 int dev_change_flags(struct net_device *dev, unsigned int flags)
6870 {
6871         int ret;
6872         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6873
6874         ret = __dev_change_flags(dev, flags);
6875         if (ret < 0)
6876                 return ret;
6877
6878         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6879         __dev_notify_flags(dev, old_flags, changes);
6880         return ret;
6881 }
6882 EXPORT_SYMBOL(dev_change_flags);
6883
6884 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6885 {
6886         const struct net_device_ops *ops = dev->netdev_ops;
6887
6888         if (ops->ndo_change_mtu)
6889                 return ops->ndo_change_mtu(dev, new_mtu);
6890
6891         dev->mtu = new_mtu;
6892         return 0;
6893 }
6894 EXPORT_SYMBOL(__dev_set_mtu);
6895
6896 /**
6897  *      dev_set_mtu - Change maximum transfer unit
6898  *      @dev: device
6899  *      @new_mtu: new transfer unit
6900  *
6901  *      Change the maximum transfer size of the network device.
6902  */
6903 int dev_set_mtu(struct net_device *dev, int new_mtu)
6904 {
6905         int err, orig_mtu;
6906
6907         if (new_mtu == dev->mtu)
6908                 return 0;
6909
6910         /* MTU must be positive, and in range */
6911         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6912                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6913                                     dev->name, new_mtu, dev->min_mtu);
6914                 return -EINVAL;
6915         }
6916
6917         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6918                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6919                                     dev->name, new_mtu, dev->max_mtu);
6920                 return -EINVAL;
6921         }
6922
6923         if (!netif_device_present(dev))
6924                 return -ENODEV;
6925
6926         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6927         err = notifier_to_errno(err);
6928         if (err)
6929                 return err;
6930
6931         orig_mtu = dev->mtu;
6932         err = __dev_set_mtu(dev, new_mtu);
6933
6934         if (!err) {
6935                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6936                 err = notifier_to_errno(err);
6937                 if (err) {
6938                         /* setting mtu back and notifying everyone again,
6939                          * so that they have a chance to revert changes.
6940                          */
6941                         __dev_set_mtu(dev, orig_mtu);
6942                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6943                 }
6944         }
6945         return err;
6946 }
6947 EXPORT_SYMBOL(dev_set_mtu);
6948
6949 /**
6950  *      dev_set_group - Change group this device belongs to
6951  *      @dev: device
6952  *      @new_group: group this device should belong to
6953  */
6954 void dev_set_group(struct net_device *dev, int new_group)
6955 {
6956         dev->group = new_group;
6957 }
6958 EXPORT_SYMBOL(dev_set_group);
6959
6960 /**
6961  *      dev_set_mac_address - Change Media Access Control Address
6962  *      @dev: device
6963  *      @sa: new address
6964  *
6965  *      Change the hardware (MAC) address of the device
6966  */
6967 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6968 {
6969         const struct net_device_ops *ops = dev->netdev_ops;
6970         int err;
6971
6972         if (!ops->ndo_set_mac_address)
6973                 return -EOPNOTSUPP;
6974         if (sa->sa_family != dev->type)
6975                 return -EINVAL;
6976         if (!netif_device_present(dev))
6977                 return -ENODEV;
6978         err = ops->ndo_set_mac_address(dev, sa);
6979         if (err)
6980                 return err;
6981         dev->addr_assign_type = NET_ADDR_SET;
6982         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6983         add_device_randomness(dev->dev_addr, dev->addr_len);
6984         return 0;
6985 }
6986 EXPORT_SYMBOL(dev_set_mac_address);
6987
6988 /**
6989  *      dev_change_carrier - Change device carrier
6990  *      @dev: device
6991  *      @new_carrier: new value
6992  *
6993  *      Change device carrier
6994  */
6995 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6996 {
6997         const struct net_device_ops *ops = dev->netdev_ops;
6998
6999         if (!ops->ndo_change_carrier)
7000                 return -EOPNOTSUPP;
7001         if (!netif_device_present(dev))
7002                 return -ENODEV;
7003         return ops->ndo_change_carrier(dev, new_carrier);
7004 }
7005 EXPORT_SYMBOL(dev_change_carrier);
7006
7007 /**
7008  *      dev_get_phys_port_id - Get device physical port ID
7009  *      @dev: device
7010  *      @ppid: port ID
7011  *
7012  *      Get device physical port ID
7013  */
7014 int dev_get_phys_port_id(struct net_device *dev,
7015                          struct netdev_phys_item_id *ppid)
7016 {
7017         const struct net_device_ops *ops = dev->netdev_ops;
7018
7019         if (!ops->ndo_get_phys_port_id)
7020                 return -EOPNOTSUPP;
7021         return ops->ndo_get_phys_port_id(dev, ppid);
7022 }
7023 EXPORT_SYMBOL(dev_get_phys_port_id);
7024
7025 /**
7026  *      dev_get_phys_port_name - Get device physical port name
7027  *      @dev: device
7028  *      @name: port name
7029  *      @len: limit of bytes to copy to name
7030  *
7031  *      Get device physical port name
7032  */
7033 int dev_get_phys_port_name(struct net_device *dev,
7034                            char *name, size_t len)
7035 {
7036         const struct net_device_ops *ops = dev->netdev_ops;
7037
7038         if (!ops->ndo_get_phys_port_name)
7039                 return -EOPNOTSUPP;
7040         return ops->ndo_get_phys_port_name(dev, name, len);
7041 }
7042 EXPORT_SYMBOL(dev_get_phys_port_name);
7043
7044 /**
7045  *      dev_change_proto_down - update protocol port state information
7046  *      @dev: device
7047  *      @proto_down: new value
7048  *
7049  *      This info can be used by switch drivers to set the phys state of the
7050  *      port.
7051  */
7052 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7053 {
7054         const struct net_device_ops *ops = dev->netdev_ops;
7055
7056         if (!ops->ndo_change_proto_down)
7057                 return -EOPNOTSUPP;
7058         if (!netif_device_present(dev))
7059                 return -ENODEV;
7060         return ops->ndo_change_proto_down(dev, proto_down);
7061 }
7062 EXPORT_SYMBOL(dev_change_proto_down);
7063
7064 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
7065 {
7066         struct netdev_xdp xdp;
7067
7068         memset(&xdp, 0, sizeof(xdp));
7069         xdp.command = XDP_QUERY_PROG;
7070
7071         /* Query must always succeed. */
7072         WARN_ON(xdp_op(dev, &xdp) < 0);
7073         if (prog_id)
7074                 *prog_id = xdp.prog_id;
7075
7076         return xdp.prog_attached;
7077 }
7078
7079 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
7080                            struct netlink_ext_ack *extack, u32 flags,
7081                            struct bpf_prog *prog)
7082 {
7083         struct netdev_xdp xdp;
7084
7085         memset(&xdp, 0, sizeof(xdp));
7086         if (flags & XDP_FLAGS_HW_MODE)
7087                 xdp.command = XDP_SETUP_PROG_HW;
7088         else
7089                 xdp.command = XDP_SETUP_PROG;
7090         xdp.extack = extack;
7091         xdp.flags = flags;
7092         xdp.prog = prog;
7093
7094         return xdp_op(dev, &xdp);
7095 }
7096
7097 /**
7098  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7099  *      @dev: device
7100  *      @extack: netlink extended ack
7101  *      @fd: new program fd or negative value to clear
7102  *      @flags: xdp-related flags
7103  *
7104  *      Set or clear a bpf program for a device
7105  */
7106 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7107                       int fd, u32 flags)
7108 {
7109         const struct net_device_ops *ops = dev->netdev_ops;
7110         struct bpf_prog *prog = NULL;
7111         xdp_op_t xdp_op, xdp_chk;
7112         int err;
7113
7114         ASSERT_RTNL();
7115
7116         xdp_op = xdp_chk = ops->ndo_xdp;
7117         if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7118                 return -EOPNOTSUPP;
7119         if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7120                 xdp_op = generic_xdp_install;
7121         if (xdp_op == xdp_chk)
7122                 xdp_chk = generic_xdp_install;
7123
7124         if (fd >= 0) {
7125                 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7126                         return -EEXIST;
7127                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7128                     __dev_xdp_attached(dev, xdp_op, NULL))
7129                         return -EBUSY;
7130
7131                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7132                 if (IS_ERR(prog))
7133                         return PTR_ERR(prog);
7134         }
7135
7136         err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7137         if (err < 0 && prog)
7138                 bpf_prog_put(prog);
7139
7140         return err;
7141 }
7142
7143 /**
7144  *      dev_new_index   -       allocate an ifindex
7145  *      @net: the applicable net namespace
7146  *
7147  *      Returns a suitable unique value for a new device interface
7148  *      number.  The caller must hold the rtnl semaphore or the
7149  *      dev_base_lock to be sure it remains unique.
7150  */
7151 static int dev_new_index(struct net *net)
7152 {
7153         int ifindex = net->ifindex;
7154
7155         for (;;) {
7156                 if (++ifindex <= 0)
7157                         ifindex = 1;
7158                 if (!__dev_get_by_index(net, ifindex))
7159                         return net->ifindex = ifindex;
7160         }
7161 }
7162
7163 /* Delayed registration/unregisteration */
7164 static LIST_HEAD(net_todo_list);
7165 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7166
7167 static void net_set_todo(struct net_device *dev)
7168 {
7169         list_add_tail(&dev->todo_list, &net_todo_list);
7170         dev_net(dev)->dev_unreg_count++;
7171 }
7172
7173 static void rollback_registered_many(struct list_head *head)
7174 {
7175         struct net_device *dev, *tmp;
7176         LIST_HEAD(close_head);
7177
7178         BUG_ON(dev_boot_phase);
7179         ASSERT_RTNL();
7180
7181         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7182                 /* Some devices call without registering
7183                  * for initialization unwind. Remove those
7184                  * devices and proceed with the remaining.
7185                  */
7186                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7187                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7188                                  dev->name, dev);
7189
7190                         WARN_ON(1);
7191                         list_del(&dev->unreg_list);
7192                         continue;
7193                 }
7194                 dev->dismantle = true;
7195                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7196         }
7197
7198         /* If device is running, close it first. */
7199         list_for_each_entry(dev, head, unreg_list)
7200                 list_add_tail(&dev->close_list, &close_head);
7201         dev_close_many(&close_head, true);
7202
7203         list_for_each_entry(dev, head, unreg_list) {
7204                 /* And unlink it from device chain. */
7205                 unlist_netdevice(dev);
7206
7207                 dev->reg_state = NETREG_UNREGISTERING;
7208         }
7209         flush_all_backlogs();
7210
7211         synchronize_net();
7212
7213         list_for_each_entry(dev, head, unreg_list) {
7214                 struct sk_buff *skb = NULL;
7215
7216                 /* Shutdown queueing discipline. */
7217                 dev_shutdown(dev);
7218
7219
7220                 /* Notify protocols, that we are about to destroy
7221                  * this device. They should clean all the things.
7222                  */
7223                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7224
7225                 if (!dev->rtnl_link_ops ||
7226                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7227                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7228                                                      GFP_KERNEL, NULL);
7229
7230                 /*
7231                  *      Flush the unicast and multicast chains
7232                  */
7233                 dev_uc_flush(dev);
7234                 dev_mc_flush(dev);
7235
7236                 if (dev->netdev_ops->ndo_uninit)
7237                         dev->netdev_ops->ndo_uninit(dev);
7238
7239                 if (skb)
7240                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7241
7242                 /* Notifier chain MUST detach us all upper devices. */
7243                 WARN_ON(netdev_has_any_upper_dev(dev));
7244                 WARN_ON(netdev_has_any_lower_dev(dev));
7245
7246                 /* Remove entries from kobject tree */
7247                 netdev_unregister_kobject(dev);
7248 #ifdef CONFIG_XPS
7249                 /* Remove XPS queueing entries */
7250                 netif_reset_xps_queues_gt(dev, 0);
7251 #endif
7252         }
7253
7254         synchronize_net();
7255
7256         list_for_each_entry(dev, head, unreg_list)
7257                 dev_put(dev);
7258 }
7259
7260 static void rollback_registered(struct net_device *dev)
7261 {
7262         LIST_HEAD(single);
7263
7264         list_add(&dev->unreg_list, &single);
7265         rollback_registered_many(&single);
7266         list_del(&single);
7267 }
7268
7269 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7270         struct net_device *upper, netdev_features_t features)
7271 {
7272         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7273         netdev_features_t feature;
7274         int feature_bit;
7275
7276         for_each_netdev_feature(&upper_disables, feature_bit) {
7277                 feature = __NETIF_F_BIT(feature_bit);
7278                 if (!(upper->wanted_features & feature)
7279                     && (features & feature)) {
7280                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7281                                    &feature, upper->name);
7282                         features &= ~feature;
7283                 }
7284         }
7285
7286         return features;
7287 }
7288
7289 static void netdev_sync_lower_features(struct net_device *upper,
7290         struct net_device *lower, netdev_features_t features)
7291 {
7292         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7293         netdev_features_t feature;
7294         int feature_bit;
7295
7296         for_each_netdev_feature(&upper_disables, feature_bit) {
7297                 feature = __NETIF_F_BIT(feature_bit);
7298                 if (!(features & feature) && (lower->features & feature)) {
7299                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7300                                    &feature, lower->name);
7301                         lower->wanted_features &= ~feature;
7302                         netdev_update_features(lower);
7303
7304                         if (unlikely(lower->features & feature))
7305                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7306                                             &feature, lower->name);
7307                 }
7308         }
7309 }
7310
7311 static netdev_features_t netdev_fix_features(struct net_device *dev,
7312         netdev_features_t features)
7313 {
7314         /* Fix illegal checksum combinations */
7315         if ((features & NETIF_F_HW_CSUM) &&
7316             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7317                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7318                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7319         }
7320
7321         /* TSO requires that SG is present as well. */
7322         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7323                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7324                 features &= ~NETIF_F_ALL_TSO;
7325         }
7326
7327         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7328                                         !(features & NETIF_F_IP_CSUM)) {
7329                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7330                 features &= ~NETIF_F_TSO;
7331                 features &= ~NETIF_F_TSO_ECN;
7332         }
7333
7334         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7335                                          !(features & NETIF_F_IPV6_CSUM)) {
7336                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7337                 features &= ~NETIF_F_TSO6;
7338         }
7339
7340         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7341         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7342                 features &= ~NETIF_F_TSO_MANGLEID;
7343
7344         /* TSO ECN requires that TSO is present as well. */
7345         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7346                 features &= ~NETIF_F_TSO_ECN;
7347
7348         /* Software GSO depends on SG. */
7349         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7350                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7351                 features &= ~NETIF_F_GSO;
7352         }
7353
7354         /* GSO partial features require GSO partial be set */
7355         if ((features & dev->gso_partial_features) &&
7356             !(features & NETIF_F_GSO_PARTIAL)) {
7357                 netdev_dbg(dev,
7358                            "Dropping partially supported GSO features since no GSO partial.\n");
7359                 features &= ~dev->gso_partial_features;
7360         }
7361
7362         return features;
7363 }
7364
7365 int __netdev_update_features(struct net_device *dev)
7366 {
7367         struct net_device *upper, *lower;
7368         netdev_features_t features;
7369         struct list_head *iter;
7370         int err = -1;
7371
7372         ASSERT_RTNL();
7373
7374         features = netdev_get_wanted_features(dev);
7375
7376         if (dev->netdev_ops->ndo_fix_features)
7377                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7378
7379         /* driver might be less strict about feature dependencies */
7380         features = netdev_fix_features(dev, features);
7381
7382         /* some features can't be enabled if they're off an an upper device */
7383         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7384                 features = netdev_sync_upper_features(dev, upper, features);
7385
7386         if (dev->features == features)
7387                 goto sync_lower;
7388
7389         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7390                 &dev->features, &features);
7391
7392         if (dev->netdev_ops->ndo_set_features)
7393                 err = dev->netdev_ops->ndo_set_features(dev, features);
7394         else
7395                 err = 0;
7396
7397         if (unlikely(err < 0)) {
7398                 netdev_err(dev,
7399                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7400                         err, &features, &dev->features);
7401                 /* return non-0 since some features might have changed and
7402                  * it's better to fire a spurious notification than miss it
7403                  */
7404                 return -1;
7405         }
7406
7407 sync_lower:
7408         /* some features must be disabled on lower devices when disabled
7409          * on an upper device (think: bonding master or bridge)
7410          */
7411         netdev_for_each_lower_dev(dev, lower, iter)
7412                 netdev_sync_lower_features(dev, lower, features);
7413
7414         if (!err) {
7415                 netdev_features_t diff = features ^ dev->features;
7416
7417                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7418                         /* udp_tunnel_{get,drop}_rx_info both need
7419                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7420                          * device, or they won't do anything.
7421                          * Thus we need to update dev->features
7422                          * *before* calling udp_tunnel_get_rx_info,
7423                          * but *after* calling udp_tunnel_drop_rx_info.
7424                          */
7425                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7426                                 dev->features = features;
7427                                 udp_tunnel_get_rx_info(dev);
7428                         } else {
7429                                 udp_tunnel_drop_rx_info(dev);
7430                         }
7431                 }
7432
7433                 dev->features = features;
7434         }
7435
7436         return err < 0 ? 0 : 1;
7437 }
7438
7439 /**
7440  *      netdev_update_features - recalculate device features
7441  *      @dev: the device to check
7442  *
7443  *      Recalculate dev->features set and send notifications if it
7444  *      has changed. Should be called after driver or hardware dependent
7445  *      conditions might have changed that influence the features.
7446  */
7447 void netdev_update_features(struct net_device *dev)
7448 {
7449         if (__netdev_update_features(dev))
7450                 netdev_features_change(dev);
7451 }
7452 EXPORT_SYMBOL(netdev_update_features);
7453
7454 /**
7455  *      netdev_change_features - recalculate device features
7456  *      @dev: the device to check
7457  *
7458  *      Recalculate dev->features set and send notifications even
7459  *      if they have not changed. Should be called instead of
7460  *      netdev_update_features() if also dev->vlan_features might
7461  *      have changed to allow the changes to be propagated to stacked
7462  *      VLAN devices.
7463  */
7464 void netdev_change_features(struct net_device *dev)
7465 {
7466         __netdev_update_features(dev);
7467         netdev_features_change(dev);
7468 }
7469 EXPORT_SYMBOL(netdev_change_features);
7470
7471 /**
7472  *      netif_stacked_transfer_operstate -      transfer operstate
7473  *      @rootdev: the root or lower level device to transfer state from
7474  *      @dev: the device to transfer operstate to
7475  *
7476  *      Transfer operational state from root to device. This is normally
7477  *      called when a stacking relationship exists between the root
7478  *      device and the device(a leaf device).
7479  */
7480 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7481                                         struct net_device *dev)
7482 {
7483         if (rootdev->operstate == IF_OPER_DORMANT)
7484                 netif_dormant_on(dev);
7485         else
7486                 netif_dormant_off(dev);
7487
7488         if (netif_carrier_ok(rootdev))
7489                 netif_carrier_on(dev);
7490         else
7491                 netif_carrier_off(dev);
7492 }
7493 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7494
7495 #ifdef CONFIG_SYSFS
7496 static int netif_alloc_rx_queues(struct net_device *dev)
7497 {
7498         unsigned int i, count = dev->num_rx_queues;
7499         struct netdev_rx_queue *rx;
7500         size_t sz = count * sizeof(*rx);
7501
7502         BUG_ON(count < 1);
7503
7504         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7505         if (!rx)
7506                 return -ENOMEM;
7507
7508         dev->_rx = rx;
7509
7510         for (i = 0; i < count; i++)
7511                 rx[i].dev = dev;
7512         return 0;
7513 }
7514 #endif
7515
7516 static void netdev_init_one_queue(struct net_device *dev,
7517                                   struct netdev_queue *queue, void *_unused)
7518 {
7519         /* Initialize queue lock */
7520         spin_lock_init(&queue->_xmit_lock);
7521         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7522         queue->xmit_lock_owner = -1;
7523         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7524         queue->dev = dev;
7525 #ifdef CONFIG_BQL
7526         dql_init(&queue->dql, HZ);
7527 #endif
7528 }
7529
7530 static void netif_free_tx_queues(struct net_device *dev)
7531 {
7532         kvfree(dev->_tx);
7533 }
7534
7535 static int netif_alloc_netdev_queues(struct net_device *dev)
7536 {
7537         unsigned int count = dev->num_tx_queues;
7538         struct netdev_queue *tx;
7539         size_t sz = count * sizeof(*tx);
7540
7541         if (count < 1 || count > 0xffff)
7542                 return -EINVAL;
7543
7544         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7545         if (!tx)
7546                 return -ENOMEM;
7547
7548         dev->_tx = tx;
7549
7550         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7551         spin_lock_init(&dev->tx_global_lock);
7552
7553         return 0;
7554 }
7555
7556 void netif_tx_stop_all_queues(struct net_device *dev)
7557 {
7558         unsigned int i;
7559
7560         for (i = 0; i < dev->num_tx_queues; i++) {
7561                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7562
7563                 netif_tx_stop_queue(txq);
7564         }
7565 }
7566 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7567
7568 /**
7569  *      register_netdevice      - register a network device
7570  *      @dev: device to register
7571  *
7572  *      Take a completed network device structure and add it to the kernel
7573  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7574  *      chain. 0 is returned on success. A negative errno code is returned
7575  *      on a failure to set up the device, or if the name is a duplicate.
7576  *
7577  *      Callers must hold the rtnl semaphore. You may want
7578  *      register_netdev() instead of this.
7579  *
7580  *      BUGS:
7581  *      The locking appears insufficient to guarantee two parallel registers
7582  *      will not get the same name.
7583  */
7584
7585 int register_netdevice(struct net_device *dev)
7586 {
7587         int ret;
7588         struct net *net = dev_net(dev);
7589
7590         BUG_ON(dev_boot_phase);
7591         ASSERT_RTNL();
7592
7593         might_sleep();
7594
7595         /* When net_device's are persistent, this will be fatal. */
7596         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7597         BUG_ON(!net);
7598
7599         spin_lock_init(&dev->addr_list_lock);
7600         netdev_set_addr_lockdep_class(dev);
7601
7602         ret = dev_get_valid_name(net, dev, dev->name);
7603         if (ret < 0)
7604                 goto out;
7605
7606         /* Init, if this function is available */
7607         if (dev->netdev_ops->ndo_init) {
7608                 ret = dev->netdev_ops->ndo_init(dev);
7609                 if (ret) {
7610                         if (ret > 0)
7611                                 ret = -EIO;
7612                         goto out;
7613                 }
7614         }
7615
7616         if (((dev->hw_features | dev->features) &
7617              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7618             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7619              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7620                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7621                 ret = -EINVAL;
7622                 goto err_uninit;
7623         }
7624
7625         ret = -EBUSY;
7626         if (!dev->ifindex)
7627                 dev->ifindex = dev_new_index(net);
7628         else if (__dev_get_by_index(net, dev->ifindex))
7629                 goto err_uninit;
7630
7631         /* Transfer changeable features to wanted_features and enable
7632          * software offloads (GSO and GRO).
7633          */
7634         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7635         dev->features |= NETIF_F_SOFT_FEATURES;
7636
7637         if (dev->netdev_ops->ndo_udp_tunnel_add) {
7638                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7639                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7640         }
7641
7642         dev->wanted_features = dev->features & dev->hw_features;
7643
7644         if (!(dev->flags & IFF_LOOPBACK))
7645                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7646
7647         /* If IPv4 TCP segmentation offload is supported we should also
7648          * allow the device to enable segmenting the frame with the option
7649          * of ignoring a static IP ID value.  This doesn't enable the
7650          * feature itself but allows the user to enable it later.
7651          */
7652         if (dev->hw_features & NETIF_F_TSO)
7653                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7654         if (dev->vlan_features & NETIF_F_TSO)
7655                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7656         if (dev->mpls_features & NETIF_F_TSO)
7657                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7658         if (dev->hw_enc_features & NETIF_F_TSO)
7659                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7660
7661         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7662          */
7663         dev->vlan_features |= NETIF_F_HIGHDMA;
7664
7665         /* Make NETIF_F_SG inheritable to tunnel devices.
7666          */
7667         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7668
7669         /* Make NETIF_F_SG inheritable to MPLS.
7670          */
7671         dev->mpls_features |= NETIF_F_SG;
7672
7673         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7674         ret = notifier_to_errno(ret);
7675         if (ret)
7676                 goto err_uninit;
7677
7678         ret = netdev_register_kobject(dev);
7679         if (ret)
7680                 goto err_uninit;
7681         dev->reg_state = NETREG_REGISTERED;
7682
7683         __netdev_update_features(dev);
7684
7685         /*
7686          *      Default initial state at registry is that the
7687          *      device is present.
7688          */
7689
7690         set_bit(__LINK_STATE_PRESENT, &dev->state);
7691
7692         linkwatch_init_dev(dev);
7693
7694         dev_init_scheduler(dev);
7695         dev_hold(dev);
7696         list_netdevice(dev);
7697         add_device_randomness(dev->dev_addr, dev->addr_len);
7698
7699         /* If the device has permanent device address, driver should
7700          * set dev_addr and also addr_assign_type should be set to
7701          * NET_ADDR_PERM (default value).
7702          */
7703         if (dev->addr_assign_type == NET_ADDR_PERM)
7704                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7705
7706         /* Notify protocols, that a new device appeared. */
7707         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7708         ret = notifier_to_errno(ret);
7709         if (ret) {
7710                 rollback_registered(dev);
7711                 dev->reg_state = NETREG_UNREGISTERED;
7712         }
7713         /*
7714          *      Prevent userspace races by waiting until the network
7715          *      device is fully setup before sending notifications.
7716          */
7717         if (!dev->rtnl_link_ops ||
7718             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7719                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7720
7721 out:
7722         return ret;
7723
7724 err_uninit:
7725         if (dev->netdev_ops->ndo_uninit)
7726                 dev->netdev_ops->ndo_uninit(dev);
7727         if (dev->priv_destructor)
7728                 dev->priv_destructor(dev);
7729         goto out;
7730 }
7731 EXPORT_SYMBOL(register_netdevice);
7732
7733 /**
7734  *      init_dummy_netdev       - init a dummy network device for NAPI
7735  *      @dev: device to init
7736  *
7737  *      This takes a network device structure and initialize the minimum
7738  *      amount of fields so it can be used to schedule NAPI polls without
7739  *      registering a full blown interface. This is to be used by drivers
7740  *      that need to tie several hardware interfaces to a single NAPI
7741  *      poll scheduler due to HW limitations.
7742  */
7743 int init_dummy_netdev(struct net_device *dev)
7744 {
7745         /* Clear everything. Note we don't initialize spinlocks
7746          * are they aren't supposed to be taken by any of the
7747          * NAPI code and this dummy netdev is supposed to be
7748          * only ever used for NAPI polls
7749          */
7750         memset(dev, 0, sizeof(struct net_device));
7751
7752         /* make sure we BUG if trying to hit standard
7753          * register/unregister code path
7754          */
7755         dev->reg_state = NETREG_DUMMY;
7756
7757         /* NAPI wants this */
7758         INIT_LIST_HEAD(&dev->napi_list);
7759
7760         /* a dummy interface is started by default */
7761         set_bit(__LINK_STATE_PRESENT, &dev->state);
7762         set_bit(__LINK_STATE_START, &dev->state);
7763
7764         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7765          * because users of this 'device' dont need to change
7766          * its refcount.
7767          */
7768
7769         return 0;
7770 }
7771 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7772
7773
7774 /**
7775  *      register_netdev - register a network device
7776  *      @dev: device to register
7777  *
7778  *      Take a completed network device structure and add it to the kernel
7779  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7780  *      chain. 0 is returned on success. A negative errno code is returned
7781  *      on a failure to set up the device, or if the name is a duplicate.
7782  *
7783  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7784  *      and expands the device name if you passed a format string to
7785  *      alloc_netdev.
7786  */
7787 int register_netdev(struct net_device *dev)
7788 {
7789         int err;
7790
7791         rtnl_lock();
7792         err = register_netdevice(dev);
7793         rtnl_unlock();
7794         return err;
7795 }
7796 EXPORT_SYMBOL(register_netdev);
7797
7798 int netdev_refcnt_read(const struct net_device *dev)
7799 {
7800         int i, refcnt = 0;
7801
7802         for_each_possible_cpu(i)
7803                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7804         return refcnt;
7805 }
7806 EXPORT_SYMBOL(netdev_refcnt_read);
7807
7808 /**
7809  * netdev_wait_allrefs - wait until all references are gone.
7810  * @dev: target net_device
7811  *
7812  * This is called when unregistering network devices.
7813  *
7814  * Any protocol or device that holds a reference should register
7815  * for netdevice notification, and cleanup and put back the
7816  * reference if they receive an UNREGISTER event.
7817  * We can get stuck here if buggy protocols don't correctly
7818  * call dev_put.
7819  */
7820 static void netdev_wait_allrefs(struct net_device *dev)
7821 {
7822         unsigned long rebroadcast_time, warning_time;
7823         int refcnt;
7824
7825         linkwatch_forget_dev(dev);
7826
7827         rebroadcast_time = warning_time = jiffies;
7828         refcnt = netdev_refcnt_read(dev);
7829
7830         while (refcnt != 0) {
7831                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7832                         rtnl_lock();
7833
7834                         /* Rebroadcast unregister notification */
7835                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7836
7837                         __rtnl_unlock();
7838                         rcu_barrier();
7839                         rtnl_lock();
7840
7841                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7842                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7843                                      &dev->state)) {
7844                                 /* We must not have linkwatch events
7845                                  * pending on unregister. If this
7846                                  * happens, we simply run the queue
7847                                  * unscheduled, resulting in a noop
7848                                  * for this device.
7849                                  */
7850                                 linkwatch_run_queue();
7851                         }
7852
7853                         __rtnl_unlock();
7854
7855                         rebroadcast_time = jiffies;
7856                 }
7857
7858                 msleep(250);
7859
7860                 refcnt = netdev_refcnt_read(dev);
7861
7862                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7863                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7864                                  dev->name, refcnt);
7865                         warning_time = jiffies;
7866                 }
7867         }
7868 }
7869
7870 /* The sequence is:
7871  *
7872  *      rtnl_lock();
7873  *      ...
7874  *      register_netdevice(x1);
7875  *      register_netdevice(x2);
7876  *      ...
7877  *      unregister_netdevice(y1);
7878  *      unregister_netdevice(y2);
7879  *      ...
7880  *      rtnl_unlock();
7881  *      free_netdev(y1);
7882  *      free_netdev(y2);
7883  *
7884  * We are invoked by rtnl_unlock().
7885  * This allows us to deal with problems:
7886  * 1) We can delete sysfs objects which invoke hotplug
7887  *    without deadlocking with linkwatch via keventd.
7888  * 2) Since we run with the RTNL semaphore not held, we can sleep
7889  *    safely in order to wait for the netdev refcnt to drop to zero.
7890  *
7891  * We must not return until all unregister events added during
7892  * the interval the lock was held have been completed.
7893  */
7894 void netdev_run_todo(void)
7895 {
7896         struct list_head list;
7897
7898         /* Snapshot list, allow later requests */
7899         list_replace_init(&net_todo_list, &list);
7900
7901         __rtnl_unlock();
7902
7903
7904         /* Wait for rcu callbacks to finish before next phase */
7905         if (!list_empty(&list))
7906                 rcu_barrier();
7907
7908         while (!list_empty(&list)) {
7909                 struct net_device *dev
7910                         = list_first_entry(&list, struct net_device, todo_list);
7911                 list_del(&dev->todo_list);
7912
7913                 rtnl_lock();
7914                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7915                 __rtnl_unlock();
7916
7917                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7918                         pr_err("network todo '%s' but state %d\n",
7919                                dev->name, dev->reg_state);
7920                         dump_stack();
7921                         continue;
7922                 }
7923
7924                 dev->reg_state = NETREG_UNREGISTERED;
7925
7926                 netdev_wait_allrefs(dev);
7927
7928                 /* paranoia */
7929                 BUG_ON(netdev_refcnt_read(dev));
7930                 BUG_ON(!list_empty(&dev->ptype_all));
7931                 BUG_ON(!list_empty(&dev->ptype_specific));
7932                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7933                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7934                 WARN_ON(dev->dn_ptr);
7935
7936                 if (dev->priv_destructor)
7937                         dev->priv_destructor(dev);
7938                 if (dev->needs_free_netdev)
7939                         free_netdev(dev);
7940
7941                 /* Report a network device has been unregistered */
7942                 rtnl_lock();
7943                 dev_net(dev)->dev_unreg_count--;
7944                 __rtnl_unlock();
7945                 wake_up(&netdev_unregistering_wq);
7946
7947                 /* Free network device */
7948                 kobject_put(&dev->dev.kobj);
7949         }
7950 }
7951
7952 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7953  * all the same fields in the same order as net_device_stats, with only
7954  * the type differing, but rtnl_link_stats64 may have additional fields
7955  * at the end for newer counters.
7956  */
7957 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7958                              const struct net_device_stats *netdev_stats)
7959 {
7960 #if BITS_PER_LONG == 64
7961         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7962         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7963         /* zero out counters that only exist in rtnl_link_stats64 */
7964         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7965                sizeof(*stats64) - sizeof(*netdev_stats));
7966 #else
7967         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7968         const unsigned long *src = (const unsigned long *)netdev_stats;
7969         u64 *dst = (u64 *)stats64;
7970
7971         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7972         for (i = 0; i < n; i++)
7973                 dst[i] = src[i];
7974         /* zero out counters that only exist in rtnl_link_stats64 */
7975         memset((char *)stats64 + n * sizeof(u64), 0,
7976                sizeof(*stats64) - n * sizeof(u64));
7977 #endif
7978 }
7979 EXPORT_SYMBOL(netdev_stats_to_stats64);
7980
7981 /**
7982  *      dev_get_stats   - get network device statistics
7983  *      @dev: device to get statistics from
7984  *      @storage: place to store stats
7985  *
7986  *      Get network statistics from device. Return @storage.
7987  *      The device driver may provide its own method by setting
7988  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7989  *      otherwise the internal statistics structure is used.
7990  */
7991 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7992                                         struct rtnl_link_stats64 *storage)
7993 {
7994         const struct net_device_ops *ops = dev->netdev_ops;
7995
7996         if (ops->ndo_get_stats64) {
7997                 memset(storage, 0, sizeof(*storage));
7998                 ops->ndo_get_stats64(dev, storage);
7999         } else if (ops->ndo_get_stats) {
8000                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8001         } else {
8002                 netdev_stats_to_stats64(storage, &dev->stats);
8003         }
8004         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8005         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8006         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8007         return storage;
8008 }
8009 EXPORT_SYMBOL(dev_get_stats);
8010
8011 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8012 {
8013         struct netdev_queue *queue = dev_ingress_queue(dev);
8014
8015 #ifdef CONFIG_NET_CLS_ACT
8016         if (queue)
8017                 return queue;
8018         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8019         if (!queue)
8020                 return NULL;
8021         netdev_init_one_queue(dev, queue, NULL);
8022         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8023         queue->qdisc_sleeping = &noop_qdisc;
8024         rcu_assign_pointer(dev->ingress_queue, queue);
8025 #endif
8026         return queue;
8027 }
8028
8029 static const struct ethtool_ops default_ethtool_ops;
8030
8031 void netdev_set_default_ethtool_ops(struct net_device *dev,
8032                                     const struct ethtool_ops *ops)
8033 {
8034         if (dev->ethtool_ops == &default_ethtool_ops)
8035                 dev->ethtool_ops = ops;
8036 }
8037 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8038
8039 void netdev_freemem(struct net_device *dev)
8040 {
8041         char *addr = (char *)dev - dev->padded;
8042
8043         kvfree(addr);
8044 }
8045
8046 /**
8047  * alloc_netdev_mqs - allocate network device
8048  * @sizeof_priv: size of private data to allocate space for
8049  * @name: device name format string
8050  * @name_assign_type: origin of device name
8051  * @setup: callback to initialize device
8052  * @txqs: the number of TX subqueues to allocate
8053  * @rxqs: the number of RX subqueues to allocate
8054  *
8055  * Allocates a struct net_device with private data area for driver use
8056  * and performs basic initialization.  Also allocates subqueue structs
8057  * for each queue on the device.
8058  */
8059 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8060                 unsigned char name_assign_type,
8061                 void (*setup)(struct net_device *),
8062                 unsigned int txqs, unsigned int rxqs)
8063 {
8064         struct net_device *dev;
8065         unsigned int alloc_size;
8066         struct net_device *p;
8067
8068         BUG_ON(strlen(name) >= sizeof(dev->name));
8069
8070         if (txqs < 1) {
8071                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8072                 return NULL;
8073         }
8074
8075 #ifdef CONFIG_SYSFS
8076         if (rxqs < 1) {
8077                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8078                 return NULL;
8079         }
8080 #endif
8081
8082         alloc_size = sizeof(struct net_device);
8083         if (sizeof_priv) {
8084                 /* ensure 32-byte alignment of private area */
8085                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8086                 alloc_size += sizeof_priv;
8087         }
8088         /* ensure 32-byte alignment of whole construct */
8089         alloc_size += NETDEV_ALIGN - 1;
8090
8091         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8092         if (!p)
8093                 return NULL;
8094
8095         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8096         dev->padded = (char *)dev - (char *)p;
8097
8098         dev->pcpu_refcnt = alloc_percpu(int);
8099         if (!dev->pcpu_refcnt)
8100                 goto free_dev;
8101
8102         if (dev_addr_init(dev))
8103                 goto free_pcpu;
8104
8105         dev_mc_init(dev);
8106         dev_uc_init(dev);
8107
8108         dev_net_set(dev, &init_net);
8109
8110         dev->gso_max_size = GSO_MAX_SIZE;
8111         dev->gso_max_segs = GSO_MAX_SEGS;
8112
8113         INIT_LIST_HEAD(&dev->napi_list);
8114         INIT_LIST_HEAD(&dev->unreg_list);
8115         INIT_LIST_HEAD(&dev->close_list);
8116         INIT_LIST_HEAD(&dev->link_watch_list);
8117         INIT_LIST_HEAD(&dev->adj_list.upper);
8118         INIT_LIST_HEAD(&dev->adj_list.lower);
8119         INIT_LIST_HEAD(&dev->ptype_all);
8120         INIT_LIST_HEAD(&dev->ptype_specific);
8121 #ifdef CONFIG_NET_SCHED
8122         hash_init(dev->qdisc_hash);
8123 #endif
8124         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8125         setup(dev);
8126
8127         if (!dev->tx_queue_len) {
8128                 dev->priv_flags |= IFF_NO_QUEUE;
8129                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8130         }
8131
8132         dev->num_tx_queues = txqs;
8133         dev->real_num_tx_queues = txqs;
8134         if (netif_alloc_netdev_queues(dev))
8135                 goto free_all;
8136
8137 #ifdef CONFIG_SYSFS
8138         dev->num_rx_queues = rxqs;
8139         dev->real_num_rx_queues = rxqs;
8140         if (netif_alloc_rx_queues(dev))
8141                 goto free_all;
8142 #endif
8143
8144         strcpy(dev->name, name);
8145         dev->name_assign_type = name_assign_type;
8146         dev->group = INIT_NETDEV_GROUP;
8147         if (!dev->ethtool_ops)
8148                 dev->ethtool_ops = &default_ethtool_ops;
8149
8150         nf_hook_ingress_init(dev);
8151
8152         return dev;
8153
8154 free_all:
8155         free_netdev(dev);
8156         return NULL;
8157
8158 free_pcpu:
8159         free_percpu(dev->pcpu_refcnt);
8160 free_dev:
8161         netdev_freemem(dev);
8162         return NULL;
8163 }
8164 EXPORT_SYMBOL(alloc_netdev_mqs);
8165
8166 /**
8167  * free_netdev - free network device
8168  * @dev: device
8169  *
8170  * This function does the last stage of destroying an allocated device
8171  * interface. The reference to the device object is released. If this
8172  * is the last reference then it will be freed.Must be called in process
8173  * context.
8174  */
8175 void free_netdev(struct net_device *dev)
8176 {
8177         struct napi_struct *p, *n;
8178         struct bpf_prog *prog;
8179
8180         might_sleep();
8181         netif_free_tx_queues(dev);
8182 #ifdef CONFIG_SYSFS
8183         kvfree(dev->_rx);
8184 #endif
8185
8186         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8187
8188         /* Flush device addresses */
8189         dev_addr_flush(dev);
8190
8191         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8192                 netif_napi_del(p);
8193
8194         free_percpu(dev->pcpu_refcnt);
8195         dev->pcpu_refcnt = NULL;
8196
8197         prog = rcu_dereference_protected(dev->xdp_prog, 1);
8198         if (prog) {
8199                 bpf_prog_put(prog);
8200                 static_key_slow_dec(&generic_xdp_needed);
8201         }
8202
8203         /*  Compatibility with error handling in drivers */
8204         if (dev->reg_state == NETREG_UNINITIALIZED) {
8205                 netdev_freemem(dev);
8206                 return;
8207         }
8208
8209         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8210         dev->reg_state = NETREG_RELEASED;
8211
8212         /* will free via device release */
8213         put_device(&dev->dev);
8214 }
8215 EXPORT_SYMBOL(free_netdev);
8216
8217 /**
8218  *      synchronize_net -  Synchronize with packet receive processing
8219  *
8220  *      Wait for packets currently being received to be done.
8221  *      Does not block later packets from starting.
8222  */
8223 void synchronize_net(void)
8224 {
8225         might_sleep();
8226         if (rtnl_is_locked())
8227                 synchronize_rcu_expedited();
8228         else
8229                 synchronize_rcu();
8230 }
8231 EXPORT_SYMBOL(synchronize_net);
8232
8233 /**
8234  *      unregister_netdevice_queue - remove device from the kernel
8235  *      @dev: device
8236  *      @head: list
8237  *
8238  *      This function shuts down a device interface and removes it
8239  *      from the kernel tables.
8240  *      If head not NULL, device is queued to be unregistered later.
8241  *
8242  *      Callers must hold the rtnl semaphore.  You may want
8243  *      unregister_netdev() instead of this.
8244  */
8245
8246 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8247 {
8248         ASSERT_RTNL();
8249
8250         if (head) {
8251                 list_move_tail(&dev->unreg_list, head);
8252         } else {
8253                 rollback_registered(dev);
8254                 /* Finish processing unregister after unlock */
8255                 net_set_todo(dev);
8256         }
8257 }
8258 EXPORT_SYMBOL(unregister_netdevice_queue);
8259
8260 /**
8261  *      unregister_netdevice_many - unregister many devices
8262  *      @head: list of devices
8263  *
8264  *  Note: As most callers use a stack allocated list_head,
8265  *  we force a list_del() to make sure stack wont be corrupted later.
8266  */
8267 void unregister_netdevice_many(struct list_head *head)
8268 {
8269         struct net_device *dev;
8270
8271         if (!list_empty(head)) {
8272                 rollback_registered_many(head);
8273                 list_for_each_entry(dev, head, unreg_list)
8274                         net_set_todo(dev);
8275                 list_del(head);
8276         }
8277 }
8278 EXPORT_SYMBOL(unregister_netdevice_many);
8279
8280 /**
8281  *      unregister_netdev - remove device from the kernel
8282  *      @dev: device
8283  *
8284  *      This function shuts down a device interface and removes it
8285  *      from the kernel tables.
8286  *
8287  *      This is just a wrapper for unregister_netdevice that takes
8288  *      the rtnl semaphore.  In general you want to use this and not
8289  *      unregister_netdevice.
8290  */
8291 void unregister_netdev(struct net_device *dev)
8292 {
8293         rtnl_lock();
8294         unregister_netdevice(dev);
8295         rtnl_unlock();
8296 }
8297 EXPORT_SYMBOL(unregister_netdev);
8298
8299 /**
8300  *      dev_change_net_namespace - move device to different nethost namespace
8301  *      @dev: device
8302  *      @net: network namespace
8303  *      @pat: If not NULL name pattern to try if the current device name
8304  *            is already taken in the destination network namespace.
8305  *
8306  *      This function shuts down a device interface and moves it
8307  *      to a new network namespace. On success 0 is returned, on
8308  *      a failure a netagive errno code is returned.
8309  *
8310  *      Callers must hold the rtnl semaphore.
8311  */
8312
8313 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8314 {
8315         int err, new_nsid;
8316
8317         ASSERT_RTNL();
8318
8319         /* Don't allow namespace local devices to be moved. */
8320         err = -EINVAL;
8321         if (dev->features & NETIF_F_NETNS_LOCAL)
8322                 goto out;
8323
8324         /* Ensure the device has been registrered */
8325         if (dev->reg_state != NETREG_REGISTERED)
8326                 goto out;
8327
8328         /* Get out if there is nothing todo */
8329         err = 0;
8330         if (net_eq(dev_net(dev), net))
8331                 goto out;
8332
8333         /* Pick the destination device name, and ensure
8334          * we can use it in the destination network namespace.
8335          */
8336         err = -EEXIST;
8337         if (__dev_get_by_name(net, dev->name)) {
8338                 /* We get here if we can't use the current device name */
8339                 if (!pat)
8340                         goto out;
8341                 if (dev_get_valid_name(net, dev, pat) < 0)
8342                         goto out;
8343         }
8344
8345         /*
8346          * And now a mini version of register_netdevice unregister_netdevice.
8347          */
8348
8349         /* If device is running close it first. */
8350         dev_close(dev);
8351
8352         /* And unlink it from device chain */
8353         err = -ENODEV;
8354         unlist_netdevice(dev);
8355
8356         synchronize_net();
8357
8358         /* Shutdown queueing discipline. */
8359         dev_shutdown(dev);
8360
8361         /* Notify protocols, that we are about to destroy
8362          * this device. They should clean all the things.
8363          *
8364          * Note that dev->reg_state stays at NETREG_REGISTERED.
8365          * This is wanted because this way 8021q and macvlan know
8366          * the device is just moving and can keep their slaves up.
8367          */
8368         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8369         rcu_barrier();
8370         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8371         if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8372                 new_nsid = peernet2id_alloc(dev_net(dev), net);
8373         else
8374                 new_nsid = peernet2id(dev_net(dev), net);
8375         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
8376
8377         /*
8378          *      Flush the unicast and multicast chains
8379          */
8380         dev_uc_flush(dev);
8381         dev_mc_flush(dev);
8382
8383         /* Send a netdev-removed uevent to the old namespace */
8384         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8385         netdev_adjacent_del_links(dev);
8386
8387         /* Actually switch the network namespace */
8388         dev_net_set(dev, net);
8389
8390         /* If there is an ifindex conflict assign a new one */
8391         if (__dev_get_by_index(net, dev->ifindex))
8392                 dev->ifindex = dev_new_index(net);
8393
8394         /* Send a netdev-add uevent to the new namespace */
8395         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8396         netdev_adjacent_add_links(dev);
8397
8398         /* Fixup kobjects */
8399         err = device_rename(&dev->dev, dev->name);
8400         WARN_ON(err);
8401
8402         /* Add the device back in the hashes */
8403         list_netdevice(dev);
8404
8405         /* Notify protocols, that a new device appeared. */
8406         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8407
8408         /*
8409          *      Prevent userspace races by waiting until the network
8410          *      device is fully setup before sending notifications.
8411          */
8412         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8413
8414         synchronize_net();
8415         err = 0;
8416 out:
8417         return err;
8418 }
8419 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8420
8421 static int dev_cpu_dead(unsigned int oldcpu)
8422 {
8423         struct sk_buff **list_skb;
8424         struct sk_buff *skb;
8425         unsigned int cpu;
8426         struct softnet_data *sd, *oldsd, *remsd = NULL;
8427
8428         local_irq_disable();
8429         cpu = smp_processor_id();
8430         sd = &per_cpu(softnet_data, cpu);
8431         oldsd = &per_cpu(softnet_data, oldcpu);
8432
8433         /* Find end of our completion_queue. */
8434         list_skb = &sd->completion_queue;
8435         while (*list_skb)
8436                 list_skb = &(*list_skb)->next;
8437         /* Append completion queue from offline CPU. */
8438         *list_skb = oldsd->completion_queue;
8439         oldsd->completion_queue = NULL;
8440
8441         /* Append output queue from offline CPU. */
8442         if (oldsd->output_queue) {
8443                 *sd->output_queue_tailp = oldsd->output_queue;
8444                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8445                 oldsd->output_queue = NULL;
8446                 oldsd->output_queue_tailp = &oldsd->output_queue;
8447         }
8448         /* Append NAPI poll list from offline CPU, with one exception :
8449          * process_backlog() must be called by cpu owning percpu backlog.
8450          * We properly handle process_queue & input_pkt_queue later.
8451          */
8452         while (!list_empty(&oldsd->poll_list)) {
8453                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8454                                                             struct napi_struct,
8455                                                             poll_list);
8456
8457                 list_del_init(&napi->poll_list);
8458                 if (napi->poll == process_backlog)
8459                         napi->state = 0;
8460                 else
8461                         ____napi_schedule(sd, napi);
8462         }
8463
8464         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8465         local_irq_enable();
8466
8467 #ifdef CONFIG_RPS
8468         remsd = oldsd->rps_ipi_list;
8469         oldsd->rps_ipi_list = NULL;
8470 #endif
8471         /* send out pending IPI's on offline CPU */
8472         net_rps_send_ipi(remsd);
8473
8474         /* Process offline CPU's input_pkt_queue */
8475         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8476                 netif_rx_ni(skb);
8477                 input_queue_head_incr(oldsd);
8478         }
8479         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8480                 netif_rx_ni(skb);
8481                 input_queue_head_incr(oldsd);
8482         }
8483
8484         return 0;
8485 }
8486
8487 /**
8488  *      netdev_increment_features - increment feature set by one
8489  *      @all: current feature set
8490  *      @one: new feature set
8491  *      @mask: mask feature set
8492  *
8493  *      Computes a new feature set after adding a device with feature set
8494  *      @one to the master device with current feature set @all.  Will not
8495  *      enable anything that is off in @mask. Returns the new feature set.
8496  */
8497 netdev_features_t netdev_increment_features(netdev_features_t all,
8498         netdev_features_t one, netdev_features_t mask)
8499 {
8500         if (mask & NETIF_F_HW_CSUM)
8501                 mask |= NETIF_F_CSUM_MASK;
8502         mask |= NETIF_F_VLAN_CHALLENGED;
8503
8504         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8505         all &= one | ~NETIF_F_ALL_FOR_ALL;
8506
8507         /* If one device supports hw checksumming, set for all. */
8508         if (all & NETIF_F_HW_CSUM)
8509                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8510
8511         return all;
8512 }
8513 EXPORT_SYMBOL(netdev_increment_features);
8514
8515 static struct hlist_head * __net_init netdev_create_hash(void)
8516 {
8517         int i;
8518         struct hlist_head *hash;
8519
8520         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8521         if (hash != NULL)
8522                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8523                         INIT_HLIST_HEAD(&hash[i]);
8524
8525         return hash;
8526 }
8527
8528 /* Initialize per network namespace state */
8529 static int __net_init netdev_init(struct net *net)
8530 {
8531         if (net != &init_net)
8532                 INIT_LIST_HEAD(&net->dev_base_head);
8533
8534         net->dev_name_head = netdev_create_hash();
8535         if (net->dev_name_head == NULL)
8536                 goto err_name;
8537
8538         net->dev_index_head = netdev_create_hash();
8539         if (net->dev_index_head == NULL)
8540                 goto err_idx;
8541
8542         return 0;
8543
8544 err_idx:
8545         kfree(net->dev_name_head);
8546 err_name:
8547         return -ENOMEM;
8548 }
8549
8550 /**
8551  *      netdev_drivername - network driver for the device
8552  *      @dev: network device
8553  *
8554  *      Determine network driver for device.
8555  */
8556 const char *netdev_drivername(const struct net_device *dev)
8557 {
8558         const struct device_driver *driver;
8559         const struct device *parent;
8560         const char *empty = "";
8561
8562         parent = dev->dev.parent;
8563         if (!parent)
8564                 return empty;
8565
8566         driver = parent->driver;
8567         if (driver && driver->name)
8568                 return driver->name;
8569         return empty;
8570 }
8571
8572 static void __netdev_printk(const char *level, const struct net_device *dev,
8573                             struct va_format *vaf)
8574 {
8575         if (dev && dev->dev.parent) {
8576                 dev_printk_emit(level[1] - '0',
8577                                 dev->dev.parent,
8578                                 "%s %s %s%s: %pV",
8579                                 dev_driver_string(dev->dev.parent),
8580                                 dev_name(dev->dev.parent),
8581                                 netdev_name(dev), netdev_reg_state(dev),
8582                                 vaf);
8583         } else if (dev) {
8584                 printk("%s%s%s: %pV",
8585                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8586         } else {
8587                 printk("%s(NULL net_device): %pV", level, vaf);
8588         }
8589 }
8590
8591 void netdev_printk(const char *level, const struct net_device *dev,
8592                    const char *format, ...)
8593 {
8594         struct va_format vaf;
8595         va_list args;
8596
8597         va_start(args, format);
8598
8599         vaf.fmt = format;
8600         vaf.va = &args;
8601
8602         __netdev_printk(level, dev, &vaf);
8603
8604         va_end(args);
8605 }
8606 EXPORT_SYMBOL(netdev_printk);
8607
8608 #define define_netdev_printk_level(func, level)                 \
8609 void func(const struct net_device *dev, const char *fmt, ...)   \
8610 {                                                               \
8611         struct va_format vaf;                                   \
8612         va_list args;                                           \
8613                                                                 \
8614         va_start(args, fmt);                                    \
8615                                                                 \
8616         vaf.fmt = fmt;                                          \
8617         vaf.va = &args;                                         \
8618                                                                 \
8619         __netdev_printk(level, dev, &vaf);                      \
8620                                                                 \
8621         va_end(args);                                           \
8622 }                                                               \
8623 EXPORT_SYMBOL(func);
8624
8625 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8626 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8627 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8628 define_netdev_printk_level(netdev_err, KERN_ERR);
8629 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8630 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8631 define_netdev_printk_level(netdev_info, KERN_INFO);
8632
8633 static void __net_exit netdev_exit(struct net *net)
8634 {
8635         kfree(net->dev_name_head);
8636         kfree(net->dev_index_head);
8637 }
8638
8639 static struct pernet_operations __net_initdata netdev_net_ops = {
8640         .init = netdev_init,
8641         .exit = netdev_exit,
8642 };
8643
8644 static void __net_exit default_device_exit(struct net *net)
8645 {
8646         struct net_device *dev, *aux;
8647         /*
8648          * Push all migratable network devices back to the
8649          * initial network namespace
8650          */
8651         rtnl_lock();
8652         for_each_netdev_safe(net, dev, aux) {
8653                 int err;
8654                 char fb_name[IFNAMSIZ];
8655
8656                 /* Ignore unmoveable devices (i.e. loopback) */
8657                 if (dev->features & NETIF_F_NETNS_LOCAL)
8658                         continue;
8659
8660                 /* Leave virtual devices for the generic cleanup */
8661                 if (dev->rtnl_link_ops)
8662                         continue;
8663
8664                 /* Push remaining network devices to init_net */
8665                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8666                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8667                 if (err) {
8668                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8669                                  __func__, dev->name, err);
8670                         BUG();
8671                 }
8672         }
8673         rtnl_unlock();
8674 }
8675
8676 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8677 {
8678         /* Return with the rtnl_lock held when there are no network
8679          * devices unregistering in any network namespace in net_list.
8680          */
8681         struct net *net;
8682         bool unregistering;
8683         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8684
8685         add_wait_queue(&netdev_unregistering_wq, &wait);
8686         for (;;) {
8687                 unregistering = false;
8688                 rtnl_lock();
8689                 list_for_each_entry(net, net_list, exit_list) {
8690                         if (net->dev_unreg_count > 0) {
8691                                 unregistering = true;
8692                                 break;
8693                         }
8694                 }
8695                 if (!unregistering)
8696                         break;
8697                 __rtnl_unlock();
8698
8699                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8700         }
8701         remove_wait_queue(&netdev_unregistering_wq, &wait);
8702 }
8703
8704 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8705 {
8706         /* At exit all network devices most be removed from a network
8707          * namespace.  Do this in the reverse order of registration.
8708          * Do this across as many network namespaces as possible to
8709          * improve batching efficiency.
8710          */
8711         struct net_device *dev;
8712         struct net *net;
8713         LIST_HEAD(dev_kill_list);
8714
8715         /* To prevent network device cleanup code from dereferencing
8716          * loopback devices or network devices that have been freed
8717          * wait here for all pending unregistrations to complete,
8718          * before unregistring the loopback device and allowing the
8719          * network namespace be freed.
8720          *
8721          * The netdev todo list containing all network devices
8722          * unregistrations that happen in default_device_exit_batch
8723          * will run in the rtnl_unlock() at the end of
8724          * default_device_exit_batch.
8725          */
8726         rtnl_lock_unregistering(net_list);
8727         list_for_each_entry(net, net_list, exit_list) {
8728                 for_each_netdev_reverse(net, dev) {
8729                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8730                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8731                         else
8732                                 unregister_netdevice_queue(dev, &dev_kill_list);
8733                 }
8734         }
8735         unregister_netdevice_many(&dev_kill_list);
8736         rtnl_unlock();
8737 }
8738
8739 static struct pernet_operations __net_initdata default_device_ops = {
8740         .exit = default_device_exit,
8741         .exit_batch = default_device_exit_batch,
8742 };
8743
8744 /*
8745  *      Initialize the DEV module. At boot time this walks the device list and
8746  *      unhooks any devices that fail to initialise (normally hardware not
8747  *      present) and leaves us with a valid list of present and active devices.
8748  *
8749  */
8750
8751 /*
8752  *       This is called single threaded during boot, so no need
8753  *       to take the rtnl semaphore.
8754  */
8755 static int __init net_dev_init(void)
8756 {
8757         int i, rc = -ENOMEM;
8758
8759         BUG_ON(!dev_boot_phase);
8760
8761         if (dev_proc_init())
8762                 goto out;
8763
8764         if (netdev_kobject_init())
8765                 goto out;
8766
8767         INIT_LIST_HEAD(&ptype_all);
8768         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8769                 INIT_LIST_HEAD(&ptype_base[i]);
8770
8771         INIT_LIST_HEAD(&offload_base);
8772
8773         if (register_pernet_subsys(&netdev_net_ops))
8774                 goto out;
8775
8776         /*
8777          *      Initialise the packet receive queues.
8778          */
8779
8780         for_each_possible_cpu(i) {
8781                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8782                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8783
8784                 INIT_WORK(flush, flush_backlog);
8785
8786                 skb_queue_head_init(&sd->input_pkt_queue);
8787                 skb_queue_head_init(&sd->process_queue);
8788                 INIT_LIST_HEAD(&sd->poll_list);
8789                 sd->output_queue_tailp = &sd->output_queue;
8790 #ifdef CONFIG_RPS
8791                 sd->csd.func = rps_trigger_softirq;
8792                 sd->csd.info = sd;
8793                 sd->cpu = i;
8794 #endif
8795
8796                 sd->backlog.poll = process_backlog;
8797                 sd->backlog.weight = weight_p;
8798         }
8799
8800         dev_boot_phase = 0;
8801
8802         /* The loopback device is special if any other network devices
8803          * is present in a network namespace the loopback device must
8804          * be present. Since we now dynamically allocate and free the
8805          * loopback device ensure this invariant is maintained by
8806          * keeping the loopback device as the first device on the
8807          * list of network devices.  Ensuring the loopback devices
8808          * is the first device that appears and the last network device
8809          * that disappears.
8810          */
8811         if (register_pernet_device(&loopback_net_ops))
8812                 goto out;
8813
8814         if (register_pernet_device(&default_device_ops))
8815                 goto out;
8816
8817         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8818         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8819
8820         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8821                                        NULL, dev_cpu_dead);
8822         WARN_ON(rc < 0);
8823         rc = 0;
8824 out:
8825         return rc;
8826 }
8827
8828 subsys_initcall(net_dev_init);