]> asedeno.scripts.mit.edu Git - linux.git/blob - net/core/dev.c
Merge tag 'linux-watchdog-5.6-rc3' of git://www.linux-watchdog.org/linux-watchdog
[linux.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163                                            struct net_device *dev,
164                                            struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232                                                        const char *name)
233 {
234         struct netdev_name_node *name_node;
235
236         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237         if (!name_node)
238                 return NULL;
239         INIT_HLIST_NODE(&name_node->hlist);
240         name_node->dev = dev;
241         name_node->name = name;
242         return name_node;
243 }
244
245 static struct netdev_name_node *
246 netdev_name_node_head_alloc(struct net_device *dev)
247 {
248         struct netdev_name_node *name_node;
249
250         name_node = netdev_name_node_alloc(dev, dev->name);
251         if (!name_node)
252                 return NULL;
253         INIT_LIST_HEAD(&name_node->list);
254         return name_node;
255 }
256
257 static void netdev_name_node_free(struct netdev_name_node *name_node)
258 {
259         kfree(name_node);
260 }
261
262 static void netdev_name_node_add(struct net *net,
263                                  struct netdev_name_node *name_node)
264 {
265         hlist_add_head_rcu(&name_node->hlist,
266                            dev_name_hash(net, name_node->name));
267 }
268
269 static void netdev_name_node_del(struct netdev_name_node *name_node)
270 {
271         hlist_del_rcu(&name_node->hlist);
272 }
273
274 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275                                                         const char *name)
276 {
277         struct hlist_head *head = dev_name_hash(net, name);
278         struct netdev_name_node *name_node;
279
280         hlist_for_each_entry(name_node, head, hlist)
281                 if (!strcmp(name_node->name, name))
282                         return name_node;
283         return NULL;
284 }
285
286 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287                                                             const char *name)
288 {
289         struct hlist_head *head = dev_name_hash(net, name);
290         struct netdev_name_node *name_node;
291
292         hlist_for_each_entry_rcu(name_node, head, hlist)
293                 if (!strcmp(name_node->name, name))
294                         return name_node;
295         return NULL;
296 }
297
298 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299 {
300         struct netdev_name_node *name_node;
301         struct net *net = dev_net(dev);
302
303         name_node = netdev_name_node_lookup(net, name);
304         if (name_node)
305                 return -EEXIST;
306         name_node = netdev_name_node_alloc(dev, name);
307         if (!name_node)
308                 return -ENOMEM;
309         netdev_name_node_add(net, name_node);
310         /* The node that holds dev->name acts as a head of per-device list. */
311         list_add_tail(&name_node->list, &dev->name_node->list);
312
313         return 0;
314 }
315 EXPORT_SYMBOL(netdev_name_node_alt_create);
316
317 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318 {
319         list_del(&name_node->list);
320         netdev_name_node_del(name_node);
321         kfree(name_node->name);
322         netdev_name_node_free(name_node);
323 }
324
325 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326 {
327         struct netdev_name_node *name_node;
328         struct net *net = dev_net(dev);
329
330         name_node = netdev_name_node_lookup(net, name);
331         if (!name_node)
332                 return -ENOENT;
333         /* lookup might have found our primary name or a name belonging
334          * to another device.
335          */
336         if (name_node == dev->name_node || name_node->dev != dev)
337                 return -EINVAL;
338
339         __netdev_name_node_alt_destroy(name_node);
340
341         return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344
345 static void netdev_name_node_alt_flush(struct net_device *dev)
346 {
347         struct netdev_name_node *name_node, *tmp;
348
349         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350                 __netdev_name_node_alt_destroy(name_node);
351 }
352
353 /* Device list insertion */
354 static void list_netdevice(struct net_device *dev)
355 {
356         struct net *net = dev_net(dev);
357
358         ASSERT_RTNL();
359
360         write_lock_bh(&dev_base_lock);
361         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
362         netdev_name_node_add(net, dev->name_node);
363         hlist_add_head_rcu(&dev->index_hlist,
364                            dev_index_hash(net, dev->ifindex));
365         write_unlock_bh(&dev_base_lock);
366
367         dev_base_seq_inc(net);
368 }
369
370 /* Device list removal
371  * caller must respect a RCU grace period before freeing/reusing dev
372  */
373 static void unlist_netdevice(struct net_device *dev)
374 {
375         ASSERT_RTNL();
376
377         /* Unlink dev from the device chain */
378         write_lock_bh(&dev_base_lock);
379         list_del_rcu(&dev->dev_list);
380         netdev_name_node_del(dev->name_node);
381         hlist_del_rcu(&dev->index_hlist);
382         write_unlock_bh(&dev_base_lock);
383
384         dev_base_seq_inc(dev_net(dev));
385 }
386
387 /*
388  *      Our notifier list
389  */
390
391 static RAW_NOTIFIER_HEAD(netdev_chain);
392
393 /*
394  *      Device drivers call our routines to queue packets here. We empty the
395  *      queue in the local softnet handler.
396  */
397
398 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
399 EXPORT_PER_CPU_SYMBOL(softnet_data);
400
401 /*******************************************************************************
402  *
403  *              Protocol management and registration routines
404  *
405  *******************************************************************************/
406
407
408 /*
409  *      Add a protocol ID to the list. Now that the input handler is
410  *      smarter we can dispense with all the messy stuff that used to be
411  *      here.
412  *
413  *      BEWARE!!! Protocol handlers, mangling input packets,
414  *      MUST BE last in hash buckets and checking protocol handlers
415  *      MUST start from promiscuous ptype_all chain in net_bh.
416  *      It is true now, do not change it.
417  *      Explanation follows: if protocol handler, mangling packet, will
418  *      be the first on list, it is not able to sense, that packet
419  *      is cloned and should be copied-on-write, so that it will
420  *      change it and subsequent readers will get broken packet.
421  *                                                      --ANK (980803)
422  */
423
424 static inline struct list_head *ptype_head(const struct packet_type *pt)
425 {
426         if (pt->type == htons(ETH_P_ALL))
427                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
428         else
429                 return pt->dev ? &pt->dev->ptype_specific :
430                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
431 }
432
433 /**
434  *      dev_add_pack - add packet handler
435  *      @pt: packet type declaration
436  *
437  *      Add a protocol handler to the networking stack. The passed &packet_type
438  *      is linked into kernel lists and may not be freed until it has been
439  *      removed from the kernel lists.
440  *
441  *      This call does not sleep therefore it can not
442  *      guarantee all CPU's that are in middle of receiving packets
443  *      will see the new packet type (until the next received packet).
444  */
445
446 void dev_add_pack(struct packet_type *pt)
447 {
448         struct list_head *head = ptype_head(pt);
449
450         spin_lock(&ptype_lock);
451         list_add_rcu(&pt->list, head);
452         spin_unlock(&ptype_lock);
453 }
454 EXPORT_SYMBOL(dev_add_pack);
455
456 /**
457  *      __dev_remove_pack        - remove packet handler
458  *      @pt: packet type declaration
459  *
460  *      Remove a protocol handler that was previously added to the kernel
461  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
462  *      from the kernel lists and can be freed or reused once this function
463  *      returns.
464  *
465  *      The packet type might still be in use by receivers
466  *      and must not be freed until after all the CPU's have gone
467  *      through a quiescent state.
468  */
469 void __dev_remove_pack(struct packet_type *pt)
470 {
471         struct list_head *head = ptype_head(pt);
472         struct packet_type *pt1;
473
474         spin_lock(&ptype_lock);
475
476         list_for_each_entry(pt1, head, list) {
477                 if (pt == pt1) {
478                         list_del_rcu(&pt->list);
479                         goto out;
480                 }
481         }
482
483         pr_warn("dev_remove_pack: %p not found\n", pt);
484 out:
485         spin_unlock(&ptype_lock);
486 }
487 EXPORT_SYMBOL(__dev_remove_pack);
488
489 /**
490  *      dev_remove_pack  - remove packet handler
491  *      @pt: packet type declaration
492  *
493  *      Remove a protocol handler that was previously added to the kernel
494  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
495  *      from the kernel lists and can be freed or reused once this function
496  *      returns.
497  *
498  *      This call sleeps to guarantee that no CPU is looking at the packet
499  *      type after return.
500  */
501 void dev_remove_pack(struct packet_type *pt)
502 {
503         __dev_remove_pack(pt);
504
505         synchronize_net();
506 }
507 EXPORT_SYMBOL(dev_remove_pack);
508
509
510 /**
511  *      dev_add_offload - register offload handlers
512  *      @po: protocol offload declaration
513  *
514  *      Add protocol offload handlers to the networking stack. The passed
515  *      &proto_offload is linked into kernel lists and may not be freed until
516  *      it has been removed from the kernel lists.
517  *
518  *      This call does not sleep therefore it can not
519  *      guarantee all CPU's that are in middle of receiving packets
520  *      will see the new offload handlers (until the next received packet).
521  */
522 void dev_add_offload(struct packet_offload *po)
523 {
524         struct packet_offload *elem;
525
526         spin_lock(&offload_lock);
527         list_for_each_entry(elem, &offload_base, list) {
528                 if (po->priority < elem->priority)
529                         break;
530         }
531         list_add_rcu(&po->list, elem->list.prev);
532         spin_unlock(&offload_lock);
533 }
534 EXPORT_SYMBOL(dev_add_offload);
535
536 /**
537  *      __dev_remove_offload     - remove offload handler
538  *      @po: packet offload declaration
539  *
540  *      Remove a protocol offload handler that was previously added to the
541  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
542  *      is removed from the kernel lists and can be freed or reused once this
543  *      function returns.
544  *
545  *      The packet type might still be in use by receivers
546  *      and must not be freed until after all the CPU's have gone
547  *      through a quiescent state.
548  */
549 static void __dev_remove_offload(struct packet_offload *po)
550 {
551         struct list_head *head = &offload_base;
552         struct packet_offload *po1;
553
554         spin_lock(&offload_lock);
555
556         list_for_each_entry(po1, head, list) {
557                 if (po == po1) {
558                         list_del_rcu(&po->list);
559                         goto out;
560                 }
561         }
562
563         pr_warn("dev_remove_offload: %p not found\n", po);
564 out:
565         spin_unlock(&offload_lock);
566 }
567
568 /**
569  *      dev_remove_offload       - remove packet offload handler
570  *      @po: packet offload declaration
571  *
572  *      Remove a packet offload handler that was previously added to the kernel
573  *      offload handlers by dev_add_offload(). The passed &offload_type is
574  *      removed from the kernel lists and can be freed or reused once this
575  *      function returns.
576  *
577  *      This call sleeps to guarantee that no CPU is looking at the packet
578  *      type after return.
579  */
580 void dev_remove_offload(struct packet_offload *po)
581 {
582         __dev_remove_offload(po);
583
584         synchronize_net();
585 }
586 EXPORT_SYMBOL(dev_remove_offload);
587
588 /******************************************************************************
589  *
590  *                    Device Boot-time Settings Routines
591  *
592  ******************************************************************************/
593
594 /* Boot time configuration table */
595 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
596
597 /**
598  *      netdev_boot_setup_add   - add new setup entry
599  *      @name: name of the device
600  *      @map: configured settings for the device
601  *
602  *      Adds new setup entry to the dev_boot_setup list.  The function
603  *      returns 0 on error and 1 on success.  This is a generic routine to
604  *      all netdevices.
605  */
606 static int netdev_boot_setup_add(char *name, struct ifmap *map)
607 {
608         struct netdev_boot_setup *s;
609         int i;
610
611         s = dev_boot_setup;
612         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
613                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
614                         memset(s[i].name, 0, sizeof(s[i].name));
615                         strlcpy(s[i].name, name, IFNAMSIZ);
616                         memcpy(&s[i].map, map, sizeof(s[i].map));
617                         break;
618                 }
619         }
620
621         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
622 }
623
624 /**
625  * netdev_boot_setup_check      - check boot time settings
626  * @dev: the netdevice
627  *
628  * Check boot time settings for the device.
629  * The found settings are set for the device to be used
630  * later in the device probing.
631  * Returns 0 if no settings found, 1 if they are.
632  */
633 int netdev_boot_setup_check(struct net_device *dev)
634 {
635         struct netdev_boot_setup *s = dev_boot_setup;
636         int i;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
639                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
640                     !strcmp(dev->name, s[i].name)) {
641                         dev->irq = s[i].map.irq;
642                         dev->base_addr = s[i].map.base_addr;
643                         dev->mem_start = s[i].map.mem_start;
644                         dev->mem_end = s[i].map.mem_end;
645                         return 1;
646                 }
647         }
648         return 0;
649 }
650 EXPORT_SYMBOL(netdev_boot_setup_check);
651
652
653 /**
654  * netdev_boot_base     - get address from boot time settings
655  * @prefix: prefix for network device
656  * @unit: id for network device
657  *
658  * Check boot time settings for the base address of device.
659  * The found settings are set for the device to be used
660  * later in the device probing.
661  * Returns 0 if no settings found.
662  */
663 unsigned long netdev_boot_base(const char *prefix, int unit)
664 {
665         const struct netdev_boot_setup *s = dev_boot_setup;
666         char name[IFNAMSIZ];
667         int i;
668
669         sprintf(name, "%s%d", prefix, unit);
670
671         /*
672          * If device already registered then return base of 1
673          * to indicate not to probe for this interface
674          */
675         if (__dev_get_by_name(&init_net, name))
676                 return 1;
677
678         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
679                 if (!strcmp(name, s[i].name))
680                         return s[i].map.base_addr;
681         return 0;
682 }
683
684 /*
685  * Saves at boot time configured settings for any netdevice.
686  */
687 int __init netdev_boot_setup(char *str)
688 {
689         int ints[5];
690         struct ifmap map;
691
692         str = get_options(str, ARRAY_SIZE(ints), ints);
693         if (!str || !*str)
694                 return 0;
695
696         /* Save settings */
697         memset(&map, 0, sizeof(map));
698         if (ints[0] > 0)
699                 map.irq = ints[1];
700         if (ints[0] > 1)
701                 map.base_addr = ints[2];
702         if (ints[0] > 2)
703                 map.mem_start = ints[3];
704         if (ints[0] > 3)
705                 map.mem_end = ints[4];
706
707         /* Add new entry to the list */
708         return netdev_boot_setup_add(str, &map);
709 }
710
711 __setup("netdev=", netdev_boot_setup);
712
713 /*******************************************************************************
714  *
715  *                          Device Interface Subroutines
716  *
717  *******************************************************************************/
718
719 /**
720  *      dev_get_iflink  - get 'iflink' value of a interface
721  *      @dev: targeted interface
722  *
723  *      Indicates the ifindex the interface is linked to.
724  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
725  */
726
727 int dev_get_iflink(const struct net_device *dev)
728 {
729         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
730                 return dev->netdev_ops->ndo_get_iflink(dev);
731
732         return dev->ifindex;
733 }
734 EXPORT_SYMBOL(dev_get_iflink);
735
736 /**
737  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
738  *      @dev: targeted interface
739  *      @skb: The packet.
740  *
741  *      For better visibility of tunnel traffic OVS needs to retrieve
742  *      egress tunnel information for a packet. Following API allows
743  *      user to get this info.
744  */
745 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
746 {
747         struct ip_tunnel_info *info;
748
749         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
750                 return -EINVAL;
751
752         info = skb_tunnel_info_unclone(skb);
753         if (!info)
754                 return -ENOMEM;
755         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
756                 return -EINVAL;
757
758         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
759 }
760 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
761
762 /**
763  *      __dev_get_by_name       - find a device by its name
764  *      @net: the applicable net namespace
765  *      @name: name to find
766  *
767  *      Find an interface by name. Must be called under RTNL semaphore
768  *      or @dev_base_lock. If the name is found a pointer to the device
769  *      is returned. If the name is not found then %NULL is returned. The
770  *      reference counters are not incremented so the caller must be
771  *      careful with locks.
772  */
773
774 struct net_device *__dev_get_by_name(struct net *net, const char *name)
775 {
776         struct netdev_name_node *node_name;
777
778         node_name = netdev_name_node_lookup(net, name);
779         return node_name ? node_name->dev : NULL;
780 }
781 EXPORT_SYMBOL(__dev_get_by_name);
782
783 /**
784  * dev_get_by_name_rcu  - find a device by its name
785  * @net: the applicable net namespace
786  * @name: name to find
787  *
788  * Find an interface by name.
789  * If the name is found a pointer to the device is returned.
790  * If the name is not found then %NULL is returned.
791  * The reference counters are not incremented so the caller must be
792  * careful with locks. The caller must hold RCU lock.
793  */
794
795 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
796 {
797         struct netdev_name_node *node_name;
798
799         node_name = netdev_name_node_lookup_rcu(net, name);
800         return node_name ? node_name->dev : NULL;
801 }
802 EXPORT_SYMBOL(dev_get_by_name_rcu);
803
804 /**
805  *      dev_get_by_name         - find a device by its name
806  *      @net: the applicable net namespace
807  *      @name: name to find
808  *
809  *      Find an interface by name. This can be called from any
810  *      context and does its own locking. The returned handle has
811  *      the usage count incremented and the caller must use dev_put() to
812  *      release it when it is no longer needed. %NULL is returned if no
813  *      matching device is found.
814  */
815
816 struct net_device *dev_get_by_name(struct net *net, const char *name)
817 {
818         struct net_device *dev;
819
820         rcu_read_lock();
821         dev = dev_get_by_name_rcu(net, name);
822         if (dev)
823                 dev_hold(dev);
824         rcu_read_unlock();
825         return dev;
826 }
827 EXPORT_SYMBOL(dev_get_by_name);
828
829 /**
830  *      __dev_get_by_index - find a device by its ifindex
831  *      @net: the applicable net namespace
832  *      @ifindex: index of device
833  *
834  *      Search for an interface by index. Returns %NULL if the device
835  *      is not found or a pointer to the device. The device has not
836  *      had its reference counter increased so the caller must be careful
837  *      about locking. The caller must hold either the RTNL semaphore
838  *      or @dev_base_lock.
839  */
840
841 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
842 {
843         struct net_device *dev;
844         struct hlist_head *head = dev_index_hash(net, ifindex);
845
846         hlist_for_each_entry(dev, head, index_hlist)
847                 if (dev->ifindex == ifindex)
848                         return dev;
849
850         return NULL;
851 }
852 EXPORT_SYMBOL(__dev_get_by_index);
853
854 /**
855  *      dev_get_by_index_rcu - find a device by its ifindex
856  *      @net: the applicable net namespace
857  *      @ifindex: index of device
858  *
859  *      Search for an interface by index. Returns %NULL if the device
860  *      is not found or a pointer to the device. The device has not
861  *      had its reference counter increased so the caller must be careful
862  *      about locking. The caller must hold RCU lock.
863  */
864
865 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
866 {
867         struct net_device *dev;
868         struct hlist_head *head = dev_index_hash(net, ifindex);
869
870         hlist_for_each_entry_rcu(dev, head, index_hlist)
871                 if (dev->ifindex == ifindex)
872                         return dev;
873
874         return NULL;
875 }
876 EXPORT_SYMBOL(dev_get_by_index_rcu);
877
878
879 /**
880  *      dev_get_by_index - find a device by its ifindex
881  *      @net: the applicable net namespace
882  *      @ifindex: index of device
883  *
884  *      Search for an interface by index. Returns NULL if the device
885  *      is not found or a pointer to the device. The device returned has
886  *      had a reference added and the pointer is safe until the user calls
887  *      dev_put to indicate they have finished with it.
888  */
889
890 struct net_device *dev_get_by_index(struct net *net, int ifindex)
891 {
892         struct net_device *dev;
893
894         rcu_read_lock();
895         dev = dev_get_by_index_rcu(net, ifindex);
896         if (dev)
897                 dev_hold(dev);
898         rcu_read_unlock();
899         return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_index);
902
903 /**
904  *      dev_get_by_napi_id - find a device by napi_id
905  *      @napi_id: ID of the NAPI struct
906  *
907  *      Search for an interface by NAPI ID. Returns %NULL if the device
908  *      is not found or a pointer to the device. The device has not had
909  *      its reference counter increased so the caller must be careful
910  *      about locking. The caller must hold RCU lock.
911  */
912
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915         struct napi_struct *napi;
916
917         WARN_ON_ONCE(!rcu_read_lock_held());
918
919         if (napi_id < MIN_NAPI_ID)
920                 return NULL;
921
922         napi = napi_by_id(napi_id);
923
924         return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927
928 /**
929  *      netdev_get_name - get a netdevice name, knowing its ifindex.
930  *      @net: network namespace
931  *      @name: a pointer to the buffer where the name will be stored.
932  *      @ifindex: the ifindex of the interface to get the name from.
933  *
934  *      The use of raw_seqcount_begin() and cond_resched() before
935  *      retrying is required as we want to give the writers a chance
936  *      to complete when CONFIG_PREEMPTION is not set.
937  */
938 int netdev_get_name(struct net *net, char *name, int ifindex)
939 {
940         struct net_device *dev;
941         unsigned int seq;
942
943 retry:
944         seq = raw_seqcount_begin(&devnet_rename_seq);
945         rcu_read_lock();
946         dev = dev_get_by_index_rcu(net, ifindex);
947         if (!dev) {
948                 rcu_read_unlock();
949                 return -ENODEV;
950         }
951
952         strcpy(name, dev->name);
953         rcu_read_unlock();
954         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
955                 cond_resched();
956                 goto retry;
957         }
958
959         return 0;
960 }
961
962 /**
963  *      dev_getbyhwaddr_rcu - find a device by its hardware address
964  *      @net: the applicable net namespace
965  *      @type: media type of device
966  *      @ha: hardware address
967  *
968  *      Search for an interface by MAC address. Returns NULL if the device
969  *      is not found or a pointer to the device.
970  *      The caller must hold RCU or RTNL.
971  *      The returned device has not had its ref count increased
972  *      and the caller must therefore be careful about locking
973  *
974  */
975
976 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
977                                        const char *ha)
978 {
979         struct net_device *dev;
980
981         for_each_netdev_rcu(net, dev)
982                 if (dev->type == type &&
983                     !memcmp(dev->dev_addr, ha, dev->addr_len))
984                         return dev;
985
986         return NULL;
987 }
988 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
989
990 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
991 {
992         struct net_device *dev;
993
994         ASSERT_RTNL();
995         for_each_netdev(net, dev)
996                 if (dev->type == type)
997                         return dev;
998
999         return NULL;
1000 }
1001 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1002
1003 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1004 {
1005         struct net_device *dev, *ret = NULL;
1006
1007         rcu_read_lock();
1008         for_each_netdev_rcu(net, dev)
1009                 if (dev->type == type) {
1010                         dev_hold(dev);
1011                         ret = dev;
1012                         break;
1013                 }
1014         rcu_read_unlock();
1015         return ret;
1016 }
1017 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1018
1019 /**
1020  *      __dev_get_by_flags - find any device with given flags
1021  *      @net: the applicable net namespace
1022  *      @if_flags: IFF_* values
1023  *      @mask: bitmask of bits in if_flags to check
1024  *
1025  *      Search for any interface with the given flags. Returns NULL if a device
1026  *      is not found or a pointer to the device. Must be called inside
1027  *      rtnl_lock(), and result refcount is unchanged.
1028  */
1029
1030 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1031                                       unsigned short mask)
1032 {
1033         struct net_device *dev, *ret;
1034
1035         ASSERT_RTNL();
1036
1037         ret = NULL;
1038         for_each_netdev(net, dev) {
1039                 if (((dev->flags ^ if_flags) & mask) == 0) {
1040                         ret = dev;
1041                         break;
1042                 }
1043         }
1044         return ret;
1045 }
1046 EXPORT_SYMBOL(__dev_get_by_flags);
1047
1048 /**
1049  *      dev_valid_name - check if name is okay for network device
1050  *      @name: name string
1051  *
1052  *      Network device names need to be valid file names to
1053  *      to allow sysfs to work.  We also disallow any kind of
1054  *      whitespace.
1055  */
1056 bool dev_valid_name(const char *name)
1057 {
1058         if (*name == '\0')
1059                 return false;
1060         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1061                 return false;
1062         if (!strcmp(name, ".") || !strcmp(name, ".."))
1063                 return false;
1064
1065         while (*name) {
1066                 if (*name == '/' || *name == ':' || isspace(*name))
1067                         return false;
1068                 name++;
1069         }
1070         return true;
1071 }
1072 EXPORT_SYMBOL(dev_valid_name);
1073
1074 /**
1075  *      __dev_alloc_name - allocate a name for a device
1076  *      @net: network namespace to allocate the device name in
1077  *      @name: name format string
1078  *      @buf:  scratch buffer and result name string
1079  *
1080  *      Passed a format string - eg "lt%d" it will try and find a suitable
1081  *      id. It scans list of devices to build up a free map, then chooses
1082  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *      while allocating the name and adding the device in order to avoid
1084  *      duplicates.
1085  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *      Returns the number of the unit assigned or a negative errno code.
1087  */
1088
1089 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1090 {
1091         int i = 0;
1092         const char *p;
1093         const int max_netdevices = 8*PAGE_SIZE;
1094         unsigned long *inuse;
1095         struct net_device *d;
1096
1097         if (!dev_valid_name(name))
1098                 return -EINVAL;
1099
1100         p = strchr(name, '%');
1101         if (p) {
1102                 /*
1103                  * Verify the string as this thing may have come from
1104                  * the user.  There must be either one "%d" and no other "%"
1105                  * characters.
1106                  */
1107                 if (p[1] != 'd' || strchr(p + 2, '%'))
1108                         return -EINVAL;
1109
1110                 /* Use one page as a bit array of possible slots */
1111                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1112                 if (!inuse)
1113                         return -ENOMEM;
1114
1115                 for_each_netdev(net, d) {
1116                         if (!sscanf(d->name, name, &i))
1117                                 continue;
1118                         if (i < 0 || i >= max_netdevices)
1119                                 continue;
1120
1121                         /*  avoid cases where sscanf is not exact inverse of printf */
1122                         snprintf(buf, IFNAMSIZ, name, i);
1123                         if (!strncmp(buf, d->name, IFNAMSIZ))
1124                                 set_bit(i, inuse);
1125                 }
1126
1127                 i = find_first_zero_bit(inuse, max_netdevices);
1128                 free_page((unsigned long) inuse);
1129         }
1130
1131         snprintf(buf, IFNAMSIZ, name, i);
1132         if (!__dev_get_by_name(net, buf))
1133                 return i;
1134
1135         /* It is possible to run out of possible slots
1136          * when the name is long and there isn't enough space left
1137          * for the digits, or if all bits are used.
1138          */
1139         return -ENFILE;
1140 }
1141
1142 static int dev_alloc_name_ns(struct net *net,
1143                              struct net_device *dev,
1144                              const char *name)
1145 {
1146         char buf[IFNAMSIZ];
1147         int ret;
1148
1149         BUG_ON(!net);
1150         ret = __dev_alloc_name(net, name, buf);
1151         if (ret >= 0)
1152                 strlcpy(dev->name, buf, IFNAMSIZ);
1153         return ret;
1154 }
1155
1156 /**
1157  *      dev_alloc_name - allocate a name for a device
1158  *      @dev: device
1159  *      @name: name format string
1160  *
1161  *      Passed a format string - eg "lt%d" it will try and find a suitable
1162  *      id. It scans list of devices to build up a free map, then chooses
1163  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1164  *      while allocating the name and adding the device in order to avoid
1165  *      duplicates.
1166  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167  *      Returns the number of the unit assigned or a negative errno code.
1168  */
1169
1170 int dev_alloc_name(struct net_device *dev, const char *name)
1171 {
1172         return dev_alloc_name_ns(dev_net(dev), dev, name);
1173 }
1174 EXPORT_SYMBOL(dev_alloc_name);
1175
1176 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1177                               const char *name)
1178 {
1179         BUG_ON(!net);
1180
1181         if (!dev_valid_name(name))
1182                 return -EINVAL;
1183
1184         if (strchr(name, '%'))
1185                 return dev_alloc_name_ns(net, dev, name);
1186         else if (__dev_get_by_name(net, name))
1187                 return -EEXIST;
1188         else if (dev->name != name)
1189                 strlcpy(dev->name, name, IFNAMSIZ);
1190
1191         return 0;
1192 }
1193
1194 /**
1195  *      dev_change_name - change name of a device
1196  *      @dev: device
1197  *      @newname: name (or format string) must be at least IFNAMSIZ
1198  *
1199  *      Change name of a device, can pass format strings "eth%d".
1200  *      for wildcarding.
1201  */
1202 int dev_change_name(struct net_device *dev, const char *newname)
1203 {
1204         unsigned char old_assign_type;
1205         char oldname[IFNAMSIZ];
1206         int err = 0;
1207         int ret;
1208         struct net *net;
1209
1210         ASSERT_RTNL();
1211         BUG_ON(!dev_net(dev));
1212
1213         net = dev_net(dev);
1214
1215         /* Some auto-enslaved devices e.g. failover slaves are
1216          * special, as userspace might rename the device after
1217          * the interface had been brought up and running since
1218          * the point kernel initiated auto-enslavement. Allow
1219          * live name change even when these slave devices are
1220          * up and running.
1221          *
1222          * Typically, users of these auto-enslaving devices
1223          * don't actually care about slave name change, as
1224          * they are supposed to operate on master interface
1225          * directly.
1226          */
1227         if (dev->flags & IFF_UP &&
1228             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1229                 return -EBUSY;
1230
1231         write_seqcount_begin(&devnet_rename_seq);
1232
1233         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1234                 write_seqcount_end(&devnet_rename_seq);
1235                 return 0;
1236         }
1237
1238         memcpy(oldname, dev->name, IFNAMSIZ);
1239
1240         err = dev_get_valid_name(net, dev, newname);
1241         if (err < 0) {
1242                 write_seqcount_end(&devnet_rename_seq);
1243                 return err;
1244         }
1245
1246         if (oldname[0] && !strchr(oldname, '%'))
1247                 netdev_info(dev, "renamed from %s\n", oldname);
1248
1249         old_assign_type = dev->name_assign_type;
1250         dev->name_assign_type = NET_NAME_RENAMED;
1251
1252 rollback:
1253         ret = device_rename(&dev->dev, dev->name);
1254         if (ret) {
1255                 memcpy(dev->name, oldname, IFNAMSIZ);
1256                 dev->name_assign_type = old_assign_type;
1257                 write_seqcount_end(&devnet_rename_seq);
1258                 return ret;
1259         }
1260
1261         write_seqcount_end(&devnet_rename_seq);
1262
1263         netdev_adjacent_rename_links(dev, oldname);
1264
1265         write_lock_bh(&dev_base_lock);
1266         netdev_name_node_del(dev->name_node);
1267         write_unlock_bh(&dev_base_lock);
1268
1269         synchronize_rcu();
1270
1271         write_lock_bh(&dev_base_lock);
1272         netdev_name_node_add(net, dev->name_node);
1273         write_unlock_bh(&dev_base_lock);
1274
1275         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1276         ret = notifier_to_errno(ret);
1277
1278         if (ret) {
1279                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1280                 if (err >= 0) {
1281                         err = ret;
1282                         write_seqcount_begin(&devnet_rename_seq);
1283                         memcpy(dev->name, oldname, IFNAMSIZ);
1284                         memcpy(oldname, newname, IFNAMSIZ);
1285                         dev->name_assign_type = old_assign_type;
1286                         old_assign_type = NET_NAME_RENAMED;
1287                         goto rollback;
1288                 } else {
1289                         pr_err("%s: name change rollback failed: %d\n",
1290                                dev->name, ret);
1291                 }
1292         }
1293
1294         return err;
1295 }
1296
1297 /**
1298  *      dev_set_alias - change ifalias of a device
1299  *      @dev: device
1300  *      @alias: name up to IFALIASZ
1301  *      @len: limit of bytes to copy from info
1302  *
1303  *      Set ifalias for a device,
1304  */
1305 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1306 {
1307         struct dev_ifalias *new_alias = NULL;
1308
1309         if (len >= IFALIASZ)
1310                 return -EINVAL;
1311
1312         if (len) {
1313                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1314                 if (!new_alias)
1315                         return -ENOMEM;
1316
1317                 memcpy(new_alias->ifalias, alias, len);
1318                 new_alias->ifalias[len] = 0;
1319         }
1320
1321         mutex_lock(&ifalias_mutex);
1322         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1323                                         mutex_is_locked(&ifalias_mutex));
1324         mutex_unlock(&ifalias_mutex);
1325
1326         if (new_alias)
1327                 kfree_rcu(new_alias, rcuhead);
1328
1329         return len;
1330 }
1331 EXPORT_SYMBOL(dev_set_alias);
1332
1333 /**
1334  *      dev_get_alias - get ifalias of a device
1335  *      @dev: device
1336  *      @name: buffer to store name of ifalias
1337  *      @len: size of buffer
1338  *
1339  *      get ifalias for a device.  Caller must make sure dev cannot go
1340  *      away,  e.g. rcu read lock or own a reference count to device.
1341  */
1342 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1343 {
1344         const struct dev_ifalias *alias;
1345         int ret = 0;
1346
1347         rcu_read_lock();
1348         alias = rcu_dereference(dev->ifalias);
1349         if (alias)
1350                 ret = snprintf(name, len, "%s", alias->ifalias);
1351         rcu_read_unlock();
1352
1353         return ret;
1354 }
1355
1356 /**
1357  *      netdev_features_change - device changes features
1358  *      @dev: device to cause notification
1359  *
1360  *      Called to indicate a device has changed features.
1361  */
1362 void netdev_features_change(struct net_device *dev)
1363 {
1364         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1365 }
1366 EXPORT_SYMBOL(netdev_features_change);
1367
1368 /**
1369  *      netdev_state_change - device changes state
1370  *      @dev: device to cause notification
1371  *
1372  *      Called to indicate a device has changed state. This function calls
1373  *      the notifier chains for netdev_chain and sends a NEWLINK message
1374  *      to the routing socket.
1375  */
1376 void netdev_state_change(struct net_device *dev)
1377 {
1378         if (dev->flags & IFF_UP) {
1379                 struct netdev_notifier_change_info change_info = {
1380                         .info.dev = dev,
1381                 };
1382
1383                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1384                                               &change_info.info);
1385                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1386         }
1387 }
1388 EXPORT_SYMBOL(netdev_state_change);
1389
1390 /**
1391  * netdev_notify_peers - notify network peers about existence of @dev
1392  * @dev: network device
1393  *
1394  * Generate traffic such that interested network peers are aware of
1395  * @dev, such as by generating a gratuitous ARP. This may be used when
1396  * a device wants to inform the rest of the network about some sort of
1397  * reconfiguration such as a failover event or virtual machine
1398  * migration.
1399  */
1400 void netdev_notify_peers(struct net_device *dev)
1401 {
1402         rtnl_lock();
1403         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1404         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1405         rtnl_unlock();
1406 }
1407 EXPORT_SYMBOL(netdev_notify_peers);
1408
1409 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1410 {
1411         const struct net_device_ops *ops = dev->netdev_ops;
1412         int ret;
1413
1414         ASSERT_RTNL();
1415
1416         if (!netif_device_present(dev))
1417                 return -ENODEV;
1418
1419         /* Block netpoll from trying to do any rx path servicing.
1420          * If we don't do this there is a chance ndo_poll_controller
1421          * or ndo_poll may be running while we open the device
1422          */
1423         netpoll_poll_disable(dev);
1424
1425         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1426         ret = notifier_to_errno(ret);
1427         if (ret)
1428                 return ret;
1429
1430         set_bit(__LINK_STATE_START, &dev->state);
1431
1432         if (ops->ndo_validate_addr)
1433                 ret = ops->ndo_validate_addr(dev);
1434
1435         if (!ret && ops->ndo_open)
1436                 ret = ops->ndo_open(dev);
1437
1438         netpoll_poll_enable(dev);
1439
1440         if (ret)
1441                 clear_bit(__LINK_STATE_START, &dev->state);
1442         else {
1443                 dev->flags |= IFF_UP;
1444                 dev_set_rx_mode(dev);
1445                 dev_activate(dev);
1446                 add_device_randomness(dev->dev_addr, dev->addr_len);
1447         }
1448
1449         return ret;
1450 }
1451
1452 /**
1453  *      dev_open        - prepare an interface for use.
1454  *      @dev: device to open
1455  *      @extack: netlink extended ack
1456  *
1457  *      Takes a device from down to up state. The device's private open
1458  *      function is invoked and then the multicast lists are loaded. Finally
1459  *      the device is moved into the up state and a %NETDEV_UP message is
1460  *      sent to the netdev notifier chain.
1461  *
1462  *      Calling this function on an active interface is a nop. On a failure
1463  *      a negative errno code is returned.
1464  */
1465 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1466 {
1467         int ret;
1468
1469         if (dev->flags & IFF_UP)
1470                 return 0;
1471
1472         ret = __dev_open(dev, extack);
1473         if (ret < 0)
1474                 return ret;
1475
1476         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1477         call_netdevice_notifiers(NETDEV_UP, dev);
1478
1479         return ret;
1480 }
1481 EXPORT_SYMBOL(dev_open);
1482
1483 static void __dev_close_many(struct list_head *head)
1484 {
1485         struct net_device *dev;
1486
1487         ASSERT_RTNL();
1488         might_sleep();
1489
1490         list_for_each_entry(dev, head, close_list) {
1491                 /* Temporarily disable netpoll until the interface is down */
1492                 netpoll_poll_disable(dev);
1493
1494                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1495
1496                 clear_bit(__LINK_STATE_START, &dev->state);
1497
1498                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1499                  * can be even on different cpu. So just clear netif_running().
1500                  *
1501                  * dev->stop() will invoke napi_disable() on all of it's
1502                  * napi_struct instances on this device.
1503                  */
1504                 smp_mb__after_atomic(); /* Commit netif_running(). */
1505         }
1506
1507         dev_deactivate_many(head);
1508
1509         list_for_each_entry(dev, head, close_list) {
1510                 const struct net_device_ops *ops = dev->netdev_ops;
1511
1512                 /*
1513                  *      Call the device specific close. This cannot fail.
1514                  *      Only if device is UP
1515                  *
1516                  *      We allow it to be called even after a DETACH hot-plug
1517                  *      event.
1518                  */
1519                 if (ops->ndo_stop)
1520                         ops->ndo_stop(dev);
1521
1522                 dev->flags &= ~IFF_UP;
1523                 netpoll_poll_enable(dev);
1524         }
1525 }
1526
1527 static void __dev_close(struct net_device *dev)
1528 {
1529         LIST_HEAD(single);
1530
1531         list_add(&dev->close_list, &single);
1532         __dev_close_many(&single);
1533         list_del(&single);
1534 }
1535
1536 void dev_close_many(struct list_head *head, bool unlink)
1537 {
1538         struct net_device *dev, *tmp;
1539
1540         /* Remove the devices that don't need to be closed */
1541         list_for_each_entry_safe(dev, tmp, head, close_list)
1542                 if (!(dev->flags & IFF_UP))
1543                         list_del_init(&dev->close_list);
1544
1545         __dev_close_many(head);
1546
1547         list_for_each_entry_safe(dev, tmp, head, close_list) {
1548                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1549                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1550                 if (unlink)
1551                         list_del_init(&dev->close_list);
1552         }
1553 }
1554 EXPORT_SYMBOL(dev_close_many);
1555
1556 /**
1557  *      dev_close - shutdown an interface.
1558  *      @dev: device to shutdown
1559  *
1560  *      This function moves an active device into down state. A
1561  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1562  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1563  *      chain.
1564  */
1565 void dev_close(struct net_device *dev)
1566 {
1567         if (dev->flags & IFF_UP) {
1568                 LIST_HEAD(single);
1569
1570                 list_add(&dev->close_list, &single);
1571                 dev_close_many(&single, true);
1572                 list_del(&single);
1573         }
1574 }
1575 EXPORT_SYMBOL(dev_close);
1576
1577
1578 /**
1579  *      dev_disable_lro - disable Large Receive Offload on a device
1580  *      @dev: device
1581  *
1582  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1583  *      called under RTNL.  This is needed if received packets may be
1584  *      forwarded to another interface.
1585  */
1586 void dev_disable_lro(struct net_device *dev)
1587 {
1588         struct net_device *lower_dev;
1589         struct list_head *iter;
1590
1591         dev->wanted_features &= ~NETIF_F_LRO;
1592         netdev_update_features(dev);
1593
1594         if (unlikely(dev->features & NETIF_F_LRO))
1595                 netdev_WARN(dev, "failed to disable LRO!\n");
1596
1597         netdev_for_each_lower_dev(dev, lower_dev, iter)
1598                 dev_disable_lro(lower_dev);
1599 }
1600 EXPORT_SYMBOL(dev_disable_lro);
1601
1602 /**
1603  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1604  *      @dev: device
1605  *
1606  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1607  *      called under RTNL.  This is needed if Generic XDP is installed on
1608  *      the device.
1609  */
1610 static void dev_disable_gro_hw(struct net_device *dev)
1611 {
1612         dev->wanted_features &= ~NETIF_F_GRO_HW;
1613         netdev_update_features(dev);
1614
1615         if (unlikely(dev->features & NETIF_F_GRO_HW))
1616                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1617 }
1618
1619 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1620 {
1621 #define N(val)                                          \
1622         case NETDEV_##val:                              \
1623                 return "NETDEV_" __stringify(val);
1624         switch (cmd) {
1625         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1626         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1627         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1628         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1629         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1630         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1631         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1632         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1633         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1634         N(PRE_CHANGEADDR)
1635         }
1636 #undef N
1637         return "UNKNOWN_NETDEV_EVENT";
1638 }
1639 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1640
1641 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1642                                    struct net_device *dev)
1643 {
1644         struct netdev_notifier_info info = {
1645                 .dev = dev,
1646         };
1647
1648         return nb->notifier_call(nb, val, &info);
1649 }
1650
1651 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1652                                              struct net_device *dev)
1653 {
1654         int err;
1655
1656         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1657         err = notifier_to_errno(err);
1658         if (err)
1659                 return err;
1660
1661         if (!(dev->flags & IFF_UP))
1662                 return 0;
1663
1664         call_netdevice_notifier(nb, NETDEV_UP, dev);
1665         return 0;
1666 }
1667
1668 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1669                                                 struct net_device *dev)
1670 {
1671         if (dev->flags & IFF_UP) {
1672                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1673                                         dev);
1674                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1675         }
1676         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1677 }
1678
1679 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1680                                                  struct net *net)
1681 {
1682         struct net_device *dev;
1683         int err;
1684
1685         for_each_netdev(net, dev) {
1686                 err = call_netdevice_register_notifiers(nb, dev);
1687                 if (err)
1688                         goto rollback;
1689         }
1690         return 0;
1691
1692 rollback:
1693         for_each_netdev_continue_reverse(net, dev)
1694                 call_netdevice_unregister_notifiers(nb, dev);
1695         return err;
1696 }
1697
1698 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1699                                                     struct net *net)
1700 {
1701         struct net_device *dev;
1702
1703         for_each_netdev(net, dev)
1704                 call_netdevice_unregister_notifiers(nb, dev);
1705 }
1706
1707 static int dev_boot_phase = 1;
1708
1709 /**
1710  * register_netdevice_notifier - register a network notifier block
1711  * @nb: notifier
1712  *
1713  * Register a notifier to be called when network device events occur.
1714  * The notifier passed is linked into the kernel structures and must
1715  * not be reused until it has been unregistered. A negative errno code
1716  * is returned on a failure.
1717  *
1718  * When registered all registration and up events are replayed
1719  * to the new notifier to allow device to have a race free
1720  * view of the network device list.
1721  */
1722
1723 int register_netdevice_notifier(struct notifier_block *nb)
1724 {
1725         struct net *net;
1726         int err;
1727
1728         /* Close race with setup_net() and cleanup_net() */
1729         down_write(&pernet_ops_rwsem);
1730         rtnl_lock();
1731         err = raw_notifier_chain_register(&netdev_chain, nb);
1732         if (err)
1733                 goto unlock;
1734         if (dev_boot_phase)
1735                 goto unlock;
1736         for_each_net(net) {
1737                 err = call_netdevice_register_net_notifiers(nb, net);
1738                 if (err)
1739                         goto rollback;
1740         }
1741
1742 unlock:
1743         rtnl_unlock();
1744         up_write(&pernet_ops_rwsem);
1745         return err;
1746
1747 rollback:
1748         for_each_net_continue_reverse(net)
1749                 call_netdevice_unregister_net_notifiers(nb, net);
1750
1751         raw_notifier_chain_unregister(&netdev_chain, nb);
1752         goto unlock;
1753 }
1754 EXPORT_SYMBOL(register_netdevice_notifier);
1755
1756 /**
1757  * unregister_netdevice_notifier - unregister a network notifier block
1758  * @nb: notifier
1759  *
1760  * Unregister a notifier previously registered by
1761  * register_netdevice_notifier(). The notifier is unlinked into the
1762  * kernel structures and may then be reused. A negative errno code
1763  * is returned on a failure.
1764  *
1765  * After unregistering unregister and down device events are synthesized
1766  * for all devices on the device list to the removed notifier to remove
1767  * the need for special case cleanup code.
1768  */
1769
1770 int unregister_netdevice_notifier(struct notifier_block *nb)
1771 {
1772         struct net *net;
1773         int err;
1774
1775         /* Close race with setup_net() and cleanup_net() */
1776         down_write(&pernet_ops_rwsem);
1777         rtnl_lock();
1778         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1779         if (err)
1780                 goto unlock;
1781
1782         for_each_net(net)
1783                 call_netdevice_unregister_net_notifiers(nb, net);
1784
1785 unlock:
1786         rtnl_unlock();
1787         up_write(&pernet_ops_rwsem);
1788         return err;
1789 }
1790 EXPORT_SYMBOL(unregister_netdevice_notifier);
1791
1792 static int __register_netdevice_notifier_net(struct net *net,
1793                                              struct notifier_block *nb,
1794                                              bool ignore_call_fail)
1795 {
1796         int err;
1797
1798         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1799         if (err)
1800                 return err;
1801         if (dev_boot_phase)
1802                 return 0;
1803
1804         err = call_netdevice_register_net_notifiers(nb, net);
1805         if (err && !ignore_call_fail)
1806                 goto chain_unregister;
1807
1808         return 0;
1809
1810 chain_unregister:
1811         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1812         return err;
1813 }
1814
1815 static int __unregister_netdevice_notifier_net(struct net *net,
1816                                                struct notifier_block *nb)
1817 {
1818         int err;
1819
1820         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1821         if (err)
1822                 return err;
1823
1824         call_netdevice_unregister_net_notifiers(nb, net);
1825         return 0;
1826 }
1827
1828 /**
1829  * register_netdevice_notifier_net - register a per-netns network notifier block
1830  * @net: network namespace
1831  * @nb: notifier
1832  *
1833  * Register a notifier to be called when network device events occur.
1834  * The notifier passed is linked into the kernel structures and must
1835  * not be reused until it has been unregistered. A negative errno code
1836  * is returned on a failure.
1837  *
1838  * When registered all registration and up events are replayed
1839  * to the new notifier to allow device to have a race free
1840  * view of the network device list.
1841  */
1842
1843 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1844 {
1845         int err;
1846
1847         rtnl_lock();
1848         err = __register_netdevice_notifier_net(net, nb, false);
1849         rtnl_unlock();
1850         return err;
1851 }
1852 EXPORT_SYMBOL(register_netdevice_notifier_net);
1853
1854 /**
1855  * unregister_netdevice_notifier_net - unregister a per-netns
1856  *                                     network notifier block
1857  * @net: network namespace
1858  * @nb: notifier
1859  *
1860  * Unregister a notifier previously registered by
1861  * register_netdevice_notifier(). The notifier is unlinked into the
1862  * kernel structures and may then be reused. A negative errno code
1863  * is returned on a failure.
1864  *
1865  * After unregistering unregister and down device events are synthesized
1866  * for all devices on the device list to the removed notifier to remove
1867  * the need for special case cleanup code.
1868  */
1869
1870 int unregister_netdevice_notifier_net(struct net *net,
1871                                       struct notifier_block *nb)
1872 {
1873         int err;
1874
1875         rtnl_lock();
1876         err = __unregister_netdevice_notifier_net(net, nb);
1877         rtnl_unlock();
1878         return err;
1879 }
1880 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1881
1882 int register_netdevice_notifier_dev_net(struct net_device *dev,
1883                                         struct notifier_block *nb,
1884                                         struct netdev_net_notifier *nn)
1885 {
1886         int err;
1887
1888         rtnl_lock();
1889         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1890         if (!err) {
1891                 nn->nb = nb;
1892                 list_add(&nn->list, &dev->net_notifier_list);
1893         }
1894         rtnl_unlock();
1895         return err;
1896 }
1897 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1898
1899 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1900                                           struct notifier_block *nb,
1901                                           struct netdev_net_notifier *nn)
1902 {
1903         int err;
1904
1905         rtnl_lock();
1906         list_del(&nn->list);
1907         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1908         rtnl_unlock();
1909         return err;
1910 }
1911 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1912
1913 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1914                                              struct net *net)
1915 {
1916         struct netdev_net_notifier *nn;
1917
1918         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1919                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1920                 __register_netdevice_notifier_net(net, nn->nb, true);
1921         }
1922 }
1923
1924 /**
1925  *      call_netdevice_notifiers_info - call all network notifier blocks
1926  *      @val: value passed unmodified to notifier function
1927  *      @info: notifier information data
1928  *
1929  *      Call all network notifier blocks.  Parameters and return value
1930  *      are as for raw_notifier_call_chain().
1931  */
1932
1933 static int call_netdevice_notifiers_info(unsigned long val,
1934                                          struct netdev_notifier_info *info)
1935 {
1936         struct net *net = dev_net(info->dev);
1937         int ret;
1938
1939         ASSERT_RTNL();
1940
1941         /* Run per-netns notifier block chain first, then run the global one.
1942          * Hopefully, one day, the global one is going to be removed after
1943          * all notifier block registrators get converted to be per-netns.
1944          */
1945         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1946         if (ret & NOTIFY_STOP_MASK)
1947                 return ret;
1948         return raw_notifier_call_chain(&netdev_chain, val, info);
1949 }
1950
1951 static int call_netdevice_notifiers_extack(unsigned long val,
1952                                            struct net_device *dev,
1953                                            struct netlink_ext_ack *extack)
1954 {
1955         struct netdev_notifier_info info = {
1956                 .dev = dev,
1957                 .extack = extack,
1958         };
1959
1960         return call_netdevice_notifiers_info(val, &info);
1961 }
1962
1963 /**
1964  *      call_netdevice_notifiers - call all network notifier blocks
1965  *      @val: value passed unmodified to notifier function
1966  *      @dev: net_device pointer passed unmodified to notifier function
1967  *
1968  *      Call all network notifier blocks.  Parameters and return value
1969  *      are as for raw_notifier_call_chain().
1970  */
1971
1972 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1973 {
1974         return call_netdevice_notifiers_extack(val, dev, NULL);
1975 }
1976 EXPORT_SYMBOL(call_netdevice_notifiers);
1977
1978 /**
1979  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1980  *      @val: value passed unmodified to notifier function
1981  *      @dev: net_device pointer passed unmodified to notifier function
1982  *      @arg: additional u32 argument passed to the notifier function
1983  *
1984  *      Call all network notifier blocks.  Parameters and return value
1985  *      are as for raw_notifier_call_chain().
1986  */
1987 static int call_netdevice_notifiers_mtu(unsigned long val,
1988                                         struct net_device *dev, u32 arg)
1989 {
1990         struct netdev_notifier_info_ext info = {
1991                 .info.dev = dev,
1992                 .ext.mtu = arg,
1993         };
1994
1995         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1996
1997         return call_netdevice_notifiers_info(val, &info.info);
1998 }
1999
2000 #ifdef CONFIG_NET_INGRESS
2001 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2002
2003 void net_inc_ingress_queue(void)
2004 {
2005         static_branch_inc(&ingress_needed_key);
2006 }
2007 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2008
2009 void net_dec_ingress_queue(void)
2010 {
2011         static_branch_dec(&ingress_needed_key);
2012 }
2013 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2014 #endif
2015
2016 #ifdef CONFIG_NET_EGRESS
2017 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2018
2019 void net_inc_egress_queue(void)
2020 {
2021         static_branch_inc(&egress_needed_key);
2022 }
2023 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2024
2025 void net_dec_egress_queue(void)
2026 {
2027         static_branch_dec(&egress_needed_key);
2028 }
2029 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2030 #endif
2031
2032 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2033 #ifdef CONFIG_JUMP_LABEL
2034 static atomic_t netstamp_needed_deferred;
2035 static atomic_t netstamp_wanted;
2036 static void netstamp_clear(struct work_struct *work)
2037 {
2038         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2039         int wanted;
2040
2041         wanted = atomic_add_return(deferred, &netstamp_wanted);
2042         if (wanted > 0)
2043                 static_branch_enable(&netstamp_needed_key);
2044         else
2045                 static_branch_disable(&netstamp_needed_key);
2046 }
2047 static DECLARE_WORK(netstamp_work, netstamp_clear);
2048 #endif
2049
2050 void net_enable_timestamp(void)
2051 {
2052 #ifdef CONFIG_JUMP_LABEL
2053         int wanted;
2054
2055         while (1) {
2056                 wanted = atomic_read(&netstamp_wanted);
2057                 if (wanted <= 0)
2058                         break;
2059                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2060                         return;
2061         }
2062         atomic_inc(&netstamp_needed_deferred);
2063         schedule_work(&netstamp_work);
2064 #else
2065         static_branch_inc(&netstamp_needed_key);
2066 #endif
2067 }
2068 EXPORT_SYMBOL(net_enable_timestamp);
2069
2070 void net_disable_timestamp(void)
2071 {
2072 #ifdef CONFIG_JUMP_LABEL
2073         int wanted;
2074
2075         while (1) {
2076                 wanted = atomic_read(&netstamp_wanted);
2077                 if (wanted <= 1)
2078                         break;
2079                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2080                         return;
2081         }
2082         atomic_dec(&netstamp_needed_deferred);
2083         schedule_work(&netstamp_work);
2084 #else
2085         static_branch_dec(&netstamp_needed_key);
2086 #endif
2087 }
2088 EXPORT_SYMBOL(net_disable_timestamp);
2089
2090 static inline void net_timestamp_set(struct sk_buff *skb)
2091 {
2092         skb->tstamp = 0;
2093         if (static_branch_unlikely(&netstamp_needed_key))
2094                 __net_timestamp(skb);
2095 }
2096
2097 #define net_timestamp_check(COND, SKB)                          \
2098         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2099                 if ((COND) && !(SKB)->tstamp)                   \
2100                         __net_timestamp(SKB);                   \
2101         }                                                       \
2102
2103 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2104 {
2105         unsigned int len;
2106
2107         if (!(dev->flags & IFF_UP))
2108                 return false;
2109
2110         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2111         if (skb->len <= len)
2112                 return true;
2113
2114         /* if TSO is enabled, we don't care about the length as the packet
2115          * could be forwarded without being segmented before
2116          */
2117         if (skb_is_gso(skb))
2118                 return true;
2119
2120         return false;
2121 }
2122 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2123
2124 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2125 {
2126         int ret = ____dev_forward_skb(dev, skb);
2127
2128         if (likely(!ret)) {
2129                 skb->protocol = eth_type_trans(skb, dev);
2130                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2131         }
2132
2133         return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136
2137 /**
2138  * dev_forward_skb - loopback an skb to another netif
2139  *
2140  * @dev: destination network device
2141  * @skb: buffer to forward
2142  *
2143  * return values:
2144  *      NET_RX_SUCCESS  (no congestion)
2145  *      NET_RX_DROP     (packet was dropped, but freed)
2146  *
2147  * dev_forward_skb can be used for injecting an skb from the
2148  * start_xmit function of one device into the receive queue
2149  * of another device.
2150  *
2151  * The receiving device may be in another namespace, so
2152  * we have to clear all information in the skb that could
2153  * impact namespace isolation.
2154  */
2155 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156 {
2157         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2158 }
2159 EXPORT_SYMBOL_GPL(dev_forward_skb);
2160
2161 static inline int deliver_skb(struct sk_buff *skb,
2162                               struct packet_type *pt_prev,
2163                               struct net_device *orig_dev)
2164 {
2165         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2166                 return -ENOMEM;
2167         refcount_inc(&skb->users);
2168         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2169 }
2170
2171 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2172                                           struct packet_type **pt,
2173                                           struct net_device *orig_dev,
2174                                           __be16 type,
2175                                           struct list_head *ptype_list)
2176 {
2177         struct packet_type *ptype, *pt_prev = *pt;
2178
2179         list_for_each_entry_rcu(ptype, ptype_list, list) {
2180                 if (ptype->type != type)
2181                         continue;
2182                 if (pt_prev)
2183                         deliver_skb(skb, pt_prev, orig_dev);
2184                 pt_prev = ptype;
2185         }
2186         *pt = pt_prev;
2187 }
2188
2189 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2190 {
2191         if (!ptype->af_packet_priv || !skb->sk)
2192                 return false;
2193
2194         if (ptype->id_match)
2195                 return ptype->id_match(ptype, skb->sk);
2196         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2197                 return true;
2198
2199         return false;
2200 }
2201
2202 /**
2203  * dev_nit_active - return true if any network interface taps are in use
2204  *
2205  * @dev: network device to check for the presence of taps
2206  */
2207 bool dev_nit_active(struct net_device *dev)
2208 {
2209         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2210 }
2211 EXPORT_SYMBOL_GPL(dev_nit_active);
2212
2213 /*
2214  *      Support routine. Sends outgoing frames to any network
2215  *      taps currently in use.
2216  */
2217
2218 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2219 {
2220         struct packet_type *ptype;
2221         struct sk_buff *skb2 = NULL;
2222         struct packet_type *pt_prev = NULL;
2223         struct list_head *ptype_list = &ptype_all;
2224
2225         rcu_read_lock();
2226 again:
2227         list_for_each_entry_rcu(ptype, ptype_list, list) {
2228                 if (ptype->ignore_outgoing)
2229                         continue;
2230
2231                 /* Never send packets back to the socket
2232                  * they originated from - MvS (miquels@drinkel.ow.org)
2233                  */
2234                 if (skb_loop_sk(ptype, skb))
2235                         continue;
2236
2237                 if (pt_prev) {
2238                         deliver_skb(skb2, pt_prev, skb->dev);
2239                         pt_prev = ptype;
2240                         continue;
2241                 }
2242
2243                 /* need to clone skb, done only once */
2244                 skb2 = skb_clone(skb, GFP_ATOMIC);
2245                 if (!skb2)
2246                         goto out_unlock;
2247
2248                 net_timestamp_set(skb2);
2249
2250                 /* skb->nh should be correctly
2251                  * set by sender, so that the second statement is
2252                  * just protection against buggy protocols.
2253                  */
2254                 skb_reset_mac_header(skb2);
2255
2256                 if (skb_network_header(skb2) < skb2->data ||
2257                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2258                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2259                                              ntohs(skb2->protocol),
2260                                              dev->name);
2261                         skb_reset_network_header(skb2);
2262                 }
2263
2264                 skb2->transport_header = skb2->network_header;
2265                 skb2->pkt_type = PACKET_OUTGOING;
2266                 pt_prev = ptype;
2267         }
2268
2269         if (ptype_list == &ptype_all) {
2270                 ptype_list = &dev->ptype_all;
2271                 goto again;
2272         }
2273 out_unlock:
2274         if (pt_prev) {
2275                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2276                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2277                 else
2278                         kfree_skb(skb2);
2279         }
2280         rcu_read_unlock();
2281 }
2282 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2283
2284 /**
2285  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2286  * @dev: Network device
2287  * @txq: number of queues available
2288  *
2289  * If real_num_tx_queues is changed the tc mappings may no longer be
2290  * valid. To resolve this verify the tc mapping remains valid and if
2291  * not NULL the mapping. With no priorities mapping to this
2292  * offset/count pair it will no longer be used. In the worst case TC0
2293  * is invalid nothing can be done so disable priority mappings. If is
2294  * expected that drivers will fix this mapping if they can before
2295  * calling netif_set_real_num_tx_queues.
2296  */
2297 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2298 {
2299         int i;
2300         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2301
2302         /* If TC0 is invalidated disable TC mapping */
2303         if (tc->offset + tc->count > txq) {
2304                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2305                 dev->num_tc = 0;
2306                 return;
2307         }
2308
2309         /* Invalidated prio to tc mappings set to TC0 */
2310         for (i = 1; i < TC_BITMASK + 1; i++) {
2311                 int q = netdev_get_prio_tc_map(dev, i);
2312
2313                 tc = &dev->tc_to_txq[q];
2314                 if (tc->offset + tc->count > txq) {
2315                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2316                                 i, q);
2317                         netdev_set_prio_tc_map(dev, i, 0);
2318                 }
2319         }
2320 }
2321
2322 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2323 {
2324         if (dev->num_tc) {
2325                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2326                 int i;
2327
2328                 /* walk through the TCs and see if it falls into any of them */
2329                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2330                         if ((txq - tc->offset) < tc->count)
2331                                 return i;
2332                 }
2333
2334                 /* didn't find it, just return -1 to indicate no match */
2335                 return -1;
2336         }
2337
2338         return 0;
2339 }
2340 EXPORT_SYMBOL(netdev_txq_to_tc);
2341
2342 #ifdef CONFIG_XPS
2343 struct static_key xps_needed __read_mostly;
2344 EXPORT_SYMBOL(xps_needed);
2345 struct static_key xps_rxqs_needed __read_mostly;
2346 EXPORT_SYMBOL(xps_rxqs_needed);
2347 static DEFINE_MUTEX(xps_map_mutex);
2348 #define xmap_dereference(P)             \
2349         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2350
2351 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2352                              int tci, u16 index)
2353 {
2354         struct xps_map *map = NULL;
2355         int pos;
2356
2357         if (dev_maps)
2358                 map = xmap_dereference(dev_maps->attr_map[tci]);
2359         if (!map)
2360                 return false;
2361
2362         for (pos = map->len; pos--;) {
2363                 if (map->queues[pos] != index)
2364                         continue;
2365
2366                 if (map->len > 1) {
2367                         map->queues[pos] = map->queues[--map->len];
2368                         break;
2369                 }
2370
2371                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2372                 kfree_rcu(map, rcu);
2373                 return false;
2374         }
2375
2376         return true;
2377 }
2378
2379 static bool remove_xps_queue_cpu(struct net_device *dev,
2380                                  struct xps_dev_maps *dev_maps,
2381                                  int cpu, u16 offset, u16 count)
2382 {
2383         int num_tc = dev->num_tc ? : 1;
2384         bool active = false;
2385         int tci;
2386
2387         for (tci = cpu * num_tc; num_tc--; tci++) {
2388                 int i, j;
2389
2390                 for (i = count, j = offset; i--; j++) {
2391                         if (!remove_xps_queue(dev_maps, tci, j))
2392                                 break;
2393                 }
2394
2395                 active |= i < 0;
2396         }
2397
2398         return active;
2399 }
2400
2401 static void reset_xps_maps(struct net_device *dev,
2402                            struct xps_dev_maps *dev_maps,
2403                            bool is_rxqs_map)
2404 {
2405         if (is_rxqs_map) {
2406                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2407                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2408         } else {
2409                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2410         }
2411         static_key_slow_dec_cpuslocked(&xps_needed);
2412         kfree_rcu(dev_maps, rcu);
2413 }
2414
2415 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2416                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2417                            u16 offset, u16 count, bool is_rxqs_map)
2418 {
2419         bool active = false;
2420         int i, j;
2421
2422         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2423              j < nr_ids;)
2424                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2425                                                count);
2426         if (!active)
2427                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2428
2429         if (!is_rxqs_map) {
2430                 for (i = offset + (count - 1); count--; i--) {
2431                         netdev_queue_numa_node_write(
2432                                 netdev_get_tx_queue(dev, i),
2433                                 NUMA_NO_NODE);
2434                 }
2435         }
2436 }
2437
2438 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2439                                    u16 count)
2440 {
2441         const unsigned long *possible_mask = NULL;
2442         struct xps_dev_maps *dev_maps;
2443         unsigned int nr_ids;
2444
2445         if (!static_key_false(&xps_needed))
2446                 return;
2447
2448         cpus_read_lock();
2449         mutex_lock(&xps_map_mutex);
2450
2451         if (static_key_false(&xps_rxqs_needed)) {
2452                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2453                 if (dev_maps) {
2454                         nr_ids = dev->num_rx_queues;
2455                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2456                                        offset, count, true);
2457                 }
2458         }
2459
2460         dev_maps = xmap_dereference(dev->xps_cpus_map);
2461         if (!dev_maps)
2462                 goto out_no_maps;
2463
2464         if (num_possible_cpus() > 1)
2465                 possible_mask = cpumask_bits(cpu_possible_mask);
2466         nr_ids = nr_cpu_ids;
2467         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2468                        false);
2469
2470 out_no_maps:
2471         mutex_unlock(&xps_map_mutex);
2472         cpus_read_unlock();
2473 }
2474
2475 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2476 {
2477         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2478 }
2479
2480 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2481                                       u16 index, bool is_rxqs_map)
2482 {
2483         struct xps_map *new_map;
2484         int alloc_len = XPS_MIN_MAP_ALLOC;
2485         int i, pos;
2486
2487         for (pos = 0; map && pos < map->len; pos++) {
2488                 if (map->queues[pos] != index)
2489                         continue;
2490                 return map;
2491         }
2492
2493         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2494         if (map) {
2495                 if (pos < map->alloc_len)
2496                         return map;
2497
2498                 alloc_len = map->alloc_len * 2;
2499         }
2500
2501         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2502          *  map
2503          */
2504         if (is_rxqs_map)
2505                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2506         else
2507                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2508                                        cpu_to_node(attr_index));
2509         if (!new_map)
2510                 return NULL;
2511
2512         for (i = 0; i < pos; i++)
2513                 new_map->queues[i] = map->queues[i];
2514         new_map->alloc_len = alloc_len;
2515         new_map->len = pos;
2516
2517         return new_map;
2518 }
2519
2520 /* Must be called under cpus_read_lock */
2521 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2522                           u16 index, bool is_rxqs_map)
2523 {
2524         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2525         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2526         int i, j, tci, numa_node_id = -2;
2527         int maps_sz, num_tc = 1, tc = 0;
2528         struct xps_map *map, *new_map;
2529         bool active = false;
2530         unsigned int nr_ids;
2531
2532         if (dev->num_tc) {
2533                 /* Do not allow XPS on subordinate device directly */
2534                 num_tc = dev->num_tc;
2535                 if (num_tc < 0)
2536                         return -EINVAL;
2537
2538                 /* If queue belongs to subordinate dev use its map */
2539                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2540
2541                 tc = netdev_txq_to_tc(dev, index);
2542                 if (tc < 0)
2543                         return -EINVAL;
2544         }
2545
2546         mutex_lock(&xps_map_mutex);
2547         if (is_rxqs_map) {
2548                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2549                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2550                 nr_ids = dev->num_rx_queues;
2551         } else {
2552                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2553                 if (num_possible_cpus() > 1) {
2554                         online_mask = cpumask_bits(cpu_online_mask);
2555                         possible_mask = cpumask_bits(cpu_possible_mask);
2556                 }
2557                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2558                 nr_ids = nr_cpu_ids;
2559         }
2560
2561         if (maps_sz < L1_CACHE_BYTES)
2562                 maps_sz = L1_CACHE_BYTES;
2563
2564         /* allocate memory for queue storage */
2565         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2566              j < nr_ids;) {
2567                 if (!new_dev_maps)
2568                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2569                 if (!new_dev_maps) {
2570                         mutex_unlock(&xps_map_mutex);
2571                         return -ENOMEM;
2572                 }
2573
2574                 tci = j * num_tc + tc;
2575                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2576                                  NULL;
2577
2578                 map = expand_xps_map(map, j, index, is_rxqs_map);
2579                 if (!map)
2580                         goto error;
2581
2582                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2583         }
2584
2585         if (!new_dev_maps)
2586                 goto out_no_new_maps;
2587
2588         if (!dev_maps) {
2589                 /* Increment static keys at most once per type */
2590                 static_key_slow_inc_cpuslocked(&xps_needed);
2591                 if (is_rxqs_map)
2592                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2593         }
2594
2595         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2596              j < nr_ids;) {
2597                 /* copy maps belonging to foreign traffic classes */
2598                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2599                         /* fill in the new device map from the old device map */
2600                         map = xmap_dereference(dev_maps->attr_map[tci]);
2601                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2602                 }
2603
2604                 /* We need to explicitly update tci as prevous loop
2605                  * could break out early if dev_maps is NULL.
2606                  */
2607                 tci = j * num_tc + tc;
2608
2609                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2610                     netif_attr_test_online(j, online_mask, nr_ids)) {
2611                         /* add tx-queue to CPU/rx-queue maps */
2612                         int pos = 0;
2613
2614                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2615                         while ((pos < map->len) && (map->queues[pos] != index))
2616                                 pos++;
2617
2618                         if (pos == map->len)
2619                                 map->queues[map->len++] = index;
2620 #ifdef CONFIG_NUMA
2621                         if (!is_rxqs_map) {
2622                                 if (numa_node_id == -2)
2623                                         numa_node_id = cpu_to_node(j);
2624                                 else if (numa_node_id != cpu_to_node(j))
2625                                         numa_node_id = -1;
2626                         }
2627 #endif
2628                 } else if (dev_maps) {
2629                         /* fill in the new device map from the old device map */
2630                         map = xmap_dereference(dev_maps->attr_map[tci]);
2631                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2632                 }
2633
2634                 /* copy maps belonging to foreign traffic classes */
2635                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2636                         /* fill in the new device map from the old device map */
2637                         map = xmap_dereference(dev_maps->attr_map[tci]);
2638                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2639                 }
2640         }
2641
2642         if (is_rxqs_map)
2643                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2644         else
2645                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2646
2647         /* Cleanup old maps */
2648         if (!dev_maps)
2649                 goto out_no_old_maps;
2650
2651         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2652              j < nr_ids;) {
2653                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2654                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2655                         map = xmap_dereference(dev_maps->attr_map[tci]);
2656                         if (map && map != new_map)
2657                                 kfree_rcu(map, rcu);
2658                 }
2659         }
2660
2661         kfree_rcu(dev_maps, rcu);
2662
2663 out_no_old_maps:
2664         dev_maps = new_dev_maps;
2665         active = true;
2666
2667 out_no_new_maps:
2668         if (!is_rxqs_map) {
2669                 /* update Tx queue numa node */
2670                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2671                                              (numa_node_id >= 0) ?
2672                                              numa_node_id : NUMA_NO_NODE);
2673         }
2674
2675         if (!dev_maps)
2676                 goto out_no_maps;
2677
2678         /* removes tx-queue from unused CPUs/rx-queues */
2679         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2680              j < nr_ids;) {
2681                 for (i = tc, tci = j * num_tc; i--; tci++)
2682                         active |= remove_xps_queue(dev_maps, tci, index);
2683                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2684                     !netif_attr_test_online(j, online_mask, nr_ids))
2685                         active |= remove_xps_queue(dev_maps, tci, index);
2686                 for (i = num_tc - tc, tci++; --i; tci++)
2687                         active |= remove_xps_queue(dev_maps, tci, index);
2688         }
2689
2690         /* free map if not active */
2691         if (!active)
2692                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2693
2694 out_no_maps:
2695         mutex_unlock(&xps_map_mutex);
2696
2697         return 0;
2698 error:
2699         /* remove any maps that we added */
2700         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2701              j < nr_ids;) {
2702                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2703                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2704                         map = dev_maps ?
2705                               xmap_dereference(dev_maps->attr_map[tci]) :
2706                               NULL;
2707                         if (new_map && new_map != map)
2708                                 kfree(new_map);
2709                 }
2710         }
2711
2712         mutex_unlock(&xps_map_mutex);
2713
2714         kfree(new_dev_maps);
2715         return -ENOMEM;
2716 }
2717 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2718
2719 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2720                         u16 index)
2721 {
2722         int ret;
2723
2724         cpus_read_lock();
2725         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2726         cpus_read_unlock();
2727
2728         return ret;
2729 }
2730 EXPORT_SYMBOL(netif_set_xps_queue);
2731
2732 #endif
2733 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2734 {
2735         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736
2737         /* Unbind any subordinate channels */
2738         while (txq-- != &dev->_tx[0]) {
2739                 if (txq->sb_dev)
2740                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2741         }
2742 }
2743
2744 void netdev_reset_tc(struct net_device *dev)
2745 {
2746 #ifdef CONFIG_XPS
2747         netif_reset_xps_queues_gt(dev, 0);
2748 #endif
2749         netdev_unbind_all_sb_channels(dev);
2750
2751         /* Reset TC configuration of device */
2752         dev->num_tc = 0;
2753         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2754         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2755 }
2756 EXPORT_SYMBOL(netdev_reset_tc);
2757
2758 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2759 {
2760         if (tc >= dev->num_tc)
2761                 return -EINVAL;
2762
2763 #ifdef CONFIG_XPS
2764         netif_reset_xps_queues(dev, offset, count);
2765 #endif
2766         dev->tc_to_txq[tc].count = count;
2767         dev->tc_to_txq[tc].offset = offset;
2768         return 0;
2769 }
2770 EXPORT_SYMBOL(netdev_set_tc_queue);
2771
2772 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2773 {
2774         if (num_tc > TC_MAX_QUEUE)
2775                 return -EINVAL;
2776
2777 #ifdef CONFIG_XPS
2778         netif_reset_xps_queues_gt(dev, 0);
2779 #endif
2780         netdev_unbind_all_sb_channels(dev);
2781
2782         dev->num_tc = num_tc;
2783         return 0;
2784 }
2785 EXPORT_SYMBOL(netdev_set_num_tc);
2786
2787 void netdev_unbind_sb_channel(struct net_device *dev,
2788                               struct net_device *sb_dev)
2789 {
2790         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2791
2792 #ifdef CONFIG_XPS
2793         netif_reset_xps_queues_gt(sb_dev, 0);
2794 #endif
2795         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2796         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2797
2798         while (txq-- != &dev->_tx[0]) {
2799                 if (txq->sb_dev == sb_dev)
2800                         txq->sb_dev = NULL;
2801         }
2802 }
2803 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2804
2805 int netdev_bind_sb_channel_queue(struct net_device *dev,
2806                                  struct net_device *sb_dev,
2807                                  u8 tc, u16 count, u16 offset)
2808 {
2809         /* Make certain the sb_dev and dev are already configured */
2810         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2811                 return -EINVAL;
2812
2813         /* We cannot hand out queues we don't have */
2814         if ((offset + count) > dev->real_num_tx_queues)
2815                 return -EINVAL;
2816
2817         /* Record the mapping */
2818         sb_dev->tc_to_txq[tc].count = count;
2819         sb_dev->tc_to_txq[tc].offset = offset;
2820
2821         /* Provide a way for Tx queue to find the tc_to_txq map or
2822          * XPS map for itself.
2823          */
2824         while (count--)
2825                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2826
2827         return 0;
2828 }
2829 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2830
2831 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2832 {
2833         /* Do not use a multiqueue device to represent a subordinate channel */
2834         if (netif_is_multiqueue(dev))
2835                 return -ENODEV;
2836
2837         /* We allow channels 1 - 32767 to be used for subordinate channels.
2838          * Channel 0 is meant to be "native" mode and used only to represent
2839          * the main root device. We allow writing 0 to reset the device back
2840          * to normal mode after being used as a subordinate channel.
2841          */
2842         if (channel > S16_MAX)
2843                 return -EINVAL;
2844
2845         dev->num_tc = -channel;
2846
2847         return 0;
2848 }
2849 EXPORT_SYMBOL(netdev_set_sb_channel);
2850
2851 /*
2852  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2853  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2854  */
2855 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2856 {
2857         bool disabling;
2858         int rc;
2859
2860         disabling = txq < dev->real_num_tx_queues;
2861
2862         if (txq < 1 || txq > dev->num_tx_queues)
2863                 return -EINVAL;
2864
2865         if (dev->reg_state == NETREG_REGISTERED ||
2866             dev->reg_state == NETREG_UNREGISTERING) {
2867                 ASSERT_RTNL();
2868
2869                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2870                                                   txq);
2871                 if (rc)
2872                         return rc;
2873
2874                 if (dev->num_tc)
2875                         netif_setup_tc(dev, txq);
2876
2877                 dev->real_num_tx_queues = txq;
2878
2879                 if (disabling) {
2880                         synchronize_net();
2881                         qdisc_reset_all_tx_gt(dev, txq);
2882 #ifdef CONFIG_XPS
2883                         netif_reset_xps_queues_gt(dev, txq);
2884 #endif
2885                 }
2886         } else {
2887                 dev->real_num_tx_queues = txq;
2888         }
2889
2890         return 0;
2891 }
2892 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2893
2894 #ifdef CONFIG_SYSFS
2895 /**
2896  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2897  *      @dev: Network device
2898  *      @rxq: Actual number of RX queues
2899  *
2900  *      This must be called either with the rtnl_lock held or before
2901  *      registration of the net device.  Returns 0 on success, or a
2902  *      negative error code.  If called before registration, it always
2903  *      succeeds.
2904  */
2905 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2906 {
2907         int rc;
2908
2909         if (rxq < 1 || rxq > dev->num_rx_queues)
2910                 return -EINVAL;
2911
2912         if (dev->reg_state == NETREG_REGISTERED) {
2913                 ASSERT_RTNL();
2914
2915                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2916                                                   rxq);
2917                 if (rc)
2918                         return rc;
2919         }
2920
2921         dev->real_num_rx_queues = rxq;
2922         return 0;
2923 }
2924 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2925 #endif
2926
2927 /**
2928  * netif_get_num_default_rss_queues - default number of RSS queues
2929  *
2930  * This routine should set an upper limit on the number of RSS queues
2931  * used by default by multiqueue devices.
2932  */
2933 int netif_get_num_default_rss_queues(void)
2934 {
2935         return is_kdump_kernel() ?
2936                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2937 }
2938 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2939
2940 static void __netif_reschedule(struct Qdisc *q)
2941 {
2942         struct softnet_data *sd;
2943         unsigned long flags;
2944
2945         local_irq_save(flags);
2946         sd = this_cpu_ptr(&softnet_data);
2947         q->next_sched = NULL;
2948         *sd->output_queue_tailp = q;
2949         sd->output_queue_tailp = &q->next_sched;
2950         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2951         local_irq_restore(flags);
2952 }
2953
2954 void __netif_schedule(struct Qdisc *q)
2955 {
2956         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2957                 __netif_reschedule(q);
2958 }
2959 EXPORT_SYMBOL(__netif_schedule);
2960
2961 struct dev_kfree_skb_cb {
2962         enum skb_free_reason reason;
2963 };
2964
2965 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2966 {
2967         return (struct dev_kfree_skb_cb *)skb->cb;
2968 }
2969
2970 void netif_schedule_queue(struct netdev_queue *txq)
2971 {
2972         rcu_read_lock();
2973         if (!netif_xmit_stopped(txq)) {
2974                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2975
2976                 __netif_schedule(q);
2977         }
2978         rcu_read_unlock();
2979 }
2980 EXPORT_SYMBOL(netif_schedule_queue);
2981
2982 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2983 {
2984         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2985                 struct Qdisc *q;
2986
2987                 rcu_read_lock();
2988                 q = rcu_dereference(dev_queue->qdisc);
2989                 __netif_schedule(q);
2990                 rcu_read_unlock();
2991         }
2992 }
2993 EXPORT_SYMBOL(netif_tx_wake_queue);
2994
2995 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2996 {
2997         unsigned long flags;
2998
2999         if (unlikely(!skb))
3000                 return;
3001
3002         if (likely(refcount_read(&skb->users) == 1)) {
3003                 smp_rmb();
3004                 refcount_set(&skb->users, 0);
3005         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3006                 return;
3007         }
3008         get_kfree_skb_cb(skb)->reason = reason;
3009         local_irq_save(flags);
3010         skb->next = __this_cpu_read(softnet_data.completion_queue);
3011         __this_cpu_write(softnet_data.completion_queue, skb);
3012         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3013         local_irq_restore(flags);
3014 }
3015 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3016
3017 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3018 {
3019         if (in_irq() || irqs_disabled())
3020                 __dev_kfree_skb_irq(skb, reason);
3021         else
3022                 dev_kfree_skb(skb);
3023 }
3024 EXPORT_SYMBOL(__dev_kfree_skb_any);
3025
3026
3027 /**
3028  * netif_device_detach - mark device as removed
3029  * @dev: network device
3030  *
3031  * Mark device as removed from system and therefore no longer available.
3032  */
3033 void netif_device_detach(struct net_device *dev)
3034 {
3035         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3036             netif_running(dev)) {
3037                 netif_tx_stop_all_queues(dev);
3038         }
3039 }
3040 EXPORT_SYMBOL(netif_device_detach);
3041
3042 /**
3043  * netif_device_attach - mark device as attached
3044  * @dev: network device
3045  *
3046  * Mark device as attached from system and restart if needed.
3047  */
3048 void netif_device_attach(struct net_device *dev)
3049 {
3050         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3051             netif_running(dev)) {
3052                 netif_tx_wake_all_queues(dev);
3053                 __netdev_watchdog_up(dev);
3054         }
3055 }
3056 EXPORT_SYMBOL(netif_device_attach);
3057
3058 /*
3059  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3060  * to be used as a distribution range.
3061  */
3062 static u16 skb_tx_hash(const struct net_device *dev,
3063                        const struct net_device *sb_dev,
3064                        struct sk_buff *skb)
3065 {
3066         u32 hash;
3067         u16 qoffset = 0;
3068         u16 qcount = dev->real_num_tx_queues;
3069
3070         if (dev->num_tc) {
3071                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3072
3073                 qoffset = sb_dev->tc_to_txq[tc].offset;
3074                 qcount = sb_dev->tc_to_txq[tc].count;
3075         }
3076
3077         if (skb_rx_queue_recorded(skb)) {
3078                 hash = skb_get_rx_queue(skb);
3079                 while (unlikely(hash >= qcount))
3080                         hash -= qcount;
3081                 return hash + qoffset;
3082         }
3083
3084         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3085 }
3086
3087 static void skb_warn_bad_offload(const struct sk_buff *skb)
3088 {
3089         static const netdev_features_t null_features;
3090         struct net_device *dev = skb->dev;
3091         const char *name = "";
3092
3093         if (!net_ratelimit())
3094                 return;
3095
3096         if (dev) {
3097                 if (dev->dev.parent)
3098                         name = dev_driver_string(dev->dev.parent);
3099                 else
3100                         name = netdev_name(dev);
3101         }
3102         skb_dump(KERN_WARNING, skb, false);
3103         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3104              name, dev ? &dev->features : &null_features,
3105              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3106 }
3107
3108 /*
3109  * Invalidate hardware checksum when packet is to be mangled, and
3110  * complete checksum manually on outgoing path.
3111  */
3112 int skb_checksum_help(struct sk_buff *skb)
3113 {
3114         __wsum csum;
3115         int ret = 0, offset;
3116
3117         if (skb->ip_summed == CHECKSUM_COMPLETE)
3118                 goto out_set_summed;
3119
3120         if (unlikely(skb_shinfo(skb)->gso_size)) {
3121                 skb_warn_bad_offload(skb);
3122                 return -EINVAL;
3123         }
3124
3125         /* Before computing a checksum, we should make sure no frag could
3126          * be modified by an external entity : checksum could be wrong.
3127          */
3128         if (skb_has_shared_frag(skb)) {
3129                 ret = __skb_linearize(skb);
3130                 if (ret)
3131                         goto out;
3132         }
3133
3134         offset = skb_checksum_start_offset(skb);
3135         BUG_ON(offset >= skb_headlen(skb));
3136         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3137
3138         offset += skb->csum_offset;
3139         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3140
3141         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3142         if (ret)
3143                 goto out;
3144
3145         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3146 out_set_summed:
3147         skb->ip_summed = CHECKSUM_NONE;
3148 out:
3149         return ret;
3150 }
3151 EXPORT_SYMBOL(skb_checksum_help);
3152
3153 int skb_crc32c_csum_help(struct sk_buff *skb)
3154 {
3155         __le32 crc32c_csum;
3156         int ret = 0, offset, start;
3157
3158         if (skb->ip_summed != CHECKSUM_PARTIAL)
3159                 goto out;
3160
3161         if (unlikely(skb_is_gso(skb)))
3162                 goto out;
3163
3164         /* Before computing a checksum, we should make sure no frag could
3165          * be modified by an external entity : checksum could be wrong.
3166          */
3167         if (unlikely(skb_has_shared_frag(skb))) {
3168                 ret = __skb_linearize(skb);
3169                 if (ret)
3170                         goto out;
3171         }
3172         start = skb_checksum_start_offset(skb);
3173         offset = start + offsetof(struct sctphdr, checksum);
3174         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3175                 ret = -EINVAL;
3176                 goto out;
3177         }
3178
3179         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3180         if (ret)
3181                 goto out;
3182
3183         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3184                                                   skb->len - start, ~(__u32)0,
3185                                                   crc32c_csum_stub));
3186         *(__le32 *)(skb->data + offset) = crc32c_csum;
3187         skb->ip_summed = CHECKSUM_NONE;
3188         skb->csum_not_inet = 0;
3189 out:
3190         return ret;
3191 }
3192
3193 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3194 {
3195         __be16 type = skb->protocol;
3196
3197         /* Tunnel gso handlers can set protocol to ethernet. */
3198         if (type == htons(ETH_P_TEB)) {
3199                 struct ethhdr *eth;
3200
3201                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3202                         return 0;
3203
3204                 eth = (struct ethhdr *)skb->data;
3205                 type = eth->h_proto;
3206         }
3207
3208         return __vlan_get_protocol(skb, type, depth);
3209 }
3210
3211 /**
3212  *      skb_mac_gso_segment - mac layer segmentation handler.
3213  *      @skb: buffer to segment
3214  *      @features: features for the output path (see dev->features)
3215  */
3216 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3217                                     netdev_features_t features)
3218 {
3219         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3220         struct packet_offload *ptype;
3221         int vlan_depth = skb->mac_len;
3222         __be16 type = skb_network_protocol(skb, &vlan_depth);
3223
3224         if (unlikely(!type))
3225                 return ERR_PTR(-EINVAL);
3226
3227         __skb_pull(skb, vlan_depth);
3228
3229         rcu_read_lock();
3230         list_for_each_entry_rcu(ptype, &offload_base, list) {
3231                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3232                         segs = ptype->callbacks.gso_segment(skb, features);
3233                         break;
3234                 }
3235         }
3236         rcu_read_unlock();
3237
3238         __skb_push(skb, skb->data - skb_mac_header(skb));
3239
3240         return segs;
3241 }
3242 EXPORT_SYMBOL(skb_mac_gso_segment);
3243
3244
3245 /* openvswitch calls this on rx path, so we need a different check.
3246  */
3247 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3248 {
3249         if (tx_path)
3250                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3251                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3252
3253         return skb->ip_summed == CHECKSUM_NONE;
3254 }
3255
3256 /**
3257  *      __skb_gso_segment - Perform segmentation on skb.
3258  *      @skb: buffer to segment
3259  *      @features: features for the output path (see dev->features)
3260  *      @tx_path: whether it is called in TX path
3261  *
3262  *      This function segments the given skb and returns a list of segments.
3263  *
3264  *      It may return NULL if the skb requires no segmentation.  This is
3265  *      only possible when GSO is used for verifying header integrity.
3266  *
3267  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3268  */
3269 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3270                                   netdev_features_t features, bool tx_path)
3271 {
3272         struct sk_buff *segs;
3273
3274         if (unlikely(skb_needs_check(skb, tx_path))) {
3275                 int err;
3276
3277                 /* We're going to init ->check field in TCP or UDP header */
3278                 err = skb_cow_head(skb, 0);
3279                 if (err < 0)
3280                         return ERR_PTR(err);
3281         }
3282
3283         /* Only report GSO partial support if it will enable us to
3284          * support segmentation on this frame without needing additional
3285          * work.
3286          */
3287         if (features & NETIF_F_GSO_PARTIAL) {
3288                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3289                 struct net_device *dev = skb->dev;
3290
3291                 partial_features |= dev->features & dev->gso_partial_features;
3292                 if (!skb_gso_ok(skb, features | partial_features))
3293                         features &= ~NETIF_F_GSO_PARTIAL;
3294         }
3295
3296         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3297                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3298
3299         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3300         SKB_GSO_CB(skb)->encap_level = 0;
3301
3302         skb_reset_mac_header(skb);
3303         skb_reset_mac_len(skb);
3304
3305         segs = skb_mac_gso_segment(skb, features);
3306
3307         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3308                 skb_warn_bad_offload(skb);
3309
3310         return segs;
3311 }
3312 EXPORT_SYMBOL(__skb_gso_segment);
3313
3314 /* Take action when hardware reception checksum errors are detected. */
3315 #ifdef CONFIG_BUG
3316 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3317 {
3318         if (net_ratelimit()) {
3319                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3320                 skb_dump(KERN_ERR, skb, true);
3321                 dump_stack();
3322         }
3323 }
3324 EXPORT_SYMBOL(netdev_rx_csum_fault);
3325 #endif
3326
3327 /* XXX: check that highmem exists at all on the given machine. */
3328 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3329 {
3330 #ifdef CONFIG_HIGHMEM
3331         int i;
3332
3333         if (!(dev->features & NETIF_F_HIGHDMA)) {
3334                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3335                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3336
3337                         if (PageHighMem(skb_frag_page(frag)))
3338                                 return 1;
3339                 }
3340         }
3341 #endif
3342         return 0;
3343 }
3344
3345 /* If MPLS offload request, verify we are testing hardware MPLS features
3346  * instead of standard features for the netdev.
3347  */
3348 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3349 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3350                                            netdev_features_t features,
3351                                            __be16 type)
3352 {
3353         if (eth_p_mpls(type))
3354                 features &= skb->dev->mpls_features;
3355
3356         return features;
3357 }
3358 #else
3359 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3360                                            netdev_features_t features,
3361                                            __be16 type)
3362 {
3363         return features;
3364 }
3365 #endif
3366
3367 static netdev_features_t harmonize_features(struct sk_buff *skb,
3368         netdev_features_t features)
3369 {
3370         int tmp;
3371         __be16 type;
3372
3373         type = skb_network_protocol(skb, &tmp);
3374         features = net_mpls_features(skb, features, type);
3375
3376         if (skb->ip_summed != CHECKSUM_NONE &&
3377             !can_checksum_protocol(features, type)) {
3378                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3379         }
3380         if (illegal_highdma(skb->dev, skb))
3381                 features &= ~NETIF_F_SG;
3382
3383         return features;
3384 }
3385
3386 netdev_features_t passthru_features_check(struct sk_buff *skb,
3387                                           struct net_device *dev,
3388                                           netdev_features_t features)
3389 {
3390         return features;
3391 }
3392 EXPORT_SYMBOL(passthru_features_check);
3393
3394 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3395                                              struct net_device *dev,
3396                                              netdev_features_t features)
3397 {
3398         return vlan_features_check(skb, features);
3399 }
3400
3401 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3402                                             struct net_device *dev,
3403                                             netdev_features_t features)
3404 {
3405         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3406
3407         if (gso_segs > dev->gso_max_segs)
3408                 return features & ~NETIF_F_GSO_MASK;
3409
3410         /* Support for GSO partial features requires software
3411          * intervention before we can actually process the packets
3412          * so we need to strip support for any partial features now
3413          * and we can pull them back in after we have partially
3414          * segmented the frame.
3415          */
3416         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3417                 features &= ~dev->gso_partial_features;
3418
3419         /* Make sure to clear the IPv4 ID mangling feature if the
3420          * IPv4 header has the potential to be fragmented.
3421          */
3422         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3423                 struct iphdr *iph = skb->encapsulation ?
3424                                     inner_ip_hdr(skb) : ip_hdr(skb);
3425
3426                 if (!(iph->frag_off & htons(IP_DF)))
3427                         features &= ~NETIF_F_TSO_MANGLEID;
3428         }
3429
3430         return features;
3431 }
3432
3433 netdev_features_t netif_skb_features(struct sk_buff *skb)
3434 {
3435         struct net_device *dev = skb->dev;
3436         netdev_features_t features = dev->features;
3437
3438         if (skb_is_gso(skb))
3439                 features = gso_features_check(skb, dev, features);
3440
3441         /* If encapsulation offload request, verify we are testing
3442          * hardware encapsulation features instead of standard
3443          * features for the netdev
3444          */
3445         if (skb->encapsulation)
3446                 features &= dev->hw_enc_features;
3447
3448         if (skb_vlan_tagged(skb))
3449                 features = netdev_intersect_features(features,
3450                                                      dev->vlan_features |
3451                                                      NETIF_F_HW_VLAN_CTAG_TX |
3452                                                      NETIF_F_HW_VLAN_STAG_TX);
3453
3454         if (dev->netdev_ops->ndo_features_check)
3455                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3456                                                                 features);
3457         else
3458                 features &= dflt_features_check(skb, dev, features);
3459
3460         return harmonize_features(skb, features);
3461 }
3462 EXPORT_SYMBOL(netif_skb_features);
3463
3464 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3465                     struct netdev_queue *txq, bool more)
3466 {
3467         unsigned int len;
3468         int rc;
3469
3470         if (dev_nit_active(dev))
3471                 dev_queue_xmit_nit(skb, dev);
3472
3473         len = skb->len;
3474         trace_net_dev_start_xmit(skb, dev);
3475         rc = netdev_start_xmit(skb, dev, txq, more);
3476         trace_net_dev_xmit(skb, rc, dev, len);
3477
3478         return rc;
3479 }
3480
3481 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3482                                     struct netdev_queue *txq, int *ret)
3483 {
3484         struct sk_buff *skb = first;
3485         int rc = NETDEV_TX_OK;
3486
3487         while (skb) {
3488                 struct sk_buff *next = skb->next;
3489
3490                 skb_mark_not_on_list(skb);
3491                 rc = xmit_one(skb, dev, txq, next != NULL);
3492                 if (unlikely(!dev_xmit_complete(rc))) {
3493                         skb->next = next;
3494                         goto out;
3495                 }
3496
3497                 skb = next;
3498                 if (netif_tx_queue_stopped(txq) && skb) {
3499                         rc = NETDEV_TX_BUSY;
3500                         break;
3501                 }
3502         }
3503
3504 out:
3505         *ret = rc;
3506         return skb;
3507 }
3508
3509 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3510                                           netdev_features_t features)
3511 {
3512         if (skb_vlan_tag_present(skb) &&
3513             !vlan_hw_offload_capable(features, skb->vlan_proto))
3514                 skb = __vlan_hwaccel_push_inside(skb);
3515         return skb;
3516 }
3517
3518 int skb_csum_hwoffload_help(struct sk_buff *skb,
3519                             const netdev_features_t features)
3520 {
3521         if (unlikely(skb->csum_not_inet))
3522                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3523                         skb_crc32c_csum_help(skb);
3524
3525         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3526 }
3527 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3528
3529 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3530 {
3531         netdev_features_t features;
3532
3533         features = netif_skb_features(skb);
3534         skb = validate_xmit_vlan(skb, features);
3535         if (unlikely(!skb))
3536                 goto out_null;
3537
3538         skb = sk_validate_xmit_skb(skb, dev);
3539         if (unlikely(!skb))
3540                 goto out_null;
3541
3542         if (netif_needs_gso(skb, features)) {
3543                 struct sk_buff *segs;
3544
3545                 segs = skb_gso_segment(skb, features);
3546                 if (IS_ERR(segs)) {
3547                         goto out_kfree_skb;
3548                 } else if (segs) {
3549                         consume_skb(skb);
3550                         skb = segs;
3551                 }
3552         } else {
3553                 if (skb_needs_linearize(skb, features) &&
3554                     __skb_linearize(skb))
3555                         goto out_kfree_skb;
3556
3557                 /* If packet is not checksummed and device does not
3558                  * support checksumming for this protocol, complete
3559                  * checksumming here.
3560                  */
3561                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3562                         if (skb->encapsulation)
3563                                 skb_set_inner_transport_header(skb,
3564                                                                skb_checksum_start_offset(skb));
3565                         else
3566                                 skb_set_transport_header(skb,
3567                                                          skb_checksum_start_offset(skb));
3568                         if (skb_csum_hwoffload_help(skb, features))
3569                                 goto out_kfree_skb;
3570                 }
3571         }
3572
3573         skb = validate_xmit_xfrm(skb, features, again);
3574
3575         return skb;
3576
3577 out_kfree_skb:
3578         kfree_skb(skb);
3579 out_null:
3580         atomic_long_inc(&dev->tx_dropped);
3581         return NULL;
3582 }
3583
3584 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3585 {
3586         struct sk_buff *next, *head = NULL, *tail;
3587
3588         for (; skb != NULL; skb = next) {
3589                 next = skb->next;
3590                 skb_mark_not_on_list(skb);
3591
3592                 /* in case skb wont be segmented, point to itself */
3593                 skb->prev = skb;
3594
3595                 skb = validate_xmit_skb(skb, dev, again);
3596                 if (!skb)
3597                         continue;
3598
3599                 if (!head)
3600                         head = skb;
3601                 else
3602                         tail->next = skb;
3603                 /* If skb was segmented, skb->prev points to
3604                  * the last segment. If not, it still contains skb.
3605                  */
3606                 tail = skb->prev;
3607         }
3608         return head;
3609 }
3610 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3611
3612 static void qdisc_pkt_len_init(struct sk_buff *skb)
3613 {
3614         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3615
3616         qdisc_skb_cb(skb)->pkt_len = skb->len;
3617
3618         /* To get more precise estimation of bytes sent on wire,
3619          * we add to pkt_len the headers size of all segments
3620          */
3621         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3622                 unsigned int hdr_len;
3623                 u16 gso_segs = shinfo->gso_segs;
3624
3625                 /* mac layer + network layer */
3626                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3627
3628                 /* + transport layer */
3629                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3630                         const struct tcphdr *th;
3631                         struct tcphdr _tcphdr;
3632
3633                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3634                                                 sizeof(_tcphdr), &_tcphdr);
3635                         if (likely(th))
3636                                 hdr_len += __tcp_hdrlen(th);
3637                 } else {
3638                         struct udphdr _udphdr;
3639
3640                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3641                                                sizeof(_udphdr), &_udphdr))
3642                                 hdr_len += sizeof(struct udphdr);
3643                 }
3644
3645                 if (shinfo->gso_type & SKB_GSO_DODGY)
3646                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3647                                                 shinfo->gso_size);
3648
3649                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3650         }
3651 }
3652
3653 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3654                                  struct net_device *dev,
3655                                  struct netdev_queue *txq)
3656 {
3657         spinlock_t *root_lock = qdisc_lock(q);
3658         struct sk_buff *to_free = NULL;
3659         bool contended;
3660         int rc;
3661
3662         qdisc_calculate_pkt_len(skb, q);
3663
3664         if (q->flags & TCQ_F_NOLOCK) {
3665                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3666                 qdisc_run(q);
3667
3668                 if (unlikely(to_free))
3669                         kfree_skb_list(to_free);
3670                 return rc;
3671         }
3672
3673         /*
3674          * Heuristic to force contended enqueues to serialize on a
3675          * separate lock before trying to get qdisc main lock.
3676          * This permits qdisc->running owner to get the lock more
3677          * often and dequeue packets faster.
3678          */
3679         contended = qdisc_is_running(q);
3680         if (unlikely(contended))
3681                 spin_lock(&q->busylock);
3682
3683         spin_lock(root_lock);
3684         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3685                 __qdisc_drop(skb, &to_free);
3686                 rc = NET_XMIT_DROP;
3687         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3688                    qdisc_run_begin(q)) {
3689                 /*
3690                  * This is a work-conserving queue; there are no old skbs
3691                  * waiting to be sent out; and the qdisc is not running -
3692                  * xmit the skb directly.
3693                  */
3694
3695                 qdisc_bstats_update(q, skb);
3696
3697                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3698                         if (unlikely(contended)) {
3699                                 spin_unlock(&q->busylock);
3700                                 contended = false;
3701                         }
3702                         __qdisc_run(q);
3703                 }
3704
3705                 qdisc_run_end(q);
3706                 rc = NET_XMIT_SUCCESS;
3707         } else {
3708                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3709                 if (qdisc_run_begin(q)) {
3710                         if (unlikely(contended)) {
3711                                 spin_unlock(&q->busylock);
3712                                 contended = false;
3713                         }
3714                         __qdisc_run(q);
3715                         qdisc_run_end(q);
3716                 }
3717         }
3718         spin_unlock(root_lock);
3719         if (unlikely(to_free))
3720                 kfree_skb_list(to_free);
3721         if (unlikely(contended))
3722                 spin_unlock(&q->busylock);
3723         return rc;
3724 }
3725
3726 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3727 static void skb_update_prio(struct sk_buff *skb)
3728 {
3729         const struct netprio_map *map;
3730         const struct sock *sk;
3731         unsigned int prioidx;
3732
3733         if (skb->priority)
3734                 return;
3735         map = rcu_dereference_bh(skb->dev->priomap);
3736         if (!map)
3737                 return;
3738         sk = skb_to_full_sk(skb);
3739         if (!sk)
3740                 return;
3741
3742         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3743
3744         if (prioidx < map->priomap_len)
3745                 skb->priority = map->priomap[prioidx];
3746 }
3747 #else
3748 #define skb_update_prio(skb)
3749 #endif
3750
3751 /**
3752  *      dev_loopback_xmit - loop back @skb
3753  *      @net: network namespace this loopback is happening in
3754  *      @sk:  sk needed to be a netfilter okfn
3755  *      @skb: buffer to transmit
3756  */
3757 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3758 {
3759         skb_reset_mac_header(skb);
3760         __skb_pull(skb, skb_network_offset(skb));
3761         skb->pkt_type = PACKET_LOOPBACK;
3762         skb->ip_summed = CHECKSUM_UNNECESSARY;
3763         WARN_ON(!skb_dst(skb));
3764         skb_dst_force(skb);
3765         netif_rx_ni(skb);
3766         return 0;
3767 }
3768 EXPORT_SYMBOL(dev_loopback_xmit);
3769
3770 #ifdef CONFIG_NET_EGRESS
3771 static struct sk_buff *
3772 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3773 {
3774         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3775         struct tcf_result cl_res;
3776
3777         if (!miniq)
3778                 return skb;
3779
3780         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3781         mini_qdisc_bstats_cpu_update(miniq, skb);
3782
3783         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3784         case TC_ACT_OK:
3785         case TC_ACT_RECLASSIFY:
3786                 skb->tc_index = TC_H_MIN(cl_res.classid);
3787                 break;
3788         case TC_ACT_SHOT:
3789                 mini_qdisc_qstats_cpu_drop(miniq);
3790                 *ret = NET_XMIT_DROP;
3791                 kfree_skb(skb);
3792                 return NULL;
3793         case TC_ACT_STOLEN:
3794         case TC_ACT_QUEUED:
3795         case TC_ACT_TRAP:
3796                 *ret = NET_XMIT_SUCCESS;
3797                 consume_skb(skb);
3798                 return NULL;
3799         case TC_ACT_REDIRECT:
3800                 /* No need to push/pop skb's mac_header here on egress! */
3801                 skb_do_redirect(skb);
3802                 *ret = NET_XMIT_SUCCESS;
3803                 return NULL;
3804         default:
3805                 break;
3806         }
3807
3808         return skb;
3809 }
3810 #endif /* CONFIG_NET_EGRESS */
3811
3812 #ifdef CONFIG_XPS
3813 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3814                                struct xps_dev_maps *dev_maps, unsigned int tci)
3815 {
3816         struct xps_map *map;
3817         int queue_index = -1;
3818
3819         if (dev->num_tc) {
3820                 tci *= dev->num_tc;
3821                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3822         }
3823
3824         map = rcu_dereference(dev_maps->attr_map[tci]);
3825         if (map) {
3826                 if (map->len == 1)
3827                         queue_index = map->queues[0];
3828                 else
3829                         queue_index = map->queues[reciprocal_scale(
3830                                                 skb_get_hash(skb), map->len)];
3831                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3832                         queue_index = -1;
3833         }
3834         return queue_index;
3835 }
3836 #endif
3837
3838 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3839                          struct sk_buff *skb)
3840 {
3841 #ifdef CONFIG_XPS
3842         struct xps_dev_maps *dev_maps;
3843         struct sock *sk = skb->sk;
3844         int queue_index = -1;
3845
3846         if (!static_key_false(&xps_needed))
3847                 return -1;
3848
3849         rcu_read_lock();
3850         if (!static_key_false(&xps_rxqs_needed))
3851                 goto get_cpus_map;
3852
3853         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3854         if (dev_maps) {
3855                 int tci = sk_rx_queue_get(sk);
3856
3857                 if (tci >= 0 && tci < dev->num_rx_queues)
3858                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3859                                                           tci);
3860         }
3861
3862 get_cpus_map:
3863         if (queue_index < 0) {
3864                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3865                 if (dev_maps) {
3866                         unsigned int tci = skb->sender_cpu - 1;
3867
3868                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3869                                                           tci);
3870                 }
3871         }
3872         rcu_read_unlock();
3873
3874         return queue_index;
3875 #else
3876         return -1;
3877 #endif
3878 }
3879
3880 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3881                      struct net_device *sb_dev)
3882 {
3883         return 0;
3884 }
3885 EXPORT_SYMBOL(dev_pick_tx_zero);
3886
3887 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3888                        struct net_device *sb_dev)
3889 {
3890         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3891 }
3892 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3893
3894 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3895                      struct net_device *sb_dev)
3896 {
3897         struct sock *sk = skb->sk;
3898         int queue_index = sk_tx_queue_get(sk);
3899
3900         sb_dev = sb_dev ? : dev;
3901
3902         if (queue_index < 0 || skb->ooo_okay ||
3903             queue_index >= dev->real_num_tx_queues) {
3904                 int new_index = get_xps_queue(dev, sb_dev, skb);
3905
3906                 if (new_index < 0)
3907                         new_index = skb_tx_hash(dev, sb_dev, skb);
3908
3909                 if (queue_index != new_index && sk &&
3910                     sk_fullsock(sk) &&
3911                     rcu_access_pointer(sk->sk_dst_cache))
3912                         sk_tx_queue_set(sk, new_index);
3913
3914                 queue_index = new_index;
3915         }
3916
3917         return queue_index;
3918 }
3919 EXPORT_SYMBOL(netdev_pick_tx);
3920
3921 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3922                                          struct sk_buff *skb,
3923                                          struct net_device *sb_dev)
3924 {
3925         int queue_index = 0;
3926
3927 #ifdef CONFIG_XPS
3928         u32 sender_cpu = skb->sender_cpu - 1;
3929
3930         if (sender_cpu >= (u32)NR_CPUS)
3931                 skb->sender_cpu = raw_smp_processor_id() + 1;
3932 #endif
3933
3934         if (dev->real_num_tx_queues != 1) {
3935                 const struct net_device_ops *ops = dev->netdev_ops;
3936
3937                 if (ops->ndo_select_queue)
3938                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3939                 else
3940                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3941
3942                 queue_index = netdev_cap_txqueue(dev, queue_index);
3943         }
3944
3945         skb_set_queue_mapping(skb, queue_index);
3946         return netdev_get_tx_queue(dev, queue_index);
3947 }
3948
3949 /**
3950  *      __dev_queue_xmit - transmit a buffer
3951  *      @skb: buffer to transmit
3952  *      @sb_dev: suboordinate device used for L2 forwarding offload
3953  *
3954  *      Queue a buffer for transmission to a network device. The caller must
3955  *      have set the device and priority and built the buffer before calling
3956  *      this function. The function can be called from an interrupt.
3957  *
3958  *      A negative errno code is returned on a failure. A success does not
3959  *      guarantee the frame will be transmitted as it may be dropped due
3960  *      to congestion or traffic shaping.
3961  *
3962  * -----------------------------------------------------------------------------------
3963  *      I notice this method can also return errors from the queue disciplines,
3964  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3965  *      be positive.
3966  *
3967  *      Regardless of the return value, the skb is consumed, so it is currently
3968  *      difficult to retry a send to this method.  (You can bump the ref count
3969  *      before sending to hold a reference for retry if you are careful.)
3970  *
3971  *      When calling this method, interrupts MUST be enabled.  This is because
3972  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3973  *          --BLG
3974  */
3975 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3976 {
3977         struct net_device *dev = skb->dev;
3978         struct netdev_queue *txq;
3979         struct Qdisc *q;
3980         int rc = -ENOMEM;
3981         bool again = false;
3982
3983         skb_reset_mac_header(skb);
3984
3985         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3986                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3987
3988         /* Disable soft irqs for various locks below. Also
3989          * stops preemption for RCU.
3990          */
3991         rcu_read_lock_bh();
3992
3993         skb_update_prio(skb);
3994
3995         qdisc_pkt_len_init(skb);
3996 #ifdef CONFIG_NET_CLS_ACT
3997         skb->tc_at_ingress = 0;
3998 # ifdef CONFIG_NET_EGRESS
3999         if (static_branch_unlikely(&egress_needed_key)) {
4000                 skb = sch_handle_egress(skb, &rc, dev);
4001                 if (!skb)
4002                         goto out;
4003         }
4004 # endif
4005 #endif
4006         /* If device/qdisc don't need skb->dst, release it right now while
4007          * its hot in this cpu cache.
4008          */
4009         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4010                 skb_dst_drop(skb);
4011         else
4012                 skb_dst_force(skb);
4013
4014         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4015         q = rcu_dereference_bh(txq->qdisc);
4016
4017         trace_net_dev_queue(skb);
4018         if (q->enqueue) {
4019                 rc = __dev_xmit_skb(skb, q, dev, txq);
4020                 goto out;
4021         }
4022
4023         /* The device has no queue. Common case for software devices:
4024          * loopback, all the sorts of tunnels...
4025
4026          * Really, it is unlikely that netif_tx_lock protection is necessary
4027          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4028          * counters.)
4029          * However, it is possible, that they rely on protection
4030          * made by us here.
4031
4032          * Check this and shot the lock. It is not prone from deadlocks.
4033          *Either shot noqueue qdisc, it is even simpler 8)
4034          */
4035         if (dev->flags & IFF_UP) {
4036                 int cpu = smp_processor_id(); /* ok because BHs are off */
4037
4038                 if (txq->xmit_lock_owner != cpu) {
4039                         if (dev_xmit_recursion())
4040                                 goto recursion_alert;
4041
4042                         skb = validate_xmit_skb(skb, dev, &again);
4043                         if (!skb)
4044                                 goto out;
4045
4046                         HARD_TX_LOCK(dev, txq, cpu);
4047
4048                         if (!netif_xmit_stopped(txq)) {
4049                                 dev_xmit_recursion_inc();
4050                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4051                                 dev_xmit_recursion_dec();
4052                                 if (dev_xmit_complete(rc)) {
4053                                         HARD_TX_UNLOCK(dev, txq);
4054                                         goto out;
4055                                 }
4056                         }
4057                         HARD_TX_UNLOCK(dev, txq);
4058                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4059                                              dev->name);
4060                 } else {
4061                         /* Recursion is detected! It is possible,
4062                          * unfortunately
4063                          */
4064 recursion_alert:
4065                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4066                                              dev->name);
4067                 }
4068         }
4069
4070         rc = -ENETDOWN;
4071         rcu_read_unlock_bh();
4072
4073         atomic_long_inc(&dev->tx_dropped);
4074         kfree_skb_list(skb);
4075         return rc;
4076 out:
4077         rcu_read_unlock_bh();
4078         return rc;
4079 }
4080
4081 int dev_queue_xmit(struct sk_buff *skb)
4082 {
4083         return __dev_queue_xmit(skb, NULL);
4084 }
4085 EXPORT_SYMBOL(dev_queue_xmit);
4086
4087 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4088 {
4089         return __dev_queue_xmit(skb, sb_dev);
4090 }
4091 EXPORT_SYMBOL(dev_queue_xmit_accel);
4092
4093 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4094 {
4095         struct net_device *dev = skb->dev;
4096         struct sk_buff *orig_skb = skb;
4097         struct netdev_queue *txq;
4098         int ret = NETDEV_TX_BUSY;
4099         bool again = false;
4100
4101         if (unlikely(!netif_running(dev) ||
4102                      !netif_carrier_ok(dev)))
4103                 goto drop;
4104
4105         skb = validate_xmit_skb_list(skb, dev, &again);
4106         if (skb != orig_skb)
4107                 goto drop;
4108
4109         skb_set_queue_mapping(skb, queue_id);
4110         txq = skb_get_tx_queue(dev, skb);
4111
4112         local_bh_disable();
4113
4114         HARD_TX_LOCK(dev, txq, smp_processor_id());
4115         if (!netif_xmit_frozen_or_drv_stopped(txq))
4116                 ret = netdev_start_xmit(skb, dev, txq, false);
4117         HARD_TX_UNLOCK(dev, txq);
4118
4119         local_bh_enable();
4120
4121         if (!dev_xmit_complete(ret))
4122                 kfree_skb(skb);
4123
4124         return ret;
4125 drop:
4126         atomic_long_inc(&dev->tx_dropped);
4127         kfree_skb_list(skb);
4128         return NET_XMIT_DROP;
4129 }
4130 EXPORT_SYMBOL(dev_direct_xmit);
4131
4132 /*************************************************************************
4133  *                      Receiver routines
4134  *************************************************************************/
4135
4136 int netdev_max_backlog __read_mostly = 1000;
4137 EXPORT_SYMBOL(netdev_max_backlog);
4138
4139 int netdev_tstamp_prequeue __read_mostly = 1;
4140 int netdev_budget __read_mostly = 300;
4141 unsigned int __read_mostly netdev_budget_usecs = 2000;
4142 int weight_p __read_mostly = 64;           /* old backlog weight */
4143 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4144 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4145 int dev_rx_weight __read_mostly = 64;
4146 int dev_tx_weight __read_mostly = 64;
4147 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4148 int gro_normal_batch __read_mostly = 8;
4149
4150 /* Called with irq disabled */
4151 static inline void ____napi_schedule(struct softnet_data *sd,
4152                                      struct napi_struct *napi)
4153 {
4154         list_add_tail(&napi->poll_list, &sd->poll_list);
4155         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4156 }
4157
4158 #ifdef CONFIG_RPS
4159
4160 /* One global table that all flow-based protocols share. */
4161 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4162 EXPORT_SYMBOL(rps_sock_flow_table);
4163 u32 rps_cpu_mask __read_mostly;
4164 EXPORT_SYMBOL(rps_cpu_mask);
4165
4166 struct static_key_false rps_needed __read_mostly;
4167 EXPORT_SYMBOL(rps_needed);
4168 struct static_key_false rfs_needed __read_mostly;
4169 EXPORT_SYMBOL(rfs_needed);
4170
4171 static struct rps_dev_flow *
4172 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4173             struct rps_dev_flow *rflow, u16 next_cpu)
4174 {
4175         if (next_cpu < nr_cpu_ids) {
4176 #ifdef CONFIG_RFS_ACCEL
4177                 struct netdev_rx_queue *rxqueue;
4178                 struct rps_dev_flow_table *flow_table;
4179                 struct rps_dev_flow *old_rflow;
4180                 u32 flow_id;
4181                 u16 rxq_index;
4182                 int rc;
4183
4184                 /* Should we steer this flow to a different hardware queue? */
4185                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4186                     !(dev->features & NETIF_F_NTUPLE))
4187                         goto out;
4188                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4189                 if (rxq_index == skb_get_rx_queue(skb))
4190                         goto out;
4191
4192                 rxqueue = dev->_rx + rxq_index;
4193                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4194                 if (!flow_table)
4195                         goto out;
4196                 flow_id = skb_get_hash(skb) & flow_table->mask;
4197                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4198                                                         rxq_index, flow_id);
4199                 if (rc < 0)
4200                         goto out;
4201                 old_rflow = rflow;
4202                 rflow = &flow_table->flows[flow_id];
4203                 rflow->filter = rc;
4204                 if (old_rflow->filter == rflow->filter)
4205                         old_rflow->filter = RPS_NO_FILTER;
4206         out:
4207 #endif
4208                 rflow->last_qtail =
4209                         per_cpu(softnet_data, next_cpu).input_queue_head;
4210         }
4211
4212         rflow->cpu = next_cpu;
4213         return rflow;
4214 }
4215
4216 /*
4217  * get_rps_cpu is called from netif_receive_skb and returns the target
4218  * CPU from the RPS map of the receiving queue for a given skb.
4219  * rcu_read_lock must be held on entry.
4220  */
4221 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4222                        struct rps_dev_flow **rflowp)
4223 {
4224         const struct rps_sock_flow_table *sock_flow_table;
4225         struct netdev_rx_queue *rxqueue = dev->_rx;
4226         struct rps_dev_flow_table *flow_table;
4227         struct rps_map *map;
4228         int cpu = -1;
4229         u32 tcpu;
4230         u32 hash;
4231
4232         if (skb_rx_queue_recorded(skb)) {
4233                 u16 index = skb_get_rx_queue(skb);
4234
4235                 if (unlikely(index >= dev->real_num_rx_queues)) {
4236                         WARN_ONCE(dev->real_num_rx_queues > 1,
4237                                   "%s received packet on queue %u, but number "
4238                                   "of RX queues is %u\n",
4239                                   dev->name, index, dev->real_num_rx_queues);
4240                         goto done;
4241                 }
4242                 rxqueue += index;
4243         }
4244
4245         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4246
4247         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4248         map = rcu_dereference(rxqueue->rps_map);
4249         if (!flow_table && !map)
4250                 goto done;
4251
4252         skb_reset_network_header(skb);
4253         hash = skb_get_hash(skb);
4254         if (!hash)
4255                 goto done;
4256
4257         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4258         if (flow_table && sock_flow_table) {
4259                 struct rps_dev_flow *rflow;
4260                 u32 next_cpu;
4261                 u32 ident;
4262
4263                 /* First check into global flow table if there is a match */
4264                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4265                 if ((ident ^ hash) & ~rps_cpu_mask)
4266                         goto try_rps;
4267
4268                 next_cpu = ident & rps_cpu_mask;
4269
4270                 /* OK, now we know there is a match,
4271                  * we can look at the local (per receive queue) flow table
4272                  */
4273                 rflow = &flow_table->flows[hash & flow_table->mask];
4274                 tcpu = rflow->cpu;
4275
4276                 /*
4277                  * If the desired CPU (where last recvmsg was done) is
4278                  * different from current CPU (one in the rx-queue flow
4279                  * table entry), switch if one of the following holds:
4280                  *   - Current CPU is unset (>= nr_cpu_ids).
4281                  *   - Current CPU is offline.
4282                  *   - The current CPU's queue tail has advanced beyond the
4283                  *     last packet that was enqueued using this table entry.
4284                  *     This guarantees that all previous packets for the flow
4285                  *     have been dequeued, thus preserving in order delivery.
4286                  */
4287                 if (unlikely(tcpu != next_cpu) &&
4288                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4289                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4290                       rflow->last_qtail)) >= 0)) {
4291                         tcpu = next_cpu;
4292                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4293                 }
4294
4295                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4296                         *rflowp = rflow;
4297                         cpu = tcpu;
4298                         goto done;
4299                 }
4300         }
4301
4302 try_rps:
4303
4304         if (map) {
4305                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4306                 if (cpu_online(tcpu)) {
4307                         cpu = tcpu;
4308                         goto done;
4309                 }
4310         }
4311
4312 done:
4313         return cpu;
4314 }
4315
4316 #ifdef CONFIG_RFS_ACCEL
4317
4318 /**
4319  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4320  * @dev: Device on which the filter was set
4321  * @rxq_index: RX queue index
4322  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4323  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4324  *
4325  * Drivers that implement ndo_rx_flow_steer() should periodically call
4326  * this function for each installed filter and remove the filters for
4327  * which it returns %true.
4328  */
4329 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4330                          u32 flow_id, u16 filter_id)
4331 {
4332         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4333         struct rps_dev_flow_table *flow_table;
4334         struct rps_dev_flow *rflow;
4335         bool expire = true;
4336         unsigned int cpu;
4337
4338         rcu_read_lock();
4339         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4340         if (flow_table && flow_id <= flow_table->mask) {
4341                 rflow = &flow_table->flows[flow_id];
4342                 cpu = READ_ONCE(rflow->cpu);
4343                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4344                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4345                            rflow->last_qtail) <
4346                      (int)(10 * flow_table->mask)))
4347                         expire = false;
4348         }
4349         rcu_read_unlock();
4350         return expire;
4351 }
4352 EXPORT_SYMBOL(rps_may_expire_flow);
4353
4354 #endif /* CONFIG_RFS_ACCEL */
4355
4356 /* Called from hardirq (IPI) context */
4357 static void rps_trigger_softirq(void *data)
4358 {
4359         struct softnet_data *sd = data;
4360
4361         ____napi_schedule(sd, &sd->backlog);
4362         sd->received_rps++;
4363 }
4364
4365 #endif /* CONFIG_RPS */
4366
4367 /*
4368  * Check if this softnet_data structure is another cpu one
4369  * If yes, queue it to our IPI list and return 1
4370  * If no, return 0
4371  */
4372 static int rps_ipi_queued(struct softnet_data *sd)
4373 {
4374 #ifdef CONFIG_RPS
4375         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4376
4377         if (sd != mysd) {
4378                 sd->rps_ipi_next = mysd->rps_ipi_list;
4379                 mysd->rps_ipi_list = sd;
4380
4381                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4382                 return 1;
4383         }
4384 #endif /* CONFIG_RPS */
4385         return 0;
4386 }
4387
4388 #ifdef CONFIG_NET_FLOW_LIMIT
4389 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4390 #endif
4391
4392 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4393 {
4394 #ifdef CONFIG_NET_FLOW_LIMIT
4395         struct sd_flow_limit *fl;
4396         struct softnet_data *sd;
4397         unsigned int old_flow, new_flow;
4398
4399         if (qlen < (netdev_max_backlog >> 1))
4400                 return false;
4401
4402         sd = this_cpu_ptr(&softnet_data);
4403
4404         rcu_read_lock();
4405         fl = rcu_dereference(sd->flow_limit);
4406         if (fl) {
4407                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4408                 old_flow = fl->history[fl->history_head];
4409                 fl->history[fl->history_head] = new_flow;
4410
4411                 fl->history_head++;
4412                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4413
4414                 if (likely(fl->buckets[old_flow]))
4415                         fl->buckets[old_flow]--;
4416
4417                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4418                         fl->count++;
4419                         rcu_read_unlock();
4420                         return true;
4421                 }
4422         }
4423         rcu_read_unlock();
4424 #endif
4425         return false;
4426 }
4427
4428 /*
4429  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4430  * queue (may be a remote CPU queue).
4431  */
4432 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4433                               unsigned int *qtail)
4434 {
4435         struct softnet_data *sd;
4436         unsigned long flags;
4437         unsigned int qlen;
4438
4439         sd = &per_cpu(softnet_data, cpu);
4440
4441         local_irq_save(flags);
4442
4443         rps_lock(sd);
4444         if (!netif_running(skb->dev))
4445                 goto drop;
4446         qlen = skb_queue_len(&sd->input_pkt_queue);
4447         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4448                 if (qlen) {
4449 enqueue:
4450                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4451                         input_queue_tail_incr_save(sd, qtail);
4452                         rps_unlock(sd);
4453                         local_irq_restore(flags);
4454                         return NET_RX_SUCCESS;
4455                 }
4456
4457                 /* Schedule NAPI for backlog device
4458                  * We can use non atomic operation since we own the queue lock
4459                  */
4460                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4461                         if (!rps_ipi_queued(sd))
4462                                 ____napi_schedule(sd, &sd->backlog);
4463                 }
4464                 goto enqueue;
4465         }
4466
4467 drop:
4468         sd->dropped++;
4469         rps_unlock(sd);
4470
4471         local_irq_restore(flags);
4472
4473         atomic_long_inc(&skb->dev->rx_dropped);
4474         kfree_skb(skb);
4475         return NET_RX_DROP;
4476 }
4477
4478 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4479 {
4480         struct net_device *dev = skb->dev;
4481         struct netdev_rx_queue *rxqueue;
4482
4483         rxqueue = dev->_rx;
4484
4485         if (skb_rx_queue_recorded(skb)) {
4486                 u16 index = skb_get_rx_queue(skb);
4487
4488                 if (unlikely(index >= dev->real_num_rx_queues)) {
4489                         WARN_ONCE(dev->real_num_rx_queues > 1,
4490                                   "%s received packet on queue %u, but number "
4491                                   "of RX queues is %u\n",
4492                                   dev->name, index, dev->real_num_rx_queues);
4493
4494                         return rxqueue; /* Return first rxqueue */
4495                 }
4496                 rxqueue += index;
4497         }
4498         return rxqueue;
4499 }
4500
4501 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4502                                      struct xdp_buff *xdp,
4503                                      struct bpf_prog *xdp_prog)
4504 {
4505         struct netdev_rx_queue *rxqueue;
4506         void *orig_data, *orig_data_end;
4507         u32 metalen, act = XDP_DROP;
4508         __be16 orig_eth_type;
4509         struct ethhdr *eth;
4510         bool orig_bcast;
4511         int hlen, off;
4512         u32 mac_len;
4513
4514         /* Reinjected packets coming from act_mirred or similar should
4515          * not get XDP generic processing.
4516          */
4517         if (skb_is_tc_redirected(skb))
4518                 return XDP_PASS;
4519
4520         /* XDP packets must be linear and must have sufficient headroom
4521          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4522          * native XDP provides, thus we need to do it here as well.
4523          */
4524         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4525             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4526                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4527                 int troom = skb->tail + skb->data_len - skb->end;
4528
4529                 /* In case we have to go down the path and also linearize,
4530                  * then lets do the pskb_expand_head() work just once here.
4531                  */
4532                 if (pskb_expand_head(skb,
4533                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4534                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4535                         goto do_drop;
4536                 if (skb_linearize(skb))
4537                         goto do_drop;
4538         }
4539
4540         /* The XDP program wants to see the packet starting at the MAC
4541          * header.
4542          */
4543         mac_len = skb->data - skb_mac_header(skb);
4544         hlen = skb_headlen(skb) + mac_len;
4545         xdp->data = skb->data - mac_len;
4546         xdp->data_meta = xdp->data;
4547         xdp->data_end = xdp->data + hlen;
4548         xdp->data_hard_start = skb->data - skb_headroom(skb);
4549         orig_data_end = xdp->data_end;
4550         orig_data = xdp->data;
4551         eth = (struct ethhdr *)xdp->data;
4552         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4553         orig_eth_type = eth->h_proto;
4554
4555         rxqueue = netif_get_rxqueue(skb);
4556         xdp->rxq = &rxqueue->xdp_rxq;
4557
4558         act = bpf_prog_run_xdp(xdp_prog, xdp);
4559
4560         /* check if bpf_xdp_adjust_head was used */
4561         off = xdp->data - orig_data;
4562         if (off) {
4563                 if (off > 0)
4564                         __skb_pull(skb, off);
4565                 else if (off < 0)
4566                         __skb_push(skb, -off);
4567
4568                 skb->mac_header += off;
4569                 skb_reset_network_header(skb);
4570         }
4571
4572         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4573          * pckt.
4574          */
4575         off = orig_data_end - xdp->data_end;
4576         if (off != 0) {
4577                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4578                 skb->len -= off;
4579
4580         }
4581
4582         /* check if XDP changed eth hdr such SKB needs update */
4583         eth = (struct ethhdr *)xdp->data;
4584         if ((orig_eth_type != eth->h_proto) ||
4585             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4586                 __skb_push(skb, ETH_HLEN);
4587                 skb->protocol = eth_type_trans(skb, skb->dev);
4588         }
4589
4590         switch (act) {
4591         case XDP_REDIRECT:
4592         case XDP_TX:
4593                 __skb_push(skb, mac_len);
4594                 break;
4595         case XDP_PASS:
4596                 metalen = xdp->data - xdp->data_meta;
4597                 if (metalen)
4598                         skb_metadata_set(skb, metalen);
4599                 break;
4600         default:
4601                 bpf_warn_invalid_xdp_action(act);
4602                 /* fall through */
4603         case XDP_ABORTED:
4604                 trace_xdp_exception(skb->dev, xdp_prog, act);
4605                 /* fall through */
4606         case XDP_DROP:
4607         do_drop:
4608                 kfree_skb(skb);
4609                 break;
4610         }
4611
4612         return act;
4613 }
4614
4615 /* When doing generic XDP we have to bypass the qdisc layer and the
4616  * network taps in order to match in-driver-XDP behavior.
4617  */
4618 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4619 {
4620         struct net_device *dev = skb->dev;
4621         struct netdev_queue *txq;
4622         bool free_skb = true;
4623         int cpu, rc;
4624
4625         txq = netdev_core_pick_tx(dev, skb, NULL);
4626         cpu = smp_processor_id();
4627         HARD_TX_LOCK(dev, txq, cpu);
4628         if (!netif_xmit_stopped(txq)) {
4629                 rc = netdev_start_xmit(skb, dev, txq, 0);
4630                 if (dev_xmit_complete(rc))
4631                         free_skb = false;
4632         }
4633         HARD_TX_UNLOCK(dev, txq);
4634         if (free_skb) {
4635                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4636                 kfree_skb(skb);
4637         }
4638 }
4639 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4640
4641 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4642
4643 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4644 {
4645         if (xdp_prog) {
4646                 struct xdp_buff xdp;
4647                 u32 act;
4648                 int err;
4649
4650                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4651                 if (act != XDP_PASS) {
4652                         switch (act) {
4653                         case XDP_REDIRECT:
4654                                 err = xdp_do_generic_redirect(skb->dev, skb,
4655                                                               &xdp, xdp_prog);
4656                                 if (err)
4657                                         goto out_redir;
4658                                 break;
4659                         case XDP_TX:
4660                                 generic_xdp_tx(skb, xdp_prog);
4661                                 break;
4662                         }
4663                         return XDP_DROP;
4664                 }
4665         }
4666         return XDP_PASS;
4667 out_redir:
4668         kfree_skb(skb);
4669         return XDP_DROP;
4670 }
4671 EXPORT_SYMBOL_GPL(do_xdp_generic);
4672
4673 static int netif_rx_internal(struct sk_buff *skb)
4674 {
4675         int ret;
4676
4677         net_timestamp_check(netdev_tstamp_prequeue, skb);
4678
4679         trace_netif_rx(skb);
4680
4681 #ifdef CONFIG_RPS
4682         if (static_branch_unlikely(&rps_needed)) {
4683                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4684                 int cpu;
4685
4686                 preempt_disable();
4687                 rcu_read_lock();
4688
4689                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4690                 if (cpu < 0)
4691                         cpu = smp_processor_id();
4692
4693                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4694
4695                 rcu_read_unlock();
4696                 preempt_enable();
4697         } else
4698 #endif
4699         {
4700                 unsigned int qtail;
4701
4702                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4703                 put_cpu();
4704         }
4705         return ret;
4706 }
4707
4708 /**
4709  *      netif_rx        -       post buffer to the network code
4710  *      @skb: buffer to post
4711  *
4712  *      This function receives a packet from a device driver and queues it for
4713  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4714  *      may be dropped during processing for congestion control or by the
4715  *      protocol layers.
4716  *
4717  *      return values:
4718  *      NET_RX_SUCCESS  (no congestion)
4719  *      NET_RX_DROP     (packet was dropped)
4720  *
4721  */
4722
4723 int netif_rx(struct sk_buff *skb)
4724 {
4725         int ret;
4726
4727         trace_netif_rx_entry(skb);
4728
4729         ret = netif_rx_internal(skb);
4730         trace_netif_rx_exit(ret);
4731
4732         return ret;
4733 }
4734 EXPORT_SYMBOL(netif_rx);
4735
4736 int netif_rx_ni(struct sk_buff *skb)
4737 {
4738         int err;
4739
4740         trace_netif_rx_ni_entry(skb);
4741
4742         preempt_disable();
4743         err = netif_rx_internal(skb);
4744         if (local_softirq_pending())
4745                 do_softirq();
4746         preempt_enable();
4747         trace_netif_rx_ni_exit(err);
4748
4749         return err;
4750 }
4751 EXPORT_SYMBOL(netif_rx_ni);
4752
4753 static __latent_entropy void net_tx_action(struct softirq_action *h)
4754 {
4755         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4756
4757         if (sd->completion_queue) {
4758                 struct sk_buff *clist;
4759
4760                 local_irq_disable();
4761                 clist = sd->completion_queue;
4762                 sd->completion_queue = NULL;
4763                 local_irq_enable();
4764
4765                 while (clist) {
4766                         struct sk_buff *skb = clist;
4767
4768                         clist = clist->next;
4769
4770                         WARN_ON(refcount_read(&skb->users));
4771                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4772                                 trace_consume_skb(skb);
4773                         else
4774                                 trace_kfree_skb(skb, net_tx_action);
4775
4776                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4777                                 __kfree_skb(skb);
4778                         else
4779                                 __kfree_skb_defer(skb);
4780                 }
4781
4782                 __kfree_skb_flush();
4783         }
4784
4785         if (sd->output_queue) {
4786                 struct Qdisc *head;
4787
4788                 local_irq_disable();
4789                 head = sd->output_queue;
4790                 sd->output_queue = NULL;
4791                 sd->output_queue_tailp = &sd->output_queue;
4792                 local_irq_enable();
4793
4794                 while (head) {
4795                         struct Qdisc *q = head;
4796                         spinlock_t *root_lock = NULL;
4797
4798                         head = head->next_sched;
4799
4800                         if (!(q->flags & TCQ_F_NOLOCK)) {
4801                                 root_lock = qdisc_lock(q);
4802                                 spin_lock(root_lock);
4803                         }
4804                         /* We need to make sure head->next_sched is read
4805                          * before clearing __QDISC_STATE_SCHED
4806                          */
4807                         smp_mb__before_atomic();
4808                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4809                         qdisc_run(q);
4810                         if (root_lock)
4811                                 spin_unlock(root_lock);
4812                 }
4813         }
4814
4815         xfrm_dev_backlog(sd);
4816 }
4817
4818 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4819 /* This hook is defined here for ATM LANE */
4820 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4821                              unsigned char *addr) __read_mostly;
4822 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4823 #endif
4824
4825 static inline struct sk_buff *
4826 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4827                    struct net_device *orig_dev)
4828 {
4829 #ifdef CONFIG_NET_CLS_ACT
4830         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4831         struct tcf_result cl_res;
4832
4833         /* If there's at least one ingress present somewhere (so
4834          * we get here via enabled static key), remaining devices
4835          * that are not configured with an ingress qdisc will bail
4836          * out here.
4837          */
4838         if (!miniq)
4839                 return skb;
4840
4841         if (*pt_prev) {
4842                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4843                 *pt_prev = NULL;
4844         }
4845
4846         qdisc_skb_cb(skb)->pkt_len = skb->len;
4847         skb->tc_at_ingress = 1;
4848         mini_qdisc_bstats_cpu_update(miniq, skb);
4849
4850         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4851         case TC_ACT_OK:
4852         case TC_ACT_RECLASSIFY:
4853                 skb->tc_index = TC_H_MIN(cl_res.classid);
4854                 break;
4855         case TC_ACT_SHOT:
4856                 mini_qdisc_qstats_cpu_drop(miniq);
4857                 kfree_skb(skb);
4858                 return NULL;
4859         case TC_ACT_STOLEN:
4860         case TC_ACT_QUEUED:
4861         case TC_ACT_TRAP:
4862                 consume_skb(skb);
4863                 return NULL;
4864         case TC_ACT_REDIRECT:
4865                 /* skb_mac_header check was done by cls/act_bpf, so
4866                  * we can safely push the L2 header back before
4867                  * redirecting to another netdev
4868                  */
4869                 __skb_push(skb, skb->mac_len);
4870                 skb_do_redirect(skb);
4871                 return NULL;
4872         case TC_ACT_CONSUMED:
4873                 return NULL;
4874         default:
4875                 break;
4876         }
4877 #endif /* CONFIG_NET_CLS_ACT */
4878         return skb;
4879 }
4880
4881 /**
4882  *      netdev_is_rx_handler_busy - check if receive handler is registered
4883  *      @dev: device to check
4884  *
4885  *      Check if a receive handler is already registered for a given device.
4886  *      Return true if there one.
4887  *
4888  *      The caller must hold the rtnl_mutex.
4889  */
4890 bool netdev_is_rx_handler_busy(struct net_device *dev)
4891 {
4892         ASSERT_RTNL();
4893         return dev && rtnl_dereference(dev->rx_handler);
4894 }
4895 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4896
4897 /**
4898  *      netdev_rx_handler_register - register receive handler
4899  *      @dev: device to register a handler for
4900  *      @rx_handler: receive handler to register
4901  *      @rx_handler_data: data pointer that is used by rx handler
4902  *
4903  *      Register a receive handler for a device. This handler will then be
4904  *      called from __netif_receive_skb. A negative errno code is returned
4905  *      on a failure.
4906  *
4907  *      The caller must hold the rtnl_mutex.
4908  *
4909  *      For a general description of rx_handler, see enum rx_handler_result.
4910  */
4911 int netdev_rx_handler_register(struct net_device *dev,
4912                                rx_handler_func_t *rx_handler,
4913                                void *rx_handler_data)
4914 {
4915         if (netdev_is_rx_handler_busy(dev))
4916                 return -EBUSY;
4917
4918         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4919                 return -EINVAL;
4920
4921         /* Note: rx_handler_data must be set before rx_handler */
4922         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4923         rcu_assign_pointer(dev->rx_handler, rx_handler);
4924
4925         return 0;
4926 }
4927 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4928
4929 /**
4930  *      netdev_rx_handler_unregister - unregister receive handler
4931  *      @dev: device to unregister a handler from
4932  *
4933  *      Unregister a receive handler from a device.
4934  *
4935  *      The caller must hold the rtnl_mutex.
4936  */
4937 void netdev_rx_handler_unregister(struct net_device *dev)
4938 {
4939
4940         ASSERT_RTNL();
4941         RCU_INIT_POINTER(dev->rx_handler, NULL);
4942         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4943          * section has a guarantee to see a non NULL rx_handler_data
4944          * as well.
4945          */
4946         synchronize_net();
4947         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4948 }
4949 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4950
4951 /*
4952  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4953  * the special handling of PFMEMALLOC skbs.
4954  */
4955 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4956 {
4957         switch (skb->protocol) {
4958         case htons(ETH_P_ARP):
4959         case htons(ETH_P_IP):
4960         case htons(ETH_P_IPV6):
4961         case htons(ETH_P_8021Q):
4962         case htons(ETH_P_8021AD):
4963                 return true;
4964         default:
4965                 return false;
4966         }
4967 }
4968
4969 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4970                              int *ret, struct net_device *orig_dev)
4971 {
4972         if (nf_hook_ingress_active(skb)) {
4973                 int ingress_retval;
4974
4975                 if (*pt_prev) {
4976                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4977                         *pt_prev = NULL;
4978                 }
4979
4980                 rcu_read_lock();
4981                 ingress_retval = nf_hook_ingress(skb);
4982                 rcu_read_unlock();
4983                 return ingress_retval;
4984         }
4985         return 0;
4986 }
4987
4988 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4989                                     struct packet_type **ppt_prev)
4990 {
4991         struct packet_type *ptype, *pt_prev;
4992         rx_handler_func_t *rx_handler;
4993         struct net_device *orig_dev;
4994         bool deliver_exact = false;
4995         int ret = NET_RX_DROP;
4996         __be16 type;
4997
4998         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4999
5000         trace_netif_receive_skb(skb);
5001
5002         orig_dev = skb->dev;
5003
5004         skb_reset_network_header(skb);
5005         if (!skb_transport_header_was_set(skb))
5006                 skb_reset_transport_header(skb);
5007         skb_reset_mac_len(skb);
5008
5009         pt_prev = NULL;
5010
5011 another_round:
5012         skb->skb_iif = skb->dev->ifindex;
5013
5014         __this_cpu_inc(softnet_data.processed);
5015
5016         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5017                 int ret2;
5018
5019                 preempt_disable();
5020                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5021                 preempt_enable();
5022
5023                 if (ret2 != XDP_PASS)
5024                         return NET_RX_DROP;
5025                 skb_reset_mac_len(skb);
5026         }
5027
5028         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5029             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5030                 skb = skb_vlan_untag(skb);
5031                 if (unlikely(!skb))
5032                         goto out;
5033         }
5034
5035         if (skb_skip_tc_classify(skb))
5036                 goto skip_classify;
5037
5038         if (pfmemalloc)
5039                 goto skip_taps;
5040
5041         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5042                 if (pt_prev)
5043                         ret = deliver_skb(skb, pt_prev, orig_dev);
5044                 pt_prev = ptype;
5045         }
5046
5047         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5048                 if (pt_prev)
5049                         ret = deliver_skb(skb, pt_prev, orig_dev);
5050                 pt_prev = ptype;
5051         }
5052
5053 skip_taps:
5054 #ifdef CONFIG_NET_INGRESS
5055         if (static_branch_unlikely(&ingress_needed_key)) {
5056                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5057                 if (!skb)
5058                         goto out;
5059
5060                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5061                         goto out;
5062         }
5063 #endif
5064         skb_reset_tc(skb);
5065 skip_classify:
5066         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5067                 goto drop;
5068
5069         if (skb_vlan_tag_present(skb)) {
5070                 if (pt_prev) {
5071                         ret = deliver_skb(skb, pt_prev, orig_dev);
5072                         pt_prev = NULL;
5073                 }
5074                 if (vlan_do_receive(&skb))
5075                         goto another_round;
5076                 else if (unlikely(!skb))
5077                         goto out;
5078         }
5079
5080         rx_handler = rcu_dereference(skb->dev->rx_handler);
5081         if (rx_handler) {
5082                 if (pt_prev) {
5083                         ret = deliver_skb(skb, pt_prev, orig_dev);
5084                         pt_prev = NULL;
5085                 }
5086                 switch (rx_handler(&skb)) {
5087                 case RX_HANDLER_CONSUMED:
5088                         ret = NET_RX_SUCCESS;
5089                         goto out;
5090                 case RX_HANDLER_ANOTHER:
5091                         goto another_round;
5092                 case RX_HANDLER_EXACT:
5093                         deliver_exact = true;
5094                 case RX_HANDLER_PASS:
5095                         break;
5096                 default:
5097                         BUG();
5098                 }
5099         }
5100
5101         if (unlikely(skb_vlan_tag_present(skb))) {
5102 check_vlan_id:
5103                 if (skb_vlan_tag_get_id(skb)) {
5104                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5105                          * find vlan device.
5106                          */
5107                         skb->pkt_type = PACKET_OTHERHOST;
5108                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5109                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5110                         /* Outer header is 802.1P with vlan 0, inner header is
5111                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5112                          * not find vlan dev for vlan id 0.
5113                          */
5114                         __vlan_hwaccel_clear_tag(skb);
5115                         skb = skb_vlan_untag(skb);
5116                         if (unlikely(!skb))
5117                                 goto out;
5118                         if (vlan_do_receive(&skb))
5119                                 /* After stripping off 802.1P header with vlan 0
5120                                  * vlan dev is found for inner header.
5121                                  */
5122                                 goto another_round;
5123                         else if (unlikely(!skb))
5124                                 goto out;
5125                         else
5126                                 /* We have stripped outer 802.1P vlan 0 header.
5127                                  * But could not find vlan dev.
5128                                  * check again for vlan id to set OTHERHOST.
5129                                  */
5130                                 goto check_vlan_id;
5131                 }
5132                 /* Note: we might in the future use prio bits
5133                  * and set skb->priority like in vlan_do_receive()
5134                  * For the time being, just ignore Priority Code Point
5135                  */
5136                 __vlan_hwaccel_clear_tag(skb);
5137         }
5138
5139         type = skb->protocol;
5140
5141         /* deliver only exact match when indicated */
5142         if (likely(!deliver_exact)) {
5143                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5144                                        &ptype_base[ntohs(type) &
5145                                                    PTYPE_HASH_MASK]);
5146         }
5147
5148         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5149                                &orig_dev->ptype_specific);
5150
5151         if (unlikely(skb->dev != orig_dev)) {
5152                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5153                                        &skb->dev->ptype_specific);
5154         }
5155
5156         if (pt_prev) {
5157                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5158                         goto drop;
5159                 *ppt_prev = pt_prev;
5160         } else {
5161 drop:
5162                 if (!deliver_exact)
5163                         atomic_long_inc(&skb->dev->rx_dropped);
5164                 else
5165                         atomic_long_inc(&skb->dev->rx_nohandler);
5166                 kfree_skb(skb);
5167                 /* Jamal, now you will not able to escape explaining
5168                  * me how you were going to use this. :-)
5169                  */
5170                 ret = NET_RX_DROP;
5171         }
5172
5173 out:
5174         return ret;
5175 }
5176
5177 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5178 {
5179         struct net_device *orig_dev = skb->dev;
5180         struct packet_type *pt_prev = NULL;
5181         int ret;
5182
5183         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5184         if (pt_prev)
5185                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5186                                          skb->dev, pt_prev, orig_dev);
5187         return ret;
5188 }
5189
5190 /**
5191  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5192  *      @skb: buffer to process
5193  *
5194  *      More direct receive version of netif_receive_skb().  It should
5195  *      only be used by callers that have a need to skip RPS and Generic XDP.
5196  *      Caller must also take care of handling if (page_is_)pfmemalloc.
5197  *
5198  *      This function may only be called from softirq context and interrupts
5199  *      should be enabled.
5200  *
5201  *      Return values (usually ignored):
5202  *      NET_RX_SUCCESS: no congestion
5203  *      NET_RX_DROP: packet was dropped
5204  */
5205 int netif_receive_skb_core(struct sk_buff *skb)
5206 {
5207         int ret;
5208
5209         rcu_read_lock();
5210         ret = __netif_receive_skb_one_core(skb, false);
5211         rcu_read_unlock();
5212
5213         return ret;
5214 }
5215 EXPORT_SYMBOL(netif_receive_skb_core);
5216
5217 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5218                                                   struct packet_type *pt_prev,
5219                                                   struct net_device *orig_dev)
5220 {
5221         struct sk_buff *skb, *next;
5222
5223         if (!pt_prev)
5224                 return;
5225         if (list_empty(head))
5226                 return;
5227         if (pt_prev->list_func != NULL)
5228                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5229                                    ip_list_rcv, head, pt_prev, orig_dev);
5230         else
5231                 list_for_each_entry_safe(skb, next, head, list) {
5232                         skb_list_del_init(skb);
5233                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5234                 }
5235 }
5236
5237 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5238 {
5239         /* Fast-path assumptions:
5240          * - There is no RX handler.
5241          * - Only one packet_type matches.
5242          * If either of these fails, we will end up doing some per-packet
5243          * processing in-line, then handling the 'last ptype' for the whole
5244          * sublist.  This can't cause out-of-order delivery to any single ptype,
5245          * because the 'last ptype' must be constant across the sublist, and all
5246          * other ptypes are handled per-packet.
5247          */
5248         /* Current (common) ptype of sublist */
5249         struct packet_type *pt_curr = NULL;
5250         /* Current (common) orig_dev of sublist */
5251         struct net_device *od_curr = NULL;
5252         struct list_head sublist;
5253         struct sk_buff *skb, *next;
5254
5255         INIT_LIST_HEAD(&sublist);
5256         list_for_each_entry_safe(skb, next, head, list) {
5257                 struct net_device *orig_dev = skb->dev;
5258                 struct packet_type *pt_prev = NULL;
5259
5260                 skb_list_del_init(skb);
5261                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5262                 if (!pt_prev)
5263                         continue;
5264                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5265                         /* dispatch old sublist */
5266                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5267                         /* start new sublist */
5268                         INIT_LIST_HEAD(&sublist);
5269                         pt_curr = pt_prev;
5270                         od_curr = orig_dev;
5271                 }
5272                 list_add_tail(&skb->list, &sublist);
5273         }
5274
5275         /* dispatch final sublist */
5276         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5277 }
5278
5279 static int __netif_receive_skb(struct sk_buff *skb)
5280 {
5281         int ret;
5282
5283         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5284                 unsigned int noreclaim_flag;
5285
5286                 /*
5287                  * PFMEMALLOC skbs are special, they should
5288                  * - be delivered to SOCK_MEMALLOC sockets only
5289                  * - stay away from userspace
5290                  * - have bounded memory usage
5291                  *
5292                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5293                  * context down to all allocation sites.
5294                  */
5295                 noreclaim_flag = memalloc_noreclaim_save();
5296                 ret = __netif_receive_skb_one_core(skb, true);
5297                 memalloc_noreclaim_restore(noreclaim_flag);
5298         } else
5299                 ret = __netif_receive_skb_one_core(skb, false);
5300
5301         return ret;
5302 }
5303
5304 static void __netif_receive_skb_list(struct list_head *head)
5305 {
5306         unsigned long noreclaim_flag = 0;
5307         struct sk_buff *skb, *next;
5308         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5309
5310         list_for_each_entry_safe(skb, next, head, list) {
5311                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5312                         struct list_head sublist;
5313
5314                         /* Handle the previous sublist */
5315                         list_cut_before(&sublist, head, &skb->list);
5316                         if (!list_empty(&sublist))
5317                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5318                         pfmemalloc = !pfmemalloc;
5319                         /* See comments in __netif_receive_skb */
5320                         if (pfmemalloc)
5321                                 noreclaim_flag = memalloc_noreclaim_save();
5322                         else
5323                                 memalloc_noreclaim_restore(noreclaim_flag);
5324                 }
5325         }
5326         /* Handle the remaining sublist */
5327         if (!list_empty(head))
5328                 __netif_receive_skb_list_core(head, pfmemalloc);
5329         /* Restore pflags */
5330         if (pfmemalloc)
5331                 memalloc_noreclaim_restore(noreclaim_flag);
5332 }
5333
5334 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5335 {
5336         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5337         struct bpf_prog *new = xdp->prog;
5338         int ret = 0;
5339
5340         switch (xdp->command) {
5341         case XDP_SETUP_PROG:
5342                 rcu_assign_pointer(dev->xdp_prog, new);
5343                 if (old)
5344                         bpf_prog_put(old);
5345
5346                 if (old && !new) {
5347                         static_branch_dec(&generic_xdp_needed_key);
5348                 } else if (new && !old) {
5349                         static_branch_inc(&generic_xdp_needed_key);
5350                         dev_disable_lro(dev);
5351                         dev_disable_gro_hw(dev);
5352                 }
5353                 break;
5354
5355         case XDP_QUERY_PROG:
5356                 xdp->prog_id = old ? old->aux->id : 0;
5357                 break;
5358
5359         default:
5360                 ret = -EINVAL;
5361                 break;
5362         }
5363
5364         return ret;
5365 }
5366
5367 static int netif_receive_skb_internal(struct sk_buff *skb)
5368 {
5369         int ret;
5370
5371         net_timestamp_check(netdev_tstamp_prequeue, skb);
5372
5373         if (skb_defer_rx_timestamp(skb))
5374                 return NET_RX_SUCCESS;
5375
5376         rcu_read_lock();
5377 #ifdef CONFIG_RPS
5378         if (static_branch_unlikely(&rps_needed)) {
5379                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5380                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5381
5382                 if (cpu >= 0) {
5383                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5384                         rcu_read_unlock();
5385                         return ret;
5386                 }
5387         }
5388 #endif
5389         ret = __netif_receive_skb(skb);
5390         rcu_read_unlock();
5391         return ret;
5392 }
5393
5394 static void netif_receive_skb_list_internal(struct list_head *head)
5395 {
5396         struct sk_buff *skb, *next;
5397         struct list_head sublist;
5398
5399         INIT_LIST_HEAD(&sublist);
5400         list_for_each_entry_safe(skb, next, head, list) {
5401                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5402                 skb_list_del_init(skb);
5403                 if (!skb_defer_rx_timestamp(skb))
5404                         list_add_tail(&skb->list, &sublist);
5405         }
5406         list_splice_init(&sublist, head);
5407
5408         rcu_read_lock();
5409 #ifdef CONFIG_RPS
5410         if (static_branch_unlikely(&rps_needed)) {
5411                 list_for_each_entry_safe(skb, next, head, list) {
5412                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5413                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5414
5415                         if (cpu >= 0) {
5416                                 /* Will be handled, remove from list */
5417                                 skb_list_del_init(skb);
5418                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5419                         }
5420                 }
5421         }
5422 #endif
5423         __netif_receive_skb_list(head);
5424         rcu_read_unlock();
5425 }
5426
5427 /**
5428  *      netif_receive_skb - process receive buffer from network
5429  *      @skb: buffer to process
5430  *
5431  *      netif_receive_skb() is the main receive data processing function.
5432  *      It always succeeds. The buffer may be dropped during processing
5433  *      for congestion control or by the protocol layers.
5434  *
5435  *      This function may only be called from softirq context and interrupts
5436  *      should be enabled.
5437  *
5438  *      Return values (usually ignored):
5439  *      NET_RX_SUCCESS: no congestion
5440  *      NET_RX_DROP: packet was dropped
5441  */
5442 int netif_receive_skb(struct sk_buff *skb)
5443 {
5444         int ret;
5445
5446         trace_netif_receive_skb_entry(skb);
5447
5448         ret = netif_receive_skb_internal(skb);
5449         trace_netif_receive_skb_exit(ret);
5450
5451         return ret;
5452 }
5453 EXPORT_SYMBOL(netif_receive_skb);
5454
5455 /**
5456  *      netif_receive_skb_list - process many receive buffers from network
5457  *      @head: list of skbs to process.
5458  *
5459  *      Since return value of netif_receive_skb() is normally ignored, and
5460  *      wouldn't be meaningful for a list, this function returns void.
5461  *
5462  *      This function may only be called from softirq context and interrupts
5463  *      should be enabled.
5464  */
5465 void netif_receive_skb_list(struct list_head *head)
5466 {
5467         struct sk_buff *skb;
5468
5469         if (list_empty(head))
5470                 return;
5471         if (trace_netif_receive_skb_list_entry_enabled()) {
5472                 list_for_each_entry(skb, head, list)
5473                         trace_netif_receive_skb_list_entry(skb);
5474         }
5475         netif_receive_skb_list_internal(head);
5476         trace_netif_receive_skb_list_exit(0);
5477 }
5478 EXPORT_SYMBOL(netif_receive_skb_list);
5479
5480 DEFINE_PER_CPU(struct work_struct, flush_works);
5481
5482 /* Network device is going away, flush any packets still pending */
5483 static void flush_backlog(struct work_struct *work)
5484 {
5485         struct sk_buff *skb, *tmp;
5486         struct softnet_data *sd;
5487
5488         local_bh_disable();
5489         sd = this_cpu_ptr(&softnet_data);
5490
5491         local_irq_disable();
5492         rps_lock(sd);
5493         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5494                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5495                         __skb_unlink(skb, &sd->input_pkt_queue);
5496                         kfree_skb(skb);
5497                         input_queue_head_incr(sd);
5498                 }
5499         }
5500         rps_unlock(sd);
5501         local_irq_enable();
5502
5503         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5504                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5505                         __skb_unlink(skb, &sd->process_queue);
5506                         kfree_skb(skb);
5507                         input_queue_head_incr(sd);
5508                 }
5509         }
5510         local_bh_enable();
5511 }
5512
5513 static void flush_all_backlogs(void)
5514 {
5515         unsigned int cpu;
5516
5517         get_online_cpus();
5518
5519         for_each_online_cpu(cpu)
5520                 queue_work_on(cpu, system_highpri_wq,
5521                               per_cpu_ptr(&flush_works, cpu));
5522
5523         for_each_online_cpu(cpu)
5524                 flush_work(per_cpu_ptr(&flush_works, cpu));
5525
5526         put_online_cpus();
5527 }
5528
5529 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5530 static void gro_normal_list(struct napi_struct *napi)
5531 {
5532         if (!napi->rx_count)
5533                 return;
5534         netif_receive_skb_list_internal(&napi->rx_list);
5535         INIT_LIST_HEAD(&napi->rx_list);
5536         napi->rx_count = 0;
5537 }
5538
5539 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5540  * pass the whole batch up to the stack.
5541  */
5542 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5543 {
5544         list_add_tail(&skb->list, &napi->rx_list);
5545         if (++napi->rx_count >= gro_normal_batch)
5546                 gro_normal_list(napi);
5547 }
5548
5549 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5550 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5551 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5552 {
5553         struct packet_offload *ptype;
5554         __be16 type = skb->protocol;
5555         struct list_head *head = &offload_base;
5556         int err = -ENOENT;
5557
5558         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5559
5560         if (NAPI_GRO_CB(skb)->count == 1) {
5561                 skb_shinfo(skb)->gso_size = 0;
5562                 goto out;
5563         }
5564
5565         rcu_read_lock();
5566         list_for_each_entry_rcu(ptype, head, list) {
5567                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5568                         continue;
5569
5570                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5571                                          ipv6_gro_complete, inet_gro_complete,
5572                                          skb, 0);
5573                 break;
5574         }
5575         rcu_read_unlock();
5576
5577         if (err) {
5578                 WARN_ON(&ptype->list == head);
5579                 kfree_skb(skb);
5580                 return NET_RX_SUCCESS;
5581         }
5582
5583 out:
5584         gro_normal_one(napi, skb);
5585         return NET_RX_SUCCESS;
5586 }
5587
5588 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5589                                    bool flush_old)
5590 {
5591         struct list_head *head = &napi->gro_hash[index].list;
5592         struct sk_buff *skb, *p;
5593
5594         list_for_each_entry_safe_reverse(skb, p, head, list) {
5595                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5596                         return;
5597                 skb_list_del_init(skb);
5598                 napi_gro_complete(napi, skb);
5599                 napi->gro_hash[index].count--;
5600         }
5601
5602         if (!napi->gro_hash[index].count)
5603                 __clear_bit(index, &napi->gro_bitmask);
5604 }
5605
5606 /* napi->gro_hash[].list contains packets ordered by age.
5607  * youngest packets at the head of it.
5608  * Complete skbs in reverse order to reduce latencies.
5609  */
5610 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5611 {
5612         unsigned long bitmask = napi->gro_bitmask;
5613         unsigned int i, base = ~0U;
5614
5615         while ((i = ffs(bitmask)) != 0) {
5616                 bitmask >>= i;
5617                 base += i;
5618                 __napi_gro_flush_chain(napi, base, flush_old);
5619         }
5620 }
5621 EXPORT_SYMBOL(napi_gro_flush);
5622
5623 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5624                                           struct sk_buff *skb)
5625 {
5626         unsigned int maclen = skb->dev->hard_header_len;
5627         u32 hash = skb_get_hash_raw(skb);
5628         struct list_head *head;
5629         struct sk_buff *p;
5630
5631         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5632         list_for_each_entry(p, head, list) {
5633                 unsigned long diffs;
5634
5635                 NAPI_GRO_CB(p)->flush = 0;
5636
5637                 if (hash != skb_get_hash_raw(p)) {
5638                         NAPI_GRO_CB(p)->same_flow = 0;
5639                         continue;
5640                 }
5641
5642                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5643                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5644                 if (skb_vlan_tag_present(p))
5645                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5646                 diffs |= skb_metadata_dst_cmp(p, skb);
5647                 diffs |= skb_metadata_differs(p, skb);
5648                 if (maclen == ETH_HLEN)
5649                         diffs |= compare_ether_header(skb_mac_header(p),
5650                                                       skb_mac_header(skb));
5651                 else if (!diffs)
5652                         diffs = memcmp(skb_mac_header(p),
5653                                        skb_mac_header(skb),
5654                                        maclen);
5655                 NAPI_GRO_CB(p)->same_flow = !diffs;
5656         }
5657
5658         return head;
5659 }
5660
5661 static void skb_gro_reset_offset(struct sk_buff *skb)
5662 {
5663         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5664         const skb_frag_t *frag0 = &pinfo->frags[0];
5665
5666         NAPI_GRO_CB(skb)->data_offset = 0;
5667         NAPI_GRO_CB(skb)->frag0 = NULL;
5668         NAPI_GRO_CB(skb)->frag0_len = 0;
5669
5670         if (!skb_headlen(skb) && pinfo->nr_frags &&
5671             !PageHighMem(skb_frag_page(frag0))) {
5672                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5673                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5674                                                     skb_frag_size(frag0),
5675                                                     skb->end - skb->tail);
5676         }
5677 }
5678
5679 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5680 {
5681         struct skb_shared_info *pinfo = skb_shinfo(skb);
5682
5683         BUG_ON(skb->end - skb->tail < grow);
5684
5685         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5686
5687         skb->data_len -= grow;
5688         skb->tail += grow;
5689
5690         skb_frag_off_add(&pinfo->frags[0], grow);
5691         skb_frag_size_sub(&pinfo->frags[0], grow);
5692
5693         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5694                 skb_frag_unref(skb, 0);
5695                 memmove(pinfo->frags, pinfo->frags + 1,
5696                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5697         }
5698 }
5699
5700 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5701 {
5702         struct sk_buff *oldest;
5703
5704         oldest = list_last_entry(head, struct sk_buff, list);
5705
5706         /* We are called with head length >= MAX_GRO_SKBS, so this is
5707          * impossible.
5708          */
5709         if (WARN_ON_ONCE(!oldest))
5710                 return;
5711
5712         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5713          * SKB to the chain.
5714          */
5715         skb_list_del_init(oldest);
5716         napi_gro_complete(napi, oldest);
5717 }
5718
5719 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5720                                                            struct sk_buff *));
5721 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5722                                                            struct sk_buff *));
5723 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5724 {
5725         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5726         struct list_head *head = &offload_base;
5727         struct packet_offload *ptype;
5728         __be16 type = skb->protocol;
5729         struct list_head *gro_head;
5730         struct sk_buff *pp = NULL;
5731         enum gro_result ret;
5732         int same_flow;
5733         int grow;
5734
5735         if (netif_elide_gro(skb->dev))
5736                 goto normal;
5737
5738         gro_head = gro_list_prepare(napi, skb);
5739
5740         rcu_read_lock();
5741         list_for_each_entry_rcu(ptype, head, list) {
5742                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5743                         continue;
5744
5745                 skb_set_network_header(skb, skb_gro_offset(skb));
5746                 skb_reset_mac_len(skb);
5747                 NAPI_GRO_CB(skb)->same_flow = 0;
5748                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5749                 NAPI_GRO_CB(skb)->free = 0;
5750                 NAPI_GRO_CB(skb)->encap_mark = 0;
5751                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5752                 NAPI_GRO_CB(skb)->is_fou = 0;
5753                 NAPI_GRO_CB(skb)->is_atomic = 1;
5754                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5755
5756                 /* Setup for GRO checksum validation */
5757                 switch (skb->ip_summed) {
5758                 case CHECKSUM_COMPLETE:
5759                         NAPI_GRO_CB(skb)->csum = skb->csum;
5760                         NAPI_GRO_CB(skb)->csum_valid = 1;
5761                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5762                         break;
5763                 case CHECKSUM_UNNECESSARY:
5764                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5765                         NAPI_GRO_CB(skb)->csum_valid = 0;
5766                         break;
5767                 default:
5768                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5769                         NAPI_GRO_CB(skb)->csum_valid = 0;
5770                 }
5771
5772                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5773                                         ipv6_gro_receive, inet_gro_receive,
5774                                         gro_head, skb);
5775                 break;
5776         }
5777         rcu_read_unlock();
5778
5779         if (&ptype->list == head)
5780                 goto normal;
5781
5782         if (PTR_ERR(pp) == -EINPROGRESS) {
5783                 ret = GRO_CONSUMED;
5784                 goto ok;
5785         }
5786
5787         same_flow = NAPI_GRO_CB(skb)->same_flow;
5788         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5789
5790         if (pp) {
5791                 skb_list_del_init(pp);
5792                 napi_gro_complete(napi, pp);
5793                 napi->gro_hash[hash].count--;
5794         }
5795
5796         if (same_flow)
5797                 goto ok;
5798
5799         if (NAPI_GRO_CB(skb)->flush)
5800                 goto normal;
5801
5802         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5803                 gro_flush_oldest(napi, gro_head);
5804         } else {
5805                 napi->gro_hash[hash].count++;
5806         }
5807         NAPI_GRO_CB(skb)->count = 1;
5808         NAPI_GRO_CB(skb)->age = jiffies;
5809         NAPI_GRO_CB(skb)->last = skb;
5810         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5811         list_add(&skb->list, gro_head);
5812         ret = GRO_HELD;
5813
5814 pull:
5815         grow = skb_gro_offset(skb) - skb_headlen(skb);
5816         if (grow > 0)
5817                 gro_pull_from_frag0(skb, grow);
5818 ok:
5819         if (napi->gro_hash[hash].count) {
5820                 if (!test_bit(hash, &napi->gro_bitmask))
5821                         __set_bit(hash, &napi->gro_bitmask);
5822         } else if (test_bit(hash, &napi->gro_bitmask)) {
5823                 __clear_bit(hash, &napi->gro_bitmask);
5824         }
5825
5826         return ret;
5827
5828 normal:
5829         ret = GRO_NORMAL;
5830         goto pull;
5831 }
5832
5833 struct packet_offload *gro_find_receive_by_type(__be16 type)
5834 {
5835         struct list_head *offload_head = &offload_base;
5836         struct packet_offload *ptype;
5837
5838         list_for_each_entry_rcu(ptype, offload_head, list) {
5839                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5840                         continue;
5841                 return ptype;
5842         }
5843         return NULL;
5844 }
5845 EXPORT_SYMBOL(gro_find_receive_by_type);
5846
5847 struct packet_offload *gro_find_complete_by_type(__be16 type)
5848 {
5849         struct list_head *offload_head = &offload_base;
5850         struct packet_offload *ptype;
5851
5852         list_for_each_entry_rcu(ptype, offload_head, list) {
5853                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5854                         continue;
5855                 return ptype;
5856         }
5857         return NULL;
5858 }
5859 EXPORT_SYMBOL(gro_find_complete_by_type);
5860
5861 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5862 {
5863         skb_dst_drop(skb);
5864         skb_ext_put(skb);
5865         kmem_cache_free(skbuff_head_cache, skb);
5866 }
5867
5868 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5869                                     struct sk_buff *skb,
5870                                     gro_result_t ret)
5871 {
5872         switch (ret) {
5873         case GRO_NORMAL:
5874                 gro_normal_one(napi, skb);
5875                 break;
5876
5877         case GRO_DROP:
5878                 kfree_skb(skb);
5879                 break;
5880
5881         case GRO_MERGED_FREE:
5882                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5883                         napi_skb_free_stolen_head(skb);
5884                 else
5885                         __kfree_skb(skb);
5886                 break;
5887
5888         case GRO_HELD:
5889         case GRO_MERGED:
5890         case GRO_CONSUMED:
5891                 break;
5892         }
5893
5894         return ret;
5895 }
5896
5897 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5898 {
5899         gro_result_t ret;
5900
5901         skb_mark_napi_id(skb, napi);
5902         trace_napi_gro_receive_entry(skb);
5903
5904         skb_gro_reset_offset(skb);
5905
5906         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5907         trace_napi_gro_receive_exit(ret);
5908
5909         return ret;
5910 }
5911 EXPORT_SYMBOL(napi_gro_receive);
5912
5913 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5914 {
5915         if (unlikely(skb->pfmemalloc)) {
5916                 consume_skb(skb);
5917                 return;
5918         }
5919         __skb_pull(skb, skb_headlen(skb));
5920         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5921         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5922         __vlan_hwaccel_clear_tag(skb);
5923         skb->dev = napi->dev;
5924         skb->skb_iif = 0;
5925
5926         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5927         skb->pkt_type = PACKET_HOST;
5928
5929         skb->encapsulation = 0;
5930         skb_shinfo(skb)->gso_type = 0;
5931         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5932         skb_ext_reset(skb);
5933
5934         napi->skb = skb;
5935 }
5936
5937 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5938 {
5939         struct sk_buff *skb = napi->skb;
5940
5941         if (!skb) {
5942                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5943                 if (skb) {
5944                         napi->skb = skb;
5945                         skb_mark_napi_id(skb, napi);
5946                 }
5947         }
5948         return skb;
5949 }
5950 EXPORT_SYMBOL(napi_get_frags);
5951
5952 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5953                                       struct sk_buff *skb,
5954                                       gro_result_t ret)
5955 {
5956         switch (ret) {
5957         case GRO_NORMAL:
5958         case GRO_HELD:
5959                 __skb_push(skb, ETH_HLEN);
5960                 skb->protocol = eth_type_trans(skb, skb->dev);
5961                 if (ret == GRO_NORMAL)
5962                         gro_normal_one(napi, skb);
5963                 break;
5964
5965         case GRO_DROP:
5966                 napi_reuse_skb(napi, skb);
5967                 break;
5968
5969         case GRO_MERGED_FREE:
5970                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5971                         napi_skb_free_stolen_head(skb);
5972                 else
5973                         napi_reuse_skb(napi, skb);
5974                 break;
5975
5976         case GRO_MERGED:
5977         case GRO_CONSUMED:
5978                 break;
5979         }
5980
5981         return ret;
5982 }
5983
5984 /* Upper GRO stack assumes network header starts at gro_offset=0
5985  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5986  * We copy ethernet header into skb->data to have a common layout.
5987  */
5988 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5989 {
5990         struct sk_buff *skb = napi->skb;
5991         const struct ethhdr *eth;
5992         unsigned int hlen = sizeof(*eth);
5993
5994         napi->skb = NULL;
5995
5996         skb_reset_mac_header(skb);
5997         skb_gro_reset_offset(skb);
5998
5999         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6000                 eth = skb_gro_header_slow(skb, hlen, 0);
6001                 if (unlikely(!eth)) {
6002                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6003                                              __func__, napi->dev->name);
6004                         napi_reuse_skb(napi, skb);
6005                         return NULL;
6006                 }
6007         } else {
6008                 eth = (const struct ethhdr *)skb->data;
6009                 gro_pull_from_frag0(skb, hlen);
6010                 NAPI_GRO_CB(skb)->frag0 += hlen;
6011                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6012         }
6013         __skb_pull(skb, hlen);
6014
6015         /*
6016          * This works because the only protocols we care about don't require
6017          * special handling.
6018          * We'll fix it up properly in napi_frags_finish()
6019          */
6020         skb->protocol = eth->h_proto;
6021
6022         return skb;
6023 }
6024
6025 gro_result_t napi_gro_frags(struct napi_struct *napi)
6026 {
6027         gro_result_t ret;
6028         struct sk_buff *skb = napi_frags_skb(napi);
6029
6030         if (!skb)
6031                 return GRO_DROP;
6032
6033         trace_napi_gro_frags_entry(skb);
6034
6035         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6036         trace_napi_gro_frags_exit(ret);
6037
6038         return ret;
6039 }
6040 EXPORT_SYMBOL(napi_gro_frags);
6041
6042 /* Compute the checksum from gro_offset and return the folded value
6043  * after adding in any pseudo checksum.
6044  */
6045 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6046 {
6047         __wsum wsum;
6048         __sum16 sum;
6049
6050         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6051
6052         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6053         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6054         /* See comments in __skb_checksum_complete(). */
6055         if (likely(!sum)) {
6056                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6057                     !skb->csum_complete_sw)
6058                         netdev_rx_csum_fault(skb->dev, skb);
6059         }
6060
6061         NAPI_GRO_CB(skb)->csum = wsum;
6062         NAPI_GRO_CB(skb)->csum_valid = 1;
6063
6064         return sum;
6065 }
6066 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6067
6068 static void net_rps_send_ipi(struct softnet_data *remsd)
6069 {
6070 #ifdef CONFIG_RPS
6071         while (remsd) {
6072                 struct softnet_data *next = remsd->rps_ipi_next;
6073
6074                 if (cpu_online(remsd->cpu))
6075                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6076                 remsd = next;
6077         }
6078 #endif
6079 }
6080
6081 /*
6082  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6083  * Note: called with local irq disabled, but exits with local irq enabled.
6084  */
6085 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6086 {
6087 #ifdef CONFIG_RPS
6088         struct softnet_data *remsd = sd->rps_ipi_list;
6089
6090         if (remsd) {
6091                 sd->rps_ipi_list = NULL;
6092
6093                 local_irq_enable();
6094
6095                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6096                 net_rps_send_ipi(remsd);
6097         } else
6098 #endif
6099                 local_irq_enable();
6100 }
6101
6102 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6103 {
6104 #ifdef CONFIG_RPS
6105         return sd->rps_ipi_list != NULL;
6106 #else
6107         return false;
6108 #endif
6109 }
6110
6111 static int process_backlog(struct napi_struct *napi, int quota)
6112 {
6113         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6114         bool again = true;
6115         int work = 0;
6116
6117         /* Check if we have pending ipi, its better to send them now,
6118          * not waiting net_rx_action() end.
6119          */
6120         if (sd_has_rps_ipi_waiting(sd)) {
6121                 local_irq_disable();
6122                 net_rps_action_and_irq_enable(sd);
6123         }
6124
6125         napi->weight = dev_rx_weight;
6126         while (again) {
6127                 struct sk_buff *skb;
6128
6129                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6130                         rcu_read_lock();
6131                         __netif_receive_skb(skb);
6132                         rcu_read_unlock();
6133                         input_queue_head_incr(sd);
6134                         if (++work >= quota)
6135                                 return work;
6136
6137                 }
6138
6139                 local_irq_disable();
6140                 rps_lock(sd);
6141                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6142                         /*
6143                          * Inline a custom version of __napi_complete().
6144                          * only current cpu owns and manipulates this napi,
6145                          * and NAPI_STATE_SCHED is the only possible flag set
6146                          * on backlog.
6147                          * We can use a plain write instead of clear_bit(),
6148                          * and we dont need an smp_mb() memory barrier.
6149                          */
6150                         napi->state = 0;
6151                         again = false;
6152                 } else {
6153                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6154                                                    &sd->process_queue);
6155                 }
6156                 rps_unlock(sd);
6157                 local_irq_enable();
6158         }
6159
6160         return work;
6161 }
6162
6163 /**
6164  * __napi_schedule - schedule for receive
6165  * @n: entry to schedule
6166  *
6167  * The entry's receive function will be scheduled to run.
6168  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6169  */
6170 void __napi_schedule(struct napi_struct *n)
6171 {
6172         unsigned long flags;
6173
6174         local_irq_save(flags);
6175         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6176         local_irq_restore(flags);
6177 }
6178 EXPORT_SYMBOL(__napi_schedule);
6179
6180 /**
6181  *      napi_schedule_prep - check if napi can be scheduled
6182  *      @n: napi context
6183  *
6184  * Test if NAPI routine is already running, and if not mark
6185  * it as running.  This is used as a condition variable
6186  * insure only one NAPI poll instance runs.  We also make
6187  * sure there is no pending NAPI disable.
6188  */
6189 bool napi_schedule_prep(struct napi_struct *n)
6190 {
6191         unsigned long val, new;
6192
6193         do {
6194                 val = READ_ONCE(n->state);
6195                 if (unlikely(val & NAPIF_STATE_DISABLE))
6196                         return false;
6197                 new = val | NAPIF_STATE_SCHED;
6198
6199                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6200                  * This was suggested by Alexander Duyck, as compiler
6201                  * emits better code than :
6202                  * if (val & NAPIF_STATE_SCHED)
6203                  *     new |= NAPIF_STATE_MISSED;
6204                  */
6205                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6206                                                    NAPIF_STATE_MISSED;
6207         } while (cmpxchg(&n->state, val, new) != val);
6208
6209         return !(val & NAPIF_STATE_SCHED);
6210 }
6211 EXPORT_SYMBOL(napi_schedule_prep);
6212
6213 /**
6214  * __napi_schedule_irqoff - schedule for receive
6215  * @n: entry to schedule
6216  *
6217  * Variant of __napi_schedule() assuming hard irqs are masked
6218  */
6219 void __napi_schedule_irqoff(struct napi_struct *n)
6220 {
6221         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6222 }
6223 EXPORT_SYMBOL(__napi_schedule_irqoff);
6224
6225 bool napi_complete_done(struct napi_struct *n, int work_done)
6226 {
6227         unsigned long flags, val, new;
6228
6229         /*
6230          * 1) Don't let napi dequeue from the cpu poll list
6231          *    just in case its running on a different cpu.
6232          * 2) If we are busy polling, do nothing here, we have
6233          *    the guarantee we will be called later.
6234          */
6235         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6236                                  NAPIF_STATE_IN_BUSY_POLL)))
6237                 return false;
6238
6239         if (n->gro_bitmask) {
6240                 unsigned long timeout = 0;
6241
6242                 if (work_done)
6243                         timeout = n->dev->gro_flush_timeout;
6244
6245                 /* When the NAPI instance uses a timeout and keeps postponing
6246                  * it, we need to bound somehow the time packets are kept in
6247                  * the GRO layer
6248                  */
6249                 napi_gro_flush(n, !!timeout);
6250                 if (timeout)
6251                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6252                                       HRTIMER_MODE_REL_PINNED);
6253         }
6254
6255         gro_normal_list(n);
6256
6257         if (unlikely(!list_empty(&n->poll_list))) {
6258                 /* If n->poll_list is not empty, we need to mask irqs */
6259                 local_irq_save(flags);
6260                 list_del_init(&n->poll_list);
6261                 local_irq_restore(flags);
6262         }
6263
6264         do {
6265                 val = READ_ONCE(n->state);
6266
6267                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6268
6269                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6270
6271                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6272                  * because we will call napi->poll() one more time.
6273                  * This C code was suggested by Alexander Duyck to help gcc.
6274                  */
6275                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6276                                                     NAPIF_STATE_SCHED;
6277         } while (cmpxchg(&n->state, val, new) != val);
6278
6279         if (unlikely(val & NAPIF_STATE_MISSED)) {
6280                 __napi_schedule(n);
6281                 return false;
6282         }
6283
6284         return true;
6285 }
6286 EXPORT_SYMBOL(napi_complete_done);
6287
6288 /* must be called under rcu_read_lock(), as we dont take a reference */
6289 static struct napi_struct *napi_by_id(unsigned int napi_id)
6290 {
6291         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6292         struct napi_struct *napi;
6293
6294         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6295                 if (napi->napi_id == napi_id)
6296                         return napi;
6297
6298         return NULL;
6299 }
6300
6301 #if defined(CONFIG_NET_RX_BUSY_POLL)
6302
6303 #define BUSY_POLL_BUDGET 8
6304
6305 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6306 {
6307         int rc;
6308
6309         /* Busy polling means there is a high chance device driver hard irq
6310          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6311          * set in napi_schedule_prep().
6312          * Since we are about to call napi->poll() once more, we can safely
6313          * clear NAPI_STATE_MISSED.
6314          *
6315          * Note: x86 could use a single "lock and ..." instruction
6316          * to perform these two clear_bit()
6317          */
6318         clear_bit(NAPI_STATE_MISSED, &napi->state);
6319         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6320
6321         local_bh_disable();
6322
6323         /* All we really want here is to re-enable device interrupts.
6324          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6325          */
6326         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6327         /* We can't gro_normal_list() here, because napi->poll() might have
6328          * rearmed the napi (napi_complete_done()) in which case it could
6329          * already be running on another CPU.
6330          */
6331         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6332         netpoll_poll_unlock(have_poll_lock);
6333         if (rc == BUSY_POLL_BUDGET) {
6334                 /* As the whole budget was spent, we still own the napi so can
6335                  * safely handle the rx_list.
6336                  */
6337                 gro_normal_list(napi);
6338                 __napi_schedule(napi);
6339         }
6340         local_bh_enable();
6341 }
6342
6343 void napi_busy_loop(unsigned int napi_id,
6344                     bool (*loop_end)(void *, unsigned long),
6345                     void *loop_end_arg)
6346 {
6347         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6348         int (*napi_poll)(struct napi_struct *napi, int budget);
6349         void *have_poll_lock = NULL;
6350         struct napi_struct *napi;
6351
6352 restart:
6353         napi_poll = NULL;
6354
6355         rcu_read_lock();
6356
6357         napi = napi_by_id(napi_id);
6358         if (!napi)
6359                 goto out;
6360
6361         preempt_disable();
6362         for (;;) {
6363                 int work = 0;
6364
6365                 local_bh_disable();
6366                 if (!napi_poll) {
6367                         unsigned long val = READ_ONCE(napi->state);
6368
6369                         /* If multiple threads are competing for this napi,
6370                          * we avoid dirtying napi->state as much as we can.
6371                          */
6372                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6373                                    NAPIF_STATE_IN_BUSY_POLL))
6374                                 goto count;
6375                         if (cmpxchg(&napi->state, val,
6376                                     val | NAPIF_STATE_IN_BUSY_POLL |
6377                                           NAPIF_STATE_SCHED) != val)
6378                                 goto count;
6379                         have_poll_lock = netpoll_poll_lock(napi);
6380                         napi_poll = napi->poll;
6381                 }
6382                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6383                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6384                 gro_normal_list(napi);
6385 count:
6386                 if (work > 0)
6387                         __NET_ADD_STATS(dev_net(napi->dev),
6388                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6389                 local_bh_enable();
6390
6391                 if (!loop_end || loop_end(loop_end_arg, start_time))
6392                         break;
6393
6394                 if (unlikely(need_resched())) {
6395                         if (napi_poll)
6396                                 busy_poll_stop(napi, have_poll_lock);
6397                         preempt_enable();
6398                         rcu_read_unlock();
6399                         cond_resched();
6400                         if (loop_end(loop_end_arg, start_time))
6401                                 return;
6402                         goto restart;
6403                 }
6404                 cpu_relax();
6405         }
6406         if (napi_poll)
6407                 busy_poll_stop(napi, have_poll_lock);
6408         preempt_enable();
6409 out:
6410         rcu_read_unlock();
6411 }
6412 EXPORT_SYMBOL(napi_busy_loop);
6413
6414 #endif /* CONFIG_NET_RX_BUSY_POLL */
6415
6416 static void napi_hash_add(struct napi_struct *napi)
6417 {
6418         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6419             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6420                 return;
6421
6422         spin_lock(&napi_hash_lock);
6423
6424         /* 0..NR_CPUS range is reserved for sender_cpu use */
6425         do {
6426                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6427                         napi_gen_id = MIN_NAPI_ID;
6428         } while (napi_by_id(napi_gen_id));
6429         napi->napi_id = napi_gen_id;
6430
6431         hlist_add_head_rcu(&napi->napi_hash_node,
6432                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6433
6434         spin_unlock(&napi_hash_lock);
6435 }
6436
6437 /* Warning : caller is responsible to make sure rcu grace period
6438  * is respected before freeing memory containing @napi
6439  */
6440 bool napi_hash_del(struct napi_struct *napi)
6441 {
6442         bool rcu_sync_needed = false;
6443
6444         spin_lock(&napi_hash_lock);
6445
6446         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6447                 rcu_sync_needed = true;
6448                 hlist_del_rcu(&napi->napi_hash_node);
6449         }
6450         spin_unlock(&napi_hash_lock);
6451         return rcu_sync_needed;
6452 }
6453 EXPORT_SYMBOL_GPL(napi_hash_del);
6454
6455 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6456 {
6457         struct napi_struct *napi;
6458
6459         napi = container_of(timer, struct napi_struct, timer);
6460
6461         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6462          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6463          */
6464         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6465             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6466                 __napi_schedule_irqoff(napi);
6467
6468         return HRTIMER_NORESTART;
6469 }
6470
6471 static void init_gro_hash(struct napi_struct *napi)
6472 {
6473         int i;
6474
6475         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6476                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6477                 napi->gro_hash[i].count = 0;
6478         }
6479         napi->gro_bitmask = 0;
6480 }
6481
6482 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6483                     int (*poll)(struct napi_struct *, int), int weight)
6484 {
6485         INIT_LIST_HEAD(&napi->poll_list);
6486         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6487         napi->timer.function = napi_watchdog;
6488         init_gro_hash(napi);
6489         napi->skb = NULL;
6490         INIT_LIST_HEAD(&napi->rx_list);
6491         napi->rx_count = 0;
6492         napi->poll = poll;
6493         if (weight > NAPI_POLL_WEIGHT)
6494                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6495                                 weight);
6496         napi->weight = weight;
6497         list_add(&napi->dev_list, &dev->napi_list);
6498         napi->dev = dev;
6499 #ifdef CONFIG_NETPOLL
6500         napi->poll_owner = -1;
6501 #endif
6502         set_bit(NAPI_STATE_SCHED, &napi->state);
6503         napi_hash_add(napi);
6504 }
6505 EXPORT_SYMBOL(netif_napi_add);
6506
6507 void napi_disable(struct napi_struct *n)
6508 {
6509         might_sleep();
6510         set_bit(NAPI_STATE_DISABLE, &n->state);
6511
6512         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6513                 msleep(1);
6514         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6515                 msleep(1);
6516
6517         hrtimer_cancel(&n->timer);
6518
6519         clear_bit(NAPI_STATE_DISABLE, &n->state);
6520 }
6521 EXPORT_SYMBOL(napi_disable);
6522
6523 static void flush_gro_hash(struct napi_struct *napi)
6524 {
6525         int i;
6526
6527         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6528                 struct sk_buff *skb, *n;
6529
6530                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6531                         kfree_skb(skb);
6532                 napi->gro_hash[i].count = 0;
6533         }
6534 }
6535
6536 /* Must be called in process context */
6537 void netif_napi_del(struct napi_struct *napi)
6538 {
6539         might_sleep();
6540         if (napi_hash_del(napi))
6541                 synchronize_net();
6542         list_del_init(&napi->dev_list);
6543         napi_free_frags(napi);
6544
6545         flush_gro_hash(napi);
6546         napi->gro_bitmask = 0;
6547 }
6548 EXPORT_SYMBOL(netif_napi_del);
6549
6550 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6551 {
6552         void *have;
6553         int work, weight;
6554
6555         list_del_init(&n->poll_list);
6556
6557         have = netpoll_poll_lock(n);
6558
6559         weight = n->weight;
6560
6561         /* This NAPI_STATE_SCHED test is for avoiding a race
6562          * with netpoll's poll_napi().  Only the entity which
6563          * obtains the lock and sees NAPI_STATE_SCHED set will
6564          * actually make the ->poll() call.  Therefore we avoid
6565          * accidentally calling ->poll() when NAPI is not scheduled.
6566          */
6567         work = 0;
6568         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6569                 work = n->poll(n, weight);
6570                 trace_napi_poll(n, work, weight);
6571         }
6572
6573         WARN_ON_ONCE(work > weight);
6574
6575         if (likely(work < weight))
6576                 goto out_unlock;
6577
6578         /* Drivers must not modify the NAPI state if they
6579          * consume the entire weight.  In such cases this code
6580          * still "owns" the NAPI instance and therefore can
6581          * move the instance around on the list at-will.
6582          */
6583         if (unlikely(napi_disable_pending(n))) {
6584                 napi_complete(n);
6585                 goto out_unlock;
6586         }
6587
6588         if (n->gro_bitmask) {
6589                 /* flush too old packets
6590                  * If HZ < 1000, flush all packets.
6591                  */
6592                 napi_gro_flush(n, HZ >= 1000);
6593         }
6594
6595         gro_normal_list(n);
6596
6597         /* Some drivers may have called napi_schedule
6598          * prior to exhausting their budget.
6599          */
6600         if (unlikely(!list_empty(&n->poll_list))) {
6601                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6602                              n->dev ? n->dev->name : "backlog");
6603                 goto out_unlock;
6604         }
6605
6606         list_add_tail(&n->poll_list, repoll);
6607
6608 out_unlock:
6609         netpoll_poll_unlock(have);
6610
6611         return work;
6612 }
6613
6614 static __latent_entropy void net_rx_action(struct softirq_action *h)
6615 {
6616         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6617         unsigned long time_limit = jiffies +
6618                 usecs_to_jiffies(netdev_budget_usecs);
6619         int budget = netdev_budget;
6620         LIST_HEAD(list);
6621         LIST_HEAD(repoll);
6622
6623         local_irq_disable();
6624         list_splice_init(&sd->poll_list, &list);
6625         local_irq_enable();
6626
6627         for (;;) {
6628                 struct napi_struct *n;
6629
6630                 if (list_empty(&list)) {
6631                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6632                                 goto out;
6633                         break;
6634                 }
6635
6636                 n = list_first_entry(&list, struct napi_struct, poll_list);
6637                 budget -= napi_poll(n, &repoll);
6638
6639                 /* If softirq window is exhausted then punt.
6640                  * Allow this to run for 2 jiffies since which will allow
6641                  * an average latency of 1.5/HZ.
6642                  */
6643                 if (unlikely(budget <= 0 ||
6644                              time_after_eq(jiffies, time_limit))) {
6645                         sd->time_squeeze++;
6646                         break;
6647                 }
6648         }
6649
6650         local_irq_disable();
6651
6652         list_splice_tail_init(&sd->poll_list, &list);
6653         list_splice_tail(&repoll, &list);
6654         list_splice(&list, &sd->poll_list);
6655         if (!list_empty(&sd->poll_list))
6656                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6657
6658         net_rps_action_and_irq_enable(sd);
6659 out:
6660         __kfree_skb_flush();
6661 }
6662
6663 struct netdev_adjacent {
6664         struct net_device *dev;
6665
6666         /* upper master flag, there can only be one master device per list */
6667         bool master;
6668
6669         /* lookup ignore flag */
6670         bool ignore;
6671
6672         /* counter for the number of times this device was added to us */
6673         u16 ref_nr;
6674
6675         /* private field for the users */
6676         void *private;
6677
6678         struct list_head list;
6679         struct rcu_head rcu;
6680 };
6681
6682 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6683                                                  struct list_head *adj_list)
6684 {
6685         struct netdev_adjacent *adj;
6686
6687         list_for_each_entry(adj, adj_list, list) {
6688                 if (adj->dev == adj_dev)
6689                         return adj;
6690         }
6691         return NULL;
6692 }
6693
6694 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6695 {
6696         struct net_device *dev = data;
6697
6698         return upper_dev == dev;
6699 }
6700
6701 /**
6702  * netdev_has_upper_dev - Check if device is linked to an upper device
6703  * @dev: device
6704  * @upper_dev: upper device to check
6705  *
6706  * Find out if a device is linked to specified upper device and return true
6707  * in case it is. Note that this checks only immediate upper device,
6708  * not through a complete stack of devices. The caller must hold the RTNL lock.
6709  */
6710 bool netdev_has_upper_dev(struct net_device *dev,
6711                           struct net_device *upper_dev)
6712 {
6713         ASSERT_RTNL();
6714
6715         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6716                                              upper_dev);
6717 }
6718 EXPORT_SYMBOL(netdev_has_upper_dev);
6719
6720 /**
6721  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6722  * @dev: device
6723  * @upper_dev: upper device to check
6724  *
6725  * Find out if a device is linked to specified upper device and return true
6726  * in case it is. Note that this checks the entire upper device chain.
6727  * The caller must hold rcu lock.
6728  */
6729
6730 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6731                                   struct net_device *upper_dev)
6732 {
6733         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6734                                                upper_dev);
6735 }
6736 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6737
6738 /**
6739  * netdev_has_any_upper_dev - Check if device is linked to some device
6740  * @dev: device
6741  *
6742  * Find out if a device is linked to an upper device and return true in case
6743  * it is. The caller must hold the RTNL lock.
6744  */
6745 bool netdev_has_any_upper_dev(struct net_device *dev)
6746 {
6747         ASSERT_RTNL();
6748
6749         return !list_empty(&dev->adj_list.upper);
6750 }
6751 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6752
6753 /**
6754  * netdev_master_upper_dev_get - Get master upper device
6755  * @dev: device
6756  *
6757  * Find a master upper device and return pointer to it or NULL in case
6758  * it's not there. The caller must hold the RTNL lock.
6759  */
6760 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6761 {
6762         struct netdev_adjacent *upper;
6763
6764         ASSERT_RTNL();
6765
6766         if (list_empty(&dev->adj_list.upper))
6767                 return NULL;
6768
6769         upper = list_first_entry(&dev->adj_list.upper,
6770                                  struct netdev_adjacent, list);
6771         if (likely(upper->master))
6772                 return upper->dev;
6773         return NULL;
6774 }
6775 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6776
6777 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6778 {
6779         struct netdev_adjacent *upper;
6780
6781         ASSERT_RTNL();
6782
6783         if (list_empty(&dev->adj_list.upper))
6784                 return NULL;
6785
6786         upper = list_first_entry(&dev->adj_list.upper,
6787                                  struct netdev_adjacent, list);
6788         if (likely(upper->master) && !upper->ignore)
6789                 return upper->dev;
6790         return NULL;
6791 }
6792
6793 /**
6794  * netdev_has_any_lower_dev - Check if device is linked to some device
6795  * @dev: device
6796  *
6797  * Find out if a device is linked to a lower device and return true in case
6798  * it is. The caller must hold the RTNL lock.
6799  */
6800 static bool netdev_has_any_lower_dev(struct net_device *dev)
6801 {
6802         ASSERT_RTNL();
6803
6804         return !list_empty(&dev->adj_list.lower);
6805 }
6806
6807 void *netdev_adjacent_get_private(struct list_head *adj_list)
6808 {
6809         struct netdev_adjacent *adj;
6810
6811         adj = list_entry(adj_list, struct netdev_adjacent, list);
6812
6813         return adj->private;
6814 }
6815 EXPORT_SYMBOL(netdev_adjacent_get_private);
6816
6817 /**
6818  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6819  * @dev: device
6820  * @iter: list_head ** of the current position
6821  *
6822  * Gets the next device from the dev's upper list, starting from iter
6823  * position. The caller must hold RCU read lock.
6824  */
6825 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6826                                                  struct list_head **iter)
6827 {
6828         struct netdev_adjacent *upper;
6829
6830         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6831
6832         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6833
6834         if (&upper->list == &dev->adj_list.upper)
6835                 return NULL;
6836
6837         *iter = &upper->list;
6838
6839         return upper->dev;
6840 }
6841 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6842
6843 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6844                                                   struct list_head **iter,
6845                                                   bool *ignore)
6846 {
6847         struct netdev_adjacent *upper;
6848
6849         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6850
6851         if (&upper->list == &dev->adj_list.upper)
6852                 return NULL;
6853
6854         *iter = &upper->list;
6855         *ignore = upper->ignore;
6856
6857         return upper->dev;
6858 }
6859
6860 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6861                                                     struct list_head **iter)
6862 {
6863         struct netdev_adjacent *upper;
6864
6865         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6866
6867         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6868
6869         if (&upper->list == &dev->adj_list.upper)
6870                 return NULL;
6871
6872         *iter = &upper->list;
6873
6874         return upper->dev;
6875 }
6876
6877 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6878                                        int (*fn)(struct net_device *dev,
6879                                                  void *data),
6880                                        void *data)
6881 {
6882         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6883         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6884         int ret, cur = 0;
6885         bool ignore;
6886
6887         now = dev;
6888         iter = &dev->adj_list.upper;
6889
6890         while (1) {
6891                 if (now != dev) {
6892                         ret = fn(now, data);
6893                         if (ret)
6894                                 return ret;
6895                 }
6896
6897                 next = NULL;
6898                 while (1) {
6899                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6900                         if (!udev)
6901                                 break;
6902                         if (ignore)
6903                                 continue;
6904
6905                         next = udev;
6906                         niter = &udev->adj_list.upper;
6907                         dev_stack[cur] = now;
6908                         iter_stack[cur++] = iter;
6909                         break;
6910                 }
6911
6912                 if (!next) {
6913                         if (!cur)
6914                                 return 0;
6915                         next = dev_stack[--cur];
6916                         niter = iter_stack[cur];
6917                 }
6918
6919                 now = next;
6920                 iter = niter;
6921         }
6922
6923         return 0;
6924 }
6925
6926 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6927                                   int (*fn)(struct net_device *dev,
6928                                             void *data),
6929                                   void *data)
6930 {
6931         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6932         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6933         int ret, cur = 0;
6934
6935         now = dev;
6936         iter = &dev->adj_list.upper;
6937
6938         while (1) {
6939                 if (now != dev) {
6940                         ret = fn(now, data);
6941                         if (ret)
6942                                 return ret;
6943                 }
6944
6945                 next = NULL;
6946                 while (1) {
6947                         udev = netdev_next_upper_dev_rcu(now, &iter);
6948                         if (!udev)
6949                                 break;
6950
6951                         next = udev;
6952                         niter = &udev->adj_list.upper;
6953                         dev_stack[cur] = now;
6954                         iter_stack[cur++] = iter;
6955                         break;
6956                 }
6957
6958                 if (!next) {
6959                         if (!cur)
6960                                 return 0;
6961                         next = dev_stack[--cur];
6962                         niter = iter_stack[cur];
6963                 }
6964
6965                 now = next;
6966                 iter = niter;
6967         }
6968
6969         return 0;
6970 }
6971 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6972
6973 static bool __netdev_has_upper_dev(struct net_device *dev,
6974                                    struct net_device *upper_dev)
6975 {
6976         ASSERT_RTNL();
6977
6978         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6979                                            upper_dev);
6980 }
6981
6982 /**
6983  * netdev_lower_get_next_private - Get the next ->private from the
6984  *                                 lower neighbour list
6985  * @dev: device
6986  * @iter: list_head ** of the current position
6987  *
6988  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6989  * list, starting from iter position. The caller must hold either hold the
6990  * RTNL lock or its own locking that guarantees that the neighbour lower
6991  * list will remain unchanged.
6992  */
6993 void *netdev_lower_get_next_private(struct net_device *dev,
6994                                     struct list_head **iter)
6995 {
6996         struct netdev_adjacent *lower;
6997
6998         lower = list_entry(*iter, struct netdev_adjacent, list);
6999
7000         if (&lower->list == &dev->adj_list.lower)
7001                 return NULL;
7002
7003         *iter = lower->list.next;
7004
7005         return lower->private;
7006 }
7007 EXPORT_SYMBOL(netdev_lower_get_next_private);
7008
7009 /**
7010  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7011  *                                     lower neighbour list, RCU
7012  *                                     variant
7013  * @dev: device
7014  * @iter: list_head ** of the current position
7015  *
7016  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7017  * list, starting from iter position. The caller must hold RCU read lock.
7018  */
7019 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7020                                         struct list_head **iter)
7021 {
7022         struct netdev_adjacent *lower;
7023
7024         WARN_ON_ONCE(!rcu_read_lock_held());
7025
7026         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7027
7028         if (&lower->list == &dev->adj_list.lower)
7029                 return NULL;
7030
7031         *iter = &lower->list;
7032
7033         return lower->private;
7034 }
7035 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7036
7037 /**
7038  * netdev_lower_get_next - Get the next device from the lower neighbour
7039  *                         list
7040  * @dev: device
7041  * @iter: list_head ** of the current position
7042  *
7043  * Gets the next netdev_adjacent from the dev's lower neighbour
7044  * list, starting from iter position. The caller must hold RTNL lock or
7045  * its own locking that guarantees that the neighbour lower
7046  * list will remain unchanged.
7047  */
7048 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7049 {
7050         struct netdev_adjacent *lower;
7051
7052         lower = list_entry(*iter, struct netdev_adjacent, list);
7053
7054         if (&lower->list == &dev->adj_list.lower)
7055                 return NULL;
7056
7057         *iter = lower->list.next;
7058
7059         return lower->dev;
7060 }
7061 EXPORT_SYMBOL(netdev_lower_get_next);
7062
7063 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7064                                                 struct list_head **iter)
7065 {
7066         struct netdev_adjacent *lower;
7067
7068         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7069
7070         if (&lower->list == &dev->adj_list.lower)
7071                 return NULL;
7072
7073         *iter = &lower->list;
7074
7075         return lower->dev;
7076 }
7077
7078 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7079                                                   struct list_head **iter,
7080                                                   bool *ignore)
7081 {
7082         struct netdev_adjacent *lower;
7083
7084         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7085
7086         if (&lower->list == &dev->adj_list.lower)
7087                 return NULL;
7088
7089         *iter = &lower->list;
7090         *ignore = lower->ignore;
7091
7092         return lower->dev;
7093 }
7094
7095 int netdev_walk_all_lower_dev(struct net_device *dev,
7096                               int (*fn)(struct net_device *dev,
7097                                         void *data),
7098                               void *data)
7099 {
7100         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7101         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7102         int ret, cur = 0;
7103
7104         now = dev;
7105         iter = &dev->adj_list.lower;
7106
7107         while (1) {
7108                 if (now != dev) {
7109                         ret = fn(now, data);
7110                         if (ret)
7111                                 return ret;
7112                 }
7113
7114                 next = NULL;
7115                 while (1) {
7116                         ldev = netdev_next_lower_dev(now, &iter);
7117                         if (!ldev)
7118                                 break;
7119
7120                         next = ldev;
7121                         niter = &ldev->adj_list.lower;
7122                         dev_stack[cur] = now;
7123                         iter_stack[cur++] = iter;
7124                         break;
7125                 }
7126
7127                 if (!next) {
7128                         if (!cur)
7129                                 return 0;
7130                         next = dev_stack[--cur];
7131                         niter = iter_stack[cur];
7132                 }
7133
7134                 now = next;
7135                 iter = niter;
7136         }
7137
7138         return 0;
7139 }
7140 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7141
7142 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7143                                        int (*fn)(struct net_device *dev,
7144                                                  void *data),
7145                                        void *data)
7146 {
7147         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7148         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7149         int ret, cur = 0;
7150         bool ignore;
7151
7152         now = dev;
7153         iter = &dev->adj_list.lower;
7154
7155         while (1) {
7156                 if (now != dev) {
7157                         ret = fn(now, data);
7158                         if (ret)
7159                                 return ret;
7160                 }
7161
7162                 next = NULL;
7163                 while (1) {
7164                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7165                         if (!ldev)
7166                                 break;
7167                         if (ignore)
7168                                 continue;
7169
7170                         next = ldev;
7171                         niter = &ldev->adj_list.lower;
7172                         dev_stack[cur] = now;
7173                         iter_stack[cur++] = iter;
7174                         break;
7175                 }
7176
7177                 if (!next) {
7178                         if (!cur)
7179                                 return 0;
7180                         next = dev_stack[--cur];
7181                         niter = iter_stack[cur];
7182                 }
7183
7184                 now = next;
7185                 iter = niter;
7186         }
7187
7188         return 0;
7189 }
7190
7191 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7192                                              struct list_head **iter)
7193 {
7194         struct netdev_adjacent *lower;
7195
7196         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7197         if (&lower->list == &dev->adj_list.lower)
7198                 return NULL;
7199
7200         *iter = &lower->list;
7201
7202         return lower->dev;
7203 }
7204 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7205
7206 static u8 __netdev_upper_depth(struct net_device *dev)
7207 {
7208         struct net_device *udev;
7209         struct list_head *iter;
7210         u8 max_depth = 0;
7211         bool ignore;
7212
7213         for (iter = &dev->adj_list.upper,
7214              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7215              udev;
7216              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7217                 if (ignore)
7218                         continue;
7219                 if (max_depth < udev->upper_level)
7220                         max_depth = udev->upper_level;
7221         }
7222
7223         return max_depth;
7224 }
7225
7226 static u8 __netdev_lower_depth(struct net_device *dev)
7227 {
7228         struct net_device *ldev;
7229         struct list_head *iter;
7230         u8 max_depth = 0;
7231         bool ignore;
7232
7233         for (iter = &dev->adj_list.lower,
7234              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7235              ldev;
7236              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7237                 if (ignore)
7238                         continue;
7239                 if (max_depth < ldev->lower_level)
7240                         max_depth = ldev->lower_level;
7241         }
7242
7243         return max_depth;
7244 }
7245
7246 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7247 {
7248         dev->upper_level = __netdev_upper_depth(dev) + 1;
7249         return 0;
7250 }
7251
7252 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7253 {
7254         dev->lower_level = __netdev_lower_depth(dev) + 1;
7255         return 0;
7256 }
7257
7258 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7259                                   int (*fn)(struct net_device *dev,
7260                                             void *data),
7261                                   void *data)
7262 {
7263         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7264         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7265         int ret, cur = 0;
7266
7267         now = dev;
7268         iter = &dev->adj_list.lower;
7269
7270         while (1) {
7271                 if (now != dev) {
7272                         ret = fn(now, data);
7273                         if (ret)
7274                                 return ret;
7275                 }
7276
7277                 next = NULL;
7278                 while (1) {
7279                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7280                         if (!ldev)
7281                                 break;
7282
7283                         next = ldev;
7284                         niter = &ldev->adj_list.lower;
7285                         dev_stack[cur] = now;
7286                         iter_stack[cur++] = iter;
7287                         break;
7288                 }
7289
7290                 if (!next) {
7291                         if (!cur)
7292                                 return 0;
7293                         next = dev_stack[--cur];
7294                         niter = iter_stack[cur];
7295                 }
7296
7297                 now = next;
7298                 iter = niter;
7299         }
7300
7301         return 0;
7302 }
7303 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7304
7305 /**
7306  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7307  *                                     lower neighbour list, RCU
7308  *                                     variant
7309  * @dev: device
7310  *
7311  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7312  * list. The caller must hold RCU read lock.
7313  */
7314 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7315 {
7316         struct netdev_adjacent *lower;
7317
7318         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7319                         struct netdev_adjacent, list);
7320         if (lower)
7321                 return lower->private;
7322         return NULL;
7323 }
7324 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7325
7326 /**
7327  * netdev_master_upper_dev_get_rcu - Get master upper device
7328  * @dev: device
7329  *
7330  * Find a master upper device and return pointer to it or NULL in case
7331  * it's not there. The caller must hold the RCU read lock.
7332  */
7333 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7334 {
7335         struct netdev_adjacent *upper;
7336
7337         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7338                                        struct netdev_adjacent, list);
7339         if (upper && likely(upper->master))
7340                 return upper->dev;
7341         return NULL;
7342 }
7343 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7344
7345 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7346                               struct net_device *adj_dev,
7347                               struct list_head *dev_list)
7348 {
7349         char linkname[IFNAMSIZ+7];
7350
7351         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7352                 "upper_%s" : "lower_%s", adj_dev->name);
7353         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7354                                  linkname);
7355 }
7356 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7357                                char *name,
7358                                struct list_head *dev_list)
7359 {
7360         char linkname[IFNAMSIZ+7];
7361
7362         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7363                 "upper_%s" : "lower_%s", name);
7364         sysfs_remove_link(&(dev->dev.kobj), linkname);
7365 }
7366
7367 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7368                                                  struct net_device *adj_dev,
7369                                                  struct list_head *dev_list)
7370 {
7371         return (dev_list == &dev->adj_list.upper ||
7372                 dev_list == &dev->adj_list.lower) &&
7373                 net_eq(dev_net(dev), dev_net(adj_dev));
7374 }
7375
7376 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7377                                         struct net_device *adj_dev,
7378                                         struct list_head *dev_list,
7379                                         void *private, bool master)
7380 {
7381         struct netdev_adjacent *adj;
7382         int ret;
7383
7384         adj = __netdev_find_adj(adj_dev, dev_list);
7385
7386         if (adj) {
7387                 adj->ref_nr += 1;
7388                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7389                          dev->name, adj_dev->name, adj->ref_nr);
7390
7391                 return 0;
7392         }
7393
7394         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7395         if (!adj)
7396                 return -ENOMEM;
7397
7398         adj->dev = adj_dev;
7399         adj->master = master;
7400         adj->ref_nr = 1;
7401         adj->private = private;
7402         adj->ignore = false;
7403         dev_hold(adj_dev);
7404
7405         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7406                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7407
7408         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7409                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7410                 if (ret)
7411                         goto free_adj;
7412         }
7413
7414         /* Ensure that master link is always the first item in list. */
7415         if (master) {
7416                 ret = sysfs_create_link(&(dev->dev.kobj),
7417                                         &(adj_dev->dev.kobj), "master");
7418                 if (ret)
7419                         goto remove_symlinks;
7420
7421                 list_add_rcu(&adj->list, dev_list);
7422         } else {
7423                 list_add_tail_rcu(&adj->list, dev_list);
7424         }
7425
7426         return 0;
7427
7428 remove_symlinks:
7429         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7430                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7431 free_adj:
7432         kfree(adj);
7433         dev_put(adj_dev);
7434
7435         return ret;
7436 }
7437
7438 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7439                                          struct net_device *adj_dev,
7440                                          u16 ref_nr,
7441                                          struct list_head *dev_list)
7442 {
7443         struct netdev_adjacent *adj;
7444
7445         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7446                  dev->name, adj_dev->name, ref_nr);
7447
7448         adj = __netdev_find_adj(adj_dev, dev_list);
7449
7450         if (!adj) {
7451                 pr_err("Adjacency does not exist for device %s from %s\n",
7452                        dev->name, adj_dev->name);
7453                 WARN_ON(1);
7454                 return;
7455         }
7456
7457         if (adj->ref_nr > ref_nr) {
7458                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7459                          dev->name, adj_dev->name, ref_nr,
7460                          adj->ref_nr - ref_nr);
7461                 adj->ref_nr -= ref_nr;
7462                 return;
7463         }
7464
7465         if (adj->master)
7466                 sysfs_remove_link(&(dev->dev.kobj), "master");
7467
7468         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7469                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7470
7471         list_del_rcu(&adj->list);
7472         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7473                  adj_dev->name, dev->name, adj_dev->name);
7474         dev_put(adj_dev);
7475         kfree_rcu(adj, rcu);
7476 }
7477
7478 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7479                                             struct net_device *upper_dev,
7480                                             struct list_head *up_list,
7481                                             struct list_head *down_list,
7482                                             void *private, bool master)
7483 {
7484         int ret;
7485
7486         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7487                                            private, master);
7488         if (ret)
7489                 return ret;
7490
7491         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7492                                            private, false);
7493         if (ret) {
7494                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7495                 return ret;
7496         }
7497
7498         return 0;
7499 }
7500
7501 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7502                                                struct net_device *upper_dev,
7503                                                u16 ref_nr,
7504                                                struct list_head *up_list,
7505                                                struct list_head *down_list)
7506 {
7507         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7508         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7509 }
7510
7511 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7512                                                 struct net_device *upper_dev,
7513                                                 void *private, bool master)
7514 {
7515         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7516                                                 &dev->adj_list.upper,
7517                                                 &upper_dev->adj_list.lower,
7518                                                 private, master);
7519 }
7520
7521 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7522                                                    struct net_device *upper_dev)
7523 {
7524         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7525                                            &dev->adj_list.upper,
7526                                            &upper_dev->adj_list.lower);
7527 }
7528
7529 static int __netdev_upper_dev_link(struct net_device *dev,
7530                                    struct net_device *upper_dev, bool master,
7531                                    void *upper_priv, void *upper_info,
7532                                    struct netlink_ext_ack *extack)
7533 {
7534         struct netdev_notifier_changeupper_info changeupper_info = {
7535                 .info = {
7536                         .dev = dev,
7537                         .extack = extack,
7538                 },
7539                 .upper_dev = upper_dev,
7540                 .master = master,
7541                 .linking = true,
7542                 .upper_info = upper_info,
7543         };
7544         struct net_device *master_dev;
7545         int ret = 0;
7546
7547         ASSERT_RTNL();
7548
7549         if (dev == upper_dev)
7550                 return -EBUSY;
7551
7552         /* To prevent loops, check if dev is not upper device to upper_dev. */
7553         if (__netdev_has_upper_dev(upper_dev, dev))
7554                 return -EBUSY;
7555
7556         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7557                 return -EMLINK;
7558
7559         if (!master) {
7560                 if (__netdev_has_upper_dev(dev, upper_dev))
7561                         return -EEXIST;
7562         } else {
7563                 master_dev = __netdev_master_upper_dev_get(dev);
7564                 if (master_dev)
7565                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7566         }
7567
7568         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7569                                             &changeupper_info.info);
7570         ret = notifier_to_errno(ret);
7571         if (ret)
7572                 return ret;
7573
7574         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7575                                                    master);
7576         if (ret)
7577                 return ret;
7578
7579         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7580                                             &changeupper_info.info);
7581         ret = notifier_to_errno(ret);
7582         if (ret)
7583                 goto rollback;
7584
7585         __netdev_update_upper_level(dev, NULL);
7586         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7587
7588         __netdev_update_lower_level(upper_dev, NULL);
7589         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7590                                     NULL);
7591
7592         return 0;
7593
7594 rollback:
7595         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7596
7597         return ret;
7598 }
7599
7600 /**
7601  * netdev_upper_dev_link - Add a link to the upper device
7602  * @dev: device
7603  * @upper_dev: new upper device
7604  * @extack: netlink extended ack
7605  *
7606  * Adds a link to device which is upper to this one. The caller must hold
7607  * the RTNL lock. On a failure a negative errno code is returned.
7608  * On success the reference counts are adjusted and the function
7609  * returns zero.
7610  */
7611 int netdev_upper_dev_link(struct net_device *dev,
7612                           struct net_device *upper_dev,
7613                           struct netlink_ext_ack *extack)
7614 {
7615         return __netdev_upper_dev_link(dev, upper_dev, false,
7616                                        NULL, NULL, extack);
7617 }
7618 EXPORT_SYMBOL(netdev_upper_dev_link);
7619
7620 /**
7621  * netdev_master_upper_dev_link - Add a master link to the upper device
7622  * @dev: device
7623  * @upper_dev: new upper device
7624  * @upper_priv: upper device private
7625  * @upper_info: upper info to be passed down via notifier
7626  * @extack: netlink extended ack
7627  *
7628  * Adds a link to device which is upper to this one. In this case, only
7629  * one master upper device can be linked, although other non-master devices
7630  * might be linked as well. The caller must hold the RTNL lock.
7631  * On a failure a negative errno code is returned. On success the reference
7632  * counts are adjusted and the function returns zero.
7633  */
7634 int netdev_master_upper_dev_link(struct net_device *dev,
7635                                  struct net_device *upper_dev,
7636                                  void *upper_priv, void *upper_info,
7637                                  struct netlink_ext_ack *extack)
7638 {
7639         return __netdev_upper_dev_link(dev, upper_dev, true,
7640                                        upper_priv, upper_info, extack);
7641 }
7642 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7643
7644 /**
7645  * netdev_upper_dev_unlink - Removes a link to upper device
7646  * @dev: device
7647  * @upper_dev: new upper device
7648  *
7649  * Removes a link to device which is upper to this one. The caller must hold
7650  * the RTNL lock.
7651  */
7652 void netdev_upper_dev_unlink(struct net_device *dev,
7653                              struct net_device *upper_dev)
7654 {
7655         struct netdev_notifier_changeupper_info changeupper_info = {
7656                 .info = {
7657                         .dev = dev,
7658                 },
7659                 .upper_dev = upper_dev,
7660                 .linking = false,
7661         };
7662
7663         ASSERT_RTNL();
7664
7665         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7666
7667         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7668                                       &changeupper_info.info);
7669
7670         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7671
7672         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7673                                       &changeupper_info.info);
7674
7675         __netdev_update_upper_level(dev, NULL);
7676         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7677
7678         __netdev_update_lower_level(upper_dev, NULL);
7679         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7680                                     NULL);
7681 }
7682 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7683
7684 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7685                                       struct net_device *lower_dev,
7686                                       bool val)
7687 {
7688         struct netdev_adjacent *adj;
7689
7690         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7691         if (adj)
7692                 adj->ignore = val;
7693
7694         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7695         if (adj)
7696                 adj->ignore = val;
7697 }
7698
7699 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7700                                         struct net_device *lower_dev)
7701 {
7702         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7703 }
7704
7705 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7706                                        struct net_device *lower_dev)
7707 {
7708         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7709 }
7710
7711 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7712                                    struct net_device *new_dev,
7713                                    struct net_device *dev,
7714                                    struct netlink_ext_ack *extack)
7715 {
7716         int err;
7717
7718         if (!new_dev)
7719                 return 0;
7720
7721         if (old_dev && new_dev != old_dev)
7722                 netdev_adjacent_dev_disable(dev, old_dev);
7723
7724         err = netdev_upper_dev_link(new_dev, dev, extack);
7725         if (err) {
7726                 if (old_dev && new_dev != old_dev)
7727                         netdev_adjacent_dev_enable(dev, old_dev);
7728                 return err;
7729         }
7730
7731         return 0;
7732 }
7733 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7734
7735 void netdev_adjacent_change_commit(struct net_device *old_dev,
7736                                    struct net_device *new_dev,
7737                                    struct net_device *dev)
7738 {
7739         if (!new_dev || !old_dev)
7740                 return;
7741
7742         if (new_dev == old_dev)
7743                 return;
7744
7745         netdev_adjacent_dev_enable(dev, old_dev);
7746         netdev_upper_dev_unlink(old_dev, dev);
7747 }
7748 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7749
7750 void netdev_adjacent_change_abort(struct net_device *old_dev,
7751                                   struct net_device *new_dev,
7752                                   struct net_device *dev)
7753 {
7754         if (!new_dev)
7755                 return;
7756
7757         if (old_dev && new_dev != old_dev)
7758                 netdev_adjacent_dev_enable(dev, old_dev);
7759
7760         netdev_upper_dev_unlink(new_dev, dev);
7761 }
7762 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7763
7764 /**
7765  * netdev_bonding_info_change - Dispatch event about slave change
7766  * @dev: device
7767  * @bonding_info: info to dispatch
7768  *
7769  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7770  * The caller must hold the RTNL lock.
7771  */
7772 void netdev_bonding_info_change(struct net_device *dev,
7773                                 struct netdev_bonding_info *bonding_info)
7774 {
7775         struct netdev_notifier_bonding_info info = {
7776                 .info.dev = dev,
7777         };
7778
7779         memcpy(&info.bonding_info, bonding_info,
7780                sizeof(struct netdev_bonding_info));
7781         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7782                                       &info.info);
7783 }
7784 EXPORT_SYMBOL(netdev_bonding_info_change);
7785
7786 static void netdev_adjacent_add_links(struct net_device *dev)
7787 {
7788         struct netdev_adjacent *iter;
7789
7790         struct net *net = dev_net(dev);
7791
7792         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7793                 if (!net_eq(net, dev_net(iter->dev)))
7794                         continue;
7795                 netdev_adjacent_sysfs_add(iter->dev, dev,
7796                                           &iter->dev->adj_list.lower);
7797                 netdev_adjacent_sysfs_add(dev, iter->dev,
7798                                           &dev->adj_list.upper);
7799         }
7800
7801         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7802                 if (!net_eq(net, dev_net(iter->dev)))
7803                         continue;
7804                 netdev_adjacent_sysfs_add(iter->dev, dev,
7805                                           &iter->dev->adj_list.upper);
7806                 netdev_adjacent_sysfs_add(dev, iter->dev,
7807                                           &dev->adj_list.lower);
7808         }
7809 }
7810
7811 static void netdev_adjacent_del_links(struct net_device *dev)
7812 {
7813         struct netdev_adjacent *iter;
7814
7815         struct net *net = dev_net(dev);
7816
7817         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7818                 if (!net_eq(net, dev_net(iter->dev)))
7819                         continue;
7820                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7821                                           &iter->dev->adj_list.lower);
7822                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7823                                           &dev->adj_list.upper);
7824         }
7825
7826         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7827                 if (!net_eq(net, dev_net(iter->dev)))
7828                         continue;
7829                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7830                                           &iter->dev->adj_list.upper);
7831                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7832                                           &dev->adj_list.lower);
7833         }
7834 }
7835
7836 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7837 {
7838         struct netdev_adjacent *iter;
7839
7840         struct net *net = dev_net(dev);
7841
7842         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7843                 if (!net_eq(net, dev_net(iter->dev)))
7844                         continue;
7845                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7846                                           &iter->dev->adj_list.lower);
7847                 netdev_adjacent_sysfs_add(iter->dev, dev,
7848                                           &iter->dev->adj_list.lower);
7849         }
7850
7851         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7852                 if (!net_eq(net, dev_net(iter->dev)))
7853                         continue;
7854                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7855                                           &iter->dev->adj_list.upper);
7856                 netdev_adjacent_sysfs_add(iter->dev, dev,
7857                                           &iter->dev->adj_list.upper);
7858         }
7859 }
7860
7861 void *netdev_lower_dev_get_private(struct net_device *dev,
7862                                    struct net_device *lower_dev)
7863 {
7864         struct netdev_adjacent *lower;
7865
7866         if (!lower_dev)
7867                 return NULL;
7868         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7869         if (!lower)
7870                 return NULL;
7871
7872         return lower->private;
7873 }
7874 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7875
7876
7877 /**
7878  * netdev_lower_change - Dispatch event about lower device state change
7879  * @lower_dev: device
7880  * @lower_state_info: state to dispatch
7881  *
7882  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7883  * The caller must hold the RTNL lock.
7884  */
7885 void netdev_lower_state_changed(struct net_device *lower_dev,
7886                                 void *lower_state_info)
7887 {
7888         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7889                 .info.dev = lower_dev,
7890         };
7891
7892         ASSERT_RTNL();
7893         changelowerstate_info.lower_state_info = lower_state_info;
7894         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7895                                       &changelowerstate_info.info);
7896 }
7897 EXPORT_SYMBOL(netdev_lower_state_changed);
7898
7899 static void dev_change_rx_flags(struct net_device *dev, int flags)
7900 {
7901         const struct net_device_ops *ops = dev->netdev_ops;
7902
7903         if (ops->ndo_change_rx_flags)
7904                 ops->ndo_change_rx_flags(dev, flags);
7905 }
7906
7907 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7908 {
7909         unsigned int old_flags = dev->flags;
7910         kuid_t uid;
7911         kgid_t gid;
7912
7913         ASSERT_RTNL();
7914
7915         dev->flags |= IFF_PROMISC;
7916         dev->promiscuity += inc;
7917         if (dev->promiscuity == 0) {
7918                 /*
7919                  * Avoid overflow.
7920                  * If inc causes overflow, untouch promisc and return error.
7921                  */
7922                 if (inc < 0)
7923                         dev->flags &= ~IFF_PROMISC;
7924                 else {
7925                         dev->promiscuity -= inc;
7926                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7927                                 dev->name);
7928                         return -EOVERFLOW;
7929                 }
7930         }
7931         if (dev->flags != old_flags) {
7932                 pr_info("device %s %s promiscuous mode\n",
7933                         dev->name,
7934                         dev->flags & IFF_PROMISC ? "entered" : "left");
7935                 if (audit_enabled) {
7936                         current_uid_gid(&uid, &gid);
7937                         audit_log(audit_context(), GFP_ATOMIC,
7938                                   AUDIT_ANOM_PROMISCUOUS,
7939                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7940                                   dev->name, (dev->flags & IFF_PROMISC),
7941                                   (old_flags & IFF_PROMISC),
7942                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7943                                   from_kuid(&init_user_ns, uid),
7944                                   from_kgid(&init_user_ns, gid),
7945                                   audit_get_sessionid(current));
7946                 }
7947
7948                 dev_change_rx_flags(dev, IFF_PROMISC);
7949         }
7950         if (notify)
7951                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7952         return 0;
7953 }
7954
7955 /**
7956  *      dev_set_promiscuity     - update promiscuity count on a device
7957  *      @dev: device
7958  *      @inc: modifier
7959  *
7960  *      Add or remove promiscuity from a device. While the count in the device
7961  *      remains above zero the interface remains promiscuous. Once it hits zero
7962  *      the device reverts back to normal filtering operation. A negative inc
7963  *      value is used to drop promiscuity on the device.
7964  *      Return 0 if successful or a negative errno code on error.
7965  */
7966 int dev_set_promiscuity(struct net_device *dev, int inc)
7967 {
7968         unsigned int old_flags = dev->flags;
7969         int err;
7970
7971         err = __dev_set_promiscuity(dev, inc, true);
7972         if (err < 0)
7973                 return err;
7974         if (dev->flags != old_flags)
7975                 dev_set_rx_mode(dev);
7976         return err;
7977 }
7978 EXPORT_SYMBOL(dev_set_promiscuity);
7979
7980 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7981 {
7982         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7983
7984         ASSERT_RTNL();
7985
7986         dev->flags |= IFF_ALLMULTI;
7987         dev->allmulti += inc;
7988         if (dev->allmulti == 0) {
7989                 /*
7990                  * Avoid overflow.
7991                  * If inc causes overflow, untouch allmulti and return error.
7992                  */
7993                 if (inc < 0)
7994                         dev->flags &= ~IFF_ALLMULTI;
7995                 else {
7996                         dev->allmulti -= inc;
7997                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7998                                 dev->name);
7999                         return -EOVERFLOW;
8000                 }
8001         }
8002         if (dev->flags ^ old_flags) {
8003                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8004                 dev_set_rx_mode(dev);
8005                 if (notify)
8006                         __dev_notify_flags(dev, old_flags,
8007                                            dev->gflags ^ old_gflags);
8008         }
8009         return 0;
8010 }
8011
8012 /**
8013  *      dev_set_allmulti        - update allmulti count on a device
8014  *      @dev: device
8015  *      @inc: modifier
8016  *
8017  *      Add or remove reception of all multicast frames to a device. While the
8018  *      count in the device remains above zero the interface remains listening
8019  *      to all interfaces. Once it hits zero the device reverts back to normal
8020  *      filtering operation. A negative @inc value is used to drop the counter
8021  *      when releasing a resource needing all multicasts.
8022  *      Return 0 if successful or a negative errno code on error.
8023  */
8024
8025 int dev_set_allmulti(struct net_device *dev, int inc)
8026 {
8027         return __dev_set_allmulti(dev, inc, true);
8028 }
8029 EXPORT_SYMBOL(dev_set_allmulti);
8030
8031 /*
8032  *      Upload unicast and multicast address lists to device and
8033  *      configure RX filtering. When the device doesn't support unicast
8034  *      filtering it is put in promiscuous mode while unicast addresses
8035  *      are present.
8036  */
8037 void __dev_set_rx_mode(struct net_device *dev)
8038 {
8039         const struct net_device_ops *ops = dev->netdev_ops;
8040
8041         /* dev_open will call this function so the list will stay sane. */
8042         if (!(dev->flags&IFF_UP))
8043                 return;
8044
8045         if (!netif_device_present(dev))
8046                 return;
8047
8048         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8049                 /* Unicast addresses changes may only happen under the rtnl,
8050                  * therefore calling __dev_set_promiscuity here is safe.
8051                  */
8052                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8053                         __dev_set_promiscuity(dev, 1, false);
8054                         dev->uc_promisc = true;
8055                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8056                         __dev_set_promiscuity(dev, -1, false);
8057                         dev->uc_promisc = false;
8058                 }
8059         }
8060
8061         if (ops->ndo_set_rx_mode)
8062                 ops->ndo_set_rx_mode(dev);
8063 }
8064
8065 void dev_set_rx_mode(struct net_device *dev)
8066 {
8067         netif_addr_lock_bh(dev);
8068         __dev_set_rx_mode(dev);
8069         netif_addr_unlock_bh(dev);
8070 }
8071
8072 /**
8073  *      dev_get_flags - get flags reported to userspace
8074  *      @dev: device
8075  *
8076  *      Get the combination of flag bits exported through APIs to userspace.
8077  */
8078 unsigned int dev_get_flags(const struct net_device *dev)
8079 {
8080         unsigned int flags;
8081
8082         flags = (dev->flags & ~(IFF_PROMISC |
8083                                 IFF_ALLMULTI |
8084                                 IFF_RUNNING |
8085                                 IFF_LOWER_UP |
8086                                 IFF_DORMANT)) |
8087                 (dev->gflags & (IFF_PROMISC |
8088                                 IFF_ALLMULTI));
8089
8090         if (netif_running(dev)) {
8091                 if (netif_oper_up(dev))
8092                         flags |= IFF_RUNNING;
8093                 if (netif_carrier_ok(dev))
8094                         flags |= IFF_LOWER_UP;
8095                 if (netif_dormant(dev))
8096                         flags |= IFF_DORMANT;
8097         }
8098
8099         return flags;
8100 }
8101 EXPORT_SYMBOL(dev_get_flags);
8102
8103 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8104                        struct netlink_ext_ack *extack)
8105 {
8106         unsigned int old_flags = dev->flags;
8107         int ret;
8108
8109         ASSERT_RTNL();
8110
8111         /*
8112          *      Set the flags on our device.
8113          */
8114
8115         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8116                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8117                                IFF_AUTOMEDIA)) |
8118                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8119                                     IFF_ALLMULTI));
8120
8121         /*
8122          *      Load in the correct multicast list now the flags have changed.
8123          */
8124
8125         if ((old_flags ^ flags) & IFF_MULTICAST)
8126                 dev_change_rx_flags(dev, IFF_MULTICAST);
8127
8128         dev_set_rx_mode(dev);
8129
8130         /*
8131          *      Have we downed the interface. We handle IFF_UP ourselves
8132          *      according to user attempts to set it, rather than blindly
8133          *      setting it.
8134          */
8135
8136         ret = 0;
8137         if ((old_flags ^ flags) & IFF_UP) {
8138                 if (old_flags & IFF_UP)
8139                         __dev_close(dev);
8140                 else
8141                         ret = __dev_open(dev, extack);
8142         }
8143
8144         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8145                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8146                 unsigned int old_flags = dev->flags;
8147
8148                 dev->gflags ^= IFF_PROMISC;
8149
8150                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8151                         if (dev->flags != old_flags)
8152                                 dev_set_rx_mode(dev);
8153         }
8154
8155         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8156          * is important. Some (broken) drivers set IFF_PROMISC, when
8157          * IFF_ALLMULTI is requested not asking us and not reporting.
8158          */
8159         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8160                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8161
8162                 dev->gflags ^= IFF_ALLMULTI;
8163                 __dev_set_allmulti(dev, inc, false);
8164         }
8165
8166         return ret;
8167 }
8168
8169 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8170                         unsigned int gchanges)
8171 {
8172         unsigned int changes = dev->flags ^ old_flags;
8173
8174         if (gchanges)
8175                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8176
8177         if (changes & IFF_UP) {
8178                 if (dev->flags & IFF_UP)
8179                         call_netdevice_notifiers(NETDEV_UP, dev);
8180                 else
8181                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8182         }
8183
8184         if (dev->flags & IFF_UP &&
8185             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8186                 struct netdev_notifier_change_info change_info = {
8187                         .info = {
8188                                 .dev = dev,
8189                         },
8190                         .flags_changed = changes,
8191                 };
8192
8193                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8194         }
8195 }
8196
8197 /**
8198  *      dev_change_flags - change device settings
8199  *      @dev: device
8200  *      @flags: device state flags
8201  *      @extack: netlink extended ack
8202  *
8203  *      Change settings on device based state flags. The flags are
8204  *      in the userspace exported format.
8205  */
8206 int dev_change_flags(struct net_device *dev, unsigned int flags,
8207                      struct netlink_ext_ack *extack)
8208 {
8209         int ret;
8210         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8211
8212         ret = __dev_change_flags(dev, flags, extack);
8213         if (ret < 0)
8214                 return ret;
8215
8216         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8217         __dev_notify_flags(dev, old_flags, changes);
8218         return ret;
8219 }
8220 EXPORT_SYMBOL(dev_change_flags);
8221
8222 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8223 {
8224         const struct net_device_ops *ops = dev->netdev_ops;
8225
8226         if (ops->ndo_change_mtu)
8227                 return ops->ndo_change_mtu(dev, new_mtu);
8228
8229         /* Pairs with all the lockless reads of dev->mtu in the stack */
8230         WRITE_ONCE(dev->mtu, new_mtu);
8231         return 0;
8232 }
8233 EXPORT_SYMBOL(__dev_set_mtu);
8234
8235 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8236                      struct netlink_ext_ack *extack)
8237 {
8238         /* MTU must be positive, and in range */
8239         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8240                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8241                 return -EINVAL;
8242         }
8243
8244         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8245                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8246                 return -EINVAL;
8247         }
8248         return 0;
8249 }
8250
8251 /**
8252  *      dev_set_mtu_ext - Change maximum transfer unit
8253  *      @dev: device
8254  *      @new_mtu: new transfer unit
8255  *      @extack: netlink extended ack
8256  *
8257  *      Change the maximum transfer size of the network device.
8258  */
8259 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8260                     struct netlink_ext_ack *extack)
8261 {
8262         int err, orig_mtu;
8263
8264         if (new_mtu == dev->mtu)
8265                 return 0;
8266
8267         err = dev_validate_mtu(dev, new_mtu, extack);
8268         if (err)
8269                 return err;
8270
8271         if (!netif_device_present(dev))
8272                 return -ENODEV;
8273
8274         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8275         err = notifier_to_errno(err);
8276         if (err)
8277                 return err;
8278
8279         orig_mtu = dev->mtu;
8280         err = __dev_set_mtu(dev, new_mtu);
8281
8282         if (!err) {
8283                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8284                                                    orig_mtu);
8285                 err = notifier_to_errno(err);
8286                 if (err) {
8287                         /* setting mtu back and notifying everyone again,
8288                          * so that they have a chance to revert changes.
8289                          */
8290                         __dev_set_mtu(dev, orig_mtu);
8291                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8292                                                      new_mtu);
8293                 }
8294         }
8295         return err;
8296 }
8297
8298 int dev_set_mtu(struct net_device *dev, int new_mtu)
8299 {
8300         struct netlink_ext_ack extack;
8301         int err;
8302
8303         memset(&extack, 0, sizeof(extack));
8304         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8305         if (err && extack._msg)
8306                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8307         return err;
8308 }
8309 EXPORT_SYMBOL(dev_set_mtu);
8310
8311 /**
8312  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8313  *      @dev: device
8314  *      @new_len: new tx queue length
8315  */
8316 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8317 {
8318         unsigned int orig_len = dev->tx_queue_len;
8319         int res;
8320
8321         if (new_len != (unsigned int)new_len)
8322                 return -ERANGE;
8323
8324         if (new_len != orig_len) {
8325                 dev->tx_queue_len = new_len;
8326                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8327                 res = notifier_to_errno(res);
8328                 if (res)
8329                         goto err_rollback;
8330                 res = dev_qdisc_change_tx_queue_len(dev);
8331                 if (res)
8332                         goto err_rollback;
8333         }
8334
8335         return 0;
8336
8337 err_rollback:
8338         netdev_err(dev, "refused to change device tx_queue_len\n");
8339         dev->tx_queue_len = orig_len;
8340         return res;
8341 }
8342
8343 /**
8344  *      dev_set_group - Change group this device belongs to
8345  *      @dev: device
8346  *      @new_group: group this device should belong to
8347  */
8348 void dev_set_group(struct net_device *dev, int new_group)
8349 {
8350         dev->group = new_group;
8351 }
8352 EXPORT_SYMBOL(dev_set_group);
8353
8354 /**
8355  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8356  *      @dev: device
8357  *      @addr: new address
8358  *      @extack: netlink extended ack
8359  */
8360 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8361                               struct netlink_ext_ack *extack)
8362 {
8363         struct netdev_notifier_pre_changeaddr_info info = {
8364                 .info.dev = dev,
8365                 .info.extack = extack,
8366                 .dev_addr = addr,
8367         };
8368         int rc;
8369
8370         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8371         return notifier_to_errno(rc);
8372 }
8373 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8374
8375 /**
8376  *      dev_set_mac_address - Change Media Access Control Address
8377  *      @dev: device
8378  *      @sa: new address
8379  *      @extack: netlink extended ack
8380  *
8381  *      Change the hardware (MAC) address of the device
8382  */
8383 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8384                         struct netlink_ext_ack *extack)
8385 {
8386         const struct net_device_ops *ops = dev->netdev_ops;
8387         int err;
8388
8389         if (!ops->ndo_set_mac_address)
8390                 return -EOPNOTSUPP;
8391         if (sa->sa_family != dev->type)
8392                 return -EINVAL;
8393         if (!netif_device_present(dev))
8394                 return -ENODEV;
8395         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8396         if (err)
8397                 return err;
8398         err = ops->ndo_set_mac_address(dev, sa);
8399         if (err)
8400                 return err;
8401         dev->addr_assign_type = NET_ADDR_SET;
8402         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8403         add_device_randomness(dev->dev_addr, dev->addr_len);
8404         return 0;
8405 }
8406 EXPORT_SYMBOL(dev_set_mac_address);
8407
8408 /**
8409  *      dev_change_carrier - Change device carrier
8410  *      @dev: device
8411  *      @new_carrier: new value
8412  *
8413  *      Change device carrier
8414  */
8415 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8416 {
8417         const struct net_device_ops *ops = dev->netdev_ops;
8418
8419         if (!ops->ndo_change_carrier)
8420                 return -EOPNOTSUPP;
8421         if (!netif_device_present(dev))
8422                 return -ENODEV;
8423         return ops->ndo_change_carrier(dev, new_carrier);
8424 }
8425 EXPORT_SYMBOL(dev_change_carrier);
8426
8427 /**
8428  *      dev_get_phys_port_id - Get device physical port ID
8429  *      @dev: device
8430  *      @ppid: port ID
8431  *
8432  *      Get device physical port ID
8433  */
8434 int dev_get_phys_port_id(struct net_device *dev,
8435                          struct netdev_phys_item_id *ppid)
8436 {
8437         const struct net_device_ops *ops = dev->netdev_ops;
8438
8439         if (!ops->ndo_get_phys_port_id)
8440                 return -EOPNOTSUPP;
8441         return ops->ndo_get_phys_port_id(dev, ppid);
8442 }
8443 EXPORT_SYMBOL(dev_get_phys_port_id);
8444
8445 /**
8446  *      dev_get_phys_port_name - Get device physical port name
8447  *      @dev: device
8448  *      @name: port name
8449  *      @len: limit of bytes to copy to name
8450  *
8451  *      Get device physical port name
8452  */
8453 int dev_get_phys_port_name(struct net_device *dev,
8454                            char *name, size_t len)
8455 {
8456         const struct net_device_ops *ops = dev->netdev_ops;
8457         int err;
8458
8459         if (ops->ndo_get_phys_port_name) {
8460                 err = ops->ndo_get_phys_port_name(dev, name, len);
8461                 if (err != -EOPNOTSUPP)
8462                         return err;
8463         }
8464         return devlink_compat_phys_port_name_get(dev, name, len);
8465 }
8466 EXPORT_SYMBOL(dev_get_phys_port_name);
8467
8468 /**
8469  *      dev_get_port_parent_id - Get the device's port parent identifier
8470  *      @dev: network device
8471  *      @ppid: pointer to a storage for the port's parent identifier
8472  *      @recurse: allow/disallow recursion to lower devices
8473  *
8474  *      Get the devices's port parent identifier
8475  */
8476 int dev_get_port_parent_id(struct net_device *dev,
8477                            struct netdev_phys_item_id *ppid,
8478                            bool recurse)
8479 {
8480         const struct net_device_ops *ops = dev->netdev_ops;
8481         struct netdev_phys_item_id first = { };
8482         struct net_device *lower_dev;
8483         struct list_head *iter;
8484         int err;
8485
8486         if (ops->ndo_get_port_parent_id) {
8487                 err = ops->ndo_get_port_parent_id(dev, ppid);
8488                 if (err != -EOPNOTSUPP)
8489                         return err;
8490         }
8491
8492         err = devlink_compat_switch_id_get(dev, ppid);
8493         if (!err || err != -EOPNOTSUPP)
8494                 return err;
8495
8496         if (!recurse)
8497                 return -EOPNOTSUPP;
8498
8499         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8500                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8501                 if (err)
8502                         break;
8503                 if (!first.id_len)
8504                         first = *ppid;
8505                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8506                         return -ENODATA;
8507         }
8508
8509         return err;
8510 }
8511 EXPORT_SYMBOL(dev_get_port_parent_id);
8512
8513 /**
8514  *      netdev_port_same_parent_id - Indicate if two network devices have
8515  *      the same port parent identifier
8516  *      @a: first network device
8517  *      @b: second network device
8518  */
8519 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8520 {
8521         struct netdev_phys_item_id a_id = { };
8522         struct netdev_phys_item_id b_id = { };
8523
8524         if (dev_get_port_parent_id(a, &a_id, true) ||
8525             dev_get_port_parent_id(b, &b_id, true))
8526                 return false;
8527
8528         return netdev_phys_item_id_same(&a_id, &b_id);
8529 }
8530 EXPORT_SYMBOL(netdev_port_same_parent_id);
8531
8532 /**
8533  *      dev_change_proto_down - update protocol port state information
8534  *      @dev: device
8535  *      @proto_down: new value
8536  *
8537  *      This info can be used by switch drivers to set the phys state of the
8538  *      port.
8539  */
8540 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8541 {
8542         const struct net_device_ops *ops = dev->netdev_ops;
8543
8544         if (!ops->ndo_change_proto_down)
8545                 return -EOPNOTSUPP;
8546         if (!netif_device_present(dev))
8547                 return -ENODEV;
8548         return ops->ndo_change_proto_down(dev, proto_down);
8549 }
8550 EXPORT_SYMBOL(dev_change_proto_down);
8551
8552 /**
8553  *      dev_change_proto_down_generic - generic implementation for
8554  *      ndo_change_proto_down that sets carrier according to
8555  *      proto_down.
8556  *
8557  *      @dev: device
8558  *      @proto_down: new value
8559  */
8560 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8561 {
8562         if (proto_down)
8563                 netif_carrier_off(dev);
8564         else
8565                 netif_carrier_on(dev);
8566         dev->proto_down = proto_down;
8567         return 0;
8568 }
8569 EXPORT_SYMBOL(dev_change_proto_down_generic);
8570
8571 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8572                     enum bpf_netdev_command cmd)
8573 {
8574         struct netdev_bpf xdp;
8575
8576         if (!bpf_op)
8577                 return 0;
8578
8579         memset(&xdp, 0, sizeof(xdp));
8580         xdp.command = cmd;
8581
8582         /* Query must always succeed. */
8583         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8584
8585         return xdp.prog_id;
8586 }
8587
8588 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8589                            struct netlink_ext_ack *extack, u32 flags,
8590                            struct bpf_prog *prog)
8591 {
8592         bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8593         struct bpf_prog *prev_prog = NULL;
8594         struct netdev_bpf xdp;
8595         int err;
8596
8597         if (non_hw) {
8598                 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8599                                                            XDP_QUERY_PROG));
8600                 if (IS_ERR(prev_prog))
8601                         prev_prog = NULL;
8602         }
8603
8604         memset(&xdp, 0, sizeof(xdp));
8605         if (flags & XDP_FLAGS_HW_MODE)
8606                 xdp.command = XDP_SETUP_PROG_HW;
8607         else
8608                 xdp.command = XDP_SETUP_PROG;
8609         xdp.extack = extack;
8610         xdp.flags = flags;
8611         xdp.prog = prog;
8612
8613         err = bpf_op(dev, &xdp);
8614         if (!err && non_hw)
8615                 bpf_prog_change_xdp(prev_prog, prog);
8616
8617         if (prev_prog)
8618                 bpf_prog_put(prev_prog);
8619
8620         return err;
8621 }
8622
8623 static void dev_xdp_uninstall(struct net_device *dev)
8624 {
8625         struct netdev_bpf xdp;
8626         bpf_op_t ndo_bpf;
8627
8628         /* Remove generic XDP */
8629         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8630
8631         /* Remove from the driver */
8632         ndo_bpf = dev->netdev_ops->ndo_bpf;
8633         if (!ndo_bpf)
8634                 return;
8635
8636         memset(&xdp, 0, sizeof(xdp));
8637         xdp.command = XDP_QUERY_PROG;
8638         WARN_ON(ndo_bpf(dev, &xdp));
8639         if (xdp.prog_id)
8640                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8641                                         NULL));
8642
8643         /* Remove HW offload */
8644         memset(&xdp, 0, sizeof(xdp));
8645         xdp.command = XDP_QUERY_PROG_HW;
8646         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8647                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8648                                         NULL));
8649 }
8650
8651 /**
8652  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8653  *      @dev: device
8654  *      @extack: netlink extended ack
8655  *      @fd: new program fd or negative value to clear
8656  *      @flags: xdp-related flags
8657  *
8658  *      Set or clear a bpf program for a device
8659  */
8660 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8661                       int fd, u32 flags)
8662 {
8663         const struct net_device_ops *ops = dev->netdev_ops;
8664         enum bpf_netdev_command query;
8665         struct bpf_prog *prog = NULL;
8666         bpf_op_t bpf_op, bpf_chk;
8667         bool offload;
8668         int err;
8669
8670         ASSERT_RTNL();
8671
8672         offload = flags & XDP_FLAGS_HW_MODE;
8673         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8674
8675         bpf_op = bpf_chk = ops->ndo_bpf;
8676         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8677                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8678                 return -EOPNOTSUPP;
8679         }
8680         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8681                 bpf_op = generic_xdp_install;
8682         if (bpf_op == bpf_chk)
8683                 bpf_chk = generic_xdp_install;
8684
8685         if (fd >= 0) {
8686                 u32 prog_id;
8687
8688                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8689                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8690                         return -EEXIST;
8691                 }
8692
8693                 prog_id = __dev_xdp_query(dev, bpf_op, query);
8694                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8695                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8696                         return -EBUSY;
8697                 }
8698
8699                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8700                                              bpf_op == ops->ndo_bpf);
8701                 if (IS_ERR(prog))
8702                         return PTR_ERR(prog);
8703
8704                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8705                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8706                         bpf_prog_put(prog);
8707                         return -EINVAL;
8708                 }
8709
8710                 /* prog->aux->id may be 0 for orphaned device-bound progs */
8711                 if (prog->aux->id && prog->aux->id == prog_id) {
8712                         bpf_prog_put(prog);
8713                         return 0;
8714                 }
8715         } else {
8716                 if (!__dev_xdp_query(dev, bpf_op, query))
8717                         return 0;
8718         }
8719
8720         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8721         if (err < 0 && prog)
8722                 bpf_prog_put(prog);
8723
8724         return err;
8725 }
8726
8727 /**
8728  *      dev_new_index   -       allocate an ifindex
8729  *      @net: the applicable net namespace
8730  *
8731  *      Returns a suitable unique value for a new device interface
8732  *      number.  The caller must hold the rtnl semaphore or the
8733  *      dev_base_lock to be sure it remains unique.
8734  */
8735 static int dev_new_index(struct net *net)
8736 {
8737         int ifindex = net->ifindex;
8738
8739         for (;;) {
8740                 if (++ifindex <= 0)
8741                         ifindex = 1;
8742                 if (!__dev_get_by_index(net, ifindex))
8743                         return net->ifindex = ifindex;
8744         }
8745 }
8746
8747 /* Delayed registration/unregisteration */
8748 static LIST_HEAD(net_todo_list);
8749 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8750
8751 static void net_set_todo(struct net_device *dev)
8752 {
8753         list_add_tail(&dev->todo_list, &net_todo_list);
8754         dev_net(dev)->dev_unreg_count++;
8755 }
8756
8757 static void rollback_registered_many(struct list_head *head)
8758 {
8759         struct net_device *dev, *tmp;
8760         LIST_HEAD(close_head);
8761
8762         BUG_ON(dev_boot_phase);
8763         ASSERT_RTNL();
8764
8765         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8766                 /* Some devices call without registering
8767                  * for initialization unwind. Remove those
8768                  * devices and proceed with the remaining.
8769                  */
8770                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8771                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8772                                  dev->name, dev);
8773
8774                         WARN_ON(1);
8775                         list_del(&dev->unreg_list);
8776                         continue;
8777                 }
8778                 dev->dismantle = true;
8779                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8780         }
8781
8782         /* If device is running, close it first. */
8783         list_for_each_entry(dev, head, unreg_list)
8784                 list_add_tail(&dev->close_list, &close_head);
8785         dev_close_many(&close_head, true);
8786
8787         list_for_each_entry(dev, head, unreg_list) {
8788                 /* And unlink it from device chain. */
8789                 unlist_netdevice(dev);
8790
8791                 dev->reg_state = NETREG_UNREGISTERING;
8792         }
8793         flush_all_backlogs();
8794
8795         synchronize_net();
8796
8797         list_for_each_entry(dev, head, unreg_list) {
8798                 struct sk_buff *skb = NULL;
8799
8800                 /* Shutdown queueing discipline. */
8801                 dev_shutdown(dev);
8802
8803                 dev_xdp_uninstall(dev);
8804
8805                 /* Notify protocols, that we are about to destroy
8806                  * this device. They should clean all the things.
8807                  */
8808                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8809
8810                 if (!dev->rtnl_link_ops ||
8811                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8812                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8813                                                      GFP_KERNEL, NULL, 0);
8814
8815                 /*
8816                  *      Flush the unicast and multicast chains
8817                  */
8818                 dev_uc_flush(dev);
8819                 dev_mc_flush(dev);
8820
8821                 netdev_name_node_alt_flush(dev);
8822                 netdev_name_node_free(dev->name_node);
8823
8824                 if (dev->netdev_ops->ndo_uninit)
8825                         dev->netdev_ops->ndo_uninit(dev);
8826
8827                 if (skb)
8828                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8829
8830                 /* Notifier chain MUST detach us all upper devices. */
8831                 WARN_ON(netdev_has_any_upper_dev(dev));
8832                 WARN_ON(netdev_has_any_lower_dev(dev));
8833
8834                 /* Remove entries from kobject tree */
8835                 netdev_unregister_kobject(dev);
8836 #ifdef CONFIG_XPS
8837                 /* Remove XPS queueing entries */
8838                 netif_reset_xps_queues_gt(dev, 0);
8839 #endif
8840         }
8841
8842         synchronize_net();
8843
8844         list_for_each_entry(dev, head, unreg_list)
8845                 dev_put(dev);
8846 }
8847
8848 static void rollback_registered(struct net_device *dev)
8849 {
8850         LIST_HEAD(single);
8851
8852         list_add(&dev->unreg_list, &single);
8853         rollback_registered_many(&single);
8854         list_del(&single);
8855 }
8856
8857 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8858         struct net_device *upper, netdev_features_t features)
8859 {
8860         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8861         netdev_features_t feature;
8862         int feature_bit;
8863
8864         for_each_netdev_feature(upper_disables, feature_bit) {
8865                 feature = __NETIF_F_BIT(feature_bit);
8866                 if (!(upper->wanted_features & feature)
8867                     && (features & feature)) {
8868                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8869                                    &feature, upper->name);
8870                         features &= ~feature;
8871                 }
8872         }
8873
8874         return features;
8875 }
8876
8877 static void netdev_sync_lower_features(struct net_device *upper,
8878         struct net_device *lower, netdev_features_t features)
8879 {
8880         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8881         netdev_features_t feature;
8882         int feature_bit;
8883
8884         for_each_netdev_feature(upper_disables, feature_bit) {
8885                 feature = __NETIF_F_BIT(feature_bit);
8886                 if (!(features & feature) && (lower->features & feature)) {
8887                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8888                                    &feature, lower->name);
8889                         lower->wanted_features &= ~feature;
8890                         netdev_update_features(lower);
8891
8892                         if (unlikely(lower->features & feature))
8893                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8894                                             &feature, lower->name);
8895                 }
8896         }
8897 }
8898
8899 static netdev_features_t netdev_fix_features(struct net_device *dev,
8900         netdev_features_t features)
8901 {
8902         /* Fix illegal checksum combinations */
8903         if ((features & NETIF_F_HW_CSUM) &&
8904             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8905                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8906                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8907         }
8908
8909         /* TSO requires that SG is present as well. */
8910         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8911                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8912                 features &= ~NETIF_F_ALL_TSO;
8913         }
8914
8915         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8916                                         !(features & NETIF_F_IP_CSUM)) {
8917                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8918                 features &= ~NETIF_F_TSO;
8919                 features &= ~NETIF_F_TSO_ECN;
8920         }
8921
8922         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8923                                          !(features & NETIF_F_IPV6_CSUM)) {
8924                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8925                 features &= ~NETIF_F_TSO6;
8926         }
8927
8928         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8929         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8930                 features &= ~NETIF_F_TSO_MANGLEID;
8931
8932         /* TSO ECN requires that TSO is present as well. */
8933         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8934                 features &= ~NETIF_F_TSO_ECN;
8935
8936         /* Software GSO depends on SG. */
8937         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8938                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8939                 features &= ~NETIF_F_GSO;
8940         }
8941
8942         /* GSO partial features require GSO partial be set */
8943         if ((features & dev->gso_partial_features) &&
8944             !(features & NETIF_F_GSO_PARTIAL)) {
8945                 netdev_dbg(dev,
8946                            "Dropping partially supported GSO features since no GSO partial.\n");
8947                 features &= ~dev->gso_partial_features;
8948         }
8949
8950         if (!(features & NETIF_F_RXCSUM)) {
8951                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8952                  * successfully merged by hardware must also have the
8953                  * checksum verified by hardware.  If the user does not
8954                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8955                  */
8956                 if (features & NETIF_F_GRO_HW) {
8957                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8958                         features &= ~NETIF_F_GRO_HW;
8959                 }
8960         }
8961
8962         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8963         if (features & NETIF_F_RXFCS) {
8964                 if (features & NETIF_F_LRO) {
8965                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8966                         features &= ~NETIF_F_LRO;
8967                 }
8968
8969                 if (features & NETIF_F_GRO_HW) {
8970                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8971                         features &= ~NETIF_F_GRO_HW;
8972                 }
8973         }
8974
8975         return features;
8976 }
8977
8978 int __netdev_update_features(struct net_device *dev)
8979 {
8980         struct net_device *upper, *lower;
8981         netdev_features_t features;
8982         struct list_head *iter;
8983         int err = -1;
8984
8985         ASSERT_RTNL();
8986
8987         features = netdev_get_wanted_features(dev);
8988
8989         if (dev->netdev_ops->ndo_fix_features)
8990                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8991
8992         /* driver might be less strict about feature dependencies */
8993         features = netdev_fix_features(dev, features);
8994
8995         /* some features can't be enabled if they're off an an upper device */
8996         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8997                 features = netdev_sync_upper_features(dev, upper, features);
8998
8999         if (dev->features == features)
9000                 goto sync_lower;
9001
9002         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9003                 &dev->features, &features);
9004
9005         if (dev->netdev_ops->ndo_set_features)
9006                 err = dev->netdev_ops->ndo_set_features(dev, features);
9007         else
9008                 err = 0;
9009
9010         if (unlikely(err < 0)) {
9011                 netdev_err(dev,
9012                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9013                         err, &features, &dev->features);
9014                 /* return non-0 since some features might have changed and
9015                  * it's better to fire a spurious notification than miss it
9016                  */
9017                 return -1;
9018         }
9019
9020 sync_lower:
9021         /* some features must be disabled on lower devices when disabled
9022          * on an upper device (think: bonding master or bridge)
9023          */
9024         netdev_for_each_lower_dev(dev, lower, iter)
9025                 netdev_sync_lower_features(dev, lower, features);
9026
9027         if (!err) {
9028                 netdev_features_t diff = features ^ dev->features;
9029
9030                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9031                         /* udp_tunnel_{get,drop}_rx_info both need
9032                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9033                          * device, or they won't do anything.
9034                          * Thus we need to update dev->features
9035                          * *before* calling udp_tunnel_get_rx_info,
9036                          * but *after* calling udp_tunnel_drop_rx_info.
9037                          */
9038                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9039                                 dev->features = features;
9040                                 udp_tunnel_get_rx_info(dev);
9041                         } else {
9042                                 udp_tunnel_drop_rx_info(dev);
9043                         }
9044                 }
9045
9046                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9047                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9048                                 dev->features = features;
9049                                 err |= vlan_get_rx_ctag_filter_info(dev);
9050                         } else {
9051                                 vlan_drop_rx_ctag_filter_info(dev);
9052                         }
9053                 }
9054
9055                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9056                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9057                                 dev->features = features;
9058                                 err |= vlan_get_rx_stag_filter_info(dev);
9059                         } else {
9060                                 vlan_drop_rx_stag_filter_info(dev);
9061                         }
9062                 }
9063
9064                 dev->features = features;
9065         }
9066
9067         return err < 0 ? 0 : 1;
9068 }
9069
9070 /**
9071  *      netdev_update_features - recalculate device features
9072  *      @dev: the device to check
9073  *
9074  *      Recalculate dev->features set and send notifications if it
9075  *      has changed. Should be called after driver or hardware dependent
9076  *      conditions might have changed that influence the features.
9077  */
9078 void netdev_update_features(struct net_device *dev)
9079 {
9080         if (__netdev_update_features(dev))
9081                 netdev_features_change(dev);
9082 }
9083 EXPORT_SYMBOL(netdev_update_features);
9084
9085 /**
9086  *      netdev_change_features - recalculate device features
9087  *      @dev: the device to check
9088  *
9089  *      Recalculate dev->features set and send notifications even
9090  *      if they have not changed. Should be called instead of
9091  *      netdev_update_features() if also dev->vlan_features might
9092  *      have changed to allow the changes to be propagated to stacked
9093  *      VLAN devices.
9094  */
9095 void netdev_change_features(struct net_device *dev)
9096 {
9097         __netdev_update_features(dev);
9098         netdev_features_change(dev);
9099 }
9100 EXPORT_SYMBOL(netdev_change_features);
9101
9102 /**
9103  *      netif_stacked_transfer_operstate -      transfer operstate
9104  *      @rootdev: the root or lower level device to transfer state from
9105  *      @dev: the device to transfer operstate to
9106  *
9107  *      Transfer operational state from root to device. This is normally
9108  *      called when a stacking relationship exists between the root
9109  *      device and the device(a leaf device).
9110  */
9111 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9112                                         struct net_device *dev)
9113 {
9114         if (rootdev->operstate == IF_OPER_DORMANT)
9115                 netif_dormant_on(dev);
9116         else
9117                 netif_dormant_off(dev);
9118
9119         if (netif_carrier_ok(rootdev))
9120                 netif_carrier_on(dev);
9121         else
9122                 netif_carrier_off(dev);
9123 }
9124 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9125
9126 static int netif_alloc_rx_queues(struct net_device *dev)
9127 {
9128         unsigned int i, count = dev->num_rx_queues;
9129         struct netdev_rx_queue *rx;
9130         size_t sz = count * sizeof(*rx);
9131         int err = 0;
9132
9133         BUG_ON(count < 1);
9134
9135         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9136         if (!rx)
9137                 return -ENOMEM;
9138
9139         dev->_rx = rx;
9140
9141         for (i = 0; i < count; i++) {
9142                 rx[i].dev = dev;
9143
9144                 /* XDP RX-queue setup */
9145                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9146                 if (err < 0)
9147                         goto err_rxq_info;
9148         }
9149         return 0;
9150
9151 err_rxq_info:
9152         /* Rollback successful reg's and free other resources */
9153         while (i--)
9154                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9155         kvfree(dev->_rx);
9156         dev->_rx = NULL;
9157         return err;
9158 }
9159
9160 static void netif_free_rx_queues(struct net_device *dev)
9161 {
9162         unsigned int i, count = dev->num_rx_queues;
9163
9164         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9165         if (!dev->_rx)
9166                 return;
9167
9168         for (i = 0; i < count; i++)
9169                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9170
9171         kvfree(dev->_rx);
9172 }
9173
9174 static void netdev_init_one_queue(struct net_device *dev,
9175                                   struct netdev_queue *queue, void *_unused)
9176 {
9177         /* Initialize queue lock */
9178         spin_lock_init(&queue->_xmit_lock);
9179         lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9180         queue->xmit_lock_owner = -1;
9181         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9182         queue->dev = dev;
9183 #ifdef CONFIG_BQL
9184         dql_init(&queue->dql, HZ);
9185 #endif
9186 }
9187
9188 static void netif_free_tx_queues(struct net_device *dev)
9189 {
9190         kvfree(dev->_tx);
9191 }
9192
9193 static int netif_alloc_netdev_queues(struct net_device *dev)
9194 {
9195         unsigned int count = dev->num_tx_queues;
9196         struct netdev_queue *tx;
9197         size_t sz = count * sizeof(*tx);
9198
9199         if (count < 1 || count > 0xffff)
9200                 return -EINVAL;
9201
9202         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9203         if (!tx)
9204                 return -ENOMEM;
9205
9206         dev->_tx = tx;
9207
9208         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9209         spin_lock_init(&dev->tx_global_lock);
9210
9211         return 0;
9212 }
9213
9214 void netif_tx_stop_all_queues(struct net_device *dev)
9215 {
9216         unsigned int i;
9217
9218         for (i = 0; i < dev->num_tx_queues; i++) {
9219                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9220
9221                 netif_tx_stop_queue(txq);
9222         }
9223 }
9224 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9225
9226 static void netdev_register_lockdep_key(struct net_device *dev)
9227 {
9228         lockdep_register_key(&dev->qdisc_tx_busylock_key);
9229         lockdep_register_key(&dev->qdisc_running_key);
9230         lockdep_register_key(&dev->qdisc_xmit_lock_key);
9231         lockdep_register_key(&dev->addr_list_lock_key);
9232 }
9233
9234 static void netdev_unregister_lockdep_key(struct net_device *dev)
9235 {
9236         lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9237         lockdep_unregister_key(&dev->qdisc_running_key);
9238         lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9239         lockdep_unregister_key(&dev->addr_list_lock_key);
9240 }
9241
9242 void netdev_update_lockdep_key(struct net_device *dev)
9243 {
9244         lockdep_unregister_key(&dev->addr_list_lock_key);
9245         lockdep_register_key(&dev->addr_list_lock_key);
9246
9247         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9248 }
9249 EXPORT_SYMBOL(netdev_update_lockdep_key);
9250
9251 /**
9252  *      register_netdevice      - register a network device
9253  *      @dev: device to register
9254  *
9255  *      Take a completed network device structure and add it to the kernel
9256  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9257  *      chain. 0 is returned on success. A negative errno code is returned
9258  *      on a failure to set up the device, or if the name is a duplicate.
9259  *
9260  *      Callers must hold the rtnl semaphore. You may want
9261  *      register_netdev() instead of this.
9262  *
9263  *      BUGS:
9264  *      The locking appears insufficient to guarantee two parallel registers
9265  *      will not get the same name.
9266  */
9267
9268 int register_netdevice(struct net_device *dev)
9269 {
9270         int ret;
9271         struct net *net = dev_net(dev);
9272
9273         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9274                      NETDEV_FEATURE_COUNT);
9275         BUG_ON(dev_boot_phase);
9276         ASSERT_RTNL();
9277
9278         might_sleep();
9279
9280         /* When net_device's are persistent, this will be fatal. */
9281         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9282         BUG_ON(!net);
9283
9284         spin_lock_init(&dev->addr_list_lock);
9285         lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9286
9287         ret = dev_get_valid_name(net, dev, dev->name);
9288         if (ret < 0)
9289                 goto out;
9290
9291         ret = -ENOMEM;
9292         dev->name_node = netdev_name_node_head_alloc(dev);
9293         if (!dev->name_node)
9294                 goto out;
9295
9296         /* Init, if this function is available */
9297         if (dev->netdev_ops->ndo_init) {
9298                 ret = dev->netdev_ops->ndo_init(dev);
9299                 if (ret) {
9300                         if (ret > 0)
9301                                 ret = -EIO;
9302                         goto err_free_name;
9303                 }
9304         }
9305
9306         if (((dev->hw_features | dev->features) &
9307              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9308             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9309              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9310                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9311                 ret = -EINVAL;
9312                 goto err_uninit;
9313         }
9314
9315         ret = -EBUSY;
9316         if (!dev->ifindex)
9317                 dev->ifindex = dev_new_index(net);
9318         else if (__dev_get_by_index(net, dev->ifindex))
9319                 goto err_uninit;
9320
9321         /* Transfer changeable features to wanted_features and enable
9322          * software offloads (GSO and GRO).
9323          */
9324         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9325         dev->features |= NETIF_F_SOFT_FEATURES;
9326
9327         if (dev->netdev_ops->ndo_udp_tunnel_add) {
9328                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9329                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9330         }
9331
9332         dev->wanted_features = dev->features & dev->hw_features;
9333
9334         if (!(dev->flags & IFF_LOOPBACK))
9335                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9336
9337         /* If IPv4 TCP segmentation offload is supported we should also
9338          * allow the device to enable segmenting the frame with the option
9339          * of ignoring a static IP ID value.  This doesn't enable the
9340          * feature itself but allows the user to enable it later.
9341          */
9342         if (dev->hw_features & NETIF_F_TSO)
9343                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9344         if (dev->vlan_features & NETIF_F_TSO)
9345                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9346         if (dev->mpls_features & NETIF_F_TSO)
9347                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9348         if (dev->hw_enc_features & NETIF_F_TSO)
9349                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9350
9351         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9352          */
9353         dev->vlan_features |= NETIF_F_HIGHDMA;
9354
9355         /* Make NETIF_F_SG inheritable to tunnel devices.
9356          */
9357         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9358
9359         /* Make NETIF_F_SG inheritable to MPLS.
9360          */
9361         dev->mpls_features |= NETIF_F_SG;
9362
9363         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9364         ret = notifier_to_errno(ret);
9365         if (ret)
9366                 goto err_uninit;
9367
9368         ret = netdev_register_kobject(dev);
9369         if (ret) {
9370                 dev->reg_state = NETREG_UNREGISTERED;
9371                 goto err_uninit;
9372         }
9373         dev->reg_state = NETREG_REGISTERED;
9374
9375         __netdev_update_features(dev);
9376
9377         /*
9378          *      Default initial state at registry is that the
9379          *      device is present.
9380          */
9381
9382         set_bit(__LINK_STATE_PRESENT, &dev->state);
9383
9384         linkwatch_init_dev(dev);
9385
9386         dev_init_scheduler(dev);
9387         dev_hold(dev);
9388         list_netdevice(dev);
9389         add_device_randomness(dev->dev_addr, dev->addr_len);
9390
9391         /* If the device has permanent device address, driver should
9392          * set dev_addr and also addr_assign_type should be set to
9393          * NET_ADDR_PERM (default value).
9394          */
9395         if (dev->addr_assign_type == NET_ADDR_PERM)
9396                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9397
9398         /* Notify protocols, that a new device appeared. */
9399         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9400         ret = notifier_to_errno(ret);
9401         if (ret) {
9402                 rollback_registered(dev);
9403                 rcu_barrier();
9404
9405                 dev->reg_state = NETREG_UNREGISTERED;
9406         }
9407         /*
9408          *      Prevent userspace races by waiting until the network
9409          *      device is fully setup before sending notifications.
9410          */
9411         if (!dev->rtnl_link_ops ||
9412             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9413                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9414
9415 out:
9416         return ret;
9417
9418 err_uninit:
9419         if (dev->netdev_ops->ndo_uninit)
9420                 dev->netdev_ops->ndo_uninit(dev);
9421         if (dev->priv_destructor)
9422                 dev->priv_destructor(dev);
9423 err_free_name:
9424         netdev_name_node_free(dev->name_node);
9425         goto out;
9426 }
9427 EXPORT_SYMBOL(register_netdevice);
9428
9429 /**
9430  *      init_dummy_netdev       - init a dummy network device for NAPI
9431  *      @dev: device to init
9432  *
9433  *      This takes a network device structure and initialize the minimum
9434  *      amount of fields so it can be used to schedule NAPI polls without
9435  *      registering a full blown interface. This is to be used by drivers
9436  *      that need to tie several hardware interfaces to a single NAPI
9437  *      poll scheduler due to HW limitations.
9438  */
9439 int init_dummy_netdev(struct net_device *dev)
9440 {
9441         /* Clear everything. Note we don't initialize spinlocks
9442          * are they aren't supposed to be taken by any of the
9443          * NAPI code and this dummy netdev is supposed to be
9444          * only ever used for NAPI polls
9445          */
9446         memset(dev, 0, sizeof(struct net_device));
9447
9448         /* make sure we BUG if trying to hit standard
9449          * register/unregister code path
9450          */
9451         dev->reg_state = NETREG_DUMMY;
9452
9453         /* NAPI wants this */
9454         INIT_LIST_HEAD(&dev->napi_list);
9455
9456         /* a dummy interface is started by default */
9457         set_bit(__LINK_STATE_PRESENT, &dev->state);
9458         set_bit(__LINK_STATE_START, &dev->state);
9459
9460         /* napi_busy_loop stats accounting wants this */
9461         dev_net_set(dev, &init_net);
9462
9463         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9464          * because users of this 'device' dont need to change
9465          * its refcount.
9466          */
9467
9468         return 0;
9469 }
9470 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9471
9472
9473 /**
9474  *      register_netdev - register a network device
9475  *      @dev: device to register
9476  *
9477  *      Take a completed network device structure and add it to the kernel
9478  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9479  *      chain. 0 is returned on success. A negative errno code is returned
9480  *      on a failure to set up the device, or if the name is a duplicate.
9481  *
9482  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9483  *      and expands the device name if you passed a format string to
9484  *      alloc_netdev.
9485  */
9486 int register_netdev(struct net_device *dev)
9487 {
9488         int err;
9489
9490         if (rtnl_lock_killable())
9491                 return -EINTR;
9492         err = register_netdevice(dev);
9493         rtnl_unlock();
9494         return err;
9495 }
9496 EXPORT_SYMBOL(register_netdev);
9497
9498 int netdev_refcnt_read(const struct net_device *dev)
9499 {
9500         int i, refcnt = 0;
9501
9502         for_each_possible_cpu(i)
9503                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9504         return refcnt;
9505 }
9506 EXPORT_SYMBOL(netdev_refcnt_read);
9507
9508 /**
9509  * netdev_wait_allrefs - wait until all references are gone.
9510  * @dev: target net_device
9511  *
9512  * This is called when unregistering network devices.
9513  *
9514  * Any protocol or device that holds a reference should register
9515  * for netdevice notification, and cleanup and put back the
9516  * reference if they receive an UNREGISTER event.
9517  * We can get stuck here if buggy protocols don't correctly
9518  * call dev_put.
9519  */
9520 static void netdev_wait_allrefs(struct net_device *dev)
9521 {
9522         unsigned long rebroadcast_time, warning_time;
9523         int refcnt;
9524
9525         linkwatch_forget_dev(dev);
9526
9527         rebroadcast_time = warning_time = jiffies;
9528         refcnt = netdev_refcnt_read(dev);
9529
9530         while (refcnt != 0) {
9531                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9532                         rtnl_lock();
9533
9534                         /* Rebroadcast unregister notification */
9535                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9536
9537                         __rtnl_unlock();
9538                         rcu_barrier();
9539                         rtnl_lock();
9540
9541                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9542                                      &dev->state)) {
9543                                 /* We must not have linkwatch events
9544                                  * pending on unregister. If this
9545                                  * happens, we simply run the queue
9546                                  * unscheduled, resulting in a noop
9547                                  * for this device.
9548                                  */
9549                                 linkwatch_run_queue();
9550                         }
9551
9552                         __rtnl_unlock();
9553
9554                         rebroadcast_time = jiffies;
9555                 }
9556
9557                 msleep(250);
9558
9559                 refcnt = netdev_refcnt_read(dev);
9560
9561                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9562                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9563                                  dev->name, refcnt);
9564                         warning_time = jiffies;
9565                 }
9566         }
9567 }
9568
9569 /* The sequence is:
9570  *
9571  *      rtnl_lock();
9572  *      ...
9573  *      register_netdevice(x1);
9574  *      register_netdevice(x2);
9575  *      ...
9576  *      unregister_netdevice(y1);
9577  *      unregister_netdevice(y2);
9578  *      ...
9579  *      rtnl_unlock();
9580  *      free_netdev(y1);
9581  *      free_netdev(y2);
9582  *
9583  * We are invoked by rtnl_unlock().
9584  * This allows us to deal with problems:
9585  * 1) We can delete sysfs objects which invoke hotplug
9586  *    without deadlocking with linkwatch via keventd.
9587  * 2) Since we run with the RTNL semaphore not held, we can sleep
9588  *    safely in order to wait for the netdev refcnt to drop to zero.
9589  *
9590  * We must not return until all unregister events added during
9591  * the interval the lock was held have been completed.
9592  */
9593 void netdev_run_todo(void)
9594 {
9595         struct list_head list;
9596
9597         /* Snapshot list, allow later requests */
9598         list_replace_init(&net_todo_list, &list);
9599
9600         __rtnl_unlock();
9601
9602
9603         /* Wait for rcu callbacks to finish before next phase */
9604         if (!list_empty(&list))
9605                 rcu_barrier();
9606
9607         while (!list_empty(&list)) {
9608                 struct net_device *dev
9609                         = list_first_entry(&list, struct net_device, todo_list);
9610                 list_del(&dev->todo_list);
9611
9612                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9613                         pr_err("network todo '%s' but state %d\n",
9614                                dev->name, dev->reg_state);
9615                         dump_stack();
9616                         continue;
9617                 }
9618
9619                 dev->reg_state = NETREG_UNREGISTERED;
9620
9621                 netdev_wait_allrefs(dev);
9622
9623                 /* paranoia */
9624                 BUG_ON(netdev_refcnt_read(dev));
9625                 BUG_ON(!list_empty(&dev->ptype_all));
9626                 BUG_ON(!list_empty(&dev->ptype_specific));
9627                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9628                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9629 #if IS_ENABLED(CONFIG_DECNET)
9630                 WARN_ON(dev->dn_ptr);
9631 #endif
9632                 if (dev->priv_destructor)
9633                         dev->priv_destructor(dev);
9634                 if (dev->needs_free_netdev)
9635                         free_netdev(dev);
9636
9637                 /* Report a network device has been unregistered */
9638                 rtnl_lock();
9639                 dev_net(dev)->dev_unreg_count--;
9640                 __rtnl_unlock();
9641                 wake_up(&netdev_unregistering_wq);
9642
9643                 /* Free network device */
9644                 kobject_put(&dev->dev.kobj);
9645         }
9646 }
9647
9648 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9649  * all the same fields in the same order as net_device_stats, with only
9650  * the type differing, but rtnl_link_stats64 may have additional fields
9651  * at the end for newer counters.
9652  */
9653 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9654                              const struct net_device_stats *netdev_stats)
9655 {
9656 #if BITS_PER_LONG == 64
9657         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9658         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9659         /* zero out counters that only exist in rtnl_link_stats64 */
9660         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9661                sizeof(*stats64) - sizeof(*netdev_stats));
9662 #else
9663         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9664         const unsigned long *src = (const unsigned long *)netdev_stats;
9665         u64 *dst = (u64 *)stats64;
9666
9667         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9668         for (i = 0; i < n; i++)
9669                 dst[i] = src[i];
9670         /* zero out counters that only exist in rtnl_link_stats64 */
9671         memset((char *)stats64 + n * sizeof(u64), 0,
9672                sizeof(*stats64) - n * sizeof(u64));
9673 #endif
9674 }
9675 EXPORT_SYMBOL(netdev_stats_to_stats64);
9676
9677 /**
9678  *      dev_get_stats   - get network device statistics
9679  *      @dev: device to get statistics from
9680  *      @storage: place to store stats
9681  *
9682  *      Get network statistics from device. Return @storage.
9683  *      The device driver may provide its own method by setting
9684  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9685  *      otherwise the internal statistics structure is used.
9686  */
9687 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9688                                         struct rtnl_link_stats64 *storage)
9689 {
9690         const struct net_device_ops *ops = dev->netdev_ops;
9691
9692         if (ops->ndo_get_stats64) {
9693                 memset(storage, 0, sizeof(*storage));
9694                 ops->ndo_get_stats64(dev, storage);
9695         } else if (ops->ndo_get_stats) {
9696                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9697         } else {
9698                 netdev_stats_to_stats64(storage, &dev->stats);
9699         }
9700         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9701         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9702         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9703         return storage;
9704 }
9705 EXPORT_SYMBOL(dev_get_stats);
9706
9707 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9708 {
9709         struct netdev_queue *queue = dev_ingress_queue(dev);
9710
9711 #ifdef CONFIG_NET_CLS_ACT
9712         if (queue)
9713                 return queue;
9714         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9715         if (!queue)
9716                 return NULL;
9717         netdev_init_one_queue(dev, queue, NULL);
9718         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9719         queue->qdisc_sleeping = &noop_qdisc;
9720         rcu_assign_pointer(dev->ingress_queue, queue);
9721 #endif
9722         return queue;
9723 }
9724
9725 static const struct ethtool_ops default_ethtool_ops;
9726
9727 void netdev_set_default_ethtool_ops(struct net_device *dev,
9728                                     const struct ethtool_ops *ops)
9729 {
9730         if (dev->ethtool_ops == &default_ethtool_ops)
9731                 dev->ethtool_ops = ops;
9732 }
9733 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9734
9735 void netdev_freemem(struct net_device *dev)
9736 {
9737         char *addr = (char *)dev - dev->padded;
9738
9739         kvfree(addr);
9740 }
9741
9742 /**
9743  * alloc_netdev_mqs - allocate network device
9744  * @sizeof_priv: size of private data to allocate space for
9745  * @name: device name format string
9746  * @name_assign_type: origin of device name
9747  * @setup: callback to initialize device
9748  * @txqs: the number of TX subqueues to allocate
9749  * @rxqs: the number of RX subqueues to allocate
9750  *
9751  * Allocates a struct net_device with private data area for driver use
9752  * and performs basic initialization.  Also allocates subqueue structs
9753  * for each queue on the device.
9754  */
9755 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9756                 unsigned char name_assign_type,
9757                 void (*setup)(struct net_device *),
9758                 unsigned int txqs, unsigned int rxqs)
9759 {
9760         struct net_device *dev;
9761         unsigned int alloc_size;
9762         struct net_device *p;
9763
9764         BUG_ON(strlen(name) >= sizeof(dev->name));
9765
9766         if (txqs < 1) {
9767                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9768                 return NULL;
9769         }
9770
9771         if (rxqs < 1) {
9772                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9773                 return NULL;
9774         }
9775
9776         alloc_size = sizeof(struct net_device);
9777         if (sizeof_priv) {
9778                 /* ensure 32-byte alignment of private area */
9779                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9780                 alloc_size += sizeof_priv;
9781         }
9782         /* ensure 32-byte alignment of whole construct */
9783         alloc_size += NETDEV_ALIGN - 1;
9784
9785         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9786         if (!p)
9787                 return NULL;
9788
9789         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9790         dev->padded = (char *)dev - (char *)p;
9791
9792         dev->pcpu_refcnt = alloc_percpu(int);
9793         if (!dev->pcpu_refcnt)
9794                 goto free_dev;
9795
9796         if (dev_addr_init(dev))
9797                 goto free_pcpu;
9798
9799         dev_mc_init(dev);
9800         dev_uc_init(dev);
9801
9802         dev_net_set(dev, &init_net);
9803
9804         netdev_register_lockdep_key(dev);
9805
9806         dev->gso_max_size = GSO_MAX_SIZE;
9807         dev->gso_max_segs = GSO_MAX_SEGS;
9808         dev->upper_level = 1;
9809         dev->lower_level = 1;
9810
9811         INIT_LIST_HEAD(&dev->napi_list);
9812         INIT_LIST_HEAD(&dev->unreg_list);
9813         INIT_LIST_HEAD(&dev->close_list);
9814         INIT_LIST_HEAD(&dev->link_watch_list);
9815         INIT_LIST_HEAD(&dev->adj_list.upper);
9816         INIT_LIST_HEAD(&dev->adj_list.lower);
9817         INIT_LIST_HEAD(&dev->ptype_all);
9818         INIT_LIST_HEAD(&dev->ptype_specific);
9819         INIT_LIST_HEAD(&dev->net_notifier_list);
9820 #ifdef CONFIG_NET_SCHED
9821         hash_init(dev->qdisc_hash);
9822 #endif
9823         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9824         setup(dev);
9825
9826         if (!dev->tx_queue_len) {
9827                 dev->priv_flags |= IFF_NO_QUEUE;
9828                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9829         }
9830
9831         dev->num_tx_queues = txqs;
9832         dev->real_num_tx_queues = txqs;
9833         if (netif_alloc_netdev_queues(dev))
9834                 goto free_all;
9835
9836         dev->num_rx_queues = rxqs;
9837         dev->real_num_rx_queues = rxqs;
9838         if (netif_alloc_rx_queues(dev))
9839                 goto free_all;
9840
9841         strcpy(dev->name, name);
9842         dev->name_assign_type = name_assign_type;
9843         dev->group = INIT_NETDEV_GROUP;
9844         if (!dev->ethtool_ops)
9845                 dev->ethtool_ops = &default_ethtool_ops;
9846
9847         nf_hook_ingress_init(dev);
9848
9849         return dev;
9850
9851 free_all:
9852         free_netdev(dev);
9853         return NULL;
9854
9855 free_pcpu:
9856         free_percpu(dev->pcpu_refcnt);
9857 free_dev:
9858         netdev_freemem(dev);
9859         return NULL;
9860 }
9861 EXPORT_SYMBOL(alloc_netdev_mqs);
9862
9863 /**
9864  * free_netdev - free network device
9865  * @dev: device
9866  *
9867  * This function does the last stage of destroying an allocated device
9868  * interface. The reference to the device object is released. If this
9869  * is the last reference then it will be freed.Must be called in process
9870  * context.
9871  */
9872 void free_netdev(struct net_device *dev)
9873 {
9874         struct napi_struct *p, *n;
9875
9876         might_sleep();
9877         netif_free_tx_queues(dev);
9878         netif_free_rx_queues(dev);
9879
9880         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9881
9882         /* Flush device addresses */
9883         dev_addr_flush(dev);
9884
9885         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9886                 netif_napi_del(p);
9887
9888         free_percpu(dev->pcpu_refcnt);
9889         dev->pcpu_refcnt = NULL;
9890         free_percpu(dev->xdp_bulkq);
9891         dev->xdp_bulkq = NULL;
9892
9893         netdev_unregister_lockdep_key(dev);
9894
9895         /*  Compatibility with error handling in drivers */
9896         if (dev->reg_state == NETREG_UNINITIALIZED) {
9897                 netdev_freemem(dev);
9898                 return;
9899         }
9900
9901         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9902         dev->reg_state = NETREG_RELEASED;
9903
9904         /* will free via device release */
9905         put_device(&dev->dev);
9906 }
9907 EXPORT_SYMBOL(free_netdev);
9908
9909 /**
9910  *      synchronize_net -  Synchronize with packet receive processing
9911  *
9912  *      Wait for packets currently being received to be done.
9913  *      Does not block later packets from starting.
9914  */
9915 void synchronize_net(void)
9916 {
9917         might_sleep();
9918         if (rtnl_is_locked())
9919                 synchronize_rcu_expedited();
9920         else
9921                 synchronize_rcu();
9922 }
9923 EXPORT_SYMBOL(synchronize_net);
9924
9925 /**
9926  *      unregister_netdevice_queue - remove device from the kernel
9927  *      @dev: device
9928  *      @head: list
9929  *
9930  *      This function shuts down a device interface and removes it
9931  *      from the kernel tables.
9932  *      If head not NULL, device is queued to be unregistered later.
9933  *
9934  *      Callers must hold the rtnl semaphore.  You may want
9935  *      unregister_netdev() instead of this.
9936  */
9937
9938 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9939 {
9940         ASSERT_RTNL();
9941
9942         if (head) {
9943                 list_move_tail(&dev->unreg_list, head);
9944         } else {
9945                 rollback_registered(dev);
9946                 /* Finish processing unregister after unlock */
9947                 net_set_todo(dev);
9948         }
9949 }
9950 EXPORT_SYMBOL(unregister_netdevice_queue);
9951
9952 /**
9953  *      unregister_netdevice_many - unregister many devices
9954  *      @head: list of devices
9955  *
9956  *  Note: As most callers use a stack allocated list_head,
9957  *  we force a list_del() to make sure stack wont be corrupted later.
9958  */
9959 void unregister_netdevice_many(struct list_head *head)
9960 {
9961         struct net_device *dev;
9962
9963         if (!list_empty(head)) {
9964                 rollback_registered_many(head);
9965                 list_for_each_entry(dev, head, unreg_list)
9966                         net_set_todo(dev);
9967                 list_del(head);
9968         }
9969 }
9970 EXPORT_SYMBOL(unregister_netdevice_many);
9971
9972 /**
9973  *      unregister_netdev - remove device from the kernel
9974  *      @dev: device
9975  *
9976  *      This function shuts down a device interface and removes it
9977  *      from the kernel tables.
9978  *
9979  *      This is just a wrapper for unregister_netdevice that takes
9980  *      the rtnl semaphore.  In general you want to use this and not
9981  *      unregister_netdevice.
9982  */
9983 void unregister_netdev(struct net_device *dev)
9984 {
9985         rtnl_lock();
9986         unregister_netdevice(dev);
9987         rtnl_unlock();
9988 }
9989 EXPORT_SYMBOL(unregister_netdev);
9990
9991 /**
9992  *      dev_change_net_namespace - move device to different nethost namespace
9993  *      @dev: device
9994  *      @net: network namespace
9995  *      @pat: If not NULL name pattern to try if the current device name
9996  *            is already taken in the destination network namespace.
9997  *
9998  *      This function shuts down a device interface and moves it
9999  *      to a new network namespace. On success 0 is returned, on
10000  *      a failure a netagive errno code is returned.
10001  *
10002  *      Callers must hold the rtnl semaphore.
10003  */
10004
10005 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10006 {
10007         int err, new_nsid, new_ifindex;
10008
10009         ASSERT_RTNL();
10010
10011         /* Don't allow namespace local devices to be moved. */
10012         err = -EINVAL;
10013         if (dev->features & NETIF_F_NETNS_LOCAL)
10014                 goto out;
10015
10016         /* Ensure the device has been registrered */
10017         if (dev->reg_state != NETREG_REGISTERED)
10018                 goto out;
10019
10020         /* Get out if there is nothing todo */
10021         err = 0;
10022         if (net_eq(dev_net(dev), net))
10023                 goto out;
10024
10025         /* Pick the destination device name, and ensure
10026          * we can use it in the destination network namespace.
10027          */
10028         err = -EEXIST;
10029         if (__dev_get_by_name(net, dev->name)) {
10030                 /* We get here if we can't use the current device name */
10031                 if (!pat)
10032                         goto out;
10033                 err = dev_get_valid_name(net, dev, pat);
10034                 if (err < 0)
10035                         goto out;
10036         }
10037
10038         /*
10039          * And now a mini version of register_netdevice unregister_netdevice.
10040          */
10041
10042         /* If device is running close it first. */
10043         dev_close(dev);
10044
10045         /* And unlink it from device chain */
10046         unlist_netdevice(dev);
10047
10048         synchronize_net();
10049
10050         /* Shutdown queueing discipline. */
10051         dev_shutdown(dev);
10052
10053         /* Notify protocols, that we are about to destroy
10054          * this device. They should clean all the things.
10055          *
10056          * Note that dev->reg_state stays at NETREG_REGISTERED.
10057          * This is wanted because this way 8021q and macvlan know
10058          * the device is just moving and can keep their slaves up.
10059          */
10060         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10061         rcu_barrier();
10062
10063         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10064         /* If there is an ifindex conflict assign a new one */
10065         if (__dev_get_by_index(net, dev->ifindex))
10066                 new_ifindex = dev_new_index(net);
10067         else
10068                 new_ifindex = dev->ifindex;
10069
10070         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10071                             new_ifindex);
10072
10073         /*
10074          *      Flush the unicast and multicast chains
10075          */
10076         dev_uc_flush(dev);
10077         dev_mc_flush(dev);
10078
10079         /* Send a netdev-removed uevent to the old namespace */
10080         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10081         netdev_adjacent_del_links(dev);
10082
10083         /* Move per-net netdevice notifiers that are following the netdevice */
10084         move_netdevice_notifiers_dev_net(dev, net);
10085
10086         /* Actually switch the network namespace */
10087         dev_net_set(dev, net);
10088         dev->ifindex = new_ifindex;
10089
10090         /* Send a netdev-add uevent to the new namespace */
10091         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10092         netdev_adjacent_add_links(dev);
10093
10094         /* Fixup kobjects */
10095         err = device_rename(&dev->dev, dev->name);
10096         WARN_ON(err);
10097
10098         /* Add the device back in the hashes */
10099         list_netdevice(dev);
10100
10101         /* Notify protocols, that a new device appeared. */
10102         call_netdevice_notifiers(NETDEV_REGISTER, dev);
10103
10104         /*
10105          *      Prevent userspace races by waiting until the network
10106          *      device is fully setup before sending notifications.
10107          */
10108         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10109
10110         synchronize_net();
10111         err = 0;
10112 out:
10113         return err;
10114 }
10115 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10116
10117 static int dev_cpu_dead(unsigned int oldcpu)
10118 {
10119         struct sk_buff **list_skb;
10120         struct sk_buff *skb;
10121         unsigned int cpu;
10122         struct softnet_data *sd, *oldsd, *remsd = NULL;
10123
10124         local_irq_disable();
10125         cpu = smp_processor_id();
10126         sd = &per_cpu(softnet_data, cpu);
10127         oldsd = &per_cpu(softnet_data, oldcpu);
10128
10129         /* Find end of our completion_queue. */
10130         list_skb = &sd->completion_queue;
10131         while (*list_skb)
10132                 list_skb = &(*list_skb)->next;
10133         /* Append completion queue from offline CPU. */
10134         *list_skb = oldsd->completion_queue;
10135         oldsd->completion_queue = NULL;
10136
10137         /* Append output queue from offline CPU. */
10138         if (oldsd->output_queue) {
10139                 *sd->output_queue_tailp = oldsd->output_queue;
10140                 sd->output_queue_tailp = oldsd->output_queue_tailp;
10141                 oldsd->output_queue = NULL;
10142                 oldsd->output_queue_tailp = &oldsd->output_queue;
10143         }
10144         /* Append NAPI poll list from offline CPU, with one exception :
10145          * process_backlog() must be called by cpu owning percpu backlog.
10146          * We properly handle process_queue & input_pkt_queue later.
10147          */
10148         while (!list_empty(&oldsd->poll_list)) {
10149                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10150                                                             struct napi_struct,
10151                                                             poll_list);
10152
10153                 list_del_init(&napi->poll_list);
10154                 if (napi->poll == process_backlog)
10155                         napi->state = 0;
10156                 else
10157                         ____napi_schedule(sd, napi);
10158         }
10159
10160         raise_softirq_irqoff(NET_TX_SOFTIRQ);
10161         local_irq_enable();
10162
10163 #ifdef CONFIG_RPS
10164         remsd = oldsd->rps_ipi_list;
10165         oldsd->rps_ipi_list = NULL;
10166 #endif
10167         /* send out pending IPI's on offline CPU */
10168         net_rps_send_ipi(remsd);
10169
10170         /* Process offline CPU's input_pkt_queue */
10171         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10172                 netif_rx_ni(skb);
10173                 input_queue_head_incr(oldsd);
10174         }
10175         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10176                 netif_rx_ni(skb);
10177                 input_queue_head_incr(oldsd);
10178         }
10179
10180         return 0;
10181 }
10182
10183 /**
10184  *      netdev_increment_features - increment feature set by one
10185  *      @all: current feature set
10186  *      @one: new feature set
10187  *      @mask: mask feature set
10188  *
10189  *      Computes a new feature set after adding a device with feature set
10190  *      @one to the master device with current feature set @all.  Will not
10191  *      enable anything that is off in @mask. Returns the new feature set.
10192  */
10193 netdev_features_t netdev_increment_features(netdev_features_t all,
10194         netdev_features_t one, netdev_features_t mask)
10195 {
10196         if (mask & NETIF_F_HW_CSUM)
10197                 mask |= NETIF_F_CSUM_MASK;
10198         mask |= NETIF_F_VLAN_CHALLENGED;
10199
10200         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10201         all &= one | ~NETIF_F_ALL_FOR_ALL;
10202
10203         /* If one device supports hw checksumming, set for all. */
10204         if (all & NETIF_F_HW_CSUM)
10205                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10206
10207         return all;
10208 }
10209 EXPORT_SYMBOL(netdev_increment_features);
10210
10211 static struct hlist_head * __net_init netdev_create_hash(void)
10212 {
10213         int i;
10214         struct hlist_head *hash;
10215
10216         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10217         if (hash != NULL)
10218                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10219                         INIT_HLIST_HEAD(&hash[i]);
10220
10221         return hash;
10222 }
10223
10224 /* Initialize per network namespace state */
10225 static int __net_init netdev_init(struct net *net)
10226 {
10227         BUILD_BUG_ON(GRO_HASH_BUCKETS >
10228                      8 * sizeof_field(struct napi_struct, gro_bitmask));
10229
10230         if (net != &init_net)
10231                 INIT_LIST_HEAD(&net->dev_base_head);
10232
10233         net->dev_name_head = netdev_create_hash();
10234         if (net->dev_name_head == NULL)
10235                 goto err_name;
10236
10237         net->dev_index_head = netdev_create_hash();
10238         if (net->dev_index_head == NULL)
10239                 goto err_idx;
10240
10241         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10242
10243         return 0;
10244
10245 err_idx:
10246         kfree(net->dev_name_head);
10247 err_name:
10248         return -ENOMEM;
10249 }
10250
10251 /**
10252  *      netdev_drivername - network driver for the device
10253  *      @dev: network device
10254  *
10255  *      Determine network driver for device.
10256  */
10257 const char *netdev_drivername(const struct net_device *dev)
10258 {
10259         const struct device_driver *driver;
10260         const struct device *parent;
10261         const char *empty = "";
10262
10263         parent = dev->dev.parent;
10264         if (!parent)
10265                 return empty;
10266
10267         driver = parent->driver;
10268         if (driver && driver->name)
10269                 return driver->name;
10270         return empty;
10271 }
10272
10273 static void __netdev_printk(const char *level, const struct net_device *dev,
10274                             struct va_format *vaf)
10275 {
10276         if (dev && dev->dev.parent) {
10277                 dev_printk_emit(level[1] - '0',
10278                                 dev->dev.parent,
10279                                 "%s %s %s%s: %pV",
10280                                 dev_driver_string(dev->dev.parent),
10281                                 dev_name(dev->dev.parent),
10282                                 netdev_name(dev), netdev_reg_state(dev),
10283                                 vaf);
10284         } else if (dev) {
10285                 printk("%s%s%s: %pV",
10286                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
10287         } else {
10288                 printk("%s(NULL net_device): %pV", level, vaf);
10289         }
10290 }
10291
10292 void netdev_printk(const char *level, const struct net_device *dev,
10293                    const char *format, ...)
10294 {
10295         struct va_format vaf;
10296         va_list args;
10297
10298         va_start(args, format);
10299
10300         vaf.fmt = format;
10301         vaf.va = &args;
10302
10303         __netdev_printk(level, dev, &vaf);
10304
10305         va_end(args);
10306 }
10307 EXPORT_SYMBOL(netdev_printk);
10308
10309 #define define_netdev_printk_level(func, level)                 \
10310 void func(const struct net_device *dev, const char *fmt, ...)   \
10311 {                                                               \
10312         struct va_format vaf;                                   \
10313         va_list args;                                           \
10314                                                                 \
10315         va_start(args, fmt);                                    \
10316                                                                 \
10317         vaf.fmt = fmt;                                          \
10318         vaf.va = &args;                                         \
10319                                                                 \
10320         __netdev_printk(level, dev, &vaf);                      \
10321                                                                 \
10322         va_end(args);                                           \
10323 }                                                               \
10324 EXPORT_SYMBOL(func);
10325
10326 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10327 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10328 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10329 define_netdev_printk_level(netdev_err, KERN_ERR);
10330 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10331 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10332 define_netdev_printk_level(netdev_info, KERN_INFO);
10333
10334 static void __net_exit netdev_exit(struct net *net)
10335 {
10336         kfree(net->dev_name_head);
10337         kfree(net->dev_index_head);
10338         if (net != &init_net)
10339                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10340 }
10341
10342 static struct pernet_operations __net_initdata netdev_net_ops = {
10343         .init = netdev_init,
10344         .exit = netdev_exit,
10345 };
10346
10347 static void __net_exit default_device_exit(struct net *net)
10348 {
10349         struct net_device *dev, *aux;
10350         /*
10351          * Push all migratable network devices back to the
10352          * initial network namespace
10353          */
10354         rtnl_lock();
10355         for_each_netdev_safe(net, dev, aux) {
10356                 int err;
10357                 char fb_name[IFNAMSIZ];
10358
10359                 /* Ignore unmoveable devices (i.e. loopback) */
10360                 if (dev->features & NETIF_F_NETNS_LOCAL)
10361                         continue;
10362
10363                 /* Leave virtual devices for the generic cleanup */
10364                 if (dev->rtnl_link_ops)
10365                         continue;
10366
10367                 /* Push remaining network devices to init_net */
10368                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10369                 if (__dev_get_by_name(&init_net, fb_name))
10370                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
10371                 err = dev_change_net_namespace(dev, &init_net, fb_name);
10372                 if (err) {
10373                         pr_emerg("%s: failed to move %s to init_net: %d\n",
10374                                  __func__, dev->name, err);
10375                         BUG();
10376                 }
10377         }
10378         rtnl_unlock();
10379 }
10380
10381 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10382 {
10383         /* Return with the rtnl_lock held when there are no network
10384          * devices unregistering in any network namespace in net_list.
10385          */
10386         struct net *net;
10387         bool unregistering;
10388         DEFINE_WAIT_FUNC(wait, woken_wake_function);
10389
10390         add_wait_queue(&netdev_unregistering_wq, &wait);
10391         for (;;) {
10392                 unregistering = false;
10393                 rtnl_lock();
10394                 list_for_each_entry(net, net_list, exit_list) {
10395                         if (net->dev_unreg_count > 0) {
10396                                 unregistering = true;
10397                                 break;
10398                         }
10399                 }
10400                 if (!unregistering)
10401                         break;
10402                 __rtnl_unlock();
10403
10404                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10405         }
10406         remove_wait_queue(&netdev_unregistering_wq, &wait);
10407 }
10408
10409 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10410 {
10411         /* At exit all network devices most be removed from a network
10412          * namespace.  Do this in the reverse order of registration.
10413          * Do this across as many network namespaces as possible to
10414          * improve batching efficiency.
10415          */
10416         struct net_device *dev;
10417         struct net *net;
10418         LIST_HEAD(dev_kill_list);
10419
10420         /* To prevent network device cleanup code from dereferencing
10421          * loopback devices or network devices that have been freed
10422          * wait here for all pending unregistrations to complete,
10423          * before unregistring the loopback device and allowing the
10424          * network namespace be freed.
10425          *
10426          * The netdev todo list containing all network devices
10427          * unregistrations that happen in default_device_exit_batch
10428          * will run in the rtnl_unlock() at the end of
10429          * default_device_exit_batch.
10430          */
10431         rtnl_lock_unregistering(net_list);
10432         list_for_each_entry(net, net_list, exit_list) {
10433                 for_each_netdev_reverse(net, dev) {
10434                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10435                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10436                         else
10437                                 unregister_netdevice_queue(dev, &dev_kill_list);
10438                 }
10439         }
10440         unregister_netdevice_many(&dev_kill_list);
10441         rtnl_unlock();
10442 }
10443
10444 static struct pernet_operations __net_initdata default_device_ops = {
10445         .exit = default_device_exit,
10446         .exit_batch = default_device_exit_batch,
10447 };
10448
10449 /*
10450  *      Initialize the DEV module. At boot time this walks the device list and
10451  *      unhooks any devices that fail to initialise (normally hardware not
10452  *      present) and leaves us with a valid list of present and active devices.
10453  *
10454  */
10455
10456 /*
10457  *       This is called single threaded during boot, so no need
10458  *       to take the rtnl semaphore.
10459  */
10460 static int __init net_dev_init(void)
10461 {
10462         int i, rc = -ENOMEM;
10463
10464         BUG_ON(!dev_boot_phase);
10465
10466         if (dev_proc_init())
10467                 goto out;
10468
10469         if (netdev_kobject_init())
10470                 goto out;
10471
10472         INIT_LIST_HEAD(&ptype_all);
10473         for (i = 0; i < PTYPE_HASH_SIZE; i++)
10474                 INIT_LIST_HEAD(&ptype_base[i]);
10475
10476         INIT_LIST_HEAD(&offload_base);
10477
10478         if (register_pernet_subsys(&netdev_net_ops))
10479                 goto out;
10480
10481         /*
10482          *      Initialise the packet receive queues.
10483          */
10484
10485         for_each_possible_cpu(i) {
10486                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10487                 struct softnet_data *sd = &per_cpu(softnet_data, i);
10488
10489                 INIT_WORK(flush, flush_backlog);
10490
10491                 skb_queue_head_init(&sd->input_pkt_queue);
10492                 skb_queue_head_init(&sd->process_queue);
10493 #ifdef CONFIG_XFRM_OFFLOAD
10494                 skb_queue_head_init(&sd->xfrm_backlog);
10495 #endif
10496                 INIT_LIST_HEAD(&sd->poll_list);
10497                 sd->output_queue_tailp = &sd->output_queue;
10498 #ifdef CONFIG_RPS
10499                 sd->csd.func = rps_trigger_softirq;
10500                 sd->csd.info = sd;
10501                 sd->cpu = i;
10502 #endif
10503
10504                 init_gro_hash(&sd->backlog);
10505                 sd->backlog.poll = process_backlog;
10506                 sd->backlog.weight = weight_p;
10507         }
10508
10509         dev_boot_phase = 0;
10510
10511         /* The loopback device is special if any other network devices
10512          * is present in a network namespace the loopback device must
10513          * be present. Since we now dynamically allocate and free the
10514          * loopback device ensure this invariant is maintained by
10515          * keeping the loopback device as the first device on the
10516          * list of network devices.  Ensuring the loopback devices
10517          * is the first device that appears and the last network device
10518          * that disappears.
10519          */
10520         if (register_pernet_device(&loopback_net_ops))
10521                 goto out;
10522
10523         if (register_pernet_device(&default_device_ops))
10524                 goto out;
10525
10526         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10527         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10528
10529         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10530                                        NULL, dev_cpu_dead);
10531         WARN_ON(rc < 0);
10532         rc = 0;
10533 out:
10534         return rc;
10535 }
10536
10537 subsys_initcall(net_dev_init);