]> asedeno.scripts.mit.edu Git - linux.git/blob - net/core/dev.c
net: core: limit nested device depth
[linux.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149 #define MAX_NEST_DEV 8
150
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;       /* Taps */
158 static struct list_head offload_base __read_mostly;
159
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162                                          struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164                                            struct net_device *dev,
165                                            struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 static DEFINE_MUTEX(ifalias_mutex);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static seqcount_t devnet_rename_seq;
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202         while (++net->dev_base_seq == 0)
203                 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221         spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235         struct net *net = dev_net(dev);
236
237         ASSERT_RTNL();
238
239         write_lock_bh(&dev_base_lock);
240         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242         hlist_add_head_rcu(&dev->index_hlist,
243                            dev_index_hash(net, dev->ifindex));
244         write_unlock_bh(&dev_base_lock);
245
246         dev_base_seq_inc(net);
247 }
248
249 /* Device list removal
250  * caller must respect a RCU grace period before freeing/reusing dev
251  */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254         ASSERT_RTNL();
255
256         /* Unlink dev from the device chain */
257         write_lock_bh(&dev_base_lock);
258         list_del_rcu(&dev->dev_list);
259         hlist_del_rcu(&dev->name_hlist);
260         hlist_del_rcu(&dev->index_hlist);
261         write_unlock_bh(&dev_base_lock);
262
263         dev_base_seq_inc(dev_net(dev));
264 }
265
266 /*
267  *      Our notifier list
268  */
269
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271
272 /*
273  *      Device drivers call our routines to queue packets here. We empty the
274  *      queue in the local softnet handler.
275  */
276
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279
280 #ifdef CONFIG_LOCKDEP
281 /*
282  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
283  * according to dev->type
284  */
285 static const unsigned short netdev_lock_type[] = {
286          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
287          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
288          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
289          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
290          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
291          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
292          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
293          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
294          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
295          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
296          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
297          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
298          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
299          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
300          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
301
302 static const char *const netdev_lock_name[] = {
303         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
304         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
305         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
306         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
307         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
308         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
309         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
310         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
311         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
312         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
313         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
314         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
315         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
316         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
317         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318
319 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
321
322 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
323 {
324         int i;
325
326         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
327                 if (netdev_lock_type[i] == dev_type)
328                         return i;
329         /* the last key is used by default */
330         return ARRAY_SIZE(netdev_lock_type) - 1;
331 }
332
333 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
334                                                  unsigned short dev_type)
335 {
336         int i;
337
338         i = netdev_lock_pos(dev_type);
339         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
340                                    netdev_lock_name[i]);
341 }
342
343 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
344 {
345         int i;
346
347         i = netdev_lock_pos(dev->type);
348         lockdep_set_class_and_name(&dev->addr_list_lock,
349                                    &netdev_addr_lock_key[i],
350                                    netdev_lock_name[i]);
351 }
352 #else
353 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
354                                                  unsigned short dev_type)
355 {
356 }
357 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
358 {
359 }
360 #endif
361
362 /*******************************************************************************
363  *
364  *              Protocol management and registration routines
365  *
366  *******************************************************************************/
367
368
369 /*
370  *      Add a protocol ID to the list. Now that the input handler is
371  *      smarter we can dispense with all the messy stuff that used to be
372  *      here.
373  *
374  *      BEWARE!!! Protocol handlers, mangling input packets,
375  *      MUST BE last in hash buckets and checking protocol handlers
376  *      MUST start from promiscuous ptype_all chain in net_bh.
377  *      It is true now, do not change it.
378  *      Explanation follows: if protocol handler, mangling packet, will
379  *      be the first on list, it is not able to sense, that packet
380  *      is cloned and should be copied-on-write, so that it will
381  *      change it and subsequent readers will get broken packet.
382  *                                                      --ANK (980803)
383  */
384
385 static inline struct list_head *ptype_head(const struct packet_type *pt)
386 {
387         if (pt->type == htons(ETH_P_ALL))
388                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
389         else
390                 return pt->dev ? &pt->dev->ptype_specific :
391                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
392 }
393
394 /**
395  *      dev_add_pack - add packet handler
396  *      @pt: packet type declaration
397  *
398  *      Add a protocol handler to the networking stack. The passed &packet_type
399  *      is linked into kernel lists and may not be freed until it has been
400  *      removed from the kernel lists.
401  *
402  *      This call does not sleep therefore it can not
403  *      guarantee all CPU's that are in middle of receiving packets
404  *      will see the new packet type (until the next received packet).
405  */
406
407 void dev_add_pack(struct packet_type *pt)
408 {
409         struct list_head *head = ptype_head(pt);
410
411         spin_lock(&ptype_lock);
412         list_add_rcu(&pt->list, head);
413         spin_unlock(&ptype_lock);
414 }
415 EXPORT_SYMBOL(dev_add_pack);
416
417 /**
418  *      __dev_remove_pack        - remove packet handler
419  *      @pt: packet type declaration
420  *
421  *      Remove a protocol handler that was previously added to the kernel
422  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
423  *      from the kernel lists and can be freed or reused once this function
424  *      returns.
425  *
426  *      The packet type might still be in use by receivers
427  *      and must not be freed until after all the CPU's have gone
428  *      through a quiescent state.
429  */
430 void __dev_remove_pack(struct packet_type *pt)
431 {
432         struct list_head *head = ptype_head(pt);
433         struct packet_type *pt1;
434
435         spin_lock(&ptype_lock);
436
437         list_for_each_entry(pt1, head, list) {
438                 if (pt == pt1) {
439                         list_del_rcu(&pt->list);
440                         goto out;
441                 }
442         }
443
444         pr_warn("dev_remove_pack: %p not found\n", pt);
445 out:
446         spin_unlock(&ptype_lock);
447 }
448 EXPORT_SYMBOL(__dev_remove_pack);
449
450 /**
451  *      dev_remove_pack  - remove packet handler
452  *      @pt: packet type declaration
453  *
454  *      Remove a protocol handler that was previously added to the kernel
455  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
456  *      from the kernel lists and can be freed or reused once this function
457  *      returns.
458  *
459  *      This call sleeps to guarantee that no CPU is looking at the packet
460  *      type after return.
461  */
462 void dev_remove_pack(struct packet_type *pt)
463 {
464         __dev_remove_pack(pt);
465
466         synchronize_net();
467 }
468 EXPORT_SYMBOL(dev_remove_pack);
469
470
471 /**
472  *      dev_add_offload - register offload handlers
473  *      @po: protocol offload declaration
474  *
475  *      Add protocol offload handlers to the networking stack. The passed
476  *      &proto_offload is linked into kernel lists and may not be freed until
477  *      it has been removed from the kernel lists.
478  *
479  *      This call does not sleep therefore it can not
480  *      guarantee all CPU's that are in middle of receiving packets
481  *      will see the new offload handlers (until the next received packet).
482  */
483 void dev_add_offload(struct packet_offload *po)
484 {
485         struct packet_offload *elem;
486
487         spin_lock(&offload_lock);
488         list_for_each_entry(elem, &offload_base, list) {
489                 if (po->priority < elem->priority)
490                         break;
491         }
492         list_add_rcu(&po->list, elem->list.prev);
493         spin_unlock(&offload_lock);
494 }
495 EXPORT_SYMBOL(dev_add_offload);
496
497 /**
498  *      __dev_remove_offload     - remove offload handler
499  *      @po: packet offload declaration
500  *
501  *      Remove a protocol offload handler that was previously added to the
502  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
503  *      is removed from the kernel lists and can be freed or reused once this
504  *      function returns.
505  *
506  *      The packet type might still be in use by receivers
507  *      and must not be freed until after all the CPU's have gone
508  *      through a quiescent state.
509  */
510 static void __dev_remove_offload(struct packet_offload *po)
511 {
512         struct list_head *head = &offload_base;
513         struct packet_offload *po1;
514
515         spin_lock(&offload_lock);
516
517         list_for_each_entry(po1, head, list) {
518                 if (po == po1) {
519                         list_del_rcu(&po->list);
520                         goto out;
521                 }
522         }
523
524         pr_warn("dev_remove_offload: %p not found\n", po);
525 out:
526         spin_unlock(&offload_lock);
527 }
528
529 /**
530  *      dev_remove_offload       - remove packet offload handler
531  *      @po: packet offload declaration
532  *
533  *      Remove a packet offload handler that was previously added to the kernel
534  *      offload handlers by dev_add_offload(). The passed &offload_type is
535  *      removed from the kernel lists and can be freed or reused once this
536  *      function returns.
537  *
538  *      This call sleeps to guarantee that no CPU is looking at the packet
539  *      type after return.
540  */
541 void dev_remove_offload(struct packet_offload *po)
542 {
543         __dev_remove_offload(po);
544
545         synchronize_net();
546 }
547 EXPORT_SYMBOL(dev_remove_offload);
548
549 /******************************************************************************
550  *
551  *                    Device Boot-time Settings Routines
552  *
553  ******************************************************************************/
554
555 /* Boot time configuration table */
556 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
557
558 /**
559  *      netdev_boot_setup_add   - add new setup entry
560  *      @name: name of the device
561  *      @map: configured settings for the device
562  *
563  *      Adds new setup entry to the dev_boot_setup list.  The function
564  *      returns 0 on error and 1 on success.  This is a generic routine to
565  *      all netdevices.
566  */
567 static int netdev_boot_setup_add(char *name, struct ifmap *map)
568 {
569         struct netdev_boot_setup *s;
570         int i;
571
572         s = dev_boot_setup;
573         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
574                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
575                         memset(s[i].name, 0, sizeof(s[i].name));
576                         strlcpy(s[i].name, name, IFNAMSIZ);
577                         memcpy(&s[i].map, map, sizeof(s[i].map));
578                         break;
579                 }
580         }
581
582         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
583 }
584
585 /**
586  * netdev_boot_setup_check      - check boot time settings
587  * @dev: the netdevice
588  *
589  * Check boot time settings for the device.
590  * The found settings are set for the device to be used
591  * later in the device probing.
592  * Returns 0 if no settings found, 1 if they are.
593  */
594 int netdev_boot_setup_check(struct net_device *dev)
595 {
596         struct netdev_boot_setup *s = dev_boot_setup;
597         int i;
598
599         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
600                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
601                     !strcmp(dev->name, s[i].name)) {
602                         dev->irq = s[i].map.irq;
603                         dev->base_addr = s[i].map.base_addr;
604                         dev->mem_start = s[i].map.mem_start;
605                         dev->mem_end = s[i].map.mem_end;
606                         return 1;
607                 }
608         }
609         return 0;
610 }
611 EXPORT_SYMBOL(netdev_boot_setup_check);
612
613
614 /**
615  * netdev_boot_base     - get address from boot time settings
616  * @prefix: prefix for network device
617  * @unit: id for network device
618  *
619  * Check boot time settings for the base address of device.
620  * The found settings are set for the device to be used
621  * later in the device probing.
622  * Returns 0 if no settings found.
623  */
624 unsigned long netdev_boot_base(const char *prefix, int unit)
625 {
626         const struct netdev_boot_setup *s = dev_boot_setup;
627         char name[IFNAMSIZ];
628         int i;
629
630         sprintf(name, "%s%d", prefix, unit);
631
632         /*
633          * If device already registered then return base of 1
634          * to indicate not to probe for this interface
635          */
636         if (__dev_get_by_name(&init_net, name))
637                 return 1;
638
639         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
640                 if (!strcmp(name, s[i].name))
641                         return s[i].map.base_addr;
642         return 0;
643 }
644
645 /*
646  * Saves at boot time configured settings for any netdevice.
647  */
648 int __init netdev_boot_setup(char *str)
649 {
650         int ints[5];
651         struct ifmap map;
652
653         str = get_options(str, ARRAY_SIZE(ints), ints);
654         if (!str || !*str)
655                 return 0;
656
657         /* Save settings */
658         memset(&map, 0, sizeof(map));
659         if (ints[0] > 0)
660                 map.irq = ints[1];
661         if (ints[0] > 1)
662                 map.base_addr = ints[2];
663         if (ints[0] > 2)
664                 map.mem_start = ints[3];
665         if (ints[0] > 3)
666                 map.mem_end = ints[4];
667
668         /* Add new entry to the list */
669         return netdev_boot_setup_add(str, &map);
670 }
671
672 __setup("netdev=", netdev_boot_setup);
673
674 /*******************************************************************************
675  *
676  *                          Device Interface Subroutines
677  *
678  *******************************************************************************/
679
680 /**
681  *      dev_get_iflink  - get 'iflink' value of a interface
682  *      @dev: targeted interface
683  *
684  *      Indicates the ifindex the interface is linked to.
685  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
686  */
687
688 int dev_get_iflink(const struct net_device *dev)
689 {
690         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
691                 return dev->netdev_ops->ndo_get_iflink(dev);
692
693         return dev->ifindex;
694 }
695 EXPORT_SYMBOL(dev_get_iflink);
696
697 /**
698  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
699  *      @dev: targeted interface
700  *      @skb: The packet.
701  *
702  *      For better visibility of tunnel traffic OVS needs to retrieve
703  *      egress tunnel information for a packet. Following API allows
704  *      user to get this info.
705  */
706 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
707 {
708         struct ip_tunnel_info *info;
709
710         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
711                 return -EINVAL;
712
713         info = skb_tunnel_info_unclone(skb);
714         if (!info)
715                 return -ENOMEM;
716         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
717                 return -EINVAL;
718
719         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
720 }
721 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
722
723 /**
724  *      __dev_get_by_name       - find a device by its name
725  *      @net: the applicable net namespace
726  *      @name: name to find
727  *
728  *      Find an interface by name. Must be called under RTNL semaphore
729  *      or @dev_base_lock. If the name is found a pointer to the device
730  *      is returned. If the name is not found then %NULL is returned. The
731  *      reference counters are not incremented so the caller must be
732  *      careful with locks.
733  */
734
735 struct net_device *__dev_get_by_name(struct net *net, const char *name)
736 {
737         struct net_device *dev;
738         struct hlist_head *head = dev_name_hash(net, name);
739
740         hlist_for_each_entry(dev, head, name_hlist)
741                 if (!strncmp(dev->name, name, IFNAMSIZ))
742                         return dev;
743
744         return NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_name);
747
748 /**
749  * dev_get_by_name_rcu  - find a device by its name
750  * @net: the applicable net namespace
751  * @name: name to find
752  *
753  * Find an interface by name.
754  * If the name is found a pointer to the device is returned.
755  * If the name is not found then %NULL is returned.
756  * The reference counters are not incremented so the caller must be
757  * careful with locks. The caller must hold RCU lock.
758  */
759
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 {
762         struct net_device *dev;
763         struct hlist_head *head = dev_name_hash(net, name);
764
765         hlist_for_each_entry_rcu(dev, head, name_hlist)
766                 if (!strncmp(dev->name, name, IFNAMSIZ))
767                         return dev;
768
769         return NULL;
770 }
771 EXPORT_SYMBOL(dev_get_by_name_rcu);
772
773 /**
774  *      dev_get_by_name         - find a device by its name
775  *      @net: the applicable net namespace
776  *      @name: name to find
777  *
778  *      Find an interface by name. This can be called from any
779  *      context and does its own locking. The returned handle has
780  *      the usage count incremented and the caller must use dev_put() to
781  *      release it when it is no longer needed. %NULL is returned if no
782  *      matching device is found.
783  */
784
785 struct net_device *dev_get_by_name(struct net *net, const char *name)
786 {
787         struct net_device *dev;
788
789         rcu_read_lock();
790         dev = dev_get_by_name_rcu(net, name);
791         if (dev)
792                 dev_hold(dev);
793         rcu_read_unlock();
794         return dev;
795 }
796 EXPORT_SYMBOL(dev_get_by_name);
797
798 /**
799  *      __dev_get_by_index - find a device by its ifindex
800  *      @net: the applicable net namespace
801  *      @ifindex: index of device
802  *
803  *      Search for an interface by index. Returns %NULL if the device
804  *      is not found or a pointer to the device. The device has not
805  *      had its reference counter increased so the caller must be careful
806  *      about locking. The caller must hold either the RTNL semaphore
807  *      or @dev_base_lock.
808  */
809
810 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
811 {
812         struct net_device *dev;
813         struct hlist_head *head = dev_index_hash(net, ifindex);
814
815         hlist_for_each_entry(dev, head, index_hlist)
816                 if (dev->ifindex == ifindex)
817                         return dev;
818
819         return NULL;
820 }
821 EXPORT_SYMBOL(__dev_get_by_index);
822
823 /**
824  *      dev_get_by_index_rcu - find a device by its ifindex
825  *      @net: the applicable net namespace
826  *      @ifindex: index of device
827  *
828  *      Search for an interface by index. Returns %NULL if the device
829  *      is not found or a pointer to the device. The device has not
830  *      had its reference counter increased so the caller must be careful
831  *      about locking. The caller must hold RCU lock.
832  */
833
834 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
835 {
836         struct net_device *dev;
837         struct hlist_head *head = dev_index_hash(net, ifindex);
838
839         hlist_for_each_entry_rcu(dev, head, index_hlist)
840                 if (dev->ifindex == ifindex)
841                         return dev;
842
843         return NULL;
844 }
845 EXPORT_SYMBOL(dev_get_by_index_rcu);
846
847
848 /**
849  *      dev_get_by_index - find a device by its ifindex
850  *      @net: the applicable net namespace
851  *      @ifindex: index of device
852  *
853  *      Search for an interface by index. Returns NULL if the device
854  *      is not found or a pointer to the device. The device returned has
855  *      had a reference added and the pointer is safe until the user calls
856  *      dev_put to indicate they have finished with it.
857  */
858
859 struct net_device *dev_get_by_index(struct net *net, int ifindex)
860 {
861         struct net_device *dev;
862
863         rcu_read_lock();
864         dev = dev_get_by_index_rcu(net, ifindex);
865         if (dev)
866                 dev_hold(dev);
867         rcu_read_unlock();
868         return dev;
869 }
870 EXPORT_SYMBOL(dev_get_by_index);
871
872 /**
873  *      dev_get_by_napi_id - find a device by napi_id
874  *      @napi_id: ID of the NAPI struct
875  *
876  *      Search for an interface by NAPI ID. Returns %NULL if the device
877  *      is not found or a pointer to the device. The device has not had
878  *      its reference counter increased so the caller must be careful
879  *      about locking. The caller must hold RCU lock.
880  */
881
882 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
883 {
884         struct napi_struct *napi;
885
886         WARN_ON_ONCE(!rcu_read_lock_held());
887
888         if (napi_id < MIN_NAPI_ID)
889                 return NULL;
890
891         napi = napi_by_id(napi_id);
892
893         return napi ? napi->dev : NULL;
894 }
895 EXPORT_SYMBOL(dev_get_by_napi_id);
896
897 /**
898  *      netdev_get_name - get a netdevice name, knowing its ifindex.
899  *      @net: network namespace
900  *      @name: a pointer to the buffer where the name will be stored.
901  *      @ifindex: the ifindex of the interface to get the name from.
902  *
903  *      The use of raw_seqcount_begin() and cond_resched() before
904  *      retrying is required as we want to give the writers a chance
905  *      to complete when CONFIG_PREEMPT is not set.
906  */
907 int netdev_get_name(struct net *net, char *name, int ifindex)
908 {
909         struct net_device *dev;
910         unsigned int seq;
911
912 retry:
913         seq = raw_seqcount_begin(&devnet_rename_seq);
914         rcu_read_lock();
915         dev = dev_get_by_index_rcu(net, ifindex);
916         if (!dev) {
917                 rcu_read_unlock();
918                 return -ENODEV;
919         }
920
921         strcpy(name, dev->name);
922         rcu_read_unlock();
923         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
924                 cond_resched();
925                 goto retry;
926         }
927
928         return 0;
929 }
930
931 /**
932  *      dev_getbyhwaddr_rcu - find a device by its hardware address
933  *      @net: the applicable net namespace
934  *      @type: media type of device
935  *      @ha: hardware address
936  *
937  *      Search for an interface by MAC address. Returns NULL if the device
938  *      is not found or a pointer to the device.
939  *      The caller must hold RCU or RTNL.
940  *      The returned device has not had its ref count increased
941  *      and the caller must therefore be careful about locking
942  *
943  */
944
945 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
946                                        const char *ha)
947 {
948         struct net_device *dev;
949
950         for_each_netdev_rcu(net, dev)
951                 if (dev->type == type &&
952                     !memcmp(dev->dev_addr, ha, dev->addr_len))
953                         return dev;
954
955         return NULL;
956 }
957 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
958
959 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
960 {
961         struct net_device *dev;
962
963         ASSERT_RTNL();
964         for_each_netdev(net, dev)
965                 if (dev->type == type)
966                         return dev;
967
968         return NULL;
969 }
970 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
971
972 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973 {
974         struct net_device *dev, *ret = NULL;
975
976         rcu_read_lock();
977         for_each_netdev_rcu(net, dev)
978                 if (dev->type == type) {
979                         dev_hold(dev);
980                         ret = dev;
981                         break;
982                 }
983         rcu_read_unlock();
984         return ret;
985 }
986 EXPORT_SYMBOL(dev_getfirstbyhwtype);
987
988 /**
989  *      __dev_get_by_flags - find any device with given flags
990  *      @net: the applicable net namespace
991  *      @if_flags: IFF_* values
992  *      @mask: bitmask of bits in if_flags to check
993  *
994  *      Search for any interface with the given flags. Returns NULL if a device
995  *      is not found or a pointer to the device. Must be called inside
996  *      rtnl_lock(), and result refcount is unchanged.
997  */
998
999 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000                                       unsigned short mask)
1001 {
1002         struct net_device *dev, *ret;
1003
1004         ASSERT_RTNL();
1005
1006         ret = NULL;
1007         for_each_netdev(net, dev) {
1008                 if (((dev->flags ^ if_flags) & mask) == 0) {
1009                         ret = dev;
1010                         break;
1011                 }
1012         }
1013         return ret;
1014 }
1015 EXPORT_SYMBOL(__dev_get_by_flags);
1016
1017 /**
1018  *      dev_valid_name - check if name is okay for network device
1019  *      @name: name string
1020  *
1021  *      Network device names need to be valid file names to
1022  *      to allow sysfs to work.  We also disallow any kind of
1023  *      whitespace.
1024  */
1025 bool dev_valid_name(const char *name)
1026 {
1027         if (*name == '\0')
1028                 return false;
1029         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030                 return false;
1031         if (!strcmp(name, ".") || !strcmp(name, ".."))
1032                 return false;
1033
1034         while (*name) {
1035                 if (*name == '/' || *name == ':' || isspace(*name))
1036                         return false;
1037                 name++;
1038         }
1039         return true;
1040 }
1041 EXPORT_SYMBOL(dev_valid_name);
1042
1043 /**
1044  *      __dev_alloc_name - allocate a name for a device
1045  *      @net: network namespace to allocate the device name in
1046  *      @name: name format string
1047  *      @buf:  scratch buffer and result name string
1048  *
1049  *      Passed a format string - eg "lt%d" it will try and find a suitable
1050  *      id. It scans list of devices to build up a free map, then chooses
1051  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1052  *      while allocating the name and adding the device in order to avoid
1053  *      duplicates.
1054  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055  *      Returns the number of the unit assigned or a negative errno code.
1056  */
1057
1058 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1059 {
1060         int i = 0;
1061         const char *p;
1062         const int max_netdevices = 8*PAGE_SIZE;
1063         unsigned long *inuse;
1064         struct net_device *d;
1065
1066         if (!dev_valid_name(name))
1067                 return -EINVAL;
1068
1069         p = strchr(name, '%');
1070         if (p) {
1071                 /*
1072                  * Verify the string as this thing may have come from
1073                  * the user.  There must be either one "%d" and no other "%"
1074                  * characters.
1075                  */
1076                 if (p[1] != 'd' || strchr(p + 2, '%'))
1077                         return -EINVAL;
1078
1079                 /* Use one page as a bit array of possible slots */
1080                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1081                 if (!inuse)
1082                         return -ENOMEM;
1083
1084                 for_each_netdev(net, d) {
1085                         if (!sscanf(d->name, name, &i))
1086                                 continue;
1087                         if (i < 0 || i >= max_netdevices)
1088                                 continue;
1089
1090                         /*  avoid cases where sscanf is not exact inverse of printf */
1091                         snprintf(buf, IFNAMSIZ, name, i);
1092                         if (!strncmp(buf, d->name, IFNAMSIZ))
1093                                 set_bit(i, inuse);
1094                 }
1095
1096                 i = find_first_zero_bit(inuse, max_netdevices);
1097                 free_page((unsigned long) inuse);
1098         }
1099
1100         snprintf(buf, IFNAMSIZ, name, i);
1101         if (!__dev_get_by_name(net, buf))
1102                 return i;
1103
1104         /* It is possible to run out of possible slots
1105          * when the name is long and there isn't enough space left
1106          * for the digits, or if all bits are used.
1107          */
1108         return -ENFILE;
1109 }
1110
1111 static int dev_alloc_name_ns(struct net *net,
1112                              struct net_device *dev,
1113                              const char *name)
1114 {
1115         char buf[IFNAMSIZ];
1116         int ret;
1117
1118         BUG_ON(!net);
1119         ret = __dev_alloc_name(net, name, buf);
1120         if (ret >= 0)
1121                 strlcpy(dev->name, buf, IFNAMSIZ);
1122         return ret;
1123 }
1124
1125 /**
1126  *      dev_alloc_name - allocate a name for a device
1127  *      @dev: device
1128  *      @name: name format string
1129  *
1130  *      Passed a format string - eg "lt%d" it will try and find a suitable
1131  *      id. It scans list of devices to build up a free map, then chooses
1132  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1133  *      while allocating the name and adding the device in order to avoid
1134  *      duplicates.
1135  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1136  *      Returns the number of the unit assigned or a negative errno code.
1137  */
1138
1139 int dev_alloc_name(struct net_device *dev, const char *name)
1140 {
1141         return dev_alloc_name_ns(dev_net(dev), dev, name);
1142 }
1143 EXPORT_SYMBOL(dev_alloc_name);
1144
1145 int dev_get_valid_name(struct net *net, struct net_device *dev,
1146                        const char *name)
1147 {
1148         BUG_ON(!net);
1149
1150         if (!dev_valid_name(name))
1151                 return -EINVAL;
1152
1153         if (strchr(name, '%'))
1154                 return dev_alloc_name_ns(net, dev, name);
1155         else if (__dev_get_by_name(net, name))
1156                 return -EEXIST;
1157         else if (dev->name != name)
1158                 strlcpy(dev->name, name, IFNAMSIZ);
1159
1160         return 0;
1161 }
1162 EXPORT_SYMBOL(dev_get_valid_name);
1163
1164 /**
1165  *      dev_change_name - change name of a device
1166  *      @dev: device
1167  *      @newname: name (or format string) must be at least IFNAMSIZ
1168  *
1169  *      Change name of a device, can pass format strings "eth%d".
1170  *      for wildcarding.
1171  */
1172 int dev_change_name(struct net_device *dev, const char *newname)
1173 {
1174         unsigned char old_assign_type;
1175         char oldname[IFNAMSIZ];
1176         int err = 0;
1177         int ret;
1178         struct net *net;
1179
1180         ASSERT_RTNL();
1181         BUG_ON(!dev_net(dev));
1182
1183         net = dev_net(dev);
1184
1185         /* Some auto-enslaved devices e.g. failover slaves are
1186          * special, as userspace might rename the device after
1187          * the interface had been brought up and running since
1188          * the point kernel initiated auto-enslavement. Allow
1189          * live name change even when these slave devices are
1190          * up and running.
1191          *
1192          * Typically, users of these auto-enslaving devices
1193          * don't actually care about slave name change, as
1194          * they are supposed to operate on master interface
1195          * directly.
1196          */
1197         if (dev->flags & IFF_UP &&
1198             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1199                 return -EBUSY;
1200
1201         write_seqcount_begin(&devnet_rename_seq);
1202
1203         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1204                 write_seqcount_end(&devnet_rename_seq);
1205                 return 0;
1206         }
1207
1208         memcpy(oldname, dev->name, IFNAMSIZ);
1209
1210         err = dev_get_valid_name(net, dev, newname);
1211         if (err < 0) {
1212                 write_seqcount_end(&devnet_rename_seq);
1213                 return err;
1214         }
1215
1216         if (oldname[0] && !strchr(oldname, '%'))
1217                 netdev_info(dev, "renamed from %s\n", oldname);
1218
1219         old_assign_type = dev->name_assign_type;
1220         dev->name_assign_type = NET_NAME_RENAMED;
1221
1222 rollback:
1223         ret = device_rename(&dev->dev, dev->name);
1224         if (ret) {
1225                 memcpy(dev->name, oldname, IFNAMSIZ);
1226                 dev->name_assign_type = old_assign_type;
1227                 write_seqcount_end(&devnet_rename_seq);
1228                 return ret;
1229         }
1230
1231         write_seqcount_end(&devnet_rename_seq);
1232
1233         netdev_adjacent_rename_links(dev, oldname);
1234
1235         write_lock_bh(&dev_base_lock);
1236         hlist_del_rcu(&dev->name_hlist);
1237         write_unlock_bh(&dev_base_lock);
1238
1239         synchronize_rcu();
1240
1241         write_lock_bh(&dev_base_lock);
1242         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1243         write_unlock_bh(&dev_base_lock);
1244
1245         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1246         ret = notifier_to_errno(ret);
1247
1248         if (ret) {
1249                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1250                 if (err >= 0) {
1251                         err = ret;
1252                         write_seqcount_begin(&devnet_rename_seq);
1253                         memcpy(dev->name, oldname, IFNAMSIZ);
1254                         memcpy(oldname, newname, IFNAMSIZ);
1255                         dev->name_assign_type = old_assign_type;
1256                         old_assign_type = NET_NAME_RENAMED;
1257                         goto rollback;
1258                 } else {
1259                         pr_err("%s: name change rollback failed: %d\n",
1260                                dev->name, ret);
1261                 }
1262         }
1263
1264         return err;
1265 }
1266
1267 /**
1268  *      dev_set_alias - change ifalias of a device
1269  *      @dev: device
1270  *      @alias: name up to IFALIASZ
1271  *      @len: limit of bytes to copy from info
1272  *
1273  *      Set ifalias for a device,
1274  */
1275 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1276 {
1277         struct dev_ifalias *new_alias = NULL;
1278
1279         if (len >= IFALIASZ)
1280                 return -EINVAL;
1281
1282         if (len) {
1283                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1284                 if (!new_alias)
1285                         return -ENOMEM;
1286
1287                 memcpy(new_alias->ifalias, alias, len);
1288                 new_alias->ifalias[len] = 0;
1289         }
1290
1291         mutex_lock(&ifalias_mutex);
1292         rcu_swap_protected(dev->ifalias, new_alias,
1293                            mutex_is_locked(&ifalias_mutex));
1294         mutex_unlock(&ifalias_mutex);
1295
1296         if (new_alias)
1297                 kfree_rcu(new_alias, rcuhead);
1298
1299         return len;
1300 }
1301 EXPORT_SYMBOL(dev_set_alias);
1302
1303 /**
1304  *      dev_get_alias - get ifalias of a device
1305  *      @dev: device
1306  *      @name: buffer to store name of ifalias
1307  *      @len: size of buffer
1308  *
1309  *      get ifalias for a device.  Caller must make sure dev cannot go
1310  *      away,  e.g. rcu read lock or own a reference count to device.
1311  */
1312 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1313 {
1314         const struct dev_ifalias *alias;
1315         int ret = 0;
1316
1317         rcu_read_lock();
1318         alias = rcu_dereference(dev->ifalias);
1319         if (alias)
1320                 ret = snprintf(name, len, "%s", alias->ifalias);
1321         rcu_read_unlock();
1322
1323         return ret;
1324 }
1325
1326 /**
1327  *      netdev_features_change - device changes features
1328  *      @dev: device to cause notification
1329  *
1330  *      Called to indicate a device has changed features.
1331  */
1332 void netdev_features_change(struct net_device *dev)
1333 {
1334         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1335 }
1336 EXPORT_SYMBOL(netdev_features_change);
1337
1338 /**
1339  *      netdev_state_change - device changes state
1340  *      @dev: device to cause notification
1341  *
1342  *      Called to indicate a device has changed state. This function calls
1343  *      the notifier chains for netdev_chain and sends a NEWLINK message
1344  *      to the routing socket.
1345  */
1346 void netdev_state_change(struct net_device *dev)
1347 {
1348         if (dev->flags & IFF_UP) {
1349                 struct netdev_notifier_change_info change_info = {
1350                         .info.dev = dev,
1351                 };
1352
1353                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1354                                               &change_info.info);
1355                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1356         }
1357 }
1358 EXPORT_SYMBOL(netdev_state_change);
1359
1360 /**
1361  * netdev_notify_peers - notify network peers about existence of @dev
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void netdev_notify_peers(struct net_device *dev)
1371 {
1372         rtnl_lock();
1373         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1374         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1375         rtnl_unlock();
1376 }
1377 EXPORT_SYMBOL(netdev_notify_peers);
1378
1379 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1380 {
1381         const struct net_device_ops *ops = dev->netdev_ops;
1382         int ret;
1383
1384         ASSERT_RTNL();
1385
1386         if (!netif_device_present(dev))
1387                 return -ENODEV;
1388
1389         /* Block netpoll from trying to do any rx path servicing.
1390          * If we don't do this there is a chance ndo_poll_controller
1391          * or ndo_poll may be running while we open the device
1392          */
1393         netpoll_poll_disable(dev);
1394
1395         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1396         ret = notifier_to_errno(ret);
1397         if (ret)
1398                 return ret;
1399
1400         set_bit(__LINK_STATE_START, &dev->state);
1401
1402         if (ops->ndo_validate_addr)
1403                 ret = ops->ndo_validate_addr(dev);
1404
1405         if (!ret && ops->ndo_open)
1406                 ret = ops->ndo_open(dev);
1407
1408         netpoll_poll_enable(dev);
1409
1410         if (ret)
1411                 clear_bit(__LINK_STATE_START, &dev->state);
1412         else {
1413                 dev->flags |= IFF_UP;
1414                 dev_set_rx_mode(dev);
1415                 dev_activate(dev);
1416                 add_device_randomness(dev->dev_addr, dev->addr_len);
1417         }
1418
1419         return ret;
1420 }
1421
1422 /**
1423  *      dev_open        - prepare an interface for use.
1424  *      @dev: device to open
1425  *      @extack: netlink extended ack
1426  *
1427  *      Takes a device from down to up state. The device's private open
1428  *      function is invoked and then the multicast lists are loaded. Finally
1429  *      the device is moved into the up state and a %NETDEV_UP message is
1430  *      sent to the netdev notifier chain.
1431  *
1432  *      Calling this function on an active interface is a nop. On a failure
1433  *      a negative errno code is returned.
1434  */
1435 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1436 {
1437         int ret;
1438
1439         if (dev->flags & IFF_UP)
1440                 return 0;
1441
1442         ret = __dev_open(dev, extack);
1443         if (ret < 0)
1444                 return ret;
1445
1446         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1447         call_netdevice_notifiers(NETDEV_UP, dev);
1448
1449         return ret;
1450 }
1451 EXPORT_SYMBOL(dev_open);
1452
1453 static void __dev_close_many(struct list_head *head)
1454 {
1455         struct net_device *dev;
1456
1457         ASSERT_RTNL();
1458         might_sleep();
1459
1460         list_for_each_entry(dev, head, close_list) {
1461                 /* Temporarily disable netpoll until the interface is down */
1462                 netpoll_poll_disable(dev);
1463
1464                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1465
1466                 clear_bit(__LINK_STATE_START, &dev->state);
1467
1468                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1469                  * can be even on different cpu. So just clear netif_running().
1470                  *
1471                  * dev->stop() will invoke napi_disable() on all of it's
1472                  * napi_struct instances on this device.
1473                  */
1474                 smp_mb__after_atomic(); /* Commit netif_running(). */
1475         }
1476
1477         dev_deactivate_many(head);
1478
1479         list_for_each_entry(dev, head, close_list) {
1480                 const struct net_device_ops *ops = dev->netdev_ops;
1481
1482                 /*
1483                  *      Call the device specific close. This cannot fail.
1484                  *      Only if device is UP
1485                  *
1486                  *      We allow it to be called even after a DETACH hot-plug
1487                  *      event.
1488                  */
1489                 if (ops->ndo_stop)
1490                         ops->ndo_stop(dev);
1491
1492                 dev->flags &= ~IFF_UP;
1493                 netpoll_poll_enable(dev);
1494         }
1495 }
1496
1497 static void __dev_close(struct net_device *dev)
1498 {
1499         LIST_HEAD(single);
1500
1501         list_add(&dev->close_list, &single);
1502         __dev_close_many(&single);
1503         list_del(&single);
1504 }
1505
1506 void dev_close_many(struct list_head *head, bool unlink)
1507 {
1508         struct net_device *dev, *tmp;
1509
1510         /* Remove the devices that don't need to be closed */
1511         list_for_each_entry_safe(dev, tmp, head, close_list)
1512                 if (!(dev->flags & IFF_UP))
1513                         list_del_init(&dev->close_list);
1514
1515         __dev_close_many(head);
1516
1517         list_for_each_entry_safe(dev, tmp, head, close_list) {
1518                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1519                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1520                 if (unlink)
1521                         list_del_init(&dev->close_list);
1522         }
1523 }
1524 EXPORT_SYMBOL(dev_close_many);
1525
1526 /**
1527  *      dev_close - shutdown an interface.
1528  *      @dev: device to shutdown
1529  *
1530  *      This function moves an active device into down state. A
1531  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1532  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1533  *      chain.
1534  */
1535 void dev_close(struct net_device *dev)
1536 {
1537         if (dev->flags & IFF_UP) {
1538                 LIST_HEAD(single);
1539
1540                 list_add(&dev->close_list, &single);
1541                 dev_close_many(&single, true);
1542                 list_del(&single);
1543         }
1544 }
1545 EXPORT_SYMBOL(dev_close);
1546
1547
1548 /**
1549  *      dev_disable_lro - disable Large Receive Offload on a device
1550  *      @dev: device
1551  *
1552  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1553  *      called under RTNL.  This is needed if received packets may be
1554  *      forwarded to another interface.
1555  */
1556 void dev_disable_lro(struct net_device *dev)
1557 {
1558         struct net_device *lower_dev;
1559         struct list_head *iter;
1560
1561         dev->wanted_features &= ~NETIF_F_LRO;
1562         netdev_update_features(dev);
1563
1564         if (unlikely(dev->features & NETIF_F_LRO))
1565                 netdev_WARN(dev, "failed to disable LRO!\n");
1566
1567         netdev_for_each_lower_dev(dev, lower_dev, iter)
1568                 dev_disable_lro(lower_dev);
1569 }
1570 EXPORT_SYMBOL(dev_disable_lro);
1571
1572 /**
1573  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1574  *      @dev: device
1575  *
1576  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1577  *      called under RTNL.  This is needed if Generic XDP is installed on
1578  *      the device.
1579  */
1580 static void dev_disable_gro_hw(struct net_device *dev)
1581 {
1582         dev->wanted_features &= ~NETIF_F_GRO_HW;
1583         netdev_update_features(dev);
1584
1585         if (unlikely(dev->features & NETIF_F_GRO_HW))
1586                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1587 }
1588
1589 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1590 {
1591 #define N(val)                                          \
1592         case NETDEV_##val:                              \
1593                 return "NETDEV_" __stringify(val);
1594         switch (cmd) {
1595         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1596         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1597         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1598         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1599         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1600         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1601         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1602         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1603         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1604         N(PRE_CHANGEADDR)
1605         }
1606 #undef N
1607         return "UNKNOWN_NETDEV_EVENT";
1608 }
1609 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1610
1611 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1612                                    struct net_device *dev)
1613 {
1614         struct netdev_notifier_info info = {
1615                 .dev = dev,
1616         };
1617
1618         return nb->notifier_call(nb, val, &info);
1619 }
1620
1621 static int dev_boot_phase = 1;
1622
1623 /**
1624  * register_netdevice_notifier - register a network notifier block
1625  * @nb: notifier
1626  *
1627  * Register a notifier to be called when network device events occur.
1628  * The notifier passed is linked into the kernel structures and must
1629  * not be reused until it has been unregistered. A negative errno code
1630  * is returned on a failure.
1631  *
1632  * When registered all registration and up events are replayed
1633  * to the new notifier to allow device to have a race free
1634  * view of the network device list.
1635  */
1636
1637 int register_netdevice_notifier(struct notifier_block *nb)
1638 {
1639         struct net_device *dev;
1640         struct net_device *last;
1641         struct net *net;
1642         int err;
1643
1644         /* Close race with setup_net() and cleanup_net() */
1645         down_write(&pernet_ops_rwsem);
1646         rtnl_lock();
1647         err = raw_notifier_chain_register(&netdev_chain, nb);
1648         if (err)
1649                 goto unlock;
1650         if (dev_boot_phase)
1651                 goto unlock;
1652         for_each_net(net) {
1653                 for_each_netdev(net, dev) {
1654                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1655                         err = notifier_to_errno(err);
1656                         if (err)
1657                                 goto rollback;
1658
1659                         if (!(dev->flags & IFF_UP))
1660                                 continue;
1661
1662                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1663                 }
1664         }
1665
1666 unlock:
1667         rtnl_unlock();
1668         up_write(&pernet_ops_rwsem);
1669         return err;
1670
1671 rollback:
1672         last = dev;
1673         for_each_net(net) {
1674                 for_each_netdev(net, dev) {
1675                         if (dev == last)
1676                                 goto outroll;
1677
1678                         if (dev->flags & IFF_UP) {
1679                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1680                                                         dev);
1681                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1682                         }
1683                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1684                 }
1685         }
1686
1687 outroll:
1688         raw_notifier_chain_unregister(&netdev_chain, nb);
1689         goto unlock;
1690 }
1691 EXPORT_SYMBOL(register_netdevice_notifier);
1692
1693 /**
1694  * unregister_netdevice_notifier - unregister a network notifier block
1695  * @nb: notifier
1696  *
1697  * Unregister a notifier previously registered by
1698  * register_netdevice_notifier(). The notifier is unlinked into the
1699  * kernel structures and may then be reused. A negative errno code
1700  * is returned on a failure.
1701  *
1702  * After unregistering unregister and down device events are synthesized
1703  * for all devices on the device list to the removed notifier to remove
1704  * the need for special case cleanup code.
1705  */
1706
1707 int unregister_netdevice_notifier(struct notifier_block *nb)
1708 {
1709         struct net_device *dev;
1710         struct net *net;
1711         int err;
1712
1713         /* Close race with setup_net() and cleanup_net() */
1714         down_write(&pernet_ops_rwsem);
1715         rtnl_lock();
1716         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1717         if (err)
1718                 goto unlock;
1719
1720         for_each_net(net) {
1721                 for_each_netdev(net, dev) {
1722                         if (dev->flags & IFF_UP) {
1723                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1724                                                         dev);
1725                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1726                         }
1727                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1728                 }
1729         }
1730 unlock:
1731         rtnl_unlock();
1732         up_write(&pernet_ops_rwsem);
1733         return err;
1734 }
1735 EXPORT_SYMBOL(unregister_netdevice_notifier);
1736
1737 /**
1738  *      call_netdevice_notifiers_info - call all network notifier blocks
1739  *      @val: value passed unmodified to notifier function
1740  *      @info: notifier information data
1741  *
1742  *      Call all network notifier blocks.  Parameters and return value
1743  *      are as for raw_notifier_call_chain().
1744  */
1745
1746 static int call_netdevice_notifiers_info(unsigned long val,
1747                                          struct netdev_notifier_info *info)
1748 {
1749         ASSERT_RTNL();
1750         return raw_notifier_call_chain(&netdev_chain, val, info);
1751 }
1752
1753 static int call_netdevice_notifiers_extack(unsigned long val,
1754                                            struct net_device *dev,
1755                                            struct netlink_ext_ack *extack)
1756 {
1757         struct netdev_notifier_info info = {
1758                 .dev = dev,
1759                 .extack = extack,
1760         };
1761
1762         return call_netdevice_notifiers_info(val, &info);
1763 }
1764
1765 /**
1766  *      call_netdevice_notifiers - call all network notifier blocks
1767  *      @val: value passed unmodified to notifier function
1768  *      @dev: net_device pointer passed unmodified to notifier function
1769  *
1770  *      Call all network notifier blocks.  Parameters and return value
1771  *      are as for raw_notifier_call_chain().
1772  */
1773
1774 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1775 {
1776         return call_netdevice_notifiers_extack(val, dev, NULL);
1777 }
1778 EXPORT_SYMBOL(call_netdevice_notifiers);
1779
1780 /**
1781  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1782  *      @val: value passed unmodified to notifier function
1783  *      @dev: net_device pointer passed unmodified to notifier function
1784  *      @arg: additional u32 argument passed to the notifier function
1785  *
1786  *      Call all network notifier blocks.  Parameters and return value
1787  *      are as for raw_notifier_call_chain().
1788  */
1789 static int call_netdevice_notifiers_mtu(unsigned long val,
1790                                         struct net_device *dev, u32 arg)
1791 {
1792         struct netdev_notifier_info_ext info = {
1793                 .info.dev = dev,
1794                 .ext.mtu = arg,
1795         };
1796
1797         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1798
1799         return call_netdevice_notifiers_info(val, &info.info);
1800 }
1801
1802 #ifdef CONFIG_NET_INGRESS
1803 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1804
1805 void net_inc_ingress_queue(void)
1806 {
1807         static_branch_inc(&ingress_needed_key);
1808 }
1809 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1810
1811 void net_dec_ingress_queue(void)
1812 {
1813         static_branch_dec(&ingress_needed_key);
1814 }
1815 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1816 #endif
1817
1818 #ifdef CONFIG_NET_EGRESS
1819 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1820
1821 void net_inc_egress_queue(void)
1822 {
1823         static_branch_inc(&egress_needed_key);
1824 }
1825 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1826
1827 void net_dec_egress_queue(void)
1828 {
1829         static_branch_dec(&egress_needed_key);
1830 }
1831 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1832 #endif
1833
1834 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1835 #ifdef CONFIG_JUMP_LABEL
1836 static atomic_t netstamp_needed_deferred;
1837 static atomic_t netstamp_wanted;
1838 static void netstamp_clear(struct work_struct *work)
1839 {
1840         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1841         int wanted;
1842
1843         wanted = atomic_add_return(deferred, &netstamp_wanted);
1844         if (wanted > 0)
1845                 static_branch_enable(&netstamp_needed_key);
1846         else
1847                 static_branch_disable(&netstamp_needed_key);
1848 }
1849 static DECLARE_WORK(netstamp_work, netstamp_clear);
1850 #endif
1851
1852 void net_enable_timestamp(void)
1853 {
1854 #ifdef CONFIG_JUMP_LABEL
1855         int wanted;
1856
1857         while (1) {
1858                 wanted = atomic_read(&netstamp_wanted);
1859                 if (wanted <= 0)
1860                         break;
1861                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1862                         return;
1863         }
1864         atomic_inc(&netstamp_needed_deferred);
1865         schedule_work(&netstamp_work);
1866 #else
1867         static_branch_inc(&netstamp_needed_key);
1868 #endif
1869 }
1870 EXPORT_SYMBOL(net_enable_timestamp);
1871
1872 void net_disable_timestamp(void)
1873 {
1874 #ifdef CONFIG_JUMP_LABEL
1875         int wanted;
1876
1877         while (1) {
1878                 wanted = atomic_read(&netstamp_wanted);
1879                 if (wanted <= 1)
1880                         break;
1881                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1882                         return;
1883         }
1884         atomic_dec(&netstamp_needed_deferred);
1885         schedule_work(&netstamp_work);
1886 #else
1887         static_branch_dec(&netstamp_needed_key);
1888 #endif
1889 }
1890 EXPORT_SYMBOL(net_disable_timestamp);
1891
1892 static inline void net_timestamp_set(struct sk_buff *skb)
1893 {
1894         skb->tstamp = 0;
1895         if (static_branch_unlikely(&netstamp_needed_key))
1896                 __net_timestamp(skb);
1897 }
1898
1899 #define net_timestamp_check(COND, SKB)                          \
1900         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1901                 if ((COND) && !(SKB)->tstamp)                   \
1902                         __net_timestamp(SKB);                   \
1903         }                                                       \
1904
1905 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1906 {
1907         unsigned int len;
1908
1909         if (!(dev->flags & IFF_UP))
1910                 return false;
1911
1912         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1913         if (skb->len <= len)
1914                 return true;
1915
1916         /* if TSO is enabled, we don't care about the length as the packet
1917          * could be forwarded without being segmented before
1918          */
1919         if (skb_is_gso(skb))
1920                 return true;
1921
1922         return false;
1923 }
1924 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1925
1926 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1927 {
1928         int ret = ____dev_forward_skb(dev, skb);
1929
1930         if (likely(!ret)) {
1931                 skb->protocol = eth_type_trans(skb, dev);
1932                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1933         }
1934
1935         return ret;
1936 }
1937 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1938
1939 /**
1940  * dev_forward_skb - loopback an skb to another netif
1941  *
1942  * @dev: destination network device
1943  * @skb: buffer to forward
1944  *
1945  * return values:
1946  *      NET_RX_SUCCESS  (no congestion)
1947  *      NET_RX_DROP     (packet was dropped, but freed)
1948  *
1949  * dev_forward_skb can be used for injecting an skb from the
1950  * start_xmit function of one device into the receive queue
1951  * of another device.
1952  *
1953  * The receiving device may be in another namespace, so
1954  * we have to clear all information in the skb that could
1955  * impact namespace isolation.
1956  */
1957 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1958 {
1959         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1960 }
1961 EXPORT_SYMBOL_GPL(dev_forward_skb);
1962
1963 static inline int deliver_skb(struct sk_buff *skb,
1964                               struct packet_type *pt_prev,
1965                               struct net_device *orig_dev)
1966 {
1967         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1968                 return -ENOMEM;
1969         refcount_inc(&skb->users);
1970         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1971 }
1972
1973 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1974                                           struct packet_type **pt,
1975                                           struct net_device *orig_dev,
1976                                           __be16 type,
1977                                           struct list_head *ptype_list)
1978 {
1979         struct packet_type *ptype, *pt_prev = *pt;
1980
1981         list_for_each_entry_rcu(ptype, ptype_list, list) {
1982                 if (ptype->type != type)
1983                         continue;
1984                 if (pt_prev)
1985                         deliver_skb(skb, pt_prev, orig_dev);
1986                 pt_prev = ptype;
1987         }
1988         *pt = pt_prev;
1989 }
1990
1991 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1992 {
1993         if (!ptype->af_packet_priv || !skb->sk)
1994                 return false;
1995
1996         if (ptype->id_match)
1997                 return ptype->id_match(ptype, skb->sk);
1998         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1999                 return true;
2000
2001         return false;
2002 }
2003
2004 /**
2005  * dev_nit_active - return true if any network interface taps are in use
2006  *
2007  * @dev: network device to check for the presence of taps
2008  */
2009 bool dev_nit_active(struct net_device *dev)
2010 {
2011         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2012 }
2013 EXPORT_SYMBOL_GPL(dev_nit_active);
2014
2015 /*
2016  *      Support routine. Sends outgoing frames to any network
2017  *      taps currently in use.
2018  */
2019
2020 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2021 {
2022         struct packet_type *ptype;
2023         struct sk_buff *skb2 = NULL;
2024         struct packet_type *pt_prev = NULL;
2025         struct list_head *ptype_list = &ptype_all;
2026
2027         rcu_read_lock();
2028 again:
2029         list_for_each_entry_rcu(ptype, ptype_list, list) {
2030                 if (ptype->ignore_outgoing)
2031                         continue;
2032
2033                 /* Never send packets back to the socket
2034                  * they originated from - MvS (miquels@drinkel.ow.org)
2035                  */
2036                 if (skb_loop_sk(ptype, skb))
2037                         continue;
2038
2039                 if (pt_prev) {
2040                         deliver_skb(skb2, pt_prev, skb->dev);
2041                         pt_prev = ptype;
2042                         continue;
2043                 }
2044
2045                 /* need to clone skb, done only once */
2046                 skb2 = skb_clone(skb, GFP_ATOMIC);
2047                 if (!skb2)
2048                         goto out_unlock;
2049
2050                 net_timestamp_set(skb2);
2051
2052                 /* skb->nh should be correctly
2053                  * set by sender, so that the second statement is
2054                  * just protection against buggy protocols.
2055                  */
2056                 skb_reset_mac_header(skb2);
2057
2058                 if (skb_network_header(skb2) < skb2->data ||
2059                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2060                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2061                                              ntohs(skb2->protocol),
2062                                              dev->name);
2063                         skb_reset_network_header(skb2);
2064                 }
2065
2066                 skb2->transport_header = skb2->network_header;
2067                 skb2->pkt_type = PACKET_OUTGOING;
2068                 pt_prev = ptype;
2069         }
2070
2071         if (ptype_list == &ptype_all) {
2072                 ptype_list = &dev->ptype_all;
2073                 goto again;
2074         }
2075 out_unlock:
2076         if (pt_prev) {
2077                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2078                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2079                 else
2080                         kfree_skb(skb2);
2081         }
2082         rcu_read_unlock();
2083 }
2084 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2085
2086 /**
2087  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2088  * @dev: Network device
2089  * @txq: number of queues available
2090  *
2091  * If real_num_tx_queues is changed the tc mappings may no longer be
2092  * valid. To resolve this verify the tc mapping remains valid and if
2093  * not NULL the mapping. With no priorities mapping to this
2094  * offset/count pair it will no longer be used. In the worst case TC0
2095  * is invalid nothing can be done so disable priority mappings. If is
2096  * expected that drivers will fix this mapping if they can before
2097  * calling netif_set_real_num_tx_queues.
2098  */
2099 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2100 {
2101         int i;
2102         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2103
2104         /* If TC0 is invalidated disable TC mapping */
2105         if (tc->offset + tc->count > txq) {
2106                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2107                 dev->num_tc = 0;
2108                 return;
2109         }
2110
2111         /* Invalidated prio to tc mappings set to TC0 */
2112         for (i = 1; i < TC_BITMASK + 1; i++) {
2113                 int q = netdev_get_prio_tc_map(dev, i);
2114
2115                 tc = &dev->tc_to_txq[q];
2116                 if (tc->offset + tc->count > txq) {
2117                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2118                                 i, q);
2119                         netdev_set_prio_tc_map(dev, i, 0);
2120                 }
2121         }
2122 }
2123
2124 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2125 {
2126         if (dev->num_tc) {
2127                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2128                 int i;
2129
2130                 /* walk through the TCs and see if it falls into any of them */
2131                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2132                         if ((txq - tc->offset) < tc->count)
2133                                 return i;
2134                 }
2135
2136                 /* didn't find it, just return -1 to indicate no match */
2137                 return -1;
2138         }
2139
2140         return 0;
2141 }
2142 EXPORT_SYMBOL(netdev_txq_to_tc);
2143
2144 #ifdef CONFIG_XPS
2145 struct static_key xps_needed __read_mostly;
2146 EXPORT_SYMBOL(xps_needed);
2147 struct static_key xps_rxqs_needed __read_mostly;
2148 EXPORT_SYMBOL(xps_rxqs_needed);
2149 static DEFINE_MUTEX(xps_map_mutex);
2150 #define xmap_dereference(P)             \
2151         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2152
2153 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2154                              int tci, u16 index)
2155 {
2156         struct xps_map *map = NULL;
2157         int pos;
2158
2159         if (dev_maps)
2160                 map = xmap_dereference(dev_maps->attr_map[tci]);
2161         if (!map)
2162                 return false;
2163
2164         for (pos = map->len; pos--;) {
2165                 if (map->queues[pos] != index)
2166                         continue;
2167
2168                 if (map->len > 1) {
2169                         map->queues[pos] = map->queues[--map->len];
2170                         break;
2171                 }
2172
2173                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2174                 kfree_rcu(map, rcu);
2175                 return false;
2176         }
2177
2178         return true;
2179 }
2180
2181 static bool remove_xps_queue_cpu(struct net_device *dev,
2182                                  struct xps_dev_maps *dev_maps,
2183                                  int cpu, u16 offset, u16 count)
2184 {
2185         int num_tc = dev->num_tc ? : 1;
2186         bool active = false;
2187         int tci;
2188
2189         for (tci = cpu * num_tc; num_tc--; tci++) {
2190                 int i, j;
2191
2192                 for (i = count, j = offset; i--; j++) {
2193                         if (!remove_xps_queue(dev_maps, tci, j))
2194                                 break;
2195                 }
2196
2197                 active |= i < 0;
2198         }
2199
2200         return active;
2201 }
2202
2203 static void reset_xps_maps(struct net_device *dev,
2204                            struct xps_dev_maps *dev_maps,
2205                            bool is_rxqs_map)
2206 {
2207         if (is_rxqs_map) {
2208                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2209                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2210         } else {
2211                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2212         }
2213         static_key_slow_dec_cpuslocked(&xps_needed);
2214         kfree_rcu(dev_maps, rcu);
2215 }
2216
2217 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2218                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2219                            u16 offset, u16 count, bool is_rxqs_map)
2220 {
2221         bool active = false;
2222         int i, j;
2223
2224         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2225              j < nr_ids;)
2226                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2227                                                count);
2228         if (!active)
2229                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2230
2231         if (!is_rxqs_map) {
2232                 for (i = offset + (count - 1); count--; i--) {
2233                         netdev_queue_numa_node_write(
2234                                 netdev_get_tx_queue(dev, i),
2235                                 NUMA_NO_NODE);
2236                 }
2237         }
2238 }
2239
2240 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2241                                    u16 count)
2242 {
2243         const unsigned long *possible_mask = NULL;
2244         struct xps_dev_maps *dev_maps;
2245         unsigned int nr_ids;
2246
2247         if (!static_key_false(&xps_needed))
2248                 return;
2249
2250         cpus_read_lock();
2251         mutex_lock(&xps_map_mutex);
2252
2253         if (static_key_false(&xps_rxqs_needed)) {
2254                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2255                 if (dev_maps) {
2256                         nr_ids = dev->num_rx_queues;
2257                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2258                                        offset, count, true);
2259                 }
2260         }
2261
2262         dev_maps = xmap_dereference(dev->xps_cpus_map);
2263         if (!dev_maps)
2264                 goto out_no_maps;
2265
2266         if (num_possible_cpus() > 1)
2267                 possible_mask = cpumask_bits(cpu_possible_mask);
2268         nr_ids = nr_cpu_ids;
2269         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2270                        false);
2271
2272 out_no_maps:
2273         mutex_unlock(&xps_map_mutex);
2274         cpus_read_unlock();
2275 }
2276
2277 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2278 {
2279         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2280 }
2281
2282 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2283                                       u16 index, bool is_rxqs_map)
2284 {
2285         struct xps_map *new_map;
2286         int alloc_len = XPS_MIN_MAP_ALLOC;
2287         int i, pos;
2288
2289         for (pos = 0; map && pos < map->len; pos++) {
2290                 if (map->queues[pos] != index)
2291                         continue;
2292                 return map;
2293         }
2294
2295         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2296         if (map) {
2297                 if (pos < map->alloc_len)
2298                         return map;
2299
2300                 alloc_len = map->alloc_len * 2;
2301         }
2302
2303         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2304          *  map
2305          */
2306         if (is_rxqs_map)
2307                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2308         else
2309                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2310                                        cpu_to_node(attr_index));
2311         if (!new_map)
2312                 return NULL;
2313
2314         for (i = 0; i < pos; i++)
2315                 new_map->queues[i] = map->queues[i];
2316         new_map->alloc_len = alloc_len;
2317         new_map->len = pos;
2318
2319         return new_map;
2320 }
2321
2322 /* Must be called under cpus_read_lock */
2323 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2324                           u16 index, bool is_rxqs_map)
2325 {
2326         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2327         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2328         int i, j, tci, numa_node_id = -2;
2329         int maps_sz, num_tc = 1, tc = 0;
2330         struct xps_map *map, *new_map;
2331         bool active = false;
2332         unsigned int nr_ids;
2333
2334         if (dev->num_tc) {
2335                 /* Do not allow XPS on subordinate device directly */
2336                 num_tc = dev->num_tc;
2337                 if (num_tc < 0)
2338                         return -EINVAL;
2339
2340                 /* If queue belongs to subordinate dev use its map */
2341                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2342
2343                 tc = netdev_txq_to_tc(dev, index);
2344                 if (tc < 0)
2345                         return -EINVAL;
2346         }
2347
2348         mutex_lock(&xps_map_mutex);
2349         if (is_rxqs_map) {
2350                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2351                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2352                 nr_ids = dev->num_rx_queues;
2353         } else {
2354                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2355                 if (num_possible_cpus() > 1) {
2356                         online_mask = cpumask_bits(cpu_online_mask);
2357                         possible_mask = cpumask_bits(cpu_possible_mask);
2358                 }
2359                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2360                 nr_ids = nr_cpu_ids;
2361         }
2362
2363         if (maps_sz < L1_CACHE_BYTES)
2364                 maps_sz = L1_CACHE_BYTES;
2365
2366         /* allocate memory for queue storage */
2367         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2368              j < nr_ids;) {
2369                 if (!new_dev_maps)
2370                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2371                 if (!new_dev_maps) {
2372                         mutex_unlock(&xps_map_mutex);
2373                         return -ENOMEM;
2374                 }
2375
2376                 tci = j * num_tc + tc;
2377                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2378                                  NULL;
2379
2380                 map = expand_xps_map(map, j, index, is_rxqs_map);
2381                 if (!map)
2382                         goto error;
2383
2384                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2385         }
2386
2387         if (!new_dev_maps)
2388                 goto out_no_new_maps;
2389
2390         if (!dev_maps) {
2391                 /* Increment static keys at most once per type */
2392                 static_key_slow_inc_cpuslocked(&xps_needed);
2393                 if (is_rxqs_map)
2394                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2395         }
2396
2397         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2398              j < nr_ids;) {
2399                 /* copy maps belonging to foreign traffic classes */
2400                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2401                         /* fill in the new device map from the old device map */
2402                         map = xmap_dereference(dev_maps->attr_map[tci]);
2403                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2404                 }
2405
2406                 /* We need to explicitly update tci as prevous loop
2407                  * could break out early if dev_maps is NULL.
2408                  */
2409                 tci = j * num_tc + tc;
2410
2411                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2412                     netif_attr_test_online(j, online_mask, nr_ids)) {
2413                         /* add tx-queue to CPU/rx-queue maps */
2414                         int pos = 0;
2415
2416                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2417                         while ((pos < map->len) && (map->queues[pos] != index))
2418                                 pos++;
2419
2420                         if (pos == map->len)
2421                                 map->queues[map->len++] = index;
2422 #ifdef CONFIG_NUMA
2423                         if (!is_rxqs_map) {
2424                                 if (numa_node_id == -2)
2425                                         numa_node_id = cpu_to_node(j);
2426                                 else if (numa_node_id != cpu_to_node(j))
2427                                         numa_node_id = -1;
2428                         }
2429 #endif
2430                 } else if (dev_maps) {
2431                         /* fill in the new device map from the old device map */
2432                         map = xmap_dereference(dev_maps->attr_map[tci]);
2433                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2434                 }
2435
2436                 /* copy maps belonging to foreign traffic classes */
2437                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2438                         /* fill in the new device map from the old device map */
2439                         map = xmap_dereference(dev_maps->attr_map[tci]);
2440                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2441                 }
2442         }
2443
2444         if (is_rxqs_map)
2445                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2446         else
2447                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2448
2449         /* Cleanup old maps */
2450         if (!dev_maps)
2451                 goto out_no_old_maps;
2452
2453         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2454              j < nr_ids;) {
2455                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2456                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2457                         map = xmap_dereference(dev_maps->attr_map[tci]);
2458                         if (map && map != new_map)
2459                                 kfree_rcu(map, rcu);
2460                 }
2461         }
2462
2463         kfree_rcu(dev_maps, rcu);
2464
2465 out_no_old_maps:
2466         dev_maps = new_dev_maps;
2467         active = true;
2468
2469 out_no_new_maps:
2470         if (!is_rxqs_map) {
2471                 /* update Tx queue numa node */
2472                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2473                                              (numa_node_id >= 0) ?
2474                                              numa_node_id : NUMA_NO_NODE);
2475         }
2476
2477         if (!dev_maps)
2478                 goto out_no_maps;
2479
2480         /* removes tx-queue from unused CPUs/rx-queues */
2481         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2482              j < nr_ids;) {
2483                 for (i = tc, tci = j * num_tc; i--; tci++)
2484                         active |= remove_xps_queue(dev_maps, tci, index);
2485                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2486                     !netif_attr_test_online(j, online_mask, nr_ids))
2487                         active |= remove_xps_queue(dev_maps, tci, index);
2488                 for (i = num_tc - tc, tci++; --i; tci++)
2489                         active |= remove_xps_queue(dev_maps, tci, index);
2490         }
2491
2492         /* free map if not active */
2493         if (!active)
2494                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2495
2496 out_no_maps:
2497         mutex_unlock(&xps_map_mutex);
2498
2499         return 0;
2500 error:
2501         /* remove any maps that we added */
2502         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2503              j < nr_ids;) {
2504                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2505                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2506                         map = dev_maps ?
2507                               xmap_dereference(dev_maps->attr_map[tci]) :
2508                               NULL;
2509                         if (new_map && new_map != map)
2510                                 kfree(new_map);
2511                 }
2512         }
2513
2514         mutex_unlock(&xps_map_mutex);
2515
2516         kfree(new_dev_maps);
2517         return -ENOMEM;
2518 }
2519 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2520
2521 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2522                         u16 index)
2523 {
2524         int ret;
2525
2526         cpus_read_lock();
2527         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2528         cpus_read_unlock();
2529
2530         return ret;
2531 }
2532 EXPORT_SYMBOL(netif_set_xps_queue);
2533
2534 #endif
2535 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2536 {
2537         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2538
2539         /* Unbind any subordinate channels */
2540         while (txq-- != &dev->_tx[0]) {
2541                 if (txq->sb_dev)
2542                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2543         }
2544 }
2545
2546 void netdev_reset_tc(struct net_device *dev)
2547 {
2548 #ifdef CONFIG_XPS
2549         netif_reset_xps_queues_gt(dev, 0);
2550 #endif
2551         netdev_unbind_all_sb_channels(dev);
2552
2553         /* Reset TC configuration of device */
2554         dev->num_tc = 0;
2555         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2556         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2557 }
2558 EXPORT_SYMBOL(netdev_reset_tc);
2559
2560 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2561 {
2562         if (tc >= dev->num_tc)
2563                 return -EINVAL;
2564
2565 #ifdef CONFIG_XPS
2566         netif_reset_xps_queues(dev, offset, count);
2567 #endif
2568         dev->tc_to_txq[tc].count = count;
2569         dev->tc_to_txq[tc].offset = offset;
2570         return 0;
2571 }
2572 EXPORT_SYMBOL(netdev_set_tc_queue);
2573
2574 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2575 {
2576         if (num_tc > TC_MAX_QUEUE)
2577                 return -EINVAL;
2578
2579 #ifdef CONFIG_XPS
2580         netif_reset_xps_queues_gt(dev, 0);
2581 #endif
2582         netdev_unbind_all_sb_channels(dev);
2583
2584         dev->num_tc = num_tc;
2585         return 0;
2586 }
2587 EXPORT_SYMBOL(netdev_set_num_tc);
2588
2589 void netdev_unbind_sb_channel(struct net_device *dev,
2590                               struct net_device *sb_dev)
2591 {
2592         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2593
2594 #ifdef CONFIG_XPS
2595         netif_reset_xps_queues_gt(sb_dev, 0);
2596 #endif
2597         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2598         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2599
2600         while (txq-- != &dev->_tx[0]) {
2601                 if (txq->sb_dev == sb_dev)
2602                         txq->sb_dev = NULL;
2603         }
2604 }
2605 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2606
2607 int netdev_bind_sb_channel_queue(struct net_device *dev,
2608                                  struct net_device *sb_dev,
2609                                  u8 tc, u16 count, u16 offset)
2610 {
2611         /* Make certain the sb_dev and dev are already configured */
2612         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2613                 return -EINVAL;
2614
2615         /* We cannot hand out queues we don't have */
2616         if ((offset + count) > dev->real_num_tx_queues)
2617                 return -EINVAL;
2618
2619         /* Record the mapping */
2620         sb_dev->tc_to_txq[tc].count = count;
2621         sb_dev->tc_to_txq[tc].offset = offset;
2622
2623         /* Provide a way for Tx queue to find the tc_to_txq map or
2624          * XPS map for itself.
2625          */
2626         while (count--)
2627                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2628
2629         return 0;
2630 }
2631 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2632
2633 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2634 {
2635         /* Do not use a multiqueue device to represent a subordinate channel */
2636         if (netif_is_multiqueue(dev))
2637                 return -ENODEV;
2638
2639         /* We allow channels 1 - 32767 to be used for subordinate channels.
2640          * Channel 0 is meant to be "native" mode and used only to represent
2641          * the main root device. We allow writing 0 to reset the device back
2642          * to normal mode after being used as a subordinate channel.
2643          */
2644         if (channel > S16_MAX)
2645                 return -EINVAL;
2646
2647         dev->num_tc = -channel;
2648
2649         return 0;
2650 }
2651 EXPORT_SYMBOL(netdev_set_sb_channel);
2652
2653 /*
2654  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2655  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2656  */
2657 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2658 {
2659         bool disabling;
2660         int rc;
2661
2662         disabling = txq < dev->real_num_tx_queues;
2663
2664         if (txq < 1 || txq > dev->num_tx_queues)
2665                 return -EINVAL;
2666
2667         if (dev->reg_state == NETREG_REGISTERED ||
2668             dev->reg_state == NETREG_UNREGISTERING) {
2669                 ASSERT_RTNL();
2670
2671                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2672                                                   txq);
2673                 if (rc)
2674                         return rc;
2675
2676                 if (dev->num_tc)
2677                         netif_setup_tc(dev, txq);
2678
2679                 dev->real_num_tx_queues = txq;
2680
2681                 if (disabling) {
2682                         synchronize_net();
2683                         qdisc_reset_all_tx_gt(dev, txq);
2684 #ifdef CONFIG_XPS
2685                         netif_reset_xps_queues_gt(dev, txq);
2686 #endif
2687                 }
2688         } else {
2689                 dev->real_num_tx_queues = txq;
2690         }
2691
2692         return 0;
2693 }
2694 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2695
2696 #ifdef CONFIG_SYSFS
2697 /**
2698  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2699  *      @dev: Network device
2700  *      @rxq: Actual number of RX queues
2701  *
2702  *      This must be called either with the rtnl_lock held or before
2703  *      registration of the net device.  Returns 0 on success, or a
2704  *      negative error code.  If called before registration, it always
2705  *      succeeds.
2706  */
2707 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2708 {
2709         int rc;
2710
2711         if (rxq < 1 || rxq > dev->num_rx_queues)
2712                 return -EINVAL;
2713
2714         if (dev->reg_state == NETREG_REGISTERED) {
2715                 ASSERT_RTNL();
2716
2717                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2718                                                   rxq);
2719                 if (rc)
2720                         return rc;
2721         }
2722
2723         dev->real_num_rx_queues = rxq;
2724         return 0;
2725 }
2726 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2727 #endif
2728
2729 /**
2730  * netif_get_num_default_rss_queues - default number of RSS queues
2731  *
2732  * This routine should set an upper limit on the number of RSS queues
2733  * used by default by multiqueue devices.
2734  */
2735 int netif_get_num_default_rss_queues(void)
2736 {
2737         return is_kdump_kernel() ?
2738                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2739 }
2740 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2741
2742 static void __netif_reschedule(struct Qdisc *q)
2743 {
2744         struct softnet_data *sd;
2745         unsigned long flags;
2746
2747         local_irq_save(flags);
2748         sd = this_cpu_ptr(&softnet_data);
2749         q->next_sched = NULL;
2750         *sd->output_queue_tailp = q;
2751         sd->output_queue_tailp = &q->next_sched;
2752         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2753         local_irq_restore(flags);
2754 }
2755
2756 void __netif_schedule(struct Qdisc *q)
2757 {
2758         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2759                 __netif_reschedule(q);
2760 }
2761 EXPORT_SYMBOL(__netif_schedule);
2762
2763 struct dev_kfree_skb_cb {
2764         enum skb_free_reason reason;
2765 };
2766
2767 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2768 {
2769         return (struct dev_kfree_skb_cb *)skb->cb;
2770 }
2771
2772 void netif_schedule_queue(struct netdev_queue *txq)
2773 {
2774         rcu_read_lock();
2775         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2776                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2777
2778                 __netif_schedule(q);
2779         }
2780         rcu_read_unlock();
2781 }
2782 EXPORT_SYMBOL(netif_schedule_queue);
2783
2784 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2785 {
2786         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2787                 struct Qdisc *q;
2788
2789                 rcu_read_lock();
2790                 q = rcu_dereference(dev_queue->qdisc);
2791                 __netif_schedule(q);
2792                 rcu_read_unlock();
2793         }
2794 }
2795 EXPORT_SYMBOL(netif_tx_wake_queue);
2796
2797 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2798 {
2799         unsigned long flags;
2800
2801         if (unlikely(!skb))
2802                 return;
2803
2804         if (likely(refcount_read(&skb->users) == 1)) {
2805                 smp_rmb();
2806                 refcount_set(&skb->users, 0);
2807         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2808                 return;
2809         }
2810         get_kfree_skb_cb(skb)->reason = reason;
2811         local_irq_save(flags);
2812         skb->next = __this_cpu_read(softnet_data.completion_queue);
2813         __this_cpu_write(softnet_data.completion_queue, skb);
2814         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2815         local_irq_restore(flags);
2816 }
2817 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2818
2819 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2820 {
2821         if (in_irq() || irqs_disabled())
2822                 __dev_kfree_skb_irq(skb, reason);
2823         else
2824                 dev_kfree_skb(skb);
2825 }
2826 EXPORT_SYMBOL(__dev_kfree_skb_any);
2827
2828
2829 /**
2830  * netif_device_detach - mark device as removed
2831  * @dev: network device
2832  *
2833  * Mark device as removed from system and therefore no longer available.
2834  */
2835 void netif_device_detach(struct net_device *dev)
2836 {
2837         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2838             netif_running(dev)) {
2839                 netif_tx_stop_all_queues(dev);
2840         }
2841 }
2842 EXPORT_SYMBOL(netif_device_detach);
2843
2844 /**
2845  * netif_device_attach - mark device as attached
2846  * @dev: network device
2847  *
2848  * Mark device as attached from system and restart if needed.
2849  */
2850 void netif_device_attach(struct net_device *dev)
2851 {
2852         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2853             netif_running(dev)) {
2854                 netif_tx_wake_all_queues(dev);
2855                 __netdev_watchdog_up(dev);
2856         }
2857 }
2858 EXPORT_SYMBOL(netif_device_attach);
2859
2860 /*
2861  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2862  * to be used as a distribution range.
2863  */
2864 static u16 skb_tx_hash(const struct net_device *dev,
2865                        const struct net_device *sb_dev,
2866                        struct sk_buff *skb)
2867 {
2868         u32 hash;
2869         u16 qoffset = 0;
2870         u16 qcount = dev->real_num_tx_queues;
2871
2872         if (dev->num_tc) {
2873                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2874
2875                 qoffset = sb_dev->tc_to_txq[tc].offset;
2876                 qcount = sb_dev->tc_to_txq[tc].count;
2877         }
2878
2879         if (skb_rx_queue_recorded(skb)) {
2880                 hash = skb_get_rx_queue(skb);
2881                 while (unlikely(hash >= qcount))
2882                         hash -= qcount;
2883                 return hash + qoffset;
2884         }
2885
2886         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2887 }
2888
2889 static void skb_warn_bad_offload(const struct sk_buff *skb)
2890 {
2891         static const netdev_features_t null_features;
2892         struct net_device *dev = skb->dev;
2893         const char *name = "";
2894
2895         if (!net_ratelimit())
2896                 return;
2897
2898         if (dev) {
2899                 if (dev->dev.parent)
2900                         name = dev_driver_string(dev->dev.parent);
2901                 else
2902                         name = netdev_name(dev);
2903         }
2904         skb_dump(KERN_WARNING, skb, false);
2905         WARN(1, "%s: caps=(%pNF, %pNF)\n",
2906              name, dev ? &dev->features : &null_features,
2907              skb->sk ? &skb->sk->sk_route_caps : &null_features);
2908 }
2909
2910 /*
2911  * Invalidate hardware checksum when packet is to be mangled, and
2912  * complete checksum manually on outgoing path.
2913  */
2914 int skb_checksum_help(struct sk_buff *skb)
2915 {
2916         __wsum csum;
2917         int ret = 0, offset;
2918
2919         if (skb->ip_summed == CHECKSUM_COMPLETE)
2920                 goto out_set_summed;
2921
2922         if (unlikely(skb_shinfo(skb)->gso_size)) {
2923                 skb_warn_bad_offload(skb);
2924                 return -EINVAL;
2925         }
2926
2927         /* Before computing a checksum, we should make sure no frag could
2928          * be modified by an external entity : checksum could be wrong.
2929          */
2930         if (skb_has_shared_frag(skb)) {
2931                 ret = __skb_linearize(skb);
2932                 if (ret)
2933                         goto out;
2934         }
2935
2936         offset = skb_checksum_start_offset(skb);
2937         BUG_ON(offset >= skb_headlen(skb));
2938         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2939
2940         offset += skb->csum_offset;
2941         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2942
2943         if (skb_cloned(skb) &&
2944             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2945                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2946                 if (ret)
2947                         goto out;
2948         }
2949
2950         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2951 out_set_summed:
2952         skb->ip_summed = CHECKSUM_NONE;
2953 out:
2954         return ret;
2955 }
2956 EXPORT_SYMBOL(skb_checksum_help);
2957
2958 int skb_crc32c_csum_help(struct sk_buff *skb)
2959 {
2960         __le32 crc32c_csum;
2961         int ret = 0, offset, start;
2962
2963         if (skb->ip_summed != CHECKSUM_PARTIAL)
2964                 goto out;
2965
2966         if (unlikely(skb_is_gso(skb)))
2967                 goto out;
2968
2969         /* Before computing a checksum, we should make sure no frag could
2970          * be modified by an external entity : checksum could be wrong.
2971          */
2972         if (unlikely(skb_has_shared_frag(skb))) {
2973                 ret = __skb_linearize(skb);
2974                 if (ret)
2975                         goto out;
2976         }
2977         start = skb_checksum_start_offset(skb);
2978         offset = start + offsetof(struct sctphdr, checksum);
2979         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2980                 ret = -EINVAL;
2981                 goto out;
2982         }
2983         if (skb_cloned(skb) &&
2984             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2985                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2986                 if (ret)
2987                         goto out;
2988         }
2989         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2990                                                   skb->len - start, ~(__u32)0,
2991                                                   crc32c_csum_stub));
2992         *(__le32 *)(skb->data + offset) = crc32c_csum;
2993         skb->ip_summed = CHECKSUM_NONE;
2994         skb->csum_not_inet = 0;
2995 out:
2996         return ret;
2997 }
2998
2999 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3000 {
3001         __be16 type = skb->protocol;
3002
3003         /* Tunnel gso handlers can set protocol to ethernet. */
3004         if (type == htons(ETH_P_TEB)) {
3005                 struct ethhdr *eth;
3006
3007                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3008                         return 0;
3009
3010                 eth = (struct ethhdr *)skb->data;
3011                 type = eth->h_proto;
3012         }
3013
3014         return __vlan_get_protocol(skb, type, depth);
3015 }
3016
3017 /**
3018  *      skb_mac_gso_segment - mac layer segmentation handler.
3019  *      @skb: buffer to segment
3020  *      @features: features for the output path (see dev->features)
3021  */
3022 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3023                                     netdev_features_t features)
3024 {
3025         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3026         struct packet_offload *ptype;
3027         int vlan_depth = skb->mac_len;
3028         __be16 type = skb_network_protocol(skb, &vlan_depth);
3029
3030         if (unlikely(!type))
3031                 return ERR_PTR(-EINVAL);
3032
3033         __skb_pull(skb, vlan_depth);
3034
3035         rcu_read_lock();
3036         list_for_each_entry_rcu(ptype, &offload_base, list) {
3037                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3038                         segs = ptype->callbacks.gso_segment(skb, features);
3039                         break;
3040                 }
3041         }
3042         rcu_read_unlock();
3043
3044         __skb_push(skb, skb->data - skb_mac_header(skb));
3045
3046         return segs;
3047 }
3048 EXPORT_SYMBOL(skb_mac_gso_segment);
3049
3050
3051 /* openvswitch calls this on rx path, so we need a different check.
3052  */
3053 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3054 {
3055         if (tx_path)
3056                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3057                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3058
3059         return skb->ip_summed == CHECKSUM_NONE;
3060 }
3061
3062 /**
3063  *      __skb_gso_segment - Perform segmentation on skb.
3064  *      @skb: buffer to segment
3065  *      @features: features for the output path (see dev->features)
3066  *      @tx_path: whether it is called in TX path
3067  *
3068  *      This function segments the given skb and returns a list of segments.
3069  *
3070  *      It may return NULL if the skb requires no segmentation.  This is
3071  *      only possible when GSO is used for verifying header integrity.
3072  *
3073  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3074  */
3075 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3076                                   netdev_features_t features, bool tx_path)
3077 {
3078         struct sk_buff *segs;
3079
3080         if (unlikely(skb_needs_check(skb, tx_path))) {
3081                 int err;
3082
3083                 /* We're going to init ->check field in TCP or UDP header */
3084                 err = skb_cow_head(skb, 0);
3085                 if (err < 0)
3086                         return ERR_PTR(err);
3087         }
3088
3089         /* Only report GSO partial support if it will enable us to
3090          * support segmentation on this frame without needing additional
3091          * work.
3092          */
3093         if (features & NETIF_F_GSO_PARTIAL) {
3094                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3095                 struct net_device *dev = skb->dev;
3096
3097                 partial_features |= dev->features & dev->gso_partial_features;
3098                 if (!skb_gso_ok(skb, features | partial_features))
3099                         features &= ~NETIF_F_GSO_PARTIAL;
3100         }
3101
3102         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3103                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3104
3105         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3106         SKB_GSO_CB(skb)->encap_level = 0;
3107
3108         skb_reset_mac_header(skb);
3109         skb_reset_mac_len(skb);
3110
3111         segs = skb_mac_gso_segment(skb, features);
3112
3113         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3114                 skb_warn_bad_offload(skb);
3115
3116         return segs;
3117 }
3118 EXPORT_SYMBOL(__skb_gso_segment);
3119
3120 /* Take action when hardware reception checksum errors are detected. */
3121 #ifdef CONFIG_BUG
3122 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3123 {
3124         if (net_ratelimit()) {
3125                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3126                 skb_dump(KERN_ERR, skb, true);
3127                 dump_stack();
3128         }
3129 }
3130 EXPORT_SYMBOL(netdev_rx_csum_fault);
3131 #endif
3132
3133 /* XXX: check that highmem exists at all on the given machine. */
3134 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3135 {
3136 #ifdef CONFIG_HIGHMEM
3137         int i;
3138
3139         if (!(dev->features & NETIF_F_HIGHDMA)) {
3140                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3141                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3142
3143                         if (PageHighMem(skb_frag_page(frag)))
3144                                 return 1;
3145                 }
3146         }
3147 #endif
3148         return 0;
3149 }
3150
3151 /* If MPLS offload request, verify we are testing hardware MPLS features
3152  * instead of standard features for the netdev.
3153  */
3154 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3155 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3156                                            netdev_features_t features,
3157                                            __be16 type)
3158 {
3159         if (eth_p_mpls(type))
3160                 features &= skb->dev->mpls_features;
3161
3162         return features;
3163 }
3164 #else
3165 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3166                                            netdev_features_t features,
3167                                            __be16 type)
3168 {
3169         return features;
3170 }
3171 #endif
3172
3173 static netdev_features_t harmonize_features(struct sk_buff *skb,
3174         netdev_features_t features)
3175 {
3176         int tmp;
3177         __be16 type;
3178
3179         type = skb_network_protocol(skb, &tmp);
3180         features = net_mpls_features(skb, features, type);
3181
3182         if (skb->ip_summed != CHECKSUM_NONE &&
3183             !can_checksum_protocol(features, type)) {
3184                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3185         }
3186         if (illegal_highdma(skb->dev, skb))
3187                 features &= ~NETIF_F_SG;
3188
3189         return features;
3190 }
3191
3192 netdev_features_t passthru_features_check(struct sk_buff *skb,
3193                                           struct net_device *dev,
3194                                           netdev_features_t features)
3195 {
3196         return features;
3197 }
3198 EXPORT_SYMBOL(passthru_features_check);
3199
3200 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3201                                              struct net_device *dev,
3202                                              netdev_features_t features)
3203 {
3204         return vlan_features_check(skb, features);
3205 }
3206
3207 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3208                                             struct net_device *dev,
3209                                             netdev_features_t features)
3210 {
3211         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3212
3213         if (gso_segs > dev->gso_max_segs)
3214                 return features & ~NETIF_F_GSO_MASK;
3215
3216         /* Support for GSO partial features requires software
3217          * intervention before we can actually process the packets
3218          * so we need to strip support for any partial features now
3219          * and we can pull them back in after we have partially
3220          * segmented the frame.
3221          */
3222         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3223                 features &= ~dev->gso_partial_features;
3224
3225         /* Make sure to clear the IPv4 ID mangling feature if the
3226          * IPv4 header has the potential to be fragmented.
3227          */
3228         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3229                 struct iphdr *iph = skb->encapsulation ?
3230                                     inner_ip_hdr(skb) : ip_hdr(skb);
3231
3232                 if (!(iph->frag_off & htons(IP_DF)))
3233                         features &= ~NETIF_F_TSO_MANGLEID;
3234         }
3235
3236         return features;
3237 }
3238
3239 netdev_features_t netif_skb_features(struct sk_buff *skb)
3240 {
3241         struct net_device *dev = skb->dev;
3242         netdev_features_t features = dev->features;
3243
3244         if (skb_is_gso(skb))
3245                 features = gso_features_check(skb, dev, features);
3246
3247         /* If encapsulation offload request, verify we are testing
3248          * hardware encapsulation features instead of standard
3249          * features for the netdev
3250          */
3251         if (skb->encapsulation)
3252                 features &= dev->hw_enc_features;
3253
3254         if (skb_vlan_tagged(skb))
3255                 features = netdev_intersect_features(features,
3256                                                      dev->vlan_features |
3257                                                      NETIF_F_HW_VLAN_CTAG_TX |
3258                                                      NETIF_F_HW_VLAN_STAG_TX);
3259
3260         if (dev->netdev_ops->ndo_features_check)
3261                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3262                                                                 features);
3263         else
3264                 features &= dflt_features_check(skb, dev, features);
3265
3266         return harmonize_features(skb, features);
3267 }
3268 EXPORT_SYMBOL(netif_skb_features);
3269
3270 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3271                     struct netdev_queue *txq, bool more)
3272 {
3273         unsigned int len;
3274         int rc;
3275
3276         if (dev_nit_active(dev))
3277                 dev_queue_xmit_nit(skb, dev);
3278
3279         len = skb->len;
3280         trace_net_dev_start_xmit(skb, dev);
3281         rc = netdev_start_xmit(skb, dev, txq, more);
3282         trace_net_dev_xmit(skb, rc, dev, len);
3283
3284         return rc;
3285 }
3286
3287 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3288                                     struct netdev_queue *txq, int *ret)
3289 {
3290         struct sk_buff *skb = first;
3291         int rc = NETDEV_TX_OK;
3292
3293         while (skb) {
3294                 struct sk_buff *next = skb->next;
3295
3296                 skb_mark_not_on_list(skb);
3297                 rc = xmit_one(skb, dev, txq, next != NULL);
3298                 if (unlikely(!dev_xmit_complete(rc))) {
3299                         skb->next = next;
3300                         goto out;
3301                 }
3302
3303                 skb = next;
3304                 if (netif_tx_queue_stopped(txq) && skb) {
3305                         rc = NETDEV_TX_BUSY;
3306                         break;
3307                 }
3308         }
3309
3310 out:
3311         *ret = rc;
3312         return skb;
3313 }
3314
3315 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3316                                           netdev_features_t features)
3317 {
3318         if (skb_vlan_tag_present(skb) &&
3319             !vlan_hw_offload_capable(features, skb->vlan_proto))
3320                 skb = __vlan_hwaccel_push_inside(skb);
3321         return skb;
3322 }
3323
3324 int skb_csum_hwoffload_help(struct sk_buff *skb,
3325                             const netdev_features_t features)
3326 {
3327         if (unlikely(skb->csum_not_inet))
3328                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3329                         skb_crc32c_csum_help(skb);
3330
3331         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3332 }
3333 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3334
3335 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3336 {
3337         netdev_features_t features;
3338
3339         features = netif_skb_features(skb);
3340         skb = validate_xmit_vlan(skb, features);
3341         if (unlikely(!skb))
3342                 goto out_null;
3343
3344         skb = sk_validate_xmit_skb(skb, dev);
3345         if (unlikely(!skb))
3346                 goto out_null;
3347
3348         if (netif_needs_gso(skb, features)) {
3349                 struct sk_buff *segs;
3350
3351                 segs = skb_gso_segment(skb, features);
3352                 if (IS_ERR(segs)) {
3353                         goto out_kfree_skb;
3354                 } else if (segs) {
3355                         consume_skb(skb);
3356                         skb = segs;
3357                 }
3358         } else {
3359                 if (skb_needs_linearize(skb, features) &&
3360                     __skb_linearize(skb))
3361                         goto out_kfree_skb;
3362
3363                 /* If packet is not checksummed and device does not
3364                  * support checksumming for this protocol, complete
3365                  * checksumming here.
3366                  */
3367                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3368                         if (skb->encapsulation)
3369                                 skb_set_inner_transport_header(skb,
3370                                                                skb_checksum_start_offset(skb));
3371                         else
3372                                 skb_set_transport_header(skb,
3373                                                          skb_checksum_start_offset(skb));
3374                         if (skb_csum_hwoffload_help(skb, features))
3375                                 goto out_kfree_skb;
3376                 }
3377         }
3378
3379         skb = validate_xmit_xfrm(skb, features, again);
3380
3381         return skb;
3382
3383 out_kfree_skb:
3384         kfree_skb(skb);
3385 out_null:
3386         atomic_long_inc(&dev->tx_dropped);
3387         return NULL;
3388 }
3389
3390 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3391 {
3392         struct sk_buff *next, *head = NULL, *tail;
3393
3394         for (; skb != NULL; skb = next) {
3395                 next = skb->next;
3396                 skb_mark_not_on_list(skb);
3397
3398                 /* in case skb wont be segmented, point to itself */
3399                 skb->prev = skb;
3400
3401                 skb = validate_xmit_skb(skb, dev, again);
3402                 if (!skb)
3403                         continue;
3404
3405                 if (!head)
3406                         head = skb;
3407                 else
3408                         tail->next = skb;
3409                 /* If skb was segmented, skb->prev points to
3410                  * the last segment. If not, it still contains skb.
3411                  */
3412                 tail = skb->prev;
3413         }
3414         return head;
3415 }
3416 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3417
3418 static void qdisc_pkt_len_init(struct sk_buff *skb)
3419 {
3420         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3421
3422         qdisc_skb_cb(skb)->pkt_len = skb->len;
3423
3424         /* To get more precise estimation of bytes sent on wire,
3425          * we add to pkt_len the headers size of all segments
3426          */
3427         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3428                 unsigned int hdr_len;
3429                 u16 gso_segs = shinfo->gso_segs;
3430
3431                 /* mac layer + network layer */
3432                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3433
3434                 /* + transport layer */
3435                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3436                         const struct tcphdr *th;
3437                         struct tcphdr _tcphdr;
3438
3439                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3440                                                 sizeof(_tcphdr), &_tcphdr);
3441                         if (likely(th))
3442                                 hdr_len += __tcp_hdrlen(th);
3443                 } else {
3444                         struct udphdr _udphdr;
3445
3446                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3447                                                sizeof(_udphdr), &_udphdr))
3448                                 hdr_len += sizeof(struct udphdr);
3449                 }
3450
3451                 if (shinfo->gso_type & SKB_GSO_DODGY)
3452                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3453                                                 shinfo->gso_size);
3454
3455                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3456         }
3457 }
3458
3459 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3460                                  struct net_device *dev,
3461                                  struct netdev_queue *txq)
3462 {
3463         spinlock_t *root_lock = qdisc_lock(q);
3464         struct sk_buff *to_free = NULL;
3465         bool contended;
3466         int rc;
3467
3468         qdisc_calculate_pkt_len(skb, q);
3469
3470         if (q->flags & TCQ_F_NOLOCK) {
3471                 if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3472                     qdisc_run_begin(q)) {
3473                         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3474                                               &q->state))) {
3475                                 __qdisc_drop(skb, &to_free);
3476                                 rc = NET_XMIT_DROP;
3477                                 goto end_run;
3478                         }
3479                         qdisc_bstats_cpu_update(q, skb);
3480
3481                         rc = NET_XMIT_SUCCESS;
3482                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3483                                 __qdisc_run(q);
3484
3485 end_run:
3486                         qdisc_run_end(q);
3487                 } else {
3488                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3489                         qdisc_run(q);
3490                 }
3491
3492                 if (unlikely(to_free))
3493                         kfree_skb_list(to_free);
3494                 return rc;
3495         }
3496
3497         /*
3498          * Heuristic to force contended enqueues to serialize on a
3499          * separate lock before trying to get qdisc main lock.
3500          * This permits qdisc->running owner to get the lock more
3501          * often and dequeue packets faster.
3502          */
3503         contended = qdisc_is_running(q);
3504         if (unlikely(contended))
3505                 spin_lock(&q->busylock);
3506
3507         spin_lock(root_lock);
3508         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3509                 __qdisc_drop(skb, &to_free);
3510                 rc = NET_XMIT_DROP;
3511         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3512                    qdisc_run_begin(q)) {
3513                 /*
3514                  * This is a work-conserving queue; there are no old skbs
3515                  * waiting to be sent out; and the qdisc is not running -
3516                  * xmit the skb directly.
3517                  */
3518
3519                 qdisc_bstats_update(q, skb);
3520
3521                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3522                         if (unlikely(contended)) {
3523                                 spin_unlock(&q->busylock);
3524                                 contended = false;
3525                         }
3526                         __qdisc_run(q);
3527                 }
3528
3529                 qdisc_run_end(q);
3530                 rc = NET_XMIT_SUCCESS;
3531         } else {
3532                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3533                 if (qdisc_run_begin(q)) {
3534                         if (unlikely(contended)) {
3535                                 spin_unlock(&q->busylock);
3536                                 contended = false;
3537                         }
3538                         __qdisc_run(q);
3539                         qdisc_run_end(q);
3540                 }
3541         }
3542         spin_unlock(root_lock);
3543         if (unlikely(to_free))
3544                 kfree_skb_list(to_free);
3545         if (unlikely(contended))
3546                 spin_unlock(&q->busylock);
3547         return rc;
3548 }
3549
3550 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3551 static void skb_update_prio(struct sk_buff *skb)
3552 {
3553         const struct netprio_map *map;
3554         const struct sock *sk;
3555         unsigned int prioidx;
3556
3557         if (skb->priority)
3558                 return;
3559         map = rcu_dereference_bh(skb->dev->priomap);
3560         if (!map)
3561                 return;
3562         sk = skb_to_full_sk(skb);
3563         if (!sk)
3564                 return;
3565
3566         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3567
3568         if (prioidx < map->priomap_len)
3569                 skb->priority = map->priomap[prioidx];
3570 }
3571 #else
3572 #define skb_update_prio(skb)
3573 #endif
3574
3575 /**
3576  *      dev_loopback_xmit - loop back @skb
3577  *      @net: network namespace this loopback is happening in
3578  *      @sk:  sk needed to be a netfilter okfn
3579  *      @skb: buffer to transmit
3580  */
3581 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3582 {
3583         skb_reset_mac_header(skb);
3584         __skb_pull(skb, skb_network_offset(skb));
3585         skb->pkt_type = PACKET_LOOPBACK;
3586         skb->ip_summed = CHECKSUM_UNNECESSARY;
3587         WARN_ON(!skb_dst(skb));
3588         skb_dst_force(skb);
3589         netif_rx_ni(skb);
3590         return 0;
3591 }
3592 EXPORT_SYMBOL(dev_loopback_xmit);
3593
3594 #ifdef CONFIG_NET_EGRESS
3595 static struct sk_buff *
3596 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3597 {
3598         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3599         struct tcf_result cl_res;
3600
3601         if (!miniq)
3602                 return skb;
3603
3604         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3605         mini_qdisc_bstats_cpu_update(miniq, skb);
3606
3607         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3608         case TC_ACT_OK:
3609         case TC_ACT_RECLASSIFY:
3610                 skb->tc_index = TC_H_MIN(cl_res.classid);
3611                 break;
3612         case TC_ACT_SHOT:
3613                 mini_qdisc_qstats_cpu_drop(miniq);
3614                 *ret = NET_XMIT_DROP;
3615                 kfree_skb(skb);
3616                 return NULL;
3617         case TC_ACT_STOLEN:
3618         case TC_ACT_QUEUED:
3619         case TC_ACT_TRAP:
3620                 *ret = NET_XMIT_SUCCESS;
3621                 consume_skb(skb);
3622                 return NULL;
3623         case TC_ACT_REDIRECT:
3624                 /* No need to push/pop skb's mac_header here on egress! */
3625                 skb_do_redirect(skb);
3626                 *ret = NET_XMIT_SUCCESS;
3627                 return NULL;
3628         default:
3629                 break;
3630         }
3631
3632         return skb;
3633 }
3634 #endif /* CONFIG_NET_EGRESS */
3635
3636 #ifdef CONFIG_XPS
3637 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3638                                struct xps_dev_maps *dev_maps, unsigned int tci)
3639 {
3640         struct xps_map *map;
3641         int queue_index = -1;
3642
3643         if (dev->num_tc) {
3644                 tci *= dev->num_tc;
3645                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3646         }
3647
3648         map = rcu_dereference(dev_maps->attr_map[tci]);
3649         if (map) {
3650                 if (map->len == 1)
3651                         queue_index = map->queues[0];
3652                 else
3653                         queue_index = map->queues[reciprocal_scale(
3654                                                 skb_get_hash(skb), map->len)];
3655                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3656                         queue_index = -1;
3657         }
3658         return queue_index;
3659 }
3660 #endif
3661
3662 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3663                          struct sk_buff *skb)
3664 {
3665 #ifdef CONFIG_XPS
3666         struct xps_dev_maps *dev_maps;
3667         struct sock *sk = skb->sk;
3668         int queue_index = -1;
3669
3670         if (!static_key_false(&xps_needed))
3671                 return -1;
3672
3673         rcu_read_lock();
3674         if (!static_key_false(&xps_rxqs_needed))
3675                 goto get_cpus_map;
3676
3677         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3678         if (dev_maps) {
3679                 int tci = sk_rx_queue_get(sk);
3680
3681                 if (tci >= 0 && tci < dev->num_rx_queues)
3682                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3683                                                           tci);
3684         }
3685
3686 get_cpus_map:
3687         if (queue_index < 0) {
3688                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3689                 if (dev_maps) {
3690                         unsigned int tci = skb->sender_cpu - 1;
3691
3692                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3693                                                           tci);
3694                 }
3695         }
3696         rcu_read_unlock();
3697
3698         return queue_index;
3699 #else
3700         return -1;
3701 #endif
3702 }
3703
3704 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3705                      struct net_device *sb_dev)
3706 {
3707         return 0;
3708 }
3709 EXPORT_SYMBOL(dev_pick_tx_zero);
3710
3711 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3712                        struct net_device *sb_dev)
3713 {
3714         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3715 }
3716 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3717
3718 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3719                      struct net_device *sb_dev)
3720 {
3721         struct sock *sk = skb->sk;
3722         int queue_index = sk_tx_queue_get(sk);
3723
3724         sb_dev = sb_dev ? : dev;
3725
3726         if (queue_index < 0 || skb->ooo_okay ||
3727             queue_index >= dev->real_num_tx_queues) {
3728                 int new_index = get_xps_queue(dev, sb_dev, skb);
3729
3730                 if (new_index < 0)
3731                         new_index = skb_tx_hash(dev, sb_dev, skb);
3732
3733                 if (queue_index != new_index && sk &&
3734                     sk_fullsock(sk) &&
3735                     rcu_access_pointer(sk->sk_dst_cache))
3736                         sk_tx_queue_set(sk, new_index);
3737
3738                 queue_index = new_index;
3739         }
3740
3741         return queue_index;
3742 }
3743 EXPORT_SYMBOL(netdev_pick_tx);
3744
3745 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3746                                          struct sk_buff *skb,
3747                                          struct net_device *sb_dev)
3748 {
3749         int queue_index = 0;
3750
3751 #ifdef CONFIG_XPS
3752         u32 sender_cpu = skb->sender_cpu - 1;
3753
3754         if (sender_cpu >= (u32)NR_CPUS)
3755                 skb->sender_cpu = raw_smp_processor_id() + 1;
3756 #endif
3757
3758         if (dev->real_num_tx_queues != 1) {
3759                 const struct net_device_ops *ops = dev->netdev_ops;
3760
3761                 if (ops->ndo_select_queue)
3762                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3763                 else
3764                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3765
3766                 queue_index = netdev_cap_txqueue(dev, queue_index);
3767         }
3768
3769         skb_set_queue_mapping(skb, queue_index);
3770         return netdev_get_tx_queue(dev, queue_index);
3771 }
3772
3773 /**
3774  *      __dev_queue_xmit - transmit a buffer
3775  *      @skb: buffer to transmit
3776  *      @sb_dev: suboordinate device used for L2 forwarding offload
3777  *
3778  *      Queue a buffer for transmission to a network device. The caller must
3779  *      have set the device and priority and built the buffer before calling
3780  *      this function. The function can be called from an interrupt.
3781  *
3782  *      A negative errno code is returned on a failure. A success does not
3783  *      guarantee the frame will be transmitted as it may be dropped due
3784  *      to congestion or traffic shaping.
3785  *
3786  * -----------------------------------------------------------------------------------
3787  *      I notice this method can also return errors from the queue disciplines,
3788  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3789  *      be positive.
3790  *
3791  *      Regardless of the return value, the skb is consumed, so it is currently
3792  *      difficult to retry a send to this method.  (You can bump the ref count
3793  *      before sending to hold a reference for retry if you are careful.)
3794  *
3795  *      When calling this method, interrupts MUST be enabled.  This is because
3796  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3797  *          --BLG
3798  */
3799 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3800 {
3801         struct net_device *dev = skb->dev;
3802         struct netdev_queue *txq;
3803         struct Qdisc *q;
3804         int rc = -ENOMEM;
3805         bool again = false;
3806
3807         skb_reset_mac_header(skb);
3808
3809         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3810                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3811
3812         /* Disable soft irqs for various locks below. Also
3813          * stops preemption for RCU.
3814          */
3815         rcu_read_lock_bh();
3816
3817         skb_update_prio(skb);
3818
3819         qdisc_pkt_len_init(skb);
3820 #ifdef CONFIG_NET_CLS_ACT
3821         skb->tc_at_ingress = 0;
3822 # ifdef CONFIG_NET_EGRESS
3823         if (static_branch_unlikely(&egress_needed_key)) {
3824                 skb = sch_handle_egress(skb, &rc, dev);
3825                 if (!skb)
3826                         goto out;
3827         }
3828 # endif
3829 #endif
3830         /* If device/qdisc don't need skb->dst, release it right now while
3831          * its hot in this cpu cache.
3832          */
3833         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3834                 skb_dst_drop(skb);
3835         else
3836                 skb_dst_force(skb);
3837
3838         txq = netdev_core_pick_tx(dev, skb, sb_dev);
3839         q = rcu_dereference_bh(txq->qdisc);
3840
3841         trace_net_dev_queue(skb);
3842         if (q->enqueue) {
3843                 rc = __dev_xmit_skb(skb, q, dev, txq);
3844                 goto out;
3845         }
3846
3847         /* The device has no queue. Common case for software devices:
3848          * loopback, all the sorts of tunnels...
3849
3850          * Really, it is unlikely that netif_tx_lock protection is necessary
3851          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3852          * counters.)
3853          * However, it is possible, that they rely on protection
3854          * made by us here.
3855
3856          * Check this and shot the lock. It is not prone from deadlocks.
3857          *Either shot noqueue qdisc, it is even simpler 8)
3858          */
3859         if (dev->flags & IFF_UP) {
3860                 int cpu = smp_processor_id(); /* ok because BHs are off */
3861
3862                 if (txq->xmit_lock_owner != cpu) {
3863                         if (dev_xmit_recursion())
3864                                 goto recursion_alert;
3865
3866                         skb = validate_xmit_skb(skb, dev, &again);
3867                         if (!skb)
3868                                 goto out;
3869
3870                         HARD_TX_LOCK(dev, txq, cpu);
3871
3872                         if (!netif_xmit_stopped(txq)) {
3873                                 dev_xmit_recursion_inc();
3874                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3875                                 dev_xmit_recursion_dec();
3876                                 if (dev_xmit_complete(rc)) {
3877                                         HARD_TX_UNLOCK(dev, txq);
3878                                         goto out;
3879                                 }
3880                         }
3881                         HARD_TX_UNLOCK(dev, txq);
3882                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3883                                              dev->name);
3884                 } else {
3885                         /* Recursion is detected! It is possible,
3886                          * unfortunately
3887                          */
3888 recursion_alert:
3889                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3890                                              dev->name);
3891                 }
3892         }
3893
3894         rc = -ENETDOWN;
3895         rcu_read_unlock_bh();
3896
3897         atomic_long_inc(&dev->tx_dropped);
3898         kfree_skb_list(skb);
3899         return rc;
3900 out:
3901         rcu_read_unlock_bh();
3902         return rc;
3903 }
3904
3905 int dev_queue_xmit(struct sk_buff *skb)
3906 {
3907         return __dev_queue_xmit(skb, NULL);
3908 }
3909 EXPORT_SYMBOL(dev_queue_xmit);
3910
3911 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3912 {
3913         return __dev_queue_xmit(skb, sb_dev);
3914 }
3915 EXPORT_SYMBOL(dev_queue_xmit_accel);
3916
3917 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3918 {
3919         struct net_device *dev = skb->dev;
3920         struct sk_buff *orig_skb = skb;
3921         struct netdev_queue *txq;
3922         int ret = NETDEV_TX_BUSY;
3923         bool again = false;
3924
3925         if (unlikely(!netif_running(dev) ||
3926                      !netif_carrier_ok(dev)))
3927                 goto drop;
3928
3929         skb = validate_xmit_skb_list(skb, dev, &again);
3930         if (skb != orig_skb)
3931                 goto drop;
3932
3933         skb_set_queue_mapping(skb, queue_id);
3934         txq = skb_get_tx_queue(dev, skb);
3935
3936         local_bh_disable();
3937
3938         HARD_TX_LOCK(dev, txq, smp_processor_id());
3939         if (!netif_xmit_frozen_or_drv_stopped(txq))
3940                 ret = netdev_start_xmit(skb, dev, txq, false);
3941         HARD_TX_UNLOCK(dev, txq);
3942
3943         local_bh_enable();
3944
3945         if (!dev_xmit_complete(ret))
3946                 kfree_skb(skb);
3947
3948         return ret;
3949 drop:
3950         atomic_long_inc(&dev->tx_dropped);
3951         kfree_skb_list(skb);
3952         return NET_XMIT_DROP;
3953 }
3954 EXPORT_SYMBOL(dev_direct_xmit);
3955
3956 /*************************************************************************
3957  *                      Receiver routines
3958  *************************************************************************/
3959
3960 int netdev_max_backlog __read_mostly = 1000;
3961 EXPORT_SYMBOL(netdev_max_backlog);
3962
3963 int netdev_tstamp_prequeue __read_mostly = 1;
3964 int netdev_budget __read_mostly = 300;
3965 unsigned int __read_mostly netdev_budget_usecs = 2000;
3966 int weight_p __read_mostly = 64;           /* old backlog weight */
3967 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3968 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3969 int dev_rx_weight __read_mostly = 64;
3970 int dev_tx_weight __read_mostly = 64;
3971 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
3972 int gro_normal_batch __read_mostly = 8;
3973
3974 /* Called with irq disabled */
3975 static inline void ____napi_schedule(struct softnet_data *sd,
3976                                      struct napi_struct *napi)
3977 {
3978         list_add_tail(&napi->poll_list, &sd->poll_list);
3979         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3980 }
3981
3982 #ifdef CONFIG_RPS
3983
3984 /* One global table that all flow-based protocols share. */
3985 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3986 EXPORT_SYMBOL(rps_sock_flow_table);
3987 u32 rps_cpu_mask __read_mostly;
3988 EXPORT_SYMBOL(rps_cpu_mask);
3989
3990 struct static_key_false rps_needed __read_mostly;
3991 EXPORT_SYMBOL(rps_needed);
3992 struct static_key_false rfs_needed __read_mostly;
3993 EXPORT_SYMBOL(rfs_needed);
3994
3995 static struct rps_dev_flow *
3996 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3997             struct rps_dev_flow *rflow, u16 next_cpu)
3998 {
3999         if (next_cpu < nr_cpu_ids) {
4000 #ifdef CONFIG_RFS_ACCEL
4001                 struct netdev_rx_queue *rxqueue;
4002                 struct rps_dev_flow_table *flow_table;
4003                 struct rps_dev_flow *old_rflow;
4004                 u32 flow_id;
4005                 u16 rxq_index;
4006                 int rc;
4007
4008                 /* Should we steer this flow to a different hardware queue? */
4009                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4010                     !(dev->features & NETIF_F_NTUPLE))
4011                         goto out;
4012                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4013                 if (rxq_index == skb_get_rx_queue(skb))
4014                         goto out;
4015
4016                 rxqueue = dev->_rx + rxq_index;
4017                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4018                 if (!flow_table)
4019                         goto out;
4020                 flow_id = skb_get_hash(skb) & flow_table->mask;
4021                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4022                                                         rxq_index, flow_id);
4023                 if (rc < 0)
4024                         goto out;
4025                 old_rflow = rflow;
4026                 rflow = &flow_table->flows[flow_id];
4027                 rflow->filter = rc;
4028                 if (old_rflow->filter == rflow->filter)
4029                         old_rflow->filter = RPS_NO_FILTER;
4030         out:
4031 #endif
4032                 rflow->last_qtail =
4033                         per_cpu(softnet_data, next_cpu).input_queue_head;
4034         }
4035
4036         rflow->cpu = next_cpu;
4037         return rflow;
4038 }
4039
4040 /*
4041  * get_rps_cpu is called from netif_receive_skb and returns the target
4042  * CPU from the RPS map of the receiving queue for a given skb.
4043  * rcu_read_lock must be held on entry.
4044  */
4045 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4046                        struct rps_dev_flow **rflowp)
4047 {
4048         const struct rps_sock_flow_table *sock_flow_table;
4049         struct netdev_rx_queue *rxqueue = dev->_rx;
4050         struct rps_dev_flow_table *flow_table;
4051         struct rps_map *map;
4052         int cpu = -1;
4053         u32 tcpu;
4054         u32 hash;
4055
4056         if (skb_rx_queue_recorded(skb)) {
4057                 u16 index = skb_get_rx_queue(skb);
4058
4059                 if (unlikely(index >= dev->real_num_rx_queues)) {
4060                         WARN_ONCE(dev->real_num_rx_queues > 1,
4061                                   "%s received packet on queue %u, but number "
4062                                   "of RX queues is %u\n",
4063                                   dev->name, index, dev->real_num_rx_queues);
4064                         goto done;
4065                 }
4066                 rxqueue += index;
4067         }
4068
4069         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4070
4071         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4072         map = rcu_dereference(rxqueue->rps_map);
4073         if (!flow_table && !map)
4074                 goto done;
4075
4076         skb_reset_network_header(skb);
4077         hash = skb_get_hash(skb);
4078         if (!hash)
4079                 goto done;
4080
4081         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4082         if (flow_table && sock_flow_table) {
4083                 struct rps_dev_flow *rflow;
4084                 u32 next_cpu;
4085                 u32 ident;
4086
4087                 /* First check into global flow table if there is a match */
4088                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4089                 if ((ident ^ hash) & ~rps_cpu_mask)
4090                         goto try_rps;
4091
4092                 next_cpu = ident & rps_cpu_mask;
4093
4094                 /* OK, now we know there is a match,
4095                  * we can look at the local (per receive queue) flow table
4096                  */
4097                 rflow = &flow_table->flows[hash & flow_table->mask];
4098                 tcpu = rflow->cpu;
4099
4100                 /*
4101                  * If the desired CPU (where last recvmsg was done) is
4102                  * different from current CPU (one in the rx-queue flow
4103                  * table entry), switch if one of the following holds:
4104                  *   - Current CPU is unset (>= nr_cpu_ids).
4105                  *   - Current CPU is offline.
4106                  *   - The current CPU's queue tail has advanced beyond the
4107                  *     last packet that was enqueued using this table entry.
4108                  *     This guarantees that all previous packets for the flow
4109                  *     have been dequeued, thus preserving in order delivery.
4110                  */
4111                 if (unlikely(tcpu != next_cpu) &&
4112                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4113                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4114                       rflow->last_qtail)) >= 0)) {
4115                         tcpu = next_cpu;
4116                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4117                 }
4118
4119                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4120                         *rflowp = rflow;
4121                         cpu = tcpu;
4122                         goto done;
4123                 }
4124         }
4125
4126 try_rps:
4127
4128         if (map) {
4129                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4130                 if (cpu_online(tcpu)) {
4131                         cpu = tcpu;
4132                         goto done;
4133                 }
4134         }
4135
4136 done:
4137         return cpu;
4138 }
4139
4140 #ifdef CONFIG_RFS_ACCEL
4141
4142 /**
4143  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4144  * @dev: Device on which the filter was set
4145  * @rxq_index: RX queue index
4146  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4147  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4148  *
4149  * Drivers that implement ndo_rx_flow_steer() should periodically call
4150  * this function for each installed filter and remove the filters for
4151  * which it returns %true.
4152  */
4153 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4154                          u32 flow_id, u16 filter_id)
4155 {
4156         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4157         struct rps_dev_flow_table *flow_table;
4158         struct rps_dev_flow *rflow;
4159         bool expire = true;
4160         unsigned int cpu;
4161
4162         rcu_read_lock();
4163         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4164         if (flow_table && flow_id <= flow_table->mask) {
4165                 rflow = &flow_table->flows[flow_id];
4166                 cpu = READ_ONCE(rflow->cpu);
4167                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4168                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4169                            rflow->last_qtail) <
4170                      (int)(10 * flow_table->mask)))
4171                         expire = false;
4172         }
4173         rcu_read_unlock();
4174         return expire;
4175 }
4176 EXPORT_SYMBOL(rps_may_expire_flow);
4177
4178 #endif /* CONFIG_RFS_ACCEL */
4179
4180 /* Called from hardirq (IPI) context */
4181 static void rps_trigger_softirq(void *data)
4182 {
4183         struct softnet_data *sd = data;
4184
4185         ____napi_schedule(sd, &sd->backlog);
4186         sd->received_rps++;
4187 }
4188
4189 #endif /* CONFIG_RPS */
4190
4191 /*
4192  * Check if this softnet_data structure is another cpu one
4193  * If yes, queue it to our IPI list and return 1
4194  * If no, return 0
4195  */
4196 static int rps_ipi_queued(struct softnet_data *sd)
4197 {
4198 #ifdef CONFIG_RPS
4199         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4200
4201         if (sd != mysd) {
4202                 sd->rps_ipi_next = mysd->rps_ipi_list;
4203                 mysd->rps_ipi_list = sd;
4204
4205                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4206                 return 1;
4207         }
4208 #endif /* CONFIG_RPS */
4209         return 0;
4210 }
4211
4212 #ifdef CONFIG_NET_FLOW_LIMIT
4213 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4214 #endif
4215
4216 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4217 {
4218 #ifdef CONFIG_NET_FLOW_LIMIT
4219         struct sd_flow_limit *fl;
4220         struct softnet_data *sd;
4221         unsigned int old_flow, new_flow;
4222
4223         if (qlen < (netdev_max_backlog >> 1))
4224                 return false;
4225
4226         sd = this_cpu_ptr(&softnet_data);
4227
4228         rcu_read_lock();
4229         fl = rcu_dereference(sd->flow_limit);
4230         if (fl) {
4231                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4232                 old_flow = fl->history[fl->history_head];
4233                 fl->history[fl->history_head] = new_flow;
4234
4235                 fl->history_head++;
4236                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4237
4238                 if (likely(fl->buckets[old_flow]))
4239                         fl->buckets[old_flow]--;
4240
4241                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4242                         fl->count++;
4243                         rcu_read_unlock();
4244                         return true;
4245                 }
4246         }
4247         rcu_read_unlock();
4248 #endif
4249         return false;
4250 }
4251
4252 /*
4253  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4254  * queue (may be a remote CPU queue).
4255  */
4256 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4257                               unsigned int *qtail)
4258 {
4259         struct softnet_data *sd;
4260         unsigned long flags;
4261         unsigned int qlen;
4262
4263         sd = &per_cpu(softnet_data, cpu);
4264
4265         local_irq_save(flags);
4266
4267         rps_lock(sd);
4268         if (!netif_running(skb->dev))
4269                 goto drop;
4270         qlen = skb_queue_len(&sd->input_pkt_queue);
4271         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4272                 if (qlen) {
4273 enqueue:
4274                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4275                         input_queue_tail_incr_save(sd, qtail);
4276                         rps_unlock(sd);
4277                         local_irq_restore(flags);
4278                         return NET_RX_SUCCESS;
4279                 }
4280
4281                 /* Schedule NAPI for backlog device
4282                  * We can use non atomic operation since we own the queue lock
4283                  */
4284                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4285                         if (!rps_ipi_queued(sd))
4286                                 ____napi_schedule(sd, &sd->backlog);
4287                 }
4288                 goto enqueue;
4289         }
4290
4291 drop:
4292         sd->dropped++;
4293         rps_unlock(sd);
4294
4295         local_irq_restore(flags);
4296
4297         atomic_long_inc(&skb->dev->rx_dropped);
4298         kfree_skb(skb);
4299         return NET_RX_DROP;
4300 }
4301
4302 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4303 {
4304         struct net_device *dev = skb->dev;
4305         struct netdev_rx_queue *rxqueue;
4306
4307         rxqueue = dev->_rx;
4308
4309         if (skb_rx_queue_recorded(skb)) {
4310                 u16 index = skb_get_rx_queue(skb);
4311
4312                 if (unlikely(index >= dev->real_num_rx_queues)) {
4313                         WARN_ONCE(dev->real_num_rx_queues > 1,
4314                                   "%s received packet on queue %u, but number "
4315                                   "of RX queues is %u\n",
4316                                   dev->name, index, dev->real_num_rx_queues);
4317
4318                         return rxqueue; /* Return first rxqueue */
4319                 }
4320                 rxqueue += index;
4321         }
4322         return rxqueue;
4323 }
4324
4325 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4326                                      struct xdp_buff *xdp,
4327                                      struct bpf_prog *xdp_prog)
4328 {
4329         struct netdev_rx_queue *rxqueue;
4330         void *orig_data, *orig_data_end;
4331         u32 metalen, act = XDP_DROP;
4332         __be16 orig_eth_type;
4333         struct ethhdr *eth;
4334         bool orig_bcast;
4335         int hlen, off;
4336         u32 mac_len;
4337
4338         /* Reinjected packets coming from act_mirred or similar should
4339          * not get XDP generic processing.
4340          */
4341         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4342                 return XDP_PASS;
4343
4344         /* XDP packets must be linear and must have sufficient headroom
4345          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4346          * native XDP provides, thus we need to do it here as well.
4347          */
4348         if (skb_is_nonlinear(skb) ||
4349             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4350                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4351                 int troom = skb->tail + skb->data_len - skb->end;
4352
4353                 /* In case we have to go down the path and also linearize,
4354                  * then lets do the pskb_expand_head() work just once here.
4355                  */
4356                 if (pskb_expand_head(skb,
4357                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4358                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4359                         goto do_drop;
4360                 if (skb_linearize(skb))
4361                         goto do_drop;
4362         }
4363
4364         /* The XDP program wants to see the packet starting at the MAC
4365          * header.
4366          */
4367         mac_len = skb->data - skb_mac_header(skb);
4368         hlen = skb_headlen(skb) + mac_len;
4369         xdp->data = skb->data - mac_len;
4370         xdp->data_meta = xdp->data;
4371         xdp->data_end = xdp->data + hlen;
4372         xdp->data_hard_start = skb->data - skb_headroom(skb);
4373         orig_data_end = xdp->data_end;
4374         orig_data = xdp->data;
4375         eth = (struct ethhdr *)xdp->data;
4376         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4377         orig_eth_type = eth->h_proto;
4378
4379         rxqueue = netif_get_rxqueue(skb);
4380         xdp->rxq = &rxqueue->xdp_rxq;
4381
4382         act = bpf_prog_run_xdp(xdp_prog, xdp);
4383
4384         /* check if bpf_xdp_adjust_head was used */
4385         off = xdp->data - orig_data;
4386         if (off) {
4387                 if (off > 0)
4388                         __skb_pull(skb, off);
4389                 else if (off < 0)
4390                         __skb_push(skb, -off);
4391
4392                 skb->mac_header += off;
4393                 skb_reset_network_header(skb);
4394         }
4395
4396         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4397          * pckt.
4398          */
4399         off = orig_data_end - xdp->data_end;
4400         if (off != 0) {
4401                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4402                 skb->len -= off;
4403
4404         }
4405
4406         /* check if XDP changed eth hdr such SKB needs update */
4407         eth = (struct ethhdr *)xdp->data;
4408         if ((orig_eth_type != eth->h_proto) ||
4409             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4410                 __skb_push(skb, ETH_HLEN);
4411                 skb->protocol = eth_type_trans(skb, skb->dev);
4412         }
4413
4414         switch (act) {
4415         case XDP_REDIRECT:
4416         case XDP_TX:
4417                 __skb_push(skb, mac_len);
4418                 break;
4419         case XDP_PASS:
4420                 metalen = xdp->data - xdp->data_meta;
4421                 if (metalen)
4422                         skb_metadata_set(skb, metalen);
4423                 break;
4424         default:
4425                 bpf_warn_invalid_xdp_action(act);
4426                 /* fall through */
4427         case XDP_ABORTED:
4428                 trace_xdp_exception(skb->dev, xdp_prog, act);
4429                 /* fall through */
4430         case XDP_DROP:
4431         do_drop:
4432                 kfree_skb(skb);
4433                 break;
4434         }
4435
4436         return act;
4437 }
4438
4439 /* When doing generic XDP we have to bypass the qdisc layer and the
4440  * network taps in order to match in-driver-XDP behavior.
4441  */
4442 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4443 {
4444         struct net_device *dev = skb->dev;
4445         struct netdev_queue *txq;
4446         bool free_skb = true;
4447         int cpu, rc;
4448
4449         txq = netdev_core_pick_tx(dev, skb, NULL);
4450         cpu = smp_processor_id();
4451         HARD_TX_LOCK(dev, txq, cpu);
4452         if (!netif_xmit_stopped(txq)) {
4453                 rc = netdev_start_xmit(skb, dev, txq, 0);
4454                 if (dev_xmit_complete(rc))
4455                         free_skb = false;
4456         }
4457         HARD_TX_UNLOCK(dev, txq);
4458         if (free_skb) {
4459                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4460                 kfree_skb(skb);
4461         }
4462 }
4463 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4464
4465 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4466
4467 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4468 {
4469         if (xdp_prog) {
4470                 struct xdp_buff xdp;
4471                 u32 act;
4472                 int err;
4473
4474                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4475                 if (act != XDP_PASS) {
4476                         switch (act) {
4477                         case XDP_REDIRECT:
4478                                 err = xdp_do_generic_redirect(skb->dev, skb,
4479                                                               &xdp, xdp_prog);
4480                                 if (err)
4481                                         goto out_redir;
4482                                 break;
4483                         case XDP_TX:
4484                                 generic_xdp_tx(skb, xdp_prog);
4485                                 break;
4486                         }
4487                         return XDP_DROP;
4488                 }
4489         }
4490         return XDP_PASS;
4491 out_redir:
4492         kfree_skb(skb);
4493         return XDP_DROP;
4494 }
4495 EXPORT_SYMBOL_GPL(do_xdp_generic);
4496
4497 static int netif_rx_internal(struct sk_buff *skb)
4498 {
4499         int ret;
4500
4501         net_timestamp_check(netdev_tstamp_prequeue, skb);
4502
4503         trace_netif_rx(skb);
4504
4505 #ifdef CONFIG_RPS
4506         if (static_branch_unlikely(&rps_needed)) {
4507                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4508                 int cpu;
4509
4510                 preempt_disable();
4511                 rcu_read_lock();
4512
4513                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4514                 if (cpu < 0)
4515                         cpu = smp_processor_id();
4516
4517                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4518
4519                 rcu_read_unlock();
4520                 preempt_enable();
4521         } else
4522 #endif
4523         {
4524                 unsigned int qtail;
4525
4526                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4527                 put_cpu();
4528         }
4529         return ret;
4530 }
4531
4532 /**
4533  *      netif_rx        -       post buffer to the network code
4534  *      @skb: buffer to post
4535  *
4536  *      This function receives a packet from a device driver and queues it for
4537  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4538  *      may be dropped during processing for congestion control or by the
4539  *      protocol layers.
4540  *
4541  *      return values:
4542  *      NET_RX_SUCCESS  (no congestion)
4543  *      NET_RX_DROP     (packet was dropped)
4544  *
4545  */
4546
4547 int netif_rx(struct sk_buff *skb)
4548 {
4549         int ret;
4550
4551         trace_netif_rx_entry(skb);
4552
4553         ret = netif_rx_internal(skb);
4554         trace_netif_rx_exit(ret);
4555
4556         return ret;
4557 }
4558 EXPORT_SYMBOL(netif_rx);
4559
4560 int netif_rx_ni(struct sk_buff *skb)
4561 {
4562         int err;
4563
4564         trace_netif_rx_ni_entry(skb);
4565
4566         preempt_disable();
4567         err = netif_rx_internal(skb);
4568         if (local_softirq_pending())
4569                 do_softirq();
4570         preempt_enable();
4571         trace_netif_rx_ni_exit(err);
4572
4573         return err;
4574 }
4575 EXPORT_SYMBOL(netif_rx_ni);
4576
4577 static __latent_entropy void net_tx_action(struct softirq_action *h)
4578 {
4579         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4580
4581         if (sd->completion_queue) {
4582                 struct sk_buff *clist;
4583
4584                 local_irq_disable();
4585                 clist = sd->completion_queue;
4586                 sd->completion_queue = NULL;
4587                 local_irq_enable();
4588
4589                 while (clist) {
4590                         struct sk_buff *skb = clist;
4591
4592                         clist = clist->next;
4593
4594                         WARN_ON(refcount_read(&skb->users));
4595                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4596                                 trace_consume_skb(skb);
4597                         else
4598                                 trace_kfree_skb(skb, net_tx_action);
4599
4600                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4601                                 __kfree_skb(skb);
4602                         else
4603                                 __kfree_skb_defer(skb);
4604                 }
4605
4606                 __kfree_skb_flush();
4607         }
4608
4609         if (sd->output_queue) {
4610                 struct Qdisc *head;
4611
4612                 local_irq_disable();
4613                 head = sd->output_queue;
4614                 sd->output_queue = NULL;
4615                 sd->output_queue_tailp = &sd->output_queue;
4616                 local_irq_enable();
4617
4618                 while (head) {
4619                         struct Qdisc *q = head;
4620                         spinlock_t *root_lock = NULL;
4621
4622                         head = head->next_sched;
4623
4624                         if (!(q->flags & TCQ_F_NOLOCK)) {
4625                                 root_lock = qdisc_lock(q);
4626                                 spin_lock(root_lock);
4627                         }
4628                         /* We need to make sure head->next_sched is read
4629                          * before clearing __QDISC_STATE_SCHED
4630                          */
4631                         smp_mb__before_atomic();
4632                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4633                         qdisc_run(q);
4634                         if (root_lock)
4635                                 spin_unlock(root_lock);
4636                 }
4637         }
4638
4639         xfrm_dev_backlog(sd);
4640 }
4641
4642 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4643 /* This hook is defined here for ATM LANE */
4644 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4645                              unsigned char *addr) __read_mostly;
4646 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4647 #endif
4648
4649 static inline struct sk_buff *
4650 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4651                    struct net_device *orig_dev)
4652 {
4653 #ifdef CONFIG_NET_CLS_ACT
4654         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4655         struct tcf_result cl_res;
4656
4657         /* If there's at least one ingress present somewhere (so
4658          * we get here via enabled static key), remaining devices
4659          * that are not configured with an ingress qdisc will bail
4660          * out here.
4661          */
4662         if (!miniq)
4663                 return skb;
4664
4665         if (*pt_prev) {
4666                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4667                 *pt_prev = NULL;
4668         }
4669
4670         qdisc_skb_cb(skb)->pkt_len = skb->len;
4671         skb->tc_at_ingress = 1;
4672         mini_qdisc_bstats_cpu_update(miniq, skb);
4673
4674         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4675         case TC_ACT_OK:
4676         case TC_ACT_RECLASSIFY:
4677                 skb->tc_index = TC_H_MIN(cl_res.classid);
4678                 break;
4679         case TC_ACT_SHOT:
4680                 mini_qdisc_qstats_cpu_drop(miniq);
4681                 kfree_skb(skb);
4682                 return NULL;
4683         case TC_ACT_STOLEN:
4684         case TC_ACT_QUEUED:
4685         case TC_ACT_TRAP:
4686                 consume_skb(skb);
4687                 return NULL;
4688         case TC_ACT_REDIRECT:
4689                 /* skb_mac_header check was done by cls/act_bpf, so
4690                  * we can safely push the L2 header back before
4691                  * redirecting to another netdev
4692                  */
4693                 __skb_push(skb, skb->mac_len);
4694                 skb_do_redirect(skb);
4695                 return NULL;
4696         case TC_ACT_CONSUMED:
4697                 return NULL;
4698         default:
4699                 break;
4700         }
4701 #endif /* CONFIG_NET_CLS_ACT */
4702         return skb;
4703 }
4704
4705 /**
4706  *      netdev_is_rx_handler_busy - check if receive handler is registered
4707  *      @dev: device to check
4708  *
4709  *      Check if a receive handler is already registered for a given device.
4710  *      Return true if there one.
4711  *
4712  *      The caller must hold the rtnl_mutex.
4713  */
4714 bool netdev_is_rx_handler_busy(struct net_device *dev)
4715 {
4716         ASSERT_RTNL();
4717         return dev && rtnl_dereference(dev->rx_handler);
4718 }
4719 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4720
4721 /**
4722  *      netdev_rx_handler_register - register receive handler
4723  *      @dev: device to register a handler for
4724  *      @rx_handler: receive handler to register
4725  *      @rx_handler_data: data pointer that is used by rx handler
4726  *
4727  *      Register a receive handler for a device. This handler will then be
4728  *      called from __netif_receive_skb. A negative errno code is returned
4729  *      on a failure.
4730  *
4731  *      The caller must hold the rtnl_mutex.
4732  *
4733  *      For a general description of rx_handler, see enum rx_handler_result.
4734  */
4735 int netdev_rx_handler_register(struct net_device *dev,
4736                                rx_handler_func_t *rx_handler,
4737                                void *rx_handler_data)
4738 {
4739         if (netdev_is_rx_handler_busy(dev))
4740                 return -EBUSY;
4741
4742         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4743                 return -EINVAL;
4744
4745         /* Note: rx_handler_data must be set before rx_handler */
4746         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4747         rcu_assign_pointer(dev->rx_handler, rx_handler);
4748
4749         return 0;
4750 }
4751 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4752
4753 /**
4754  *      netdev_rx_handler_unregister - unregister receive handler
4755  *      @dev: device to unregister a handler from
4756  *
4757  *      Unregister a receive handler from a device.
4758  *
4759  *      The caller must hold the rtnl_mutex.
4760  */
4761 void netdev_rx_handler_unregister(struct net_device *dev)
4762 {
4763
4764         ASSERT_RTNL();
4765         RCU_INIT_POINTER(dev->rx_handler, NULL);
4766         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4767          * section has a guarantee to see a non NULL rx_handler_data
4768          * as well.
4769          */
4770         synchronize_net();
4771         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4772 }
4773 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4774
4775 /*
4776  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4777  * the special handling of PFMEMALLOC skbs.
4778  */
4779 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4780 {
4781         switch (skb->protocol) {
4782         case htons(ETH_P_ARP):
4783         case htons(ETH_P_IP):
4784         case htons(ETH_P_IPV6):
4785         case htons(ETH_P_8021Q):
4786         case htons(ETH_P_8021AD):
4787                 return true;
4788         default:
4789                 return false;
4790         }
4791 }
4792
4793 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4794                              int *ret, struct net_device *orig_dev)
4795 {
4796 #ifdef CONFIG_NETFILTER_INGRESS
4797         if (nf_hook_ingress_active(skb)) {
4798                 int ingress_retval;
4799
4800                 if (*pt_prev) {
4801                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4802                         *pt_prev = NULL;
4803                 }
4804
4805                 rcu_read_lock();
4806                 ingress_retval = nf_hook_ingress(skb);
4807                 rcu_read_unlock();
4808                 return ingress_retval;
4809         }
4810 #endif /* CONFIG_NETFILTER_INGRESS */
4811         return 0;
4812 }
4813
4814 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4815                                     struct packet_type **ppt_prev)
4816 {
4817         struct packet_type *ptype, *pt_prev;
4818         rx_handler_func_t *rx_handler;
4819         struct net_device *orig_dev;
4820         bool deliver_exact = false;
4821         int ret = NET_RX_DROP;
4822         __be16 type;
4823
4824         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4825
4826         trace_netif_receive_skb(skb);
4827
4828         orig_dev = skb->dev;
4829
4830         skb_reset_network_header(skb);
4831         if (!skb_transport_header_was_set(skb))
4832                 skb_reset_transport_header(skb);
4833         skb_reset_mac_len(skb);
4834
4835         pt_prev = NULL;
4836
4837 another_round:
4838         skb->skb_iif = skb->dev->ifindex;
4839
4840         __this_cpu_inc(softnet_data.processed);
4841
4842         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4843                 int ret2;
4844
4845                 preempt_disable();
4846                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4847                 preempt_enable();
4848
4849                 if (ret2 != XDP_PASS)
4850                         return NET_RX_DROP;
4851                 skb_reset_mac_len(skb);
4852         }
4853
4854         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4855             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4856                 skb = skb_vlan_untag(skb);
4857                 if (unlikely(!skb))
4858                         goto out;
4859         }
4860
4861         if (skb_skip_tc_classify(skb))
4862                 goto skip_classify;
4863
4864         if (pfmemalloc)
4865                 goto skip_taps;
4866
4867         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4868                 if (pt_prev)
4869                         ret = deliver_skb(skb, pt_prev, orig_dev);
4870                 pt_prev = ptype;
4871         }
4872
4873         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4874                 if (pt_prev)
4875                         ret = deliver_skb(skb, pt_prev, orig_dev);
4876                 pt_prev = ptype;
4877         }
4878
4879 skip_taps:
4880 #ifdef CONFIG_NET_INGRESS
4881         if (static_branch_unlikely(&ingress_needed_key)) {
4882                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4883                 if (!skb)
4884                         goto out;
4885
4886                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4887                         goto out;
4888         }
4889 #endif
4890         skb_reset_tc(skb);
4891 skip_classify:
4892         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4893                 goto drop;
4894
4895         if (skb_vlan_tag_present(skb)) {
4896                 if (pt_prev) {
4897                         ret = deliver_skb(skb, pt_prev, orig_dev);
4898                         pt_prev = NULL;
4899                 }
4900                 if (vlan_do_receive(&skb))
4901                         goto another_round;
4902                 else if (unlikely(!skb))
4903                         goto out;
4904         }
4905
4906         rx_handler = rcu_dereference(skb->dev->rx_handler);
4907         if (rx_handler) {
4908                 if (pt_prev) {
4909                         ret = deliver_skb(skb, pt_prev, orig_dev);
4910                         pt_prev = NULL;
4911                 }
4912                 switch (rx_handler(&skb)) {
4913                 case RX_HANDLER_CONSUMED:
4914                         ret = NET_RX_SUCCESS;
4915                         goto out;
4916                 case RX_HANDLER_ANOTHER:
4917                         goto another_round;
4918                 case RX_HANDLER_EXACT:
4919                         deliver_exact = true;
4920                 case RX_HANDLER_PASS:
4921                         break;
4922                 default:
4923                         BUG();
4924                 }
4925         }
4926
4927         if (unlikely(skb_vlan_tag_present(skb))) {
4928 check_vlan_id:
4929                 if (skb_vlan_tag_get_id(skb)) {
4930                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
4931                          * find vlan device.
4932                          */
4933                         skb->pkt_type = PACKET_OTHERHOST;
4934                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4935                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4936                         /* Outer header is 802.1P with vlan 0, inner header is
4937                          * 802.1Q or 802.1AD and vlan_do_receive() above could
4938                          * not find vlan dev for vlan id 0.
4939                          */
4940                         __vlan_hwaccel_clear_tag(skb);
4941                         skb = skb_vlan_untag(skb);
4942                         if (unlikely(!skb))
4943                                 goto out;
4944                         if (vlan_do_receive(&skb))
4945                                 /* After stripping off 802.1P header with vlan 0
4946                                  * vlan dev is found for inner header.
4947                                  */
4948                                 goto another_round;
4949                         else if (unlikely(!skb))
4950                                 goto out;
4951                         else
4952                                 /* We have stripped outer 802.1P vlan 0 header.
4953                                  * But could not find vlan dev.
4954                                  * check again for vlan id to set OTHERHOST.
4955                                  */
4956                                 goto check_vlan_id;
4957                 }
4958                 /* Note: we might in the future use prio bits
4959                  * and set skb->priority like in vlan_do_receive()
4960                  * For the time being, just ignore Priority Code Point
4961                  */
4962                 __vlan_hwaccel_clear_tag(skb);
4963         }
4964
4965         type = skb->protocol;
4966
4967         /* deliver only exact match when indicated */
4968         if (likely(!deliver_exact)) {
4969                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4970                                        &ptype_base[ntohs(type) &
4971                                                    PTYPE_HASH_MASK]);
4972         }
4973
4974         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4975                                &orig_dev->ptype_specific);
4976
4977         if (unlikely(skb->dev != orig_dev)) {
4978                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4979                                        &skb->dev->ptype_specific);
4980         }
4981
4982         if (pt_prev) {
4983                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4984                         goto drop;
4985                 *ppt_prev = pt_prev;
4986         } else {
4987 drop:
4988                 if (!deliver_exact)
4989                         atomic_long_inc(&skb->dev->rx_dropped);
4990                 else
4991                         atomic_long_inc(&skb->dev->rx_nohandler);
4992                 kfree_skb(skb);
4993                 /* Jamal, now you will not able to escape explaining
4994                  * me how you were going to use this. :-)
4995                  */
4996                 ret = NET_RX_DROP;
4997         }
4998
4999 out:
5000         return ret;
5001 }
5002
5003 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5004 {
5005         struct net_device *orig_dev = skb->dev;
5006         struct packet_type *pt_prev = NULL;
5007         int ret;
5008
5009         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5010         if (pt_prev)
5011                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5012                                          skb->dev, pt_prev, orig_dev);
5013         return ret;
5014 }
5015
5016 /**
5017  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5018  *      @skb: buffer to process
5019  *
5020  *      More direct receive version of netif_receive_skb().  It should
5021  *      only be used by callers that have a need to skip RPS and Generic XDP.
5022  *      Caller must also take care of handling if (page_is_)pfmemalloc.
5023  *
5024  *      This function may only be called from softirq context and interrupts
5025  *      should be enabled.
5026  *
5027  *      Return values (usually ignored):
5028  *      NET_RX_SUCCESS: no congestion
5029  *      NET_RX_DROP: packet was dropped
5030  */
5031 int netif_receive_skb_core(struct sk_buff *skb)
5032 {
5033         int ret;
5034
5035         rcu_read_lock();
5036         ret = __netif_receive_skb_one_core(skb, false);
5037         rcu_read_unlock();
5038
5039         return ret;
5040 }
5041 EXPORT_SYMBOL(netif_receive_skb_core);
5042
5043 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5044                                                   struct packet_type *pt_prev,
5045                                                   struct net_device *orig_dev)
5046 {
5047         struct sk_buff *skb, *next;
5048
5049         if (!pt_prev)
5050                 return;
5051         if (list_empty(head))
5052                 return;
5053         if (pt_prev->list_func != NULL)
5054                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5055                                    ip_list_rcv, head, pt_prev, orig_dev);
5056         else
5057                 list_for_each_entry_safe(skb, next, head, list) {
5058                         skb_list_del_init(skb);
5059                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5060                 }
5061 }
5062
5063 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5064 {
5065         /* Fast-path assumptions:
5066          * - There is no RX handler.
5067          * - Only one packet_type matches.
5068          * If either of these fails, we will end up doing some per-packet
5069          * processing in-line, then handling the 'last ptype' for the whole
5070          * sublist.  This can't cause out-of-order delivery to any single ptype,
5071          * because the 'last ptype' must be constant across the sublist, and all
5072          * other ptypes are handled per-packet.
5073          */
5074         /* Current (common) ptype of sublist */
5075         struct packet_type *pt_curr = NULL;
5076         /* Current (common) orig_dev of sublist */
5077         struct net_device *od_curr = NULL;
5078         struct list_head sublist;
5079         struct sk_buff *skb, *next;
5080
5081         INIT_LIST_HEAD(&sublist);
5082         list_for_each_entry_safe(skb, next, head, list) {
5083                 struct net_device *orig_dev = skb->dev;
5084                 struct packet_type *pt_prev = NULL;
5085
5086                 skb_list_del_init(skb);
5087                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5088                 if (!pt_prev)
5089                         continue;
5090                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5091                         /* dispatch old sublist */
5092                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5093                         /* start new sublist */
5094                         INIT_LIST_HEAD(&sublist);
5095                         pt_curr = pt_prev;
5096                         od_curr = orig_dev;
5097                 }
5098                 list_add_tail(&skb->list, &sublist);
5099         }
5100
5101         /* dispatch final sublist */
5102         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5103 }
5104
5105 static int __netif_receive_skb(struct sk_buff *skb)
5106 {
5107         int ret;
5108
5109         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5110                 unsigned int noreclaim_flag;
5111
5112                 /*
5113                  * PFMEMALLOC skbs are special, they should
5114                  * - be delivered to SOCK_MEMALLOC sockets only
5115                  * - stay away from userspace
5116                  * - have bounded memory usage
5117                  *
5118                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5119                  * context down to all allocation sites.
5120                  */
5121                 noreclaim_flag = memalloc_noreclaim_save();
5122                 ret = __netif_receive_skb_one_core(skb, true);
5123                 memalloc_noreclaim_restore(noreclaim_flag);
5124         } else
5125                 ret = __netif_receive_skb_one_core(skb, false);
5126
5127         return ret;
5128 }
5129
5130 static void __netif_receive_skb_list(struct list_head *head)
5131 {
5132         unsigned long noreclaim_flag = 0;
5133         struct sk_buff *skb, *next;
5134         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5135
5136         list_for_each_entry_safe(skb, next, head, list) {
5137                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5138                         struct list_head sublist;
5139
5140                         /* Handle the previous sublist */
5141                         list_cut_before(&sublist, head, &skb->list);
5142                         if (!list_empty(&sublist))
5143                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5144                         pfmemalloc = !pfmemalloc;
5145                         /* See comments in __netif_receive_skb */
5146                         if (pfmemalloc)
5147                                 noreclaim_flag = memalloc_noreclaim_save();
5148                         else
5149                                 memalloc_noreclaim_restore(noreclaim_flag);
5150                 }
5151         }
5152         /* Handle the remaining sublist */
5153         if (!list_empty(head))
5154                 __netif_receive_skb_list_core(head, pfmemalloc);
5155         /* Restore pflags */
5156         if (pfmemalloc)
5157                 memalloc_noreclaim_restore(noreclaim_flag);
5158 }
5159
5160 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5161 {
5162         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5163         struct bpf_prog *new = xdp->prog;
5164         int ret = 0;
5165
5166         switch (xdp->command) {
5167         case XDP_SETUP_PROG:
5168                 rcu_assign_pointer(dev->xdp_prog, new);
5169                 if (old)
5170                         bpf_prog_put(old);
5171
5172                 if (old && !new) {
5173                         static_branch_dec(&generic_xdp_needed_key);
5174                 } else if (new && !old) {
5175                         static_branch_inc(&generic_xdp_needed_key);
5176                         dev_disable_lro(dev);
5177                         dev_disable_gro_hw(dev);
5178                 }
5179                 break;
5180
5181         case XDP_QUERY_PROG:
5182                 xdp->prog_id = old ? old->aux->id : 0;
5183                 break;
5184
5185         default:
5186                 ret = -EINVAL;
5187                 break;
5188         }
5189
5190         return ret;
5191 }
5192
5193 static int netif_receive_skb_internal(struct sk_buff *skb)
5194 {
5195         int ret;
5196
5197         net_timestamp_check(netdev_tstamp_prequeue, skb);
5198
5199         if (skb_defer_rx_timestamp(skb))
5200                 return NET_RX_SUCCESS;
5201
5202         rcu_read_lock();
5203 #ifdef CONFIG_RPS
5204         if (static_branch_unlikely(&rps_needed)) {
5205                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5206                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5207
5208                 if (cpu >= 0) {
5209                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5210                         rcu_read_unlock();
5211                         return ret;
5212                 }
5213         }
5214 #endif
5215         ret = __netif_receive_skb(skb);
5216         rcu_read_unlock();
5217         return ret;
5218 }
5219
5220 static void netif_receive_skb_list_internal(struct list_head *head)
5221 {
5222         struct sk_buff *skb, *next;
5223         struct list_head sublist;
5224
5225         INIT_LIST_HEAD(&sublist);
5226         list_for_each_entry_safe(skb, next, head, list) {
5227                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5228                 skb_list_del_init(skb);
5229                 if (!skb_defer_rx_timestamp(skb))
5230                         list_add_tail(&skb->list, &sublist);
5231         }
5232         list_splice_init(&sublist, head);
5233
5234         rcu_read_lock();
5235 #ifdef CONFIG_RPS
5236         if (static_branch_unlikely(&rps_needed)) {
5237                 list_for_each_entry_safe(skb, next, head, list) {
5238                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5239                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5240
5241                         if (cpu >= 0) {
5242                                 /* Will be handled, remove from list */
5243                                 skb_list_del_init(skb);
5244                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5245                         }
5246                 }
5247         }
5248 #endif
5249         __netif_receive_skb_list(head);
5250         rcu_read_unlock();
5251 }
5252
5253 /**
5254  *      netif_receive_skb - process receive buffer from network
5255  *      @skb: buffer to process
5256  *
5257  *      netif_receive_skb() is the main receive data processing function.
5258  *      It always succeeds. The buffer may be dropped during processing
5259  *      for congestion control or by the protocol layers.
5260  *
5261  *      This function may only be called from softirq context and interrupts
5262  *      should be enabled.
5263  *
5264  *      Return values (usually ignored):
5265  *      NET_RX_SUCCESS: no congestion
5266  *      NET_RX_DROP: packet was dropped
5267  */
5268 int netif_receive_skb(struct sk_buff *skb)
5269 {
5270         int ret;
5271
5272         trace_netif_receive_skb_entry(skb);
5273
5274         ret = netif_receive_skb_internal(skb);
5275         trace_netif_receive_skb_exit(ret);
5276
5277         return ret;
5278 }
5279 EXPORT_SYMBOL(netif_receive_skb);
5280
5281 /**
5282  *      netif_receive_skb_list - process many receive buffers from network
5283  *      @head: list of skbs to process.
5284  *
5285  *      Since return value of netif_receive_skb() is normally ignored, and
5286  *      wouldn't be meaningful for a list, this function returns void.
5287  *
5288  *      This function may only be called from softirq context and interrupts
5289  *      should be enabled.
5290  */
5291 void netif_receive_skb_list(struct list_head *head)
5292 {
5293         struct sk_buff *skb;
5294
5295         if (list_empty(head))
5296                 return;
5297         if (trace_netif_receive_skb_list_entry_enabled()) {
5298                 list_for_each_entry(skb, head, list)
5299                         trace_netif_receive_skb_list_entry(skb);
5300         }
5301         netif_receive_skb_list_internal(head);
5302         trace_netif_receive_skb_list_exit(0);
5303 }
5304 EXPORT_SYMBOL(netif_receive_skb_list);
5305
5306 DEFINE_PER_CPU(struct work_struct, flush_works);
5307
5308 /* Network device is going away, flush any packets still pending */
5309 static void flush_backlog(struct work_struct *work)
5310 {
5311         struct sk_buff *skb, *tmp;
5312         struct softnet_data *sd;
5313
5314         local_bh_disable();
5315         sd = this_cpu_ptr(&softnet_data);
5316
5317         local_irq_disable();
5318         rps_lock(sd);
5319         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5320                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5321                         __skb_unlink(skb, &sd->input_pkt_queue);
5322                         kfree_skb(skb);
5323                         input_queue_head_incr(sd);
5324                 }
5325         }
5326         rps_unlock(sd);
5327         local_irq_enable();
5328
5329         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5330                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5331                         __skb_unlink(skb, &sd->process_queue);
5332                         kfree_skb(skb);
5333                         input_queue_head_incr(sd);
5334                 }
5335         }
5336         local_bh_enable();
5337 }
5338
5339 static void flush_all_backlogs(void)
5340 {
5341         unsigned int cpu;
5342
5343         get_online_cpus();
5344
5345         for_each_online_cpu(cpu)
5346                 queue_work_on(cpu, system_highpri_wq,
5347                               per_cpu_ptr(&flush_works, cpu));
5348
5349         for_each_online_cpu(cpu)
5350                 flush_work(per_cpu_ptr(&flush_works, cpu));
5351
5352         put_online_cpus();
5353 }
5354
5355 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5356 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5357 static int napi_gro_complete(struct sk_buff *skb)
5358 {
5359         struct packet_offload *ptype;
5360         __be16 type = skb->protocol;
5361         struct list_head *head = &offload_base;
5362         int err = -ENOENT;
5363
5364         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5365
5366         if (NAPI_GRO_CB(skb)->count == 1) {
5367                 skb_shinfo(skb)->gso_size = 0;
5368                 goto out;
5369         }
5370
5371         rcu_read_lock();
5372         list_for_each_entry_rcu(ptype, head, list) {
5373                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5374                         continue;
5375
5376                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5377                                          ipv6_gro_complete, inet_gro_complete,
5378                                          skb, 0);
5379                 break;
5380         }
5381         rcu_read_unlock();
5382
5383         if (err) {
5384                 WARN_ON(&ptype->list == head);
5385                 kfree_skb(skb);
5386                 return NET_RX_SUCCESS;
5387         }
5388
5389 out:
5390         return netif_receive_skb_internal(skb);
5391 }
5392
5393 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5394                                    bool flush_old)
5395 {
5396         struct list_head *head = &napi->gro_hash[index].list;
5397         struct sk_buff *skb, *p;
5398
5399         list_for_each_entry_safe_reverse(skb, p, head, list) {
5400                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5401                         return;
5402                 skb_list_del_init(skb);
5403                 napi_gro_complete(skb);
5404                 napi->gro_hash[index].count--;
5405         }
5406
5407         if (!napi->gro_hash[index].count)
5408                 __clear_bit(index, &napi->gro_bitmask);
5409 }
5410
5411 /* napi->gro_hash[].list contains packets ordered by age.
5412  * youngest packets at the head of it.
5413  * Complete skbs in reverse order to reduce latencies.
5414  */
5415 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5416 {
5417         unsigned long bitmask = napi->gro_bitmask;
5418         unsigned int i, base = ~0U;
5419
5420         while ((i = ffs(bitmask)) != 0) {
5421                 bitmask >>= i;
5422                 base += i;
5423                 __napi_gro_flush_chain(napi, base, flush_old);
5424         }
5425 }
5426 EXPORT_SYMBOL(napi_gro_flush);
5427
5428 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5429                                           struct sk_buff *skb)
5430 {
5431         unsigned int maclen = skb->dev->hard_header_len;
5432         u32 hash = skb_get_hash_raw(skb);
5433         struct list_head *head;
5434         struct sk_buff *p;
5435
5436         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5437         list_for_each_entry(p, head, list) {
5438                 unsigned long diffs;
5439
5440                 NAPI_GRO_CB(p)->flush = 0;
5441
5442                 if (hash != skb_get_hash_raw(p)) {
5443                         NAPI_GRO_CB(p)->same_flow = 0;
5444                         continue;
5445                 }
5446
5447                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5448                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5449                 if (skb_vlan_tag_present(p))
5450                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5451                 diffs |= skb_metadata_dst_cmp(p, skb);
5452                 diffs |= skb_metadata_differs(p, skb);
5453                 if (maclen == ETH_HLEN)
5454                         diffs |= compare_ether_header(skb_mac_header(p),
5455                                                       skb_mac_header(skb));
5456                 else if (!diffs)
5457                         diffs = memcmp(skb_mac_header(p),
5458                                        skb_mac_header(skb),
5459                                        maclen);
5460                 NAPI_GRO_CB(p)->same_flow = !diffs;
5461         }
5462
5463         return head;
5464 }
5465
5466 static void skb_gro_reset_offset(struct sk_buff *skb)
5467 {
5468         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5469         const skb_frag_t *frag0 = &pinfo->frags[0];
5470
5471         NAPI_GRO_CB(skb)->data_offset = 0;
5472         NAPI_GRO_CB(skb)->frag0 = NULL;
5473         NAPI_GRO_CB(skb)->frag0_len = 0;
5474
5475         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5476             pinfo->nr_frags &&
5477             !PageHighMem(skb_frag_page(frag0))) {
5478                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5479                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5480                                                     skb_frag_size(frag0),
5481                                                     skb->end - skb->tail);
5482         }
5483 }
5484
5485 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5486 {
5487         struct skb_shared_info *pinfo = skb_shinfo(skb);
5488
5489         BUG_ON(skb->end - skb->tail < grow);
5490
5491         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5492
5493         skb->data_len -= grow;
5494         skb->tail += grow;
5495
5496         skb_frag_off_add(&pinfo->frags[0], grow);
5497         skb_frag_size_sub(&pinfo->frags[0], grow);
5498
5499         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5500                 skb_frag_unref(skb, 0);
5501                 memmove(pinfo->frags, pinfo->frags + 1,
5502                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5503         }
5504 }
5505
5506 static void gro_flush_oldest(struct list_head *head)
5507 {
5508         struct sk_buff *oldest;
5509
5510         oldest = list_last_entry(head, struct sk_buff, list);
5511
5512         /* We are called with head length >= MAX_GRO_SKBS, so this is
5513          * impossible.
5514          */
5515         if (WARN_ON_ONCE(!oldest))
5516                 return;
5517
5518         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5519          * SKB to the chain.
5520          */
5521         skb_list_del_init(oldest);
5522         napi_gro_complete(oldest);
5523 }
5524
5525 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5526                                                            struct sk_buff *));
5527 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5528                                                            struct sk_buff *));
5529 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5530 {
5531         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5532         struct list_head *head = &offload_base;
5533         struct packet_offload *ptype;
5534         __be16 type = skb->protocol;
5535         struct list_head *gro_head;
5536         struct sk_buff *pp = NULL;
5537         enum gro_result ret;
5538         int same_flow;
5539         int grow;
5540
5541         if (netif_elide_gro(skb->dev))
5542                 goto normal;
5543
5544         gro_head = gro_list_prepare(napi, skb);
5545
5546         rcu_read_lock();
5547         list_for_each_entry_rcu(ptype, head, list) {
5548                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5549                         continue;
5550
5551                 skb_set_network_header(skb, skb_gro_offset(skb));
5552                 skb_reset_mac_len(skb);
5553                 NAPI_GRO_CB(skb)->same_flow = 0;
5554                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5555                 NAPI_GRO_CB(skb)->free = 0;
5556                 NAPI_GRO_CB(skb)->encap_mark = 0;
5557                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5558                 NAPI_GRO_CB(skb)->is_fou = 0;
5559                 NAPI_GRO_CB(skb)->is_atomic = 1;
5560                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5561
5562                 /* Setup for GRO checksum validation */
5563                 switch (skb->ip_summed) {
5564                 case CHECKSUM_COMPLETE:
5565                         NAPI_GRO_CB(skb)->csum = skb->csum;
5566                         NAPI_GRO_CB(skb)->csum_valid = 1;
5567                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5568                         break;
5569                 case CHECKSUM_UNNECESSARY:
5570                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5571                         NAPI_GRO_CB(skb)->csum_valid = 0;
5572                         break;
5573                 default:
5574                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5575                         NAPI_GRO_CB(skb)->csum_valid = 0;
5576                 }
5577
5578                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5579                                         ipv6_gro_receive, inet_gro_receive,
5580                                         gro_head, skb);
5581                 break;
5582         }
5583         rcu_read_unlock();
5584
5585         if (&ptype->list == head)
5586                 goto normal;
5587
5588         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5589                 ret = GRO_CONSUMED;
5590                 goto ok;
5591         }
5592
5593         same_flow = NAPI_GRO_CB(skb)->same_flow;
5594         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5595
5596         if (pp) {
5597                 skb_list_del_init(pp);
5598                 napi_gro_complete(pp);
5599                 napi->gro_hash[hash].count--;
5600         }
5601
5602         if (same_flow)
5603                 goto ok;
5604
5605         if (NAPI_GRO_CB(skb)->flush)
5606                 goto normal;
5607
5608         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5609                 gro_flush_oldest(gro_head);
5610         } else {
5611                 napi->gro_hash[hash].count++;
5612         }
5613         NAPI_GRO_CB(skb)->count = 1;
5614         NAPI_GRO_CB(skb)->age = jiffies;
5615         NAPI_GRO_CB(skb)->last = skb;
5616         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5617         list_add(&skb->list, gro_head);
5618         ret = GRO_HELD;
5619
5620 pull:
5621         grow = skb_gro_offset(skb) - skb_headlen(skb);
5622         if (grow > 0)
5623                 gro_pull_from_frag0(skb, grow);
5624 ok:
5625         if (napi->gro_hash[hash].count) {
5626                 if (!test_bit(hash, &napi->gro_bitmask))
5627                         __set_bit(hash, &napi->gro_bitmask);
5628         } else if (test_bit(hash, &napi->gro_bitmask)) {
5629                 __clear_bit(hash, &napi->gro_bitmask);
5630         }
5631
5632         return ret;
5633
5634 normal:
5635         ret = GRO_NORMAL;
5636         goto pull;
5637 }
5638
5639 struct packet_offload *gro_find_receive_by_type(__be16 type)
5640 {
5641         struct list_head *offload_head = &offload_base;
5642         struct packet_offload *ptype;
5643
5644         list_for_each_entry_rcu(ptype, offload_head, list) {
5645                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5646                         continue;
5647                 return ptype;
5648         }
5649         return NULL;
5650 }
5651 EXPORT_SYMBOL(gro_find_receive_by_type);
5652
5653 struct packet_offload *gro_find_complete_by_type(__be16 type)
5654 {
5655         struct list_head *offload_head = &offload_base;
5656         struct packet_offload *ptype;
5657
5658         list_for_each_entry_rcu(ptype, offload_head, list) {
5659                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5660                         continue;
5661                 return ptype;
5662         }
5663         return NULL;
5664 }
5665 EXPORT_SYMBOL(gro_find_complete_by_type);
5666
5667 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5668 {
5669         skb_dst_drop(skb);
5670         skb_ext_put(skb);
5671         kmem_cache_free(skbuff_head_cache, skb);
5672 }
5673
5674 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5675 {
5676         switch (ret) {
5677         case GRO_NORMAL:
5678                 if (netif_receive_skb_internal(skb))
5679                         ret = GRO_DROP;
5680                 break;
5681
5682         case GRO_DROP:
5683                 kfree_skb(skb);
5684                 break;
5685
5686         case GRO_MERGED_FREE:
5687                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5688                         napi_skb_free_stolen_head(skb);
5689                 else
5690                         __kfree_skb(skb);
5691                 break;
5692
5693         case GRO_HELD:
5694         case GRO_MERGED:
5695         case GRO_CONSUMED:
5696                 break;
5697         }
5698
5699         return ret;
5700 }
5701
5702 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5703 {
5704         gro_result_t ret;
5705
5706         skb_mark_napi_id(skb, napi);
5707         trace_napi_gro_receive_entry(skb);
5708
5709         skb_gro_reset_offset(skb);
5710
5711         ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5712         trace_napi_gro_receive_exit(ret);
5713
5714         return ret;
5715 }
5716 EXPORT_SYMBOL(napi_gro_receive);
5717
5718 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5719 {
5720         if (unlikely(skb->pfmemalloc)) {
5721                 consume_skb(skb);
5722                 return;
5723         }
5724         __skb_pull(skb, skb_headlen(skb));
5725         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5726         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5727         __vlan_hwaccel_clear_tag(skb);
5728         skb->dev = napi->dev;
5729         skb->skb_iif = 0;
5730
5731         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5732         skb->pkt_type = PACKET_HOST;
5733
5734         skb->encapsulation = 0;
5735         skb_shinfo(skb)->gso_type = 0;
5736         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5737         skb_ext_reset(skb);
5738
5739         napi->skb = skb;
5740 }
5741
5742 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5743 {
5744         struct sk_buff *skb = napi->skb;
5745
5746         if (!skb) {
5747                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5748                 if (skb) {
5749                         napi->skb = skb;
5750                         skb_mark_napi_id(skb, napi);
5751                 }
5752         }
5753         return skb;
5754 }
5755 EXPORT_SYMBOL(napi_get_frags);
5756
5757 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5758 static void gro_normal_list(struct napi_struct *napi)
5759 {
5760         if (!napi->rx_count)
5761                 return;
5762         netif_receive_skb_list_internal(&napi->rx_list);
5763         INIT_LIST_HEAD(&napi->rx_list);
5764         napi->rx_count = 0;
5765 }
5766
5767 /* Queue one GRO_NORMAL SKB up for list processing.  If batch size exceeded,
5768  * pass the whole batch up to the stack.
5769  */
5770 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5771 {
5772         list_add_tail(&skb->list, &napi->rx_list);
5773         if (++napi->rx_count >= gro_normal_batch)
5774                 gro_normal_list(napi);
5775 }
5776
5777 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5778                                       struct sk_buff *skb,
5779                                       gro_result_t ret)
5780 {
5781         switch (ret) {
5782         case GRO_NORMAL:
5783         case GRO_HELD:
5784                 __skb_push(skb, ETH_HLEN);
5785                 skb->protocol = eth_type_trans(skb, skb->dev);
5786                 if (ret == GRO_NORMAL)
5787                         gro_normal_one(napi, skb);
5788                 break;
5789
5790         case GRO_DROP:
5791                 napi_reuse_skb(napi, skb);
5792                 break;
5793
5794         case GRO_MERGED_FREE:
5795                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5796                         napi_skb_free_stolen_head(skb);
5797                 else
5798                         napi_reuse_skb(napi, skb);
5799                 break;
5800
5801         case GRO_MERGED:
5802         case GRO_CONSUMED:
5803                 break;
5804         }
5805
5806         return ret;
5807 }
5808
5809 /* Upper GRO stack assumes network header starts at gro_offset=0
5810  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5811  * We copy ethernet header into skb->data to have a common layout.
5812  */
5813 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5814 {
5815         struct sk_buff *skb = napi->skb;
5816         const struct ethhdr *eth;
5817         unsigned int hlen = sizeof(*eth);
5818
5819         napi->skb = NULL;
5820
5821         skb_reset_mac_header(skb);
5822         skb_gro_reset_offset(skb);
5823
5824         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5825                 eth = skb_gro_header_slow(skb, hlen, 0);
5826                 if (unlikely(!eth)) {
5827                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5828                                              __func__, napi->dev->name);
5829                         napi_reuse_skb(napi, skb);
5830                         return NULL;
5831                 }
5832         } else {
5833                 eth = (const struct ethhdr *)skb->data;
5834                 gro_pull_from_frag0(skb, hlen);
5835                 NAPI_GRO_CB(skb)->frag0 += hlen;
5836                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5837         }
5838         __skb_pull(skb, hlen);
5839
5840         /*
5841          * This works because the only protocols we care about don't require
5842          * special handling.
5843          * We'll fix it up properly in napi_frags_finish()
5844          */
5845         skb->protocol = eth->h_proto;
5846
5847         return skb;
5848 }
5849
5850 gro_result_t napi_gro_frags(struct napi_struct *napi)
5851 {
5852         gro_result_t ret;
5853         struct sk_buff *skb = napi_frags_skb(napi);
5854
5855         if (!skb)
5856                 return GRO_DROP;
5857
5858         trace_napi_gro_frags_entry(skb);
5859
5860         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5861         trace_napi_gro_frags_exit(ret);
5862
5863         return ret;
5864 }
5865 EXPORT_SYMBOL(napi_gro_frags);
5866
5867 /* Compute the checksum from gro_offset and return the folded value
5868  * after adding in any pseudo checksum.
5869  */
5870 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5871 {
5872         __wsum wsum;
5873         __sum16 sum;
5874
5875         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5876
5877         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5878         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5879         /* See comments in __skb_checksum_complete(). */
5880         if (likely(!sum)) {
5881                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5882                     !skb->csum_complete_sw)
5883                         netdev_rx_csum_fault(skb->dev, skb);
5884         }
5885
5886         NAPI_GRO_CB(skb)->csum = wsum;
5887         NAPI_GRO_CB(skb)->csum_valid = 1;
5888
5889         return sum;
5890 }
5891 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5892
5893 static void net_rps_send_ipi(struct softnet_data *remsd)
5894 {
5895 #ifdef CONFIG_RPS
5896         while (remsd) {
5897                 struct softnet_data *next = remsd->rps_ipi_next;
5898
5899                 if (cpu_online(remsd->cpu))
5900                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5901                 remsd = next;
5902         }
5903 #endif
5904 }
5905
5906 /*
5907  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5908  * Note: called with local irq disabled, but exits with local irq enabled.
5909  */
5910 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5911 {
5912 #ifdef CONFIG_RPS
5913         struct softnet_data *remsd = sd->rps_ipi_list;
5914
5915         if (remsd) {
5916                 sd->rps_ipi_list = NULL;
5917
5918                 local_irq_enable();
5919
5920                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5921                 net_rps_send_ipi(remsd);
5922         } else
5923 #endif
5924                 local_irq_enable();
5925 }
5926
5927 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5928 {
5929 #ifdef CONFIG_RPS
5930         return sd->rps_ipi_list != NULL;
5931 #else
5932         return false;
5933 #endif
5934 }
5935
5936 static int process_backlog(struct napi_struct *napi, int quota)
5937 {
5938         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5939         bool again = true;
5940         int work = 0;
5941
5942         /* Check if we have pending ipi, its better to send them now,
5943          * not waiting net_rx_action() end.
5944          */
5945         if (sd_has_rps_ipi_waiting(sd)) {
5946                 local_irq_disable();
5947                 net_rps_action_and_irq_enable(sd);
5948         }
5949
5950         napi->weight = dev_rx_weight;
5951         while (again) {
5952                 struct sk_buff *skb;
5953
5954                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5955                         rcu_read_lock();
5956                         __netif_receive_skb(skb);
5957                         rcu_read_unlock();
5958                         input_queue_head_incr(sd);
5959                         if (++work >= quota)
5960                                 return work;
5961
5962                 }
5963
5964                 local_irq_disable();
5965                 rps_lock(sd);
5966                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5967                         /*
5968                          * Inline a custom version of __napi_complete().
5969                          * only current cpu owns and manipulates this napi,
5970                          * and NAPI_STATE_SCHED is the only possible flag set
5971                          * on backlog.
5972                          * We can use a plain write instead of clear_bit(),
5973                          * and we dont need an smp_mb() memory barrier.
5974                          */
5975                         napi->state = 0;
5976                         again = false;
5977                 } else {
5978                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5979                                                    &sd->process_queue);
5980                 }
5981                 rps_unlock(sd);
5982                 local_irq_enable();
5983         }
5984
5985         return work;
5986 }
5987
5988 /**
5989  * __napi_schedule - schedule for receive
5990  * @n: entry to schedule
5991  *
5992  * The entry's receive function will be scheduled to run.
5993  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5994  */
5995 void __napi_schedule(struct napi_struct *n)
5996 {
5997         unsigned long flags;
5998
5999         local_irq_save(flags);
6000         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6001         local_irq_restore(flags);
6002 }
6003 EXPORT_SYMBOL(__napi_schedule);
6004
6005 /**
6006  *      napi_schedule_prep - check if napi can be scheduled
6007  *      @n: napi context
6008  *
6009  * Test if NAPI routine is already running, and if not mark
6010  * it as running.  This is used as a condition variable
6011  * insure only one NAPI poll instance runs.  We also make
6012  * sure there is no pending NAPI disable.
6013  */
6014 bool napi_schedule_prep(struct napi_struct *n)
6015 {
6016         unsigned long val, new;
6017
6018         do {
6019                 val = READ_ONCE(n->state);
6020                 if (unlikely(val & NAPIF_STATE_DISABLE))
6021                         return false;
6022                 new = val | NAPIF_STATE_SCHED;
6023
6024                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6025                  * This was suggested by Alexander Duyck, as compiler
6026                  * emits better code than :
6027                  * if (val & NAPIF_STATE_SCHED)
6028                  *     new |= NAPIF_STATE_MISSED;
6029                  */
6030                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6031                                                    NAPIF_STATE_MISSED;
6032         } while (cmpxchg(&n->state, val, new) != val);
6033
6034         return !(val & NAPIF_STATE_SCHED);
6035 }
6036 EXPORT_SYMBOL(napi_schedule_prep);
6037
6038 /**
6039  * __napi_schedule_irqoff - schedule for receive
6040  * @n: entry to schedule
6041  *
6042  * Variant of __napi_schedule() assuming hard irqs are masked
6043  */
6044 void __napi_schedule_irqoff(struct napi_struct *n)
6045 {
6046         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6047 }
6048 EXPORT_SYMBOL(__napi_schedule_irqoff);
6049
6050 bool napi_complete_done(struct napi_struct *n, int work_done)
6051 {
6052         unsigned long flags, val, new;
6053
6054         /*
6055          * 1) Don't let napi dequeue from the cpu poll list
6056          *    just in case its running on a different cpu.
6057          * 2) If we are busy polling, do nothing here, we have
6058          *    the guarantee we will be called later.
6059          */
6060         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6061                                  NAPIF_STATE_IN_BUSY_POLL)))
6062                 return false;
6063
6064         gro_normal_list(n);
6065
6066         if (n->gro_bitmask) {
6067                 unsigned long timeout = 0;
6068
6069                 if (work_done)
6070                         timeout = n->dev->gro_flush_timeout;
6071
6072                 /* When the NAPI instance uses a timeout and keeps postponing
6073                  * it, we need to bound somehow the time packets are kept in
6074                  * the GRO layer
6075                  */
6076                 napi_gro_flush(n, !!timeout);
6077                 if (timeout)
6078                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6079                                       HRTIMER_MODE_REL_PINNED);
6080         }
6081         if (unlikely(!list_empty(&n->poll_list))) {
6082                 /* If n->poll_list is not empty, we need to mask irqs */
6083                 local_irq_save(flags);
6084                 list_del_init(&n->poll_list);
6085                 local_irq_restore(flags);
6086         }
6087
6088         do {
6089                 val = READ_ONCE(n->state);
6090
6091                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6092
6093                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6094
6095                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6096                  * because we will call napi->poll() one more time.
6097                  * This C code was suggested by Alexander Duyck to help gcc.
6098                  */
6099                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6100                                                     NAPIF_STATE_SCHED;
6101         } while (cmpxchg(&n->state, val, new) != val);
6102
6103         if (unlikely(val & NAPIF_STATE_MISSED)) {
6104                 __napi_schedule(n);
6105                 return false;
6106         }
6107
6108         return true;
6109 }
6110 EXPORT_SYMBOL(napi_complete_done);
6111
6112 /* must be called under rcu_read_lock(), as we dont take a reference */
6113 static struct napi_struct *napi_by_id(unsigned int napi_id)
6114 {
6115         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6116         struct napi_struct *napi;
6117
6118         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6119                 if (napi->napi_id == napi_id)
6120                         return napi;
6121
6122         return NULL;
6123 }
6124
6125 #if defined(CONFIG_NET_RX_BUSY_POLL)
6126
6127 #define BUSY_POLL_BUDGET 8
6128
6129 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6130 {
6131         int rc;
6132
6133         /* Busy polling means there is a high chance device driver hard irq
6134          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6135          * set in napi_schedule_prep().
6136          * Since we are about to call napi->poll() once more, we can safely
6137          * clear NAPI_STATE_MISSED.
6138          *
6139          * Note: x86 could use a single "lock and ..." instruction
6140          * to perform these two clear_bit()
6141          */
6142         clear_bit(NAPI_STATE_MISSED, &napi->state);
6143         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6144
6145         local_bh_disable();
6146
6147         /* All we really want here is to re-enable device interrupts.
6148          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6149          */
6150         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6151         /* We can't gro_normal_list() here, because napi->poll() might have
6152          * rearmed the napi (napi_complete_done()) in which case it could
6153          * already be running on another CPU.
6154          */
6155         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6156         netpoll_poll_unlock(have_poll_lock);
6157         if (rc == BUSY_POLL_BUDGET) {
6158                 /* As the whole budget was spent, we still own the napi so can
6159                  * safely handle the rx_list.
6160                  */
6161                 gro_normal_list(napi);
6162                 __napi_schedule(napi);
6163         }
6164         local_bh_enable();
6165 }
6166
6167 void napi_busy_loop(unsigned int napi_id,
6168                     bool (*loop_end)(void *, unsigned long),
6169                     void *loop_end_arg)
6170 {
6171         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6172         int (*napi_poll)(struct napi_struct *napi, int budget);
6173         void *have_poll_lock = NULL;
6174         struct napi_struct *napi;
6175
6176 restart:
6177         napi_poll = NULL;
6178
6179         rcu_read_lock();
6180
6181         napi = napi_by_id(napi_id);
6182         if (!napi)
6183                 goto out;
6184
6185         preempt_disable();
6186         for (;;) {
6187                 int work = 0;
6188
6189                 local_bh_disable();
6190                 if (!napi_poll) {
6191                         unsigned long val = READ_ONCE(napi->state);
6192
6193                         /* If multiple threads are competing for this napi,
6194                          * we avoid dirtying napi->state as much as we can.
6195                          */
6196                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6197                                    NAPIF_STATE_IN_BUSY_POLL))
6198                                 goto count;
6199                         if (cmpxchg(&napi->state, val,
6200                                     val | NAPIF_STATE_IN_BUSY_POLL |
6201                                           NAPIF_STATE_SCHED) != val)
6202                                 goto count;
6203                         have_poll_lock = netpoll_poll_lock(napi);
6204                         napi_poll = napi->poll;
6205                 }
6206                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6207                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6208                 gro_normal_list(napi);
6209 count:
6210                 if (work > 0)
6211                         __NET_ADD_STATS(dev_net(napi->dev),
6212                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6213                 local_bh_enable();
6214
6215                 if (!loop_end || loop_end(loop_end_arg, start_time))
6216                         break;
6217
6218                 if (unlikely(need_resched())) {
6219                         if (napi_poll)
6220                                 busy_poll_stop(napi, have_poll_lock);
6221                         preempt_enable();
6222                         rcu_read_unlock();
6223                         cond_resched();
6224                         if (loop_end(loop_end_arg, start_time))
6225                                 return;
6226                         goto restart;
6227                 }
6228                 cpu_relax();
6229         }
6230         if (napi_poll)
6231                 busy_poll_stop(napi, have_poll_lock);
6232         preempt_enable();
6233 out:
6234         rcu_read_unlock();
6235 }
6236 EXPORT_SYMBOL(napi_busy_loop);
6237
6238 #endif /* CONFIG_NET_RX_BUSY_POLL */
6239
6240 static void napi_hash_add(struct napi_struct *napi)
6241 {
6242         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6243             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6244                 return;
6245
6246         spin_lock(&napi_hash_lock);
6247
6248         /* 0..NR_CPUS range is reserved for sender_cpu use */
6249         do {
6250                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6251                         napi_gen_id = MIN_NAPI_ID;
6252         } while (napi_by_id(napi_gen_id));
6253         napi->napi_id = napi_gen_id;
6254
6255         hlist_add_head_rcu(&napi->napi_hash_node,
6256                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6257
6258         spin_unlock(&napi_hash_lock);
6259 }
6260
6261 /* Warning : caller is responsible to make sure rcu grace period
6262  * is respected before freeing memory containing @napi
6263  */
6264 bool napi_hash_del(struct napi_struct *napi)
6265 {
6266         bool rcu_sync_needed = false;
6267
6268         spin_lock(&napi_hash_lock);
6269
6270         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6271                 rcu_sync_needed = true;
6272                 hlist_del_rcu(&napi->napi_hash_node);
6273         }
6274         spin_unlock(&napi_hash_lock);
6275         return rcu_sync_needed;
6276 }
6277 EXPORT_SYMBOL_GPL(napi_hash_del);
6278
6279 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6280 {
6281         struct napi_struct *napi;
6282
6283         napi = container_of(timer, struct napi_struct, timer);
6284
6285         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6286          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6287          */
6288         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6289             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6290                 __napi_schedule_irqoff(napi);
6291
6292         return HRTIMER_NORESTART;
6293 }
6294
6295 static void init_gro_hash(struct napi_struct *napi)
6296 {
6297         int i;
6298
6299         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6300                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6301                 napi->gro_hash[i].count = 0;
6302         }
6303         napi->gro_bitmask = 0;
6304 }
6305
6306 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6307                     int (*poll)(struct napi_struct *, int), int weight)
6308 {
6309         INIT_LIST_HEAD(&napi->poll_list);
6310         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6311         napi->timer.function = napi_watchdog;
6312         init_gro_hash(napi);
6313         napi->skb = NULL;
6314         INIT_LIST_HEAD(&napi->rx_list);
6315         napi->rx_count = 0;
6316         napi->poll = poll;
6317         if (weight > NAPI_POLL_WEIGHT)
6318                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6319                                 weight);
6320         napi->weight = weight;
6321         list_add(&napi->dev_list, &dev->napi_list);
6322         napi->dev = dev;
6323 #ifdef CONFIG_NETPOLL
6324         napi->poll_owner = -1;
6325 #endif
6326         set_bit(NAPI_STATE_SCHED, &napi->state);
6327         napi_hash_add(napi);
6328 }
6329 EXPORT_SYMBOL(netif_napi_add);
6330
6331 void napi_disable(struct napi_struct *n)
6332 {
6333         might_sleep();
6334         set_bit(NAPI_STATE_DISABLE, &n->state);
6335
6336         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6337                 msleep(1);
6338         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6339                 msleep(1);
6340
6341         hrtimer_cancel(&n->timer);
6342
6343         clear_bit(NAPI_STATE_DISABLE, &n->state);
6344 }
6345 EXPORT_SYMBOL(napi_disable);
6346
6347 static void flush_gro_hash(struct napi_struct *napi)
6348 {
6349         int i;
6350
6351         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6352                 struct sk_buff *skb, *n;
6353
6354                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6355                         kfree_skb(skb);
6356                 napi->gro_hash[i].count = 0;
6357         }
6358 }
6359
6360 /* Must be called in process context */
6361 void netif_napi_del(struct napi_struct *napi)
6362 {
6363         might_sleep();
6364         if (napi_hash_del(napi))
6365                 synchronize_net();
6366         list_del_init(&napi->dev_list);
6367         napi_free_frags(napi);
6368
6369         flush_gro_hash(napi);
6370         napi->gro_bitmask = 0;
6371 }
6372 EXPORT_SYMBOL(netif_napi_del);
6373
6374 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6375 {
6376         void *have;
6377         int work, weight;
6378
6379         list_del_init(&n->poll_list);
6380
6381         have = netpoll_poll_lock(n);
6382
6383         weight = n->weight;
6384
6385         /* This NAPI_STATE_SCHED test is for avoiding a race
6386          * with netpoll's poll_napi().  Only the entity which
6387          * obtains the lock and sees NAPI_STATE_SCHED set will
6388          * actually make the ->poll() call.  Therefore we avoid
6389          * accidentally calling ->poll() when NAPI is not scheduled.
6390          */
6391         work = 0;
6392         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6393                 work = n->poll(n, weight);
6394                 trace_napi_poll(n, work, weight);
6395         }
6396
6397         WARN_ON_ONCE(work > weight);
6398
6399         if (likely(work < weight))
6400                 goto out_unlock;
6401
6402         /* Drivers must not modify the NAPI state if they
6403          * consume the entire weight.  In such cases this code
6404          * still "owns" the NAPI instance and therefore can
6405          * move the instance around on the list at-will.
6406          */
6407         if (unlikely(napi_disable_pending(n))) {
6408                 napi_complete(n);
6409                 goto out_unlock;
6410         }
6411
6412         gro_normal_list(n);
6413
6414         if (n->gro_bitmask) {
6415                 /* flush too old packets
6416                  * If HZ < 1000, flush all packets.
6417                  */
6418                 napi_gro_flush(n, HZ >= 1000);
6419         }
6420
6421         /* Some drivers may have called napi_schedule
6422          * prior to exhausting their budget.
6423          */
6424         if (unlikely(!list_empty(&n->poll_list))) {
6425                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6426                              n->dev ? n->dev->name : "backlog");
6427                 goto out_unlock;
6428         }
6429
6430         list_add_tail(&n->poll_list, repoll);
6431
6432 out_unlock:
6433         netpoll_poll_unlock(have);
6434
6435         return work;
6436 }
6437
6438 static __latent_entropy void net_rx_action(struct softirq_action *h)
6439 {
6440         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6441         unsigned long time_limit = jiffies +
6442                 usecs_to_jiffies(netdev_budget_usecs);
6443         int budget = netdev_budget;
6444         LIST_HEAD(list);
6445         LIST_HEAD(repoll);
6446
6447         local_irq_disable();
6448         list_splice_init(&sd->poll_list, &list);
6449         local_irq_enable();
6450
6451         for (;;) {
6452                 struct napi_struct *n;
6453
6454                 if (list_empty(&list)) {
6455                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6456                                 goto out;
6457                         break;
6458                 }
6459
6460                 n = list_first_entry(&list, struct napi_struct, poll_list);
6461                 budget -= napi_poll(n, &repoll);
6462
6463                 /* If softirq window is exhausted then punt.
6464                  * Allow this to run for 2 jiffies since which will allow
6465                  * an average latency of 1.5/HZ.
6466                  */
6467                 if (unlikely(budget <= 0 ||
6468                              time_after_eq(jiffies, time_limit))) {
6469                         sd->time_squeeze++;
6470                         break;
6471                 }
6472         }
6473
6474         local_irq_disable();
6475
6476         list_splice_tail_init(&sd->poll_list, &list);
6477         list_splice_tail(&repoll, &list);
6478         list_splice(&list, &sd->poll_list);
6479         if (!list_empty(&sd->poll_list))
6480                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6481
6482         net_rps_action_and_irq_enable(sd);
6483 out:
6484         __kfree_skb_flush();
6485 }
6486
6487 struct netdev_adjacent {
6488         struct net_device *dev;
6489
6490         /* upper master flag, there can only be one master device per list */
6491         bool master;
6492
6493         /* counter for the number of times this device was added to us */
6494         u16 ref_nr;
6495
6496         /* private field for the users */
6497         void *private;
6498
6499         struct list_head list;
6500         struct rcu_head rcu;
6501 };
6502
6503 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6504                                                  struct list_head *adj_list)
6505 {
6506         struct netdev_adjacent *adj;
6507
6508         list_for_each_entry(adj, adj_list, list) {
6509                 if (adj->dev == adj_dev)
6510                         return adj;
6511         }
6512         return NULL;
6513 }
6514
6515 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6516 {
6517         struct net_device *dev = data;
6518
6519         return upper_dev == dev;
6520 }
6521
6522 /**
6523  * netdev_has_upper_dev - Check if device is linked to an upper device
6524  * @dev: device
6525  * @upper_dev: upper device to check
6526  *
6527  * Find out if a device is linked to specified upper device and return true
6528  * in case it is. Note that this checks only immediate upper device,
6529  * not through a complete stack of devices. The caller must hold the RTNL lock.
6530  */
6531 bool netdev_has_upper_dev(struct net_device *dev,
6532                           struct net_device *upper_dev)
6533 {
6534         ASSERT_RTNL();
6535
6536         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6537                                              upper_dev);
6538 }
6539 EXPORT_SYMBOL(netdev_has_upper_dev);
6540
6541 /**
6542  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6543  * @dev: device
6544  * @upper_dev: upper device to check
6545  *
6546  * Find out if a device is linked to specified upper device and return true
6547  * in case it is. Note that this checks the entire upper device chain.
6548  * The caller must hold rcu lock.
6549  */
6550
6551 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6552                                   struct net_device *upper_dev)
6553 {
6554         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6555                                                upper_dev);
6556 }
6557 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6558
6559 /**
6560  * netdev_has_any_upper_dev - Check if device is linked to some device
6561  * @dev: device
6562  *
6563  * Find out if a device is linked to an upper device and return true in case
6564  * it is. The caller must hold the RTNL lock.
6565  */
6566 bool netdev_has_any_upper_dev(struct net_device *dev)
6567 {
6568         ASSERT_RTNL();
6569
6570         return !list_empty(&dev->adj_list.upper);
6571 }
6572 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6573
6574 /**
6575  * netdev_master_upper_dev_get - Get master upper device
6576  * @dev: device
6577  *
6578  * Find a master upper device and return pointer to it or NULL in case
6579  * it's not there. The caller must hold the RTNL lock.
6580  */
6581 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6582 {
6583         struct netdev_adjacent *upper;
6584
6585         ASSERT_RTNL();
6586
6587         if (list_empty(&dev->adj_list.upper))
6588                 return NULL;
6589
6590         upper = list_first_entry(&dev->adj_list.upper,
6591                                  struct netdev_adjacent, list);
6592         if (likely(upper->master))
6593                 return upper->dev;
6594         return NULL;
6595 }
6596 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6597
6598 /**
6599  * netdev_has_any_lower_dev - Check if device is linked to some device
6600  * @dev: device
6601  *
6602  * Find out if a device is linked to a lower device and return true in case
6603  * it is. The caller must hold the RTNL lock.
6604  */
6605 static bool netdev_has_any_lower_dev(struct net_device *dev)
6606 {
6607         ASSERT_RTNL();
6608
6609         return !list_empty(&dev->adj_list.lower);
6610 }
6611
6612 void *netdev_adjacent_get_private(struct list_head *adj_list)
6613 {
6614         struct netdev_adjacent *adj;
6615
6616         adj = list_entry(adj_list, struct netdev_adjacent, list);
6617
6618         return adj->private;
6619 }
6620 EXPORT_SYMBOL(netdev_adjacent_get_private);
6621
6622 /**
6623  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6624  * @dev: device
6625  * @iter: list_head ** of the current position
6626  *
6627  * Gets the next device from the dev's upper list, starting from iter
6628  * position. The caller must hold RCU read lock.
6629  */
6630 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6631                                                  struct list_head **iter)
6632 {
6633         struct netdev_adjacent *upper;
6634
6635         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6636
6637         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6638
6639         if (&upper->list == &dev->adj_list.upper)
6640                 return NULL;
6641
6642         *iter = &upper->list;
6643
6644         return upper->dev;
6645 }
6646 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6647
6648 static struct net_device *netdev_next_upper_dev(struct net_device *dev,
6649                                                 struct list_head **iter)
6650 {
6651         struct netdev_adjacent *upper;
6652
6653         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6654
6655         if (&upper->list == &dev->adj_list.upper)
6656                 return NULL;
6657
6658         *iter = &upper->list;
6659
6660         return upper->dev;
6661 }
6662
6663 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6664                                                     struct list_head **iter)
6665 {
6666         struct netdev_adjacent *upper;
6667
6668         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6669
6670         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6671
6672         if (&upper->list == &dev->adj_list.upper)
6673                 return NULL;
6674
6675         *iter = &upper->list;
6676
6677         return upper->dev;
6678 }
6679
6680 static int netdev_walk_all_upper_dev(struct net_device *dev,
6681                                      int (*fn)(struct net_device *dev,
6682                                                void *data),
6683                                      void *data)
6684 {
6685         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6686         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6687         int ret, cur = 0;
6688
6689         now = dev;
6690         iter = &dev->adj_list.upper;
6691
6692         while (1) {
6693                 if (now != dev) {
6694                         ret = fn(now, data);
6695                         if (ret)
6696                                 return ret;
6697                 }
6698
6699                 next = NULL;
6700                 while (1) {
6701                         udev = netdev_next_upper_dev(now, &iter);
6702                         if (!udev)
6703                                 break;
6704
6705                         next = udev;
6706                         niter = &udev->adj_list.upper;
6707                         dev_stack[cur] = now;
6708                         iter_stack[cur++] = iter;
6709                         break;
6710                 }
6711
6712                 if (!next) {
6713                         if (!cur)
6714                                 return 0;
6715                         next = dev_stack[--cur];
6716                         niter = iter_stack[cur];
6717                 }
6718
6719                 now = next;
6720                 iter = niter;
6721         }
6722
6723         return 0;
6724 }
6725
6726 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6727                                   int (*fn)(struct net_device *dev,
6728                                             void *data),
6729                                   void *data)
6730 {
6731         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6732         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6733         int ret, cur = 0;
6734
6735         now = dev;
6736         iter = &dev->adj_list.upper;
6737
6738         while (1) {
6739                 if (now != dev) {
6740                         ret = fn(now, data);
6741                         if (ret)
6742                                 return ret;
6743                 }
6744
6745                 next = NULL;
6746                 while (1) {
6747                         udev = netdev_next_upper_dev_rcu(now, &iter);
6748                         if (!udev)
6749                                 break;
6750
6751                         next = udev;
6752                         niter = &udev->adj_list.upper;
6753                         dev_stack[cur] = now;
6754                         iter_stack[cur++] = iter;
6755                         break;
6756                 }
6757
6758                 if (!next) {
6759                         if (!cur)
6760                                 return 0;
6761                         next = dev_stack[--cur];
6762                         niter = iter_stack[cur];
6763                 }
6764
6765                 now = next;
6766                 iter = niter;
6767         }
6768
6769         return 0;
6770 }
6771 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6772
6773 /**
6774  * netdev_lower_get_next_private - Get the next ->private from the
6775  *                                 lower neighbour list
6776  * @dev: device
6777  * @iter: list_head ** of the current position
6778  *
6779  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6780  * list, starting from iter position. The caller must hold either hold the
6781  * RTNL lock or its own locking that guarantees that the neighbour lower
6782  * list will remain unchanged.
6783  */
6784 void *netdev_lower_get_next_private(struct net_device *dev,
6785                                     struct list_head **iter)
6786 {
6787         struct netdev_adjacent *lower;
6788
6789         lower = list_entry(*iter, struct netdev_adjacent, list);
6790
6791         if (&lower->list == &dev->adj_list.lower)
6792                 return NULL;
6793
6794         *iter = lower->list.next;
6795
6796         return lower->private;
6797 }
6798 EXPORT_SYMBOL(netdev_lower_get_next_private);
6799
6800 /**
6801  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6802  *                                     lower neighbour list, RCU
6803  *                                     variant
6804  * @dev: device
6805  * @iter: list_head ** of the current position
6806  *
6807  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6808  * list, starting from iter position. The caller must hold RCU read lock.
6809  */
6810 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6811                                         struct list_head **iter)
6812 {
6813         struct netdev_adjacent *lower;
6814
6815         WARN_ON_ONCE(!rcu_read_lock_held());
6816
6817         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6818
6819         if (&lower->list == &dev->adj_list.lower)
6820                 return NULL;
6821
6822         *iter = &lower->list;
6823
6824         return lower->private;
6825 }
6826 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6827
6828 /**
6829  * netdev_lower_get_next - Get the next device from the lower neighbour
6830  *                         list
6831  * @dev: device
6832  * @iter: list_head ** of the current position
6833  *
6834  * Gets the next netdev_adjacent from the dev's lower neighbour
6835  * list, starting from iter position. The caller must hold RTNL lock or
6836  * its own locking that guarantees that the neighbour lower
6837  * list will remain unchanged.
6838  */
6839 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6840 {
6841         struct netdev_adjacent *lower;
6842
6843         lower = list_entry(*iter, struct netdev_adjacent, list);
6844
6845         if (&lower->list == &dev->adj_list.lower)
6846                 return NULL;
6847
6848         *iter = lower->list.next;
6849
6850         return lower->dev;
6851 }
6852 EXPORT_SYMBOL(netdev_lower_get_next);
6853
6854 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6855                                                 struct list_head **iter)
6856 {
6857         struct netdev_adjacent *lower;
6858
6859         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6860
6861         if (&lower->list == &dev->adj_list.lower)
6862                 return NULL;
6863
6864         *iter = &lower->list;
6865
6866         return lower->dev;
6867 }
6868
6869 int netdev_walk_all_lower_dev(struct net_device *dev,
6870                               int (*fn)(struct net_device *dev,
6871                                         void *data),
6872                               void *data)
6873 {
6874         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6875         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6876         int ret, cur = 0;
6877
6878         now = dev;
6879         iter = &dev->adj_list.lower;
6880
6881         while (1) {
6882                 if (now != dev) {
6883                         ret = fn(now, data);
6884                         if (ret)
6885                                 return ret;
6886                 }
6887
6888                 next = NULL;
6889                 while (1) {
6890                         ldev = netdev_next_lower_dev(now, &iter);
6891                         if (!ldev)
6892                                 break;
6893
6894                         next = ldev;
6895                         niter = &ldev->adj_list.lower;
6896                         dev_stack[cur] = now;
6897                         iter_stack[cur++] = iter;
6898                         break;
6899                 }
6900
6901                 if (!next) {
6902                         if (!cur)
6903                                 return 0;
6904                         next = dev_stack[--cur];
6905                         niter = iter_stack[cur];
6906                 }
6907
6908                 now = next;
6909                 iter = niter;
6910         }
6911
6912         return 0;
6913 }
6914 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6915
6916 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6917                                                     struct list_head **iter)
6918 {
6919         struct netdev_adjacent *lower;
6920
6921         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6922         if (&lower->list == &dev->adj_list.lower)
6923                 return NULL;
6924
6925         *iter = &lower->list;
6926
6927         return lower->dev;
6928 }
6929
6930 static u8 __netdev_upper_depth(struct net_device *dev)
6931 {
6932         struct net_device *udev;
6933         struct list_head *iter;
6934         u8 max_depth = 0;
6935
6936         for (iter = &dev->adj_list.upper,
6937              udev = netdev_next_upper_dev(dev, &iter);
6938              udev;
6939              udev = netdev_next_upper_dev(dev, &iter)) {
6940                 if (max_depth < udev->upper_level)
6941                         max_depth = udev->upper_level;
6942         }
6943
6944         return max_depth;
6945 }
6946
6947 static u8 __netdev_lower_depth(struct net_device *dev)
6948 {
6949         struct net_device *ldev;
6950         struct list_head *iter;
6951         u8 max_depth = 0;
6952
6953         for (iter = &dev->adj_list.lower,
6954              ldev = netdev_next_lower_dev(dev, &iter);
6955              ldev;
6956              ldev = netdev_next_lower_dev(dev, &iter)) {
6957                 if (max_depth < ldev->lower_level)
6958                         max_depth = ldev->lower_level;
6959         }
6960
6961         return max_depth;
6962 }
6963
6964 static int __netdev_update_upper_level(struct net_device *dev, void *data)
6965 {
6966         dev->upper_level = __netdev_upper_depth(dev) + 1;
6967         return 0;
6968 }
6969
6970 static int __netdev_update_lower_level(struct net_device *dev, void *data)
6971 {
6972         dev->lower_level = __netdev_lower_depth(dev) + 1;
6973         return 0;
6974 }
6975
6976 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6977                                   int (*fn)(struct net_device *dev,
6978                                             void *data),
6979                                   void *data)
6980 {
6981         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6982         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6983         int ret, cur = 0;
6984
6985         now = dev;
6986         iter = &dev->adj_list.lower;
6987
6988         while (1) {
6989                 if (now != dev) {
6990                         ret = fn(now, data);
6991                         if (ret)
6992                                 return ret;
6993                 }
6994
6995                 next = NULL;
6996                 while (1) {
6997                         ldev = netdev_next_lower_dev_rcu(now, &iter);
6998                         if (!ldev)
6999                                 break;
7000
7001                         next = ldev;
7002                         niter = &ldev->adj_list.lower;
7003                         dev_stack[cur] = now;
7004                         iter_stack[cur++] = iter;
7005                         break;
7006                 }
7007
7008                 if (!next) {
7009                         if (!cur)
7010                                 return 0;
7011                         next = dev_stack[--cur];
7012                         niter = iter_stack[cur];
7013                 }
7014
7015                 now = next;
7016                 iter = niter;
7017         }
7018
7019         return 0;
7020 }
7021 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7022
7023 /**
7024  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7025  *                                     lower neighbour list, RCU
7026  *                                     variant
7027  * @dev: device
7028  *
7029  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7030  * list. The caller must hold RCU read lock.
7031  */
7032 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7033 {
7034         struct netdev_adjacent *lower;
7035
7036         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7037                         struct netdev_adjacent, list);
7038         if (lower)
7039                 return lower->private;
7040         return NULL;
7041 }
7042 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7043
7044 /**
7045  * netdev_master_upper_dev_get_rcu - Get master upper device
7046  * @dev: device
7047  *
7048  * Find a master upper device and return pointer to it or NULL in case
7049  * it's not there. The caller must hold the RCU read lock.
7050  */
7051 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7052 {
7053         struct netdev_adjacent *upper;
7054
7055         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7056                                        struct netdev_adjacent, list);
7057         if (upper && likely(upper->master))
7058                 return upper->dev;
7059         return NULL;
7060 }
7061 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7062
7063 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7064                               struct net_device *adj_dev,
7065                               struct list_head *dev_list)
7066 {
7067         char linkname[IFNAMSIZ+7];
7068
7069         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7070                 "upper_%s" : "lower_%s", adj_dev->name);
7071         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7072                                  linkname);
7073 }
7074 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7075                                char *name,
7076                                struct list_head *dev_list)
7077 {
7078         char linkname[IFNAMSIZ+7];
7079
7080         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7081                 "upper_%s" : "lower_%s", name);
7082         sysfs_remove_link(&(dev->dev.kobj), linkname);
7083 }
7084
7085 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7086                                                  struct net_device *adj_dev,
7087                                                  struct list_head *dev_list)
7088 {
7089         return (dev_list == &dev->adj_list.upper ||
7090                 dev_list == &dev->adj_list.lower) &&
7091                 net_eq(dev_net(dev), dev_net(adj_dev));
7092 }
7093
7094 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7095                                         struct net_device *adj_dev,
7096                                         struct list_head *dev_list,
7097                                         void *private, bool master)
7098 {
7099         struct netdev_adjacent *adj;
7100         int ret;
7101
7102         adj = __netdev_find_adj(adj_dev, dev_list);
7103
7104         if (adj) {
7105                 adj->ref_nr += 1;
7106                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7107                          dev->name, adj_dev->name, adj->ref_nr);
7108
7109                 return 0;
7110         }
7111
7112         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7113         if (!adj)
7114                 return -ENOMEM;
7115
7116         adj->dev = adj_dev;
7117         adj->master = master;
7118         adj->ref_nr = 1;
7119         adj->private = private;
7120         dev_hold(adj_dev);
7121
7122         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7123                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7124
7125         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7126                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7127                 if (ret)
7128                         goto free_adj;
7129         }
7130
7131         /* Ensure that master link is always the first item in list. */
7132         if (master) {
7133                 ret = sysfs_create_link(&(dev->dev.kobj),
7134                                         &(adj_dev->dev.kobj), "master");
7135                 if (ret)
7136                         goto remove_symlinks;
7137
7138                 list_add_rcu(&adj->list, dev_list);
7139         } else {
7140                 list_add_tail_rcu(&adj->list, dev_list);
7141         }
7142
7143         return 0;
7144
7145 remove_symlinks:
7146         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7147                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7148 free_adj:
7149         kfree(adj);
7150         dev_put(adj_dev);
7151
7152         return ret;
7153 }
7154
7155 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7156                                          struct net_device *adj_dev,
7157                                          u16 ref_nr,
7158                                          struct list_head *dev_list)
7159 {
7160         struct netdev_adjacent *adj;
7161
7162         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7163                  dev->name, adj_dev->name, ref_nr);
7164
7165         adj = __netdev_find_adj(adj_dev, dev_list);
7166
7167         if (!adj) {
7168                 pr_err("Adjacency does not exist for device %s from %s\n",
7169                        dev->name, adj_dev->name);
7170                 WARN_ON(1);
7171                 return;
7172         }
7173
7174         if (adj->ref_nr > ref_nr) {
7175                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7176                          dev->name, adj_dev->name, ref_nr,
7177                          adj->ref_nr - ref_nr);
7178                 adj->ref_nr -= ref_nr;
7179                 return;
7180         }
7181
7182         if (adj->master)
7183                 sysfs_remove_link(&(dev->dev.kobj), "master");
7184
7185         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7186                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7187
7188         list_del_rcu(&adj->list);
7189         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7190                  adj_dev->name, dev->name, adj_dev->name);
7191         dev_put(adj_dev);
7192         kfree_rcu(adj, rcu);
7193 }
7194
7195 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7196                                             struct net_device *upper_dev,
7197                                             struct list_head *up_list,
7198                                             struct list_head *down_list,
7199                                             void *private, bool master)
7200 {
7201         int ret;
7202
7203         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7204                                            private, master);
7205         if (ret)
7206                 return ret;
7207
7208         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7209                                            private, false);
7210         if (ret) {
7211                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7212                 return ret;
7213         }
7214
7215         return 0;
7216 }
7217
7218 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7219                                                struct net_device *upper_dev,
7220                                                u16 ref_nr,
7221                                                struct list_head *up_list,
7222                                                struct list_head *down_list)
7223 {
7224         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7225         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7226 }
7227
7228 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7229                                                 struct net_device *upper_dev,
7230                                                 void *private, bool master)
7231 {
7232         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7233                                                 &dev->adj_list.upper,
7234                                                 &upper_dev->adj_list.lower,
7235                                                 private, master);
7236 }
7237
7238 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7239                                                    struct net_device *upper_dev)
7240 {
7241         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7242                                            &dev->adj_list.upper,
7243                                            &upper_dev->adj_list.lower);
7244 }
7245
7246 static int __netdev_upper_dev_link(struct net_device *dev,
7247                                    struct net_device *upper_dev, bool master,
7248                                    void *upper_priv, void *upper_info,
7249                                    struct netlink_ext_ack *extack)
7250 {
7251         struct netdev_notifier_changeupper_info changeupper_info = {
7252                 .info = {
7253                         .dev = dev,
7254                         .extack = extack,
7255                 },
7256                 .upper_dev = upper_dev,
7257                 .master = master,
7258                 .linking = true,
7259                 .upper_info = upper_info,
7260         };
7261         struct net_device *master_dev;
7262         int ret = 0;
7263
7264         ASSERT_RTNL();
7265
7266         if (dev == upper_dev)
7267                 return -EBUSY;
7268
7269         /* To prevent loops, check if dev is not upper device to upper_dev. */
7270         if (netdev_has_upper_dev(upper_dev, dev))
7271                 return -EBUSY;
7272
7273         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7274                 return -EMLINK;
7275
7276         if (!master) {
7277                 if (netdev_has_upper_dev(dev, upper_dev))
7278                         return -EEXIST;
7279         } else {
7280                 master_dev = netdev_master_upper_dev_get(dev);
7281                 if (master_dev)
7282                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7283         }
7284
7285         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7286                                             &changeupper_info.info);
7287         ret = notifier_to_errno(ret);
7288         if (ret)
7289                 return ret;
7290
7291         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7292                                                    master);
7293         if (ret)
7294                 return ret;
7295
7296         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7297                                             &changeupper_info.info);
7298         ret = notifier_to_errno(ret);
7299         if (ret)
7300                 goto rollback;
7301
7302         __netdev_update_upper_level(dev, NULL);
7303         netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7304
7305         __netdev_update_lower_level(upper_dev, NULL);
7306         netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL);
7307
7308         return 0;
7309
7310 rollback:
7311         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7312
7313         return ret;
7314 }
7315
7316 /**
7317  * netdev_upper_dev_link - Add a link to the upper device
7318  * @dev: device
7319  * @upper_dev: new upper device
7320  * @extack: netlink extended ack
7321  *
7322  * Adds a link to device which is upper to this one. The caller must hold
7323  * the RTNL lock. On a failure a negative errno code is returned.
7324  * On success the reference counts are adjusted and the function
7325  * returns zero.
7326  */
7327 int netdev_upper_dev_link(struct net_device *dev,
7328                           struct net_device *upper_dev,
7329                           struct netlink_ext_ack *extack)
7330 {
7331         return __netdev_upper_dev_link(dev, upper_dev, false,
7332                                        NULL, NULL, extack);
7333 }
7334 EXPORT_SYMBOL(netdev_upper_dev_link);
7335
7336 /**
7337  * netdev_master_upper_dev_link - Add a master link to the upper device
7338  * @dev: device
7339  * @upper_dev: new upper device
7340  * @upper_priv: upper device private
7341  * @upper_info: upper info to be passed down via notifier
7342  * @extack: netlink extended ack
7343  *
7344  * Adds a link to device which is upper to this one. In this case, only
7345  * one master upper device can be linked, although other non-master devices
7346  * might be linked as well. The caller must hold the RTNL lock.
7347  * On a failure a negative errno code is returned. On success the reference
7348  * counts are adjusted and the function returns zero.
7349  */
7350 int netdev_master_upper_dev_link(struct net_device *dev,
7351                                  struct net_device *upper_dev,
7352                                  void *upper_priv, void *upper_info,
7353                                  struct netlink_ext_ack *extack)
7354 {
7355         return __netdev_upper_dev_link(dev, upper_dev, true,
7356                                        upper_priv, upper_info, extack);
7357 }
7358 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7359
7360 /**
7361  * netdev_upper_dev_unlink - Removes a link to upper device
7362  * @dev: device
7363  * @upper_dev: new upper device
7364  *
7365  * Removes a link to device which is upper to this one. The caller must hold
7366  * the RTNL lock.
7367  */
7368 void netdev_upper_dev_unlink(struct net_device *dev,
7369                              struct net_device *upper_dev)
7370 {
7371         struct netdev_notifier_changeupper_info changeupper_info = {
7372                 .info = {
7373                         .dev = dev,
7374                 },
7375                 .upper_dev = upper_dev,
7376                 .linking = false,
7377         };
7378
7379         ASSERT_RTNL();
7380
7381         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7382
7383         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7384                                       &changeupper_info.info);
7385
7386         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7387
7388         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7389                                       &changeupper_info.info);
7390
7391         __netdev_update_upper_level(dev, NULL);
7392         netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7393
7394         __netdev_update_lower_level(upper_dev, NULL);
7395         netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL);
7396 }
7397 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7398
7399 /**
7400  * netdev_bonding_info_change - Dispatch event about slave change
7401  * @dev: device
7402  * @bonding_info: info to dispatch
7403  *
7404  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7405  * The caller must hold the RTNL lock.
7406  */
7407 void netdev_bonding_info_change(struct net_device *dev,
7408                                 struct netdev_bonding_info *bonding_info)
7409 {
7410         struct netdev_notifier_bonding_info info = {
7411                 .info.dev = dev,
7412         };
7413
7414         memcpy(&info.bonding_info, bonding_info,
7415                sizeof(struct netdev_bonding_info));
7416         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7417                                       &info.info);
7418 }
7419 EXPORT_SYMBOL(netdev_bonding_info_change);
7420
7421 static void netdev_adjacent_add_links(struct net_device *dev)
7422 {
7423         struct netdev_adjacent *iter;
7424
7425         struct net *net = dev_net(dev);
7426
7427         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7428                 if (!net_eq(net, dev_net(iter->dev)))
7429                         continue;
7430                 netdev_adjacent_sysfs_add(iter->dev, dev,
7431                                           &iter->dev->adj_list.lower);
7432                 netdev_adjacent_sysfs_add(dev, iter->dev,
7433                                           &dev->adj_list.upper);
7434         }
7435
7436         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7437                 if (!net_eq(net, dev_net(iter->dev)))
7438                         continue;
7439                 netdev_adjacent_sysfs_add(iter->dev, dev,
7440                                           &iter->dev->adj_list.upper);
7441                 netdev_adjacent_sysfs_add(dev, iter->dev,
7442                                           &dev->adj_list.lower);
7443         }
7444 }
7445
7446 static void netdev_adjacent_del_links(struct net_device *dev)
7447 {
7448         struct netdev_adjacent *iter;
7449
7450         struct net *net = dev_net(dev);
7451
7452         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7453                 if (!net_eq(net, dev_net(iter->dev)))
7454                         continue;
7455                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7456                                           &iter->dev->adj_list.lower);
7457                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7458                                           &dev->adj_list.upper);
7459         }
7460
7461         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7462                 if (!net_eq(net, dev_net(iter->dev)))
7463                         continue;
7464                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7465                                           &iter->dev->adj_list.upper);
7466                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7467                                           &dev->adj_list.lower);
7468         }
7469 }
7470
7471 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7472 {
7473         struct netdev_adjacent *iter;
7474
7475         struct net *net = dev_net(dev);
7476
7477         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7478                 if (!net_eq(net, dev_net(iter->dev)))
7479                         continue;
7480                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7481                                           &iter->dev->adj_list.lower);
7482                 netdev_adjacent_sysfs_add(iter->dev, dev,
7483                                           &iter->dev->adj_list.lower);
7484         }
7485
7486         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7487                 if (!net_eq(net, dev_net(iter->dev)))
7488                         continue;
7489                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7490                                           &iter->dev->adj_list.upper);
7491                 netdev_adjacent_sysfs_add(iter->dev, dev,
7492                                           &iter->dev->adj_list.upper);
7493         }
7494 }
7495
7496 void *netdev_lower_dev_get_private(struct net_device *dev,
7497                                    struct net_device *lower_dev)
7498 {
7499         struct netdev_adjacent *lower;
7500
7501         if (!lower_dev)
7502                 return NULL;
7503         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7504         if (!lower)
7505                 return NULL;
7506
7507         return lower->private;
7508 }
7509 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7510
7511
7512 int dev_get_nest_level(struct net_device *dev)
7513 {
7514         struct net_device *lower = NULL;
7515         struct list_head *iter;
7516         int max_nest = -1;
7517         int nest;
7518
7519         ASSERT_RTNL();
7520
7521         netdev_for_each_lower_dev(dev, lower, iter) {
7522                 nest = dev_get_nest_level(lower);
7523                 if (max_nest < nest)
7524                         max_nest = nest;
7525         }
7526
7527         return max_nest + 1;
7528 }
7529 EXPORT_SYMBOL(dev_get_nest_level);
7530
7531 /**
7532  * netdev_lower_change - Dispatch event about lower device state change
7533  * @lower_dev: device
7534  * @lower_state_info: state to dispatch
7535  *
7536  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7537  * The caller must hold the RTNL lock.
7538  */
7539 void netdev_lower_state_changed(struct net_device *lower_dev,
7540                                 void *lower_state_info)
7541 {
7542         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7543                 .info.dev = lower_dev,
7544         };
7545
7546         ASSERT_RTNL();
7547         changelowerstate_info.lower_state_info = lower_state_info;
7548         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7549                                       &changelowerstate_info.info);
7550 }
7551 EXPORT_SYMBOL(netdev_lower_state_changed);
7552
7553 static void dev_change_rx_flags(struct net_device *dev, int flags)
7554 {
7555         const struct net_device_ops *ops = dev->netdev_ops;
7556
7557         if (ops->ndo_change_rx_flags)
7558                 ops->ndo_change_rx_flags(dev, flags);
7559 }
7560
7561 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7562 {
7563         unsigned int old_flags = dev->flags;
7564         kuid_t uid;
7565         kgid_t gid;
7566
7567         ASSERT_RTNL();
7568
7569         dev->flags |= IFF_PROMISC;
7570         dev->promiscuity += inc;
7571         if (dev->promiscuity == 0) {
7572                 /*
7573                  * Avoid overflow.
7574                  * If inc causes overflow, untouch promisc and return error.
7575                  */
7576                 if (inc < 0)
7577                         dev->flags &= ~IFF_PROMISC;
7578                 else {
7579                         dev->promiscuity -= inc;
7580                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7581                                 dev->name);
7582                         return -EOVERFLOW;
7583                 }
7584         }
7585         if (dev->flags != old_flags) {
7586                 pr_info("device %s %s promiscuous mode\n",
7587                         dev->name,
7588                         dev->flags & IFF_PROMISC ? "entered" : "left");
7589                 if (audit_enabled) {
7590                         current_uid_gid(&uid, &gid);
7591                         audit_log(audit_context(), GFP_ATOMIC,
7592                                   AUDIT_ANOM_PROMISCUOUS,
7593                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7594                                   dev->name, (dev->flags & IFF_PROMISC),
7595                                   (old_flags & IFF_PROMISC),
7596                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7597                                   from_kuid(&init_user_ns, uid),
7598                                   from_kgid(&init_user_ns, gid),
7599                                   audit_get_sessionid(current));
7600                 }
7601
7602                 dev_change_rx_flags(dev, IFF_PROMISC);
7603         }
7604         if (notify)
7605                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7606         return 0;
7607 }
7608
7609 /**
7610  *      dev_set_promiscuity     - update promiscuity count on a device
7611  *      @dev: device
7612  *      @inc: modifier
7613  *
7614  *      Add or remove promiscuity from a device. While the count in the device
7615  *      remains above zero the interface remains promiscuous. Once it hits zero
7616  *      the device reverts back to normal filtering operation. A negative inc
7617  *      value is used to drop promiscuity on the device.
7618  *      Return 0 if successful or a negative errno code on error.
7619  */
7620 int dev_set_promiscuity(struct net_device *dev, int inc)
7621 {
7622         unsigned int old_flags = dev->flags;
7623         int err;
7624
7625         err = __dev_set_promiscuity(dev, inc, true);
7626         if (err < 0)
7627                 return err;
7628         if (dev->flags != old_flags)
7629                 dev_set_rx_mode(dev);
7630         return err;
7631 }
7632 EXPORT_SYMBOL(dev_set_promiscuity);
7633
7634 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7635 {
7636         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7637
7638         ASSERT_RTNL();
7639
7640         dev->flags |= IFF_ALLMULTI;
7641         dev->allmulti += inc;
7642         if (dev->allmulti == 0) {
7643                 /*
7644                  * Avoid overflow.
7645                  * If inc causes overflow, untouch allmulti and return error.
7646                  */
7647                 if (inc < 0)
7648                         dev->flags &= ~IFF_ALLMULTI;
7649                 else {
7650                         dev->allmulti -= inc;
7651                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7652                                 dev->name);
7653                         return -EOVERFLOW;
7654                 }
7655         }
7656         if (dev->flags ^ old_flags) {
7657                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7658                 dev_set_rx_mode(dev);
7659                 if (notify)
7660                         __dev_notify_flags(dev, old_flags,
7661                                            dev->gflags ^ old_gflags);
7662         }
7663         return 0;
7664 }
7665
7666 /**
7667  *      dev_set_allmulti        - update allmulti count on a device
7668  *      @dev: device
7669  *      @inc: modifier
7670  *
7671  *      Add or remove reception of all multicast frames to a device. While the
7672  *      count in the device remains above zero the interface remains listening
7673  *      to all interfaces. Once it hits zero the device reverts back to normal
7674  *      filtering operation. A negative @inc value is used to drop the counter
7675  *      when releasing a resource needing all multicasts.
7676  *      Return 0 if successful or a negative errno code on error.
7677  */
7678
7679 int dev_set_allmulti(struct net_device *dev, int inc)
7680 {
7681         return __dev_set_allmulti(dev, inc, true);
7682 }
7683 EXPORT_SYMBOL(dev_set_allmulti);
7684
7685 /*
7686  *      Upload unicast and multicast address lists to device and
7687  *      configure RX filtering. When the device doesn't support unicast
7688  *      filtering it is put in promiscuous mode while unicast addresses
7689  *      are present.
7690  */
7691 void __dev_set_rx_mode(struct net_device *dev)
7692 {
7693         const struct net_device_ops *ops = dev->netdev_ops;
7694
7695         /* dev_open will call this function so the list will stay sane. */
7696         if (!(dev->flags&IFF_UP))
7697                 return;
7698
7699         if (!netif_device_present(dev))
7700                 return;
7701
7702         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7703                 /* Unicast addresses changes may only happen under the rtnl,
7704                  * therefore calling __dev_set_promiscuity here is safe.
7705                  */
7706                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7707                         __dev_set_promiscuity(dev, 1, false);
7708                         dev->uc_promisc = true;
7709                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7710                         __dev_set_promiscuity(dev, -1, false);
7711                         dev->uc_promisc = false;
7712                 }
7713         }
7714
7715         if (ops->ndo_set_rx_mode)
7716                 ops->ndo_set_rx_mode(dev);
7717 }
7718
7719 void dev_set_rx_mode(struct net_device *dev)
7720 {
7721         netif_addr_lock_bh(dev);
7722         __dev_set_rx_mode(dev);
7723         netif_addr_unlock_bh(dev);
7724 }
7725
7726 /**
7727  *      dev_get_flags - get flags reported to userspace
7728  *      @dev: device
7729  *
7730  *      Get the combination of flag bits exported through APIs to userspace.
7731  */
7732 unsigned int dev_get_flags(const struct net_device *dev)
7733 {
7734         unsigned int flags;
7735
7736         flags = (dev->flags & ~(IFF_PROMISC |
7737                                 IFF_ALLMULTI |
7738                                 IFF_RUNNING |
7739                                 IFF_LOWER_UP |
7740                                 IFF_DORMANT)) |
7741                 (dev->gflags & (IFF_PROMISC |
7742                                 IFF_ALLMULTI));
7743
7744         if (netif_running(dev)) {
7745                 if (netif_oper_up(dev))
7746                         flags |= IFF_RUNNING;
7747                 if (netif_carrier_ok(dev))
7748                         flags |= IFF_LOWER_UP;
7749                 if (netif_dormant(dev))
7750                         flags |= IFF_DORMANT;
7751         }
7752
7753         return flags;
7754 }
7755 EXPORT_SYMBOL(dev_get_flags);
7756
7757 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7758                        struct netlink_ext_ack *extack)
7759 {
7760         unsigned int old_flags = dev->flags;
7761         int ret;
7762
7763         ASSERT_RTNL();
7764
7765         /*
7766          *      Set the flags on our device.
7767          */
7768
7769         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7770                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7771                                IFF_AUTOMEDIA)) |
7772                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7773                                     IFF_ALLMULTI));
7774
7775         /*
7776          *      Load in the correct multicast list now the flags have changed.
7777          */
7778
7779         if ((old_flags ^ flags) & IFF_MULTICAST)
7780                 dev_change_rx_flags(dev, IFF_MULTICAST);
7781
7782         dev_set_rx_mode(dev);
7783
7784         /*
7785          *      Have we downed the interface. We handle IFF_UP ourselves
7786          *      according to user attempts to set it, rather than blindly
7787          *      setting it.
7788          */
7789
7790         ret = 0;
7791         if ((old_flags ^ flags) & IFF_UP) {
7792                 if (old_flags & IFF_UP)
7793                         __dev_close(dev);
7794                 else
7795                         ret = __dev_open(dev, extack);
7796         }
7797
7798         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7799                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7800                 unsigned int old_flags = dev->flags;
7801
7802                 dev->gflags ^= IFF_PROMISC;
7803
7804                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7805                         if (dev->flags != old_flags)
7806                                 dev_set_rx_mode(dev);
7807         }
7808
7809         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7810          * is important. Some (broken) drivers set IFF_PROMISC, when
7811          * IFF_ALLMULTI is requested not asking us and not reporting.
7812          */
7813         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7814                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7815
7816                 dev->gflags ^= IFF_ALLMULTI;
7817                 __dev_set_allmulti(dev, inc, false);
7818         }
7819
7820         return ret;
7821 }
7822
7823 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7824                         unsigned int gchanges)
7825 {
7826         unsigned int changes = dev->flags ^ old_flags;
7827
7828         if (gchanges)
7829                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7830
7831         if (changes & IFF_UP) {
7832                 if (dev->flags & IFF_UP)
7833                         call_netdevice_notifiers(NETDEV_UP, dev);
7834                 else
7835                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7836         }
7837
7838         if (dev->flags & IFF_UP &&
7839             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7840                 struct netdev_notifier_change_info change_info = {
7841                         .info = {
7842                                 .dev = dev,
7843                         },
7844                         .flags_changed = changes,
7845                 };
7846
7847                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7848         }
7849 }
7850
7851 /**
7852  *      dev_change_flags - change device settings
7853  *      @dev: device
7854  *      @flags: device state flags
7855  *      @extack: netlink extended ack
7856  *
7857  *      Change settings on device based state flags. The flags are
7858  *      in the userspace exported format.
7859  */
7860 int dev_change_flags(struct net_device *dev, unsigned int flags,
7861                      struct netlink_ext_ack *extack)
7862 {
7863         int ret;
7864         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7865
7866         ret = __dev_change_flags(dev, flags, extack);
7867         if (ret < 0)
7868                 return ret;
7869
7870         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7871         __dev_notify_flags(dev, old_flags, changes);
7872         return ret;
7873 }
7874 EXPORT_SYMBOL(dev_change_flags);
7875
7876 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7877 {
7878         const struct net_device_ops *ops = dev->netdev_ops;
7879
7880         if (ops->ndo_change_mtu)
7881                 return ops->ndo_change_mtu(dev, new_mtu);
7882
7883         dev->mtu = new_mtu;
7884         return 0;
7885 }
7886 EXPORT_SYMBOL(__dev_set_mtu);
7887
7888 /**
7889  *      dev_set_mtu_ext - Change maximum transfer unit
7890  *      @dev: device
7891  *      @new_mtu: new transfer unit
7892  *      @extack: netlink extended ack
7893  *
7894  *      Change the maximum transfer size of the network device.
7895  */
7896 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7897                     struct netlink_ext_ack *extack)
7898 {
7899         int err, orig_mtu;
7900
7901         if (new_mtu == dev->mtu)
7902                 return 0;
7903
7904         /* MTU must be positive, and in range */
7905         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7906                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7907                 return -EINVAL;
7908         }
7909
7910         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7911                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7912                 return -EINVAL;
7913         }
7914
7915         if (!netif_device_present(dev))
7916                 return -ENODEV;
7917
7918         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7919         err = notifier_to_errno(err);
7920         if (err)
7921                 return err;
7922
7923         orig_mtu = dev->mtu;
7924         err = __dev_set_mtu(dev, new_mtu);
7925
7926         if (!err) {
7927                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7928                                                    orig_mtu);
7929                 err = notifier_to_errno(err);
7930                 if (err) {
7931                         /* setting mtu back and notifying everyone again,
7932                          * so that they have a chance to revert changes.
7933                          */
7934                         __dev_set_mtu(dev, orig_mtu);
7935                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7936                                                      new_mtu);
7937                 }
7938         }
7939         return err;
7940 }
7941
7942 int dev_set_mtu(struct net_device *dev, int new_mtu)
7943 {
7944         struct netlink_ext_ack extack;
7945         int err;
7946
7947         memset(&extack, 0, sizeof(extack));
7948         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7949         if (err && extack._msg)
7950                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7951         return err;
7952 }
7953 EXPORT_SYMBOL(dev_set_mtu);
7954
7955 /**
7956  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7957  *      @dev: device
7958  *      @new_len: new tx queue length
7959  */
7960 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7961 {
7962         unsigned int orig_len = dev->tx_queue_len;
7963         int res;
7964
7965         if (new_len != (unsigned int)new_len)
7966                 return -ERANGE;
7967
7968         if (new_len != orig_len) {
7969                 dev->tx_queue_len = new_len;
7970                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7971                 res = notifier_to_errno(res);
7972                 if (res)
7973                         goto err_rollback;
7974                 res = dev_qdisc_change_tx_queue_len(dev);
7975                 if (res)
7976                         goto err_rollback;
7977         }
7978
7979         return 0;
7980
7981 err_rollback:
7982         netdev_err(dev, "refused to change device tx_queue_len\n");
7983         dev->tx_queue_len = orig_len;
7984         return res;
7985 }
7986
7987 /**
7988  *      dev_set_group - Change group this device belongs to
7989  *      @dev: device
7990  *      @new_group: group this device should belong to
7991  */
7992 void dev_set_group(struct net_device *dev, int new_group)
7993 {
7994         dev->group = new_group;
7995 }
7996 EXPORT_SYMBOL(dev_set_group);
7997
7998 /**
7999  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8000  *      @dev: device
8001  *      @addr: new address
8002  *      @extack: netlink extended ack
8003  */
8004 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8005                               struct netlink_ext_ack *extack)
8006 {
8007         struct netdev_notifier_pre_changeaddr_info info = {
8008                 .info.dev = dev,
8009                 .info.extack = extack,
8010                 .dev_addr = addr,
8011         };
8012         int rc;
8013
8014         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8015         return notifier_to_errno(rc);
8016 }
8017 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8018
8019 /**
8020  *      dev_set_mac_address - Change Media Access Control Address
8021  *      @dev: device
8022  *      @sa: new address
8023  *      @extack: netlink extended ack
8024  *
8025  *      Change the hardware (MAC) address of the device
8026  */
8027 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8028                         struct netlink_ext_ack *extack)
8029 {
8030         const struct net_device_ops *ops = dev->netdev_ops;
8031         int err;
8032
8033         if (!ops->ndo_set_mac_address)
8034                 return -EOPNOTSUPP;
8035         if (sa->sa_family != dev->type)
8036                 return -EINVAL;
8037         if (!netif_device_present(dev))
8038                 return -ENODEV;
8039         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8040         if (err)
8041                 return err;
8042         err = ops->ndo_set_mac_address(dev, sa);
8043         if (err)
8044                 return err;
8045         dev->addr_assign_type = NET_ADDR_SET;
8046         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8047         add_device_randomness(dev->dev_addr, dev->addr_len);
8048         return 0;
8049 }
8050 EXPORT_SYMBOL(dev_set_mac_address);
8051
8052 /**
8053  *      dev_change_carrier - Change device carrier
8054  *      @dev: device
8055  *      @new_carrier: new value
8056  *
8057  *      Change device carrier
8058  */
8059 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8060 {
8061         const struct net_device_ops *ops = dev->netdev_ops;
8062
8063         if (!ops->ndo_change_carrier)
8064                 return -EOPNOTSUPP;
8065         if (!netif_device_present(dev))
8066                 return -ENODEV;
8067         return ops->ndo_change_carrier(dev, new_carrier);
8068 }
8069 EXPORT_SYMBOL(dev_change_carrier);
8070
8071 /**
8072  *      dev_get_phys_port_id - Get device physical port ID
8073  *      @dev: device
8074  *      @ppid: port ID
8075  *
8076  *      Get device physical port ID
8077  */
8078 int dev_get_phys_port_id(struct net_device *dev,
8079                          struct netdev_phys_item_id *ppid)
8080 {
8081         const struct net_device_ops *ops = dev->netdev_ops;
8082
8083         if (!ops->ndo_get_phys_port_id)
8084                 return -EOPNOTSUPP;
8085         return ops->ndo_get_phys_port_id(dev, ppid);
8086 }
8087 EXPORT_SYMBOL(dev_get_phys_port_id);
8088
8089 /**
8090  *      dev_get_phys_port_name - Get device physical port name
8091  *      @dev: device
8092  *      @name: port name
8093  *      @len: limit of bytes to copy to name
8094  *
8095  *      Get device physical port name
8096  */
8097 int dev_get_phys_port_name(struct net_device *dev,
8098                            char *name, size_t len)
8099 {
8100         const struct net_device_ops *ops = dev->netdev_ops;
8101         int err;
8102
8103         if (ops->ndo_get_phys_port_name) {
8104                 err = ops->ndo_get_phys_port_name(dev, name, len);
8105                 if (err != -EOPNOTSUPP)
8106                         return err;
8107         }
8108         return devlink_compat_phys_port_name_get(dev, name, len);
8109 }
8110 EXPORT_SYMBOL(dev_get_phys_port_name);
8111
8112 /**
8113  *      dev_get_port_parent_id - Get the device's port parent identifier
8114  *      @dev: network device
8115  *      @ppid: pointer to a storage for the port's parent identifier
8116  *      @recurse: allow/disallow recursion to lower devices
8117  *
8118  *      Get the devices's port parent identifier
8119  */
8120 int dev_get_port_parent_id(struct net_device *dev,
8121                            struct netdev_phys_item_id *ppid,
8122                            bool recurse)
8123 {
8124         const struct net_device_ops *ops = dev->netdev_ops;
8125         struct netdev_phys_item_id first = { };
8126         struct net_device *lower_dev;
8127         struct list_head *iter;
8128         int err;
8129
8130         if (ops->ndo_get_port_parent_id) {
8131                 err = ops->ndo_get_port_parent_id(dev, ppid);
8132                 if (err != -EOPNOTSUPP)
8133                         return err;
8134         }
8135
8136         err = devlink_compat_switch_id_get(dev, ppid);
8137         if (!err || err != -EOPNOTSUPP)
8138                 return err;
8139
8140         if (!recurse)
8141                 return -EOPNOTSUPP;
8142
8143         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8144                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8145                 if (err)
8146                         break;
8147                 if (!first.id_len)
8148                         first = *ppid;
8149                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8150                         return -ENODATA;
8151         }
8152
8153         return err;
8154 }
8155 EXPORT_SYMBOL(dev_get_port_parent_id);
8156
8157 /**
8158  *      netdev_port_same_parent_id - Indicate if two network devices have
8159  *      the same port parent identifier
8160  *      @a: first network device
8161  *      @b: second network device
8162  */
8163 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8164 {
8165         struct netdev_phys_item_id a_id = { };
8166         struct netdev_phys_item_id b_id = { };
8167
8168         if (dev_get_port_parent_id(a, &a_id, true) ||
8169             dev_get_port_parent_id(b, &b_id, true))
8170                 return false;
8171
8172         return netdev_phys_item_id_same(&a_id, &b_id);
8173 }
8174 EXPORT_SYMBOL(netdev_port_same_parent_id);
8175
8176 /**
8177  *      dev_change_proto_down - update protocol port state information
8178  *      @dev: device
8179  *      @proto_down: new value
8180  *
8181  *      This info can be used by switch drivers to set the phys state of the
8182  *      port.
8183  */
8184 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8185 {
8186         const struct net_device_ops *ops = dev->netdev_ops;
8187
8188         if (!ops->ndo_change_proto_down)
8189                 return -EOPNOTSUPP;
8190         if (!netif_device_present(dev))
8191                 return -ENODEV;
8192         return ops->ndo_change_proto_down(dev, proto_down);
8193 }
8194 EXPORT_SYMBOL(dev_change_proto_down);
8195
8196 /**
8197  *      dev_change_proto_down_generic - generic implementation for
8198  *      ndo_change_proto_down that sets carrier according to
8199  *      proto_down.
8200  *
8201  *      @dev: device
8202  *      @proto_down: new value
8203  */
8204 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8205 {
8206         if (proto_down)
8207                 netif_carrier_off(dev);
8208         else
8209                 netif_carrier_on(dev);
8210         dev->proto_down = proto_down;
8211         return 0;
8212 }
8213 EXPORT_SYMBOL(dev_change_proto_down_generic);
8214
8215 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8216                     enum bpf_netdev_command cmd)
8217 {
8218         struct netdev_bpf xdp;
8219
8220         if (!bpf_op)
8221                 return 0;
8222
8223         memset(&xdp, 0, sizeof(xdp));
8224         xdp.command = cmd;
8225
8226         /* Query must always succeed. */
8227         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8228
8229         return xdp.prog_id;
8230 }
8231
8232 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8233                            struct netlink_ext_ack *extack, u32 flags,
8234                            struct bpf_prog *prog)
8235 {
8236         struct netdev_bpf xdp;
8237
8238         memset(&xdp, 0, sizeof(xdp));
8239         if (flags & XDP_FLAGS_HW_MODE)
8240                 xdp.command = XDP_SETUP_PROG_HW;
8241         else
8242                 xdp.command = XDP_SETUP_PROG;
8243         xdp.extack = extack;
8244         xdp.flags = flags;
8245         xdp.prog = prog;
8246
8247         return bpf_op(dev, &xdp);
8248 }
8249
8250 static void dev_xdp_uninstall(struct net_device *dev)
8251 {
8252         struct netdev_bpf xdp;
8253         bpf_op_t ndo_bpf;
8254
8255         /* Remove generic XDP */
8256         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8257
8258         /* Remove from the driver */
8259         ndo_bpf = dev->netdev_ops->ndo_bpf;
8260         if (!ndo_bpf)
8261                 return;
8262
8263         memset(&xdp, 0, sizeof(xdp));
8264         xdp.command = XDP_QUERY_PROG;
8265         WARN_ON(ndo_bpf(dev, &xdp));
8266         if (xdp.prog_id)
8267                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8268                                         NULL));
8269
8270         /* Remove HW offload */
8271         memset(&xdp, 0, sizeof(xdp));
8272         xdp.command = XDP_QUERY_PROG_HW;
8273         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8274                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8275                                         NULL));
8276 }
8277
8278 /**
8279  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8280  *      @dev: device
8281  *      @extack: netlink extended ack
8282  *      @fd: new program fd or negative value to clear
8283  *      @flags: xdp-related flags
8284  *
8285  *      Set or clear a bpf program for a device
8286  */
8287 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8288                       int fd, u32 flags)
8289 {
8290         const struct net_device_ops *ops = dev->netdev_ops;
8291         enum bpf_netdev_command query;
8292         struct bpf_prog *prog = NULL;
8293         bpf_op_t bpf_op, bpf_chk;
8294         bool offload;
8295         int err;
8296
8297         ASSERT_RTNL();
8298
8299         offload = flags & XDP_FLAGS_HW_MODE;
8300         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8301
8302         bpf_op = bpf_chk = ops->ndo_bpf;
8303         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8304                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8305                 return -EOPNOTSUPP;
8306         }
8307         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8308                 bpf_op = generic_xdp_install;
8309         if (bpf_op == bpf_chk)
8310                 bpf_chk = generic_xdp_install;
8311
8312         if (fd >= 0) {
8313                 u32 prog_id;
8314
8315                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8316                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8317                         return -EEXIST;
8318                 }
8319
8320                 prog_id = __dev_xdp_query(dev, bpf_op, query);
8321                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8322                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8323                         return -EBUSY;
8324                 }
8325
8326                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8327                                              bpf_op == ops->ndo_bpf);
8328                 if (IS_ERR(prog))
8329                         return PTR_ERR(prog);
8330
8331                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8332                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8333                         bpf_prog_put(prog);
8334                         return -EINVAL;
8335                 }
8336
8337                 if (prog->aux->id == prog_id) {
8338                         bpf_prog_put(prog);
8339                         return 0;
8340                 }
8341         } else {
8342                 if (!__dev_xdp_query(dev, bpf_op, query))
8343                         return 0;
8344         }
8345
8346         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8347         if (err < 0 && prog)
8348                 bpf_prog_put(prog);
8349
8350         return err;
8351 }
8352
8353 /**
8354  *      dev_new_index   -       allocate an ifindex
8355  *      @net: the applicable net namespace
8356  *
8357  *      Returns a suitable unique value for a new device interface
8358  *      number.  The caller must hold the rtnl semaphore or the
8359  *      dev_base_lock to be sure it remains unique.
8360  */
8361 static int dev_new_index(struct net *net)
8362 {
8363         int ifindex = net->ifindex;
8364
8365         for (;;) {
8366                 if (++ifindex <= 0)
8367                         ifindex = 1;
8368                 if (!__dev_get_by_index(net, ifindex))
8369                         return net->ifindex = ifindex;
8370         }
8371 }
8372
8373 /* Delayed registration/unregisteration */
8374 static LIST_HEAD(net_todo_list);
8375 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8376
8377 static void net_set_todo(struct net_device *dev)
8378 {
8379         list_add_tail(&dev->todo_list, &net_todo_list);
8380         dev_net(dev)->dev_unreg_count++;
8381 }
8382
8383 static void rollback_registered_many(struct list_head *head)
8384 {
8385         struct net_device *dev, *tmp;
8386         LIST_HEAD(close_head);
8387
8388         BUG_ON(dev_boot_phase);
8389         ASSERT_RTNL();
8390
8391         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8392                 /* Some devices call without registering
8393                  * for initialization unwind. Remove those
8394                  * devices and proceed with the remaining.
8395                  */
8396                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8397                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8398                                  dev->name, dev);
8399
8400                         WARN_ON(1);
8401                         list_del(&dev->unreg_list);
8402                         continue;
8403                 }
8404                 dev->dismantle = true;
8405                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8406         }
8407
8408         /* If device is running, close it first. */
8409         list_for_each_entry(dev, head, unreg_list)
8410                 list_add_tail(&dev->close_list, &close_head);
8411         dev_close_many(&close_head, true);
8412
8413         list_for_each_entry(dev, head, unreg_list) {
8414                 /* And unlink it from device chain. */
8415                 unlist_netdevice(dev);
8416
8417                 dev->reg_state = NETREG_UNREGISTERING;
8418         }
8419         flush_all_backlogs();
8420
8421         synchronize_net();
8422
8423         list_for_each_entry(dev, head, unreg_list) {
8424                 struct sk_buff *skb = NULL;
8425
8426                 /* Shutdown queueing discipline. */
8427                 dev_shutdown(dev);
8428
8429                 dev_xdp_uninstall(dev);
8430
8431                 /* Notify protocols, that we are about to destroy
8432                  * this device. They should clean all the things.
8433                  */
8434                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8435
8436                 if (!dev->rtnl_link_ops ||
8437                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8438                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8439                                                      GFP_KERNEL, NULL, 0);
8440
8441                 /*
8442                  *      Flush the unicast and multicast chains
8443                  */
8444                 dev_uc_flush(dev);
8445                 dev_mc_flush(dev);
8446
8447                 if (dev->netdev_ops->ndo_uninit)
8448                         dev->netdev_ops->ndo_uninit(dev);
8449
8450                 if (skb)
8451                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8452
8453                 /* Notifier chain MUST detach us all upper devices. */
8454                 WARN_ON(netdev_has_any_upper_dev(dev));
8455                 WARN_ON(netdev_has_any_lower_dev(dev));
8456
8457                 /* Remove entries from kobject tree */
8458                 netdev_unregister_kobject(dev);
8459 #ifdef CONFIG_XPS
8460                 /* Remove XPS queueing entries */
8461                 netif_reset_xps_queues_gt(dev, 0);
8462 #endif
8463         }
8464
8465         synchronize_net();
8466
8467         list_for_each_entry(dev, head, unreg_list)
8468                 dev_put(dev);
8469 }
8470
8471 static void rollback_registered(struct net_device *dev)
8472 {
8473         LIST_HEAD(single);
8474
8475         list_add(&dev->unreg_list, &single);
8476         rollback_registered_many(&single);
8477         list_del(&single);
8478 }
8479
8480 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8481         struct net_device *upper, netdev_features_t features)
8482 {
8483         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8484         netdev_features_t feature;
8485         int feature_bit;
8486
8487         for_each_netdev_feature(upper_disables, feature_bit) {
8488                 feature = __NETIF_F_BIT(feature_bit);
8489                 if (!(upper->wanted_features & feature)
8490                     && (features & feature)) {
8491                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8492                                    &feature, upper->name);
8493                         features &= ~feature;
8494                 }
8495         }
8496
8497         return features;
8498 }
8499
8500 static void netdev_sync_lower_features(struct net_device *upper,
8501         struct net_device *lower, netdev_features_t features)
8502 {
8503         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8504         netdev_features_t feature;
8505         int feature_bit;
8506
8507         for_each_netdev_feature(upper_disables, feature_bit) {
8508                 feature = __NETIF_F_BIT(feature_bit);
8509                 if (!(features & feature) && (lower->features & feature)) {
8510                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8511                                    &feature, lower->name);
8512                         lower->wanted_features &= ~feature;
8513                         netdev_update_features(lower);
8514
8515                         if (unlikely(lower->features & feature))
8516                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8517                                             &feature, lower->name);
8518                 }
8519         }
8520 }
8521
8522 static netdev_features_t netdev_fix_features(struct net_device *dev,
8523         netdev_features_t features)
8524 {
8525         /* Fix illegal checksum combinations */
8526         if ((features & NETIF_F_HW_CSUM) &&
8527             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8528                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8529                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8530         }
8531
8532         /* TSO requires that SG is present as well. */
8533         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8534                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8535                 features &= ~NETIF_F_ALL_TSO;
8536         }
8537
8538         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8539                                         !(features & NETIF_F_IP_CSUM)) {
8540                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8541                 features &= ~NETIF_F_TSO;
8542                 features &= ~NETIF_F_TSO_ECN;
8543         }
8544
8545         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8546                                          !(features & NETIF_F_IPV6_CSUM)) {
8547                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8548                 features &= ~NETIF_F_TSO6;
8549         }
8550
8551         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8552         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8553                 features &= ~NETIF_F_TSO_MANGLEID;
8554
8555         /* TSO ECN requires that TSO is present as well. */
8556         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8557                 features &= ~NETIF_F_TSO_ECN;
8558
8559         /* Software GSO depends on SG. */
8560         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8561                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8562                 features &= ~NETIF_F_GSO;
8563         }
8564
8565         /* GSO partial features require GSO partial be set */
8566         if ((features & dev->gso_partial_features) &&
8567             !(features & NETIF_F_GSO_PARTIAL)) {
8568                 netdev_dbg(dev,
8569                            "Dropping partially supported GSO features since no GSO partial.\n");
8570                 features &= ~dev->gso_partial_features;
8571         }
8572
8573         if (!(features & NETIF_F_RXCSUM)) {
8574                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8575                  * successfully merged by hardware must also have the
8576                  * checksum verified by hardware.  If the user does not
8577                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8578                  */
8579                 if (features & NETIF_F_GRO_HW) {
8580                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8581                         features &= ~NETIF_F_GRO_HW;
8582                 }
8583         }
8584
8585         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8586         if (features & NETIF_F_RXFCS) {
8587                 if (features & NETIF_F_LRO) {
8588                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8589                         features &= ~NETIF_F_LRO;
8590                 }
8591
8592                 if (features & NETIF_F_GRO_HW) {
8593                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8594                         features &= ~NETIF_F_GRO_HW;
8595                 }
8596         }
8597
8598         return features;
8599 }
8600
8601 int __netdev_update_features(struct net_device *dev)
8602 {
8603         struct net_device *upper, *lower;
8604         netdev_features_t features;
8605         struct list_head *iter;
8606         int err = -1;
8607
8608         ASSERT_RTNL();
8609
8610         features = netdev_get_wanted_features(dev);
8611
8612         if (dev->netdev_ops->ndo_fix_features)
8613                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8614
8615         /* driver might be less strict about feature dependencies */
8616         features = netdev_fix_features(dev, features);
8617
8618         /* some features can't be enabled if they're off an an upper device */
8619         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8620                 features = netdev_sync_upper_features(dev, upper, features);
8621
8622         if (dev->features == features)
8623                 goto sync_lower;
8624
8625         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8626                 &dev->features, &features);
8627
8628         if (dev->netdev_ops->ndo_set_features)
8629                 err = dev->netdev_ops->ndo_set_features(dev, features);
8630         else
8631                 err = 0;
8632
8633         if (unlikely(err < 0)) {
8634                 netdev_err(dev,
8635                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8636                         err, &features, &dev->features);
8637                 /* return non-0 since some features might have changed and
8638                  * it's better to fire a spurious notification than miss it
8639                  */
8640                 return -1;
8641         }
8642
8643 sync_lower:
8644         /* some features must be disabled on lower devices when disabled
8645          * on an upper device (think: bonding master or bridge)
8646          */
8647         netdev_for_each_lower_dev(dev, lower, iter)
8648                 netdev_sync_lower_features(dev, lower, features);
8649
8650         if (!err) {
8651                 netdev_features_t diff = features ^ dev->features;
8652
8653                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8654                         /* udp_tunnel_{get,drop}_rx_info both need
8655                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8656                          * device, or they won't do anything.
8657                          * Thus we need to update dev->features
8658                          * *before* calling udp_tunnel_get_rx_info,
8659                          * but *after* calling udp_tunnel_drop_rx_info.
8660                          */
8661                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8662                                 dev->features = features;
8663                                 udp_tunnel_get_rx_info(dev);
8664                         } else {
8665                                 udp_tunnel_drop_rx_info(dev);
8666                         }
8667                 }
8668
8669                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8670                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8671                                 dev->features = features;
8672                                 err |= vlan_get_rx_ctag_filter_info(dev);
8673                         } else {
8674                                 vlan_drop_rx_ctag_filter_info(dev);
8675                         }
8676                 }
8677
8678                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8679                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8680                                 dev->features = features;
8681                                 err |= vlan_get_rx_stag_filter_info(dev);
8682                         } else {
8683                                 vlan_drop_rx_stag_filter_info(dev);
8684                         }
8685                 }
8686
8687                 dev->features = features;
8688         }
8689
8690         return err < 0 ? 0 : 1;
8691 }
8692
8693 /**
8694  *      netdev_update_features - recalculate device features
8695  *      @dev: the device to check
8696  *
8697  *      Recalculate dev->features set and send notifications if it
8698  *      has changed. Should be called after driver or hardware dependent
8699  *      conditions might have changed that influence the features.
8700  */
8701 void netdev_update_features(struct net_device *dev)
8702 {
8703         if (__netdev_update_features(dev))
8704                 netdev_features_change(dev);
8705 }
8706 EXPORT_SYMBOL(netdev_update_features);
8707
8708 /**
8709  *      netdev_change_features - recalculate device features
8710  *      @dev: the device to check
8711  *
8712  *      Recalculate dev->features set and send notifications even
8713  *      if they have not changed. Should be called instead of
8714  *      netdev_update_features() if also dev->vlan_features might
8715  *      have changed to allow the changes to be propagated to stacked
8716  *      VLAN devices.
8717  */
8718 void netdev_change_features(struct net_device *dev)
8719 {
8720         __netdev_update_features(dev);
8721         netdev_features_change(dev);
8722 }
8723 EXPORT_SYMBOL(netdev_change_features);
8724
8725 /**
8726  *      netif_stacked_transfer_operstate -      transfer operstate
8727  *      @rootdev: the root or lower level device to transfer state from
8728  *      @dev: the device to transfer operstate to
8729  *
8730  *      Transfer operational state from root to device. This is normally
8731  *      called when a stacking relationship exists between the root
8732  *      device and the device(a leaf device).
8733  */
8734 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8735                                         struct net_device *dev)
8736 {
8737         if (rootdev->operstate == IF_OPER_DORMANT)
8738                 netif_dormant_on(dev);
8739         else
8740                 netif_dormant_off(dev);
8741
8742         if (netif_carrier_ok(rootdev))
8743                 netif_carrier_on(dev);
8744         else
8745                 netif_carrier_off(dev);
8746 }
8747 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8748
8749 static int netif_alloc_rx_queues(struct net_device *dev)
8750 {
8751         unsigned int i, count = dev->num_rx_queues;
8752         struct netdev_rx_queue *rx;
8753         size_t sz = count * sizeof(*rx);
8754         int err = 0;
8755
8756         BUG_ON(count < 1);
8757
8758         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8759         if (!rx)
8760                 return -ENOMEM;
8761
8762         dev->_rx = rx;
8763
8764         for (i = 0; i < count; i++) {
8765                 rx[i].dev = dev;
8766
8767                 /* XDP RX-queue setup */
8768                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8769                 if (err < 0)
8770                         goto err_rxq_info;
8771         }
8772         return 0;
8773
8774 err_rxq_info:
8775         /* Rollback successful reg's and free other resources */
8776         while (i--)
8777                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8778         kvfree(dev->_rx);
8779         dev->_rx = NULL;
8780         return err;
8781 }
8782
8783 static void netif_free_rx_queues(struct net_device *dev)
8784 {
8785         unsigned int i, count = dev->num_rx_queues;
8786
8787         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8788         if (!dev->_rx)
8789                 return;
8790
8791         for (i = 0; i < count; i++)
8792                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8793
8794         kvfree(dev->_rx);
8795 }
8796
8797 static void netdev_init_one_queue(struct net_device *dev,
8798                                   struct netdev_queue *queue, void *_unused)
8799 {
8800         /* Initialize queue lock */
8801         spin_lock_init(&queue->_xmit_lock);
8802         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8803         queue->xmit_lock_owner = -1;
8804         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8805         queue->dev = dev;
8806 #ifdef CONFIG_BQL
8807         dql_init(&queue->dql, HZ);
8808 #endif
8809 }
8810
8811 static void netif_free_tx_queues(struct net_device *dev)
8812 {
8813         kvfree(dev->_tx);
8814 }
8815
8816 static int netif_alloc_netdev_queues(struct net_device *dev)
8817 {
8818         unsigned int count = dev->num_tx_queues;
8819         struct netdev_queue *tx;
8820         size_t sz = count * sizeof(*tx);
8821
8822         if (count < 1 || count > 0xffff)
8823                 return -EINVAL;
8824
8825         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8826         if (!tx)
8827                 return -ENOMEM;
8828
8829         dev->_tx = tx;
8830
8831         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8832         spin_lock_init(&dev->tx_global_lock);
8833
8834         return 0;
8835 }
8836
8837 void netif_tx_stop_all_queues(struct net_device *dev)
8838 {
8839         unsigned int i;
8840
8841         for (i = 0; i < dev->num_tx_queues; i++) {
8842                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8843
8844                 netif_tx_stop_queue(txq);
8845         }
8846 }
8847 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8848
8849 /**
8850  *      register_netdevice      - register a network device
8851  *      @dev: device to register
8852  *
8853  *      Take a completed network device structure and add it to the kernel
8854  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8855  *      chain. 0 is returned on success. A negative errno code is returned
8856  *      on a failure to set up the device, or if the name is a duplicate.
8857  *
8858  *      Callers must hold the rtnl semaphore. You may want
8859  *      register_netdev() instead of this.
8860  *
8861  *      BUGS:
8862  *      The locking appears insufficient to guarantee two parallel registers
8863  *      will not get the same name.
8864  */
8865
8866 int register_netdevice(struct net_device *dev)
8867 {
8868         int ret;
8869         struct net *net = dev_net(dev);
8870
8871         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8872                      NETDEV_FEATURE_COUNT);
8873         BUG_ON(dev_boot_phase);
8874         ASSERT_RTNL();
8875
8876         might_sleep();
8877
8878         /* When net_device's are persistent, this will be fatal. */
8879         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8880         BUG_ON(!net);
8881
8882         spin_lock_init(&dev->addr_list_lock);
8883         netdev_set_addr_lockdep_class(dev);
8884
8885         ret = dev_get_valid_name(net, dev, dev->name);
8886         if (ret < 0)
8887                 goto out;
8888
8889         /* Init, if this function is available */
8890         if (dev->netdev_ops->ndo_init) {
8891                 ret = dev->netdev_ops->ndo_init(dev);
8892                 if (ret) {
8893                         if (ret > 0)
8894                                 ret = -EIO;
8895                         goto out;
8896                 }
8897         }
8898
8899         if (((dev->hw_features | dev->features) &
8900              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8901             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8902              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8903                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8904                 ret = -EINVAL;
8905                 goto err_uninit;
8906         }
8907
8908         ret = -EBUSY;
8909         if (!dev->ifindex)
8910                 dev->ifindex = dev_new_index(net);
8911         else if (__dev_get_by_index(net, dev->ifindex))
8912                 goto err_uninit;
8913
8914         /* Transfer changeable features to wanted_features and enable
8915          * software offloads (GSO and GRO).
8916          */
8917         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8918         dev->features |= NETIF_F_SOFT_FEATURES;
8919
8920         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8921                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8922                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8923         }
8924
8925         dev->wanted_features = dev->features & dev->hw_features;
8926
8927         if (!(dev->flags & IFF_LOOPBACK))
8928                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8929
8930         /* If IPv4 TCP segmentation offload is supported we should also
8931          * allow the device to enable segmenting the frame with the option
8932          * of ignoring a static IP ID value.  This doesn't enable the
8933          * feature itself but allows the user to enable it later.
8934          */
8935         if (dev->hw_features & NETIF_F_TSO)
8936                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8937         if (dev->vlan_features & NETIF_F_TSO)
8938                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8939         if (dev->mpls_features & NETIF_F_TSO)
8940                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8941         if (dev->hw_enc_features & NETIF_F_TSO)
8942                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8943
8944         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8945          */
8946         dev->vlan_features |= NETIF_F_HIGHDMA;
8947
8948         /* Make NETIF_F_SG inheritable to tunnel devices.
8949          */
8950         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8951
8952         /* Make NETIF_F_SG inheritable to MPLS.
8953          */
8954         dev->mpls_features |= NETIF_F_SG;
8955
8956         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8957         ret = notifier_to_errno(ret);
8958         if (ret)
8959                 goto err_uninit;
8960
8961         ret = netdev_register_kobject(dev);
8962         if (ret)
8963                 goto err_uninit;
8964         dev->reg_state = NETREG_REGISTERED;
8965
8966         __netdev_update_features(dev);
8967
8968         /*
8969          *      Default initial state at registry is that the
8970          *      device is present.
8971          */
8972
8973         set_bit(__LINK_STATE_PRESENT, &dev->state);
8974
8975         linkwatch_init_dev(dev);
8976
8977         dev_init_scheduler(dev);
8978         dev_hold(dev);
8979         list_netdevice(dev);
8980         add_device_randomness(dev->dev_addr, dev->addr_len);
8981
8982         /* If the device has permanent device address, driver should
8983          * set dev_addr and also addr_assign_type should be set to
8984          * NET_ADDR_PERM (default value).
8985          */
8986         if (dev->addr_assign_type == NET_ADDR_PERM)
8987                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8988
8989         /* Notify protocols, that a new device appeared. */
8990         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8991         ret = notifier_to_errno(ret);
8992         if (ret) {
8993                 rollback_registered(dev);
8994                 rcu_barrier();
8995
8996                 dev->reg_state = NETREG_UNREGISTERED;
8997         }
8998         /*
8999          *      Prevent userspace races by waiting until the network
9000          *      device is fully setup before sending notifications.
9001          */
9002         if (!dev->rtnl_link_ops ||
9003             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9004                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9005
9006 out:
9007         return ret;
9008
9009 err_uninit:
9010         if (dev->netdev_ops->ndo_uninit)
9011                 dev->netdev_ops->ndo_uninit(dev);
9012         if (dev->priv_destructor)
9013                 dev->priv_destructor(dev);
9014         goto out;
9015 }
9016 EXPORT_SYMBOL(register_netdevice);
9017
9018 /**
9019  *      init_dummy_netdev       - init a dummy network device for NAPI
9020  *      @dev: device to init
9021  *
9022  *      This takes a network device structure and initialize the minimum
9023  *      amount of fields so it can be used to schedule NAPI polls without
9024  *      registering a full blown interface. This is to be used by drivers
9025  *      that need to tie several hardware interfaces to a single NAPI
9026  *      poll scheduler due to HW limitations.
9027  */
9028 int init_dummy_netdev(struct net_device *dev)
9029 {
9030         /* Clear everything. Note we don't initialize spinlocks
9031          * are they aren't supposed to be taken by any of the
9032          * NAPI code and this dummy netdev is supposed to be
9033          * only ever used for NAPI polls
9034          */
9035         memset(dev, 0, sizeof(struct net_device));
9036
9037         /* make sure we BUG if trying to hit standard
9038          * register/unregister code path
9039          */
9040         dev->reg_state = NETREG_DUMMY;
9041
9042         /* NAPI wants this */
9043         INIT_LIST_HEAD(&dev->napi_list);
9044
9045         /* a dummy interface is started by default */
9046         set_bit(__LINK_STATE_PRESENT, &dev->state);
9047         set_bit(__LINK_STATE_START, &dev->state);
9048
9049         /* napi_busy_loop stats accounting wants this */
9050         dev_net_set(dev, &init_net);
9051
9052         /* Note : We dont allocate pcpu_refcnt for dummy devices,
9053          * because users of this 'device' dont need to change
9054          * its refcount.
9055          */
9056
9057         return 0;
9058 }
9059 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9060
9061
9062 /**
9063  *      register_netdev - register a network device
9064  *      @dev: device to register
9065  *
9066  *      Take a completed network device structure and add it to the kernel
9067  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9068  *      chain. 0 is returned on success. A negative errno code is returned
9069  *      on a failure to set up the device, or if the name is a duplicate.
9070  *
9071  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
9072  *      and expands the device name if you passed a format string to
9073  *      alloc_netdev.
9074  */
9075 int register_netdev(struct net_device *dev)
9076 {
9077         int err;
9078
9079         if (rtnl_lock_killable())
9080                 return -EINTR;
9081         err = register_netdevice(dev);
9082         rtnl_unlock();
9083         return err;
9084 }
9085 EXPORT_SYMBOL(register_netdev);
9086
9087 int netdev_refcnt_read(const struct net_device *dev)
9088 {
9089         int i, refcnt = 0;
9090
9091         for_each_possible_cpu(i)
9092                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9093         return refcnt;
9094 }
9095 EXPORT_SYMBOL(netdev_refcnt_read);
9096
9097 /**
9098  * netdev_wait_allrefs - wait until all references are gone.
9099  * @dev: target net_device
9100  *
9101  * This is called when unregistering network devices.
9102  *
9103  * Any protocol or device that holds a reference should register
9104  * for netdevice notification, and cleanup and put back the
9105  * reference if they receive an UNREGISTER event.
9106  * We can get stuck here if buggy protocols don't correctly
9107  * call dev_put.
9108  */
9109 static void netdev_wait_allrefs(struct net_device *dev)
9110 {
9111         unsigned long rebroadcast_time, warning_time;
9112         int refcnt;
9113
9114         linkwatch_forget_dev(dev);
9115
9116         rebroadcast_time = warning_time = jiffies;
9117         refcnt = netdev_refcnt_read(dev);
9118
9119         while (refcnt != 0) {
9120                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9121                         rtnl_lock();
9122
9123                         /* Rebroadcast unregister notification */
9124                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9125
9126                         __rtnl_unlock();
9127                         rcu_barrier();
9128                         rtnl_lock();
9129
9130                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9131                                      &dev->state)) {
9132                                 /* We must not have linkwatch events
9133                                  * pending on unregister. If this
9134                                  * happens, we simply run the queue
9135                                  * unscheduled, resulting in a noop
9136                                  * for this device.
9137                                  */
9138                                 linkwatch_run_queue();
9139                         }
9140
9141                         __rtnl_unlock();
9142
9143                         rebroadcast_time = jiffies;
9144                 }
9145
9146                 msleep(250);
9147
9148                 refcnt = netdev_refcnt_read(dev);
9149
9150                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9151                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9152                                  dev->name, refcnt);
9153                         warning_time = jiffies;
9154                 }
9155         }
9156 }
9157
9158 /* The sequence is:
9159  *
9160  *      rtnl_lock();
9161  *      ...
9162  *      register_netdevice(x1);
9163  *      register_netdevice(x2);
9164  *      ...
9165  *      unregister_netdevice(y1);
9166  *      unregister_netdevice(y2);
9167  *      ...
9168  *      rtnl_unlock();
9169  *      free_netdev(y1);
9170  *      free_netdev(y2);
9171  *
9172  * We are invoked by rtnl_unlock().
9173  * This allows us to deal with problems:
9174  * 1) We can delete sysfs objects which invoke hotplug
9175  *    without deadlocking with linkwatch via keventd.
9176  * 2) Since we run with the RTNL semaphore not held, we can sleep
9177  *    safely in order to wait for the netdev refcnt to drop to zero.
9178  *
9179  * We must not return until all unregister events added during
9180  * the interval the lock was held have been completed.
9181  */
9182 void netdev_run_todo(void)
9183 {
9184         struct list_head list;
9185
9186         /* Snapshot list, allow later requests */
9187         list_replace_init(&net_todo_list, &list);
9188
9189         __rtnl_unlock();
9190
9191
9192         /* Wait for rcu callbacks to finish before next phase */
9193         if (!list_empty(&list))
9194                 rcu_barrier();
9195
9196         while (!list_empty(&list)) {
9197                 struct net_device *dev
9198                         = list_first_entry(&list, struct net_device, todo_list);
9199                 list_del(&dev->todo_list);
9200
9201                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9202                         pr_err("network todo '%s' but state %d\n",
9203                                dev->name, dev->reg_state);
9204                         dump_stack();
9205                         continue;
9206                 }
9207
9208                 dev->reg_state = NETREG_UNREGISTERED;
9209
9210                 netdev_wait_allrefs(dev);
9211
9212                 /* paranoia */
9213                 BUG_ON(netdev_refcnt_read(dev));
9214                 BUG_ON(!list_empty(&dev->ptype_all));
9215                 BUG_ON(!list_empty(&dev->ptype_specific));
9216                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9217                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9218 #if IS_ENABLED(CONFIG_DECNET)
9219                 WARN_ON(dev->dn_ptr);
9220 #endif
9221                 if (dev->priv_destructor)
9222                         dev->priv_destructor(dev);
9223                 if (dev->needs_free_netdev)
9224                         free_netdev(dev);
9225
9226                 /* Report a network device has been unregistered */
9227                 rtnl_lock();
9228                 dev_net(dev)->dev_unreg_count--;
9229                 __rtnl_unlock();
9230                 wake_up(&netdev_unregistering_wq);
9231
9232                 /* Free network device */
9233                 kobject_put(&dev->dev.kobj);
9234         }
9235 }
9236
9237 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9238  * all the same fields in the same order as net_device_stats, with only
9239  * the type differing, but rtnl_link_stats64 may have additional fields
9240  * at the end for newer counters.
9241  */
9242 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9243                              const struct net_device_stats *netdev_stats)
9244 {
9245 #if BITS_PER_LONG == 64
9246         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9247         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9248         /* zero out counters that only exist in rtnl_link_stats64 */
9249         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9250                sizeof(*stats64) - sizeof(*netdev_stats));
9251 #else
9252         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9253         const unsigned long *src = (const unsigned long *)netdev_stats;
9254         u64 *dst = (u64 *)stats64;
9255
9256         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9257         for (i = 0; i < n; i++)
9258                 dst[i] = src[i];
9259         /* zero out counters that only exist in rtnl_link_stats64 */
9260         memset((char *)stats64 + n * sizeof(u64), 0,
9261                sizeof(*stats64) - n * sizeof(u64));
9262 #endif
9263 }
9264 EXPORT_SYMBOL(netdev_stats_to_stats64);
9265
9266 /**
9267  *      dev_get_stats   - get network device statistics
9268  *      @dev: device to get statistics from
9269  *      @storage: place to store stats
9270  *
9271  *      Get network statistics from device. Return @storage.
9272  *      The device driver may provide its own method by setting
9273  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9274  *      otherwise the internal statistics structure is used.
9275  */
9276 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9277                                         struct rtnl_link_stats64 *storage)
9278 {
9279         const struct net_device_ops *ops = dev->netdev_ops;
9280
9281         if (ops->ndo_get_stats64) {
9282                 memset(storage, 0, sizeof(*storage));
9283                 ops->ndo_get_stats64(dev, storage);
9284         } else if (ops->ndo_get_stats) {
9285                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9286         } else {
9287                 netdev_stats_to_stats64(storage, &dev->stats);
9288         }
9289         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9290         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9291         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9292         return storage;
9293 }
9294 EXPORT_SYMBOL(dev_get_stats);
9295
9296 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9297 {
9298         struct netdev_queue *queue = dev_ingress_queue(dev);
9299
9300 #ifdef CONFIG_NET_CLS_ACT
9301         if (queue)
9302                 return queue;
9303         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9304         if (!queue)
9305                 return NULL;
9306         netdev_init_one_queue(dev, queue, NULL);
9307         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9308         queue->qdisc_sleeping = &noop_qdisc;
9309         rcu_assign_pointer(dev->ingress_queue, queue);
9310 #endif
9311         return queue;
9312 }
9313
9314 static const struct ethtool_ops default_ethtool_ops;
9315
9316 void netdev_set_default_ethtool_ops(struct net_device *dev,
9317                                     const struct ethtool_ops *ops)
9318 {
9319         if (dev->ethtool_ops == &default_ethtool_ops)
9320                 dev->ethtool_ops = ops;
9321 }
9322 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9323
9324 void netdev_freemem(struct net_device *dev)
9325 {
9326         char *addr = (char *)dev - dev->padded;
9327
9328         kvfree(addr);
9329 }
9330
9331 /**
9332  * alloc_netdev_mqs - allocate network device
9333  * @sizeof_priv: size of private data to allocate space for
9334  * @name: device name format string
9335  * @name_assign_type: origin of device name
9336  * @setup: callback to initialize device
9337  * @txqs: the number of TX subqueues to allocate
9338  * @rxqs: the number of RX subqueues to allocate
9339  *
9340  * Allocates a struct net_device with private data area for driver use
9341  * and performs basic initialization.  Also allocates subqueue structs
9342  * for each queue on the device.
9343  */
9344 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9345                 unsigned char name_assign_type,
9346                 void (*setup)(struct net_device *),
9347                 unsigned int txqs, unsigned int rxqs)
9348 {
9349         struct net_device *dev;
9350         unsigned int alloc_size;
9351         struct net_device *p;
9352
9353         BUG_ON(strlen(name) >= sizeof(dev->name));
9354
9355         if (txqs < 1) {
9356                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9357                 return NULL;
9358         }
9359
9360         if (rxqs < 1) {
9361                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9362                 return NULL;
9363         }
9364
9365         alloc_size = sizeof(struct net_device);
9366         if (sizeof_priv) {
9367                 /* ensure 32-byte alignment of private area */
9368                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9369                 alloc_size += sizeof_priv;
9370         }
9371         /* ensure 32-byte alignment of whole construct */
9372         alloc_size += NETDEV_ALIGN - 1;
9373
9374         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9375         if (!p)
9376                 return NULL;
9377
9378         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9379         dev->padded = (char *)dev - (char *)p;
9380
9381         dev->pcpu_refcnt = alloc_percpu(int);
9382         if (!dev->pcpu_refcnt)
9383                 goto free_dev;
9384
9385         if (dev_addr_init(dev))
9386                 goto free_pcpu;
9387
9388         dev_mc_init(dev);
9389         dev_uc_init(dev);
9390
9391         dev_net_set(dev, &init_net);
9392
9393         dev->gso_max_size = GSO_MAX_SIZE;
9394         dev->gso_max_segs = GSO_MAX_SEGS;
9395         dev->upper_level = 1;
9396         dev->lower_level = 1;
9397
9398         INIT_LIST_HEAD(&dev->napi_list);
9399         INIT_LIST_HEAD(&dev->unreg_list);
9400         INIT_LIST_HEAD(&dev->close_list);
9401         INIT_LIST_HEAD(&dev->link_watch_list);
9402         INIT_LIST_HEAD(&dev->adj_list.upper);
9403         INIT_LIST_HEAD(&dev->adj_list.lower);
9404         INIT_LIST_HEAD(&dev->ptype_all);
9405         INIT_LIST_HEAD(&dev->ptype_specific);
9406 #ifdef CONFIG_NET_SCHED
9407         hash_init(dev->qdisc_hash);
9408 #endif
9409         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9410         setup(dev);
9411
9412         if (!dev->tx_queue_len) {
9413                 dev->priv_flags |= IFF_NO_QUEUE;
9414                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9415         }
9416
9417         dev->num_tx_queues = txqs;
9418         dev->real_num_tx_queues = txqs;
9419         if (netif_alloc_netdev_queues(dev))
9420                 goto free_all;
9421
9422         dev->num_rx_queues = rxqs;
9423         dev->real_num_rx_queues = rxqs;
9424         if (netif_alloc_rx_queues(dev))
9425                 goto free_all;
9426
9427         strcpy(dev->name, name);
9428         dev->name_assign_type = name_assign_type;
9429         dev->group = INIT_NETDEV_GROUP;
9430         if (!dev->ethtool_ops)
9431                 dev->ethtool_ops = &default_ethtool_ops;
9432
9433         nf_hook_ingress_init(dev);
9434
9435         return dev;
9436
9437 free_all:
9438         free_netdev(dev);
9439         return NULL;
9440
9441 free_pcpu:
9442         free_percpu(dev->pcpu_refcnt);
9443 free_dev:
9444         netdev_freemem(dev);
9445         return NULL;
9446 }
9447 EXPORT_SYMBOL(alloc_netdev_mqs);
9448
9449 /**
9450  * free_netdev - free network device
9451  * @dev: device
9452  *
9453  * This function does the last stage of destroying an allocated device
9454  * interface. The reference to the device object is released. If this
9455  * is the last reference then it will be freed.Must be called in process
9456  * context.
9457  */
9458 void free_netdev(struct net_device *dev)
9459 {
9460         struct napi_struct *p, *n;
9461
9462         might_sleep();
9463         netif_free_tx_queues(dev);
9464         netif_free_rx_queues(dev);
9465
9466         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9467
9468         /* Flush device addresses */
9469         dev_addr_flush(dev);
9470
9471         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9472                 netif_napi_del(p);
9473
9474         free_percpu(dev->pcpu_refcnt);
9475         dev->pcpu_refcnt = NULL;
9476
9477         /*  Compatibility with error handling in drivers */
9478         if (dev->reg_state == NETREG_UNINITIALIZED) {
9479                 netdev_freemem(dev);
9480                 return;
9481         }
9482
9483         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9484         dev->reg_state = NETREG_RELEASED;
9485
9486         /* will free via device release */
9487         put_device(&dev->dev);
9488 }
9489 EXPORT_SYMBOL(free_netdev);
9490
9491 /**
9492  *      synchronize_net -  Synchronize with packet receive processing
9493  *
9494  *      Wait for packets currently being received to be done.
9495  *      Does not block later packets from starting.
9496  */
9497 void synchronize_net(void)
9498 {
9499         might_sleep();
9500         if (rtnl_is_locked())
9501                 synchronize_rcu_expedited();
9502         else
9503                 synchronize_rcu();
9504 }
9505 EXPORT_SYMBOL(synchronize_net);
9506
9507 /**
9508  *      unregister_netdevice_queue - remove device from the kernel
9509  *      @dev: device
9510  *      @head: list
9511  *
9512  *      This function shuts down a device interface and removes it
9513  *      from the kernel tables.
9514  *      If head not NULL, device is queued to be unregistered later.
9515  *
9516  *      Callers must hold the rtnl semaphore.  You may want
9517  *      unregister_netdev() instead of this.
9518  */
9519
9520 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9521 {
9522         ASSERT_RTNL();
9523
9524         if (head) {
9525                 list_move_tail(&dev->unreg_list, head);
9526         } else {
9527                 rollback_registered(dev);
9528                 /* Finish processing unregister after unlock */
9529                 net_set_todo(dev);
9530         }
9531 }
9532 EXPORT_SYMBOL(unregister_netdevice_queue);
9533
9534 /**
9535  *      unregister_netdevice_many - unregister many devices
9536  *      @head: list of devices
9537  *
9538  *  Note: As most callers use a stack allocated list_head,
9539  *  we force a list_del() to make sure stack wont be corrupted later.
9540  */
9541 void unregister_netdevice_many(struct list_head *head)
9542 {
9543         struct net_device *dev;
9544
9545         if (!list_empty(head)) {
9546                 rollback_registered_many(head);
9547                 list_for_each_entry(dev, head, unreg_list)
9548                         net_set_todo(dev);
9549                 list_del(head);
9550         }
9551 }
9552 EXPORT_SYMBOL(unregister_netdevice_many);
9553
9554 /**
9555  *      unregister_netdev - remove device from the kernel
9556  *      @dev: device
9557  *
9558  *      This function shuts down a device interface and removes it
9559  *      from the kernel tables.
9560  *
9561  *      This is just a wrapper for unregister_netdevice that takes
9562  *      the rtnl semaphore.  In general you want to use this and not
9563  *      unregister_netdevice.
9564  */
9565 void unregister_netdev(struct net_device *dev)
9566 {
9567         rtnl_lock();
9568         unregister_netdevice(dev);
9569         rtnl_unlock();
9570 }
9571 EXPORT_SYMBOL(unregister_netdev);
9572
9573 /**
9574  *      dev_change_net_namespace - move device to different nethost namespace
9575  *      @dev: device
9576  *      @net: network namespace
9577  *      @pat: If not NULL name pattern to try if the current device name
9578  *            is already taken in the destination network namespace.
9579  *
9580  *      This function shuts down a device interface and moves it
9581  *      to a new network namespace. On success 0 is returned, on
9582  *      a failure a netagive errno code is returned.
9583  *
9584  *      Callers must hold the rtnl semaphore.
9585  */
9586
9587 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9588 {
9589         int err, new_nsid, new_ifindex;
9590
9591         ASSERT_RTNL();
9592
9593         /* Don't allow namespace local devices to be moved. */
9594         err = -EINVAL;
9595         if (dev->features & NETIF_F_NETNS_LOCAL)
9596                 goto out;
9597
9598         /* Ensure the device has been registrered */
9599         if (dev->reg_state != NETREG_REGISTERED)
9600                 goto out;
9601
9602         /* Get out if there is nothing todo */
9603         err = 0;
9604         if (net_eq(dev_net(dev), net))
9605                 goto out;
9606
9607         /* Pick the destination device name, and ensure
9608          * we can use it in the destination network namespace.
9609          */
9610         err = -EEXIST;
9611         if (__dev_get_by_name(net, dev->name)) {
9612                 /* We get here if we can't use the current device name */
9613                 if (!pat)
9614                         goto out;
9615                 err = dev_get_valid_name(net, dev, pat);
9616                 if (err < 0)
9617                         goto out;
9618         }
9619
9620         /*
9621          * And now a mini version of register_netdevice unregister_netdevice.
9622          */
9623
9624         /* If device is running close it first. */
9625         dev_close(dev);
9626
9627         /* And unlink it from device chain */
9628         unlist_netdevice(dev);
9629
9630         synchronize_net();
9631
9632         /* Shutdown queueing discipline. */
9633         dev_shutdown(dev);
9634
9635         /* Notify protocols, that we are about to destroy
9636          * this device. They should clean all the things.
9637          *
9638          * Note that dev->reg_state stays at NETREG_REGISTERED.
9639          * This is wanted because this way 8021q and macvlan know
9640          * the device is just moving and can keep their slaves up.
9641          */
9642         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9643         rcu_barrier();
9644
9645         new_nsid = peernet2id_alloc(dev_net(dev), net);
9646         /* If there is an ifindex conflict assign a new one */
9647         if (__dev_get_by_index(net, dev->ifindex))
9648                 new_ifindex = dev_new_index(net);
9649         else
9650                 new_ifindex = dev->ifindex;
9651
9652         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9653                             new_ifindex);
9654
9655         /*
9656          *      Flush the unicast and multicast chains
9657          */
9658         dev_uc_flush(dev);
9659         dev_mc_flush(dev);
9660
9661         /* Send a netdev-removed uevent to the old namespace */
9662         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9663         netdev_adjacent_del_links(dev);
9664
9665         /* Actually switch the network namespace */
9666         dev_net_set(dev, net);
9667         dev->ifindex = new_ifindex;
9668
9669         /* Send a netdev-add uevent to the new namespace */
9670         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9671         netdev_adjacent_add_links(dev);
9672
9673         /* Fixup kobjects */
9674         err = device_rename(&dev->dev, dev->name);
9675         WARN_ON(err);
9676
9677         /* Add the device back in the hashes */
9678         list_netdevice(dev);
9679
9680         /* Notify protocols, that a new device appeared. */
9681         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9682
9683         /*
9684          *      Prevent userspace races by waiting until the network
9685          *      device is fully setup before sending notifications.
9686          */
9687         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9688
9689         synchronize_net();
9690         err = 0;
9691 out:
9692         return err;
9693 }
9694 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9695
9696 static int dev_cpu_dead(unsigned int oldcpu)
9697 {
9698         struct sk_buff **list_skb;
9699         struct sk_buff *skb;
9700         unsigned int cpu;
9701         struct softnet_data *sd, *oldsd, *remsd = NULL;
9702
9703         local_irq_disable();
9704         cpu = smp_processor_id();
9705         sd = &per_cpu(softnet_data, cpu);
9706         oldsd = &per_cpu(softnet_data, oldcpu);
9707
9708         /* Find end of our completion_queue. */
9709         list_skb = &sd->completion_queue;
9710         while (*list_skb)
9711                 list_skb = &(*list_skb)->next;
9712         /* Append completion queue from offline CPU. */
9713         *list_skb = oldsd->completion_queue;
9714         oldsd->completion_queue = NULL;
9715
9716         /* Append output queue from offline CPU. */
9717         if (oldsd->output_queue) {
9718                 *sd->output_queue_tailp = oldsd->output_queue;
9719                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9720                 oldsd->output_queue = NULL;
9721                 oldsd->output_queue_tailp = &oldsd->output_queue;
9722         }
9723         /* Append NAPI poll list from offline CPU, with one exception :
9724          * process_backlog() must be called by cpu owning percpu backlog.
9725          * We properly handle process_queue & input_pkt_queue later.
9726          */
9727         while (!list_empty(&oldsd->poll_list)) {
9728                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9729                                                             struct napi_struct,
9730                                                             poll_list);
9731
9732                 list_del_init(&napi->poll_list);
9733                 if (napi->poll == process_backlog)
9734                         napi->state = 0;
9735                 else
9736                         ____napi_schedule(sd, napi);
9737         }
9738
9739         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9740         local_irq_enable();
9741
9742 #ifdef CONFIG_RPS
9743         remsd = oldsd->rps_ipi_list;
9744         oldsd->rps_ipi_list = NULL;
9745 #endif
9746         /* send out pending IPI's on offline CPU */
9747         net_rps_send_ipi(remsd);
9748
9749         /* Process offline CPU's input_pkt_queue */
9750         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9751                 netif_rx_ni(skb);
9752                 input_queue_head_incr(oldsd);
9753         }
9754         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9755                 netif_rx_ni(skb);
9756                 input_queue_head_incr(oldsd);
9757         }
9758
9759         return 0;
9760 }
9761
9762 /**
9763  *      netdev_increment_features - increment feature set by one
9764  *      @all: current feature set
9765  *      @one: new feature set
9766  *      @mask: mask feature set
9767  *
9768  *      Computes a new feature set after adding a device with feature set
9769  *      @one to the master device with current feature set @all.  Will not
9770  *      enable anything that is off in @mask. Returns the new feature set.
9771  */
9772 netdev_features_t netdev_increment_features(netdev_features_t all,
9773         netdev_features_t one, netdev_features_t mask)
9774 {
9775         if (mask & NETIF_F_HW_CSUM)
9776                 mask |= NETIF_F_CSUM_MASK;
9777         mask |= NETIF_F_VLAN_CHALLENGED;
9778
9779         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9780         all &= one | ~NETIF_F_ALL_FOR_ALL;
9781
9782         /* If one device supports hw checksumming, set for all. */
9783         if (all & NETIF_F_HW_CSUM)
9784                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9785
9786         return all;
9787 }
9788 EXPORT_SYMBOL(netdev_increment_features);
9789
9790 static struct hlist_head * __net_init netdev_create_hash(void)
9791 {
9792         int i;
9793         struct hlist_head *hash;
9794
9795         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9796         if (hash != NULL)
9797                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9798                         INIT_HLIST_HEAD(&hash[i]);
9799
9800         return hash;
9801 }
9802
9803 /* Initialize per network namespace state */
9804 static int __net_init netdev_init(struct net *net)
9805 {
9806         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9807                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9808
9809         if (net != &init_net)
9810                 INIT_LIST_HEAD(&net->dev_base_head);
9811
9812         net->dev_name_head = netdev_create_hash();
9813         if (net->dev_name_head == NULL)
9814                 goto err_name;
9815
9816         net->dev_index_head = netdev_create_hash();
9817         if (net->dev_index_head == NULL)
9818                 goto err_idx;
9819
9820         return 0;
9821
9822 err_idx:
9823         kfree(net->dev_name_head);
9824 err_name:
9825         return -ENOMEM;
9826 }
9827
9828 /**
9829  *      netdev_drivername - network driver for the device
9830  *      @dev: network device
9831  *
9832  *      Determine network driver for device.
9833  */
9834 const char *netdev_drivername(const struct net_device *dev)
9835 {
9836         const struct device_driver *driver;
9837         const struct device *parent;
9838         const char *empty = "";
9839
9840         parent = dev->dev.parent;
9841         if (!parent)
9842                 return empty;
9843
9844         driver = parent->driver;
9845         if (driver && driver->name)
9846                 return driver->name;
9847         return empty;
9848 }
9849
9850 static void __netdev_printk(const char *level, const struct net_device *dev,
9851                             struct va_format *vaf)
9852 {
9853         if (dev && dev->dev.parent) {
9854                 dev_printk_emit(level[1] - '0',
9855                                 dev->dev.parent,
9856                                 "%s %s %s%s: %pV",
9857                                 dev_driver_string(dev->dev.parent),
9858                                 dev_name(dev->dev.parent),
9859                                 netdev_name(dev), netdev_reg_state(dev),
9860                                 vaf);
9861         } else if (dev) {
9862                 printk("%s%s%s: %pV",
9863                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9864         } else {
9865                 printk("%s(NULL net_device): %pV", level, vaf);
9866         }
9867 }
9868
9869 void netdev_printk(const char *level, const struct net_device *dev,
9870                    const char *format, ...)
9871 {
9872         struct va_format vaf;
9873         va_list args;
9874
9875         va_start(args, format);
9876
9877         vaf.fmt = format;
9878         vaf.va = &args;
9879
9880         __netdev_printk(level, dev, &vaf);
9881
9882         va_end(args);
9883 }
9884 EXPORT_SYMBOL(netdev_printk);
9885
9886 #define define_netdev_printk_level(func, level)                 \
9887 void func(const struct net_device *dev, const char *fmt, ...)   \
9888 {                                                               \
9889         struct va_format vaf;                                   \
9890         va_list args;                                           \
9891                                                                 \
9892         va_start(args, fmt);                                    \
9893                                                                 \
9894         vaf.fmt = fmt;                                          \
9895         vaf.va = &args;                                         \
9896                                                                 \
9897         __netdev_printk(level, dev, &vaf);                      \
9898                                                                 \
9899         va_end(args);                                           \
9900 }                                                               \
9901 EXPORT_SYMBOL(func);
9902
9903 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9904 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9905 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9906 define_netdev_printk_level(netdev_err, KERN_ERR);
9907 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9908 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9909 define_netdev_printk_level(netdev_info, KERN_INFO);
9910
9911 static void __net_exit netdev_exit(struct net *net)
9912 {
9913         kfree(net->dev_name_head);
9914         kfree(net->dev_index_head);
9915         if (net != &init_net)
9916                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9917 }
9918
9919 static struct pernet_operations __net_initdata netdev_net_ops = {
9920         .init = netdev_init,
9921         .exit = netdev_exit,
9922 };
9923
9924 static void __net_exit default_device_exit(struct net *net)
9925 {
9926         struct net_device *dev, *aux;
9927         /*
9928          * Push all migratable network devices back to the
9929          * initial network namespace
9930          */
9931         rtnl_lock();
9932         for_each_netdev_safe(net, dev, aux) {
9933                 int err;
9934                 char fb_name[IFNAMSIZ];
9935
9936                 /* Ignore unmoveable devices (i.e. loopback) */
9937                 if (dev->features & NETIF_F_NETNS_LOCAL)
9938                         continue;
9939
9940                 /* Leave virtual devices for the generic cleanup */
9941                 if (dev->rtnl_link_ops)
9942                         continue;
9943
9944                 /* Push remaining network devices to init_net */
9945                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9946                 if (__dev_get_by_name(&init_net, fb_name))
9947                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
9948                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9949                 if (err) {
9950                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9951                                  __func__, dev->name, err);
9952                         BUG();
9953                 }
9954         }
9955         rtnl_unlock();
9956 }
9957
9958 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9959 {
9960         /* Return with the rtnl_lock held when there are no network
9961          * devices unregistering in any network namespace in net_list.
9962          */
9963         struct net *net;
9964         bool unregistering;
9965         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9966
9967         add_wait_queue(&netdev_unregistering_wq, &wait);
9968         for (;;) {
9969                 unregistering = false;
9970                 rtnl_lock();
9971                 list_for_each_entry(net, net_list, exit_list) {
9972                         if (net->dev_unreg_count > 0) {
9973                                 unregistering = true;
9974                                 break;
9975                         }
9976                 }
9977                 if (!unregistering)
9978                         break;
9979                 __rtnl_unlock();
9980
9981                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9982         }
9983         remove_wait_queue(&netdev_unregistering_wq, &wait);
9984 }
9985
9986 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9987 {
9988         /* At exit all network devices most be removed from a network
9989          * namespace.  Do this in the reverse order of registration.
9990          * Do this across as many network namespaces as possible to
9991          * improve batching efficiency.
9992          */
9993         struct net_device *dev;
9994         struct net *net;
9995         LIST_HEAD(dev_kill_list);
9996
9997         /* To prevent network device cleanup code from dereferencing
9998          * loopback devices or network devices that have been freed
9999          * wait here for all pending unregistrations to complete,
10000          * before unregistring the loopback device and allowing the
10001          * network namespace be freed.
10002          *
10003          * The netdev todo list containing all network devices
10004          * unregistrations that happen in default_device_exit_batch
10005          * will run in the rtnl_unlock() at the end of
10006          * default_device_exit_batch.
10007          */
10008         rtnl_lock_unregistering(net_list);
10009         list_for_each_entry(net, net_list, exit_list) {
10010                 for_each_netdev_reverse(net, dev) {
10011                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10012                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10013                         else
10014                                 unregister_netdevice_queue(dev, &dev_kill_list);
10015                 }
10016         }
10017         unregister_netdevice_many(&dev_kill_list);
10018         rtnl_unlock();
10019 }
10020
10021 static struct pernet_operations __net_initdata default_device_ops = {
10022         .exit = default_device_exit,
10023         .exit_batch = default_device_exit_batch,
10024 };
10025
10026 /*
10027  *      Initialize the DEV module. At boot time this walks the device list and
10028  *      unhooks any devices that fail to initialise (normally hardware not
10029  *      present) and leaves us with a valid list of present and active devices.
10030  *
10031  */
10032
10033 /*
10034  *       This is called single threaded during boot, so no need
10035  *       to take the rtnl semaphore.
10036  */
10037 static int __init net_dev_init(void)
10038 {
10039         int i, rc = -ENOMEM;
10040
10041         BUG_ON(!dev_boot_phase);
10042
10043         if (dev_proc_init())
10044                 goto out;
10045
10046         if (netdev_kobject_init())
10047                 goto out;
10048
10049         INIT_LIST_HEAD(&ptype_all);
10050         for (i = 0; i < PTYPE_HASH_SIZE; i++)
10051                 INIT_LIST_HEAD(&ptype_base[i]);
10052
10053         INIT_LIST_HEAD(&offload_base);
10054
10055         if (register_pernet_subsys(&netdev_net_ops))
10056                 goto out;
10057
10058         /*
10059          *      Initialise the packet receive queues.
10060          */
10061
10062         for_each_possible_cpu(i) {
10063                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10064                 struct softnet_data *sd = &per_cpu(softnet_data, i);
10065
10066                 INIT_WORK(flush, flush_backlog);
10067
10068                 skb_queue_head_init(&sd->input_pkt_queue);
10069                 skb_queue_head_init(&sd->process_queue);
10070 #ifdef CONFIG_XFRM_OFFLOAD
10071                 skb_queue_head_init(&sd->xfrm_backlog);
10072 #endif
10073                 INIT_LIST_HEAD(&sd->poll_list);
10074                 sd->output_queue_tailp = &sd->output_queue;
10075 #ifdef CONFIG_RPS
10076                 sd->csd.func = rps_trigger_softirq;
10077                 sd->csd.info = sd;
10078                 sd->cpu = i;
10079 #endif
10080
10081                 init_gro_hash(&sd->backlog);
10082                 sd->backlog.poll = process_backlog;
10083                 sd->backlog.weight = weight_p;
10084         }
10085
10086         dev_boot_phase = 0;
10087
10088         /* The loopback device is special if any other network devices
10089          * is present in a network namespace the loopback device must
10090          * be present. Since we now dynamically allocate and free the
10091          * loopback device ensure this invariant is maintained by
10092          * keeping the loopback device as the first device on the
10093          * list of network devices.  Ensuring the loopback devices
10094          * is the first device that appears and the last network device
10095          * that disappears.
10096          */
10097         if (register_pernet_device(&loopback_net_ops))
10098                 goto out;
10099
10100         if (register_pernet_device(&default_device_ops))
10101                 goto out;
10102
10103         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10104         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10105
10106         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10107                                        NULL, dev_cpu_dead);
10108         WARN_ON(rc < 0);
10109         rc = 0;
10110 out:
10111         return rc;
10112 }
10113
10114 subsys_initcall(net_dev_init);