]> asedeno.scripts.mit.edu Git - linux.git/blob - net/core/dev.c
Merge branch 'tcp-rx-tx-cache'
[linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165                                          struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167                                            struct net_device *dev,
168                                            struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192
193 static DEFINE_MUTEX(ifalias_mutex);
194
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201 static seqcount_t devnet_rename_seq;
202
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205         while (++net->dev_base_seq == 0)
206                 ;
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224         spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231         spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static void list_netdevice(struct net_device *dev)
237 {
238         struct net *net = dev_net(dev);
239
240         ASSERT_RTNL();
241
242         write_lock_bh(&dev_base_lock);
243         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245         hlist_add_head_rcu(&dev->index_hlist,
246                            dev_index_hash(net, dev->ifindex));
247         write_unlock_bh(&dev_base_lock);
248
249         dev_base_seq_inc(net);
250 }
251
252 /* Device list removal
253  * caller must respect a RCU grace period before freeing/reusing dev
254  */
255 static void unlist_netdevice(struct net_device *dev)
256 {
257         ASSERT_RTNL();
258
259         /* Unlink dev from the device chain */
260         write_lock_bh(&dev_base_lock);
261         list_del_rcu(&dev->dev_list);
262         hlist_del_rcu(&dev->name_hlist);
263         hlist_del_rcu(&dev->index_hlist);
264         write_unlock_bh(&dev_base_lock);
265
266         dev_base_seq_inc(dev_net(dev));
267 }
268
269 /*
270  *      Our notifier list
271  */
272
273 static RAW_NOTIFIER_HEAD(netdev_chain);
274
275 /*
276  *      Device drivers call our routines to queue packets here. We empty the
277  *      queue in the local softnet handler.
278  */
279
280 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
281 EXPORT_PER_CPU_SYMBOL(softnet_data);
282
283 #ifdef CONFIG_LOCKDEP
284 /*
285  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
286  * according to dev->type
287  */
288 static const unsigned short netdev_lock_type[] = {
289          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
290          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
291          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
292          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
293          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
294          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
295          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
296          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
297          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
298          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
299          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
300          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
301          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
302          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
303          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
304
305 static const char *const netdev_lock_name[] = {
306         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
307         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
308         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
309         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
310         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
311         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
312         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
313         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
314         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
315         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
316         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
317         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
318         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
319         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
320         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
321
322 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
323 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
324
325 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
326 {
327         int i;
328
329         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
330                 if (netdev_lock_type[i] == dev_type)
331                         return i;
332         /* the last key is used by default */
333         return ARRAY_SIZE(netdev_lock_type) - 1;
334 }
335
336 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
337                                                  unsigned short dev_type)
338 {
339         int i;
340
341         i = netdev_lock_pos(dev_type);
342         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
343                                    netdev_lock_name[i]);
344 }
345
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348         int i;
349
350         i = netdev_lock_pos(dev->type);
351         lockdep_set_class_and_name(&dev->addr_list_lock,
352                                    &netdev_addr_lock_key[i],
353                                    netdev_lock_name[i]);
354 }
355 #else
356 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
357                                                  unsigned short dev_type)
358 {
359 }
360 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361 {
362 }
363 #endif
364
365 /*******************************************************************************
366  *
367  *              Protocol management and registration routines
368  *
369  *******************************************************************************/
370
371
372 /*
373  *      Add a protocol ID to the list. Now that the input handler is
374  *      smarter we can dispense with all the messy stuff that used to be
375  *      here.
376  *
377  *      BEWARE!!! Protocol handlers, mangling input packets,
378  *      MUST BE last in hash buckets and checking protocol handlers
379  *      MUST start from promiscuous ptype_all chain in net_bh.
380  *      It is true now, do not change it.
381  *      Explanation follows: if protocol handler, mangling packet, will
382  *      be the first on list, it is not able to sense, that packet
383  *      is cloned and should be copied-on-write, so that it will
384  *      change it and subsequent readers will get broken packet.
385  *                                                      --ANK (980803)
386  */
387
388 static inline struct list_head *ptype_head(const struct packet_type *pt)
389 {
390         if (pt->type == htons(ETH_P_ALL))
391                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
392         else
393                 return pt->dev ? &pt->dev->ptype_specific :
394                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398  *      dev_add_pack - add packet handler
399  *      @pt: packet type declaration
400  *
401  *      Add a protocol handler to the networking stack. The passed &packet_type
402  *      is linked into kernel lists and may not be freed until it has been
403  *      removed from the kernel lists.
404  *
405  *      This call does not sleep therefore it can not
406  *      guarantee all CPU's that are in middle of receiving packets
407  *      will see the new packet type (until the next received packet).
408  */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412         struct list_head *head = ptype_head(pt);
413
414         spin_lock(&ptype_lock);
415         list_add_rcu(&pt->list, head);
416         spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421  *      __dev_remove_pack        - remove packet handler
422  *      @pt: packet type declaration
423  *
424  *      Remove a protocol handler that was previously added to the kernel
425  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *      from the kernel lists and can be freed or reused once this function
427  *      returns.
428  *
429  *      The packet type might still be in use by receivers
430  *      and must not be freed until after all the CPU's have gone
431  *      through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435         struct list_head *head = ptype_head(pt);
436         struct packet_type *pt1;
437
438         spin_lock(&ptype_lock);
439
440         list_for_each_entry(pt1, head, list) {
441                 if (pt == pt1) {
442                         list_del_rcu(&pt->list);
443                         goto out;
444                 }
445         }
446
447         pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449         spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454  *      dev_remove_pack  - remove packet handler
455  *      @pt: packet type declaration
456  *
457  *      Remove a protocol handler that was previously added to the kernel
458  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *      from the kernel lists and can be freed or reused once this function
460  *      returns.
461  *
462  *      This call sleeps to guarantee that no CPU is looking at the packet
463  *      type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467         __dev_remove_pack(pt);
468
469         synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473
474 /**
475  *      dev_add_offload - register offload handlers
476  *      @po: protocol offload declaration
477  *
478  *      Add protocol offload handlers to the networking stack. The passed
479  *      &proto_offload is linked into kernel lists and may not be freed until
480  *      it has been removed from the kernel lists.
481  *
482  *      This call does not sleep therefore it can not
483  *      guarantee all CPU's that are in middle of receiving packets
484  *      will see the new offload handlers (until the next received packet).
485  */
486 void dev_add_offload(struct packet_offload *po)
487 {
488         struct packet_offload *elem;
489
490         spin_lock(&offload_lock);
491         list_for_each_entry(elem, &offload_base, list) {
492                 if (po->priority < elem->priority)
493                         break;
494         }
495         list_add_rcu(&po->list, elem->list.prev);
496         spin_unlock(&offload_lock);
497 }
498 EXPORT_SYMBOL(dev_add_offload);
499
500 /**
501  *      __dev_remove_offload     - remove offload handler
502  *      @po: packet offload declaration
503  *
504  *      Remove a protocol offload handler that was previously added to the
505  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
506  *      is removed from the kernel lists and can be freed or reused once this
507  *      function returns.
508  *
509  *      The packet type might still be in use by receivers
510  *      and must not be freed until after all the CPU's have gone
511  *      through a quiescent state.
512  */
513 static void __dev_remove_offload(struct packet_offload *po)
514 {
515         struct list_head *head = &offload_base;
516         struct packet_offload *po1;
517
518         spin_lock(&offload_lock);
519
520         list_for_each_entry(po1, head, list) {
521                 if (po == po1) {
522                         list_del_rcu(&po->list);
523                         goto out;
524                 }
525         }
526
527         pr_warn("dev_remove_offload: %p not found\n", po);
528 out:
529         spin_unlock(&offload_lock);
530 }
531
532 /**
533  *      dev_remove_offload       - remove packet offload handler
534  *      @po: packet offload declaration
535  *
536  *      Remove a packet offload handler that was previously added to the kernel
537  *      offload handlers by dev_add_offload(). The passed &offload_type is
538  *      removed from the kernel lists and can be freed or reused once this
539  *      function returns.
540  *
541  *      This call sleeps to guarantee that no CPU is looking at the packet
542  *      type after return.
543  */
544 void dev_remove_offload(struct packet_offload *po)
545 {
546         __dev_remove_offload(po);
547
548         synchronize_net();
549 }
550 EXPORT_SYMBOL(dev_remove_offload);
551
552 /******************************************************************************
553  *
554  *                    Device Boot-time Settings Routines
555  *
556  ******************************************************************************/
557
558 /* Boot time configuration table */
559 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560
561 /**
562  *      netdev_boot_setup_add   - add new setup entry
563  *      @name: name of the device
564  *      @map: configured settings for the device
565  *
566  *      Adds new setup entry to the dev_boot_setup list.  The function
567  *      returns 0 on error and 1 on success.  This is a generic routine to
568  *      all netdevices.
569  */
570 static int netdev_boot_setup_add(char *name, struct ifmap *map)
571 {
572         struct netdev_boot_setup *s;
573         int i;
574
575         s = dev_boot_setup;
576         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
577                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
578                         memset(s[i].name, 0, sizeof(s[i].name));
579                         strlcpy(s[i].name, name, IFNAMSIZ);
580                         memcpy(&s[i].map, map, sizeof(s[i].map));
581                         break;
582                 }
583         }
584
585         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
586 }
587
588 /**
589  * netdev_boot_setup_check      - check boot time settings
590  * @dev: the netdevice
591  *
592  * Check boot time settings for the device.
593  * The found settings are set for the device to be used
594  * later in the device probing.
595  * Returns 0 if no settings found, 1 if they are.
596  */
597 int netdev_boot_setup_check(struct net_device *dev)
598 {
599         struct netdev_boot_setup *s = dev_boot_setup;
600         int i;
601
602         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
603                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
604                     !strcmp(dev->name, s[i].name)) {
605                         dev->irq = s[i].map.irq;
606                         dev->base_addr = s[i].map.base_addr;
607                         dev->mem_start = s[i].map.mem_start;
608                         dev->mem_end = s[i].map.mem_end;
609                         return 1;
610                 }
611         }
612         return 0;
613 }
614 EXPORT_SYMBOL(netdev_boot_setup_check);
615
616
617 /**
618  * netdev_boot_base     - get address from boot time settings
619  * @prefix: prefix for network device
620  * @unit: id for network device
621  *
622  * Check boot time settings for the base address of device.
623  * The found settings are set for the device to be used
624  * later in the device probing.
625  * Returns 0 if no settings found.
626  */
627 unsigned long netdev_boot_base(const char *prefix, int unit)
628 {
629         const struct netdev_boot_setup *s = dev_boot_setup;
630         char name[IFNAMSIZ];
631         int i;
632
633         sprintf(name, "%s%d", prefix, unit);
634
635         /*
636          * If device already registered then return base of 1
637          * to indicate not to probe for this interface
638          */
639         if (__dev_get_by_name(&init_net, name))
640                 return 1;
641
642         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
643                 if (!strcmp(name, s[i].name))
644                         return s[i].map.base_addr;
645         return 0;
646 }
647
648 /*
649  * Saves at boot time configured settings for any netdevice.
650  */
651 int __init netdev_boot_setup(char *str)
652 {
653         int ints[5];
654         struct ifmap map;
655
656         str = get_options(str, ARRAY_SIZE(ints), ints);
657         if (!str || !*str)
658                 return 0;
659
660         /* Save settings */
661         memset(&map, 0, sizeof(map));
662         if (ints[0] > 0)
663                 map.irq = ints[1];
664         if (ints[0] > 1)
665                 map.base_addr = ints[2];
666         if (ints[0] > 2)
667                 map.mem_start = ints[3];
668         if (ints[0] > 3)
669                 map.mem_end = ints[4];
670
671         /* Add new entry to the list */
672         return netdev_boot_setup_add(str, &map);
673 }
674
675 __setup("netdev=", netdev_boot_setup);
676
677 /*******************************************************************************
678  *
679  *                          Device Interface Subroutines
680  *
681  *******************************************************************************/
682
683 /**
684  *      dev_get_iflink  - get 'iflink' value of a interface
685  *      @dev: targeted interface
686  *
687  *      Indicates the ifindex the interface is linked to.
688  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
689  */
690
691 int dev_get_iflink(const struct net_device *dev)
692 {
693         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
694                 return dev->netdev_ops->ndo_get_iflink(dev);
695
696         return dev->ifindex;
697 }
698 EXPORT_SYMBOL(dev_get_iflink);
699
700 /**
701  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
702  *      @dev: targeted interface
703  *      @skb: The packet.
704  *
705  *      For better visibility of tunnel traffic OVS needs to retrieve
706  *      egress tunnel information for a packet. Following API allows
707  *      user to get this info.
708  */
709 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
710 {
711         struct ip_tunnel_info *info;
712
713         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
714                 return -EINVAL;
715
716         info = skb_tunnel_info_unclone(skb);
717         if (!info)
718                 return -ENOMEM;
719         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
720                 return -EINVAL;
721
722         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
723 }
724 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
725
726 /**
727  *      __dev_get_by_name       - find a device by its name
728  *      @net: the applicable net namespace
729  *      @name: name to find
730  *
731  *      Find an interface by name. Must be called under RTNL semaphore
732  *      or @dev_base_lock. If the name is found a pointer to the device
733  *      is returned. If the name is not found then %NULL is returned. The
734  *      reference counters are not incremented so the caller must be
735  *      careful with locks.
736  */
737
738 struct net_device *__dev_get_by_name(struct net *net, const char *name)
739 {
740         struct net_device *dev;
741         struct hlist_head *head = dev_name_hash(net, name);
742
743         hlist_for_each_entry(dev, head, name_hlist)
744                 if (!strncmp(dev->name, name, IFNAMSIZ))
745                         return dev;
746
747         return NULL;
748 }
749 EXPORT_SYMBOL(__dev_get_by_name);
750
751 /**
752  * dev_get_by_name_rcu  - find a device by its name
753  * @net: the applicable net namespace
754  * @name: name to find
755  *
756  * Find an interface by name.
757  * If the name is found a pointer to the device is returned.
758  * If the name is not found then %NULL is returned.
759  * The reference counters are not incremented so the caller must be
760  * careful with locks. The caller must hold RCU lock.
761  */
762
763 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
764 {
765         struct net_device *dev;
766         struct hlist_head *head = dev_name_hash(net, name);
767
768         hlist_for_each_entry_rcu(dev, head, name_hlist)
769                 if (!strncmp(dev->name, name, IFNAMSIZ))
770                         return dev;
771
772         return NULL;
773 }
774 EXPORT_SYMBOL(dev_get_by_name_rcu);
775
776 /**
777  *      dev_get_by_name         - find a device by its name
778  *      @net: the applicable net namespace
779  *      @name: name to find
780  *
781  *      Find an interface by name. This can be called from any
782  *      context and does its own locking. The returned handle has
783  *      the usage count incremented and the caller must use dev_put() to
784  *      release it when it is no longer needed. %NULL is returned if no
785  *      matching device is found.
786  */
787
788 struct net_device *dev_get_by_name(struct net *net, const char *name)
789 {
790         struct net_device *dev;
791
792         rcu_read_lock();
793         dev = dev_get_by_name_rcu(net, name);
794         if (dev)
795                 dev_hold(dev);
796         rcu_read_unlock();
797         return dev;
798 }
799 EXPORT_SYMBOL(dev_get_by_name);
800
801 /**
802  *      __dev_get_by_index - find a device by its ifindex
803  *      @net: the applicable net namespace
804  *      @ifindex: index of device
805  *
806  *      Search for an interface by index. Returns %NULL if the device
807  *      is not found or a pointer to the device. The device has not
808  *      had its reference counter increased so the caller must be careful
809  *      about locking. The caller must hold either the RTNL semaphore
810  *      or @dev_base_lock.
811  */
812
813 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
814 {
815         struct net_device *dev;
816         struct hlist_head *head = dev_index_hash(net, ifindex);
817
818         hlist_for_each_entry(dev, head, index_hlist)
819                 if (dev->ifindex == ifindex)
820                         return dev;
821
822         return NULL;
823 }
824 EXPORT_SYMBOL(__dev_get_by_index);
825
826 /**
827  *      dev_get_by_index_rcu - find a device by its ifindex
828  *      @net: the applicable net namespace
829  *      @ifindex: index of device
830  *
831  *      Search for an interface by index. Returns %NULL if the device
832  *      is not found or a pointer to the device. The device has not
833  *      had its reference counter increased so the caller must be careful
834  *      about locking. The caller must hold RCU lock.
835  */
836
837 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
838 {
839         struct net_device *dev;
840         struct hlist_head *head = dev_index_hash(net, ifindex);
841
842         hlist_for_each_entry_rcu(dev, head, index_hlist)
843                 if (dev->ifindex == ifindex)
844                         return dev;
845
846         return NULL;
847 }
848 EXPORT_SYMBOL(dev_get_by_index_rcu);
849
850
851 /**
852  *      dev_get_by_index - find a device by its ifindex
853  *      @net: the applicable net namespace
854  *      @ifindex: index of device
855  *
856  *      Search for an interface by index. Returns NULL if the device
857  *      is not found or a pointer to the device. The device returned has
858  *      had a reference added and the pointer is safe until the user calls
859  *      dev_put to indicate they have finished with it.
860  */
861
862 struct net_device *dev_get_by_index(struct net *net, int ifindex)
863 {
864         struct net_device *dev;
865
866         rcu_read_lock();
867         dev = dev_get_by_index_rcu(net, ifindex);
868         if (dev)
869                 dev_hold(dev);
870         rcu_read_unlock();
871         return dev;
872 }
873 EXPORT_SYMBOL(dev_get_by_index);
874
875 /**
876  *      dev_get_by_napi_id - find a device by napi_id
877  *      @napi_id: ID of the NAPI struct
878  *
879  *      Search for an interface by NAPI ID. Returns %NULL if the device
880  *      is not found or a pointer to the device. The device has not had
881  *      its reference counter increased so the caller must be careful
882  *      about locking. The caller must hold RCU lock.
883  */
884
885 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
886 {
887         struct napi_struct *napi;
888
889         WARN_ON_ONCE(!rcu_read_lock_held());
890
891         if (napi_id < MIN_NAPI_ID)
892                 return NULL;
893
894         napi = napi_by_id(napi_id);
895
896         return napi ? napi->dev : NULL;
897 }
898 EXPORT_SYMBOL(dev_get_by_napi_id);
899
900 /**
901  *      netdev_get_name - get a netdevice name, knowing its ifindex.
902  *      @net: network namespace
903  *      @name: a pointer to the buffer where the name will be stored.
904  *      @ifindex: the ifindex of the interface to get the name from.
905  *
906  *      The use of raw_seqcount_begin() and cond_resched() before
907  *      retrying is required as we want to give the writers a chance
908  *      to complete when CONFIG_PREEMPT is not set.
909  */
910 int netdev_get_name(struct net *net, char *name, int ifindex)
911 {
912         struct net_device *dev;
913         unsigned int seq;
914
915 retry:
916         seq = raw_seqcount_begin(&devnet_rename_seq);
917         rcu_read_lock();
918         dev = dev_get_by_index_rcu(net, ifindex);
919         if (!dev) {
920                 rcu_read_unlock();
921                 return -ENODEV;
922         }
923
924         strcpy(name, dev->name);
925         rcu_read_unlock();
926         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
927                 cond_resched();
928                 goto retry;
929         }
930
931         return 0;
932 }
933
934 /**
935  *      dev_getbyhwaddr_rcu - find a device by its hardware address
936  *      @net: the applicable net namespace
937  *      @type: media type of device
938  *      @ha: hardware address
939  *
940  *      Search for an interface by MAC address. Returns NULL if the device
941  *      is not found or a pointer to the device.
942  *      The caller must hold RCU or RTNL.
943  *      The returned device has not had its ref count increased
944  *      and the caller must therefore be careful about locking
945  *
946  */
947
948 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
949                                        const char *ha)
950 {
951         struct net_device *dev;
952
953         for_each_netdev_rcu(net, dev)
954                 if (dev->type == type &&
955                     !memcmp(dev->dev_addr, ha, dev->addr_len))
956                         return dev;
957
958         return NULL;
959 }
960 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
961
962 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
963 {
964         struct net_device *dev;
965
966         ASSERT_RTNL();
967         for_each_netdev(net, dev)
968                 if (dev->type == type)
969                         return dev;
970
971         return NULL;
972 }
973 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
974
975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976 {
977         struct net_device *dev, *ret = NULL;
978
979         rcu_read_lock();
980         for_each_netdev_rcu(net, dev)
981                 if (dev->type == type) {
982                         dev_hold(dev);
983                         ret = dev;
984                         break;
985                 }
986         rcu_read_unlock();
987         return ret;
988 }
989 EXPORT_SYMBOL(dev_getfirstbyhwtype);
990
991 /**
992  *      __dev_get_by_flags - find any device with given flags
993  *      @net: the applicable net namespace
994  *      @if_flags: IFF_* values
995  *      @mask: bitmask of bits in if_flags to check
996  *
997  *      Search for any interface with the given flags. Returns NULL if a device
998  *      is not found or a pointer to the device. Must be called inside
999  *      rtnl_lock(), and result refcount is unchanged.
1000  */
1001
1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003                                       unsigned short mask)
1004 {
1005         struct net_device *dev, *ret;
1006
1007         ASSERT_RTNL();
1008
1009         ret = NULL;
1010         for_each_netdev(net, dev) {
1011                 if (((dev->flags ^ if_flags) & mask) == 0) {
1012                         ret = dev;
1013                         break;
1014                 }
1015         }
1016         return ret;
1017 }
1018 EXPORT_SYMBOL(__dev_get_by_flags);
1019
1020 /**
1021  *      dev_valid_name - check if name is okay for network device
1022  *      @name: name string
1023  *
1024  *      Network device names need to be valid file names to
1025  *      to allow sysfs to work.  We also disallow any kind of
1026  *      whitespace.
1027  */
1028 bool dev_valid_name(const char *name)
1029 {
1030         if (*name == '\0')
1031                 return false;
1032         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033                 return false;
1034         if (!strcmp(name, ".") || !strcmp(name, ".."))
1035                 return false;
1036
1037         while (*name) {
1038                 if (*name == '/' || *name == ':' || isspace(*name))
1039                         return false;
1040                 name++;
1041         }
1042         return true;
1043 }
1044 EXPORT_SYMBOL(dev_valid_name);
1045
1046 /**
1047  *      __dev_alloc_name - allocate a name for a device
1048  *      @net: network namespace to allocate the device name in
1049  *      @name: name format string
1050  *      @buf:  scratch buffer and result name string
1051  *
1052  *      Passed a format string - eg "lt%d" it will try and find a suitable
1053  *      id. It scans list of devices to build up a free map, then chooses
1054  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1055  *      while allocating the name and adding the device in order to avoid
1056  *      duplicates.
1057  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058  *      Returns the number of the unit assigned or a negative errno code.
1059  */
1060
1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062 {
1063         int i = 0;
1064         const char *p;
1065         const int max_netdevices = 8*PAGE_SIZE;
1066         unsigned long *inuse;
1067         struct net_device *d;
1068
1069         if (!dev_valid_name(name))
1070                 return -EINVAL;
1071
1072         p = strchr(name, '%');
1073         if (p) {
1074                 /*
1075                  * Verify the string as this thing may have come from
1076                  * the user.  There must be either one "%d" and no other "%"
1077                  * characters.
1078                  */
1079                 if (p[1] != 'd' || strchr(p + 2, '%'))
1080                         return -EINVAL;
1081
1082                 /* Use one page as a bit array of possible slots */
1083                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1084                 if (!inuse)
1085                         return -ENOMEM;
1086
1087                 for_each_netdev(net, d) {
1088                         if (!sscanf(d->name, name, &i))
1089                                 continue;
1090                         if (i < 0 || i >= max_netdevices)
1091                                 continue;
1092
1093                         /*  avoid cases where sscanf is not exact inverse of printf */
1094                         snprintf(buf, IFNAMSIZ, name, i);
1095                         if (!strncmp(buf, d->name, IFNAMSIZ))
1096                                 set_bit(i, inuse);
1097                 }
1098
1099                 i = find_first_zero_bit(inuse, max_netdevices);
1100                 free_page((unsigned long) inuse);
1101         }
1102
1103         snprintf(buf, IFNAMSIZ, name, i);
1104         if (!__dev_get_by_name(net, buf))
1105                 return i;
1106
1107         /* It is possible to run out of possible slots
1108          * when the name is long and there isn't enough space left
1109          * for the digits, or if all bits are used.
1110          */
1111         return -ENFILE;
1112 }
1113
1114 static int dev_alloc_name_ns(struct net *net,
1115                              struct net_device *dev,
1116                              const char *name)
1117 {
1118         char buf[IFNAMSIZ];
1119         int ret;
1120
1121         BUG_ON(!net);
1122         ret = __dev_alloc_name(net, name, buf);
1123         if (ret >= 0)
1124                 strlcpy(dev->name, buf, IFNAMSIZ);
1125         return ret;
1126 }
1127
1128 /**
1129  *      dev_alloc_name - allocate a name for a device
1130  *      @dev: device
1131  *      @name: name format string
1132  *
1133  *      Passed a format string - eg "lt%d" it will try and find a suitable
1134  *      id. It scans list of devices to build up a free map, then chooses
1135  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1136  *      while allocating the name and adding the device in order to avoid
1137  *      duplicates.
1138  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1139  *      Returns the number of the unit assigned or a negative errno code.
1140  */
1141
1142 int dev_alloc_name(struct net_device *dev, const char *name)
1143 {
1144         return dev_alloc_name_ns(dev_net(dev), dev, name);
1145 }
1146 EXPORT_SYMBOL(dev_alloc_name);
1147
1148 int dev_get_valid_name(struct net *net, struct net_device *dev,
1149                        const char *name)
1150 {
1151         BUG_ON(!net);
1152
1153         if (!dev_valid_name(name))
1154                 return -EINVAL;
1155
1156         if (strchr(name, '%'))
1157                 return dev_alloc_name_ns(net, dev, name);
1158         else if (__dev_get_by_name(net, name))
1159                 return -EEXIST;
1160         else if (dev->name != name)
1161                 strlcpy(dev->name, name, IFNAMSIZ);
1162
1163         return 0;
1164 }
1165 EXPORT_SYMBOL(dev_get_valid_name);
1166
1167 /**
1168  *      dev_change_name - change name of a device
1169  *      @dev: device
1170  *      @newname: name (or format string) must be at least IFNAMSIZ
1171  *
1172  *      Change name of a device, can pass format strings "eth%d".
1173  *      for wildcarding.
1174  */
1175 int dev_change_name(struct net_device *dev, const char *newname)
1176 {
1177         unsigned char old_assign_type;
1178         char oldname[IFNAMSIZ];
1179         int err = 0;
1180         int ret;
1181         struct net *net;
1182
1183         ASSERT_RTNL();
1184         BUG_ON(!dev_net(dev));
1185
1186         net = dev_net(dev);
1187         if (dev->flags & IFF_UP)
1188                 return -EBUSY;
1189
1190         write_seqcount_begin(&devnet_rename_seq);
1191
1192         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1193                 write_seqcount_end(&devnet_rename_seq);
1194                 return 0;
1195         }
1196
1197         memcpy(oldname, dev->name, IFNAMSIZ);
1198
1199         err = dev_get_valid_name(net, dev, newname);
1200         if (err < 0) {
1201                 write_seqcount_end(&devnet_rename_seq);
1202                 return err;
1203         }
1204
1205         if (oldname[0] && !strchr(oldname, '%'))
1206                 netdev_info(dev, "renamed from %s\n", oldname);
1207
1208         old_assign_type = dev->name_assign_type;
1209         dev->name_assign_type = NET_NAME_RENAMED;
1210
1211 rollback:
1212         ret = device_rename(&dev->dev, dev->name);
1213         if (ret) {
1214                 memcpy(dev->name, oldname, IFNAMSIZ);
1215                 dev->name_assign_type = old_assign_type;
1216                 write_seqcount_end(&devnet_rename_seq);
1217                 return ret;
1218         }
1219
1220         write_seqcount_end(&devnet_rename_seq);
1221
1222         netdev_adjacent_rename_links(dev, oldname);
1223
1224         write_lock_bh(&dev_base_lock);
1225         hlist_del_rcu(&dev->name_hlist);
1226         write_unlock_bh(&dev_base_lock);
1227
1228         synchronize_rcu();
1229
1230         write_lock_bh(&dev_base_lock);
1231         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1232         write_unlock_bh(&dev_base_lock);
1233
1234         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1235         ret = notifier_to_errno(ret);
1236
1237         if (ret) {
1238                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1239                 if (err >= 0) {
1240                         err = ret;
1241                         write_seqcount_begin(&devnet_rename_seq);
1242                         memcpy(dev->name, oldname, IFNAMSIZ);
1243                         memcpy(oldname, newname, IFNAMSIZ);
1244                         dev->name_assign_type = old_assign_type;
1245                         old_assign_type = NET_NAME_RENAMED;
1246                         goto rollback;
1247                 } else {
1248                         pr_err("%s: name change rollback failed: %d\n",
1249                                dev->name, ret);
1250                 }
1251         }
1252
1253         return err;
1254 }
1255
1256 /**
1257  *      dev_set_alias - change ifalias of a device
1258  *      @dev: device
1259  *      @alias: name up to IFALIASZ
1260  *      @len: limit of bytes to copy from info
1261  *
1262  *      Set ifalias for a device,
1263  */
1264 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1265 {
1266         struct dev_ifalias *new_alias = NULL;
1267
1268         if (len >= IFALIASZ)
1269                 return -EINVAL;
1270
1271         if (len) {
1272                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1273                 if (!new_alias)
1274                         return -ENOMEM;
1275
1276                 memcpy(new_alias->ifalias, alias, len);
1277                 new_alias->ifalias[len] = 0;
1278         }
1279
1280         mutex_lock(&ifalias_mutex);
1281         rcu_swap_protected(dev->ifalias, new_alias,
1282                            mutex_is_locked(&ifalias_mutex));
1283         mutex_unlock(&ifalias_mutex);
1284
1285         if (new_alias)
1286                 kfree_rcu(new_alias, rcuhead);
1287
1288         return len;
1289 }
1290 EXPORT_SYMBOL(dev_set_alias);
1291
1292 /**
1293  *      dev_get_alias - get ifalias of a device
1294  *      @dev: device
1295  *      @name: buffer to store name of ifalias
1296  *      @len: size of buffer
1297  *
1298  *      get ifalias for a device.  Caller must make sure dev cannot go
1299  *      away,  e.g. rcu read lock or own a reference count to device.
1300  */
1301 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1302 {
1303         const struct dev_ifalias *alias;
1304         int ret = 0;
1305
1306         rcu_read_lock();
1307         alias = rcu_dereference(dev->ifalias);
1308         if (alias)
1309                 ret = snprintf(name, len, "%s", alias->ifalias);
1310         rcu_read_unlock();
1311
1312         return ret;
1313 }
1314
1315 /**
1316  *      netdev_features_change - device changes features
1317  *      @dev: device to cause notification
1318  *
1319  *      Called to indicate a device has changed features.
1320  */
1321 void netdev_features_change(struct net_device *dev)
1322 {
1323         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1324 }
1325 EXPORT_SYMBOL(netdev_features_change);
1326
1327 /**
1328  *      netdev_state_change - device changes state
1329  *      @dev: device to cause notification
1330  *
1331  *      Called to indicate a device has changed state. This function calls
1332  *      the notifier chains for netdev_chain and sends a NEWLINK message
1333  *      to the routing socket.
1334  */
1335 void netdev_state_change(struct net_device *dev)
1336 {
1337         if (dev->flags & IFF_UP) {
1338                 struct netdev_notifier_change_info change_info = {
1339                         .info.dev = dev,
1340                 };
1341
1342                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1343                                               &change_info.info);
1344                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1345         }
1346 }
1347 EXPORT_SYMBOL(netdev_state_change);
1348
1349 /**
1350  * netdev_notify_peers - notify network peers about existence of @dev
1351  * @dev: network device
1352  *
1353  * Generate traffic such that interested network peers are aware of
1354  * @dev, such as by generating a gratuitous ARP. This may be used when
1355  * a device wants to inform the rest of the network about some sort of
1356  * reconfiguration such as a failover event or virtual machine
1357  * migration.
1358  */
1359 void netdev_notify_peers(struct net_device *dev)
1360 {
1361         rtnl_lock();
1362         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1363         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1364         rtnl_unlock();
1365 }
1366 EXPORT_SYMBOL(netdev_notify_peers);
1367
1368 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1369 {
1370         const struct net_device_ops *ops = dev->netdev_ops;
1371         int ret;
1372
1373         ASSERT_RTNL();
1374
1375         if (!netif_device_present(dev))
1376                 return -ENODEV;
1377
1378         /* Block netpoll from trying to do any rx path servicing.
1379          * If we don't do this there is a chance ndo_poll_controller
1380          * or ndo_poll may be running while we open the device
1381          */
1382         netpoll_poll_disable(dev);
1383
1384         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1385         ret = notifier_to_errno(ret);
1386         if (ret)
1387                 return ret;
1388
1389         set_bit(__LINK_STATE_START, &dev->state);
1390
1391         if (ops->ndo_validate_addr)
1392                 ret = ops->ndo_validate_addr(dev);
1393
1394         if (!ret && ops->ndo_open)
1395                 ret = ops->ndo_open(dev);
1396
1397         netpoll_poll_enable(dev);
1398
1399         if (ret)
1400                 clear_bit(__LINK_STATE_START, &dev->state);
1401         else {
1402                 dev->flags |= IFF_UP;
1403                 dev_set_rx_mode(dev);
1404                 dev_activate(dev);
1405                 add_device_randomness(dev->dev_addr, dev->addr_len);
1406         }
1407
1408         return ret;
1409 }
1410
1411 /**
1412  *      dev_open        - prepare an interface for use.
1413  *      @dev: device to open
1414  *      @extack: netlink extended ack
1415  *
1416  *      Takes a device from down to up state. The device's private open
1417  *      function is invoked and then the multicast lists are loaded. Finally
1418  *      the device is moved into the up state and a %NETDEV_UP message is
1419  *      sent to the netdev notifier chain.
1420  *
1421  *      Calling this function on an active interface is a nop. On a failure
1422  *      a negative errno code is returned.
1423  */
1424 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1425 {
1426         int ret;
1427
1428         if (dev->flags & IFF_UP)
1429                 return 0;
1430
1431         ret = __dev_open(dev, extack);
1432         if (ret < 0)
1433                 return ret;
1434
1435         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1436         call_netdevice_notifiers(NETDEV_UP, dev);
1437
1438         return ret;
1439 }
1440 EXPORT_SYMBOL(dev_open);
1441
1442 static void __dev_close_many(struct list_head *head)
1443 {
1444         struct net_device *dev;
1445
1446         ASSERT_RTNL();
1447         might_sleep();
1448
1449         list_for_each_entry(dev, head, close_list) {
1450                 /* Temporarily disable netpoll until the interface is down */
1451                 netpoll_poll_disable(dev);
1452
1453                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1454
1455                 clear_bit(__LINK_STATE_START, &dev->state);
1456
1457                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1458                  * can be even on different cpu. So just clear netif_running().
1459                  *
1460                  * dev->stop() will invoke napi_disable() on all of it's
1461                  * napi_struct instances on this device.
1462                  */
1463                 smp_mb__after_atomic(); /* Commit netif_running(). */
1464         }
1465
1466         dev_deactivate_many(head);
1467
1468         list_for_each_entry(dev, head, close_list) {
1469                 const struct net_device_ops *ops = dev->netdev_ops;
1470
1471                 /*
1472                  *      Call the device specific close. This cannot fail.
1473                  *      Only if device is UP
1474                  *
1475                  *      We allow it to be called even after a DETACH hot-plug
1476                  *      event.
1477                  */
1478                 if (ops->ndo_stop)
1479                         ops->ndo_stop(dev);
1480
1481                 dev->flags &= ~IFF_UP;
1482                 netpoll_poll_enable(dev);
1483         }
1484 }
1485
1486 static void __dev_close(struct net_device *dev)
1487 {
1488         LIST_HEAD(single);
1489
1490         list_add(&dev->close_list, &single);
1491         __dev_close_many(&single);
1492         list_del(&single);
1493 }
1494
1495 void dev_close_many(struct list_head *head, bool unlink)
1496 {
1497         struct net_device *dev, *tmp;
1498
1499         /* Remove the devices that don't need to be closed */
1500         list_for_each_entry_safe(dev, tmp, head, close_list)
1501                 if (!(dev->flags & IFF_UP))
1502                         list_del_init(&dev->close_list);
1503
1504         __dev_close_many(head);
1505
1506         list_for_each_entry_safe(dev, tmp, head, close_list) {
1507                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1508                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1509                 if (unlink)
1510                         list_del_init(&dev->close_list);
1511         }
1512 }
1513 EXPORT_SYMBOL(dev_close_many);
1514
1515 /**
1516  *      dev_close - shutdown an interface.
1517  *      @dev: device to shutdown
1518  *
1519  *      This function moves an active device into down state. A
1520  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1521  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1522  *      chain.
1523  */
1524 void dev_close(struct net_device *dev)
1525 {
1526         if (dev->flags & IFF_UP) {
1527                 LIST_HEAD(single);
1528
1529                 list_add(&dev->close_list, &single);
1530                 dev_close_many(&single, true);
1531                 list_del(&single);
1532         }
1533 }
1534 EXPORT_SYMBOL(dev_close);
1535
1536
1537 /**
1538  *      dev_disable_lro - disable Large Receive Offload on a device
1539  *      @dev: device
1540  *
1541  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1542  *      called under RTNL.  This is needed if received packets may be
1543  *      forwarded to another interface.
1544  */
1545 void dev_disable_lro(struct net_device *dev)
1546 {
1547         struct net_device *lower_dev;
1548         struct list_head *iter;
1549
1550         dev->wanted_features &= ~NETIF_F_LRO;
1551         netdev_update_features(dev);
1552
1553         if (unlikely(dev->features & NETIF_F_LRO))
1554                 netdev_WARN(dev, "failed to disable LRO!\n");
1555
1556         netdev_for_each_lower_dev(dev, lower_dev, iter)
1557                 dev_disable_lro(lower_dev);
1558 }
1559 EXPORT_SYMBOL(dev_disable_lro);
1560
1561 /**
1562  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1563  *      @dev: device
1564  *
1565  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1566  *      called under RTNL.  This is needed if Generic XDP is installed on
1567  *      the device.
1568  */
1569 static void dev_disable_gro_hw(struct net_device *dev)
1570 {
1571         dev->wanted_features &= ~NETIF_F_GRO_HW;
1572         netdev_update_features(dev);
1573
1574         if (unlikely(dev->features & NETIF_F_GRO_HW))
1575                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1576 }
1577
1578 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1579 {
1580 #define N(val)                                          \
1581         case NETDEV_##val:                              \
1582                 return "NETDEV_" __stringify(val);
1583         switch (cmd) {
1584         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1585         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1586         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1587         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1588         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1589         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1590         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1591         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1592         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1593         N(PRE_CHANGEADDR)
1594         }
1595 #undef N
1596         return "UNKNOWN_NETDEV_EVENT";
1597 }
1598 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1599
1600 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1601                                    struct net_device *dev)
1602 {
1603         struct netdev_notifier_info info = {
1604                 .dev = dev,
1605         };
1606
1607         return nb->notifier_call(nb, val, &info);
1608 }
1609
1610 static int dev_boot_phase = 1;
1611
1612 /**
1613  * register_netdevice_notifier - register a network notifier block
1614  * @nb: notifier
1615  *
1616  * Register a notifier to be called when network device events occur.
1617  * The notifier passed is linked into the kernel structures and must
1618  * not be reused until it has been unregistered. A negative errno code
1619  * is returned on a failure.
1620  *
1621  * When registered all registration and up events are replayed
1622  * to the new notifier to allow device to have a race free
1623  * view of the network device list.
1624  */
1625
1626 int register_netdevice_notifier(struct notifier_block *nb)
1627 {
1628         struct net_device *dev;
1629         struct net_device *last;
1630         struct net *net;
1631         int err;
1632
1633         /* Close race with setup_net() and cleanup_net() */
1634         down_write(&pernet_ops_rwsem);
1635         rtnl_lock();
1636         err = raw_notifier_chain_register(&netdev_chain, nb);
1637         if (err)
1638                 goto unlock;
1639         if (dev_boot_phase)
1640                 goto unlock;
1641         for_each_net(net) {
1642                 for_each_netdev(net, dev) {
1643                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1644                         err = notifier_to_errno(err);
1645                         if (err)
1646                                 goto rollback;
1647
1648                         if (!(dev->flags & IFF_UP))
1649                                 continue;
1650
1651                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1652                 }
1653         }
1654
1655 unlock:
1656         rtnl_unlock();
1657         up_write(&pernet_ops_rwsem);
1658         return err;
1659
1660 rollback:
1661         last = dev;
1662         for_each_net(net) {
1663                 for_each_netdev(net, dev) {
1664                         if (dev == last)
1665                                 goto outroll;
1666
1667                         if (dev->flags & IFF_UP) {
1668                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1669                                                         dev);
1670                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1671                         }
1672                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1673                 }
1674         }
1675
1676 outroll:
1677         raw_notifier_chain_unregister(&netdev_chain, nb);
1678         goto unlock;
1679 }
1680 EXPORT_SYMBOL(register_netdevice_notifier);
1681
1682 /**
1683  * unregister_netdevice_notifier - unregister a network notifier block
1684  * @nb: notifier
1685  *
1686  * Unregister a notifier previously registered by
1687  * register_netdevice_notifier(). The notifier is unlinked into the
1688  * kernel structures and may then be reused. A negative errno code
1689  * is returned on a failure.
1690  *
1691  * After unregistering unregister and down device events are synthesized
1692  * for all devices on the device list to the removed notifier to remove
1693  * the need for special case cleanup code.
1694  */
1695
1696 int unregister_netdevice_notifier(struct notifier_block *nb)
1697 {
1698         struct net_device *dev;
1699         struct net *net;
1700         int err;
1701
1702         /* Close race with setup_net() and cleanup_net() */
1703         down_write(&pernet_ops_rwsem);
1704         rtnl_lock();
1705         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1706         if (err)
1707                 goto unlock;
1708
1709         for_each_net(net) {
1710                 for_each_netdev(net, dev) {
1711                         if (dev->flags & IFF_UP) {
1712                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1713                                                         dev);
1714                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1715                         }
1716                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1717                 }
1718         }
1719 unlock:
1720         rtnl_unlock();
1721         up_write(&pernet_ops_rwsem);
1722         return err;
1723 }
1724 EXPORT_SYMBOL(unregister_netdevice_notifier);
1725
1726 /**
1727  *      call_netdevice_notifiers_info - call all network notifier blocks
1728  *      @val: value passed unmodified to notifier function
1729  *      @info: notifier information data
1730  *
1731  *      Call all network notifier blocks.  Parameters and return value
1732  *      are as for raw_notifier_call_chain().
1733  */
1734
1735 static int call_netdevice_notifiers_info(unsigned long val,
1736                                          struct netdev_notifier_info *info)
1737 {
1738         ASSERT_RTNL();
1739         return raw_notifier_call_chain(&netdev_chain, val, info);
1740 }
1741
1742 static int call_netdevice_notifiers_extack(unsigned long val,
1743                                            struct net_device *dev,
1744                                            struct netlink_ext_ack *extack)
1745 {
1746         struct netdev_notifier_info info = {
1747                 .dev = dev,
1748                 .extack = extack,
1749         };
1750
1751         return call_netdevice_notifiers_info(val, &info);
1752 }
1753
1754 /**
1755  *      call_netdevice_notifiers - call all network notifier blocks
1756  *      @val: value passed unmodified to notifier function
1757  *      @dev: net_device pointer passed unmodified to notifier function
1758  *
1759  *      Call all network notifier blocks.  Parameters and return value
1760  *      are as for raw_notifier_call_chain().
1761  */
1762
1763 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1764 {
1765         return call_netdevice_notifiers_extack(val, dev, NULL);
1766 }
1767 EXPORT_SYMBOL(call_netdevice_notifiers);
1768
1769 /**
1770  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1771  *      @val: value passed unmodified to notifier function
1772  *      @dev: net_device pointer passed unmodified to notifier function
1773  *      @arg: additional u32 argument passed to the notifier function
1774  *
1775  *      Call all network notifier blocks.  Parameters and return value
1776  *      are as for raw_notifier_call_chain().
1777  */
1778 static int call_netdevice_notifiers_mtu(unsigned long val,
1779                                         struct net_device *dev, u32 arg)
1780 {
1781         struct netdev_notifier_info_ext info = {
1782                 .info.dev = dev,
1783                 .ext.mtu = arg,
1784         };
1785
1786         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1787
1788         return call_netdevice_notifiers_info(val, &info.info);
1789 }
1790
1791 #ifdef CONFIG_NET_INGRESS
1792 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1793
1794 void net_inc_ingress_queue(void)
1795 {
1796         static_branch_inc(&ingress_needed_key);
1797 }
1798 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1799
1800 void net_dec_ingress_queue(void)
1801 {
1802         static_branch_dec(&ingress_needed_key);
1803 }
1804 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1805 #endif
1806
1807 #ifdef CONFIG_NET_EGRESS
1808 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1809
1810 void net_inc_egress_queue(void)
1811 {
1812         static_branch_inc(&egress_needed_key);
1813 }
1814 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1815
1816 void net_dec_egress_queue(void)
1817 {
1818         static_branch_dec(&egress_needed_key);
1819 }
1820 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1821 #endif
1822
1823 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1824 #ifdef CONFIG_JUMP_LABEL
1825 static atomic_t netstamp_needed_deferred;
1826 static atomic_t netstamp_wanted;
1827 static void netstamp_clear(struct work_struct *work)
1828 {
1829         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1830         int wanted;
1831
1832         wanted = atomic_add_return(deferred, &netstamp_wanted);
1833         if (wanted > 0)
1834                 static_branch_enable(&netstamp_needed_key);
1835         else
1836                 static_branch_disable(&netstamp_needed_key);
1837 }
1838 static DECLARE_WORK(netstamp_work, netstamp_clear);
1839 #endif
1840
1841 void net_enable_timestamp(void)
1842 {
1843 #ifdef CONFIG_JUMP_LABEL
1844         int wanted;
1845
1846         while (1) {
1847                 wanted = atomic_read(&netstamp_wanted);
1848                 if (wanted <= 0)
1849                         break;
1850                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1851                         return;
1852         }
1853         atomic_inc(&netstamp_needed_deferred);
1854         schedule_work(&netstamp_work);
1855 #else
1856         static_branch_inc(&netstamp_needed_key);
1857 #endif
1858 }
1859 EXPORT_SYMBOL(net_enable_timestamp);
1860
1861 void net_disable_timestamp(void)
1862 {
1863 #ifdef CONFIG_JUMP_LABEL
1864         int wanted;
1865
1866         while (1) {
1867                 wanted = atomic_read(&netstamp_wanted);
1868                 if (wanted <= 1)
1869                         break;
1870                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1871                         return;
1872         }
1873         atomic_dec(&netstamp_needed_deferred);
1874         schedule_work(&netstamp_work);
1875 #else
1876         static_branch_dec(&netstamp_needed_key);
1877 #endif
1878 }
1879 EXPORT_SYMBOL(net_disable_timestamp);
1880
1881 static inline void net_timestamp_set(struct sk_buff *skb)
1882 {
1883         skb->tstamp = 0;
1884         if (static_branch_unlikely(&netstamp_needed_key))
1885                 __net_timestamp(skb);
1886 }
1887
1888 #define net_timestamp_check(COND, SKB)                          \
1889         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1890                 if ((COND) && !(SKB)->tstamp)                   \
1891                         __net_timestamp(SKB);                   \
1892         }                                                       \
1893
1894 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1895 {
1896         unsigned int len;
1897
1898         if (!(dev->flags & IFF_UP))
1899                 return false;
1900
1901         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1902         if (skb->len <= len)
1903                 return true;
1904
1905         /* if TSO is enabled, we don't care about the length as the packet
1906          * could be forwarded without being segmented before
1907          */
1908         if (skb_is_gso(skb))
1909                 return true;
1910
1911         return false;
1912 }
1913 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1914
1915 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1916 {
1917         int ret = ____dev_forward_skb(dev, skb);
1918
1919         if (likely(!ret)) {
1920                 skb->protocol = eth_type_trans(skb, dev);
1921                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1922         }
1923
1924         return ret;
1925 }
1926 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1927
1928 /**
1929  * dev_forward_skb - loopback an skb to another netif
1930  *
1931  * @dev: destination network device
1932  * @skb: buffer to forward
1933  *
1934  * return values:
1935  *      NET_RX_SUCCESS  (no congestion)
1936  *      NET_RX_DROP     (packet was dropped, but freed)
1937  *
1938  * dev_forward_skb can be used for injecting an skb from the
1939  * start_xmit function of one device into the receive queue
1940  * of another device.
1941  *
1942  * The receiving device may be in another namespace, so
1943  * we have to clear all information in the skb that could
1944  * impact namespace isolation.
1945  */
1946 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1947 {
1948         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1949 }
1950 EXPORT_SYMBOL_GPL(dev_forward_skb);
1951
1952 static inline int deliver_skb(struct sk_buff *skb,
1953                               struct packet_type *pt_prev,
1954                               struct net_device *orig_dev)
1955 {
1956         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1957                 return -ENOMEM;
1958         refcount_inc(&skb->users);
1959         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1960 }
1961
1962 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1963                                           struct packet_type **pt,
1964                                           struct net_device *orig_dev,
1965                                           __be16 type,
1966                                           struct list_head *ptype_list)
1967 {
1968         struct packet_type *ptype, *pt_prev = *pt;
1969
1970         list_for_each_entry_rcu(ptype, ptype_list, list) {
1971                 if (ptype->type != type)
1972                         continue;
1973                 if (pt_prev)
1974                         deliver_skb(skb, pt_prev, orig_dev);
1975                 pt_prev = ptype;
1976         }
1977         *pt = pt_prev;
1978 }
1979
1980 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1981 {
1982         if (!ptype->af_packet_priv || !skb->sk)
1983                 return false;
1984
1985         if (ptype->id_match)
1986                 return ptype->id_match(ptype, skb->sk);
1987         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1988                 return true;
1989
1990         return false;
1991 }
1992
1993 /**
1994  * dev_nit_active - return true if any network interface taps are in use
1995  *
1996  * @dev: network device to check for the presence of taps
1997  */
1998 bool dev_nit_active(struct net_device *dev)
1999 {
2000         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2001 }
2002 EXPORT_SYMBOL_GPL(dev_nit_active);
2003
2004 /*
2005  *      Support routine. Sends outgoing frames to any network
2006  *      taps currently in use.
2007  */
2008
2009 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2010 {
2011         struct packet_type *ptype;
2012         struct sk_buff *skb2 = NULL;
2013         struct packet_type *pt_prev = NULL;
2014         struct list_head *ptype_list = &ptype_all;
2015
2016         rcu_read_lock();
2017 again:
2018         list_for_each_entry_rcu(ptype, ptype_list, list) {
2019                 if (ptype->ignore_outgoing)
2020                         continue;
2021
2022                 /* Never send packets back to the socket
2023                  * they originated from - MvS (miquels@drinkel.ow.org)
2024                  */
2025                 if (skb_loop_sk(ptype, skb))
2026                         continue;
2027
2028                 if (pt_prev) {
2029                         deliver_skb(skb2, pt_prev, skb->dev);
2030                         pt_prev = ptype;
2031                         continue;
2032                 }
2033
2034                 /* need to clone skb, done only once */
2035                 skb2 = skb_clone(skb, GFP_ATOMIC);
2036                 if (!skb2)
2037                         goto out_unlock;
2038
2039                 net_timestamp_set(skb2);
2040
2041                 /* skb->nh should be correctly
2042                  * set by sender, so that the second statement is
2043                  * just protection against buggy protocols.
2044                  */
2045                 skb_reset_mac_header(skb2);
2046
2047                 if (skb_network_header(skb2) < skb2->data ||
2048                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2049                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2050                                              ntohs(skb2->protocol),
2051                                              dev->name);
2052                         skb_reset_network_header(skb2);
2053                 }
2054
2055                 skb2->transport_header = skb2->network_header;
2056                 skb2->pkt_type = PACKET_OUTGOING;
2057                 pt_prev = ptype;
2058         }
2059
2060         if (ptype_list == &ptype_all) {
2061                 ptype_list = &dev->ptype_all;
2062                 goto again;
2063         }
2064 out_unlock:
2065         if (pt_prev) {
2066                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2067                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2068                 else
2069                         kfree_skb(skb2);
2070         }
2071         rcu_read_unlock();
2072 }
2073 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2074
2075 /**
2076  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2077  * @dev: Network device
2078  * @txq: number of queues available
2079  *
2080  * If real_num_tx_queues is changed the tc mappings may no longer be
2081  * valid. To resolve this verify the tc mapping remains valid and if
2082  * not NULL the mapping. With no priorities mapping to this
2083  * offset/count pair it will no longer be used. In the worst case TC0
2084  * is invalid nothing can be done so disable priority mappings. If is
2085  * expected that drivers will fix this mapping if they can before
2086  * calling netif_set_real_num_tx_queues.
2087  */
2088 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2089 {
2090         int i;
2091         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2092
2093         /* If TC0 is invalidated disable TC mapping */
2094         if (tc->offset + tc->count > txq) {
2095                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2096                 dev->num_tc = 0;
2097                 return;
2098         }
2099
2100         /* Invalidated prio to tc mappings set to TC0 */
2101         for (i = 1; i < TC_BITMASK + 1; i++) {
2102                 int q = netdev_get_prio_tc_map(dev, i);
2103
2104                 tc = &dev->tc_to_txq[q];
2105                 if (tc->offset + tc->count > txq) {
2106                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2107                                 i, q);
2108                         netdev_set_prio_tc_map(dev, i, 0);
2109                 }
2110         }
2111 }
2112
2113 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2114 {
2115         if (dev->num_tc) {
2116                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2117                 int i;
2118
2119                 /* walk through the TCs and see if it falls into any of them */
2120                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2121                         if ((txq - tc->offset) < tc->count)
2122                                 return i;
2123                 }
2124
2125                 /* didn't find it, just return -1 to indicate no match */
2126                 return -1;
2127         }
2128
2129         return 0;
2130 }
2131 EXPORT_SYMBOL(netdev_txq_to_tc);
2132
2133 #ifdef CONFIG_XPS
2134 struct static_key xps_needed __read_mostly;
2135 EXPORT_SYMBOL(xps_needed);
2136 struct static_key xps_rxqs_needed __read_mostly;
2137 EXPORT_SYMBOL(xps_rxqs_needed);
2138 static DEFINE_MUTEX(xps_map_mutex);
2139 #define xmap_dereference(P)             \
2140         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2141
2142 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2143                              int tci, u16 index)
2144 {
2145         struct xps_map *map = NULL;
2146         int pos;
2147
2148         if (dev_maps)
2149                 map = xmap_dereference(dev_maps->attr_map[tci]);
2150         if (!map)
2151                 return false;
2152
2153         for (pos = map->len; pos--;) {
2154                 if (map->queues[pos] != index)
2155                         continue;
2156
2157                 if (map->len > 1) {
2158                         map->queues[pos] = map->queues[--map->len];
2159                         break;
2160                 }
2161
2162                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2163                 kfree_rcu(map, rcu);
2164                 return false;
2165         }
2166
2167         return true;
2168 }
2169
2170 static bool remove_xps_queue_cpu(struct net_device *dev,
2171                                  struct xps_dev_maps *dev_maps,
2172                                  int cpu, u16 offset, u16 count)
2173 {
2174         int num_tc = dev->num_tc ? : 1;
2175         bool active = false;
2176         int tci;
2177
2178         for (tci = cpu * num_tc; num_tc--; tci++) {
2179                 int i, j;
2180
2181                 for (i = count, j = offset; i--; j++) {
2182                         if (!remove_xps_queue(dev_maps, tci, j))
2183                                 break;
2184                 }
2185
2186                 active |= i < 0;
2187         }
2188
2189         return active;
2190 }
2191
2192 static void reset_xps_maps(struct net_device *dev,
2193                            struct xps_dev_maps *dev_maps,
2194                            bool is_rxqs_map)
2195 {
2196         if (is_rxqs_map) {
2197                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2198                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2199         } else {
2200                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2201         }
2202         static_key_slow_dec_cpuslocked(&xps_needed);
2203         kfree_rcu(dev_maps, rcu);
2204 }
2205
2206 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2207                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2208                            u16 offset, u16 count, bool is_rxqs_map)
2209 {
2210         bool active = false;
2211         int i, j;
2212
2213         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2214              j < nr_ids;)
2215                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2216                                                count);
2217         if (!active)
2218                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2219
2220         if (!is_rxqs_map) {
2221                 for (i = offset + (count - 1); count--; i--) {
2222                         netdev_queue_numa_node_write(
2223                                 netdev_get_tx_queue(dev, i),
2224                                 NUMA_NO_NODE);
2225                 }
2226         }
2227 }
2228
2229 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2230                                    u16 count)
2231 {
2232         const unsigned long *possible_mask = NULL;
2233         struct xps_dev_maps *dev_maps;
2234         unsigned int nr_ids;
2235
2236         if (!static_key_false(&xps_needed))
2237                 return;
2238
2239         cpus_read_lock();
2240         mutex_lock(&xps_map_mutex);
2241
2242         if (static_key_false(&xps_rxqs_needed)) {
2243                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2244                 if (dev_maps) {
2245                         nr_ids = dev->num_rx_queues;
2246                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2247                                        offset, count, true);
2248                 }
2249         }
2250
2251         dev_maps = xmap_dereference(dev->xps_cpus_map);
2252         if (!dev_maps)
2253                 goto out_no_maps;
2254
2255         if (num_possible_cpus() > 1)
2256                 possible_mask = cpumask_bits(cpu_possible_mask);
2257         nr_ids = nr_cpu_ids;
2258         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2259                        false);
2260
2261 out_no_maps:
2262         mutex_unlock(&xps_map_mutex);
2263         cpus_read_unlock();
2264 }
2265
2266 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2267 {
2268         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2269 }
2270
2271 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2272                                       u16 index, bool is_rxqs_map)
2273 {
2274         struct xps_map *new_map;
2275         int alloc_len = XPS_MIN_MAP_ALLOC;
2276         int i, pos;
2277
2278         for (pos = 0; map && pos < map->len; pos++) {
2279                 if (map->queues[pos] != index)
2280                         continue;
2281                 return map;
2282         }
2283
2284         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2285         if (map) {
2286                 if (pos < map->alloc_len)
2287                         return map;
2288
2289                 alloc_len = map->alloc_len * 2;
2290         }
2291
2292         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2293          *  map
2294          */
2295         if (is_rxqs_map)
2296                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2297         else
2298                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2299                                        cpu_to_node(attr_index));
2300         if (!new_map)
2301                 return NULL;
2302
2303         for (i = 0; i < pos; i++)
2304                 new_map->queues[i] = map->queues[i];
2305         new_map->alloc_len = alloc_len;
2306         new_map->len = pos;
2307
2308         return new_map;
2309 }
2310
2311 /* Must be called under cpus_read_lock */
2312 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2313                           u16 index, bool is_rxqs_map)
2314 {
2315         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2316         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2317         int i, j, tci, numa_node_id = -2;
2318         int maps_sz, num_tc = 1, tc = 0;
2319         struct xps_map *map, *new_map;
2320         bool active = false;
2321         unsigned int nr_ids;
2322
2323         if (dev->num_tc) {
2324                 /* Do not allow XPS on subordinate device directly */
2325                 num_tc = dev->num_tc;
2326                 if (num_tc < 0)
2327                         return -EINVAL;
2328
2329                 /* If queue belongs to subordinate dev use its map */
2330                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2331
2332                 tc = netdev_txq_to_tc(dev, index);
2333                 if (tc < 0)
2334                         return -EINVAL;
2335         }
2336
2337         mutex_lock(&xps_map_mutex);
2338         if (is_rxqs_map) {
2339                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2340                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2341                 nr_ids = dev->num_rx_queues;
2342         } else {
2343                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2344                 if (num_possible_cpus() > 1) {
2345                         online_mask = cpumask_bits(cpu_online_mask);
2346                         possible_mask = cpumask_bits(cpu_possible_mask);
2347                 }
2348                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2349                 nr_ids = nr_cpu_ids;
2350         }
2351
2352         if (maps_sz < L1_CACHE_BYTES)
2353                 maps_sz = L1_CACHE_BYTES;
2354
2355         /* allocate memory for queue storage */
2356         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2357              j < nr_ids;) {
2358                 if (!new_dev_maps)
2359                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2360                 if (!new_dev_maps) {
2361                         mutex_unlock(&xps_map_mutex);
2362                         return -ENOMEM;
2363                 }
2364
2365                 tci = j * num_tc + tc;
2366                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2367                                  NULL;
2368
2369                 map = expand_xps_map(map, j, index, is_rxqs_map);
2370                 if (!map)
2371                         goto error;
2372
2373                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2374         }
2375
2376         if (!new_dev_maps)
2377                 goto out_no_new_maps;
2378
2379         if (!dev_maps) {
2380                 /* Increment static keys at most once per type */
2381                 static_key_slow_inc_cpuslocked(&xps_needed);
2382                 if (is_rxqs_map)
2383                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2384         }
2385
2386         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2387              j < nr_ids;) {
2388                 /* copy maps belonging to foreign traffic classes */
2389                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2390                         /* fill in the new device map from the old device map */
2391                         map = xmap_dereference(dev_maps->attr_map[tci]);
2392                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2393                 }
2394
2395                 /* We need to explicitly update tci as prevous loop
2396                  * could break out early if dev_maps is NULL.
2397                  */
2398                 tci = j * num_tc + tc;
2399
2400                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2401                     netif_attr_test_online(j, online_mask, nr_ids)) {
2402                         /* add tx-queue to CPU/rx-queue maps */
2403                         int pos = 0;
2404
2405                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2406                         while ((pos < map->len) && (map->queues[pos] != index))
2407                                 pos++;
2408
2409                         if (pos == map->len)
2410                                 map->queues[map->len++] = index;
2411 #ifdef CONFIG_NUMA
2412                         if (!is_rxqs_map) {
2413                                 if (numa_node_id == -2)
2414                                         numa_node_id = cpu_to_node(j);
2415                                 else if (numa_node_id != cpu_to_node(j))
2416                                         numa_node_id = -1;
2417                         }
2418 #endif
2419                 } else if (dev_maps) {
2420                         /* fill in the new device map from the old device map */
2421                         map = xmap_dereference(dev_maps->attr_map[tci]);
2422                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2423                 }
2424
2425                 /* copy maps belonging to foreign traffic classes */
2426                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2427                         /* fill in the new device map from the old device map */
2428                         map = xmap_dereference(dev_maps->attr_map[tci]);
2429                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2430                 }
2431         }
2432
2433         if (is_rxqs_map)
2434                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2435         else
2436                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2437
2438         /* Cleanup old maps */
2439         if (!dev_maps)
2440                 goto out_no_old_maps;
2441
2442         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2443              j < nr_ids;) {
2444                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2445                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2446                         map = xmap_dereference(dev_maps->attr_map[tci]);
2447                         if (map && map != new_map)
2448                                 kfree_rcu(map, rcu);
2449                 }
2450         }
2451
2452         kfree_rcu(dev_maps, rcu);
2453
2454 out_no_old_maps:
2455         dev_maps = new_dev_maps;
2456         active = true;
2457
2458 out_no_new_maps:
2459         if (!is_rxqs_map) {
2460                 /* update Tx queue numa node */
2461                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2462                                              (numa_node_id >= 0) ?
2463                                              numa_node_id : NUMA_NO_NODE);
2464         }
2465
2466         if (!dev_maps)
2467                 goto out_no_maps;
2468
2469         /* removes tx-queue from unused CPUs/rx-queues */
2470         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2471              j < nr_ids;) {
2472                 for (i = tc, tci = j * num_tc; i--; tci++)
2473                         active |= remove_xps_queue(dev_maps, tci, index);
2474                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2475                     !netif_attr_test_online(j, online_mask, nr_ids))
2476                         active |= remove_xps_queue(dev_maps, tci, index);
2477                 for (i = num_tc - tc, tci++; --i; tci++)
2478                         active |= remove_xps_queue(dev_maps, tci, index);
2479         }
2480
2481         /* free map if not active */
2482         if (!active)
2483                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2484
2485 out_no_maps:
2486         mutex_unlock(&xps_map_mutex);
2487
2488         return 0;
2489 error:
2490         /* remove any maps that we added */
2491         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2492              j < nr_ids;) {
2493                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2494                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2495                         map = dev_maps ?
2496                               xmap_dereference(dev_maps->attr_map[tci]) :
2497                               NULL;
2498                         if (new_map && new_map != map)
2499                                 kfree(new_map);
2500                 }
2501         }
2502
2503         mutex_unlock(&xps_map_mutex);
2504
2505         kfree(new_dev_maps);
2506         return -ENOMEM;
2507 }
2508 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2509
2510 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2511                         u16 index)
2512 {
2513         int ret;
2514
2515         cpus_read_lock();
2516         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2517         cpus_read_unlock();
2518
2519         return ret;
2520 }
2521 EXPORT_SYMBOL(netif_set_xps_queue);
2522
2523 #endif
2524 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2525 {
2526         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2527
2528         /* Unbind any subordinate channels */
2529         while (txq-- != &dev->_tx[0]) {
2530                 if (txq->sb_dev)
2531                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2532         }
2533 }
2534
2535 void netdev_reset_tc(struct net_device *dev)
2536 {
2537 #ifdef CONFIG_XPS
2538         netif_reset_xps_queues_gt(dev, 0);
2539 #endif
2540         netdev_unbind_all_sb_channels(dev);
2541
2542         /* Reset TC configuration of device */
2543         dev->num_tc = 0;
2544         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2545         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2546 }
2547 EXPORT_SYMBOL(netdev_reset_tc);
2548
2549 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2550 {
2551         if (tc >= dev->num_tc)
2552                 return -EINVAL;
2553
2554 #ifdef CONFIG_XPS
2555         netif_reset_xps_queues(dev, offset, count);
2556 #endif
2557         dev->tc_to_txq[tc].count = count;
2558         dev->tc_to_txq[tc].offset = offset;
2559         return 0;
2560 }
2561 EXPORT_SYMBOL(netdev_set_tc_queue);
2562
2563 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2564 {
2565         if (num_tc > TC_MAX_QUEUE)
2566                 return -EINVAL;
2567
2568 #ifdef CONFIG_XPS
2569         netif_reset_xps_queues_gt(dev, 0);
2570 #endif
2571         netdev_unbind_all_sb_channels(dev);
2572
2573         dev->num_tc = num_tc;
2574         return 0;
2575 }
2576 EXPORT_SYMBOL(netdev_set_num_tc);
2577
2578 void netdev_unbind_sb_channel(struct net_device *dev,
2579                               struct net_device *sb_dev)
2580 {
2581         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2582
2583 #ifdef CONFIG_XPS
2584         netif_reset_xps_queues_gt(sb_dev, 0);
2585 #endif
2586         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2587         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2588
2589         while (txq-- != &dev->_tx[0]) {
2590                 if (txq->sb_dev == sb_dev)
2591                         txq->sb_dev = NULL;
2592         }
2593 }
2594 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2595
2596 int netdev_bind_sb_channel_queue(struct net_device *dev,
2597                                  struct net_device *sb_dev,
2598                                  u8 tc, u16 count, u16 offset)
2599 {
2600         /* Make certain the sb_dev and dev are already configured */
2601         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2602                 return -EINVAL;
2603
2604         /* We cannot hand out queues we don't have */
2605         if ((offset + count) > dev->real_num_tx_queues)
2606                 return -EINVAL;
2607
2608         /* Record the mapping */
2609         sb_dev->tc_to_txq[tc].count = count;
2610         sb_dev->tc_to_txq[tc].offset = offset;
2611
2612         /* Provide a way for Tx queue to find the tc_to_txq map or
2613          * XPS map for itself.
2614          */
2615         while (count--)
2616                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2617
2618         return 0;
2619 }
2620 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2621
2622 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2623 {
2624         /* Do not use a multiqueue device to represent a subordinate channel */
2625         if (netif_is_multiqueue(dev))
2626                 return -ENODEV;
2627
2628         /* We allow channels 1 - 32767 to be used for subordinate channels.
2629          * Channel 0 is meant to be "native" mode and used only to represent
2630          * the main root device. We allow writing 0 to reset the device back
2631          * to normal mode after being used as a subordinate channel.
2632          */
2633         if (channel > S16_MAX)
2634                 return -EINVAL;
2635
2636         dev->num_tc = -channel;
2637
2638         return 0;
2639 }
2640 EXPORT_SYMBOL(netdev_set_sb_channel);
2641
2642 /*
2643  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2644  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2645  */
2646 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2647 {
2648         bool disabling;
2649         int rc;
2650
2651         disabling = txq < dev->real_num_tx_queues;
2652
2653         if (txq < 1 || txq > dev->num_tx_queues)
2654                 return -EINVAL;
2655
2656         if (dev->reg_state == NETREG_REGISTERED ||
2657             dev->reg_state == NETREG_UNREGISTERING) {
2658                 ASSERT_RTNL();
2659
2660                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2661                                                   txq);
2662                 if (rc)
2663                         return rc;
2664
2665                 if (dev->num_tc)
2666                         netif_setup_tc(dev, txq);
2667
2668                 dev->real_num_tx_queues = txq;
2669
2670                 if (disabling) {
2671                         synchronize_net();
2672                         qdisc_reset_all_tx_gt(dev, txq);
2673 #ifdef CONFIG_XPS
2674                         netif_reset_xps_queues_gt(dev, txq);
2675 #endif
2676                 }
2677         } else {
2678                 dev->real_num_tx_queues = txq;
2679         }
2680
2681         return 0;
2682 }
2683 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2684
2685 #ifdef CONFIG_SYSFS
2686 /**
2687  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2688  *      @dev: Network device
2689  *      @rxq: Actual number of RX queues
2690  *
2691  *      This must be called either with the rtnl_lock held or before
2692  *      registration of the net device.  Returns 0 on success, or a
2693  *      negative error code.  If called before registration, it always
2694  *      succeeds.
2695  */
2696 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2697 {
2698         int rc;
2699
2700         if (rxq < 1 || rxq > dev->num_rx_queues)
2701                 return -EINVAL;
2702
2703         if (dev->reg_state == NETREG_REGISTERED) {
2704                 ASSERT_RTNL();
2705
2706                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2707                                                   rxq);
2708                 if (rc)
2709                         return rc;
2710         }
2711
2712         dev->real_num_rx_queues = rxq;
2713         return 0;
2714 }
2715 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2716 #endif
2717
2718 /**
2719  * netif_get_num_default_rss_queues - default number of RSS queues
2720  *
2721  * This routine should set an upper limit on the number of RSS queues
2722  * used by default by multiqueue devices.
2723  */
2724 int netif_get_num_default_rss_queues(void)
2725 {
2726         return is_kdump_kernel() ?
2727                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2728 }
2729 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2730
2731 static void __netif_reschedule(struct Qdisc *q)
2732 {
2733         struct softnet_data *sd;
2734         unsigned long flags;
2735
2736         local_irq_save(flags);
2737         sd = this_cpu_ptr(&softnet_data);
2738         q->next_sched = NULL;
2739         *sd->output_queue_tailp = q;
2740         sd->output_queue_tailp = &q->next_sched;
2741         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2742         local_irq_restore(flags);
2743 }
2744
2745 void __netif_schedule(struct Qdisc *q)
2746 {
2747         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2748                 __netif_reschedule(q);
2749 }
2750 EXPORT_SYMBOL(__netif_schedule);
2751
2752 struct dev_kfree_skb_cb {
2753         enum skb_free_reason reason;
2754 };
2755
2756 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2757 {
2758         return (struct dev_kfree_skb_cb *)skb->cb;
2759 }
2760
2761 void netif_schedule_queue(struct netdev_queue *txq)
2762 {
2763         rcu_read_lock();
2764         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2765                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2766
2767                 __netif_schedule(q);
2768         }
2769         rcu_read_unlock();
2770 }
2771 EXPORT_SYMBOL(netif_schedule_queue);
2772
2773 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2774 {
2775         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2776                 struct Qdisc *q;
2777
2778                 rcu_read_lock();
2779                 q = rcu_dereference(dev_queue->qdisc);
2780                 __netif_schedule(q);
2781                 rcu_read_unlock();
2782         }
2783 }
2784 EXPORT_SYMBOL(netif_tx_wake_queue);
2785
2786 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2787 {
2788         unsigned long flags;
2789
2790         if (unlikely(!skb))
2791                 return;
2792
2793         if (likely(refcount_read(&skb->users) == 1)) {
2794                 smp_rmb();
2795                 refcount_set(&skb->users, 0);
2796         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2797                 return;
2798         }
2799         get_kfree_skb_cb(skb)->reason = reason;
2800         local_irq_save(flags);
2801         skb->next = __this_cpu_read(softnet_data.completion_queue);
2802         __this_cpu_write(softnet_data.completion_queue, skb);
2803         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2804         local_irq_restore(flags);
2805 }
2806 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2807
2808 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2809 {
2810         if (in_irq() || irqs_disabled())
2811                 __dev_kfree_skb_irq(skb, reason);
2812         else
2813                 dev_kfree_skb(skb);
2814 }
2815 EXPORT_SYMBOL(__dev_kfree_skb_any);
2816
2817
2818 /**
2819  * netif_device_detach - mark device as removed
2820  * @dev: network device
2821  *
2822  * Mark device as removed from system and therefore no longer available.
2823  */
2824 void netif_device_detach(struct net_device *dev)
2825 {
2826         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2827             netif_running(dev)) {
2828                 netif_tx_stop_all_queues(dev);
2829         }
2830 }
2831 EXPORT_SYMBOL(netif_device_detach);
2832
2833 /**
2834  * netif_device_attach - mark device as attached
2835  * @dev: network device
2836  *
2837  * Mark device as attached from system and restart if needed.
2838  */
2839 void netif_device_attach(struct net_device *dev)
2840 {
2841         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2842             netif_running(dev)) {
2843                 netif_tx_wake_all_queues(dev);
2844                 __netdev_watchdog_up(dev);
2845         }
2846 }
2847 EXPORT_SYMBOL(netif_device_attach);
2848
2849 /*
2850  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2851  * to be used as a distribution range.
2852  */
2853 static u16 skb_tx_hash(const struct net_device *dev,
2854                        const struct net_device *sb_dev,
2855                        struct sk_buff *skb)
2856 {
2857         u32 hash;
2858         u16 qoffset = 0;
2859         u16 qcount = dev->real_num_tx_queues;
2860
2861         if (dev->num_tc) {
2862                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2863
2864                 qoffset = sb_dev->tc_to_txq[tc].offset;
2865                 qcount = sb_dev->tc_to_txq[tc].count;
2866         }
2867
2868         if (skb_rx_queue_recorded(skb)) {
2869                 hash = skb_get_rx_queue(skb);
2870                 while (unlikely(hash >= qcount))
2871                         hash -= qcount;
2872                 return hash + qoffset;
2873         }
2874
2875         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2876 }
2877
2878 static void skb_warn_bad_offload(const struct sk_buff *skb)
2879 {
2880         static const netdev_features_t null_features;
2881         struct net_device *dev = skb->dev;
2882         const char *name = "";
2883
2884         if (!net_ratelimit())
2885                 return;
2886
2887         if (dev) {
2888                 if (dev->dev.parent)
2889                         name = dev_driver_string(dev->dev.parent);
2890                 else
2891                         name = netdev_name(dev);
2892         }
2893         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2894              "gso_type=%d ip_summed=%d\n",
2895              name, dev ? &dev->features : &null_features,
2896              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2897              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2898              skb_shinfo(skb)->gso_type, skb->ip_summed);
2899 }
2900
2901 /*
2902  * Invalidate hardware checksum when packet is to be mangled, and
2903  * complete checksum manually on outgoing path.
2904  */
2905 int skb_checksum_help(struct sk_buff *skb)
2906 {
2907         __wsum csum;
2908         int ret = 0, offset;
2909
2910         if (skb->ip_summed == CHECKSUM_COMPLETE)
2911                 goto out_set_summed;
2912
2913         if (unlikely(skb_shinfo(skb)->gso_size)) {
2914                 skb_warn_bad_offload(skb);
2915                 return -EINVAL;
2916         }
2917
2918         /* Before computing a checksum, we should make sure no frag could
2919          * be modified by an external entity : checksum could be wrong.
2920          */
2921         if (skb_has_shared_frag(skb)) {
2922                 ret = __skb_linearize(skb);
2923                 if (ret)
2924                         goto out;
2925         }
2926
2927         offset = skb_checksum_start_offset(skb);
2928         BUG_ON(offset >= skb_headlen(skb));
2929         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2930
2931         offset += skb->csum_offset;
2932         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2933
2934         if (skb_cloned(skb) &&
2935             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2936                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2937                 if (ret)
2938                         goto out;
2939         }
2940
2941         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2942 out_set_summed:
2943         skb->ip_summed = CHECKSUM_NONE;
2944 out:
2945         return ret;
2946 }
2947 EXPORT_SYMBOL(skb_checksum_help);
2948
2949 int skb_crc32c_csum_help(struct sk_buff *skb)
2950 {
2951         __le32 crc32c_csum;
2952         int ret = 0, offset, start;
2953
2954         if (skb->ip_summed != CHECKSUM_PARTIAL)
2955                 goto out;
2956
2957         if (unlikely(skb_is_gso(skb)))
2958                 goto out;
2959
2960         /* Before computing a checksum, we should make sure no frag could
2961          * be modified by an external entity : checksum could be wrong.
2962          */
2963         if (unlikely(skb_has_shared_frag(skb))) {
2964                 ret = __skb_linearize(skb);
2965                 if (ret)
2966                         goto out;
2967         }
2968         start = skb_checksum_start_offset(skb);
2969         offset = start + offsetof(struct sctphdr, checksum);
2970         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2971                 ret = -EINVAL;
2972                 goto out;
2973         }
2974         if (skb_cloned(skb) &&
2975             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2976                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2977                 if (ret)
2978                         goto out;
2979         }
2980         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2981                                                   skb->len - start, ~(__u32)0,
2982                                                   crc32c_csum_stub));
2983         *(__le32 *)(skb->data + offset) = crc32c_csum;
2984         skb->ip_summed = CHECKSUM_NONE;
2985         skb->csum_not_inet = 0;
2986 out:
2987         return ret;
2988 }
2989
2990 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2991 {
2992         __be16 type = skb->protocol;
2993
2994         /* Tunnel gso handlers can set protocol to ethernet. */
2995         if (type == htons(ETH_P_TEB)) {
2996                 struct ethhdr *eth;
2997
2998                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2999                         return 0;
3000
3001                 eth = (struct ethhdr *)skb->data;
3002                 type = eth->h_proto;
3003         }
3004
3005         return __vlan_get_protocol(skb, type, depth);
3006 }
3007
3008 /**
3009  *      skb_mac_gso_segment - mac layer segmentation handler.
3010  *      @skb: buffer to segment
3011  *      @features: features for the output path (see dev->features)
3012  */
3013 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3014                                     netdev_features_t features)
3015 {
3016         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3017         struct packet_offload *ptype;
3018         int vlan_depth = skb->mac_len;
3019         __be16 type = skb_network_protocol(skb, &vlan_depth);
3020
3021         if (unlikely(!type))
3022                 return ERR_PTR(-EINVAL);
3023
3024         __skb_pull(skb, vlan_depth);
3025
3026         rcu_read_lock();
3027         list_for_each_entry_rcu(ptype, &offload_base, list) {
3028                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3029                         segs = ptype->callbacks.gso_segment(skb, features);
3030                         break;
3031                 }
3032         }
3033         rcu_read_unlock();
3034
3035         __skb_push(skb, skb->data - skb_mac_header(skb));
3036
3037         return segs;
3038 }
3039 EXPORT_SYMBOL(skb_mac_gso_segment);
3040
3041
3042 /* openvswitch calls this on rx path, so we need a different check.
3043  */
3044 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3045 {
3046         if (tx_path)
3047                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3048                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3049
3050         return skb->ip_summed == CHECKSUM_NONE;
3051 }
3052
3053 /**
3054  *      __skb_gso_segment - Perform segmentation on skb.
3055  *      @skb: buffer to segment
3056  *      @features: features for the output path (see dev->features)
3057  *      @tx_path: whether it is called in TX path
3058  *
3059  *      This function segments the given skb and returns a list of segments.
3060  *
3061  *      It may return NULL if the skb requires no segmentation.  This is
3062  *      only possible when GSO is used for verifying header integrity.
3063  *
3064  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3065  */
3066 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3067                                   netdev_features_t features, bool tx_path)
3068 {
3069         struct sk_buff *segs;
3070
3071         if (unlikely(skb_needs_check(skb, tx_path))) {
3072                 int err;
3073
3074                 /* We're going to init ->check field in TCP or UDP header */
3075                 err = skb_cow_head(skb, 0);
3076                 if (err < 0)
3077                         return ERR_PTR(err);
3078         }
3079
3080         /* Only report GSO partial support if it will enable us to
3081          * support segmentation on this frame without needing additional
3082          * work.
3083          */
3084         if (features & NETIF_F_GSO_PARTIAL) {
3085                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3086                 struct net_device *dev = skb->dev;
3087
3088                 partial_features |= dev->features & dev->gso_partial_features;
3089                 if (!skb_gso_ok(skb, features | partial_features))
3090                         features &= ~NETIF_F_GSO_PARTIAL;
3091         }
3092
3093         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3094                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3095
3096         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3097         SKB_GSO_CB(skb)->encap_level = 0;
3098
3099         skb_reset_mac_header(skb);
3100         skb_reset_mac_len(skb);
3101
3102         segs = skb_mac_gso_segment(skb, features);
3103
3104         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3105                 skb_warn_bad_offload(skb);
3106
3107         return segs;
3108 }
3109 EXPORT_SYMBOL(__skb_gso_segment);
3110
3111 /* Take action when hardware reception checksum errors are detected. */
3112 #ifdef CONFIG_BUG
3113 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3114 {
3115         if (net_ratelimit()) {
3116                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3117                 if (dev)
3118                         pr_err("dev features: %pNF\n", &dev->features);
3119                 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3120                        skb->len, skb->data_len, skb->pkt_type,
3121                        skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3122                        skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3123                        skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3124                 dump_stack();
3125         }
3126 }
3127 EXPORT_SYMBOL(netdev_rx_csum_fault);
3128 #endif
3129
3130 /* XXX: check that highmem exists at all on the given machine. */
3131 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3132 {
3133 #ifdef CONFIG_HIGHMEM
3134         int i;
3135
3136         if (!(dev->features & NETIF_F_HIGHDMA)) {
3137                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3138                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3139
3140                         if (PageHighMem(skb_frag_page(frag)))
3141                                 return 1;
3142                 }
3143         }
3144 #endif
3145         return 0;
3146 }
3147
3148 /* If MPLS offload request, verify we are testing hardware MPLS features
3149  * instead of standard features for the netdev.
3150  */
3151 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3152 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3153                                            netdev_features_t features,
3154                                            __be16 type)
3155 {
3156         if (eth_p_mpls(type))
3157                 features &= skb->dev->mpls_features;
3158
3159         return features;
3160 }
3161 #else
3162 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3163                                            netdev_features_t features,
3164                                            __be16 type)
3165 {
3166         return features;
3167 }
3168 #endif
3169
3170 static netdev_features_t harmonize_features(struct sk_buff *skb,
3171         netdev_features_t features)
3172 {
3173         int tmp;
3174         __be16 type;
3175
3176         type = skb_network_protocol(skb, &tmp);
3177         features = net_mpls_features(skb, features, type);
3178
3179         if (skb->ip_summed != CHECKSUM_NONE &&
3180             !can_checksum_protocol(features, type)) {
3181                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3182         }
3183         if (illegal_highdma(skb->dev, skb))
3184                 features &= ~NETIF_F_SG;
3185
3186         return features;
3187 }
3188
3189 netdev_features_t passthru_features_check(struct sk_buff *skb,
3190                                           struct net_device *dev,
3191                                           netdev_features_t features)
3192 {
3193         return features;
3194 }
3195 EXPORT_SYMBOL(passthru_features_check);
3196
3197 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3198                                              struct net_device *dev,
3199                                              netdev_features_t features)
3200 {
3201         return vlan_features_check(skb, features);
3202 }
3203
3204 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3205                                             struct net_device *dev,
3206                                             netdev_features_t features)
3207 {
3208         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3209
3210         if (gso_segs > dev->gso_max_segs)
3211                 return features & ~NETIF_F_GSO_MASK;
3212
3213         /* Support for GSO partial features requires software
3214          * intervention before we can actually process the packets
3215          * so we need to strip support for any partial features now
3216          * and we can pull them back in after we have partially
3217          * segmented the frame.
3218          */
3219         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3220                 features &= ~dev->gso_partial_features;
3221
3222         /* Make sure to clear the IPv4 ID mangling feature if the
3223          * IPv4 header has the potential to be fragmented.
3224          */
3225         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3226                 struct iphdr *iph = skb->encapsulation ?
3227                                     inner_ip_hdr(skb) : ip_hdr(skb);
3228
3229                 if (!(iph->frag_off & htons(IP_DF)))
3230                         features &= ~NETIF_F_TSO_MANGLEID;
3231         }
3232
3233         return features;
3234 }
3235
3236 netdev_features_t netif_skb_features(struct sk_buff *skb)
3237 {
3238         struct net_device *dev = skb->dev;
3239         netdev_features_t features = dev->features;
3240
3241         if (skb_is_gso(skb))
3242                 features = gso_features_check(skb, dev, features);
3243
3244         /* If encapsulation offload request, verify we are testing
3245          * hardware encapsulation features instead of standard
3246          * features for the netdev
3247          */
3248         if (skb->encapsulation)
3249                 features &= dev->hw_enc_features;
3250
3251         if (skb_vlan_tagged(skb))
3252                 features = netdev_intersect_features(features,
3253                                                      dev->vlan_features |
3254                                                      NETIF_F_HW_VLAN_CTAG_TX |
3255                                                      NETIF_F_HW_VLAN_STAG_TX);
3256
3257         if (dev->netdev_ops->ndo_features_check)
3258                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3259                                                                 features);
3260         else
3261                 features &= dflt_features_check(skb, dev, features);
3262
3263         return harmonize_features(skb, features);
3264 }
3265 EXPORT_SYMBOL(netif_skb_features);
3266
3267 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3268                     struct netdev_queue *txq, bool more)
3269 {
3270         unsigned int len;
3271         int rc;
3272
3273         if (dev_nit_active(dev))
3274                 dev_queue_xmit_nit(skb, dev);
3275
3276         len = skb->len;
3277         trace_net_dev_start_xmit(skb, dev);
3278         rc = netdev_start_xmit(skb, dev, txq, more);
3279         trace_net_dev_xmit(skb, rc, dev, len);
3280
3281         return rc;
3282 }
3283
3284 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3285                                     struct netdev_queue *txq, int *ret)
3286 {
3287         struct sk_buff *skb = first;
3288         int rc = NETDEV_TX_OK;
3289
3290         while (skb) {
3291                 struct sk_buff *next = skb->next;
3292
3293                 skb_mark_not_on_list(skb);
3294                 rc = xmit_one(skb, dev, txq, next != NULL);
3295                 if (unlikely(!dev_xmit_complete(rc))) {
3296                         skb->next = next;
3297                         goto out;
3298                 }
3299
3300                 skb = next;
3301                 if (netif_tx_queue_stopped(txq) && skb) {
3302                         rc = NETDEV_TX_BUSY;
3303                         break;
3304                 }
3305         }
3306
3307 out:
3308         *ret = rc;
3309         return skb;
3310 }
3311
3312 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3313                                           netdev_features_t features)
3314 {
3315         if (skb_vlan_tag_present(skb) &&
3316             !vlan_hw_offload_capable(features, skb->vlan_proto))
3317                 skb = __vlan_hwaccel_push_inside(skb);
3318         return skb;
3319 }
3320
3321 int skb_csum_hwoffload_help(struct sk_buff *skb,
3322                             const netdev_features_t features)
3323 {
3324         if (unlikely(skb->csum_not_inet))
3325                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3326                         skb_crc32c_csum_help(skb);
3327
3328         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3329 }
3330 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3331
3332 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3333 {
3334         netdev_features_t features;
3335
3336         features = netif_skb_features(skb);
3337         skb = validate_xmit_vlan(skb, features);
3338         if (unlikely(!skb))
3339                 goto out_null;
3340
3341         skb = sk_validate_xmit_skb(skb, dev);
3342         if (unlikely(!skb))
3343                 goto out_null;
3344
3345         if (netif_needs_gso(skb, features)) {
3346                 struct sk_buff *segs;
3347
3348                 segs = skb_gso_segment(skb, features);
3349                 if (IS_ERR(segs)) {
3350                         goto out_kfree_skb;
3351                 } else if (segs) {
3352                         consume_skb(skb);
3353                         skb = segs;
3354                 }
3355         } else {
3356                 if (skb_needs_linearize(skb, features) &&
3357                     __skb_linearize(skb))
3358                         goto out_kfree_skb;
3359
3360                 /* If packet is not checksummed and device does not
3361                  * support checksumming for this protocol, complete
3362                  * checksumming here.
3363                  */
3364                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3365                         if (skb->encapsulation)
3366                                 skb_set_inner_transport_header(skb,
3367                                                                skb_checksum_start_offset(skb));
3368                         else
3369                                 skb_set_transport_header(skb,
3370                                                          skb_checksum_start_offset(skb));
3371                         if (skb_csum_hwoffload_help(skb, features))
3372                                 goto out_kfree_skb;
3373                 }
3374         }
3375
3376         skb = validate_xmit_xfrm(skb, features, again);
3377
3378         return skb;
3379
3380 out_kfree_skb:
3381         kfree_skb(skb);
3382 out_null:
3383         atomic_long_inc(&dev->tx_dropped);
3384         return NULL;
3385 }
3386
3387 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3388 {
3389         struct sk_buff *next, *head = NULL, *tail;
3390
3391         for (; skb != NULL; skb = next) {
3392                 next = skb->next;
3393                 skb_mark_not_on_list(skb);
3394
3395                 /* in case skb wont be segmented, point to itself */
3396                 skb->prev = skb;
3397
3398                 skb = validate_xmit_skb(skb, dev, again);
3399                 if (!skb)
3400                         continue;
3401
3402                 if (!head)
3403                         head = skb;
3404                 else
3405                         tail->next = skb;
3406                 /* If skb was segmented, skb->prev points to
3407                  * the last segment. If not, it still contains skb.
3408                  */
3409                 tail = skb->prev;
3410         }
3411         return head;
3412 }
3413 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3414
3415 static void qdisc_pkt_len_init(struct sk_buff *skb)
3416 {
3417         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3418
3419         qdisc_skb_cb(skb)->pkt_len = skb->len;
3420
3421         /* To get more precise estimation of bytes sent on wire,
3422          * we add to pkt_len the headers size of all segments
3423          */
3424         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3425                 unsigned int hdr_len;
3426                 u16 gso_segs = shinfo->gso_segs;
3427
3428                 /* mac layer + network layer */
3429                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3430
3431                 /* + transport layer */
3432                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3433                         const struct tcphdr *th;
3434                         struct tcphdr _tcphdr;
3435
3436                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3437                                                 sizeof(_tcphdr), &_tcphdr);
3438                         if (likely(th))
3439                                 hdr_len += __tcp_hdrlen(th);
3440                 } else {
3441                         struct udphdr _udphdr;
3442
3443                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3444                                                sizeof(_udphdr), &_udphdr))
3445                                 hdr_len += sizeof(struct udphdr);
3446                 }
3447
3448                 if (shinfo->gso_type & SKB_GSO_DODGY)
3449                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3450                                                 shinfo->gso_size);
3451
3452                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3453         }
3454 }
3455
3456 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3457                                  struct net_device *dev,
3458                                  struct netdev_queue *txq)
3459 {
3460         spinlock_t *root_lock = qdisc_lock(q);
3461         struct sk_buff *to_free = NULL;
3462         bool contended;
3463         int rc;
3464
3465         qdisc_calculate_pkt_len(skb, q);
3466
3467         if (q->flags & TCQ_F_NOLOCK) {
3468                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3469                         __qdisc_drop(skb, &to_free);
3470                         rc = NET_XMIT_DROP;
3471                 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3472                            qdisc_run_begin(q)) {
3473                         qdisc_bstats_cpu_update(q, skb);
3474
3475                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3476                                 __qdisc_run(q);
3477
3478                         qdisc_run_end(q);
3479                         rc = NET_XMIT_SUCCESS;
3480                 } else {
3481                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3482                         qdisc_run(q);
3483                 }
3484
3485                 if (unlikely(to_free))
3486                         kfree_skb_list(to_free);
3487                 return rc;
3488         }
3489
3490         /*
3491          * Heuristic to force contended enqueues to serialize on a
3492          * separate lock before trying to get qdisc main lock.
3493          * This permits qdisc->running owner to get the lock more
3494          * often and dequeue packets faster.
3495          */
3496         contended = qdisc_is_running(q);
3497         if (unlikely(contended))
3498                 spin_lock(&q->busylock);
3499
3500         spin_lock(root_lock);
3501         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3502                 __qdisc_drop(skb, &to_free);
3503                 rc = NET_XMIT_DROP;
3504         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3505                    qdisc_run_begin(q)) {
3506                 /*
3507                  * This is a work-conserving queue; there are no old skbs
3508                  * waiting to be sent out; and the qdisc is not running -
3509                  * xmit the skb directly.
3510                  */
3511
3512                 qdisc_bstats_update(q, skb);
3513
3514                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3515                         if (unlikely(contended)) {
3516                                 spin_unlock(&q->busylock);
3517                                 contended = false;
3518                         }
3519                         __qdisc_run(q);
3520                 }
3521
3522                 qdisc_run_end(q);
3523                 rc = NET_XMIT_SUCCESS;
3524         } else {
3525                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3526                 if (qdisc_run_begin(q)) {
3527                         if (unlikely(contended)) {
3528                                 spin_unlock(&q->busylock);
3529                                 contended = false;
3530                         }
3531                         __qdisc_run(q);
3532                         qdisc_run_end(q);
3533                 }
3534         }
3535         spin_unlock(root_lock);
3536         if (unlikely(to_free))
3537                 kfree_skb_list(to_free);
3538         if (unlikely(contended))
3539                 spin_unlock(&q->busylock);
3540         return rc;
3541 }
3542
3543 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3544 static void skb_update_prio(struct sk_buff *skb)
3545 {
3546         const struct netprio_map *map;
3547         const struct sock *sk;
3548         unsigned int prioidx;
3549
3550         if (skb->priority)
3551                 return;
3552         map = rcu_dereference_bh(skb->dev->priomap);
3553         if (!map)
3554                 return;
3555         sk = skb_to_full_sk(skb);
3556         if (!sk)
3557                 return;
3558
3559         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3560
3561         if (prioidx < map->priomap_len)
3562                 skb->priority = map->priomap[prioidx];
3563 }
3564 #else
3565 #define skb_update_prio(skb)
3566 #endif
3567
3568 DEFINE_PER_CPU(int, xmit_recursion);
3569 EXPORT_SYMBOL(xmit_recursion);
3570
3571 /**
3572  *      dev_loopback_xmit - loop back @skb
3573  *      @net: network namespace this loopback is happening in
3574  *      @sk:  sk needed to be a netfilter okfn
3575  *      @skb: buffer to transmit
3576  */
3577 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3578 {
3579         skb_reset_mac_header(skb);
3580         __skb_pull(skb, skb_network_offset(skb));
3581         skb->pkt_type = PACKET_LOOPBACK;
3582         skb->ip_summed = CHECKSUM_UNNECESSARY;
3583         WARN_ON(!skb_dst(skb));
3584         skb_dst_force(skb);
3585         netif_rx_ni(skb);
3586         return 0;
3587 }
3588 EXPORT_SYMBOL(dev_loopback_xmit);
3589
3590 #ifdef CONFIG_NET_EGRESS
3591 static struct sk_buff *
3592 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3593 {
3594         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3595         struct tcf_result cl_res;
3596
3597         if (!miniq)
3598                 return skb;
3599
3600         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3601         mini_qdisc_bstats_cpu_update(miniq, skb);
3602
3603         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3604         case TC_ACT_OK:
3605         case TC_ACT_RECLASSIFY:
3606                 skb->tc_index = TC_H_MIN(cl_res.classid);
3607                 break;
3608         case TC_ACT_SHOT:
3609                 mini_qdisc_qstats_cpu_drop(miniq);
3610                 *ret = NET_XMIT_DROP;
3611                 kfree_skb(skb);
3612                 return NULL;
3613         case TC_ACT_STOLEN:
3614         case TC_ACT_QUEUED:
3615         case TC_ACT_TRAP:
3616                 *ret = NET_XMIT_SUCCESS;
3617                 consume_skb(skb);
3618                 return NULL;
3619         case TC_ACT_REDIRECT:
3620                 /* No need to push/pop skb's mac_header here on egress! */
3621                 skb_do_redirect(skb);
3622                 *ret = NET_XMIT_SUCCESS;
3623                 return NULL;
3624         default:
3625                 break;
3626         }
3627
3628         return skb;
3629 }
3630 #endif /* CONFIG_NET_EGRESS */
3631
3632 #ifdef CONFIG_XPS
3633 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3634                                struct xps_dev_maps *dev_maps, unsigned int tci)
3635 {
3636         struct xps_map *map;
3637         int queue_index = -1;
3638
3639         if (dev->num_tc) {
3640                 tci *= dev->num_tc;
3641                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3642         }
3643
3644         map = rcu_dereference(dev_maps->attr_map[tci]);
3645         if (map) {
3646                 if (map->len == 1)
3647                         queue_index = map->queues[0];
3648                 else
3649                         queue_index = map->queues[reciprocal_scale(
3650                                                 skb_get_hash(skb), map->len)];
3651                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3652                         queue_index = -1;
3653         }
3654         return queue_index;
3655 }
3656 #endif
3657
3658 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3659                          struct sk_buff *skb)
3660 {
3661 #ifdef CONFIG_XPS
3662         struct xps_dev_maps *dev_maps;
3663         struct sock *sk = skb->sk;
3664         int queue_index = -1;
3665
3666         if (!static_key_false(&xps_needed))
3667                 return -1;
3668
3669         rcu_read_lock();
3670         if (!static_key_false(&xps_rxqs_needed))
3671                 goto get_cpus_map;
3672
3673         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3674         if (dev_maps) {
3675                 int tci = sk_rx_queue_get(sk);
3676
3677                 if (tci >= 0 && tci < dev->num_rx_queues)
3678                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3679                                                           tci);
3680         }
3681
3682 get_cpus_map:
3683         if (queue_index < 0) {
3684                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3685                 if (dev_maps) {
3686                         unsigned int tci = skb->sender_cpu - 1;
3687
3688                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3689                                                           tci);
3690                 }
3691         }
3692         rcu_read_unlock();
3693
3694         return queue_index;
3695 #else
3696         return -1;
3697 #endif
3698 }
3699
3700 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3701                      struct net_device *sb_dev)
3702 {
3703         return 0;
3704 }
3705 EXPORT_SYMBOL(dev_pick_tx_zero);
3706
3707 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3708                        struct net_device *sb_dev)
3709 {
3710         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3711 }
3712 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3713
3714 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3715                      struct net_device *sb_dev)
3716 {
3717         struct sock *sk = skb->sk;
3718         int queue_index = sk_tx_queue_get(sk);
3719
3720         sb_dev = sb_dev ? : dev;
3721
3722         if (queue_index < 0 || skb->ooo_okay ||
3723             queue_index >= dev->real_num_tx_queues) {
3724                 int new_index = get_xps_queue(dev, sb_dev, skb);
3725
3726                 if (new_index < 0)
3727                         new_index = skb_tx_hash(dev, sb_dev, skb);
3728
3729                 if (queue_index != new_index && sk &&
3730                     sk_fullsock(sk) &&
3731                     rcu_access_pointer(sk->sk_dst_cache))
3732                         sk_tx_queue_set(sk, new_index);
3733
3734                 queue_index = new_index;
3735         }
3736
3737         return queue_index;
3738 }
3739 EXPORT_SYMBOL(netdev_pick_tx);
3740
3741 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3742                                          struct sk_buff *skb,
3743                                          struct net_device *sb_dev)
3744 {
3745         int queue_index = 0;
3746
3747 #ifdef CONFIG_XPS
3748         u32 sender_cpu = skb->sender_cpu - 1;
3749
3750         if (sender_cpu >= (u32)NR_CPUS)
3751                 skb->sender_cpu = raw_smp_processor_id() + 1;
3752 #endif
3753
3754         if (dev->real_num_tx_queues != 1) {
3755                 const struct net_device_ops *ops = dev->netdev_ops;
3756
3757                 if (ops->ndo_select_queue)
3758                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3759                 else
3760                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3761
3762                 queue_index = netdev_cap_txqueue(dev, queue_index);
3763         }
3764
3765         skb_set_queue_mapping(skb, queue_index);
3766         return netdev_get_tx_queue(dev, queue_index);
3767 }
3768
3769 /**
3770  *      __dev_queue_xmit - transmit a buffer
3771  *      @skb: buffer to transmit
3772  *      @sb_dev: suboordinate device used for L2 forwarding offload
3773  *
3774  *      Queue a buffer for transmission to a network device. The caller must
3775  *      have set the device and priority and built the buffer before calling
3776  *      this function. The function can be called from an interrupt.
3777  *
3778  *      A negative errno code is returned on a failure. A success does not
3779  *      guarantee the frame will be transmitted as it may be dropped due
3780  *      to congestion or traffic shaping.
3781  *
3782  * -----------------------------------------------------------------------------------
3783  *      I notice this method can also return errors from the queue disciplines,
3784  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3785  *      be positive.
3786  *
3787  *      Regardless of the return value, the skb is consumed, so it is currently
3788  *      difficult to retry a send to this method.  (You can bump the ref count
3789  *      before sending to hold a reference for retry if you are careful.)
3790  *
3791  *      When calling this method, interrupts MUST be enabled.  This is because
3792  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3793  *          --BLG
3794  */
3795 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3796 {
3797         struct net_device *dev = skb->dev;
3798         struct netdev_queue *txq;
3799         struct Qdisc *q;
3800         int rc = -ENOMEM;
3801         bool again = false;
3802
3803         skb_reset_mac_header(skb);
3804
3805         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3806                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3807
3808         /* Disable soft irqs for various locks below. Also
3809          * stops preemption for RCU.
3810          */
3811         rcu_read_lock_bh();
3812
3813         skb_update_prio(skb);
3814
3815         qdisc_pkt_len_init(skb);
3816 #ifdef CONFIG_NET_CLS_ACT
3817         skb->tc_at_ingress = 0;
3818 # ifdef CONFIG_NET_EGRESS
3819         if (static_branch_unlikely(&egress_needed_key)) {
3820                 skb = sch_handle_egress(skb, &rc, dev);
3821                 if (!skb)
3822                         goto out;
3823         }
3824 # endif
3825 #endif
3826         /* If device/qdisc don't need skb->dst, release it right now while
3827          * its hot in this cpu cache.
3828          */
3829         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3830                 skb_dst_drop(skb);
3831         else
3832                 skb_dst_force(skb);
3833
3834         txq = netdev_core_pick_tx(dev, skb, sb_dev);
3835         q = rcu_dereference_bh(txq->qdisc);
3836
3837         trace_net_dev_queue(skb);
3838         if (q->enqueue) {
3839                 rc = __dev_xmit_skb(skb, q, dev, txq);
3840                 goto out;
3841         }
3842
3843         /* The device has no queue. Common case for software devices:
3844          * loopback, all the sorts of tunnels...
3845
3846          * Really, it is unlikely that netif_tx_lock protection is necessary
3847          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3848          * counters.)
3849          * However, it is possible, that they rely on protection
3850          * made by us here.
3851
3852          * Check this and shot the lock. It is not prone from deadlocks.
3853          *Either shot noqueue qdisc, it is even simpler 8)
3854          */
3855         if (dev->flags & IFF_UP) {
3856                 int cpu = smp_processor_id(); /* ok because BHs are off */
3857
3858                 if (txq->xmit_lock_owner != cpu) {
3859                         if (unlikely(__this_cpu_read(xmit_recursion) >
3860                                      XMIT_RECURSION_LIMIT))
3861                                 goto recursion_alert;
3862
3863                         skb = validate_xmit_skb(skb, dev, &again);
3864                         if (!skb)
3865                                 goto out;
3866
3867                         HARD_TX_LOCK(dev, txq, cpu);
3868
3869                         if (!netif_xmit_stopped(txq)) {
3870                                 __this_cpu_inc(xmit_recursion);
3871                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3872                                 __this_cpu_dec(xmit_recursion);
3873                                 if (dev_xmit_complete(rc)) {
3874                                         HARD_TX_UNLOCK(dev, txq);
3875                                         goto out;
3876                                 }
3877                         }
3878                         HARD_TX_UNLOCK(dev, txq);
3879                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3880                                              dev->name);
3881                 } else {
3882                         /* Recursion is detected! It is possible,
3883                          * unfortunately
3884                          */
3885 recursion_alert:
3886                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3887                                              dev->name);
3888                 }
3889         }
3890
3891         rc = -ENETDOWN;
3892         rcu_read_unlock_bh();
3893
3894         atomic_long_inc(&dev->tx_dropped);
3895         kfree_skb_list(skb);
3896         return rc;
3897 out:
3898         rcu_read_unlock_bh();
3899         return rc;
3900 }
3901
3902 int dev_queue_xmit(struct sk_buff *skb)
3903 {
3904         return __dev_queue_xmit(skb, NULL);
3905 }
3906 EXPORT_SYMBOL(dev_queue_xmit);
3907
3908 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3909 {
3910         return __dev_queue_xmit(skb, sb_dev);
3911 }
3912 EXPORT_SYMBOL(dev_queue_xmit_accel);
3913
3914 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3915 {
3916         struct net_device *dev = skb->dev;
3917         struct sk_buff *orig_skb = skb;
3918         struct netdev_queue *txq;
3919         int ret = NETDEV_TX_BUSY;
3920         bool again = false;
3921
3922         if (unlikely(!netif_running(dev) ||
3923                      !netif_carrier_ok(dev)))
3924                 goto drop;
3925
3926         skb = validate_xmit_skb_list(skb, dev, &again);
3927         if (skb != orig_skb)
3928                 goto drop;
3929
3930         skb_set_queue_mapping(skb, queue_id);
3931         txq = skb_get_tx_queue(dev, skb);
3932
3933         local_bh_disable();
3934
3935         HARD_TX_LOCK(dev, txq, smp_processor_id());
3936         if (!netif_xmit_frozen_or_drv_stopped(txq))
3937                 ret = netdev_start_xmit(skb, dev, txq, false);
3938         HARD_TX_UNLOCK(dev, txq);
3939
3940         local_bh_enable();
3941
3942         if (!dev_xmit_complete(ret))
3943                 kfree_skb(skb);
3944
3945         return ret;
3946 drop:
3947         atomic_long_inc(&dev->tx_dropped);
3948         kfree_skb_list(skb);
3949         return NET_XMIT_DROP;
3950 }
3951 EXPORT_SYMBOL(dev_direct_xmit);
3952
3953 /*************************************************************************
3954  *                      Receiver routines
3955  *************************************************************************/
3956
3957 int netdev_max_backlog __read_mostly = 1000;
3958 EXPORT_SYMBOL(netdev_max_backlog);
3959
3960 int netdev_tstamp_prequeue __read_mostly = 1;
3961 int netdev_budget __read_mostly = 300;
3962 unsigned int __read_mostly netdev_budget_usecs = 2000;
3963 int weight_p __read_mostly = 64;           /* old backlog weight */
3964 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3965 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3966 int dev_rx_weight __read_mostly = 64;
3967 int dev_tx_weight __read_mostly = 64;
3968
3969 /* Called with irq disabled */
3970 static inline void ____napi_schedule(struct softnet_data *sd,
3971                                      struct napi_struct *napi)
3972 {
3973         list_add_tail(&napi->poll_list, &sd->poll_list);
3974         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3975 }
3976
3977 #ifdef CONFIG_RPS
3978
3979 /* One global table that all flow-based protocols share. */
3980 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3981 EXPORT_SYMBOL(rps_sock_flow_table);
3982 u32 rps_cpu_mask __read_mostly;
3983 EXPORT_SYMBOL(rps_cpu_mask);
3984
3985 struct static_key_false rps_needed __read_mostly;
3986 EXPORT_SYMBOL(rps_needed);
3987 struct static_key_false rfs_needed __read_mostly;
3988 EXPORT_SYMBOL(rfs_needed);
3989
3990 static struct rps_dev_flow *
3991 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3992             struct rps_dev_flow *rflow, u16 next_cpu)
3993 {
3994         if (next_cpu < nr_cpu_ids) {
3995 #ifdef CONFIG_RFS_ACCEL
3996                 struct netdev_rx_queue *rxqueue;
3997                 struct rps_dev_flow_table *flow_table;
3998                 struct rps_dev_flow *old_rflow;
3999                 u32 flow_id;
4000                 u16 rxq_index;
4001                 int rc;
4002
4003                 /* Should we steer this flow to a different hardware queue? */
4004                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4005                     !(dev->features & NETIF_F_NTUPLE))
4006                         goto out;
4007                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4008                 if (rxq_index == skb_get_rx_queue(skb))
4009                         goto out;
4010
4011                 rxqueue = dev->_rx + rxq_index;
4012                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4013                 if (!flow_table)
4014                         goto out;
4015                 flow_id = skb_get_hash(skb) & flow_table->mask;
4016                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4017                                                         rxq_index, flow_id);
4018                 if (rc < 0)
4019                         goto out;
4020                 old_rflow = rflow;
4021                 rflow = &flow_table->flows[flow_id];
4022                 rflow->filter = rc;
4023                 if (old_rflow->filter == rflow->filter)
4024                         old_rflow->filter = RPS_NO_FILTER;
4025         out:
4026 #endif
4027                 rflow->last_qtail =
4028                         per_cpu(softnet_data, next_cpu).input_queue_head;
4029         }
4030
4031         rflow->cpu = next_cpu;
4032         return rflow;
4033 }
4034
4035 /*
4036  * get_rps_cpu is called from netif_receive_skb and returns the target
4037  * CPU from the RPS map of the receiving queue for a given skb.
4038  * rcu_read_lock must be held on entry.
4039  */
4040 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4041                        struct rps_dev_flow **rflowp)
4042 {
4043         const struct rps_sock_flow_table *sock_flow_table;
4044         struct netdev_rx_queue *rxqueue = dev->_rx;
4045         struct rps_dev_flow_table *flow_table;
4046         struct rps_map *map;
4047         int cpu = -1;
4048         u32 tcpu;
4049         u32 hash;
4050
4051         if (skb_rx_queue_recorded(skb)) {
4052                 u16 index = skb_get_rx_queue(skb);
4053
4054                 if (unlikely(index >= dev->real_num_rx_queues)) {
4055                         WARN_ONCE(dev->real_num_rx_queues > 1,
4056                                   "%s received packet on queue %u, but number "
4057                                   "of RX queues is %u\n",
4058                                   dev->name, index, dev->real_num_rx_queues);
4059                         goto done;
4060                 }
4061                 rxqueue += index;
4062         }
4063
4064         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4065
4066         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4067         map = rcu_dereference(rxqueue->rps_map);
4068         if (!flow_table && !map)
4069                 goto done;
4070
4071         skb_reset_network_header(skb);
4072         hash = skb_get_hash(skb);
4073         if (!hash)
4074                 goto done;
4075
4076         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4077         if (flow_table && sock_flow_table) {
4078                 struct rps_dev_flow *rflow;
4079                 u32 next_cpu;
4080                 u32 ident;
4081
4082                 /* First check into global flow table if there is a match */
4083                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4084                 if ((ident ^ hash) & ~rps_cpu_mask)
4085                         goto try_rps;
4086
4087                 next_cpu = ident & rps_cpu_mask;
4088
4089                 /* OK, now we know there is a match,
4090                  * we can look at the local (per receive queue) flow table
4091                  */
4092                 rflow = &flow_table->flows[hash & flow_table->mask];
4093                 tcpu = rflow->cpu;
4094
4095                 /*
4096                  * If the desired CPU (where last recvmsg was done) is
4097                  * different from current CPU (one in the rx-queue flow
4098                  * table entry), switch if one of the following holds:
4099                  *   - Current CPU is unset (>= nr_cpu_ids).
4100                  *   - Current CPU is offline.
4101                  *   - The current CPU's queue tail has advanced beyond the
4102                  *     last packet that was enqueued using this table entry.
4103                  *     This guarantees that all previous packets for the flow
4104                  *     have been dequeued, thus preserving in order delivery.
4105                  */
4106                 if (unlikely(tcpu != next_cpu) &&
4107                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4108                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4109                       rflow->last_qtail)) >= 0)) {
4110                         tcpu = next_cpu;
4111                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4112                 }
4113
4114                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4115                         *rflowp = rflow;
4116                         cpu = tcpu;
4117                         goto done;
4118                 }
4119         }
4120
4121 try_rps:
4122
4123         if (map) {
4124                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4125                 if (cpu_online(tcpu)) {
4126                         cpu = tcpu;
4127                         goto done;
4128                 }
4129         }
4130
4131 done:
4132         return cpu;
4133 }
4134
4135 #ifdef CONFIG_RFS_ACCEL
4136
4137 /**
4138  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4139  * @dev: Device on which the filter was set
4140  * @rxq_index: RX queue index
4141  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4142  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4143  *
4144  * Drivers that implement ndo_rx_flow_steer() should periodically call
4145  * this function for each installed filter and remove the filters for
4146  * which it returns %true.
4147  */
4148 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4149                          u32 flow_id, u16 filter_id)
4150 {
4151         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4152         struct rps_dev_flow_table *flow_table;
4153         struct rps_dev_flow *rflow;
4154         bool expire = true;
4155         unsigned int cpu;
4156
4157         rcu_read_lock();
4158         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4159         if (flow_table && flow_id <= flow_table->mask) {
4160                 rflow = &flow_table->flows[flow_id];
4161                 cpu = READ_ONCE(rflow->cpu);
4162                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4163                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4164                            rflow->last_qtail) <
4165                      (int)(10 * flow_table->mask)))
4166                         expire = false;
4167         }
4168         rcu_read_unlock();
4169         return expire;
4170 }
4171 EXPORT_SYMBOL(rps_may_expire_flow);
4172
4173 #endif /* CONFIG_RFS_ACCEL */
4174
4175 /* Called from hardirq (IPI) context */
4176 static void rps_trigger_softirq(void *data)
4177 {
4178         struct softnet_data *sd = data;
4179
4180         ____napi_schedule(sd, &sd->backlog);
4181         sd->received_rps++;
4182 }
4183
4184 #endif /* CONFIG_RPS */
4185
4186 /*
4187  * Check if this softnet_data structure is another cpu one
4188  * If yes, queue it to our IPI list and return 1
4189  * If no, return 0
4190  */
4191 static int rps_ipi_queued(struct softnet_data *sd)
4192 {
4193 #ifdef CONFIG_RPS
4194         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4195
4196         if (sd != mysd) {
4197                 sd->rps_ipi_next = mysd->rps_ipi_list;
4198                 mysd->rps_ipi_list = sd;
4199
4200                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4201                 return 1;
4202         }
4203 #endif /* CONFIG_RPS */
4204         return 0;
4205 }
4206
4207 #ifdef CONFIG_NET_FLOW_LIMIT
4208 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4209 #endif
4210
4211 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4212 {
4213 #ifdef CONFIG_NET_FLOW_LIMIT
4214         struct sd_flow_limit *fl;
4215         struct softnet_data *sd;
4216         unsigned int old_flow, new_flow;
4217
4218         if (qlen < (netdev_max_backlog >> 1))
4219                 return false;
4220
4221         sd = this_cpu_ptr(&softnet_data);
4222
4223         rcu_read_lock();
4224         fl = rcu_dereference(sd->flow_limit);
4225         if (fl) {
4226                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4227                 old_flow = fl->history[fl->history_head];
4228                 fl->history[fl->history_head] = new_flow;
4229
4230                 fl->history_head++;
4231                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4232
4233                 if (likely(fl->buckets[old_flow]))
4234                         fl->buckets[old_flow]--;
4235
4236                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4237                         fl->count++;
4238                         rcu_read_unlock();
4239                         return true;
4240                 }
4241         }
4242         rcu_read_unlock();
4243 #endif
4244         return false;
4245 }
4246
4247 /*
4248  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4249  * queue (may be a remote CPU queue).
4250  */
4251 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4252                               unsigned int *qtail)
4253 {
4254         struct softnet_data *sd;
4255         unsigned long flags;
4256         unsigned int qlen;
4257
4258         sd = &per_cpu(softnet_data, cpu);
4259
4260         local_irq_save(flags);
4261
4262         rps_lock(sd);
4263         if (!netif_running(skb->dev))
4264                 goto drop;
4265         qlen = skb_queue_len(&sd->input_pkt_queue);
4266         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4267                 if (qlen) {
4268 enqueue:
4269                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4270                         input_queue_tail_incr_save(sd, qtail);
4271                         rps_unlock(sd);
4272                         local_irq_restore(flags);
4273                         return NET_RX_SUCCESS;
4274                 }
4275
4276                 /* Schedule NAPI for backlog device
4277                  * We can use non atomic operation since we own the queue lock
4278                  */
4279                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4280                         if (!rps_ipi_queued(sd))
4281                                 ____napi_schedule(sd, &sd->backlog);
4282                 }
4283                 goto enqueue;
4284         }
4285
4286 drop:
4287         sd->dropped++;
4288         rps_unlock(sd);
4289
4290         local_irq_restore(flags);
4291
4292         atomic_long_inc(&skb->dev->rx_dropped);
4293         kfree_skb(skb);
4294         return NET_RX_DROP;
4295 }
4296
4297 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4298 {
4299         struct net_device *dev = skb->dev;
4300         struct netdev_rx_queue *rxqueue;
4301
4302         rxqueue = dev->_rx;
4303
4304         if (skb_rx_queue_recorded(skb)) {
4305                 u16 index = skb_get_rx_queue(skb);
4306
4307                 if (unlikely(index >= dev->real_num_rx_queues)) {
4308                         WARN_ONCE(dev->real_num_rx_queues > 1,
4309                                   "%s received packet on queue %u, but number "
4310                                   "of RX queues is %u\n",
4311                                   dev->name, index, dev->real_num_rx_queues);
4312
4313                         return rxqueue; /* Return first rxqueue */
4314                 }
4315                 rxqueue += index;
4316         }
4317         return rxqueue;
4318 }
4319
4320 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4321                                      struct xdp_buff *xdp,
4322                                      struct bpf_prog *xdp_prog)
4323 {
4324         struct netdev_rx_queue *rxqueue;
4325         void *orig_data, *orig_data_end;
4326         u32 metalen, act = XDP_DROP;
4327         __be16 orig_eth_type;
4328         struct ethhdr *eth;
4329         bool orig_bcast;
4330         int hlen, off;
4331         u32 mac_len;
4332
4333         /* Reinjected packets coming from act_mirred or similar should
4334          * not get XDP generic processing.
4335          */
4336         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4337                 return XDP_PASS;
4338
4339         /* XDP packets must be linear and must have sufficient headroom
4340          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4341          * native XDP provides, thus we need to do it here as well.
4342          */
4343         if (skb_is_nonlinear(skb) ||
4344             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4345                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4346                 int troom = skb->tail + skb->data_len - skb->end;
4347
4348                 /* In case we have to go down the path and also linearize,
4349                  * then lets do the pskb_expand_head() work just once here.
4350                  */
4351                 if (pskb_expand_head(skb,
4352                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4353                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4354                         goto do_drop;
4355                 if (skb_linearize(skb))
4356                         goto do_drop;
4357         }
4358
4359         /* The XDP program wants to see the packet starting at the MAC
4360          * header.
4361          */
4362         mac_len = skb->data - skb_mac_header(skb);
4363         hlen = skb_headlen(skb) + mac_len;
4364         xdp->data = skb->data - mac_len;
4365         xdp->data_meta = xdp->data;
4366         xdp->data_end = xdp->data + hlen;
4367         xdp->data_hard_start = skb->data - skb_headroom(skb);
4368         orig_data_end = xdp->data_end;
4369         orig_data = xdp->data;
4370         eth = (struct ethhdr *)xdp->data;
4371         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4372         orig_eth_type = eth->h_proto;
4373
4374         rxqueue = netif_get_rxqueue(skb);
4375         xdp->rxq = &rxqueue->xdp_rxq;
4376
4377         act = bpf_prog_run_xdp(xdp_prog, xdp);
4378
4379         off = xdp->data - orig_data;
4380         if (off > 0)
4381                 __skb_pull(skb, off);
4382         else if (off < 0)
4383                 __skb_push(skb, -off);
4384         skb->mac_header += off;
4385
4386         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4387          * pckt.
4388          */
4389         off = orig_data_end - xdp->data_end;
4390         if (off != 0) {
4391                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4392                 skb->len -= off;
4393
4394         }
4395
4396         /* check if XDP changed eth hdr such SKB needs update */
4397         eth = (struct ethhdr *)xdp->data;
4398         if ((orig_eth_type != eth->h_proto) ||
4399             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4400                 __skb_push(skb, ETH_HLEN);
4401                 skb->protocol = eth_type_trans(skb, skb->dev);
4402         }
4403
4404         switch (act) {
4405         case XDP_REDIRECT:
4406         case XDP_TX:
4407                 __skb_push(skb, mac_len);
4408                 break;
4409         case XDP_PASS:
4410                 metalen = xdp->data - xdp->data_meta;
4411                 if (metalen)
4412                         skb_metadata_set(skb, metalen);
4413                 break;
4414         default:
4415                 bpf_warn_invalid_xdp_action(act);
4416                 /* fall through */
4417         case XDP_ABORTED:
4418                 trace_xdp_exception(skb->dev, xdp_prog, act);
4419                 /* fall through */
4420         case XDP_DROP:
4421         do_drop:
4422                 kfree_skb(skb);
4423                 break;
4424         }
4425
4426         return act;
4427 }
4428
4429 /* When doing generic XDP we have to bypass the qdisc layer and the
4430  * network taps in order to match in-driver-XDP behavior.
4431  */
4432 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4433 {
4434         struct net_device *dev = skb->dev;
4435         struct netdev_queue *txq;
4436         bool free_skb = true;
4437         int cpu, rc;
4438
4439         txq = netdev_core_pick_tx(dev, skb, NULL);
4440         cpu = smp_processor_id();
4441         HARD_TX_LOCK(dev, txq, cpu);
4442         if (!netif_xmit_stopped(txq)) {
4443                 rc = netdev_start_xmit(skb, dev, txq, 0);
4444                 if (dev_xmit_complete(rc))
4445                         free_skb = false;
4446         }
4447         HARD_TX_UNLOCK(dev, txq);
4448         if (free_skb) {
4449                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4450                 kfree_skb(skb);
4451         }
4452 }
4453 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4454
4455 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4456
4457 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4458 {
4459         if (xdp_prog) {
4460                 struct xdp_buff xdp;
4461                 u32 act;
4462                 int err;
4463
4464                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4465                 if (act != XDP_PASS) {
4466                         switch (act) {
4467                         case XDP_REDIRECT:
4468                                 err = xdp_do_generic_redirect(skb->dev, skb,
4469                                                               &xdp, xdp_prog);
4470                                 if (err)
4471                                         goto out_redir;
4472                                 break;
4473                         case XDP_TX:
4474                                 generic_xdp_tx(skb, xdp_prog);
4475                                 break;
4476                         }
4477                         return XDP_DROP;
4478                 }
4479         }
4480         return XDP_PASS;
4481 out_redir:
4482         kfree_skb(skb);
4483         return XDP_DROP;
4484 }
4485 EXPORT_SYMBOL_GPL(do_xdp_generic);
4486
4487 static int netif_rx_internal(struct sk_buff *skb)
4488 {
4489         int ret;
4490
4491         net_timestamp_check(netdev_tstamp_prequeue, skb);
4492
4493         trace_netif_rx(skb);
4494
4495         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4496                 int ret;
4497
4498                 preempt_disable();
4499                 rcu_read_lock();
4500                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4501                 rcu_read_unlock();
4502                 preempt_enable();
4503
4504                 /* Consider XDP consuming the packet a success from
4505                  * the netdev point of view we do not want to count
4506                  * this as an error.
4507                  */
4508                 if (ret != XDP_PASS)
4509                         return NET_RX_SUCCESS;
4510         }
4511
4512 #ifdef CONFIG_RPS
4513         if (static_branch_unlikely(&rps_needed)) {
4514                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4515                 int cpu;
4516
4517                 preempt_disable();
4518                 rcu_read_lock();
4519
4520                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4521                 if (cpu < 0)
4522                         cpu = smp_processor_id();
4523
4524                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4525
4526                 rcu_read_unlock();
4527                 preempt_enable();
4528         } else
4529 #endif
4530         {
4531                 unsigned int qtail;
4532
4533                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4534                 put_cpu();
4535         }
4536         return ret;
4537 }
4538
4539 /**
4540  *      netif_rx        -       post buffer to the network code
4541  *      @skb: buffer to post
4542  *
4543  *      This function receives a packet from a device driver and queues it for
4544  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4545  *      may be dropped during processing for congestion control or by the
4546  *      protocol layers.
4547  *
4548  *      return values:
4549  *      NET_RX_SUCCESS  (no congestion)
4550  *      NET_RX_DROP     (packet was dropped)
4551  *
4552  */
4553
4554 int netif_rx(struct sk_buff *skb)
4555 {
4556         int ret;
4557
4558         trace_netif_rx_entry(skb);
4559
4560         ret = netif_rx_internal(skb);
4561         trace_netif_rx_exit(ret);
4562
4563         return ret;
4564 }
4565 EXPORT_SYMBOL(netif_rx);
4566
4567 int netif_rx_ni(struct sk_buff *skb)
4568 {
4569         int err;
4570
4571         trace_netif_rx_ni_entry(skb);
4572
4573         preempt_disable();
4574         err = netif_rx_internal(skb);
4575         if (local_softirq_pending())
4576                 do_softirq();
4577         preempt_enable();
4578         trace_netif_rx_ni_exit(err);
4579
4580         return err;
4581 }
4582 EXPORT_SYMBOL(netif_rx_ni);
4583
4584 static __latent_entropy void net_tx_action(struct softirq_action *h)
4585 {
4586         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4587
4588         if (sd->completion_queue) {
4589                 struct sk_buff *clist;
4590
4591                 local_irq_disable();
4592                 clist = sd->completion_queue;
4593                 sd->completion_queue = NULL;
4594                 local_irq_enable();
4595
4596                 while (clist) {
4597                         struct sk_buff *skb = clist;
4598
4599                         clist = clist->next;
4600
4601                         WARN_ON(refcount_read(&skb->users));
4602                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4603                                 trace_consume_skb(skb);
4604                         else
4605                                 trace_kfree_skb(skb, net_tx_action);
4606
4607                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4608                                 __kfree_skb(skb);
4609                         else
4610                                 __kfree_skb_defer(skb);
4611                 }
4612
4613                 __kfree_skb_flush();
4614         }
4615
4616         if (sd->output_queue) {
4617                 struct Qdisc *head;
4618
4619                 local_irq_disable();
4620                 head = sd->output_queue;
4621                 sd->output_queue = NULL;
4622                 sd->output_queue_tailp = &sd->output_queue;
4623                 local_irq_enable();
4624
4625                 while (head) {
4626                         struct Qdisc *q = head;
4627                         spinlock_t *root_lock = NULL;
4628
4629                         head = head->next_sched;
4630
4631                         if (!(q->flags & TCQ_F_NOLOCK)) {
4632                                 root_lock = qdisc_lock(q);
4633                                 spin_lock(root_lock);
4634                         }
4635                         /* We need to make sure head->next_sched is read
4636                          * before clearing __QDISC_STATE_SCHED
4637                          */
4638                         smp_mb__before_atomic();
4639                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4640                         qdisc_run(q);
4641                         if (root_lock)
4642                                 spin_unlock(root_lock);
4643                 }
4644         }
4645
4646         xfrm_dev_backlog(sd);
4647 }
4648
4649 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4650 /* This hook is defined here for ATM LANE */
4651 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4652                              unsigned char *addr) __read_mostly;
4653 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4654 #endif
4655
4656 static inline struct sk_buff *
4657 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4658                    struct net_device *orig_dev)
4659 {
4660 #ifdef CONFIG_NET_CLS_ACT
4661         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4662         struct tcf_result cl_res;
4663
4664         /* If there's at least one ingress present somewhere (so
4665          * we get here via enabled static key), remaining devices
4666          * that are not configured with an ingress qdisc will bail
4667          * out here.
4668          */
4669         if (!miniq)
4670                 return skb;
4671
4672         if (*pt_prev) {
4673                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4674                 *pt_prev = NULL;
4675         }
4676
4677         qdisc_skb_cb(skb)->pkt_len = skb->len;
4678         skb->tc_at_ingress = 1;
4679         mini_qdisc_bstats_cpu_update(miniq, skb);
4680
4681         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4682         case TC_ACT_OK:
4683         case TC_ACT_RECLASSIFY:
4684                 skb->tc_index = TC_H_MIN(cl_res.classid);
4685                 break;
4686         case TC_ACT_SHOT:
4687                 mini_qdisc_qstats_cpu_drop(miniq);
4688                 kfree_skb(skb);
4689                 return NULL;
4690         case TC_ACT_STOLEN:
4691         case TC_ACT_QUEUED:
4692         case TC_ACT_TRAP:
4693                 consume_skb(skb);
4694                 return NULL;
4695         case TC_ACT_REDIRECT:
4696                 /* skb_mac_header check was done by cls/act_bpf, so
4697                  * we can safely push the L2 header back before
4698                  * redirecting to another netdev
4699                  */
4700                 __skb_push(skb, skb->mac_len);
4701                 skb_do_redirect(skb);
4702                 return NULL;
4703         case TC_ACT_REINSERT:
4704                 /* this does not scrub the packet, and updates stats on error */
4705                 skb_tc_reinsert(skb, &cl_res);
4706                 return NULL;
4707         default:
4708                 break;
4709         }
4710 #endif /* CONFIG_NET_CLS_ACT */
4711         return skb;
4712 }
4713
4714 /**
4715  *      netdev_is_rx_handler_busy - check if receive handler is registered
4716  *      @dev: device to check
4717  *
4718  *      Check if a receive handler is already registered for a given device.
4719  *      Return true if there one.
4720  *
4721  *      The caller must hold the rtnl_mutex.
4722  */
4723 bool netdev_is_rx_handler_busy(struct net_device *dev)
4724 {
4725         ASSERT_RTNL();
4726         return dev && rtnl_dereference(dev->rx_handler);
4727 }
4728 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4729
4730 /**
4731  *      netdev_rx_handler_register - register receive handler
4732  *      @dev: device to register a handler for
4733  *      @rx_handler: receive handler to register
4734  *      @rx_handler_data: data pointer that is used by rx handler
4735  *
4736  *      Register a receive handler for a device. This handler will then be
4737  *      called from __netif_receive_skb. A negative errno code is returned
4738  *      on a failure.
4739  *
4740  *      The caller must hold the rtnl_mutex.
4741  *
4742  *      For a general description of rx_handler, see enum rx_handler_result.
4743  */
4744 int netdev_rx_handler_register(struct net_device *dev,
4745                                rx_handler_func_t *rx_handler,
4746                                void *rx_handler_data)
4747 {
4748         if (netdev_is_rx_handler_busy(dev))
4749                 return -EBUSY;
4750
4751         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4752                 return -EINVAL;
4753
4754         /* Note: rx_handler_data must be set before rx_handler */
4755         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4756         rcu_assign_pointer(dev->rx_handler, rx_handler);
4757
4758         return 0;
4759 }
4760 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4761
4762 /**
4763  *      netdev_rx_handler_unregister - unregister receive handler
4764  *      @dev: device to unregister a handler from
4765  *
4766  *      Unregister a receive handler from a device.
4767  *
4768  *      The caller must hold the rtnl_mutex.
4769  */
4770 void netdev_rx_handler_unregister(struct net_device *dev)
4771 {
4772
4773         ASSERT_RTNL();
4774         RCU_INIT_POINTER(dev->rx_handler, NULL);
4775         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4776          * section has a guarantee to see a non NULL rx_handler_data
4777          * as well.
4778          */
4779         synchronize_net();
4780         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4781 }
4782 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4783
4784 /*
4785  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4786  * the special handling of PFMEMALLOC skbs.
4787  */
4788 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4789 {
4790         switch (skb->protocol) {
4791         case htons(ETH_P_ARP):
4792         case htons(ETH_P_IP):
4793         case htons(ETH_P_IPV6):
4794         case htons(ETH_P_8021Q):
4795         case htons(ETH_P_8021AD):
4796                 return true;
4797         default:
4798                 return false;
4799         }
4800 }
4801
4802 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4803                              int *ret, struct net_device *orig_dev)
4804 {
4805 #ifdef CONFIG_NETFILTER_INGRESS
4806         if (nf_hook_ingress_active(skb)) {
4807                 int ingress_retval;
4808
4809                 if (*pt_prev) {
4810                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4811                         *pt_prev = NULL;
4812                 }
4813
4814                 rcu_read_lock();
4815                 ingress_retval = nf_hook_ingress(skb);
4816                 rcu_read_unlock();
4817                 return ingress_retval;
4818         }
4819 #endif /* CONFIG_NETFILTER_INGRESS */
4820         return 0;
4821 }
4822
4823 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4824                                     struct packet_type **ppt_prev)
4825 {
4826         struct packet_type *ptype, *pt_prev;
4827         rx_handler_func_t *rx_handler;
4828         struct net_device *orig_dev;
4829         bool deliver_exact = false;
4830         int ret = NET_RX_DROP;
4831         __be16 type;
4832
4833         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4834
4835         trace_netif_receive_skb(skb);
4836
4837         orig_dev = skb->dev;
4838
4839         skb_reset_network_header(skb);
4840         if (!skb_transport_header_was_set(skb))
4841                 skb_reset_transport_header(skb);
4842         skb_reset_mac_len(skb);
4843
4844         pt_prev = NULL;
4845
4846 another_round:
4847         skb->skb_iif = skb->dev->ifindex;
4848
4849         __this_cpu_inc(softnet_data.processed);
4850
4851         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4852             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4853                 skb = skb_vlan_untag(skb);
4854                 if (unlikely(!skb))
4855                         goto out;
4856         }
4857
4858         if (skb_skip_tc_classify(skb))
4859                 goto skip_classify;
4860
4861         if (pfmemalloc)
4862                 goto skip_taps;
4863
4864         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4865                 if (pt_prev)
4866                         ret = deliver_skb(skb, pt_prev, orig_dev);
4867                 pt_prev = ptype;
4868         }
4869
4870         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4871                 if (pt_prev)
4872                         ret = deliver_skb(skb, pt_prev, orig_dev);
4873                 pt_prev = ptype;
4874         }
4875
4876 skip_taps:
4877 #ifdef CONFIG_NET_INGRESS
4878         if (static_branch_unlikely(&ingress_needed_key)) {
4879                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4880                 if (!skb)
4881                         goto out;
4882
4883                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4884                         goto out;
4885         }
4886 #endif
4887         skb_reset_tc(skb);
4888 skip_classify:
4889         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4890                 goto drop;
4891
4892         if (skb_vlan_tag_present(skb)) {
4893                 if (pt_prev) {
4894                         ret = deliver_skb(skb, pt_prev, orig_dev);
4895                         pt_prev = NULL;
4896                 }
4897                 if (vlan_do_receive(&skb))
4898                         goto another_round;
4899                 else if (unlikely(!skb))
4900                         goto out;
4901         }
4902
4903         rx_handler = rcu_dereference(skb->dev->rx_handler);
4904         if (rx_handler) {
4905                 if (pt_prev) {
4906                         ret = deliver_skb(skb, pt_prev, orig_dev);
4907                         pt_prev = NULL;
4908                 }
4909                 switch (rx_handler(&skb)) {
4910                 case RX_HANDLER_CONSUMED:
4911                         ret = NET_RX_SUCCESS;
4912                         goto out;
4913                 case RX_HANDLER_ANOTHER:
4914                         goto another_round;
4915                 case RX_HANDLER_EXACT:
4916                         deliver_exact = true;
4917                 case RX_HANDLER_PASS:
4918                         break;
4919                 default:
4920                         BUG();
4921                 }
4922         }
4923
4924         if (unlikely(skb_vlan_tag_present(skb))) {
4925                 if (skb_vlan_tag_get_id(skb))
4926                         skb->pkt_type = PACKET_OTHERHOST;
4927                 /* Note: we might in the future use prio bits
4928                  * and set skb->priority like in vlan_do_receive()
4929                  * For the time being, just ignore Priority Code Point
4930                  */
4931                 __vlan_hwaccel_clear_tag(skb);
4932         }
4933
4934         type = skb->protocol;
4935
4936         /* deliver only exact match when indicated */
4937         if (likely(!deliver_exact)) {
4938                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4939                                        &ptype_base[ntohs(type) &
4940                                                    PTYPE_HASH_MASK]);
4941         }
4942
4943         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4944                                &orig_dev->ptype_specific);
4945
4946         if (unlikely(skb->dev != orig_dev)) {
4947                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4948                                        &skb->dev->ptype_specific);
4949         }
4950
4951         if (pt_prev) {
4952                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4953                         goto drop;
4954                 *ppt_prev = pt_prev;
4955         } else {
4956 drop:
4957                 if (!deliver_exact)
4958                         atomic_long_inc(&skb->dev->rx_dropped);
4959                 else
4960                         atomic_long_inc(&skb->dev->rx_nohandler);
4961                 kfree_skb(skb);
4962                 /* Jamal, now you will not able to escape explaining
4963                  * me how you were going to use this. :-)
4964                  */
4965                 ret = NET_RX_DROP;
4966         }
4967
4968 out:
4969         return ret;
4970 }
4971
4972 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4973 {
4974         struct net_device *orig_dev = skb->dev;
4975         struct packet_type *pt_prev = NULL;
4976         int ret;
4977
4978         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4979         if (pt_prev)
4980                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4981         return ret;
4982 }
4983
4984 /**
4985  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4986  *      @skb: buffer to process
4987  *
4988  *      More direct receive version of netif_receive_skb().  It should
4989  *      only be used by callers that have a need to skip RPS and Generic XDP.
4990  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4991  *
4992  *      This function may only be called from softirq context and interrupts
4993  *      should be enabled.
4994  *
4995  *      Return values (usually ignored):
4996  *      NET_RX_SUCCESS: no congestion
4997  *      NET_RX_DROP: packet was dropped
4998  */
4999 int netif_receive_skb_core(struct sk_buff *skb)
5000 {
5001         int ret;
5002
5003         rcu_read_lock();
5004         ret = __netif_receive_skb_one_core(skb, false);
5005         rcu_read_unlock();
5006
5007         return ret;
5008 }
5009 EXPORT_SYMBOL(netif_receive_skb_core);
5010
5011 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5012                                                   struct packet_type *pt_prev,
5013                                                   struct net_device *orig_dev)
5014 {
5015         struct sk_buff *skb, *next;
5016
5017         if (!pt_prev)
5018                 return;
5019         if (list_empty(head))
5020                 return;
5021         if (pt_prev->list_func != NULL)
5022                 pt_prev->list_func(head, pt_prev, orig_dev);
5023         else
5024                 list_for_each_entry_safe(skb, next, head, list)
5025                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5026 }
5027
5028 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5029 {
5030         /* Fast-path assumptions:
5031          * - There is no RX handler.
5032          * - Only one packet_type matches.
5033          * If either of these fails, we will end up doing some per-packet
5034          * processing in-line, then handling the 'last ptype' for the whole
5035          * sublist.  This can't cause out-of-order delivery to any single ptype,
5036          * because the 'last ptype' must be constant across the sublist, and all
5037          * other ptypes are handled per-packet.
5038          */
5039         /* Current (common) ptype of sublist */
5040         struct packet_type *pt_curr = NULL;
5041         /* Current (common) orig_dev of sublist */
5042         struct net_device *od_curr = NULL;
5043         struct list_head sublist;
5044         struct sk_buff *skb, *next;
5045
5046         INIT_LIST_HEAD(&sublist);
5047         list_for_each_entry_safe(skb, next, head, list) {
5048                 struct net_device *orig_dev = skb->dev;
5049                 struct packet_type *pt_prev = NULL;
5050
5051                 skb_list_del_init(skb);
5052                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5053                 if (!pt_prev)
5054                         continue;
5055                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5056                         /* dispatch old sublist */
5057                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5058                         /* start new sublist */
5059                         INIT_LIST_HEAD(&sublist);
5060                         pt_curr = pt_prev;
5061                         od_curr = orig_dev;
5062                 }
5063                 list_add_tail(&skb->list, &sublist);
5064         }
5065
5066         /* dispatch final sublist */
5067         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5068 }
5069
5070 static int __netif_receive_skb(struct sk_buff *skb)
5071 {
5072         int ret;
5073
5074         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5075                 unsigned int noreclaim_flag;
5076
5077                 /*
5078                  * PFMEMALLOC skbs are special, they should
5079                  * - be delivered to SOCK_MEMALLOC sockets only
5080                  * - stay away from userspace
5081                  * - have bounded memory usage
5082                  *
5083                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5084                  * context down to all allocation sites.
5085                  */
5086                 noreclaim_flag = memalloc_noreclaim_save();
5087                 ret = __netif_receive_skb_one_core(skb, true);
5088                 memalloc_noreclaim_restore(noreclaim_flag);
5089         } else
5090                 ret = __netif_receive_skb_one_core(skb, false);
5091
5092         return ret;
5093 }
5094
5095 static void __netif_receive_skb_list(struct list_head *head)
5096 {
5097         unsigned long noreclaim_flag = 0;
5098         struct sk_buff *skb, *next;
5099         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5100
5101         list_for_each_entry_safe(skb, next, head, list) {
5102                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5103                         struct list_head sublist;
5104
5105                         /* Handle the previous sublist */
5106                         list_cut_before(&sublist, head, &skb->list);
5107                         if (!list_empty(&sublist))
5108                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5109                         pfmemalloc = !pfmemalloc;
5110                         /* See comments in __netif_receive_skb */
5111                         if (pfmemalloc)
5112                                 noreclaim_flag = memalloc_noreclaim_save();
5113                         else
5114                                 memalloc_noreclaim_restore(noreclaim_flag);
5115                 }
5116         }
5117         /* Handle the remaining sublist */
5118         if (!list_empty(head))
5119                 __netif_receive_skb_list_core(head, pfmemalloc);
5120         /* Restore pflags */
5121         if (pfmemalloc)
5122                 memalloc_noreclaim_restore(noreclaim_flag);
5123 }
5124
5125 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5126 {
5127         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5128         struct bpf_prog *new = xdp->prog;
5129         int ret = 0;
5130
5131         switch (xdp->command) {
5132         case XDP_SETUP_PROG:
5133                 rcu_assign_pointer(dev->xdp_prog, new);
5134                 if (old)
5135                         bpf_prog_put(old);
5136
5137                 if (old && !new) {
5138                         static_branch_dec(&generic_xdp_needed_key);
5139                 } else if (new && !old) {
5140                         static_branch_inc(&generic_xdp_needed_key);
5141                         dev_disable_lro(dev);
5142                         dev_disable_gro_hw(dev);
5143                 }
5144                 break;
5145
5146         case XDP_QUERY_PROG:
5147                 xdp->prog_id = old ? old->aux->id : 0;
5148                 break;
5149
5150         default:
5151                 ret = -EINVAL;
5152                 break;
5153         }
5154
5155         return ret;
5156 }
5157
5158 static int netif_receive_skb_internal(struct sk_buff *skb)
5159 {
5160         int ret;
5161
5162         net_timestamp_check(netdev_tstamp_prequeue, skb);
5163
5164         if (skb_defer_rx_timestamp(skb))
5165                 return NET_RX_SUCCESS;
5166
5167         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5168                 int ret;
5169
5170                 preempt_disable();
5171                 rcu_read_lock();
5172                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5173                 rcu_read_unlock();
5174                 preempt_enable();
5175
5176                 if (ret != XDP_PASS)
5177                         return NET_RX_DROP;
5178         }
5179
5180         rcu_read_lock();
5181 #ifdef CONFIG_RPS
5182         if (static_branch_unlikely(&rps_needed)) {
5183                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5184                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5185
5186                 if (cpu >= 0) {
5187                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5188                         rcu_read_unlock();
5189                         return ret;
5190                 }
5191         }
5192 #endif
5193         ret = __netif_receive_skb(skb);
5194         rcu_read_unlock();
5195         return ret;
5196 }
5197
5198 static void netif_receive_skb_list_internal(struct list_head *head)
5199 {
5200         struct bpf_prog *xdp_prog = NULL;
5201         struct sk_buff *skb, *next;
5202         struct list_head sublist;
5203
5204         INIT_LIST_HEAD(&sublist);
5205         list_for_each_entry_safe(skb, next, head, list) {
5206                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5207                 skb_list_del_init(skb);
5208                 if (!skb_defer_rx_timestamp(skb))
5209                         list_add_tail(&skb->list, &sublist);
5210         }
5211         list_splice_init(&sublist, head);
5212
5213         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5214                 preempt_disable();
5215                 rcu_read_lock();
5216                 list_for_each_entry_safe(skb, next, head, list) {
5217                         xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5218                         skb_list_del_init(skb);
5219                         if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5220                                 list_add_tail(&skb->list, &sublist);
5221                 }
5222                 rcu_read_unlock();
5223                 preempt_enable();
5224                 /* Put passed packets back on main list */
5225                 list_splice_init(&sublist, head);
5226         }
5227
5228         rcu_read_lock();
5229 #ifdef CONFIG_RPS
5230         if (static_branch_unlikely(&rps_needed)) {
5231                 list_for_each_entry_safe(skb, next, head, list) {
5232                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5233                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5234
5235                         if (cpu >= 0) {
5236                                 /* Will be handled, remove from list */
5237                                 skb_list_del_init(skb);
5238                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5239                         }
5240                 }
5241         }
5242 #endif
5243         __netif_receive_skb_list(head);
5244         rcu_read_unlock();
5245 }
5246
5247 /**
5248  *      netif_receive_skb - process receive buffer from network
5249  *      @skb: buffer to process
5250  *
5251  *      netif_receive_skb() is the main receive data processing function.
5252  *      It always succeeds. The buffer may be dropped during processing
5253  *      for congestion control or by the protocol layers.
5254  *
5255  *      This function may only be called from softirq context and interrupts
5256  *      should be enabled.
5257  *
5258  *      Return values (usually ignored):
5259  *      NET_RX_SUCCESS: no congestion
5260  *      NET_RX_DROP: packet was dropped
5261  */
5262 int netif_receive_skb(struct sk_buff *skb)
5263 {
5264         int ret;
5265
5266         trace_netif_receive_skb_entry(skb);
5267
5268         ret = netif_receive_skb_internal(skb);
5269         trace_netif_receive_skb_exit(ret);
5270
5271         return ret;
5272 }
5273 EXPORT_SYMBOL(netif_receive_skb);
5274
5275 /**
5276  *      netif_receive_skb_list - process many receive buffers from network
5277  *      @head: list of skbs to process.
5278  *
5279  *      Since return value of netif_receive_skb() is normally ignored, and
5280  *      wouldn't be meaningful for a list, this function returns void.
5281  *
5282  *      This function may only be called from softirq context and interrupts
5283  *      should be enabled.
5284  */
5285 void netif_receive_skb_list(struct list_head *head)
5286 {
5287         struct sk_buff *skb;
5288
5289         if (list_empty(head))
5290                 return;
5291         if (trace_netif_receive_skb_list_entry_enabled()) {
5292                 list_for_each_entry(skb, head, list)
5293                         trace_netif_receive_skb_list_entry(skb);
5294         }
5295         netif_receive_skb_list_internal(head);
5296         trace_netif_receive_skb_list_exit(0);
5297 }
5298 EXPORT_SYMBOL(netif_receive_skb_list);
5299
5300 DEFINE_PER_CPU(struct work_struct, flush_works);
5301
5302 /* Network device is going away, flush any packets still pending */
5303 static void flush_backlog(struct work_struct *work)
5304 {
5305         struct sk_buff *skb, *tmp;
5306         struct softnet_data *sd;
5307
5308         local_bh_disable();
5309         sd = this_cpu_ptr(&softnet_data);
5310
5311         local_irq_disable();
5312         rps_lock(sd);
5313         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5314                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5315                         __skb_unlink(skb, &sd->input_pkt_queue);
5316                         kfree_skb(skb);
5317                         input_queue_head_incr(sd);
5318                 }
5319         }
5320         rps_unlock(sd);
5321         local_irq_enable();
5322
5323         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5324                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5325                         __skb_unlink(skb, &sd->process_queue);
5326                         kfree_skb(skb);
5327                         input_queue_head_incr(sd);
5328                 }
5329         }
5330         local_bh_enable();
5331 }
5332
5333 static void flush_all_backlogs(void)
5334 {
5335         unsigned int cpu;
5336
5337         get_online_cpus();
5338
5339         for_each_online_cpu(cpu)
5340                 queue_work_on(cpu, system_highpri_wq,
5341                               per_cpu_ptr(&flush_works, cpu));
5342
5343         for_each_online_cpu(cpu)
5344                 flush_work(per_cpu_ptr(&flush_works, cpu));
5345
5346         put_online_cpus();
5347 }
5348
5349 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5350 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5351 static int napi_gro_complete(struct sk_buff *skb)
5352 {
5353         struct packet_offload *ptype;
5354         __be16 type = skb->protocol;
5355         struct list_head *head = &offload_base;
5356         int err = -ENOENT;
5357
5358         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5359
5360         if (NAPI_GRO_CB(skb)->count == 1) {
5361                 skb_shinfo(skb)->gso_size = 0;
5362                 goto out;
5363         }
5364
5365         rcu_read_lock();
5366         list_for_each_entry_rcu(ptype, head, list) {
5367                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5368                         continue;
5369
5370                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5371                                          ipv6_gro_complete, inet_gro_complete,
5372                                          skb, 0);
5373                 break;
5374         }
5375         rcu_read_unlock();
5376
5377         if (err) {
5378                 WARN_ON(&ptype->list == head);
5379                 kfree_skb(skb);
5380                 return NET_RX_SUCCESS;
5381         }
5382
5383 out:
5384         return netif_receive_skb_internal(skb);
5385 }
5386
5387 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5388                                    bool flush_old)
5389 {
5390         struct list_head *head = &napi->gro_hash[index].list;
5391         struct sk_buff *skb, *p;
5392
5393         list_for_each_entry_safe_reverse(skb, p, head, list) {
5394                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5395                         return;
5396                 skb_list_del_init(skb);
5397                 napi_gro_complete(skb);
5398                 napi->gro_hash[index].count--;
5399         }
5400
5401         if (!napi->gro_hash[index].count)
5402                 __clear_bit(index, &napi->gro_bitmask);
5403 }
5404
5405 /* napi->gro_hash[].list contains packets ordered by age.
5406  * youngest packets at the head of it.
5407  * Complete skbs in reverse order to reduce latencies.
5408  */
5409 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5410 {
5411         unsigned long bitmask = napi->gro_bitmask;
5412         unsigned int i, base = ~0U;
5413
5414         while ((i = ffs(bitmask)) != 0) {
5415                 bitmask >>= i;
5416                 base += i;
5417                 __napi_gro_flush_chain(napi, base, flush_old);
5418         }
5419 }
5420 EXPORT_SYMBOL(napi_gro_flush);
5421
5422 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5423                                           struct sk_buff *skb)
5424 {
5425         unsigned int maclen = skb->dev->hard_header_len;
5426         u32 hash = skb_get_hash_raw(skb);
5427         struct list_head *head;
5428         struct sk_buff *p;
5429
5430         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5431         list_for_each_entry(p, head, list) {
5432                 unsigned long diffs;
5433
5434                 NAPI_GRO_CB(p)->flush = 0;
5435
5436                 if (hash != skb_get_hash_raw(p)) {
5437                         NAPI_GRO_CB(p)->same_flow = 0;
5438                         continue;
5439                 }
5440
5441                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5442                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5443                 if (skb_vlan_tag_present(p))
5444                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5445                 diffs |= skb_metadata_dst_cmp(p, skb);
5446                 diffs |= skb_metadata_differs(p, skb);
5447                 if (maclen == ETH_HLEN)
5448                         diffs |= compare_ether_header(skb_mac_header(p),
5449                                                       skb_mac_header(skb));
5450                 else if (!diffs)
5451                         diffs = memcmp(skb_mac_header(p),
5452                                        skb_mac_header(skb),
5453                                        maclen);
5454                 NAPI_GRO_CB(p)->same_flow = !diffs;
5455         }
5456
5457         return head;
5458 }
5459
5460 static void skb_gro_reset_offset(struct sk_buff *skb)
5461 {
5462         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5463         const skb_frag_t *frag0 = &pinfo->frags[0];
5464
5465         NAPI_GRO_CB(skb)->data_offset = 0;
5466         NAPI_GRO_CB(skb)->frag0 = NULL;
5467         NAPI_GRO_CB(skb)->frag0_len = 0;
5468
5469         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5470             pinfo->nr_frags &&
5471             !PageHighMem(skb_frag_page(frag0))) {
5472                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5473                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5474                                                     skb_frag_size(frag0),
5475                                                     skb->end - skb->tail);
5476         }
5477 }
5478
5479 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5480 {
5481         struct skb_shared_info *pinfo = skb_shinfo(skb);
5482
5483         BUG_ON(skb->end - skb->tail < grow);
5484
5485         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5486
5487         skb->data_len -= grow;
5488         skb->tail += grow;
5489
5490         pinfo->frags[0].page_offset += grow;
5491         skb_frag_size_sub(&pinfo->frags[0], grow);
5492
5493         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5494                 skb_frag_unref(skb, 0);
5495                 memmove(pinfo->frags, pinfo->frags + 1,
5496                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5497         }
5498 }
5499
5500 static void gro_flush_oldest(struct list_head *head)
5501 {
5502         struct sk_buff *oldest;
5503
5504         oldest = list_last_entry(head, struct sk_buff, list);
5505
5506         /* We are called with head length >= MAX_GRO_SKBS, so this is
5507          * impossible.
5508          */
5509         if (WARN_ON_ONCE(!oldest))
5510                 return;
5511
5512         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5513          * SKB to the chain.
5514          */
5515         skb_list_del_init(oldest);
5516         napi_gro_complete(oldest);
5517 }
5518
5519 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5520                                                            struct sk_buff *));
5521 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5522                                                            struct sk_buff *));
5523 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5524 {
5525         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5526         struct list_head *head = &offload_base;
5527         struct packet_offload *ptype;
5528         __be16 type = skb->protocol;
5529         struct list_head *gro_head;
5530         struct sk_buff *pp = NULL;
5531         enum gro_result ret;
5532         int same_flow;
5533         int grow;
5534
5535         if (netif_elide_gro(skb->dev))
5536                 goto normal;
5537
5538         gro_head = gro_list_prepare(napi, skb);
5539
5540         rcu_read_lock();
5541         list_for_each_entry_rcu(ptype, head, list) {
5542                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5543                         continue;
5544
5545                 skb_set_network_header(skb, skb_gro_offset(skb));
5546                 skb_reset_mac_len(skb);
5547                 NAPI_GRO_CB(skb)->same_flow = 0;
5548                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5549                 NAPI_GRO_CB(skb)->free = 0;
5550                 NAPI_GRO_CB(skb)->encap_mark = 0;
5551                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5552                 NAPI_GRO_CB(skb)->is_fou = 0;
5553                 NAPI_GRO_CB(skb)->is_atomic = 1;
5554                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5555
5556                 /* Setup for GRO checksum validation */
5557                 switch (skb->ip_summed) {
5558                 case CHECKSUM_COMPLETE:
5559                         NAPI_GRO_CB(skb)->csum = skb->csum;
5560                         NAPI_GRO_CB(skb)->csum_valid = 1;
5561                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5562                         break;
5563                 case CHECKSUM_UNNECESSARY:
5564                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5565                         NAPI_GRO_CB(skb)->csum_valid = 0;
5566                         break;
5567                 default:
5568                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5569                         NAPI_GRO_CB(skb)->csum_valid = 0;
5570                 }
5571
5572                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5573                                         ipv6_gro_receive, inet_gro_receive,
5574                                         gro_head, skb);
5575                 break;
5576         }
5577         rcu_read_unlock();
5578
5579         if (&ptype->list == head)
5580                 goto normal;
5581
5582         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5583                 ret = GRO_CONSUMED;
5584                 goto ok;
5585         }
5586
5587         same_flow = NAPI_GRO_CB(skb)->same_flow;
5588         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5589
5590         if (pp) {
5591                 skb_list_del_init(pp);
5592                 napi_gro_complete(pp);
5593                 napi->gro_hash[hash].count--;
5594         }
5595
5596         if (same_flow)
5597                 goto ok;
5598
5599         if (NAPI_GRO_CB(skb)->flush)
5600                 goto normal;
5601
5602         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5603                 gro_flush_oldest(gro_head);
5604         } else {
5605                 napi->gro_hash[hash].count++;
5606         }
5607         NAPI_GRO_CB(skb)->count = 1;
5608         NAPI_GRO_CB(skb)->age = jiffies;
5609         NAPI_GRO_CB(skb)->last = skb;
5610         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5611         list_add(&skb->list, gro_head);
5612         ret = GRO_HELD;
5613
5614 pull:
5615         grow = skb_gro_offset(skb) - skb_headlen(skb);
5616         if (grow > 0)
5617                 gro_pull_from_frag0(skb, grow);
5618 ok:
5619         if (napi->gro_hash[hash].count) {
5620                 if (!test_bit(hash, &napi->gro_bitmask))
5621                         __set_bit(hash, &napi->gro_bitmask);
5622         } else if (test_bit(hash, &napi->gro_bitmask)) {
5623                 __clear_bit(hash, &napi->gro_bitmask);
5624         }
5625
5626         return ret;
5627
5628 normal:
5629         ret = GRO_NORMAL;
5630         goto pull;
5631 }
5632
5633 struct packet_offload *gro_find_receive_by_type(__be16 type)
5634 {
5635         struct list_head *offload_head = &offload_base;
5636         struct packet_offload *ptype;
5637
5638         list_for_each_entry_rcu(ptype, offload_head, list) {
5639                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5640                         continue;
5641                 return ptype;
5642         }
5643         return NULL;
5644 }
5645 EXPORT_SYMBOL(gro_find_receive_by_type);
5646
5647 struct packet_offload *gro_find_complete_by_type(__be16 type)
5648 {
5649         struct list_head *offload_head = &offload_base;
5650         struct packet_offload *ptype;
5651
5652         list_for_each_entry_rcu(ptype, offload_head, list) {
5653                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5654                         continue;
5655                 return ptype;
5656         }
5657         return NULL;
5658 }
5659 EXPORT_SYMBOL(gro_find_complete_by_type);
5660
5661 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5662 {
5663         skb_dst_drop(skb);
5664         secpath_reset(skb);
5665         kmem_cache_free(skbuff_head_cache, skb);
5666 }
5667
5668 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5669 {
5670         switch (ret) {
5671         case GRO_NORMAL:
5672                 if (netif_receive_skb_internal(skb))
5673                         ret = GRO_DROP;
5674                 break;
5675
5676         case GRO_DROP:
5677                 kfree_skb(skb);
5678                 break;
5679
5680         case GRO_MERGED_FREE:
5681                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5682                         napi_skb_free_stolen_head(skb);
5683                 else
5684                         __kfree_skb(skb);
5685                 break;
5686
5687         case GRO_HELD:
5688         case GRO_MERGED:
5689         case GRO_CONSUMED:
5690                 break;
5691         }
5692
5693         return ret;
5694 }
5695
5696 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5697 {
5698         gro_result_t ret;
5699
5700         skb_mark_napi_id(skb, napi);
5701         trace_napi_gro_receive_entry(skb);
5702
5703         skb_gro_reset_offset(skb);
5704
5705         ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5706         trace_napi_gro_receive_exit(ret);
5707
5708         return ret;
5709 }
5710 EXPORT_SYMBOL(napi_gro_receive);
5711
5712 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5713 {
5714         if (unlikely(skb->pfmemalloc)) {
5715                 consume_skb(skb);
5716                 return;
5717         }
5718         __skb_pull(skb, skb_headlen(skb));
5719         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5720         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5721         __vlan_hwaccel_clear_tag(skb);
5722         skb->dev = napi->dev;
5723         skb->skb_iif = 0;
5724
5725         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5726         skb->pkt_type = PACKET_HOST;
5727
5728         skb->encapsulation = 0;
5729         skb_shinfo(skb)->gso_type = 0;
5730         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5731         secpath_reset(skb);
5732
5733         napi->skb = skb;
5734 }
5735
5736 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5737 {
5738         struct sk_buff *skb = napi->skb;
5739
5740         if (!skb) {
5741                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5742                 if (skb) {
5743                         napi->skb = skb;
5744                         skb_mark_napi_id(skb, napi);
5745                 }
5746         }
5747         return skb;
5748 }
5749 EXPORT_SYMBOL(napi_get_frags);
5750
5751 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5752                                       struct sk_buff *skb,
5753                                       gro_result_t ret)
5754 {
5755         switch (ret) {
5756         case GRO_NORMAL:
5757         case GRO_HELD:
5758                 __skb_push(skb, ETH_HLEN);
5759                 skb->protocol = eth_type_trans(skb, skb->dev);
5760                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5761                         ret = GRO_DROP;
5762                 break;
5763
5764         case GRO_DROP:
5765                 napi_reuse_skb(napi, skb);
5766                 break;
5767
5768         case GRO_MERGED_FREE:
5769                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5770                         napi_skb_free_stolen_head(skb);
5771                 else
5772                         napi_reuse_skb(napi, skb);
5773                 break;
5774
5775         case GRO_MERGED:
5776         case GRO_CONSUMED:
5777                 break;
5778         }
5779
5780         return ret;
5781 }
5782
5783 /* Upper GRO stack assumes network header starts at gro_offset=0
5784  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5785  * We copy ethernet header into skb->data to have a common layout.
5786  */
5787 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5788 {
5789         struct sk_buff *skb = napi->skb;
5790         const struct ethhdr *eth;
5791         unsigned int hlen = sizeof(*eth);
5792
5793         napi->skb = NULL;
5794
5795         skb_reset_mac_header(skb);
5796         skb_gro_reset_offset(skb);
5797
5798         eth = skb_gro_header_fast(skb, 0);
5799         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5800                 eth = skb_gro_header_slow(skb, hlen, 0);
5801                 if (unlikely(!eth)) {
5802                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5803                                              __func__, napi->dev->name);
5804                         napi_reuse_skb(napi, skb);
5805                         return NULL;
5806                 }
5807         } else {
5808                 gro_pull_from_frag0(skb, hlen);
5809                 NAPI_GRO_CB(skb)->frag0 += hlen;
5810                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5811         }
5812         __skb_pull(skb, hlen);
5813
5814         /*
5815          * This works because the only protocols we care about don't require
5816          * special handling.
5817          * We'll fix it up properly in napi_frags_finish()
5818          */
5819         skb->protocol = eth->h_proto;
5820
5821         return skb;
5822 }
5823
5824 gro_result_t napi_gro_frags(struct napi_struct *napi)
5825 {
5826         gro_result_t ret;
5827         struct sk_buff *skb = napi_frags_skb(napi);
5828
5829         if (!skb)
5830                 return GRO_DROP;
5831
5832         trace_napi_gro_frags_entry(skb);
5833
5834         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5835         trace_napi_gro_frags_exit(ret);
5836
5837         return ret;
5838 }
5839 EXPORT_SYMBOL(napi_gro_frags);
5840
5841 /* Compute the checksum from gro_offset and return the folded value
5842  * after adding in any pseudo checksum.
5843  */
5844 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5845 {
5846         __wsum wsum;
5847         __sum16 sum;
5848
5849         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5850
5851         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5852         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5853         /* See comments in __skb_checksum_complete(). */
5854         if (likely(!sum)) {
5855                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5856                     !skb->csum_complete_sw)
5857                         netdev_rx_csum_fault(skb->dev, skb);
5858         }
5859
5860         NAPI_GRO_CB(skb)->csum = wsum;
5861         NAPI_GRO_CB(skb)->csum_valid = 1;
5862
5863         return sum;
5864 }
5865 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5866
5867 static void net_rps_send_ipi(struct softnet_data *remsd)
5868 {
5869 #ifdef CONFIG_RPS
5870         while (remsd) {
5871                 struct softnet_data *next = remsd->rps_ipi_next;
5872
5873                 if (cpu_online(remsd->cpu))
5874                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5875                 remsd = next;
5876         }
5877 #endif
5878 }
5879
5880 /*
5881  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5882  * Note: called with local irq disabled, but exits with local irq enabled.
5883  */
5884 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5885 {
5886 #ifdef CONFIG_RPS
5887         struct softnet_data *remsd = sd->rps_ipi_list;
5888
5889         if (remsd) {
5890                 sd->rps_ipi_list = NULL;
5891
5892                 local_irq_enable();
5893
5894                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5895                 net_rps_send_ipi(remsd);
5896         } else
5897 #endif
5898                 local_irq_enable();
5899 }
5900
5901 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5902 {
5903 #ifdef CONFIG_RPS
5904         return sd->rps_ipi_list != NULL;
5905 #else
5906         return false;
5907 #endif
5908 }
5909
5910 static int process_backlog(struct napi_struct *napi, int quota)
5911 {
5912         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5913         bool again = true;
5914         int work = 0;
5915
5916         /* Check if we have pending ipi, its better to send them now,
5917          * not waiting net_rx_action() end.
5918          */
5919         if (sd_has_rps_ipi_waiting(sd)) {
5920                 local_irq_disable();
5921                 net_rps_action_and_irq_enable(sd);
5922         }
5923
5924         napi->weight = dev_rx_weight;
5925         while (again) {
5926                 struct sk_buff *skb;
5927
5928                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5929                         rcu_read_lock();
5930                         __netif_receive_skb(skb);
5931                         rcu_read_unlock();
5932                         input_queue_head_incr(sd);
5933                         if (++work >= quota)
5934                                 return work;
5935
5936                 }
5937
5938                 local_irq_disable();
5939                 rps_lock(sd);
5940                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5941                         /*
5942                          * Inline a custom version of __napi_complete().
5943                          * only current cpu owns and manipulates this napi,
5944                          * and NAPI_STATE_SCHED is the only possible flag set
5945                          * on backlog.
5946                          * We can use a plain write instead of clear_bit(),
5947                          * and we dont need an smp_mb() memory barrier.
5948                          */
5949                         napi->state = 0;
5950                         again = false;
5951                 } else {
5952                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5953                                                    &sd->process_queue);
5954                 }
5955                 rps_unlock(sd);
5956                 local_irq_enable();
5957         }
5958
5959         return work;
5960 }
5961
5962 /**
5963  * __napi_schedule - schedule for receive
5964  * @n: entry to schedule
5965  *
5966  * The entry's receive function will be scheduled to run.
5967  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5968  */
5969 void __napi_schedule(struct napi_struct *n)
5970 {
5971         unsigned long flags;
5972
5973         local_irq_save(flags);
5974         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5975         local_irq_restore(flags);
5976 }
5977 EXPORT_SYMBOL(__napi_schedule);
5978
5979 /**
5980  *      napi_schedule_prep - check if napi can be scheduled
5981  *      @n: napi context
5982  *
5983  * Test if NAPI routine is already running, and if not mark
5984  * it as running.  This is used as a condition variable
5985  * insure only one NAPI poll instance runs.  We also make
5986  * sure there is no pending NAPI disable.
5987  */
5988 bool napi_schedule_prep(struct napi_struct *n)
5989 {
5990         unsigned long val, new;
5991
5992         do {
5993                 val = READ_ONCE(n->state);
5994                 if (unlikely(val & NAPIF_STATE_DISABLE))
5995                         return false;
5996                 new = val | NAPIF_STATE_SCHED;
5997
5998                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5999                  * This was suggested by Alexander Duyck, as compiler
6000                  * emits better code than :
6001                  * if (val & NAPIF_STATE_SCHED)
6002                  *     new |= NAPIF_STATE_MISSED;
6003                  */
6004                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6005                                                    NAPIF_STATE_MISSED;
6006         } while (cmpxchg(&n->state, val, new) != val);
6007
6008         return !(val & NAPIF_STATE_SCHED);
6009 }
6010 EXPORT_SYMBOL(napi_schedule_prep);
6011
6012 /**
6013  * __napi_schedule_irqoff - schedule for receive
6014  * @n: entry to schedule
6015  *
6016  * Variant of __napi_schedule() assuming hard irqs are masked
6017  */
6018 void __napi_schedule_irqoff(struct napi_struct *n)
6019 {
6020         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6021 }
6022 EXPORT_SYMBOL(__napi_schedule_irqoff);
6023
6024 bool napi_complete_done(struct napi_struct *n, int work_done)
6025 {
6026         unsigned long flags, val, new;
6027
6028         /*
6029          * 1) Don't let napi dequeue from the cpu poll list
6030          *    just in case its running on a different cpu.
6031          * 2) If we are busy polling, do nothing here, we have
6032          *    the guarantee we will be called later.
6033          */
6034         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6035                                  NAPIF_STATE_IN_BUSY_POLL)))
6036                 return false;
6037
6038         if (n->gro_bitmask) {
6039                 unsigned long timeout = 0;
6040
6041                 if (work_done)
6042                         timeout = n->dev->gro_flush_timeout;
6043
6044                 /* When the NAPI instance uses a timeout and keeps postponing
6045                  * it, we need to bound somehow the time packets are kept in
6046                  * the GRO layer
6047                  */
6048                 napi_gro_flush(n, !!timeout);
6049                 if (timeout)
6050                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6051                                       HRTIMER_MODE_REL_PINNED);
6052         }
6053         if (unlikely(!list_empty(&n->poll_list))) {
6054                 /* If n->poll_list is not empty, we need to mask irqs */
6055                 local_irq_save(flags);
6056                 list_del_init(&n->poll_list);
6057                 local_irq_restore(flags);
6058         }
6059
6060         do {
6061                 val = READ_ONCE(n->state);
6062
6063                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6064
6065                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6066
6067                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6068                  * because we will call napi->poll() one more time.
6069                  * This C code was suggested by Alexander Duyck to help gcc.
6070                  */
6071                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6072                                                     NAPIF_STATE_SCHED;
6073         } while (cmpxchg(&n->state, val, new) != val);
6074
6075         if (unlikely(val & NAPIF_STATE_MISSED)) {
6076                 __napi_schedule(n);
6077                 return false;
6078         }
6079
6080         return true;
6081 }
6082 EXPORT_SYMBOL(napi_complete_done);
6083
6084 /* must be called under rcu_read_lock(), as we dont take a reference */
6085 static struct napi_struct *napi_by_id(unsigned int napi_id)
6086 {
6087         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6088         struct napi_struct *napi;
6089
6090         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6091                 if (napi->napi_id == napi_id)
6092                         return napi;
6093
6094         return NULL;
6095 }
6096
6097 #if defined(CONFIG_NET_RX_BUSY_POLL)
6098
6099 #define BUSY_POLL_BUDGET 8
6100
6101 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6102 {
6103         int rc;
6104
6105         /* Busy polling means there is a high chance device driver hard irq
6106          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6107          * set in napi_schedule_prep().
6108          * Since we are about to call napi->poll() once more, we can safely
6109          * clear NAPI_STATE_MISSED.
6110          *
6111          * Note: x86 could use a single "lock and ..." instruction
6112          * to perform these two clear_bit()
6113          */
6114         clear_bit(NAPI_STATE_MISSED, &napi->state);
6115         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6116
6117         local_bh_disable();
6118
6119         /* All we really want here is to re-enable device interrupts.
6120          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6121          */
6122         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6123         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6124         netpoll_poll_unlock(have_poll_lock);
6125         if (rc == BUSY_POLL_BUDGET)
6126                 __napi_schedule(napi);
6127         local_bh_enable();
6128 }
6129
6130 void napi_busy_loop(unsigned int napi_id,
6131                     bool (*loop_end)(void *, unsigned long),
6132                     void *loop_end_arg)
6133 {
6134         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6135         int (*napi_poll)(struct napi_struct *napi, int budget);
6136         void *have_poll_lock = NULL;
6137         struct napi_struct *napi;
6138
6139 restart:
6140         napi_poll = NULL;
6141
6142         rcu_read_lock();
6143
6144         napi = napi_by_id(napi_id);
6145         if (!napi)
6146                 goto out;
6147
6148         preempt_disable();
6149         for (;;) {
6150                 int work = 0;
6151
6152                 local_bh_disable();
6153                 if (!napi_poll) {
6154                         unsigned long val = READ_ONCE(napi->state);
6155
6156                         /* If multiple threads are competing for this napi,
6157                          * we avoid dirtying napi->state as much as we can.
6158                          */
6159                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6160                                    NAPIF_STATE_IN_BUSY_POLL))
6161                                 goto count;
6162                         if (cmpxchg(&napi->state, val,
6163                                     val | NAPIF_STATE_IN_BUSY_POLL |
6164                                           NAPIF_STATE_SCHED) != val)
6165                                 goto count;
6166                         have_poll_lock = netpoll_poll_lock(napi);
6167                         napi_poll = napi->poll;
6168                 }
6169                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6170                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6171 count:
6172                 if (work > 0)
6173                         __NET_ADD_STATS(dev_net(napi->dev),
6174                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6175                 local_bh_enable();
6176
6177                 if (!loop_end || loop_end(loop_end_arg, start_time))
6178                         break;
6179
6180                 if (unlikely(need_resched())) {
6181                         if (napi_poll)
6182                                 busy_poll_stop(napi, have_poll_lock);
6183                         preempt_enable();
6184                         rcu_read_unlock();
6185                         cond_resched();
6186                         if (loop_end(loop_end_arg, start_time))
6187                                 return;
6188                         goto restart;
6189                 }
6190                 cpu_relax();
6191         }
6192         if (napi_poll)
6193                 busy_poll_stop(napi, have_poll_lock);
6194         preempt_enable();
6195 out:
6196         rcu_read_unlock();
6197 }
6198 EXPORT_SYMBOL(napi_busy_loop);
6199
6200 #endif /* CONFIG_NET_RX_BUSY_POLL */
6201
6202 static void napi_hash_add(struct napi_struct *napi)
6203 {
6204         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6205             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6206                 return;
6207
6208         spin_lock(&napi_hash_lock);
6209
6210         /* 0..NR_CPUS range is reserved for sender_cpu use */
6211         do {
6212                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6213                         napi_gen_id = MIN_NAPI_ID;
6214         } while (napi_by_id(napi_gen_id));
6215         napi->napi_id = napi_gen_id;
6216
6217         hlist_add_head_rcu(&napi->napi_hash_node,
6218                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6219
6220         spin_unlock(&napi_hash_lock);
6221 }
6222
6223 /* Warning : caller is responsible to make sure rcu grace period
6224  * is respected before freeing memory containing @napi
6225  */
6226 bool napi_hash_del(struct napi_struct *napi)
6227 {
6228         bool rcu_sync_needed = false;
6229
6230         spin_lock(&napi_hash_lock);
6231
6232         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6233                 rcu_sync_needed = true;
6234                 hlist_del_rcu(&napi->napi_hash_node);
6235         }
6236         spin_unlock(&napi_hash_lock);
6237         return rcu_sync_needed;
6238 }
6239 EXPORT_SYMBOL_GPL(napi_hash_del);
6240
6241 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6242 {
6243         struct napi_struct *napi;
6244
6245         napi = container_of(timer, struct napi_struct, timer);
6246
6247         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6248          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6249          */
6250         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6251             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6252                 __napi_schedule_irqoff(napi);
6253
6254         return HRTIMER_NORESTART;
6255 }
6256
6257 static void init_gro_hash(struct napi_struct *napi)
6258 {
6259         int i;
6260
6261         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6262                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6263                 napi->gro_hash[i].count = 0;
6264         }
6265         napi->gro_bitmask = 0;
6266 }
6267
6268 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6269                     int (*poll)(struct napi_struct *, int), int weight)
6270 {
6271         INIT_LIST_HEAD(&napi->poll_list);
6272         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6273         napi->timer.function = napi_watchdog;
6274         init_gro_hash(napi);
6275         napi->skb = NULL;
6276         napi->poll = poll;
6277         if (weight > NAPI_POLL_WEIGHT)
6278                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6279                                 weight);
6280         napi->weight = weight;
6281         list_add(&napi->dev_list, &dev->napi_list);
6282         napi->dev = dev;
6283 #ifdef CONFIG_NETPOLL
6284         napi->poll_owner = -1;
6285 #endif
6286         set_bit(NAPI_STATE_SCHED, &napi->state);
6287         napi_hash_add(napi);
6288 }
6289 EXPORT_SYMBOL(netif_napi_add);
6290
6291 void napi_disable(struct napi_struct *n)
6292 {
6293         might_sleep();
6294         set_bit(NAPI_STATE_DISABLE, &n->state);
6295
6296         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6297                 msleep(1);
6298         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6299                 msleep(1);
6300
6301         hrtimer_cancel(&n->timer);
6302
6303         clear_bit(NAPI_STATE_DISABLE, &n->state);
6304 }
6305 EXPORT_SYMBOL(napi_disable);
6306
6307 static void flush_gro_hash(struct napi_struct *napi)
6308 {
6309         int i;
6310
6311         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6312                 struct sk_buff *skb, *n;
6313
6314                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6315                         kfree_skb(skb);
6316                 napi->gro_hash[i].count = 0;
6317         }
6318 }
6319
6320 /* Must be called in process context */
6321 void netif_napi_del(struct napi_struct *napi)
6322 {
6323         might_sleep();
6324         if (napi_hash_del(napi))
6325                 synchronize_net();
6326         list_del_init(&napi->dev_list);
6327         napi_free_frags(napi);
6328
6329         flush_gro_hash(napi);
6330         napi->gro_bitmask = 0;
6331 }
6332 EXPORT_SYMBOL(netif_napi_del);
6333
6334 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6335 {
6336         void *have;
6337         int work, weight;
6338
6339         list_del_init(&n->poll_list);
6340
6341         have = netpoll_poll_lock(n);
6342
6343         weight = n->weight;
6344
6345         /* This NAPI_STATE_SCHED test is for avoiding a race
6346          * with netpoll's poll_napi().  Only the entity which
6347          * obtains the lock and sees NAPI_STATE_SCHED set will
6348          * actually make the ->poll() call.  Therefore we avoid
6349          * accidentally calling ->poll() when NAPI is not scheduled.
6350          */
6351         work = 0;
6352         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6353                 work = n->poll(n, weight);
6354                 trace_napi_poll(n, work, weight);
6355         }
6356
6357         WARN_ON_ONCE(work > weight);
6358
6359         if (likely(work < weight))
6360                 goto out_unlock;
6361
6362         /* Drivers must not modify the NAPI state if they
6363          * consume the entire weight.  In such cases this code
6364          * still "owns" the NAPI instance and therefore can
6365          * move the instance around on the list at-will.
6366          */
6367         if (unlikely(napi_disable_pending(n))) {
6368                 napi_complete(n);
6369                 goto out_unlock;
6370         }
6371
6372         if (n->gro_bitmask) {
6373                 /* flush too old packets
6374                  * If HZ < 1000, flush all packets.
6375                  */
6376                 napi_gro_flush(n, HZ >= 1000);
6377         }
6378
6379         /* Some drivers may have called napi_schedule
6380          * prior to exhausting their budget.
6381          */
6382         if (unlikely(!list_empty(&n->poll_list))) {
6383                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6384                              n->dev ? n->dev->name : "backlog");
6385                 goto out_unlock;
6386         }
6387
6388         list_add_tail(&n->poll_list, repoll);
6389
6390 out_unlock:
6391         netpoll_poll_unlock(have);
6392
6393         return work;
6394 }
6395
6396 static __latent_entropy void net_rx_action(struct softirq_action *h)
6397 {
6398         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6399         unsigned long time_limit = jiffies +
6400                 usecs_to_jiffies(netdev_budget_usecs);
6401         int budget = netdev_budget;
6402         LIST_HEAD(list);
6403         LIST_HEAD(repoll);
6404
6405         local_irq_disable();
6406         list_splice_init(&sd->poll_list, &list);
6407         local_irq_enable();
6408
6409         for (;;) {
6410                 struct napi_struct *n;
6411
6412                 if (list_empty(&list)) {
6413                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6414                                 goto out;
6415                         break;
6416                 }
6417
6418                 n = list_first_entry(&list, struct napi_struct, poll_list);
6419                 budget -= napi_poll(n, &repoll);
6420
6421                 /* If softirq window is exhausted then punt.
6422                  * Allow this to run for 2 jiffies since which will allow
6423                  * an average latency of 1.5/HZ.
6424                  */
6425                 if (unlikely(budget <= 0 ||
6426                              time_after_eq(jiffies, time_limit))) {
6427                         sd->time_squeeze++;
6428                         break;
6429                 }
6430         }
6431
6432         local_irq_disable();
6433
6434         list_splice_tail_init(&sd->poll_list, &list);
6435         list_splice_tail(&repoll, &list);
6436         list_splice(&list, &sd->poll_list);
6437         if (!list_empty(&sd->poll_list))
6438                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6439
6440         net_rps_action_and_irq_enable(sd);
6441 out:
6442         __kfree_skb_flush();
6443 }
6444
6445 struct netdev_adjacent {
6446         struct net_device *dev;
6447
6448         /* upper master flag, there can only be one master device per list */
6449         bool master;
6450
6451         /* counter for the number of times this device was added to us */
6452         u16 ref_nr;
6453
6454         /* private field for the users */
6455         void *private;
6456
6457         struct list_head list;
6458         struct rcu_head rcu;
6459 };
6460
6461 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6462                                                  struct list_head *adj_list)
6463 {
6464         struct netdev_adjacent *adj;
6465
6466         list_for_each_entry(adj, adj_list, list) {
6467                 if (adj->dev == adj_dev)
6468                         return adj;
6469         }
6470         return NULL;
6471 }
6472
6473 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6474 {
6475         struct net_device *dev = data;
6476
6477         return upper_dev == dev;
6478 }
6479
6480 /**
6481  * netdev_has_upper_dev - Check if device is linked to an upper device
6482  * @dev: device
6483  * @upper_dev: upper device to check
6484  *
6485  * Find out if a device is linked to specified upper device and return true
6486  * in case it is. Note that this checks only immediate upper device,
6487  * not through a complete stack of devices. The caller must hold the RTNL lock.
6488  */
6489 bool netdev_has_upper_dev(struct net_device *dev,
6490                           struct net_device *upper_dev)
6491 {
6492         ASSERT_RTNL();
6493
6494         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6495                                              upper_dev);
6496 }
6497 EXPORT_SYMBOL(netdev_has_upper_dev);
6498
6499 /**
6500  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6501  * @dev: device
6502  * @upper_dev: upper device to check
6503  *
6504  * Find out if a device is linked to specified upper device and return true
6505  * in case it is. Note that this checks the entire upper device chain.
6506  * The caller must hold rcu lock.
6507  */
6508
6509 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6510                                   struct net_device *upper_dev)
6511 {
6512         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6513                                                upper_dev);
6514 }
6515 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6516
6517 /**
6518  * netdev_has_any_upper_dev - Check if device is linked to some device
6519  * @dev: device
6520  *
6521  * Find out if a device is linked to an upper device and return true in case
6522  * it is. The caller must hold the RTNL lock.
6523  */
6524 bool netdev_has_any_upper_dev(struct net_device *dev)
6525 {
6526         ASSERT_RTNL();
6527
6528         return !list_empty(&dev->adj_list.upper);
6529 }
6530 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6531
6532 /**
6533  * netdev_master_upper_dev_get - Get master upper device
6534  * @dev: device
6535  *
6536  * Find a master upper device and return pointer to it or NULL in case
6537  * it's not there. The caller must hold the RTNL lock.
6538  */
6539 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6540 {
6541         struct netdev_adjacent *upper;
6542
6543         ASSERT_RTNL();
6544
6545         if (list_empty(&dev->adj_list.upper))
6546                 return NULL;
6547
6548         upper = list_first_entry(&dev->adj_list.upper,
6549                                  struct netdev_adjacent, list);
6550         if (likely(upper->master))
6551                 return upper->dev;
6552         return NULL;
6553 }
6554 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6555
6556 /**
6557  * netdev_has_any_lower_dev - Check if device is linked to some device
6558  * @dev: device
6559  *
6560  * Find out if a device is linked to a lower device and return true in case
6561  * it is. The caller must hold the RTNL lock.
6562  */
6563 static bool netdev_has_any_lower_dev(struct net_device *dev)
6564 {
6565         ASSERT_RTNL();
6566
6567         return !list_empty(&dev->adj_list.lower);
6568 }
6569
6570 void *netdev_adjacent_get_private(struct list_head *adj_list)
6571 {
6572         struct netdev_adjacent *adj;
6573
6574         adj = list_entry(adj_list, struct netdev_adjacent, list);
6575
6576         return adj->private;
6577 }
6578 EXPORT_SYMBOL(netdev_adjacent_get_private);
6579
6580 /**
6581  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6582  * @dev: device
6583  * @iter: list_head ** of the current position
6584  *
6585  * Gets the next device from the dev's upper list, starting from iter
6586  * position. The caller must hold RCU read lock.
6587  */
6588 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6589                                                  struct list_head **iter)
6590 {
6591         struct netdev_adjacent *upper;
6592
6593         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6594
6595         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6596
6597         if (&upper->list == &dev->adj_list.upper)
6598                 return NULL;
6599
6600         *iter = &upper->list;
6601
6602         return upper->dev;
6603 }
6604 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6605
6606 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6607                                                     struct list_head **iter)
6608 {
6609         struct netdev_adjacent *upper;
6610
6611         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6612
6613         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6614
6615         if (&upper->list == &dev->adj_list.upper)
6616                 return NULL;
6617
6618         *iter = &upper->list;
6619
6620         return upper->dev;
6621 }
6622
6623 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6624                                   int (*fn)(struct net_device *dev,
6625                                             void *data),
6626                                   void *data)
6627 {
6628         struct net_device *udev;
6629         struct list_head *iter;
6630         int ret;
6631
6632         for (iter = &dev->adj_list.upper,
6633              udev = netdev_next_upper_dev_rcu(dev, &iter);
6634              udev;
6635              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6636                 /* first is the upper device itself */
6637                 ret = fn(udev, data);
6638                 if (ret)
6639                         return ret;
6640
6641                 /* then look at all of its upper devices */
6642                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6643                 if (ret)
6644                         return ret;
6645         }
6646
6647         return 0;
6648 }
6649 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6650
6651 /**
6652  * netdev_lower_get_next_private - Get the next ->private from the
6653  *                                 lower neighbour list
6654  * @dev: device
6655  * @iter: list_head ** of the current position
6656  *
6657  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6658  * list, starting from iter position. The caller must hold either hold the
6659  * RTNL lock or its own locking that guarantees that the neighbour lower
6660  * list will remain unchanged.
6661  */
6662 void *netdev_lower_get_next_private(struct net_device *dev,
6663                                     struct list_head **iter)
6664 {
6665         struct netdev_adjacent *lower;
6666
6667         lower = list_entry(*iter, struct netdev_adjacent, list);
6668
6669         if (&lower->list == &dev->adj_list.lower)
6670                 return NULL;
6671
6672         *iter = lower->list.next;
6673
6674         return lower->private;
6675 }
6676 EXPORT_SYMBOL(netdev_lower_get_next_private);
6677
6678 /**
6679  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6680  *                                     lower neighbour list, RCU
6681  *                                     variant
6682  * @dev: device
6683  * @iter: list_head ** of the current position
6684  *
6685  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6686  * list, starting from iter position. The caller must hold RCU read lock.
6687  */
6688 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6689                                         struct list_head **iter)
6690 {
6691         struct netdev_adjacent *lower;
6692
6693         WARN_ON_ONCE(!rcu_read_lock_held());
6694
6695         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6696
6697         if (&lower->list == &dev->adj_list.lower)
6698                 return NULL;
6699
6700         *iter = &lower->list;
6701
6702         return lower->private;
6703 }
6704 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6705
6706 /**
6707  * netdev_lower_get_next - Get the next device from the lower neighbour
6708  *                         list
6709  * @dev: device
6710  * @iter: list_head ** of the current position
6711  *
6712  * Gets the next netdev_adjacent from the dev's lower neighbour
6713  * list, starting from iter position. The caller must hold RTNL lock or
6714  * its own locking that guarantees that the neighbour lower
6715  * list will remain unchanged.
6716  */
6717 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6718 {
6719         struct netdev_adjacent *lower;
6720
6721         lower = list_entry(*iter, struct netdev_adjacent, list);
6722
6723         if (&lower->list == &dev->adj_list.lower)
6724                 return NULL;
6725
6726         *iter = lower->list.next;
6727
6728         return lower->dev;
6729 }
6730 EXPORT_SYMBOL(netdev_lower_get_next);
6731
6732 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6733                                                 struct list_head **iter)
6734 {
6735         struct netdev_adjacent *lower;
6736
6737         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6738
6739         if (&lower->list == &dev->adj_list.lower)
6740                 return NULL;
6741
6742         *iter = &lower->list;
6743
6744         return lower->dev;
6745 }
6746
6747 int netdev_walk_all_lower_dev(struct net_device *dev,
6748                               int (*fn)(struct net_device *dev,
6749                                         void *data),
6750                               void *data)
6751 {
6752         struct net_device *ldev;
6753         struct list_head *iter;
6754         int ret;
6755
6756         for (iter = &dev->adj_list.lower,
6757              ldev = netdev_next_lower_dev(dev, &iter);
6758              ldev;
6759              ldev = netdev_next_lower_dev(dev, &iter)) {
6760                 /* first is the lower device itself */
6761                 ret = fn(ldev, data);
6762                 if (ret)
6763                         return ret;
6764
6765                 /* then look at all of its lower devices */
6766                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6767                 if (ret)
6768                         return ret;
6769         }
6770
6771         return 0;
6772 }
6773 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6774
6775 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6776                                                     struct list_head **iter)
6777 {
6778         struct netdev_adjacent *lower;
6779
6780         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6781         if (&lower->list == &dev->adj_list.lower)
6782                 return NULL;
6783
6784         *iter = &lower->list;
6785
6786         return lower->dev;
6787 }
6788
6789 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6790                                   int (*fn)(struct net_device *dev,
6791                                             void *data),
6792                                   void *data)
6793 {
6794         struct net_device *ldev;
6795         struct list_head *iter;
6796         int ret;
6797
6798         for (iter = &dev->adj_list.lower,
6799              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6800              ldev;
6801              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6802                 /* first is the lower device itself */
6803                 ret = fn(ldev, data);
6804                 if (ret)
6805                         return ret;
6806
6807                 /* then look at all of its lower devices */
6808                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6809                 if (ret)
6810                         return ret;
6811         }
6812
6813         return 0;
6814 }
6815 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6816
6817 /**
6818  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6819  *                                     lower neighbour list, RCU
6820  *                                     variant
6821  * @dev: device
6822  *
6823  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6824  * list. The caller must hold RCU read lock.
6825  */
6826 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6827 {
6828         struct netdev_adjacent *lower;
6829
6830         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6831                         struct netdev_adjacent, list);
6832         if (lower)
6833                 return lower->private;
6834         return NULL;
6835 }
6836 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6837
6838 /**
6839  * netdev_master_upper_dev_get_rcu - Get master upper device
6840  * @dev: device
6841  *
6842  * Find a master upper device and return pointer to it or NULL in case
6843  * it's not there. The caller must hold the RCU read lock.
6844  */
6845 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6846 {
6847         struct netdev_adjacent *upper;
6848
6849         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6850                                        struct netdev_adjacent, list);
6851         if (upper && likely(upper->master))
6852                 return upper->dev;
6853         return NULL;
6854 }
6855 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6856
6857 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6858                               struct net_device *adj_dev,
6859                               struct list_head *dev_list)
6860 {
6861         char linkname[IFNAMSIZ+7];
6862
6863         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6864                 "upper_%s" : "lower_%s", adj_dev->name);
6865         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6866                                  linkname);
6867 }
6868 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6869                                char *name,
6870                                struct list_head *dev_list)
6871 {
6872         char linkname[IFNAMSIZ+7];
6873
6874         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6875                 "upper_%s" : "lower_%s", name);
6876         sysfs_remove_link(&(dev->dev.kobj), linkname);
6877 }
6878
6879 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6880                                                  struct net_device *adj_dev,
6881                                                  struct list_head *dev_list)
6882 {
6883         return (dev_list == &dev->adj_list.upper ||
6884                 dev_list == &dev->adj_list.lower) &&
6885                 net_eq(dev_net(dev), dev_net(adj_dev));
6886 }
6887
6888 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6889                                         struct net_device *adj_dev,
6890                                         struct list_head *dev_list,
6891                                         void *private, bool master)
6892 {
6893         struct netdev_adjacent *adj;
6894         int ret;
6895
6896         adj = __netdev_find_adj(adj_dev, dev_list);
6897
6898         if (adj) {
6899                 adj->ref_nr += 1;
6900                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6901                          dev->name, adj_dev->name, adj->ref_nr);
6902
6903                 return 0;
6904         }
6905
6906         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6907         if (!adj)
6908                 return -ENOMEM;
6909
6910         adj->dev = adj_dev;
6911         adj->master = master;
6912         adj->ref_nr = 1;
6913         adj->private = private;
6914         dev_hold(adj_dev);
6915
6916         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6917                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6918
6919         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6920                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6921                 if (ret)
6922                         goto free_adj;
6923         }
6924
6925         /* Ensure that master link is always the first item in list. */
6926         if (master) {
6927                 ret = sysfs_create_link(&(dev->dev.kobj),
6928                                         &(adj_dev->dev.kobj), "master");
6929                 if (ret)
6930                         goto remove_symlinks;
6931
6932                 list_add_rcu(&adj->list, dev_list);
6933         } else {
6934                 list_add_tail_rcu(&adj->list, dev_list);
6935         }
6936
6937         return 0;
6938
6939 remove_symlinks:
6940         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6941                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6942 free_adj:
6943         kfree(adj);
6944         dev_put(adj_dev);
6945
6946         return ret;
6947 }
6948
6949 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6950                                          struct net_device *adj_dev,
6951                                          u16 ref_nr,
6952                                          struct list_head *dev_list)
6953 {
6954         struct netdev_adjacent *adj;
6955
6956         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6957                  dev->name, adj_dev->name, ref_nr);
6958
6959         adj = __netdev_find_adj(adj_dev, dev_list);
6960
6961         if (!adj) {
6962                 pr_err("Adjacency does not exist for device %s from %s\n",
6963                        dev->name, adj_dev->name);
6964                 WARN_ON(1);
6965                 return;
6966         }
6967
6968         if (adj->ref_nr > ref_nr) {
6969                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6970                          dev->name, adj_dev->name, ref_nr,
6971                          adj->ref_nr - ref_nr);
6972                 adj->ref_nr -= ref_nr;
6973                 return;
6974         }
6975
6976         if (adj->master)
6977                 sysfs_remove_link(&(dev->dev.kobj), "master");
6978
6979         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6980                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6981
6982         list_del_rcu(&adj->list);
6983         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6984                  adj_dev->name, dev->name, adj_dev->name);
6985         dev_put(adj_dev);
6986         kfree_rcu(adj, rcu);
6987 }
6988
6989 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6990                                             struct net_device *upper_dev,
6991                                             struct list_head *up_list,
6992                                             struct list_head *down_list,
6993                                             void *private, bool master)
6994 {
6995         int ret;
6996
6997         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6998                                            private, master);
6999         if (ret)
7000                 return ret;
7001
7002         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7003                                            private, false);
7004         if (ret) {
7005                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7006                 return ret;
7007         }
7008
7009         return 0;
7010 }
7011
7012 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7013                                                struct net_device *upper_dev,
7014                                                u16 ref_nr,
7015                                                struct list_head *up_list,
7016                                                struct list_head *down_list)
7017 {
7018         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7019         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7020 }
7021
7022 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7023                                                 struct net_device *upper_dev,
7024                                                 void *private, bool master)
7025 {
7026         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7027                                                 &dev->adj_list.upper,
7028                                                 &upper_dev->adj_list.lower,
7029                                                 private, master);
7030 }
7031
7032 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7033                                                    struct net_device *upper_dev)
7034 {
7035         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7036                                            &dev->adj_list.upper,
7037                                            &upper_dev->adj_list.lower);
7038 }
7039
7040 static int __netdev_upper_dev_link(struct net_device *dev,
7041                                    struct net_device *upper_dev, bool master,
7042                                    void *upper_priv, void *upper_info,
7043                                    struct netlink_ext_ack *extack)
7044 {
7045         struct netdev_notifier_changeupper_info changeupper_info = {
7046                 .info = {
7047                         .dev = dev,
7048                         .extack = extack,
7049                 },
7050                 .upper_dev = upper_dev,
7051                 .master = master,
7052                 .linking = true,
7053                 .upper_info = upper_info,
7054         };
7055         struct net_device *master_dev;
7056         int ret = 0;
7057
7058         ASSERT_RTNL();
7059
7060         if (dev == upper_dev)
7061                 return -EBUSY;
7062
7063         /* To prevent loops, check if dev is not upper device to upper_dev. */
7064         if (netdev_has_upper_dev(upper_dev, dev))
7065                 return -EBUSY;
7066
7067         if (!master) {
7068                 if (netdev_has_upper_dev(dev, upper_dev))
7069                         return -EEXIST;
7070         } else {
7071                 master_dev = netdev_master_upper_dev_get(dev);
7072                 if (master_dev)
7073                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7074         }
7075
7076         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7077                                             &changeupper_info.info);
7078         ret = notifier_to_errno(ret);
7079         if (ret)
7080                 return ret;
7081
7082         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7083                                                    master);
7084         if (ret)
7085                 return ret;
7086
7087         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7088                                             &changeupper_info.info);
7089         ret = notifier_to_errno(ret);
7090         if (ret)
7091                 goto rollback;
7092
7093         return 0;
7094
7095 rollback:
7096         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7097
7098         return ret;
7099 }
7100
7101 /**
7102  * netdev_upper_dev_link - Add a link to the upper device
7103  * @dev: device
7104  * @upper_dev: new upper device
7105  * @extack: netlink extended ack
7106  *
7107  * Adds a link to device which is upper to this one. The caller must hold
7108  * the RTNL lock. On a failure a negative errno code is returned.
7109  * On success the reference counts are adjusted and the function
7110  * returns zero.
7111  */
7112 int netdev_upper_dev_link(struct net_device *dev,
7113                           struct net_device *upper_dev,
7114                           struct netlink_ext_ack *extack)
7115 {
7116         return __netdev_upper_dev_link(dev, upper_dev, false,
7117                                        NULL, NULL, extack);
7118 }
7119 EXPORT_SYMBOL(netdev_upper_dev_link);
7120
7121 /**
7122  * netdev_master_upper_dev_link - Add a master link to the upper device
7123  * @dev: device
7124  * @upper_dev: new upper device
7125  * @upper_priv: upper device private
7126  * @upper_info: upper info to be passed down via notifier
7127  * @extack: netlink extended ack
7128  *
7129  * Adds a link to device which is upper to this one. In this case, only
7130  * one master upper device can be linked, although other non-master devices
7131  * might be linked as well. The caller must hold the RTNL lock.
7132  * On a failure a negative errno code is returned. On success the reference
7133  * counts are adjusted and the function returns zero.
7134  */
7135 int netdev_master_upper_dev_link(struct net_device *dev,
7136                                  struct net_device *upper_dev,
7137                                  void *upper_priv, void *upper_info,
7138                                  struct netlink_ext_ack *extack)
7139 {
7140         return __netdev_upper_dev_link(dev, upper_dev, true,
7141                                        upper_priv, upper_info, extack);
7142 }
7143 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7144
7145 /**
7146  * netdev_upper_dev_unlink - Removes a link to upper device
7147  * @dev: device
7148  * @upper_dev: new upper device
7149  *
7150  * Removes a link to device which is upper to this one. The caller must hold
7151  * the RTNL lock.
7152  */
7153 void netdev_upper_dev_unlink(struct net_device *dev,
7154                              struct net_device *upper_dev)
7155 {
7156         struct netdev_notifier_changeupper_info changeupper_info = {
7157                 .info = {
7158                         .dev = dev,
7159                 },
7160                 .upper_dev = upper_dev,
7161                 .linking = false,
7162         };
7163
7164         ASSERT_RTNL();
7165
7166         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7167
7168         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7169                                       &changeupper_info.info);
7170
7171         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7172
7173         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7174                                       &changeupper_info.info);
7175 }
7176 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7177
7178 /**
7179  * netdev_bonding_info_change - Dispatch event about slave change
7180  * @dev: device
7181  * @bonding_info: info to dispatch
7182  *
7183  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7184  * The caller must hold the RTNL lock.
7185  */
7186 void netdev_bonding_info_change(struct net_device *dev,
7187                                 struct netdev_bonding_info *bonding_info)
7188 {
7189         struct netdev_notifier_bonding_info info = {
7190                 .info.dev = dev,
7191         };
7192
7193         memcpy(&info.bonding_info, bonding_info,
7194                sizeof(struct netdev_bonding_info));
7195         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7196                                       &info.info);
7197 }
7198 EXPORT_SYMBOL(netdev_bonding_info_change);
7199
7200 static void netdev_adjacent_add_links(struct net_device *dev)
7201 {
7202         struct netdev_adjacent *iter;
7203
7204         struct net *net = dev_net(dev);
7205
7206         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7207                 if (!net_eq(net, dev_net(iter->dev)))
7208                         continue;
7209                 netdev_adjacent_sysfs_add(iter->dev, dev,
7210                                           &iter->dev->adj_list.lower);
7211                 netdev_adjacent_sysfs_add(dev, iter->dev,
7212                                           &dev->adj_list.upper);
7213         }
7214
7215         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7216                 if (!net_eq(net, dev_net(iter->dev)))
7217                         continue;
7218                 netdev_adjacent_sysfs_add(iter->dev, dev,
7219                                           &iter->dev->adj_list.upper);
7220                 netdev_adjacent_sysfs_add(dev, iter->dev,
7221                                           &dev->adj_list.lower);
7222         }
7223 }
7224
7225 static void netdev_adjacent_del_links(struct net_device *dev)
7226 {
7227         struct netdev_adjacent *iter;
7228
7229         struct net *net = dev_net(dev);
7230
7231         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7232                 if (!net_eq(net, dev_net(iter->dev)))
7233                         continue;
7234                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7235                                           &iter->dev->adj_list.lower);
7236                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7237                                           &dev->adj_list.upper);
7238         }
7239
7240         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7241                 if (!net_eq(net, dev_net(iter->dev)))
7242                         continue;
7243                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7244                                           &iter->dev->adj_list.upper);
7245                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7246                                           &dev->adj_list.lower);
7247         }
7248 }
7249
7250 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7251 {
7252         struct netdev_adjacent *iter;
7253
7254         struct net *net = dev_net(dev);
7255
7256         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7257                 if (!net_eq(net, dev_net(iter->dev)))
7258                         continue;
7259                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7260                                           &iter->dev->adj_list.lower);
7261                 netdev_adjacent_sysfs_add(iter->dev, dev,
7262                                           &iter->dev->adj_list.lower);
7263         }
7264
7265         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7266                 if (!net_eq(net, dev_net(iter->dev)))
7267                         continue;
7268                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7269                                           &iter->dev->adj_list.upper);
7270                 netdev_adjacent_sysfs_add(iter->dev, dev,
7271                                           &iter->dev->adj_list.upper);
7272         }
7273 }
7274
7275 void *netdev_lower_dev_get_private(struct net_device *dev,
7276                                    struct net_device *lower_dev)
7277 {
7278         struct netdev_adjacent *lower;
7279
7280         if (!lower_dev)
7281                 return NULL;
7282         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7283         if (!lower)
7284                 return NULL;
7285
7286         return lower->private;
7287 }
7288 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7289
7290
7291 int dev_get_nest_level(struct net_device *dev)
7292 {
7293         struct net_device *lower = NULL;
7294         struct list_head *iter;
7295         int max_nest = -1;
7296         int nest;
7297
7298         ASSERT_RTNL();
7299
7300         netdev_for_each_lower_dev(dev, lower, iter) {
7301                 nest = dev_get_nest_level(lower);
7302                 if (max_nest < nest)
7303                         max_nest = nest;
7304         }
7305
7306         return max_nest + 1;
7307 }
7308 EXPORT_SYMBOL(dev_get_nest_level);
7309
7310 /**
7311  * netdev_lower_change - Dispatch event about lower device state change
7312  * @lower_dev: device
7313  * @lower_state_info: state to dispatch
7314  *
7315  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7316  * The caller must hold the RTNL lock.
7317  */
7318 void netdev_lower_state_changed(struct net_device *lower_dev,
7319                                 void *lower_state_info)
7320 {
7321         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7322                 .info.dev = lower_dev,
7323         };
7324
7325         ASSERT_RTNL();
7326         changelowerstate_info.lower_state_info = lower_state_info;
7327         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7328                                       &changelowerstate_info.info);
7329 }
7330 EXPORT_SYMBOL(netdev_lower_state_changed);
7331
7332 static void dev_change_rx_flags(struct net_device *dev, int flags)
7333 {
7334         const struct net_device_ops *ops = dev->netdev_ops;
7335
7336         if (ops->ndo_change_rx_flags)
7337                 ops->ndo_change_rx_flags(dev, flags);
7338 }
7339
7340 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7341 {
7342         unsigned int old_flags = dev->flags;
7343         kuid_t uid;
7344         kgid_t gid;
7345
7346         ASSERT_RTNL();
7347
7348         dev->flags |= IFF_PROMISC;
7349         dev->promiscuity += inc;
7350         if (dev->promiscuity == 0) {
7351                 /*
7352                  * Avoid overflow.
7353                  * If inc causes overflow, untouch promisc and return error.
7354                  */
7355                 if (inc < 0)
7356                         dev->flags &= ~IFF_PROMISC;
7357                 else {
7358                         dev->promiscuity -= inc;
7359                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7360                                 dev->name);
7361                         return -EOVERFLOW;
7362                 }
7363         }
7364         if (dev->flags != old_flags) {
7365                 pr_info("device %s %s promiscuous mode\n",
7366                         dev->name,
7367                         dev->flags & IFF_PROMISC ? "entered" : "left");
7368                 if (audit_enabled) {
7369                         current_uid_gid(&uid, &gid);
7370                         audit_log(audit_context(), GFP_ATOMIC,
7371                                   AUDIT_ANOM_PROMISCUOUS,
7372                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7373                                   dev->name, (dev->flags & IFF_PROMISC),
7374                                   (old_flags & IFF_PROMISC),
7375                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7376                                   from_kuid(&init_user_ns, uid),
7377                                   from_kgid(&init_user_ns, gid),
7378                                   audit_get_sessionid(current));
7379                 }
7380
7381                 dev_change_rx_flags(dev, IFF_PROMISC);
7382         }
7383         if (notify)
7384                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7385         return 0;
7386 }
7387
7388 /**
7389  *      dev_set_promiscuity     - update promiscuity count on a device
7390  *      @dev: device
7391  *      @inc: modifier
7392  *
7393  *      Add or remove promiscuity from a device. While the count in the device
7394  *      remains above zero the interface remains promiscuous. Once it hits zero
7395  *      the device reverts back to normal filtering operation. A negative inc
7396  *      value is used to drop promiscuity on the device.
7397  *      Return 0 if successful or a negative errno code on error.
7398  */
7399 int dev_set_promiscuity(struct net_device *dev, int inc)
7400 {
7401         unsigned int old_flags = dev->flags;
7402         int err;
7403
7404         err = __dev_set_promiscuity(dev, inc, true);
7405         if (err < 0)
7406                 return err;
7407         if (dev->flags != old_flags)
7408                 dev_set_rx_mode(dev);
7409         return err;
7410 }
7411 EXPORT_SYMBOL(dev_set_promiscuity);
7412
7413 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7414 {
7415         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7416
7417         ASSERT_RTNL();
7418
7419         dev->flags |= IFF_ALLMULTI;
7420         dev->allmulti += inc;
7421         if (dev->allmulti == 0) {
7422                 /*
7423                  * Avoid overflow.
7424                  * If inc causes overflow, untouch allmulti and return error.
7425                  */
7426                 if (inc < 0)
7427                         dev->flags &= ~IFF_ALLMULTI;
7428                 else {
7429                         dev->allmulti -= inc;
7430                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7431                                 dev->name);
7432                         return -EOVERFLOW;
7433                 }
7434         }
7435         if (dev->flags ^ old_flags) {
7436                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7437                 dev_set_rx_mode(dev);
7438                 if (notify)
7439                         __dev_notify_flags(dev, old_flags,
7440                                            dev->gflags ^ old_gflags);
7441         }
7442         return 0;
7443 }
7444
7445 /**
7446  *      dev_set_allmulti        - update allmulti count on a device
7447  *      @dev: device
7448  *      @inc: modifier
7449  *
7450  *      Add or remove reception of all multicast frames to a device. While the
7451  *      count in the device remains above zero the interface remains listening
7452  *      to all interfaces. Once it hits zero the device reverts back to normal
7453  *      filtering operation. A negative @inc value is used to drop the counter
7454  *      when releasing a resource needing all multicasts.
7455  *      Return 0 if successful or a negative errno code on error.
7456  */
7457
7458 int dev_set_allmulti(struct net_device *dev, int inc)
7459 {
7460         return __dev_set_allmulti(dev, inc, true);
7461 }
7462 EXPORT_SYMBOL(dev_set_allmulti);
7463
7464 /*
7465  *      Upload unicast and multicast address lists to device and
7466  *      configure RX filtering. When the device doesn't support unicast
7467  *      filtering it is put in promiscuous mode while unicast addresses
7468  *      are present.
7469  */
7470 void __dev_set_rx_mode(struct net_device *dev)
7471 {
7472         const struct net_device_ops *ops = dev->netdev_ops;
7473
7474         /* dev_open will call this function so the list will stay sane. */
7475         if (!(dev->flags&IFF_UP))
7476                 return;
7477
7478         if (!netif_device_present(dev))
7479                 return;
7480
7481         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7482                 /* Unicast addresses changes may only happen under the rtnl,
7483                  * therefore calling __dev_set_promiscuity here is safe.
7484                  */
7485                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7486                         __dev_set_promiscuity(dev, 1, false);
7487                         dev->uc_promisc = true;
7488                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7489                         __dev_set_promiscuity(dev, -1, false);
7490                         dev->uc_promisc = false;
7491                 }
7492         }
7493
7494         if (ops->ndo_set_rx_mode)
7495                 ops->ndo_set_rx_mode(dev);
7496 }
7497
7498 void dev_set_rx_mode(struct net_device *dev)
7499 {
7500         netif_addr_lock_bh(dev);
7501         __dev_set_rx_mode(dev);
7502         netif_addr_unlock_bh(dev);
7503 }
7504
7505 /**
7506  *      dev_get_flags - get flags reported to userspace
7507  *      @dev: device
7508  *
7509  *      Get the combination of flag bits exported through APIs to userspace.
7510  */
7511 unsigned int dev_get_flags(const struct net_device *dev)
7512 {
7513         unsigned int flags;
7514
7515         flags = (dev->flags & ~(IFF_PROMISC |
7516                                 IFF_ALLMULTI |
7517                                 IFF_RUNNING |
7518                                 IFF_LOWER_UP |
7519                                 IFF_DORMANT)) |
7520                 (dev->gflags & (IFF_PROMISC |
7521                                 IFF_ALLMULTI));
7522
7523         if (netif_running(dev)) {
7524                 if (netif_oper_up(dev))
7525                         flags |= IFF_RUNNING;
7526                 if (netif_carrier_ok(dev))
7527                         flags |= IFF_LOWER_UP;
7528                 if (netif_dormant(dev))
7529                         flags |= IFF_DORMANT;
7530         }
7531
7532         return flags;
7533 }
7534 EXPORT_SYMBOL(dev_get_flags);
7535
7536 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7537                        struct netlink_ext_ack *extack)
7538 {
7539         unsigned int old_flags = dev->flags;
7540         int ret;
7541
7542         ASSERT_RTNL();
7543
7544         /*
7545          *      Set the flags on our device.
7546          */
7547
7548         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7549                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7550                                IFF_AUTOMEDIA)) |
7551                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7552                                     IFF_ALLMULTI));
7553
7554         /*
7555          *      Load in the correct multicast list now the flags have changed.
7556          */
7557
7558         if ((old_flags ^ flags) & IFF_MULTICAST)
7559                 dev_change_rx_flags(dev, IFF_MULTICAST);
7560
7561         dev_set_rx_mode(dev);
7562
7563         /*
7564          *      Have we downed the interface. We handle IFF_UP ourselves
7565          *      according to user attempts to set it, rather than blindly
7566          *      setting it.
7567          */
7568
7569         ret = 0;
7570         if ((old_flags ^ flags) & IFF_UP) {
7571                 if (old_flags & IFF_UP)
7572                         __dev_close(dev);
7573                 else
7574                         ret = __dev_open(dev, extack);
7575         }
7576
7577         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7578                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7579                 unsigned int old_flags = dev->flags;
7580
7581                 dev->gflags ^= IFF_PROMISC;
7582
7583                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7584                         if (dev->flags != old_flags)
7585                                 dev_set_rx_mode(dev);
7586         }
7587
7588         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7589          * is important. Some (broken) drivers set IFF_PROMISC, when
7590          * IFF_ALLMULTI is requested not asking us and not reporting.
7591          */
7592         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7593                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7594
7595                 dev->gflags ^= IFF_ALLMULTI;
7596                 __dev_set_allmulti(dev, inc, false);
7597         }
7598
7599         return ret;
7600 }
7601
7602 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7603                         unsigned int gchanges)
7604 {
7605         unsigned int changes = dev->flags ^ old_flags;
7606
7607         if (gchanges)
7608                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7609
7610         if (changes & IFF_UP) {
7611                 if (dev->flags & IFF_UP)
7612                         call_netdevice_notifiers(NETDEV_UP, dev);
7613                 else
7614                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7615         }
7616
7617         if (dev->flags & IFF_UP &&
7618             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7619                 struct netdev_notifier_change_info change_info = {
7620                         .info = {
7621                                 .dev = dev,
7622                         },
7623                         .flags_changed = changes,
7624                 };
7625
7626                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7627         }
7628 }
7629
7630 /**
7631  *      dev_change_flags - change device settings
7632  *      @dev: device
7633  *      @flags: device state flags
7634  *      @extack: netlink extended ack
7635  *
7636  *      Change settings on device based state flags. The flags are
7637  *      in the userspace exported format.
7638  */
7639 int dev_change_flags(struct net_device *dev, unsigned int flags,
7640                      struct netlink_ext_ack *extack)
7641 {
7642         int ret;
7643         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7644
7645         ret = __dev_change_flags(dev, flags, extack);
7646         if (ret < 0)
7647                 return ret;
7648
7649         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7650         __dev_notify_flags(dev, old_flags, changes);
7651         return ret;
7652 }
7653 EXPORT_SYMBOL(dev_change_flags);
7654
7655 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7656 {
7657         const struct net_device_ops *ops = dev->netdev_ops;
7658
7659         if (ops->ndo_change_mtu)
7660                 return ops->ndo_change_mtu(dev, new_mtu);
7661
7662         dev->mtu = new_mtu;
7663         return 0;
7664 }
7665 EXPORT_SYMBOL(__dev_set_mtu);
7666
7667 /**
7668  *      dev_set_mtu_ext - Change maximum transfer unit
7669  *      @dev: device
7670  *      @new_mtu: new transfer unit
7671  *      @extack: netlink extended ack
7672  *
7673  *      Change the maximum transfer size of the network device.
7674  */
7675 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7676                     struct netlink_ext_ack *extack)
7677 {
7678         int err, orig_mtu;
7679
7680         if (new_mtu == dev->mtu)
7681                 return 0;
7682
7683         /* MTU must be positive, and in range */
7684         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7685                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7686                 return -EINVAL;
7687         }
7688
7689         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7690                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7691                 return -EINVAL;
7692         }
7693
7694         if (!netif_device_present(dev))
7695                 return -ENODEV;
7696
7697         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7698         err = notifier_to_errno(err);
7699         if (err)
7700                 return err;
7701
7702         orig_mtu = dev->mtu;
7703         err = __dev_set_mtu(dev, new_mtu);
7704
7705         if (!err) {
7706                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7707                                                    orig_mtu);
7708                 err = notifier_to_errno(err);
7709                 if (err) {
7710                         /* setting mtu back and notifying everyone again,
7711                          * so that they have a chance to revert changes.
7712                          */
7713                         __dev_set_mtu(dev, orig_mtu);
7714                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7715                                                      new_mtu);
7716                 }
7717         }
7718         return err;
7719 }
7720
7721 int dev_set_mtu(struct net_device *dev, int new_mtu)
7722 {
7723         struct netlink_ext_ack extack;
7724         int err;
7725
7726         memset(&extack, 0, sizeof(extack));
7727         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7728         if (err && extack._msg)
7729                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7730         return err;
7731 }
7732 EXPORT_SYMBOL(dev_set_mtu);
7733
7734 /**
7735  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7736  *      @dev: device
7737  *      @new_len: new tx queue length
7738  */
7739 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7740 {
7741         unsigned int orig_len = dev->tx_queue_len;
7742         int res;
7743
7744         if (new_len != (unsigned int)new_len)
7745                 return -ERANGE;
7746
7747         if (new_len != orig_len) {
7748                 dev->tx_queue_len = new_len;
7749                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7750                 res = notifier_to_errno(res);
7751                 if (res)
7752                         goto err_rollback;
7753                 res = dev_qdisc_change_tx_queue_len(dev);
7754                 if (res)
7755                         goto err_rollback;
7756         }
7757
7758         return 0;
7759
7760 err_rollback:
7761         netdev_err(dev, "refused to change device tx_queue_len\n");
7762         dev->tx_queue_len = orig_len;
7763         return res;
7764 }
7765
7766 /**
7767  *      dev_set_group - Change group this device belongs to
7768  *      @dev: device
7769  *      @new_group: group this device should belong to
7770  */
7771 void dev_set_group(struct net_device *dev, int new_group)
7772 {
7773         dev->group = new_group;
7774 }
7775 EXPORT_SYMBOL(dev_set_group);
7776
7777 /**
7778  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7779  *      @dev: device
7780  *      @addr: new address
7781  *      @extack: netlink extended ack
7782  */
7783 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7784                               struct netlink_ext_ack *extack)
7785 {
7786         struct netdev_notifier_pre_changeaddr_info info = {
7787                 .info.dev = dev,
7788                 .info.extack = extack,
7789                 .dev_addr = addr,
7790         };
7791         int rc;
7792
7793         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7794         return notifier_to_errno(rc);
7795 }
7796 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7797
7798 /**
7799  *      dev_set_mac_address - Change Media Access Control Address
7800  *      @dev: device
7801  *      @sa: new address
7802  *      @extack: netlink extended ack
7803  *
7804  *      Change the hardware (MAC) address of the device
7805  */
7806 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7807                         struct netlink_ext_ack *extack)
7808 {
7809         const struct net_device_ops *ops = dev->netdev_ops;
7810         int err;
7811
7812         if (!ops->ndo_set_mac_address)
7813                 return -EOPNOTSUPP;
7814         if (sa->sa_family != dev->type)
7815                 return -EINVAL;
7816         if (!netif_device_present(dev))
7817                 return -ENODEV;
7818         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7819         if (err)
7820                 return err;
7821         err = ops->ndo_set_mac_address(dev, sa);
7822         if (err)
7823                 return err;
7824         dev->addr_assign_type = NET_ADDR_SET;
7825         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7826         add_device_randomness(dev->dev_addr, dev->addr_len);
7827         return 0;
7828 }
7829 EXPORT_SYMBOL(dev_set_mac_address);
7830
7831 /**
7832  *      dev_change_carrier - Change device carrier
7833  *      @dev: device
7834  *      @new_carrier: new value
7835  *
7836  *      Change device carrier
7837  */
7838 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7839 {
7840         const struct net_device_ops *ops = dev->netdev_ops;
7841
7842         if (!ops->ndo_change_carrier)
7843                 return -EOPNOTSUPP;
7844         if (!netif_device_present(dev))
7845                 return -ENODEV;
7846         return ops->ndo_change_carrier(dev, new_carrier);
7847 }
7848 EXPORT_SYMBOL(dev_change_carrier);
7849
7850 /**
7851  *      dev_get_phys_port_id - Get device physical port ID
7852  *      @dev: device
7853  *      @ppid: port ID
7854  *
7855  *      Get device physical port ID
7856  */
7857 int dev_get_phys_port_id(struct net_device *dev,
7858                          struct netdev_phys_item_id *ppid)
7859 {
7860         const struct net_device_ops *ops = dev->netdev_ops;
7861
7862         if (!ops->ndo_get_phys_port_id)
7863                 return -EOPNOTSUPP;
7864         return ops->ndo_get_phys_port_id(dev, ppid);
7865 }
7866 EXPORT_SYMBOL(dev_get_phys_port_id);
7867
7868 /**
7869  *      dev_get_phys_port_name - Get device physical port name
7870  *      @dev: device
7871  *      @name: port name
7872  *      @len: limit of bytes to copy to name
7873  *
7874  *      Get device physical port name
7875  */
7876 int dev_get_phys_port_name(struct net_device *dev,
7877                            char *name, size_t len)
7878 {
7879         const struct net_device_ops *ops = dev->netdev_ops;
7880
7881         if (!ops->ndo_get_phys_port_name)
7882                 return -EOPNOTSUPP;
7883         return ops->ndo_get_phys_port_name(dev, name, len);
7884 }
7885 EXPORT_SYMBOL(dev_get_phys_port_name);
7886
7887 /**
7888  *      dev_get_port_parent_id - Get the device's port parent identifier
7889  *      @dev: network device
7890  *      @ppid: pointer to a storage for the port's parent identifier
7891  *      @recurse: allow/disallow recursion to lower devices
7892  *
7893  *      Get the devices's port parent identifier
7894  */
7895 int dev_get_port_parent_id(struct net_device *dev,
7896                            struct netdev_phys_item_id *ppid,
7897                            bool recurse)
7898 {
7899         const struct net_device_ops *ops = dev->netdev_ops;
7900         struct netdev_phys_item_id first = { };
7901         struct net_device *lower_dev;
7902         struct list_head *iter;
7903         int err = -EOPNOTSUPP;
7904
7905         if (ops->ndo_get_port_parent_id)
7906                 return ops->ndo_get_port_parent_id(dev, ppid);
7907
7908         if (!recurse)
7909                 return err;
7910
7911         netdev_for_each_lower_dev(dev, lower_dev, iter) {
7912                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7913                 if (err)
7914                         break;
7915                 if (!first.id_len)
7916                         first = *ppid;
7917                 else if (memcmp(&first, ppid, sizeof(*ppid)))
7918                         return -ENODATA;
7919         }
7920
7921         return err;
7922 }
7923 EXPORT_SYMBOL(dev_get_port_parent_id);
7924
7925 /**
7926  *      netdev_port_same_parent_id - Indicate if two network devices have
7927  *      the same port parent identifier
7928  *      @a: first network device
7929  *      @b: second network device
7930  */
7931 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7932 {
7933         struct netdev_phys_item_id a_id = { };
7934         struct netdev_phys_item_id b_id = { };
7935
7936         if (dev_get_port_parent_id(a, &a_id, true) ||
7937             dev_get_port_parent_id(b, &b_id, true))
7938                 return false;
7939
7940         return netdev_phys_item_id_same(&a_id, &b_id);
7941 }
7942 EXPORT_SYMBOL(netdev_port_same_parent_id);
7943
7944 /**
7945  *      dev_change_proto_down - update protocol port state information
7946  *      @dev: device
7947  *      @proto_down: new value
7948  *
7949  *      This info can be used by switch drivers to set the phys state of the
7950  *      port.
7951  */
7952 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7953 {
7954         const struct net_device_ops *ops = dev->netdev_ops;
7955
7956         if (!ops->ndo_change_proto_down)
7957                 return -EOPNOTSUPP;
7958         if (!netif_device_present(dev))
7959                 return -ENODEV;
7960         return ops->ndo_change_proto_down(dev, proto_down);
7961 }
7962 EXPORT_SYMBOL(dev_change_proto_down);
7963
7964 /**
7965  *      dev_change_proto_down_generic - generic implementation for
7966  *      ndo_change_proto_down that sets carrier according to
7967  *      proto_down.
7968  *
7969  *      @dev: device
7970  *      @proto_down: new value
7971  */
7972 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7973 {
7974         if (proto_down)
7975                 netif_carrier_off(dev);
7976         else
7977                 netif_carrier_on(dev);
7978         dev->proto_down = proto_down;
7979         return 0;
7980 }
7981 EXPORT_SYMBOL(dev_change_proto_down_generic);
7982
7983 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7984                     enum bpf_netdev_command cmd)
7985 {
7986         struct netdev_bpf xdp;
7987
7988         if (!bpf_op)
7989                 return 0;
7990
7991         memset(&xdp, 0, sizeof(xdp));
7992         xdp.command = cmd;
7993
7994         /* Query must always succeed. */
7995         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7996
7997         return xdp.prog_id;
7998 }
7999
8000 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8001                            struct netlink_ext_ack *extack, u32 flags,
8002                            struct bpf_prog *prog)
8003 {
8004         struct netdev_bpf xdp;
8005
8006         memset(&xdp, 0, sizeof(xdp));
8007         if (flags & XDP_FLAGS_HW_MODE)
8008                 xdp.command = XDP_SETUP_PROG_HW;
8009         else
8010                 xdp.command = XDP_SETUP_PROG;
8011         xdp.extack = extack;
8012         xdp.flags = flags;
8013         xdp.prog = prog;
8014
8015         return bpf_op(dev, &xdp);
8016 }
8017
8018 static void dev_xdp_uninstall(struct net_device *dev)
8019 {
8020         struct netdev_bpf xdp;
8021         bpf_op_t ndo_bpf;
8022
8023         /* Remove generic XDP */
8024         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8025
8026         /* Remove from the driver */
8027         ndo_bpf = dev->netdev_ops->ndo_bpf;
8028         if (!ndo_bpf)
8029                 return;
8030
8031         memset(&xdp, 0, sizeof(xdp));
8032         xdp.command = XDP_QUERY_PROG;
8033         WARN_ON(ndo_bpf(dev, &xdp));
8034         if (xdp.prog_id)
8035                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8036                                         NULL));
8037
8038         /* Remove HW offload */
8039         memset(&xdp, 0, sizeof(xdp));
8040         xdp.command = XDP_QUERY_PROG_HW;
8041         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8042                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8043                                         NULL));
8044 }
8045
8046 /**
8047  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8048  *      @dev: device
8049  *      @extack: netlink extended ack
8050  *      @fd: new program fd or negative value to clear
8051  *      @flags: xdp-related flags
8052  *
8053  *      Set or clear a bpf program for a device
8054  */
8055 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8056                       int fd, u32 flags)
8057 {
8058         const struct net_device_ops *ops = dev->netdev_ops;
8059         enum bpf_netdev_command query;
8060         struct bpf_prog *prog = NULL;
8061         bpf_op_t bpf_op, bpf_chk;
8062         bool offload;
8063         int err;
8064
8065         ASSERT_RTNL();
8066
8067         offload = flags & XDP_FLAGS_HW_MODE;
8068         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8069
8070         bpf_op = bpf_chk = ops->ndo_bpf;
8071         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8072                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8073                 return -EOPNOTSUPP;
8074         }
8075         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8076                 bpf_op = generic_xdp_install;
8077         if (bpf_op == bpf_chk)
8078                 bpf_chk = generic_xdp_install;
8079
8080         if (fd >= 0) {
8081                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8082                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8083                         return -EEXIST;
8084                 }
8085                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8086                     __dev_xdp_query(dev, bpf_op, query)) {
8087                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8088                         return -EBUSY;
8089                 }
8090
8091                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8092                                              bpf_op == ops->ndo_bpf);
8093                 if (IS_ERR(prog))
8094                         return PTR_ERR(prog);
8095
8096                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8097                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8098                         bpf_prog_put(prog);
8099                         return -EINVAL;
8100                 }
8101         }
8102
8103         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8104         if (err < 0 && prog)
8105                 bpf_prog_put(prog);
8106
8107         return err;
8108 }
8109
8110 /**
8111  *      dev_new_index   -       allocate an ifindex
8112  *      @net: the applicable net namespace
8113  *
8114  *      Returns a suitable unique value for a new device interface
8115  *      number.  The caller must hold the rtnl semaphore or the
8116  *      dev_base_lock to be sure it remains unique.
8117  */
8118 static int dev_new_index(struct net *net)
8119 {
8120         int ifindex = net->ifindex;
8121
8122         for (;;) {
8123                 if (++ifindex <= 0)
8124                         ifindex = 1;
8125                 if (!__dev_get_by_index(net, ifindex))
8126                         return net->ifindex = ifindex;
8127         }
8128 }
8129
8130 /* Delayed registration/unregisteration */
8131 static LIST_HEAD(net_todo_list);
8132 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8133
8134 static void net_set_todo(struct net_device *dev)
8135 {
8136         list_add_tail(&dev->todo_list, &net_todo_list);
8137         dev_net(dev)->dev_unreg_count++;
8138 }
8139
8140 static void rollback_registered_many(struct list_head *head)
8141 {
8142         struct net_device *dev, *tmp;
8143         LIST_HEAD(close_head);
8144
8145         BUG_ON(dev_boot_phase);
8146         ASSERT_RTNL();
8147
8148         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8149                 /* Some devices call without registering
8150                  * for initialization unwind. Remove those
8151                  * devices and proceed with the remaining.
8152                  */
8153                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8154                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8155                                  dev->name, dev);
8156
8157                         WARN_ON(1);
8158                         list_del(&dev->unreg_list);
8159                         continue;
8160                 }
8161                 dev->dismantle = true;
8162                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8163         }
8164
8165         /* If device is running, close it first. */
8166         list_for_each_entry(dev, head, unreg_list)
8167                 list_add_tail(&dev->close_list, &close_head);
8168         dev_close_many(&close_head, true);
8169
8170         list_for_each_entry(dev, head, unreg_list) {
8171                 /* And unlink it from device chain. */
8172                 unlist_netdevice(dev);
8173
8174                 dev->reg_state = NETREG_UNREGISTERING;
8175         }
8176         flush_all_backlogs();
8177
8178         synchronize_net();
8179
8180         list_for_each_entry(dev, head, unreg_list) {
8181                 struct sk_buff *skb = NULL;
8182
8183                 /* Shutdown queueing discipline. */
8184                 dev_shutdown(dev);
8185
8186                 dev_xdp_uninstall(dev);
8187
8188                 /* Notify protocols, that we are about to destroy
8189                  * this device. They should clean all the things.
8190                  */
8191                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8192
8193                 if (!dev->rtnl_link_ops ||
8194                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8195                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8196                                                      GFP_KERNEL, NULL, 0);
8197
8198                 /*
8199                  *      Flush the unicast and multicast chains
8200                  */
8201                 dev_uc_flush(dev);
8202                 dev_mc_flush(dev);
8203
8204                 if (dev->netdev_ops->ndo_uninit)
8205                         dev->netdev_ops->ndo_uninit(dev);
8206
8207                 if (skb)
8208                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8209
8210                 /* Notifier chain MUST detach us all upper devices. */
8211                 WARN_ON(netdev_has_any_upper_dev(dev));
8212                 WARN_ON(netdev_has_any_lower_dev(dev));
8213
8214                 /* Remove entries from kobject tree */
8215                 netdev_unregister_kobject(dev);
8216 #ifdef CONFIG_XPS
8217                 /* Remove XPS queueing entries */
8218                 netif_reset_xps_queues_gt(dev, 0);
8219 #endif
8220         }
8221
8222         synchronize_net();
8223
8224         list_for_each_entry(dev, head, unreg_list)
8225                 dev_put(dev);
8226 }
8227
8228 static void rollback_registered(struct net_device *dev)
8229 {
8230         LIST_HEAD(single);
8231
8232         list_add(&dev->unreg_list, &single);
8233         rollback_registered_many(&single);
8234         list_del(&single);
8235 }
8236
8237 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8238         struct net_device *upper, netdev_features_t features)
8239 {
8240         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8241         netdev_features_t feature;
8242         int feature_bit;
8243
8244         for_each_netdev_feature(upper_disables, feature_bit) {
8245                 feature = __NETIF_F_BIT(feature_bit);
8246                 if (!(upper->wanted_features & feature)
8247                     && (features & feature)) {
8248                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8249                                    &feature, upper->name);
8250                         features &= ~feature;
8251                 }
8252         }
8253
8254         return features;
8255 }
8256
8257 static void netdev_sync_lower_features(struct net_device *upper,
8258         struct net_device *lower, netdev_features_t features)
8259 {
8260         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8261         netdev_features_t feature;
8262         int feature_bit;
8263
8264         for_each_netdev_feature(upper_disables, feature_bit) {
8265                 feature = __NETIF_F_BIT(feature_bit);
8266                 if (!(features & feature) && (lower->features & feature)) {
8267                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8268                                    &feature, lower->name);
8269                         lower->wanted_features &= ~feature;
8270                         netdev_update_features(lower);
8271
8272                         if (unlikely(lower->features & feature))
8273                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8274                                             &feature, lower->name);
8275                 }
8276         }
8277 }
8278
8279 static netdev_features_t netdev_fix_features(struct net_device *dev,
8280         netdev_features_t features)
8281 {
8282         /* Fix illegal checksum combinations */
8283         if ((features & NETIF_F_HW_CSUM) &&
8284             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8285                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8286                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8287         }
8288
8289         /* TSO requires that SG is present as well. */
8290         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8291                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8292                 features &= ~NETIF_F_ALL_TSO;
8293         }
8294
8295         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8296                                         !(features & NETIF_F_IP_CSUM)) {
8297                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8298                 features &= ~NETIF_F_TSO;
8299                 features &= ~NETIF_F_TSO_ECN;
8300         }
8301
8302         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8303                                          !(features & NETIF_F_IPV6_CSUM)) {
8304                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8305                 features &= ~NETIF_F_TSO6;
8306         }
8307
8308         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8309         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8310                 features &= ~NETIF_F_TSO_MANGLEID;
8311
8312         /* TSO ECN requires that TSO is present as well. */
8313         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8314                 features &= ~NETIF_F_TSO_ECN;
8315
8316         /* Software GSO depends on SG. */
8317         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8318                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8319                 features &= ~NETIF_F_GSO;
8320         }
8321
8322         /* GSO partial features require GSO partial be set */
8323         if ((features & dev->gso_partial_features) &&
8324             !(features & NETIF_F_GSO_PARTIAL)) {
8325                 netdev_dbg(dev,
8326                            "Dropping partially supported GSO features since no GSO partial.\n");
8327                 features &= ~dev->gso_partial_features;
8328         }
8329
8330         if (!(features & NETIF_F_RXCSUM)) {
8331                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8332                  * successfully merged by hardware must also have the
8333                  * checksum verified by hardware.  If the user does not
8334                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8335                  */
8336                 if (features & NETIF_F_GRO_HW) {
8337                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8338                         features &= ~NETIF_F_GRO_HW;
8339                 }
8340         }
8341
8342         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8343         if (features & NETIF_F_RXFCS) {
8344                 if (features & NETIF_F_LRO) {
8345                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8346                         features &= ~NETIF_F_LRO;
8347                 }
8348
8349                 if (features & NETIF_F_GRO_HW) {
8350                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8351                         features &= ~NETIF_F_GRO_HW;
8352                 }
8353         }
8354
8355         return features;
8356 }
8357
8358 int __netdev_update_features(struct net_device *dev)
8359 {
8360         struct net_device *upper, *lower;
8361         netdev_features_t features;
8362         struct list_head *iter;
8363         int err = -1;
8364
8365         ASSERT_RTNL();
8366
8367         features = netdev_get_wanted_features(dev);
8368
8369         if (dev->netdev_ops->ndo_fix_features)
8370                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8371
8372         /* driver might be less strict about feature dependencies */
8373         features = netdev_fix_features(dev, features);
8374
8375         /* some features can't be enabled if they're off an an upper device */
8376         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8377                 features = netdev_sync_upper_features(dev, upper, features);
8378
8379         if (dev->features == features)
8380                 goto sync_lower;
8381
8382         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8383                 &dev->features, &features);
8384
8385         if (dev->netdev_ops->ndo_set_features)
8386                 err = dev->netdev_ops->ndo_set_features(dev, features);
8387         else
8388                 err = 0;
8389
8390         if (unlikely(err < 0)) {
8391                 netdev_err(dev,
8392                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8393                         err, &features, &dev->features);
8394                 /* return non-0 since some features might have changed and
8395                  * it's better to fire a spurious notification than miss it
8396                  */
8397                 return -1;
8398         }
8399
8400 sync_lower:
8401         /* some features must be disabled on lower devices when disabled
8402          * on an upper device (think: bonding master or bridge)
8403          */
8404         netdev_for_each_lower_dev(dev, lower, iter)
8405                 netdev_sync_lower_features(dev, lower, features);
8406
8407         if (!err) {
8408                 netdev_features_t diff = features ^ dev->features;
8409
8410                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8411                         /* udp_tunnel_{get,drop}_rx_info both need
8412                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8413                          * device, or they won't do anything.
8414                          * Thus we need to update dev->features
8415                          * *before* calling udp_tunnel_get_rx_info,
8416                          * but *after* calling udp_tunnel_drop_rx_info.
8417                          */
8418                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8419                                 dev->features = features;
8420                                 udp_tunnel_get_rx_info(dev);
8421                         } else {
8422                                 udp_tunnel_drop_rx_info(dev);
8423                         }
8424                 }
8425
8426                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8427                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8428                                 dev->features = features;
8429                                 err |= vlan_get_rx_ctag_filter_info(dev);
8430                         } else {
8431                                 vlan_drop_rx_ctag_filter_info(dev);
8432                         }
8433                 }
8434
8435                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8436                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8437                                 dev->features = features;
8438                                 err |= vlan_get_rx_stag_filter_info(dev);
8439                         } else {
8440                                 vlan_drop_rx_stag_filter_info(dev);
8441                         }
8442                 }
8443
8444                 dev->features = features;
8445         }
8446
8447         return err < 0 ? 0 : 1;
8448 }
8449
8450 /**
8451  *      netdev_update_features - recalculate device features
8452  *      @dev: the device to check
8453  *
8454  *      Recalculate dev->features set and send notifications if it
8455  *      has changed. Should be called after driver or hardware dependent
8456  *      conditions might have changed that influence the features.
8457  */
8458 void netdev_update_features(struct net_device *dev)
8459 {
8460         if (__netdev_update_features(dev))
8461                 netdev_features_change(dev);
8462 }
8463 EXPORT_SYMBOL(netdev_update_features);
8464
8465 /**
8466  *      netdev_change_features - recalculate device features
8467  *      @dev: the device to check
8468  *
8469  *      Recalculate dev->features set and send notifications even
8470  *      if they have not changed. Should be called instead of
8471  *      netdev_update_features() if also dev->vlan_features might
8472  *      have changed to allow the changes to be propagated to stacked
8473  *      VLAN devices.
8474  */
8475 void netdev_change_features(struct net_device *dev)
8476 {
8477         __netdev_update_features(dev);
8478         netdev_features_change(dev);
8479 }
8480 EXPORT_SYMBOL(netdev_change_features);
8481
8482 /**
8483  *      netif_stacked_transfer_operstate -      transfer operstate
8484  *      @rootdev: the root or lower level device to transfer state from
8485  *      @dev: the device to transfer operstate to
8486  *
8487  *      Transfer operational state from root to device. This is normally
8488  *      called when a stacking relationship exists between the root
8489  *      device and the device(a leaf device).
8490  */
8491 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8492                                         struct net_device *dev)
8493 {
8494         if (rootdev->operstate == IF_OPER_DORMANT)
8495                 netif_dormant_on(dev);
8496         else
8497                 netif_dormant_off(dev);
8498
8499         if (netif_carrier_ok(rootdev))
8500                 netif_carrier_on(dev);
8501         else
8502                 netif_carrier_off(dev);
8503 }
8504 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8505
8506 static int netif_alloc_rx_queues(struct net_device *dev)
8507 {
8508         unsigned int i, count = dev->num_rx_queues;
8509         struct netdev_rx_queue *rx;
8510         size_t sz = count * sizeof(*rx);
8511         int err = 0;
8512
8513         BUG_ON(count < 1);
8514
8515         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8516         if (!rx)
8517                 return -ENOMEM;
8518
8519         dev->_rx = rx;
8520
8521         for (i = 0; i < count; i++) {
8522                 rx[i].dev = dev;
8523
8524                 /* XDP RX-queue setup */
8525                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8526                 if (err < 0)
8527                         goto err_rxq_info;
8528         }
8529         return 0;
8530
8531 err_rxq_info:
8532         /* Rollback successful reg's and free other resources */
8533         while (i--)
8534                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8535         kvfree(dev->_rx);
8536         dev->_rx = NULL;
8537         return err;
8538 }
8539
8540 static void netif_free_rx_queues(struct net_device *dev)
8541 {
8542         unsigned int i, count = dev->num_rx_queues;
8543
8544         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8545         if (!dev->_rx)
8546                 return;
8547
8548         for (i = 0; i < count; i++)
8549                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8550
8551         kvfree(dev->_rx);
8552 }
8553
8554 static void netdev_init_one_queue(struct net_device *dev,
8555                                   struct netdev_queue *queue, void *_unused)
8556 {
8557         /* Initialize queue lock */
8558         spin_lock_init(&queue->_xmit_lock);
8559         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8560         queue->xmit_lock_owner = -1;
8561         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8562         queue->dev = dev;
8563 #ifdef CONFIG_BQL
8564         dql_init(&queue->dql, HZ);
8565 #endif
8566 }
8567
8568 static void netif_free_tx_queues(struct net_device *dev)
8569 {
8570         kvfree(dev->_tx);
8571 }
8572
8573 static int netif_alloc_netdev_queues(struct net_device *dev)
8574 {
8575         unsigned int count = dev->num_tx_queues;
8576         struct netdev_queue *tx;
8577         size_t sz = count * sizeof(*tx);
8578
8579         if (count < 1 || count > 0xffff)
8580                 return -EINVAL;
8581
8582         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8583         if (!tx)
8584                 return -ENOMEM;
8585
8586         dev->_tx = tx;
8587
8588         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8589         spin_lock_init(&dev->tx_global_lock);
8590
8591         return 0;
8592 }
8593
8594 void netif_tx_stop_all_queues(struct net_device *dev)
8595 {
8596         unsigned int i;
8597
8598         for (i = 0; i < dev->num_tx_queues; i++) {
8599                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8600
8601                 netif_tx_stop_queue(txq);
8602         }
8603 }
8604 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8605
8606 /**
8607  *      register_netdevice      - register a network device
8608  *      @dev: device to register
8609  *
8610  *      Take a completed network device structure and add it to the kernel
8611  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8612  *      chain. 0 is returned on success. A negative errno code is returned
8613  *      on a failure to set up the device, or if the name is a duplicate.
8614  *
8615  *      Callers must hold the rtnl semaphore. You may want
8616  *      register_netdev() instead of this.
8617  *
8618  *      BUGS:
8619  *      The locking appears insufficient to guarantee two parallel registers
8620  *      will not get the same name.
8621  */
8622
8623 int register_netdevice(struct net_device *dev)
8624 {
8625         int ret;
8626         struct net *net = dev_net(dev);
8627
8628         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8629                      NETDEV_FEATURE_COUNT);
8630         BUG_ON(dev_boot_phase);
8631         ASSERT_RTNL();
8632
8633         might_sleep();
8634
8635         /* When net_device's are persistent, this will be fatal. */
8636         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8637         BUG_ON(!net);
8638
8639         spin_lock_init(&dev->addr_list_lock);
8640         netdev_set_addr_lockdep_class(dev);
8641
8642         ret = dev_get_valid_name(net, dev, dev->name);
8643         if (ret < 0)
8644                 goto out;
8645
8646         /* Init, if this function is available */
8647         if (dev->netdev_ops->ndo_init) {
8648                 ret = dev->netdev_ops->ndo_init(dev);
8649                 if (ret) {
8650                         if (ret > 0)
8651                                 ret = -EIO;
8652                         goto out;
8653                 }
8654         }
8655
8656         if (((dev->hw_features | dev->features) &
8657              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8658             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8659              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8660                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8661                 ret = -EINVAL;
8662                 goto err_uninit;
8663         }
8664
8665         ret = -EBUSY;
8666         if (!dev->ifindex)
8667                 dev->ifindex = dev_new_index(net);
8668         else if (__dev_get_by_index(net, dev->ifindex))
8669                 goto err_uninit;
8670
8671         /* Transfer changeable features to wanted_features and enable
8672          * software offloads (GSO and GRO).
8673          */
8674         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8675         dev->features |= NETIF_F_SOFT_FEATURES;
8676
8677         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8678                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8679                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8680         }
8681
8682         dev->wanted_features = dev->features & dev->hw_features;
8683
8684         if (!(dev->flags & IFF_LOOPBACK))
8685                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8686
8687         /* If IPv4 TCP segmentation offload is supported we should also
8688          * allow the device to enable segmenting the frame with the option
8689          * of ignoring a static IP ID value.  This doesn't enable the
8690          * feature itself but allows the user to enable it later.
8691          */
8692         if (dev->hw_features & NETIF_F_TSO)
8693                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8694         if (dev->vlan_features & NETIF_F_TSO)
8695                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8696         if (dev->mpls_features & NETIF_F_TSO)
8697                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8698         if (dev->hw_enc_features & NETIF_F_TSO)
8699                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8700
8701         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8702          */
8703         dev->vlan_features |= NETIF_F_HIGHDMA;
8704
8705         /* Make NETIF_F_SG inheritable to tunnel devices.
8706          */
8707         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8708
8709         /* Make NETIF_F_SG inheritable to MPLS.
8710          */
8711         dev->mpls_features |= NETIF_F_SG;
8712
8713         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8714         ret = notifier_to_errno(ret);
8715         if (ret)
8716                 goto err_uninit;
8717
8718         ret = netdev_register_kobject(dev);
8719         if (ret)
8720                 goto err_uninit;
8721         dev->reg_state = NETREG_REGISTERED;
8722
8723         __netdev_update_features(dev);
8724
8725         /*
8726          *      Default initial state at registry is that the
8727          *      device is present.
8728          */
8729
8730         set_bit(__LINK_STATE_PRESENT, &dev->state);
8731
8732         linkwatch_init_dev(dev);
8733
8734         dev_init_scheduler(dev);
8735         dev_hold(dev);
8736         list_netdevice(dev);
8737         add_device_randomness(dev->dev_addr, dev->addr_len);
8738
8739         /* If the device has permanent device address, driver should
8740          * set dev_addr and also addr_assign_type should be set to
8741          * NET_ADDR_PERM (default value).
8742          */
8743         if (dev->addr_assign_type == NET_ADDR_PERM)
8744                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8745
8746         /* Notify protocols, that a new device appeared. */
8747         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8748         ret = notifier_to_errno(ret);
8749         if (ret) {
8750                 rollback_registered(dev);
8751                 dev->reg_state = NETREG_UNREGISTERED;
8752         }
8753         /*
8754          *      Prevent userspace races by waiting until the network
8755          *      device is fully setup before sending notifications.
8756          */
8757         if (!dev->rtnl_link_ops ||
8758             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8759                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8760
8761 out:
8762         return ret;
8763
8764 err_uninit:
8765         if (dev->netdev_ops->ndo_uninit)
8766                 dev->netdev_ops->ndo_uninit(dev);
8767         if (dev->priv_destructor)
8768                 dev->priv_destructor(dev);
8769         goto out;
8770 }
8771 EXPORT_SYMBOL(register_netdevice);
8772
8773 /**
8774  *      init_dummy_netdev       - init a dummy network device for NAPI
8775  *      @dev: device to init
8776  *
8777  *      This takes a network device structure and initialize the minimum
8778  *      amount of fields so it can be used to schedule NAPI polls without
8779  *      registering a full blown interface. This is to be used by drivers
8780  *      that need to tie several hardware interfaces to a single NAPI
8781  *      poll scheduler due to HW limitations.
8782  */
8783 int init_dummy_netdev(struct net_device *dev)
8784 {
8785         /* Clear everything. Note we don't initialize spinlocks
8786          * are they aren't supposed to be taken by any of the
8787          * NAPI code and this dummy netdev is supposed to be
8788          * only ever used for NAPI polls
8789          */
8790         memset(dev, 0, sizeof(struct net_device));
8791
8792         /* make sure we BUG if trying to hit standard
8793          * register/unregister code path
8794          */
8795         dev->reg_state = NETREG_DUMMY;
8796
8797         /* NAPI wants this */
8798         INIT_LIST_HEAD(&dev->napi_list);
8799
8800         /* a dummy interface is started by default */
8801         set_bit(__LINK_STATE_PRESENT, &dev->state);
8802         set_bit(__LINK_STATE_START, &dev->state);
8803
8804         /* napi_busy_loop stats accounting wants this */
8805         dev_net_set(dev, &init_net);
8806
8807         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8808          * because users of this 'device' dont need to change
8809          * its refcount.
8810          */
8811
8812         return 0;
8813 }
8814 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8815
8816
8817 /**
8818  *      register_netdev - register a network device
8819  *      @dev: device to register
8820  *
8821  *      Take a completed network device structure and add it to the kernel
8822  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8823  *      chain. 0 is returned on success. A negative errno code is returned
8824  *      on a failure to set up the device, or if the name is a duplicate.
8825  *
8826  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8827  *      and expands the device name if you passed a format string to
8828  *      alloc_netdev.
8829  */
8830 int register_netdev(struct net_device *dev)
8831 {
8832         int err;
8833
8834         if (rtnl_lock_killable())
8835                 return -EINTR;
8836         err = register_netdevice(dev);
8837         rtnl_unlock();
8838         return err;
8839 }
8840 EXPORT_SYMBOL(register_netdev);
8841
8842 int netdev_refcnt_read(const struct net_device *dev)
8843 {
8844         int i, refcnt = 0;
8845
8846         for_each_possible_cpu(i)
8847                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8848         return refcnt;
8849 }
8850 EXPORT_SYMBOL(netdev_refcnt_read);
8851
8852 /**
8853  * netdev_wait_allrefs - wait until all references are gone.
8854  * @dev: target net_device
8855  *
8856  * This is called when unregistering network devices.
8857  *
8858  * Any protocol or device that holds a reference should register
8859  * for netdevice notification, and cleanup and put back the
8860  * reference if they receive an UNREGISTER event.
8861  * We can get stuck here if buggy protocols don't correctly
8862  * call dev_put.
8863  */
8864 static void netdev_wait_allrefs(struct net_device *dev)
8865 {
8866         unsigned long rebroadcast_time, warning_time;
8867         int refcnt;
8868
8869         linkwatch_forget_dev(dev);
8870
8871         rebroadcast_time = warning_time = jiffies;
8872         refcnt = netdev_refcnt_read(dev);
8873
8874         while (refcnt != 0) {
8875                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8876                         rtnl_lock();
8877
8878                         /* Rebroadcast unregister notification */
8879                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8880
8881                         __rtnl_unlock();
8882                         rcu_barrier();
8883                         rtnl_lock();
8884
8885                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8886                                      &dev->state)) {
8887                                 /* We must not have linkwatch events
8888                                  * pending on unregister. If this
8889                                  * happens, we simply run the queue
8890                                  * unscheduled, resulting in a noop
8891                                  * for this device.
8892                                  */
8893                                 linkwatch_run_queue();
8894                         }
8895
8896                         __rtnl_unlock();
8897
8898                         rebroadcast_time = jiffies;
8899                 }
8900
8901                 msleep(250);
8902
8903                 refcnt = netdev_refcnt_read(dev);
8904
8905                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8906                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8907                                  dev->name, refcnt);
8908                         warning_time = jiffies;
8909                 }
8910         }
8911 }
8912
8913 /* The sequence is:
8914  *
8915  *      rtnl_lock();
8916  *      ...
8917  *      register_netdevice(x1);
8918  *      register_netdevice(x2);
8919  *      ...
8920  *      unregister_netdevice(y1);
8921  *      unregister_netdevice(y2);
8922  *      ...
8923  *      rtnl_unlock();
8924  *      free_netdev(y1);
8925  *      free_netdev(y2);
8926  *
8927  * We are invoked by rtnl_unlock().
8928  * This allows us to deal with problems:
8929  * 1) We can delete sysfs objects which invoke hotplug
8930  *    without deadlocking with linkwatch via keventd.
8931  * 2) Since we run with the RTNL semaphore not held, we can sleep
8932  *    safely in order to wait for the netdev refcnt to drop to zero.
8933  *
8934  * We must not return until all unregister events added during
8935  * the interval the lock was held have been completed.
8936  */
8937 void netdev_run_todo(void)
8938 {
8939         struct list_head list;
8940
8941         /* Snapshot list, allow later requests */
8942         list_replace_init(&net_todo_list, &list);
8943
8944         __rtnl_unlock();
8945
8946
8947         /* Wait for rcu callbacks to finish before next phase */
8948         if (!list_empty(&list))
8949                 rcu_barrier();
8950
8951         while (!list_empty(&list)) {
8952                 struct net_device *dev
8953                         = list_first_entry(&list, struct net_device, todo_list);
8954                 list_del(&dev->todo_list);
8955
8956                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8957                         pr_err("network todo '%s' but state %d\n",
8958                                dev->name, dev->reg_state);
8959                         dump_stack();
8960                         continue;
8961                 }
8962
8963                 dev->reg_state = NETREG_UNREGISTERED;
8964
8965                 netdev_wait_allrefs(dev);
8966
8967                 /* paranoia */
8968                 BUG_ON(netdev_refcnt_read(dev));
8969                 BUG_ON(!list_empty(&dev->ptype_all));
8970                 BUG_ON(!list_empty(&dev->ptype_specific));
8971                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8972                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8973 #if IS_ENABLED(CONFIG_DECNET)
8974                 WARN_ON(dev->dn_ptr);
8975 #endif
8976                 if (dev->priv_destructor)
8977                         dev->priv_destructor(dev);
8978                 if (dev->needs_free_netdev)
8979                         free_netdev(dev);
8980
8981                 /* Report a network device has been unregistered */
8982                 rtnl_lock();
8983                 dev_net(dev)->dev_unreg_count--;
8984                 __rtnl_unlock();
8985                 wake_up(&netdev_unregistering_wq);
8986
8987                 /* Free network device */
8988                 kobject_put(&dev->dev.kobj);
8989         }
8990 }
8991
8992 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8993  * all the same fields in the same order as net_device_stats, with only
8994  * the type differing, but rtnl_link_stats64 may have additional fields
8995  * at the end for newer counters.
8996  */
8997 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8998                              const struct net_device_stats *netdev_stats)
8999 {
9000 #if BITS_PER_LONG == 64
9001         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9002         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9003         /* zero out counters that only exist in rtnl_link_stats64 */
9004         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9005                sizeof(*stats64) - sizeof(*netdev_stats));
9006 #else
9007         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9008         const unsigned long *src = (const unsigned long *)netdev_stats;
9009         u64 *dst = (u64 *)stats64;
9010
9011         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9012         for (i = 0; i < n; i++)
9013                 dst[i] = src[i];
9014         /* zero out counters that only exist in rtnl_link_stats64 */
9015         memset((char *)stats64 + n * sizeof(u64), 0,
9016                sizeof(*stats64) - n * sizeof(u64));
9017 #endif
9018 }
9019 EXPORT_SYMBOL(netdev_stats_to_stats64);
9020
9021 /**
9022  *      dev_get_stats   - get network device statistics
9023  *      @dev: device to get statistics from
9024  *      @storage: place to store stats
9025  *
9026  *      Get network statistics from device. Return @storage.
9027  *      The device driver may provide its own method by setting
9028  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9029  *      otherwise the internal statistics structure is used.
9030  */
9031 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9032                                         struct rtnl_link_stats64 *storage)
9033 {
9034         const struct net_device_ops *ops = dev->netdev_ops;
9035
9036         if (ops->ndo_get_stats64) {
9037                 memset(storage, 0, sizeof(*storage));
9038                 ops->ndo_get_stats64(dev, storage);
9039         } else if (ops->ndo_get_stats) {
9040                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9041         } else {
9042                 netdev_stats_to_stats64(storage, &dev->stats);
9043         }
9044         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9045         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9046         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9047         return storage;
9048 }
9049 EXPORT_SYMBOL(dev_get_stats);
9050
9051 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9052 {
9053         struct netdev_queue *queue = dev_ingress_queue(dev);
9054
9055 #ifdef CONFIG_NET_CLS_ACT
9056         if (queue)
9057                 return queue;
9058         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9059         if (!queue)
9060                 return NULL;
9061         netdev_init_one_queue(dev, queue, NULL);
9062         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9063         queue->qdisc_sleeping = &noop_qdisc;
9064         rcu_assign_pointer(dev->ingress_queue, queue);
9065 #endif
9066         return queue;
9067 }
9068
9069 static const struct ethtool_ops default_ethtool_ops;
9070
9071 void netdev_set_default_ethtool_ops(struct net_device *dev,
9072                                     const struct ethtool_ops *ops)
9073 {
9074         if (dev->ethtool_ops == &default_ethtool_ops)
9075                 dev->ethtool_ops = ops;
9076 }
9077 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9078
9079 void netdev_freemem(struct net_device *dev)
9080 {
9081         char *addr = (char *)dev - dev->padded;
9082
9083         kvfree(addr);
9084 }
9085
9086 /**
9087  * alloc_netdev_mqs - allocate network device
9088  * @sizeof_priv: size of private data to allocate space for
9089  * @name: device name format string
9090  * @name_assign_type: origin of device name
9091  * @setup: callback to initialize device
9092  * @txqs: the number of TX subqueues to allocate
9093  * @rxqs: the number of RX subqueues to allocate
9094  *
9095  * Allocates a struct net_device with private data area for driver use
9096  * and performs basic initialization.  Also allocates subqueue structs
9097  * for each queue on the device.
9098  */
9099 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9100                 unsigned char name_assign_type,
9101                 void (*setup)(struct net_device *),
9102                 unsigned int txqs, unsigned int rxqs)
9103 {
9104         struct net_device *dev;
9105         unsigned int alloc_size;
9106         struct net_device *p;
9107
9108         BUG_ON(strlen(name) >= sizeof(dev->name));
9109
9110         if (txqs < 1) {
9111                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9112                 return NULL;
9113         }
9114
9115         if (rxqs < 1) {
9116                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9117                 return NULL;
9118         }
9119
9120         alloc_size = sizeof(struct net_device);
9121         if (sizeof_priv) {
9122                 /* ensure 32-byte alignment of private area */
9123                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9124                 alloc_size += sizeof_priv;
9125         }
9126         /* ensure 32-byte alignment of whole construct */
9127         alloc_size += NETDEV_ALIGN - 1;
9128
9129         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9130         if (!p)
9131                 return NULL;
9132
9133         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9134         dev->padded = (char *)dev - (char *)p;
9135
9136         dev->pcpu_refcnt = alloc_percpu(int);
9137         if (!dev->pcpu_refcnt)
9138                 goto free_dev;
9139
9140         if (dev_addr_init(dev))
9141                 goto free_pcpu;
9142
9143         dev_mc_init(dev);
9144         dev_uc_init(dev);
9145
9146         dev_net_set(dev, &init_net);
9147
9148         dev->gso_max_size = GSO_MAX_SIZE;
9149         dev->gso_max_segs = GSO_MAX_SEGS;
9150
9151         INIT_LIST_HEAD(&dev->napi_list);
9152         INIT_LIST_HEAD(&dev->unreg_list);
9153         INIT_LIST_HEAD(&dev->close_list);
9154         INIT_LIST_HEAD(&dev->link_watch_list);
9155         INIT_LIST_HEAD(&dev->adj_list.upper);
9156         INIT_LIST_HEAD(&dev->adj_list.lower);
9157         INIT_LIST_HEAD(&dev->ptype_all);
9158         INIT_LIST_HEAD(&dev->ptype_specific);
9159 #ifdef CONFIG_NET_SCHED
9160         hash_init(dev->qdisc_hash);
9161 #endif
9162         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9163         setup(dev);
9164
9165         if (!dev->tx_queue_len) {
9166                 dev->priv_flags |= IFF_NO_QUEUE;
9167                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9168         }
9169
9170         dev->num_tx_queues = txqs;
9171         dev->real_num_tx_queues = txqs;
9172         if (netif_alloc_netdev_queues(dev))
9173                 goto free_all;
9174
9175         dev->num_rx_queues = rxqs;
9176         dev->real_num_rx_queues = rxqs;
9177         if (netif_alloc_rx_queues(dev))
9178                 goto free_all;
9179
9180         strcpy(dev->name, name);
9181         dev->name_assign_type = name_assign_type;
9182         dev->group = INIT_NETDEV_GROUP;
9183         if (!dev->ethtool_ops)
9184                 dev->ethtool_ops = &default_ethtool_ops;
9185
9186         nf_hook_ingress_init(dev);
9187
9188         return dev;
9189
9190 free_all:
9191         free_netdev(dev);
9192         return NULL;
9193
9194 free_pcpu:
9195         free_percpu(dev->pcpu_refcnt);
9196 free_dev:
9197         netdev_freemem(dev);
9198         return NULL;
9199 }
9200 EXPORT_SYMBOL(alloc_netdev_mqs);
9201
9202 /**
9203  * free_netdev - free network device
9204  * @dev: device
9205  *
9206  * This function does the last stage of destroying an allocated device
9207  * interface. The reference to the device object is released. If this
9208  * is the last reference then it will be freed.Must be called in process
9209  * context.
9210  */
9211 void free_netdev(struct net_device *dev)
9212 {
9213         struct napi_struct *p, *n;
9214
9215         might_sleep();
9216         netif_free_tx_queues(dev);
9217         netif_free_rx_queues(dev);
9218
9219         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9220
9221         /* Flush device addresses */
9222         dev_addr_flush(dev);
9223
9224         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9225                 netif_napi_del(p);
9226
9227         free_percpu(dev->pcpu_refcnt);
9228         dev->pcpu_refcnt = NULL;
9229
9230         /*  Compatibility with error handling in drivers */
9231         if (dev->reg_state == NETREG_UNINITIALIZED) {
9232                 netdev_freemem(dev);
9233                 return;
9234         }
9235
9236         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9237         dev->reg_state = NETREG_RELEASED;
9238
9239         /* will free via device release */
9240         put_device(&dev->dev);
9241 }
9242 EXPORT_SYMBOL(free_netdev);
9243
9244 /**
9245  *      synchronize_net -  Synchronize with packet receive processing
9246  *
9247  *      Wait for packets currently being received to be done.
9248  *      Does not block later packets from starting.
9249  */
9250 void synchronize_net(void)
9251 {
9252         might_sleep();
9253         if (rtnl_is_locked())
9254                 synchronize_rcu_expedited();
9255         else
9256                 synchronize_rcu();
9257 }
9258 EXPORT_SYMBOL(synchronize_net);
9259
9260 /**
9261  *      unregister_netdevice_queue - remove device from the kernel
9262  *      @dev: device
9263  *      @head: list
9264  *
9265  *      This function shuts down a device interface and removes it
9266  *      from the kernel tables.
9267  *      If head not NULL, device is queued to be unregistered later.
9268  *
9269  *      Callers must hold the rtnl semaphore.  You may want
9270  *      unregister_netdev() instead of this.
9271  */
9272
9273 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9274 {
9275         ASSERT_RTNL();
9276
9277         if (head) {
9278                 list_move_tail(&dev->unreg_list, head);
9279         } else {
9280                 rollback_registered(dev);
9281                 /* Finish processing unregister after unlock */
9282                 net_set_todo(dev);
9283         }
9284 }
9285 EXPORT_SYMBOL(unregister_netdevice_queue);
9286
9287 /**
9288  *      unregister_netdevice_many - unregister many devices
9289  *      @head: list of devices
9290  *
9291  *  Note: As most callers use a stack allocated list_head,
9292  *  we force a list_del() to make sure stack wont be corrupted later.
9293  */
9294 void unregister_netdevice_many(struct list_head *head)
9295 {
9296         struct net_device *dev;
9297
9298         if (!list_empty(head)) {
9299                 rollback_registered_many(head);
9300                 list_for_each_entry(dev, head, unreg_list)
9301                         net_set_todo(dev);
9302                 list_del(head);
9303         }
9304 }
9305 EXPORT_SYMBOL(unregister_netdevice_many);
9306
9307 /**
9308  *      unregister_netdev - remove device from the kernel
9309  *      @dev: device
9310  *
9311  *      This function shuts down a device interface and removes it
9312  *      from the kernel tables.
9313  *
9314  *      This is just a wrapper for unregister_netdevice that takes
9315  *      the rtnl semaphore.  In general you want to use this and not
9316  *      unregister_netdevice.
9317  */
9318 void unregister_netdev(struct net_device *dev)
9319 {
9320         rtnl_lock();
9321         unregister_netdevice(dev);
9322         rtnl_unlock();
9323 }
9324 EXPORT_SYMBOL(unregister_netdev);
9325
9326 /**
9327  *      dev_change_net_namespace - move device to different nethost namespace
9328  *      @dev: device
9329  *      @net: network namespace
9330  *      @pat: If not NULL name pattern to try if the current device name
9331  *            is already taken in the destination network namespace.
9332  *
9333  *      This function shuts down a device interface and moves it
9334  *      to a new network namespace. On success 0 is returned, on
9335  *      a failure a netagive errno code is returned.
9336  *
9337  *      Callers must hold the rtnl semaphore.
9338  */
9339
9340 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9341 {
9342         int err, new_nsid, new_ifindex;
9343
9344         ASSERT_RTNL();
9345
9346         /* Don't allow namespace local devices to be moved. */
9347         err = -EINVAL;
9348         if (dev->features & NETIF_F_NETNS_LOCAL)
9349                 goto out;
9350
9351         /* Ensure the device has been registrered */
9352         if (dev->reg_state != NETREG_REGISTERED)
9353                 goto out;
9354
9355         /* Get out if there is nothing todo */
9356         err = 0;
9357         if (net_eq(dev_net(dev), net))
9358                 goto out;
9359
9360         /* Pick the destination device name, and ensure
9361          * we can use it in the destination network namespace.
9362          */
9363         err = -EEXIST;
9364         if (__dev_get_by_name(net, dev->name)) {
9365                 /* We get here if we can't use the current device name */
9366                 if (!pat)
9367                         goto out;
9368                 err = dev_get_valid_name(net, dev, pat);
9369                 if (err < 0)
9370                         goto out;
9371         }
9372
9373         /*
9374          * And now a mini version of register_netdevice unregister_netdevice.
9375          */
9376
9377         /* If device is running close it first. */
9378         dev_close(dev);
9379
9380         /* And unlink it from device chain */
9381         unlist_netdevice(dev);
9382
9383         synchronize_net();
9384
9385         /* Shutdown queueing discipline. */
9386         dev_shutdown(dev);
9387
9388         /* Notify protocols, that we are about to destroy
9389          * this device. They should clean all the things.
9390          *
9391          * Note that dev->reg_state stays at NETREG_REGISTERED.
9392          * This is wanted because this way 8021q and macvlan know
9393          * the device is just moving and can keep their slaves up.
9394          */
9395         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9396         rcu_barrier();
9397
9398         new_nsid = peernet2id_alloc(dev_net(dev), net);
9399         /* If there is an ifindex conflict assign a new one */
9400         if (__dev_get_by_index(net, dev->ifindex))
9401                 new_ifindex = dev_new_index(net);
9402         else
9403                 new_ifindex = dev->ifindex;
9404
9405         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9406                             new_ifindex);
9407
9408         /*
9409          *      Flush the unicast and multicast chains
9410          */
9411         dev_uc_flush(dev);
9412         dev_mc_flush(dev);
9413
9414         /* Send a netdev-removed uevent to the old namespace */
9415         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9416         netdev_adjacent_del_links(dev);
9417
9418         /* Actually switch the network namespace */
9419         dev_net_set(dev, net);
9420         dev->ifindex = new_ifindex;
9421
9422         /* Send a netdev-add uevent to the new namespace */
9423         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9424         netdev_adjacent_add_links(dev);
9425
9426         /* Fixup kobjects */
9427         err = device_rename(&dev->dev, dev->name);
9428         WARN_ON(err);
9429
9430         /* Add the device back in the hashes */
9431         list_netdevice(dev);
9432
9433         /* Notify protocols, that a new device appeared. */
9434         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9435
9436         /*
9437          *      Prevent userspace races by waiting until the network
9438          *      device is fully setup before sending notifications.
9439          */
9440         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9441
9442         synchronize_net();
9443         err = 0;
9444 out:
9445         return err;
9446 }
9447 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9448
9449 static int dev_cpu_dead(unsigned int oldcpu)
9450 {
9451         struct sk_buff **list_skb;
9452         struct sk_buff *skb;
9453         unsigned int cpu;
9454         struct softnet_data *sd, *oldsd, *remsd = NULL;
9455
9456         local_irq_disable();
9457         cpu = smp_processor_id();
9458         sd = &per_cpu(softnet_data, cpu);
9459         oldsd = &per_cpu(softnet_data, oldcpu);
9460
9461         /* Find end of our completion_queue. */
9462         list_skb = &sd->completion_queue;
9463         while (*list_skb)
9464                 list_skb = &(*list_skb)->next;
9465         /* Append completion queue from offline CPU. */
9466         *list_skb = oldsd->completion_queue;
9467         oldsd->completion_queue = NULL;
9468
9469         /* Append output queue from offline CPU. */
9470         if (oldsd->output_queue) {
9471                 *sd->output_queue_tailp = oldsd->output_queue;
9472                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9473                 oldsd->output_queue = NULL;
9474                 oldsd->output_queue_tailp = &oldsd->output_queue;
9475         }
9476         /* Append NAPI poll list from offline CPU, with one exception :
9477          * process_backlog() must be called by cpu owning percpu backlog.
9478          * We properly handle process_queue & input_pkt_queue later.
9479          */
9480         while (!list_empty(&oldsd->poll_list)) {
9481                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9482                                                             struct napi_struct,
9483                                                             poll_list);
9484
9485                 list_del_init(&napi->poll_list);
9486                 if (napi->poll == process_backlog)
9487                         napi->state = 0;
9488                 else
9489                         ____napi_schedule(sd, napi);
9490         }
9491
9492         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9493         local_irq_enable();
9494
9495 #ifdef CONFIG_RPS
9496         remsd = oldsd->rps_ipi_list;
9497         oldsd->rps_ipi_list = NULL;
9498 #endif
9499         /* send out pending IPI's on offline CPU */
9500         net_rps_send_ipi(remsd);
9501
9502         /* Process offline CPU's input_pkt_queue */
9503         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9504                 netif_rx_ni(skb);
9505                 input_queue_head_incr(oldsd);
9506         }
9507         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9508                 netif_rx_ni(skb);
9509                 input_queue_head_incr(oldsd);
9510         }
9511
9512         return 0;
9513 }
9514
9515 /**
9516  *      netdev_increment_features - increment feature set by one
9517  *      @all: current feature set
9518  *      @one: new feature set
9519  *      @mask: mask feature set
9520  *
9521  *      Computes a new feature set after adding a device with feature set
9522  *      @one to the master device with current feature set @all.  Will not
9523  *      enable anything that is off in @mask. Returns the new feature set.
9524  */
9525 netdev_features_t netdev_increment_features(netdev_features_t all,
9526         netdev_features_t one, netdev_features_t mask)
9527 {
9528         if (mask & NETIF_F_HW_CSUM)
9529                 mask |= NETIF_F_CSUM_MASK;
9530         mask |= NETIF_F_VLAN_CHALLENGED;
9531
9532         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9533         all &= one | ~NETIF_F_ALL_FOR_ALL;
9534
9535         /* If one device supports hw checksumming, set for all. */
9536         if (all & NETIF_F_HW_CSUM)
9537                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9538
9539         return all;
9540 }
9541 EXPORT_SYMBOL(netdev_increment_features);
9542
9543 static struct hlist_head * __net_init netdev_create_hash(void)
9544 {
9545         int i;
9546         struct hlist_head *hash;
9547
9548         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9549         if (hash != NULL)
9550                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9551                         INIT_HLIST_HEAD(&hash[i]);
9552
9553         return hash;
9554 }
9555
9556 /* Initialize per network namespace state */
9557 static int __net_init netdev_init(struct net *net)
9558 {
9559         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9560                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9561
9562         if (net != &init_net)
9563                 INIT_LIST_HEAD(&net->dev_base_head);
9564
9565         net->dev_name_head = netdev_create_hash();
9566         if (net->dev_name_head == NULL)
9567                 goto err_name;
9568
9569         net->dev_index_head = netdev_create_hash();
9570         if (net->dev_index_head == NULL)
9571                 goto err_idx;
9572
9573         return 0;
9574
9575 err_idx:
9576         kfree(net->dev_name_head);
9577 err_name:
9578         return -ENOMEM;
9579 }
9580
9581 /**
9582  *      netdev_drivername - network driver for the device
9583  *      @dev: network device
9584  *
9585  *      Determine network driver for device.
9586  */
9587 const char *netdev_drivername(const struct net_device *dev)
9588 {
9589         const struct device_driver *driver;
9590         const struct device *parent;
9591         const char *empty = "";
9592
9593         parent = dev->dev.parent;
9594         if (!parent)
9595                 return empty;
9596
9597         driver = parent->driver;
9598         if (driver && driver->name)
9599                 return driver->name;
9600         return empty;
9601 }
9602
9603 static void __netdev_printk(const char *level, const struct net_device *dev,
9604                             struct va_format *vaf)
9605 {
9606         if (dev && dev->dev.parent) {
9607                 dev_printk_emit(level[1] - '0',
9608                                 dev->dev.parent,
9609                                 "%s %s %s%s: %pV",
9610                                 dev_driver_string(dev->dev.parent),
9611                                 dev_name(dev->dev.parent),
9612                                 netdev_name(dev), netdev_reg_state(dev),
9613                                 vaf);
9614         } else if (dev) {
9615                 printk("%s%s%s: %pV",
9616                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9617         } else {
9618                 printk("%s(NULL net_device): %pV", level, vaf);
9619         }
9620 }
9621
9622 void netdev_printk(const char *level, const struct net_device *dev,
9623                    const char *format, ...)
9624 {
9625         struct va_format vaf;
9626         va_list args;
9627
9628         va_start(args, format);
9629
9630         vaf.fmt = format;
9631         vaf.va = &args;
9632
9633         __netdev_printk(level, dev, &vaf);
9634
9635         va_end(args);
9636 }
9637 EXPORT_SYMBOL(netdev_printk);
9638
9639 #define define_netdev_printk_level(func, level)                 \
9640 void func(const struct net_device *dev, const char *fmt, ...)   \
9641 {                                                               \
9642         struct va_format vaf;                                   \
9643         va_list args;                                           \
9644                                                                 \
9645         va_start(args, fmt);                                    \
9646                                                                 \
9647         vaf.fmt = fmt;                                          \
9648         vaf.va = &args;                                         \
9649                                                                 \
9650         __netdev_printk(level, dev, &vaf);                      \
9651                                                                 \
9652         va_end(args);                                           \
9653 }                                                               \
9654 EXPORT_SYMBOL(func);
9655
9656 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9657 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9658 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9659 define_netdev_printk_level(netdev_err, KERN_ERR);
9660 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9661 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9662 define_netdev_printk_level(netdev_info, KERN_INFO);
9663
9664 static void __net_exit netdev_exit(struct net *net)
9665 {
9666         kfree(net->dev_name_head);
9667         kfree(net->dev_index_head);
9668         if (net != &init_net)
9669                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9670 }
9671
9672 static struct pernet_operations __net_initdata netdev_net_ops = {
9673         .init = netdev_init,
9674         .exit = netdev_exit,
9675 };
9676
9677 static void __net_exit default_device_exit(struct net *net)
9678 {
9679         struct net_device *dev, *aux;
9680         /*
9681          * Push all migratable network devices back to the
9682          * initial network namespace
9683          */
9684         rtnl_lock();
9685         for_each_netdev_safe(net, dev, aux) {
9686                 int err;
9687                 char fb_name[IFNAMSIZ];
9688
9689                 /* Ignore unmoveable devices (i.e. loopback) */
9690                 if (dev->features & NETIF_F_NETNS_LOCAL)
9691                         continue;
9692
9693                 /* Leave virtual devices for the generic cleanup */
9694                 if (dev->rtnl_link_ops)
9695                         continue;
9696
9697                 /* Push remaining network devices to init_net */
9698                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9699                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9700                 if (err) {
9701                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9702                                  __func__, dev->name, err);
9703                         BUG();
9704                 }
9705         }
9706         rtnl_unlock();
9707 }
9708
9709 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9710 {
9711         /* Return with the rtnl_lock held when there are no network
9712          * devices unregistering in any network namespace in net_list.
9713          */
9714         struct net *net;
9715         bool unregistering;
9716         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9717
9718         add_wait_queue(&netdev_unregistering_wq, &wait);
9719         for (;;) {
9720                 unregistering = false;
9721                 rtnl_lock();
9722                 list_for_each_entry(net, net_list, exit_list) {
9723                         if (net->dev_unreg_count > 0) {
9724                                 unregistering = true;
9725                                 break;
9726                         }
9727                 }
9728                 if (!unregistering)
9729                         break;
9730                 __rtnl_unlock();
9731
9732                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9733         }
9734         remove_wait_queue(&netdev_unregistering_wq, &wait);
9735 }
9736
9737 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9738 {
9739         /* At exit all network devices most be removed from a network
9740          * namespace.  Do this in the reverse order of registration.
9741          * Do this across as many network namespaces as possible to
9742          * improve batching efficiency.
9743          */
9744         struct net_device *dev;
9745         struct net *net;
9746         LIST_HEAD(dev_kill_list);
9747
9748         /* To prevent network device cleanup code from dereferencing
9749          * loopback devices or network devices that have been freed
9750          * wait here for all pending unregistrations to complete,
9751          * before unregistring the loopback device and allowing the
9752          * network namespace be freed.
9753          *
9754          * The netdev todo list containing all network devices
9755          * unregistrations that happen in default_device_exit_batch
9756          * will run in the rtnl_unlock() at the end of
9757          * default_device_exit_batch.
9758          */
9759         rtnl_lock_unregistering(net_list);
9760         list_for_each_entry(net, net_list, exit_list) {
9761                 for_each_netdev_reverse(net, dev) {
9762                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9763                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9764                         else
9765                                 unregister_netdevice_queue(dev, &dev_kill_list);
9766                 }
9767         }
9768         unregister_netdevice_many(&dev_kill_list);
9769         rtnl_unlock();
9770 }
9771
9772 static struct pernet_operations __net_initdata default_device_ops = {
9773         .exit = default_device_exit,
9774         .exit_batch = default_device_exit_batch,
9775 };
9776
9777 /*
9778  *      Initialize the DEV module. At boot time this walks the device list and
9779  *      unhooks any devices that fail to initialise (normally hardware not
9780  *      present) and leaves us with a valid list of present and active devices.
9781  *
9782  */
9783
9784 /*
9785  *       This is called single threaded during boot, so no need
9786  *       to take the rtnl semaphore.
9787  */
9788 static int __init net_dev_init(void)
9789 {
9790         int i, rc = -ENOMEM;
9791
9792         BUG_ON(!dev_boot_phase);
9793
9794         if (dev_proc_init())
9795                 goto out;
9796
9797         if (netdev_kobject_init())
9798                 goto out;
9799
9800         INIT_LIST_HEAD(&ptype_all);
9801         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9802                 INIT_LIST_HEAD(&ptype_base[i]);
9803
9804         INIT_LIST_HEAD(&offload_base);
9805
9806         if (register_pernet_subsys(&netdev_net_ops))
9807                 goto out;
9808
9809         /*
9810          *      Initialise the packet receive queues.
9811          */
9812
9813         for_each_possible_cpu(i) {
9814                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9815                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9816
9817                 INIT_WORK(flush, flush_backlog);
9818
9819                 skb_queue_head_init(&sd->input_pkt_queue);
9820                 skb_queue_head_init(&sd->process_queue);
9821 #ifdef CONFIG_XFRM_OFFLOAD
9822                 skb_queue_head_init(&sd->xfrm_backlog);
9823 #endif
9824                 INIT_LIST_HEAD(&sd->poll_list);
9825                 sd->output_queue_tailp = &sd->output_queue;
9826 #ifdef CONFIG_RPS
9827                 sd->csd.func = rps_trigger_softirq;
9828                 sd->csd.info = sd;
9829                 sd->cpu = i;
9830 #endif
9831
9832                 init_gro_hash(&sd->backlog);
9833                 sd->backlog.poll = process_backlog;
9834                 sd->backlog.weight = weight_p;
9835         }
9836
9837         dev_boot_phase = 0;
9838
9839         /* The loopback device is special if any other network devices
9840          * is present in a network namespace the loopback device must
9841          * be present. Since we now dynamically allocate and free the
9842          * loopback device ensure this invariant is maintained by
9843          * keeping the loopback device as the first device on the
9844          * list of network devices.  Ensuring the loopback devices
9845          * is the first device that appears and the last network device
9846          * that disappears.
9847          */
9848         if (register_pernet_device(&loopback_net_ops))
9849                 goto out;
9850
9851         if (register_pernet_device(&default_device_ops))
9852                 goto out;
9853
9854         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9855         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9856
9857         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9858                                        NULL, dev_cpu_dead);
9859         WARN_ON(rc < 0);
9860         rc = 0;
9861 out:
9862         return rc;
9863 }
9864
9865 subsys_initcall(net_dev_init);