]> asedeno.scripts.mit.edu Git - linux.git/blob - net/core/filter.c
bpf: bpf_setsockopt: reset sock dst on SO_MARK changes
[linux.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/inet_common.h>
37 #include <net/ip.h>
38 #include <net/protocol.h>
39 #include <net/netlink.h>
40 #include <linux/skbuff.h>
41 #include <linux/skmsg.h>
42 #include <net/sock.h>
43 #include <net/flow_dissector.h>
44 #include <linux/errno.h>
45 #include <linux/timer.h>
46 #include <linux/uaccess.h>
47 #include <asm/unaligned.h>
48 #include <asm/cmpxchg.h>
49 #include <linux/filter.h>
50 #include <linux/ratelimit.h>
51 #include <linux/seccomp.h>
52 #include <linux/if_vlan.h>
53 #include <linux/bpf.h>
54 #include <net/sch_generic.h>
55 #include <net/cls_cgroup.h>
56 #include <net/dst_metadata.h>
57 #include <net/dst.h>
58 #include <net/sock_reuseport.h>
59 #include <net/busy_poll.h>
60 #include <net/tcp.h>
61 #include <net/xfrm.h>
62 #include <net/udp.h>
63 #include <linux/bpf_trace.h>
64 #include <net/xdp_sock.h>
65 #include <linux/inetdevice.h>
66 #include <net/inet_hashtables.h>
67 #include <net/inet6_hashtables.h>
68 #include <net/ip_fib.h>
69 #include <net/flow.h>
70 #include <net/arp.h>
71 #include <net/ipv6.h>
72 #include <net/net_namespace.h>
73 #include <linux/seg6_local.h>
74 #include <net/seg6.h>
75 #include <net/seg6_local.h>
76
77 /**
78  *      sk_filter_trim_cap - run a packet through a socket filter
79  *      @sk: sock associated with &sk_buff
80  *      @skb: buffer to filter
81  *      @cap: limit on how short the eBPF program may trim the packet
82  *
83  * Run the eBPF program and then cut skb->data to correct size returned by
84  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
85  * than pkt_len we keep whole skb->data. This is the socket level
86  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
87  * be accepted or -EPERM if the packet should be tossed.
88  *
89  */
90 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
91 {
92         int err;
93         struct sk_filter *filter;
94
95         /*
96          * If the skb was allocated from pfmemalloc reserves, only
97          * allow SOCK_MEMALLOC sockets to use it as this socket is
98          * helping free memory
99          */
100         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
101                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
102                 return -ENOMEM;
103         }
104         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
105         if (err)
106                 return err;
107
108         err = security_sock_rcv_skb(sk, skb);
109         if (err)
110                 return err;
111
112         rcu_read_lock();
113         filter = rcu_dereference(sk->sk_filter);
114         if (filter) {
115                 struct sock *save_sk = skb->sk;
116                 unsigned int pkt_len;
117
118                 skb->sk = sk;
119                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
120                 skb->sk = save_sk;
121                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
122         }
123         rcu_read_unlock();
124
125         return err;
126 }
127 EXPORT_SYMBOL(sk_filter_trim_cap);
128
129 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
130 {
131         return skb_get_poff(skb);
132 }
133
134 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
135 {
136         struct nlattr *nla;
137
138         if (skb_is_nonlinear(skb))
139                 return 0;
140
141         if (skb->len < sizeof(struct nlattr))
142                 return 0;
143
144         if (a > skb->len - sizeof(struct nlattr))
145                 return 0;
146
147         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
148         if (nla)
149                 return (void *) nla - (void *) skb->data;
150
151         return 0;
152 }
153
154 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
155 {
156         struct nlattr *nla;
157
158         if (skb_is_nonlinear(skb))
159                 return 0;
160
161         if (skb->len < sizeof(struct nlattr))
162                 return 0;
163
164         if (a > skb->len - sizeof(struct nlattr))
165                 return 0;
166
167         nla = (struct nlattr *) &skb->data[a];
168         if (nla->nla_len > skb->len - a)
169                 return 0;
170
171         nla = nla_find_nested(nla, x);
172         if (nla)
173                 return (void *) nla - (void *) skb->data;
174
175         return 0;
176 }
177
178 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
179            data, int, headlen, int, offset)
180 {
181         u8 tmp, *ptr;
182         const int len = sizeof(tmp);
183
184         if (offset >= 0) {
185                 if (headlen - offset >= len)
186                         return *(u8 *)(data + offset);
187                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
188                         return tmp;
189         } else {
190                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
191                 if (likely(ptr))
192                         return *(u8 *)ptr;
193         }
194
195         return -EFAULT;
196 }
197
198 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
199            int, offset)
200 {
201         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
202                                          offset);
203 }
204
205 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
206            data, int, headlen, int, offset)
207 {
208         u16 tmp, *ptr;
209         const int len = sizeof(tmp);
210
211         if (offset >= 0) {
212                 if (headlen - offset >= len)
213                         return get_unaligned_be16(data + offset);
214                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
215                         return be16_to_cpu(tmp);
216         } else {
217                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
218                 if (likely(ptr))
219                         return get_unaligned_be16(ptr);
220         }
221
222         return -EFAULT;
223 }
224
225 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
226            int, offset)
227 {
228         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
229                                           offset);
230 }
231
232 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
233            data, int, headlen, int, offset)
234 {
235         u32 tmp, *ptr;
236         const int len = sizeof(tmp);
237
238         if (likely(offset >= 0)) {
239                 if (headlen - offset >= len)
240                         return get_unaligned_be32(data + offset);
241                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
242                         return be32_to_cpu(tmp);
243         } else {
244                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
245                 if (likely(ptr))
246                         return get_unaligned_be32(ptr);
247         }
248
249         return -EFAULT;
250 }
251
252 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
253            int, offset)
254 {
255         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
256                                           offset);
257 }
258
259 BPF_CALL_0(bpf_get_raw_cpu_id)
260 {
261         return raw_smp_processor_id();
262 }
263
264 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
265         .func           = bpf_get_raw_cpu_id,
266         .gpl_only       = false,
267         .ret_type       = RET_INTEGER,
268 };
269
270 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
271                               struct bpf_insn *insn_buf)
272 {
273         struct bpf_insn *insn = insn_buf;
274
275         switch (skb_field) {
276         case SKF_AD_MARK:
277                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
278
279                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
280                                       offsetof(struct sk_buff, mark));
281                 break;
282
283         case SKF_AD_PKTTYPE:
284                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
285                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
286 #ifdef __BIG_ENDIAN_BITFIELD
287                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
288 #endif
289                 break;
290
291         case SKF_AD_QUEUE:
292                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
293
294                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
295                                       offsetof(struct sk_buff, queue_mapping));
296                 break;
297
298         case SKF_AD_VLAN_TAG:
299                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
300
301                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
302                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
303                                       offsetof(struct sk_buff, vlan_tci));
304                 break;
305         case SKF_AD_VLAN_TAG_PRESENT:
306                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
307                 if (PKT_VLAN_PRESENT_BIT)
308                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
309                 if (PKT_VLAN_PRESENT_BIT < 7)
310                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
311                 break;
312         }
313
314         return insn - insn_buf;
315 }
316
317 static bool convert_bpf_extensions(struct sock_filter *fp,
318                                    struct bpf_insn **insnp)
319 {
320         struct bpf_insn *insn = *insnp;
321         u32 cnt;
322
323         switch (fp->k) {
324         case SKF_AD_OFF + SKF_AD_PROTOCOL:
325                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
326
327                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
328                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
329                                       offsetof(struct sk_buff, protocol));
330                 /* A = ntohs(A) [emitting a nop or swap16] */
331                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
332                 break;
333
334         case SKF_AD_OFF + SKF_AD_PKTTYPE:
335                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
336                 insn += cnt - 1;
337                 break;
338
339         case SKF_AD_OFF + SKF_AD_IFINDEX:
340         case SKF_AD_OFF + SKF_AD_HATYPE:
341                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
342                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
343
344                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
345                                       BPF_REG_TMP, BPF_REG_CTX,
346                                       offsetof(struct sk_buff, dev));
347                 /* if (tmp != 0) goto pc + 1 */
348                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
349                 *insn++ = BPF_EXIT_INSN();
350                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
351                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
352                                             offsetof(struct net_device, ifindex));
353                 else
354                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
355                                             offsetof(struct net_device, type));
356                 break;
357
358         case SKF_AD_OFF + SKF_AD_MARK:
359                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
360                 insn += cnt - 1;
361                 break;
362
363         case SKF_AD_OFF + SKF_AD_RXHASH:
364                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
365
366                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
367                                     offsetof(struct sk_buff, hash));
368                 break;
369
370         case SKF_AD_OFF + SKF_AD_QUEUE:
371                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
372                 insn += cnt - 1;
373                 break;
374
375         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
376                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
377                                          BPF_REG_A, BPF_REG_CTX, insn);
378                 insn += cnt - 1;
379                 break;
380
381         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
382                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
383                                          BPF_REG_A, BPF_REG_CTX, insn);
384                 insn += cnt - 1;
385                 break;
386
387         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
388                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
389
390                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
391                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
392                                       offsetof(struct sk_buff, vlan_proto));
393                 /* A = ntohs(A) [emitting a nop or swap16] */
394                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
395                 break;
396
397         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
398         case SKF_AD_OFF + SKF_AD_NLATTR:
399         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
400         case SKF_AD_OFF + SKF_AD_CPU:
401         case SKF_AD_OFF + SKF_AD_RANDOM:
402                 /* arg1 = CTX */
403                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
404                 /* arg2 = A */
405                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
406                 /* arg3 = X */
407                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
408                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
409                 switch (fp->k) {
410                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
411                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
412                         break;
413                 case SKF_AD_OFF + SKF_AD_NLATTR:
414                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
415                         break;
416                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
417                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
418                         break;
419                 case SKF_AD_OFF + SKF_AD_CPU:
420                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
421                         break;
422                 case SKF_AD_OFF + SKF_AD_RANDOM:
423                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
424                         bpf_user_rnd_init_once();
425                         break;
426                 }
427                 break;
428
429         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
430                 /* A ^= X */
431                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
432                 break;
433
434         default:
435                 /* This is just a dummy call to avoid letting the compiler
436                  * evict __bpf_call_base() as an optimization. Placed here
437                  * where no-one bothers.
438                  */
439                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
440                 return false;
441         }
442
443         *insnp = insn;
444         return true;
445 }
446
447 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
448 {
449         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
450         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
451         bool endian = BPF_SIZE(fp->code) == BPF_H ||
452                       BPF_SIZE(fp->code) == BPF_W;
453         bool indirect = BPF_MODE(fp->code) == BPF_IND;
454         const int ip_align = NET_IP_ALIGN;
455         struct bpf_insn *insn = *insnp;
456         int offset = fp->k;
457
458         if (!indirect &&
459             ((unaligned_ok && offset >= 0) ||
460              (!unaligned_ok && offset >= 0 &&
461               offset + ip_align >= 0 &&
462               offset + ip_align % size == 0))) {
463                 bool ldx_off_ok = offset <= S16_MAX;
464
465                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
466                 if (offset)
467                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
468                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
469                                       size, 2 + endian + (!ldx_off_ok * 2));
470                 if (ldx_off_ok) {
471                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
472                                               BPF_REG_D, offset);
473                 } else {
474                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
475                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
476                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
477                                               BPF_REG_TMP, 0);
478                 }
479                 if (endian)
480                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
481                 *insn++ = BPF_JMP_A(8);
482         }
483
484         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
485         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
486         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
487         if (!indirect) {
488                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
489         } else {
490                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
491                 if (fp->k)
492                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
493         }
494
495         switch (BPF_SIZE(fp->code)) {
496         case BPF_B:
497                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
498                 break;
499         case BPF_H:
500                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
501                 break;
502         case BPF_W:
503                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
504                 break;
505         default:
506                 return false;
507         }
508
509         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
510         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
511         *insn   = BPF_EXIT_INSN();
512
513         *insnp = insn;
514         return true;
515 }
516
517 /**
518  *      bpf_convert_filter - convert filter program
519  *      @prog: the user passed filter program
520  *      @len: the length of the user passed filter program
521  *      @new_prog: allocated 'struct bpf_prog' or NULL
522  *      @new_len: pointer to store length of converted program
523  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
524  *
525  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
526  * style extended BPF (eBPF).
527  * Conversion workflow:
528  *
529  * 1) First pass for calculating the new program length:
530  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
531  *
532  * 2) 2nd pass to remap in two passes: 1st pass finds new
533  *    jump offsets, 2nd pass remapping:
534  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
535  */
536 static int bpf_convert_filter(struct sock_filter *prog, int len,
537                               struct bpf_prog *new_prog, int *new_len,
538                               bool *seen_ld_abs)
539 {
540         int new_flen = 0, pass = 0, target, i, stack_off;
541         struct bpf_insn *new_insn, *first_insn = NULL;
542         struct sock_filter *fp;
543         int *addrs = NULL;
544         u8 bpf_src;
545
546         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
547         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
548
549         if (len <= 0 || len > BPF_MAXINSNS)
550                 return -EINVAL;
551
552         if (new_prog) {
553                 first_insn = new_prog->insnsi;
554                 addrs = kcalloc(len, sizeof(*addrs),
555                                 GFP_KERNEL | __GFP_NOWARN);
556                 if (!addrs)
557                         return -ENOMEM;
558         }
559
560 do_pass:
561         new_insn = first_insn;
562         fp = prog;
563
564         /* Classic BPF related prologue emission. */
565         if (new_prog) {
566                 /* Classic BPF expects A and X to be reset first. These need
567                  * to be guaranteed to be the first two instructions.
568                  */
569                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
570                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
571
572                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
573                  * In eBPF case it's done by the compiler, here we need to
574                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
575                  */
576                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
577                 if (*seen_ld_abs) {
578                         /* For packet access in classic BPF, cache skb->data
579                          * in callee-saved BPF R8 and skb->len - skb->data_len
580                          * (headlen) in BPF R9. Since classic BPF is read-only
581                          * on CTX, we only need to cache it once.
582                          */
583                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
584                                                   BPF_REG_D, BPF_REG_CTX,
585                                                   offsetof(struct sk_buff, data));
586                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
587                                                   offsetof(struct sk_buff, len));
588                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
589                                                   offsetof(struct sk_buff, data_len));
590                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
591                 }
592         } else {
593                 new_insn += 3;
594         }
595
596         for (i = 0; i < len; fp++, i++) {
597                 struct bpf_insn tmp_insns[32] = { };
598                 struct bpf_insn *insn = tmp_insns;
599
600                 if (addrs)
601                         addrs[i] = new_insn - first_insn;
602
603                 switch (fp->code) {
604                 /* All arithmetic insns and skb loads map as-is. */
605                 case BPF_ALU | BPF_ADD | BPF_X:
606                 case BPF_ALU | BPF_ADD | BPF_K:
607                 case BPF_ALU | BPF_SUB | BPF_X:
608                 case BPF_ALU | BPF_SUB | BPF_K:
609                 case BPF_ALU | BPF_AND | BPF_X:
610                 case BPF_ALU | BPF_AND | BPF_K:
611                 case BPF_ALU | BPF_OR | BPF_X:
612                 case BPF_ALU | BPF_OR | BPF_K:
613                 case BPF_ALU | BPF_LSH | BPF_X:
614                 case BPF_ALU | BPF_LSH | BPF_K:
615                 case BPF_ALU | BPF_RSH | BPF_X:
616                 case BPF_ALU | BPF_RSH | BPF_K:
617                 case BPF_ALU | BPF_XOR | BPF_X:
618                 case BPF_ALU | BPF_XOR | BPF_K:
619                 case BPF_ALU | BPF_MUL | BPF_X:
620                 case BPF_ALU | BPF_MUL | BPF_K:
621                 case BPF_ALU | BPF_DIV | BPF_X:
622                 case BPF_ALU | BPF_DIV | BPF_K:
623                 case BPF_ALU | BPF_MOD | BPF_X:
624                 case BPF_ALU | BPF_MOD | BPF_K:
625                 case BPF_ALU | BPF_NEG:
626                 case BPF_LD | BPF_ABS | BPF_W:
627                 case BPF_LD | BPF_ABS | BPF_H:
628                 case BPF_LD | BPF_ABS | BPF_B:
629                 case BPF_LD | BPF_IND | BPF_W:
630                 case BPF_LD | BPF_IND | BPF_H:
631                 case BPF_LD | BPF_IND | BPF_B:
632                         /* Check for overloaded BPF extension and
633                          * directly convert it if found, otherwise
634                          * just move on with mapping.
635                          */
636                         if (BPF_CLASS(fp->code) == BPF_LD &&
637                             BPF_MODE(fp->code) == BPF_ABS &&
638                             convert_bpf_extensions(fp, &insn))
639                                 break;
640                         if (BPF_CLASS(fp->code) == BPF_LD &&
641                             convert_bpf_ld_abs(fp, &insn)) {
642                                 *seen_ld_abs = true;
643                                 break;
644                         }
645
646                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
647                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
648                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
649                                 /* Error with exception code on div/mod by 0.
650                                  * For cBPF programs, this was always return 0.
651                                  */
652                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
653                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
654                                 *insn++ = BPF_EXIT_INSN();
655                         }
656
657                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
658                         break;
659
660                 /* Jump transformation cannot use BPF block macros
661                  * everywhere as offset calculation and target updates
662                  * require a bit more work than the rest, i.e. jump
663                  * opcodes map as-is, but offsets need adjustment.
664                  */
665
666 #define BPF_EMIT_JMP                                                    \
667         do {                                                            \
668                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
669                 s32 off;                                                \
670                                                                         \
671                 if (target >= len || target < 0)                        \
672                         goto err;                                       \
673                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
674                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
675                 off -= insn - tmp_insns;                                \
676                 /* Reject anything not fitting into insn->off. */       \
677                 if (off < off_min || off > off_max)                     \
678                         goto err;                                       \
679                 insn->off = off;                                        \
680         } while (0)
681
682                 case BPF_JMP | BPF_JA:
683                         target = i + fp->k + 1;
684                         insn->code = fp->code;
685                         BPF_EMIT_JMP;
686                         break;
687
688                 case BPF_JMP | BPF_JEQ | BPF_K:
689                 case BPF_JMP | BPF_JEQ | BPF_X:
690                 case BPF_JMP | BPF_JSET | BPF_K:
691                 case BPF_JMP | BPF_JSET | BPF_X:
692                 case BPF_JMP | BPF_JGT | BPF_K:
693                 case BPF_JMP | BPF_JGT | BPF_X:
694                 case BPF_JMP | BPF_JGE | BPF_K:
695                 case BPF_JMP | BPF_JGE | BPF_X:
696                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
697                                 /* BPF immediates are signed, zero extend
698                                  * immediate into tmp register and use it
699                                  * in compare insn.
700                                  */
701                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
702
703                                 insn->dst_reg = BPF_REG_A;
704                                 insn->src_reg = BPF_REG_TMP;
705                                 bpf_src = BPF_X;
706                         } else {
707                                 insn->dst_reg = BPF_REG_A;
708                                 insn->imm = fp->k;
709                                 bpf_src = BPF_SRC(fp->code);
710                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
711                         }
712
713                         /* Common case where 'jump_false' is next insn. */
714                         if (fp->jf == 0) {
715                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
716                                 target = i + fp->jt + 1;
717                                 BPF_EMIT_JMP;
718                                 break;
719                         }
720
721                         /* Convert some jumps when 'jump_true' is next insn. */
722                         if (fp->jt == 0) {
723                                 switch (BPF_OP(fp->code)) {
724                                 case BPF_JEQ:
725                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
726                                         break;
727                                 case BPF_JGT:
728                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
729                                         break;
730                                 case BPF_JGE:
731                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
732                                         break;
733                                 default:
734                                         goto jmp_rest;
735                                 }
736
737                                 target = i + fp->jf + 1;
738                                 BPF_EMIT_JMP;
739                                 break;
740                         }
741 jmp_rest:
742                         /* Other jumps are mapped into two insns: Jxx and JA. */
743                         target = i + fp->jt + 1;
744                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
745                         BPF_EMIT_JMP;
746                         insn++;
747
748                         insn->code = BPF_JMP | BPF_JA;
749                         target = i + fp->jf + 1;
750                         BPF_EMIT_JMP;
751                         break;
752
753                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
754                 case BPF_LDX | BPF_MSH | BPF_B: {
755                         struct sock_filter tmp = {
756                                 .code   = BPF_LD | BPF_ABS | BPF_B,
757                                 .k      = fp->k,
758                         };
759
760                         *seen_ld_abs = true;
761
762                         /* X = A */
763                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
764                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
765                         convert_bpf_ld_abs(&tmp, &insn);
766                         insn++;
767                         /* A &= 0xf */
768                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
769                         /* A <<= 2 */
770                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
771                         /* tmp = X */
772                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
773                         /* X = A */
774                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
775                         /* A = tmp */
776                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
777                         break;
778                 }
779                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
780                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
781                  */
782                 case BPF_RET | BPF_A:
783                 case BPF_RET | BPF_K:
784                         if (BPF_RVAL(fp->code) == BPF_K)
785                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
786                                                         0, fp->k);
787                         *insn = BPF_EXIT_INSN();
788                         break;
789
790                 /* Store to stack. */
791                 case BPF_ST:
792                 case BPF_STX:
793                         stack_off = fp->k * 4  + 4;
794                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
795                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
796                                             -stack_off);
797                         /* check_load_and_stores() verifies that classic BPF can
798                          * load from stack only after write, so tracking
799                          * stack_depth for ST|STX insns is enough
800                          */
801                         if (new_prog && new_prog->aux->stack_depth < stack_off)
802                                 new_prog->aux->stack_depth = stack_off;
803                         break;
804
805                 /* Load from stack. */
806                 case BPF_LD | BPF_MEM:
807                 case BPF_LDX | BPF_MEM:
808                         stack_off = fp->k * 4  + 4;
809                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
810                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
811                                             -stack_off);
812                         break;
813
814                 /* A = K or X = K */
815                 case BPF_LD | BPF_IMM:
816                 case BPF_LDX | BPF_IMM:
817                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
818                                               BPF_REG_A : BPF_REG_X, fp->k);
819                         break;
820
821                 /* X = A */
822                 case BPF_MISC | BPF_TAX:
823                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824                         break;
825
826                 /* A = X */
827                 case BPF_MISC | BPF_TXA:
828                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
829                         break;
830
831                 /* A = skb->len or X = skb->len */
832                 case BPF_LD | BPF_W | BPF_LEN:
833                 case BPF_LDX | BPF_W | BPF_LEN:
834                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
835                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
836                                             offsetof(struct sk_buff, len));
837                         break;
838
839                 /* Access seccomp_data fields. */
840                 case BPF_LDX | BPF_ABS | BPF_W:
841                         /* A = *(u32 *) (ctx + K) */
842                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
843                         break;
844
845                 /* Unknown instruction. */
846                 default:
847                         goto err;
848                 }
849
850                 insn++;
851                 if (new_prog)
852                         memcpy(new_insn, tmp_insns,
853                                sizeof(*insn) * (insn - tmp_insns));
854                 new_insn += insn - tmp_insns;
855         }
856
857         if (!new_prog) {
858                 /* Only calculating new length. */
859                 *new_len = new_insn - first_insn;
860                 if (*seen_ld_abs)
861                         *new_len += 4; /* Prologue bits. */
862                 return 0;
863         }
864
865         pass++;
866         if (new_flen != new_insn - first_insn) {
867                 new_flen = new_insn - first_insn;
868                 if (pass > 2)
869                         goto err;
870                 goto do_pass;
871         }
872
873         kfree(addrs);
874         BUG_ON(*new_len != new_flen);
875         return 0;
876 err:
877         kfree(addrs);
878         return -EINVAL;
879 }
880
881 /* Security:
882  *
883  * As we dont want to clear mem[] array for each packet going through
884  * __bpf_prog_run(), we check that filter loaded by user never try to read
885  * a cell if not previously written, and we check all branches to be sure
886  * a malicious user doesn't try to abuse us.
887  */
888 static int check_load_and_stores(const struct sock_filter *filter, int flen)
889 {
890         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
891         int pc, ret = 0;
892
893         BUILD_BUG_ON(BPF_MEMWORDS > 16);
894
895         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
896         if (!masks)
897                 return -ENOMEM;
898
899         memset(masks, 0xff, flen * sizeof(*masks));
900
901         for (pc = 0; pc < flen; pc++) {
902                 memvalid &= masks[pc];
903
904                 switch (filter[pc].code) {
905                 case BPF_ST:
906                 case BPF_STX:
907                         memvalid |= (1 << filter[pc].k);
908                         break;
909                 case BPF_LD | BPF_MEM:
910                 case BPF_LDX | BPF_MEM:
911                         if (!(memvalid & (1 << filter[pc].k))) {
912                                 ret = -EINVAL;
913                                 goto error;
914                         }
915                         break;
916                 case BPF_JMP | BPF_JA:
917                         /* A jump must set masks on target */
918                         masks[pc + 1 + filter[pc].k] &= memvalid;
919                         memvalid = ~0;
920                         break;
921                 case BPF_JMP | BPF_JEQ | BPF_K:
922                 case BPF_JMP | BPF_JEQ | BPF_X:
923                 case BPF_JMP | BPF_JGE | BPF_K:
924                 case BPF_JMP | BPF_JGE | BPF_X:
925                 case BPF_JMP | BPF_JGT | BPF_K:
926                 case BPF_JMP | BPF_JGT | BPF_X:
927                 case BPF_JMP | BPF_JSET | BPF_K:
928                 case BPF_JMP | BPF_JSET | BPF_X:
929                         /* A jump must set masks on targets */
930                         masks[pc + 1 + filter[pc].jt] &= memvalid;
931                         masks[pc + 1 + filter[pc].jf] &= memvalid;
932                         memvalid = ~0;
933                         break;
934                 }
935         }
936 error:
937         kfree(masks);
938         return ret;
939 }
940
941 static bool chk_code_allowed(u16 code_to_probe)
942 {
943         static const bool codes[] = {
944                 /* 32 bit ALU operations */
945                 [BPF_ALU | BPF_ADD | BPF_K] = true,
946                 [BPF_ALU | BPF_ADD | BPF_X] = true,
947                 [BPF_ALU | BPF_SUB | BPF_K] = true,
948                 [BPF_ALU | BPF_SUB | BPF_X] = true,
949                 [BPF_ALU | BPF_MUL | BPF_K] = true,
950                 [BPF_ALU | BPF_MUL | BPF_X] = true,
951                 [BPF_ALU | BPF_DIV | BPF_K] = true,
952                 [BPF_ALU | BPF_DIV | BPF_X] = true,
953                 [BPF_ALU | BPF_MOD | BPF_K] = true,
954                 [BPF_ALU | BPF_MOD | BPF_X] = true,
955                 [BPF_ALU | BPF_AND | BPF_K] = true,
956                 [BPF_ALU | BPF_AND | BPF_X] = true,
957                 [BPF_ALU | BPF_OR | BPF_K] = true,
958                 [BPF_ALU | BPF_OR | BPF_X] = true,
959                 [BPF_ALU | BPF_XOR | BPF_K] = true,
960                 [BPF_ALU | BPF_XOR | BPF_X] = true,
961                 [BPF_ALU | BPF_LSH | BPF_K] = true,
962                 [BPF_ALU | BPF_LSH | BPF_X] = true,
963                 [BPF_ALU | BPF_RSH | BPF_K] = true,
964                 [BPF_ALU | BPF_RSH | BPF_X] = true,
965                 [BPF_ALU | BPF_NEG] = true,
966                 /* Load instructions */
967                 [BPF_LD | BPF_W | BPF_ABS] = true,
968                 [BPF_LD | BPF_H | BPF_ABS] = true,
969                 [BPF_LD | BPF_B | BPF_ABS] = true,
970                 [BPF_LD | BPF_W | BPF_LEN] = true,
971                 [BPF_LD | BPF_W | BPF_IND] = true,
972                 [BPF_LD | BPF_H | BPF_IND] = true,
973                 [BPF_LD | BPF_B | BPF_IND] = true,
974                 [BPF_LD | BPF_IMM] = true,
975                 [BPF_LD | BPF_MEM] = true,
976                 [BPF_LDX | BPF_W | BPF_LEN] = true,
977                 [BPF_LDX | BPF_B | BPF_MSH] = true,
978                 [BPF_LDX | BPF_IMM] = true,
979                 [BPF_LDX | BPF_MEM] = true,
980                 /* Store instructions */
981                 [BPF_ST] = true,
982                 [BPF_STX] = true,
983                 /* Misc instructions */
984                 [BPF_MISC | BPF_TAX] = true,
985                 [BPF_MISC | BPF_TXA] = true,
986                 /* Return instructions */
987                 [BPF_RET | BPF_K] = true,
988                 [BPF_RET | BPF_A] = true,
989                 /* Jump instructions */
990                 [BPF_JMP | BPF_JA] = true,
991                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
992                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
993                 [BPF_JMP | BPF_JGE | BPF_K] = true,
994                 [BPF_JMP | BPF_JGE | BPF_X] = true,
995                 [BPF_JMP | BPF_JGT | BPF_K] = true,
996                 [BPF_JMP | BPF_JGT | BPF_X] = true,
997                 [BPF_JMP | BPF_JSET | BPF_K] = true,
998                 [BPF_JMP | BPF_JSET | BPF_X] = true,
999         };
1000
1001         if (code_to_probe >= ARRAY_SIZE(codes))
1002                 return false;
1003
1004         return codes[code_to_probe];
1005 }
1006
1007 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1008                                 unsigned int flen)
1009 {
1010         if (filter == NULL)
1011                 return false;
1012         if (flen == 0 || flen > BPF_MAXINSNS)
1013                 return false;
1014
1015         return true;
1016 }
1017
1018 /**
1019  *      bpf_check_classic - verify socket filter code
1020  *      @filter: filter to verify
1021  *      @flen: length of filter
1022  *
1023  * Check the user's filter code. If we let some ugly
1024  * filter code slip through kaboom! The filter must contain
1025  * no references or jumps that are out of range, no illegal
1026  * instructions, and must end with a RET instruction.
1027  *
1028  * All jumps are forward as they are not signed.
1029  *
1030  * Returns 0 if the rule set is legal or -EINVAL if not.
1031  */
1032 static int bpf_check_classic(const struct sock_filter *filter,
1033                              unsigned int flen)
1034 {
1035         bool anc_found;
1036         int pc;
1037
1038         /* Check the filter code now */
1039         for (pc = 0; pc < flen; pc++) {
1040                 const struct sock_filter *ftest = &filter[pc];
1041
1042                 /* May we actually operate on this code? */
1043                 if (!chk_code_allowed(ftest->code))
1044                         return -EINVAL;
1045
1046                 /* Some instructions need special checks */
1047                 switch (ftest->code) {
1048                 case BPF_ALU | BPF_DIV | BPF_K:
1049                 case BPF_ALU | BPF_MOD | BPF_K:
1050                         /* Check for division by zero */
1051                         if (ftest->k == 0)
1052                                 return -EINVAL;
1053                         break;
1054                 case BPF_ALU | BPF_LSH | BPF_K:
1055                 case BPF_ALU | BPF_RSH | BPF_K:
1056                         if (ftest->k >= 32)
1057                                 return -EINVAL;
1058                         break;
1059                 case BPF_LD | BPF_MEM:
1060                 case BPF_LDX | BPF_MEM:
1061                 case BPF_ST:
1062                 case BPF_STX:
1063                         /* Check for invalid memory addresses */
1064                         if (ftest->k >= BPF_MEMWORDS)
1065                                 return -EINVAL;
1066                         break;
1067                 case BPF_JMP | BPF_JA:
1068                         /* Note, the large ftest->k might cause loops.
1069                          * Compare this with conditional jumps below,
1070                          * where offsets are limited. --ANK (981016)
1071                          */
1072                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1073                                 return -EINVAL;
1074                         break;
1075                 case BPF_JMP | BPF_JEQ | BPF_K:
1076                 case BPF_JMP | BPF_JEQ | BPF_X:
1077                 case BPF_JMP | BPF_JGE | BPF_K:
1078                 case BPF_JMP | BPF_JGE | BPF_X:
1079                 case BPF_JMP | BPF_JGT | BPF_K:
1080                 case BPF_JMP | BPF_JGT | BPF_X:
1081                 case BPF_JMP | BPF_JSET | BPF_K:
1082                 case BPF_JMP | BPF_JSET | BPF_X:
1083                         /* Both conditionals must be safe */
1084                         if (pc + ftest->jt + 1 >= flen ||
1085                             pc + ftest->jf + 1 >= flen)
1086                                 return -EINVAL;
1087                         break;
1088                 case BPF_LD | BPF_W | BPF_ABS:
1089                 case BPF_LD | BPF_H | BPF_ABS:
1090                 case BPF_LD | BPF_B | BPF_ABS:
1091                         anc_found = false;
1092                         if (bpf_anc_helper(ftest) & BPF_ANC)
1093                                 anc_found = true;
1094                         /* Ancillary operation unknown or unsupported */
1095                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1096                                 return -EINVAL;
1097                 }
1098         }
1099
1100         /* Last instruction must be a RET code */
1101         switch (filter[flen - 1].code) {
1102         case BPF_RET | BPF_K:
1103         case BPF_RET | BPF_A:
1104                 return check_load_and_stores(filter, flen);
1105         }
1106
1107         return -EINVAL;
1108 }
1109
1110 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1111                                       const struct sock_fprog *fprog)
1112 {
1113         unsigned int fsize = bpf_classic_proglen(fprog);
1114         struct sock_fprog_kern *fkprog;
1115
1116         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1117         if (!fp->orig_prog)
1118                 return -ENOMEM;
1119
1120         fkprog = fp->orig_prog;
1121         fkprog->len = fprog->len;
1122
1123         fkprog->filter = kmemdup(fp->insns, fsize,
1124                                  GFP_KERNEL | __GFP_NOWARN);
1125         if (!fkprog->filter) {
1126                 kfree(fp->orig_prog);
1127                 return -ENOMEM;
1128         }
1129
1130         return 0;
1131 }
1132
1133 static void bpf_release_orig_filter(struct bpf_prog *fp)
1134 {
1135         struct sock_fprog_kern *fprog = fp->orig_prog;
1136
1137         if (fprog) {
1138                 kfree(fprog->filter);
1139                 kfree(fprog);
1140         }
1141 }
1142
1143 static void __bpf_prog_release(struct bpf_prog *prog)
1144 {
1145         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1146                 bpf_prog_put(prog);
1147         } else {
1148                 bpf_release_orig_filter(prog);
1149                 bpf_prog_free(prog);
1150         }
1151 }
1152
1153 static void __sk_filter_release(struct sk_filter *fp)
1154 {
1155         __bpf_prog_release(fp->prog);
1156         kfree(fp);
1157 }
1158
1159 /**
1160  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1161  *      @rcu: rcu_head that contains the sk_filter to free
1162  */
1163 static void sk_filter_release_rcu(struct rcu_head *rcu)
1164 {
1165         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1166
1167         __sk_filter_release(fp);
1168 }
1169
1170 /**
1171  *      sk_filter_release - release a socket filter
1172  *      @fp: filter to remove
1173  *
1174  *      Remove a filter from a socket and release its resources.
1175  */
1176 static void sk_filter_release(struct sk_filter *fp)
1177 {
1178         if (refcount_dec_and_test(&fp->refcnt))
1179                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1180 }
1181
1182 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1183 {
1184         u32 filter_size = bpf_prog_size(fp->prog->len);
1185
1186         atomic_sub(filter_size, &sk->sk_omem_alloc);
1187         sk_filter_release(fp);
1188 }
1189
1190 /* try to charge the socket memory if there is space available
1191  * return true on success
1192  */
1193 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1194 {
1195         u32 filter_size = bpf_prog_size(fp->prog->len);
1196
1197         /* same check as in sock_kmalloc() */
1198         if (filter_size <= sysctl_optmem_max &&
1199             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1200                 atomic_add(filter_size, &sk->sk_omem_alloc);
1201                 return true;
1202         }
1203         return false;
1204 }
1205
1206 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1207 {
1208         if (!refcount_inc_not_zero(&fp->refcnt))
1209                 return false;
1210
1211         if (!__sk_filter_charge(sk, fp)) {
1212                 sk_filter_release(fp);
1213                 return false;
1214         }
1215         return true;
1216 }
1217
1218 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1219 {
1220         struct sock_filter *old_prog;
1221         struct bpf_prog *old_fp;
1222         int err, new_len, old_len = fp->len;
1223         bool seen_ld_abs = false;
1224
1225         /* We are free to overwrite insns et al right here as it
1226          * won't be used at this point in time anymore internally
1227          * after the migration to the internal BPF instruction
1228          * representation.
1229          */
1230         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1231                      sizeof(struct bpf_insn));
1232
1233         /* Conversion cannot happen on overlapping memory areas,
1234          * so we need to keep the user BPF around until the 2nd
1235          * pass. At this time, the user BPF is stored in fp->insns.
1236          */
1237         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1238                            GFP_KERNEL | __GFP_NOWARN);
1239         if (!old_prog) {
1240                 err = -ENOMEM;
1241                 goto out_err;
1242         }
1243
1244         /* 1st pass: calculate the new program length. */
1245         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1246                                  &seen_ld_abs);
1247         if (err)
1248                 goto out_err_free;
1249
1250         /* Expand fp for appending the new filter representation. */
1251         old_fp = fp;
1252         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1253         if (!fp) {
1254                 /* The old_fp is still around in case we couldn't
1255                  * allocate new memory, so uncharge on that one.
1256                  */
1257                 fp = old_fp;
1258                 err = -ENOMEM;
1259                 goto out_err_free;
1260         }
1261
1262         fp->len = new_len;
1263
1264         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1265         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1266                                  &seen_ld_abs);
1267         if (err)
1268                 /* 2nd bpf_convert_filter() can fail only if it fails
1269                  * to allocate memory, remapping must succeed. Note,
1270                  * that at this time old_fp has already been released
1271                  * by krealloc().
1272                  */
1273                 goto out_err_free;
1274
1275         fp = bpf_prog_select_runtime(fp, &err);
1276         if (err)
1277                 goto out_err_free;
1278
1279         kfree(old_prog);
1280         return fp;
1281
1282 out_err_free:
1283         kfree(old_prog);
1284 out_err:
1285         __bpf_prog_release(fp);
1286         return ERR_PTR(err);
1287 }
1288
1289 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1290                                            bpf_aux_classic_check_t trans)
1291 {
1292         int err;
1293
1294         fp->bpf_func = NULL;
1295         fp->jited = 0;
1296
1297         err = bpf_check_classic(fp->insns, fp->len);
1298         if (err) {
1299                 __bpf_prog_release(fp);
1300                 return ERR_PTR(err);
1301         }
1302
1303         /* There might be additional checks and transformations
1304          * needed on classic filters, f.e. in case of seccomp.
1305          */
1306         if (trans) {
1307                 err = trans(fp->insns, fp->len);
1308                 if (err) {
1309                         __bpf_prog_release(fp);
1310                         return ERR_PTR(err);
1311                 }
1312         }
1313
1314         /* Probe if we can JIT compile the filter and if so, do
1315          * the compilation of the filter.
1316          */
1317         bpf_jit_compile(fp);
1318
1319         /* JIT compiler couldn't process this filter, so do the
1320          * internal BPF translation for the optimized interpreter.
1321          */
1322         if (!fp->jited)
1323                 fp = bpf_migrate_filter(fp);
1324
1325         return fp;
1326 }
1327
1328 /**
1329  *      bpf_prog_create - create an unattached filter
1330  *      @pfp: the unattached filter that is created
1331  *      @fprog: the filter program
1332  *
1333  * Create a filter independent of any socket. We first run some
1334  * sanity checks on it to make sure it does not explode on us later.
1335  * If an error occurs or there is insufficient memory for the filter
1336  * a negative errno code is returned. On success the return is zero.
1337  */
1338 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1339 {
1340         unsigned int fsize = bpf_classic_proglen(fprog);
1341         struct bpf_prog *fp;
1342
1343         /* Make sure new filter is there and in the right amounts. */
1344         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1345                 return -EINVAL;
1346
1347         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1348         if (!fp)
1349                 return -ENOMEM;
1350
1351         memcpy(fp->insns, fprog->filter, fsize);
1352
1353         fp->len = fprog->len;
1354         /* Since unattached filters are not copied back to user
1355          * space through sk_get_filter(), we do not need to hold
1356          * a copy here, and can spare us the work.
1357          */
1358         fp->orig_prog = NULL;
1359
1360         /* bpf_prepare_filter() already takes care of freeing
1361          * memory in case something goes wrong.
1362          */
1363         fp = bpf_prepare_filter(fp, NULL);
1364         if (IS_ERR(fp))
1365                 return PTR_ERR(fp);
1366
1367         *pfp = fp;
1368         return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(bpf_prog_create);
1371
1372 /**
1373  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1374  *      @pfp: the unattached filter that is created
1375  *      @fprog: the filter program
1376  *      @trans: post-classic verifier transformation handler
1377  *      @save_orig: save classic BPF program
1378  *
1379  * This function effectively does the same as bpf_prog_create(), only
1380  * that it builds up its insns buffer from user space provided buffer.
1381  * It also allows for passing a bpf_aux_classic_check_t handler.
1382  */
1383 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1384                               bpf_aux_classic_check_t trans, bool save_orig)
1385 {
1386         unsigned int fsize = bpf_classic_proglen(fprog);
1387         struct bpf_prog *fp;
1388         int err;
1389
1390         /* Make sure new filter is there and in the right amounts. */
1391         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1392                 return -EINVAL;
1393
1394         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1395         if (!fp)
1396                 return -ENOMEM;
1397
1398         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1399                 __bpf_prog_free(fp);
1400                 return -EFAULT;
1401         }
1402
1403         fp->len = fprog->len;
1404         fp->orig_prog = NULL;
1405
1406         if (save_orig) {
1407                 err = bpf_prog_store_orig_filter(fp, fprog);
1408                 if (err) {
1409                         __bpf_prog_free(fp);
1410                         return -ENOMEM;
1411                 }
1412         }
1413
1414         /* bpf_prepare_filter() already takes care of freeing
1415          * memory in case something goes wrong.
1416          */
1417         fp = bpf_prepare_filter(fp, trans);
1418         if (IS_ERR(fp))
1419                 return PTR_ERR(fp);
1420
1421         *pfp = fp;
1422         return 0;
1423 }
1424 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1425
1426 void bpf_prog_destroy(struct bpf_prog *fp)
1427 {
1428         __bpf_prog_release(fp);
1429 }
1430 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1431
1432 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1433 {
1434         struct sk_filter *fp, *old_fp;
1435
1436         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1437         if (!fp)
1438                 return -ENOMEM;
1439
1440         fp->prog = prog;
1441
1442         if (!__sk_filter_charge(sk, fp)) {
1443                 kfree(fp);
1444                 return -ENOMEM;
1445         }
1446         refcount_set(&fp->refcnt, 1);
1447
1448         old_fp = rcu_dereference_protected(sk->sk_filter,
1449                                            lockdep_sock_is_held(sk));
1450         rcu_assign_pointer(sk->sk_filter, fp);
1451
1452         if (old_fp)
1453                 sk_filter_uncharge(sk, old_fp);
1454
1455         return 0;
1456 }
1457
1458 static
1459 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1460 {
1461         unsigned int fsize = bpf_classic_proglen(fprog);
1462         struct bpf_prog *prog;
1463         int err;
1464
1465         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1466                 return ERR_PTR(-EPERM);
1467
1468         /* Make sure new filter is there and in the right amounts. */
1469         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1470                 return ERR_PTR(-EINVAL);
1471
1472         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1473         if (!prog)
1474                 return ERR_PTR(-ENOMEM);
1475
1476         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1477                 __bpf_prog_free(prog);
1478                 return ERR_PTR(-EFAULT);
1479         }
1480
1481         prog->len = fprog->len;
1482
1483         err = bpf_prog_store_orig_filter(prog, fprog);
1484         if (err) {
1485                 __bpf_prog_free(prog);
1486                 return ERR_PTR(-ENOMEM);
1487         }
1488
1489         /* bpf_prepare_filter() already takes care of freeing
1490          * memory in case something goes wrong.
1491          */
1492         return bpf_prepare_filter(prog, NULL);
1493 }
1494
1495 /**
1496  *      sk_attach_filter - attach a socket filter
1497  *      @fprog: the filter program
1498  *      @sk: the socket to use
1499  *
1500  * Attach the user's filter code. We first run some sanity checks on
1501  * it to make sure it does not explode on us later. If an error
1502  * occurs or there is insufficient memory for the filter a negative
1503  * errno code is returned. On success the return is zero.
1504  */
1505 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1506 {
1507         struct bpf_prog *prog = __get_filter(fprog, sk);
1508         int err;
1509
1510         if (IS_ERR(prog))
1511                 return PTR_ERR(prog);
1512
1513         err = __sk_attach_prog(prog, sk);
1514         if (err < 0) {
1515                 __bpf_prog_release(prog);
1516                 return err;
1517         }
1518
1519         return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(sk_attach_filter);
1522
1523 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1524 {
1525         struct bpf_prog *prog = __get_filter(fprog, sk);
1526         int err;
1527
1528         if (IS_ERR(prog))
1529                 return PTR_ERR(prog);
1530
1531         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1532                 err = -ENOMEM;
1533         else
1534                 err = reuseport_attach_prog(sk, prog);
1535
1536         if (err)
1537                 __bpf_prog_release(prog);
1538
1539         return err;
1540 }
1541
1542 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1543 {
1544         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1545                 return ERR_PTR(-EPERM);
1546
1547         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1548 }
1549
1550 int sk_attach_bpf(u32 ufd, struct sock *sk)
1551 {
1552         struct bpf_prog *prog = __get_bpf(ufd, sk);
1553         int err;
1554
1555         if (IS_ERR(prog))
1556                 return PTR_ERR(prog);
1557
1558         err = __sk_attach_prog(prog, sk);
1559         if (err < 0) {
1560                 bpf_prog_put(prog);
1561                 return err;
1562         }
1563
1564         return 0;
1565 }
1566
1567 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1568 {
1569         struct bpf_prog *prog;
1570         int err;
1571
1572         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1573                 return -EPERM;
1574
1575         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1576         if (IS_ERR(prog) && PTR_ERR(prog) == -EINVAL)
1577                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1578         if (IS_ERR(prog))
1579                 return PTR_ERR(prog);
1580
1581         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1582                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1583                  * bpf prog (e.g. sockmap).  It depends on the
1584                  * limitation imposed by bpf_prog_load().
1585                  * Hence, sysctl_optmem_max is not checked.
1586                  */
1587                 if ((sk->sk_type != SOCK_STREAM &&
1588                      sk->sk_type != SOCK_DGRAM) ||
1589                     (sk->sk_protocol != IPPROTO_UDP &&
1590                      sk->sk_protocol != IPPROTO_TCP) ||
1591                     (sk->sk_family != AF_INET &&
1592                      sk->sk_family != AF_INET6)) {
1593                         err = -ENOTSUPP;
1594                         goto err_prog_put;
1595                 }
1596         } else {
1597                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1598                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1599                         err = -ENOMEM;
1600                         goto err_prog_put;
1601                 }
1602         }
1603
1604         err = reuseport_attach_prog(sk, prog);
1605 err_prog_put:
1606         if (err)
1607                 bpf_prog_put(prog);
1608
1609         return err;
1610 }
1611
1612 void sk_reuseport_prog_free(struct bpf_prog *prog)
1613 {
1614         if (!prog)
1615                 return;
1616
1617         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1618                 bpf_prog_put(prog);
1619         else
1620                 bpf_prog_destroy(prog);
1621 }
1622
1623 struct bpf_scratchpad {
1624         union {
1625                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1626                 u8     buff[MAX_BPF_STACK];
1627         };
1628 };
1629
1630 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1631
1632 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1633                                           unsigned int write_len)
1634 {
1635         return skb_ensure_writable(skb, write_len);
1636 }
1637
1638 static inline int bpf_try_make_writable(struct sk_buff *skb,
1639                                         unsigned int write_len)
1640 {
1641         int err = __bpf_try_make_writable(skb, write_len);
1642
1643         bpf_compute_data_pointers(skb);
1644         return err;
1645 }
1646
1647 static int bpf_try_make_head_writable(struct sk_buff *skb)
1648 {
1649         return bpf_try_make_writable(skb, skb_headlen(skb));
1650 }
1651
1652 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1653 {
1654         if (skb_at_tc_ingress(skb))
1655                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1656 }
1657
1658 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1659 {
1660         if (skb_at_tc_ingress(skb))
1661                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1662 }
1663
1664 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1665            const void *, from, u32, len, u64, flags)
1666 {
1667         void *ptr;
1668
1669         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1670                 return -EINVAL;
1671         if (unlikely(offset > 0xffff))
1672                 return -EFAULT;
1673         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1674                 return -EFAULT;
1675
1676         ptr = skb->data + offset;
1677         if (flags & BPF_F_RECOMPUTE_CSUM)
1678                 __skb_postpull_rcsum(skb, ptr, len, offset);
1679
1680         memcpy(ptr, from, len);
1681
1682         if (flags & BPF_F_RECOMPUTE_CSUM)
1683                 __skb_postpush_rcsum(skb, ptr, len, offset);
1684         if (flags & BPF_F_INVALIDATE_HASH)
1685                 skb_clear_hash(skb);
1686
1687         return 0;
1688 }
1689
1690 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1691         .func           = bpf_skb_store_bytes,
1692         .gpl_only       = false,
1693         .ret_type       = RET_INTEGER,
1694         .arg1_type      = ARG_PTR_TO_CTX,
1695         .arg2_type      = ARG_ANYTHING,
1696         .arg3_type      = ARG_PTR_TO_MEM,
1697         .arg4_type      = ARG_CONST_SIZE,
1698         .arg5_type      = ARG_ANYTHING,
1699 };
1700
1701 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1702            void *, to, u32, len)
1703 {
1704         void *ptr;
1705
1706         if (unlikely(offset > 0xffff))
1707                 goto err_clear;
1708
1709         ptr = skb_header_pointer(skb, offset, len, to);
1710         if (unlikely(!ptr))
1711                 goto err_clear;
1712         if (ptr != to)
1713                 memcpy(to, ptr, len);
1714
1715         return 0;
1716 err_clear:
1717         memset(to, 0, len);
1718         return -EFAULT;
1719 }
1720
1721 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1722         .func           = bpf_skb_load_bytes,
1723         .gpl_only       = false,
1724         .ret_type       = RET_INTEGER,
1725         .arg1_type      = ARG_PTR_TO_CTX,
1726         .arg2_type      = ARG_ANYTHING,
1727         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1728         .arg4_type      = ARG_CONST_SIZE,
1729 };
1730
1731 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1732            u32, offset, void *, to, u32, len, u32, start_header)
1733 {
1734         u8 *end = skb_tail_pointer(skb);
1735         u8 *net = skb_network_header(skb);
1736         u8 *mac = skb_mac_header(skb);
1737         u8 *ptr;
1738
1739         if (unlikely(offset > 0xffff || len > (end - mac)))
1740                 goto err_clear;
1741
1742         switch (start_header) {
1743         case BPF_HDR_START_MAC:
1744                 ptr = mac + offset;
1745                 break;
1746         case BPF_HDR_START_NET:
1747                 ptr = net + offset;
1748                 break;
1749         default:
1750                 goto err_clear;
1751         }
1752
1753         if (likely(ptr >= mac && ptr + len <= end)) {
1754                 memcpy(to, ptr, len);
1755                 return 0;
1756         }
1757
1758 err_clear:
1759         memset(to, 0, len);
1760         return -EFAULT;
1761 }
1762
1763 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1764         .func           = bpf_skb_load_bytes_relative,
1765         .gpl_only       = false,
1766         .ret_type       = RET_INTEGER,
1767         .arg1_type      = ARG_PTR_TO_CTX,
1768         .arg2_type      = ARG_ANYTHING,
1769         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1770         .arg4_type      = ARG_CONST_SIZE,
1771         .arg5_type      = ARG_ANYTHING,
1772 };
1773
1774 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1775 {
1776         /* Idea is the following: should the needed direct read/write
1777          * test fail during runtime, we can pull in more data and redo
1778          * again, since implicitly, we invalidate previous checks here.
1779          *
1780          * Or, since we know how much we need to make read/writeable,
1781          * this can be done once at the program beginning for direct
1782          * access case. By this we overcome limitations of only current
1783          * headroom being accessible.
1784          */
1785         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1786 }
1787
1788 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1789         .func           = bpf_skb_pull_data,
1790         .gpl_only       = false,
1791         .ret_type       = RET_INTEGER,
1792         .arg1_type      = ARG_PTR_TO_CTX,
1793         .arg2_type      = ARG_ANYTHING,
1794 };
1795
1796 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1797                                            unsigned int write_len)
1798 {
1799         int err = __bpf_try_make_writable(skb, write_len);
1800
1801         bpf_compute_data_end_sk_skb(skb);
1802         return err;
1803 }
1804
1805 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1806 {
1807         /* Idea is the following: should the needed direct read/write
1808          * test fail during runtime, we can pull in more data and redo
1809          * again, since implicitly, we invalidate previous checks here.
1810          *
1811          * Or, since we know how much we need to make read/writeable,
1812          * this can be done once at the program beginning for direct
1813          * access case. By this we overcome limitations of only current
1814          * headroom being accessible.
1815          */
1816         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1817 }
1818
1819 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1820         .func           = sk_skb_pull_data,
1821         .gpl_only       = false,
1822         .ret_type       = RET_INTEGER,
1823         .arg1_type      = ARG_PTR_TO_CTX,
1824         .arg2_type      = ARG_ANYTHING,
1825 };
1826
1827 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1828            u64, from, u64, to, u64, flags)
1829 {
1830         __sum16 *ptr;
1831
1832         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1833                 return -EINVAL;
1834         if (unlikely(offset > 0xffff || offset & 1))
1835                 return -EFAULT;
1836         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1837                 return -EFAULT;
1838
1839         ptr = (__sum16 *)(skb->data + offset);
1840         switch (flags & BPF_F_HDR_FIELD_MASK) {
1841         case 0:
1842                 if (unlikely(from != 0))
1843                         return -EINVAL;
1844
1845                 csum_replace_by_diff(ptr, to);
1846                 break;
1847         case 2:
1848                 csum_replace2(ptr, from, to);
1849                 break;
1850         case 4:
1851                 csum_replace4(ptr, from, to);
1852                 break;
1853         default:
1854                 return -EINVAL;
1855         }
1856
1857         return 0;
1858 }
1859
1860 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1861         .func           = bpf_l3_csum_replace,
1862         .gpl_only       = false,
1863         .ret_type       = RET_INTEGER,
1864         .arg1_type      = ARG_PTR_TO_CTX,
1865         .arg2_type      = ARG_ANYTHING,
1866         .arg3_type      = ARG_ANYTHING,
1867         .arg4_type      = ARG_ANYTHING,
1868         .arg5_type      = ARG_ANYTHING,
1869 };
1870
1871 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1872            u64, from, u64, to, u64, flags)
1873 {
1874         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1875         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1876         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1877         __sum16 *ptr;
1878
1879         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1880                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1881                 return -EINVAL;
1882         if (unlikely(offset > 0xffff || offset & 1))
1883                 return -EFAULT;
1884         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1885                 return -EFAULT;
1886
1887         ptr = (__sum16 *)(skb->data + offset);
1888         if (is_mmzero && !do_mforce && !*ptr)
1889                 return 0;
1890
1891         switch (flags & BPF_F_HDR_FIELD_MASK) {
1892         case 0:
1893                 if (unlikely(from != 0))
1894                         return -EINVAL;
1895
1896                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1897                 break;
1898         case 2:
1899                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1900                 break;
1901         case 4:
1902                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1903                 break;
1904         default:
1905                 return -EINVAL;
1906         }
1907
1908         if (is_mmzero && !*ptr)
1909                 *ptr = CSUM_MANGLED_0;
1910         return 0;
1911 }
1912
1913 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1914         .func           = bpf_l4_csum_replace,
1915         .gpl_only       = false,
1916         .ret_type       = RET_INTEGER,
1917         .arg1_type      = ARG_PTR_TO_CTX,
1918         .arg2_type      = ARG_ANYTHING,
1919         .arg3_type      = ARG_ANYTHING,
1920         .arg4_type      = ARG_ANYTHING,
1921         .arg5_type      = ARG_ANYTHING,
1922 };
1923
1924 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1925            __be32 *, to, u32, to_size, __wsum, seed)
1926 {
1927         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1928         u32 diff_size = from_size + to_size;
1929         int i, j = 0;
1930
1931         /* This is quite flexible, some examples:
1932          *
1933          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1934          * from_size > 0,  to_size == 0, seed := csum --> pulling data
1935          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1936          *
1937          * Even for diffing, from_size and to_size don't need to be equal.
1938          */
1939         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1940                      diff_size > sizeof(sp->diff)))
1941                 return -EINVAL;
1942
1943         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1944                 sp->diff[j] = ~from[i];
1945         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1946                 sp->diff[j] = to[i];
1947
1948         return csum_partial(sp->diff, diff_size, seed);
1949 }
1950
1951 static const struct bpf_func_proto bpf_csum_diff_proto = {
1952         .func           = bpf_csum_diff,
1953         .gpl_only       = false,
1954         .pkt_access     = true,
1955         .ret_type       = RET_INTEGER,
1956         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
1957         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1958         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
1959         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
1960         .arg5_type      = ARG_ANYTHING,
1961 };
1962
1963 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1964 {
1965         /* The interface is to be used in combination with bpf_csum_diff()
1966          * for direct packet writes. csum rotation for alignment as well
1967          * as emulating csum_sub() can be done from the eBPF program.
1968          */
1969         if (skb->ip_summed == CHECKSUM_COMPLETE)
1970                 return (skb->csum = csum_add(skb->csum, csum));
1971
1972         return -ENOTSUPP;
1973 }
1974
1975 static const struct bpf_func_proto bpf_csum_update_proto = {
1976         .func           = bpf_csum_update,
1977         .gpl_only       = false,
1978         .ret_type       = RET_INTEGER,
1979         .arg1_type      = ARG_PTR_TO_CTX,
1980         .arg2_type      = ARG_ANYTHING,
1981 };
1982
1983 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1984 {
1985         return dev_forward_skb(dev, skb);
1986 }
1987
1988 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1989                                       struct sk_buff *skb)
1990 {
1991         int ret = ____dev_forward_skb(dev, skb);
1992
1993         if (likely(!ret)) {
1994                 skb->dev = dev;
1995                 ret = netif_rx(skb);
1996         }
1997
1998         return ret;
1999 }
2000
2001 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2002 {
2003         int ret;
2004
2005         if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
2006                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2007                 kfree_skb(skb);
2008                 return -ENETDOWN;
2009         }
2010
2011         skb->dev = dev;
2012
2013         __this_cpu_inc(xmit_recursion);
2014         ret = dev_queue_xmit(skb);
2015         __this_cpu_dec(xmit_recursion);
2016
2017         return ret;
2018 }
2019
2020 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2021                                  u32 flags)
2022 {
2023         /* skb->mac_len is not set on normal egress */
2024         unsigned int mlen = skb->network_header - skb->mac_header;
2025
2026         __skb_pull(skb, mlen);
2027
2028         /* At ingress, the mac header has already been pulled once.
2029          * At egress, skb_pospull_rcsum has to be done in case that
2030          * the skb is originated from ingress (i.e. a forwarded skb)
2031          * to ensure that rcsum starts at net header.
2032          */
2033         if (!skb_at_tc_ingress(skb))
2034                 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2035         skb_pop_mac_header(skb);
2036         skb_reset_mac_len(skb);
2037         return flags & BPF_F_INGRESS ?
2038                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2039 }
2040
2041 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2042                                  u32 flags)
2043 {
2044         /* Verify that a link layer header is carried */
2045         if (unlikely(skb->mac_header >= skb->network_header)) {
2046                 kfree_skb(skb);
2047                 return -ERANGE;
2048         }
2049
2050         bpf_push_mac_rcsum(skb);
2051         return flags & BPF_F_INGRESS ?
2052                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2053 }
2054
2055 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2056                           u32 flags)
2057 {
2058         if (dev_is_mac_header_xmit(dev))
2059                 return __bpf_redirect_common(skb, dev, flags);
2060         else
2061                 return __bpf_redirect_no_mac(skb, dev, flags);
2062 }
2063
2064 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2065 {
2066         struct net_device *dev;
2067         struct sk_buff *clone;
2068         int ret;
2069
2070         if (unlikely(flags & ~(BPF_F_INGRESS)))
2071                 return -EINVAL;
2072
2073         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2074         if (unlikely(!dev))
2075                 return -EINVAL;
2076
2077         clone = skb_clone(skb, GFP_ATOMIC);
2078         if (unlikely(!clone))
2079                 return -ENOMEM;
2080
2081         /* For direct write, we need to keep the invariant that the skbs
2082          * we're dealing with need to be uncloned. Should uncloning fail
2083          * here, we need to free the just generated clone to unclone once
2084          * again.
2085          */
2086         ret = bpf_try_make_head_writable(skb);
2087         if (unlikely(ret)) {
2088                 kfree_skb(clone);
2089                 return -ENOMEM;
2090         }
2091
2092         return __bpf_redirect(clone, dev, flags);
2093 }
2094
2095 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2096         .func           = bpf_clone_redirect,
2097         .gpl_only       = false,
2098         .ret_type       = RET_INTEGER,
2099         .arg1_type      = ARG_PTR_TO_CTX,
2100         .arg2_type      = ARG_ANYTHING,
2101         .arg3_type      = ARG_ANYTHING,
2102 };
2103
2104 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2105 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2106
2107 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2108 {
2109         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2110
2111         if (unlikely(flags & ~(BPF_F_INGRESS)))
2112                 return TC_ACT_SHOT;
2113
2114         ri->ifindex = ifindex;
2115         ri->flags = flags;
2116
2117         return TC_ACT_REDIRECT;
2118 }
2119
2120 int skb_do_redirect(struct sk_buff *skb)
2121 {
2122         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2123         struct net_device *dev;
2124
2125         dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
2126         ri->ifindex = 0;
2127         if (unlikely(!dev)) {
2128                 kfree_skb(skb);
2129                 return -EINVAL;
2130         }
2131
2132         return __bpf_redirect(skb, dev, ri->flags);
2133 }
2134
2135 static const struct bpf_func_proto bpf_redirect_proto = {
2136         .func           = bpf_redirect,
2137         .gpl_only       = false,
2138         .ret_type       = RET_INTEGER,
2139         .arg1_type      = ARG_ANYTHING,
2140         .arg2_type      = ARG_ANYTHING,
2141 };
2142
2143 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2144 {
2145         msg->apply_bytes = bytes;
2146         return 0;
2147 }
2148
2149 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2150         .func           = bpf_msg_apply_bytes,
2151         .gpl_only       = false,
2152         .ret_type       = RET_INTEGER,
2153         .arg1_type      = ARG_PTR_TO_CTX,
2154         .arg2_type      = ARG_ANYTHING,
2155 };
2156
2157 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2158 {
2159         msg->cork_bytes = bytes;
2160         return 0;
2161 }
2162
2163 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2164         .func           = bpf_msg_cork_bytes,
2165         .gpl_only       = false,
2166         .ret_type       = RET_INTEGER,
2167         .arg1_type      = ARG_PTR_TO_CTX,
2168         .arg2_type      = ARG_ANYTHING,
2169 };
2170
2171 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2172            u32, end, u64, flags)
2173 {
2174         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2175         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2176         struct scatterlist *sge;
2177         u8 *raw, *to, *from;
2178         struct page *page;
2179
2180         if (unlikely(flags || end <= start))
2181                 return -EINVAL;
2182
2183         /* First find the starting scatterlist element */
2184         i = msg->sg.start;
2185         do {
2186                 len = sk_msg_elem(msg, i)->length;
2187                 if (start < offset + len)
2188                         break;
2189                 offset += len;
2190                 sk_msg_iter_var_next(i);
2191         } while (i != msg->sg.end);
2192
2193         if (unlikely(start >= offset + len))
2194                 return -EINVAL;
2195
2196         first_sge = i;
2197         /* The start may point into the sg element so we need to also
2198          * account for the headroom.
2199          */
2200         bytes_sg_total = start - offset + bytes;
2201         if (!msg->sg.copy[i] && bytes_sg_total <= len)
2202                 goto out;
2203
2204         /* At this point we need to linearize multiple scatterlist
2205          * elements or a single shared page. Either way we need to
2206          * copy into a linear buffer exclusively owned by BPF. Then
2207          * place the buffer in the scatterlist and fixup the original
2208          * entries by removing the entries now in the linear buffer
2209          * and shifting the remaining entries. For now we do not try
2210          * to copy partial entries to avoid complexity of running out
2211          * of sg_entry slots. The downside is reading a single byte
2212          * will copy the entire sg entry.
2213          */
2214         do {
2215                 copy += sk_msg_elem(msg, i)->length;
2216                 sk_msg_iter_var_next(i);
2217                 if (bytes_sg_total <= copy)
2218                         break;
2219         } while (i != msg->sg.end);
2220         last_sge = i;
2221
2222         if (unlikely(bytes_sg_total > copy))
2223                 return -EINVAL;
2224
2225         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2226                            get_order(copy));
2227         if (unlikely(!page))
2228                 return -ENOMEM;
2229
2230         raw = page_address(page);
2231         i = first_sge;
2232         do {
2233                 sge = sk_msg_elem(msg, i);
2234                 from = sg_virt(sge);
2235                 len = sge->length;
2236                 to = raw + poffset;
2237
2238                 memcpy(to, from, len);
2239                 poffset += len;
2240                 sge->length = 0;
2241                 put_page(sg_page(sge));
2242
2243                 sk_msg_iter_var_next(i);
2244         } while (i != last_sge);
2245
2246         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2247
2248         /* To repair sg ring we need to shift entries. If we only
2249          * had a single entry though we can just replace it and
2250          * be done. Otherwise walk the ring and shift the entries.
2251          */
2252         WARN_ON_ONCE(last_sge == first_sge);
2253         shift = last_sge > first_sge ?
2254                 last_sge - first_sge - 1 :
2255                 MAX_SKB_FRAGS - first_sge + last_sge - 1;
2256         if (!shift)
2257                 goto out;
2258
2259         i = first_sge;
2260         sk_msg_iter_var_next(i);
2261         do {
2262                 u32 move_from;
2263
2264                 if (i + shift >= MAX_MSG_FRAGS)
2265                         move_from = i + shift - MAX_MSG_FRAGS;
2266                 else
2267                         move_from = i + shift;
2268                 if (move_from == msg->sg.end)
2269                         break;
2270
2271                 msg->sg.data[i] = msg->sg.data[move_from];
2272                 msg->sg.data[move_from].length = 0;
2273                 msg->sg.data[move_from].page_link = 0;
2274                 msg->sg.data[move_from].offset = 0;
2275                 sk_msg_iter_var_next(i);
2276         } while (1);
2277
2278         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2279                       msg->sg.end - shift + MAX_MSG_FRAGS :
2280                       msg->sg.end - shift;
2281 out:
2282         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2283         msg->data_end = msg->data + bytes;
2284         return 0;
2285 }
2286
2287 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2288         .func           = bpf_msg_pull_data,
2289         .gpl_only       = false,
2290         .ret_type       = RET_INTEGER,
2291         .arg1_type      = ARG_PTR_TO_CTX,
2292         .arg2_type      = ARG_ANYTHING,
2293         .arg3_type      = ARG_ANYTHING,
2294         .arg4_type      = ARG_ANYTHING,
2295 };
2296
2297 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2298            u32, len, u64, flags)
2299 {
2300         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2301         u32 new, i = 0, l, space, copy = 0, offset = 0;
2302         u8 *raw, *to, *from;
2303         struct page *page;
2304
2305         if (unlikely(flags))
2306                 return -EINVAL;
2307
2308         /* First find the starting scatterlist element */
2309         i = msg->sg.start;
2310         do {
2311                 l = sk_msg_elem(msg, i)->length;
2312
2313                 if (start < offset + l)
2314                         break;
2315                 offset += l;
2316                 sk_msg_iter_var_next(i);
2317         } while (i != msg->sg.end);
2318
2319         if (start >= offset + l)
2320                 return -EINVAL;
2321
2322         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2323
2324         /* If no space available will fallback to copy, we need at
2325          * least one scatterlist elem available to push data into
2326          * when start aligns to the beginning of an element or two
2327          * when it falls inside an element. We handle the start equals
2328          * offset case because its the common case for inserting a
2329          * header.
2330          */
2331         if (!space || (space == 1 && start != offset))
2332                 copy = msg->sg.data[i].length;
2333
2334         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2335                            get_order(copy + len));
2336         if (unlikely(!page))
2337                 return -ENOMEM;
2338
2339         if (copy) {
2340                 int front, back;
2341
2342                 raw = page_address(page);
2343
2344                 psge = sk_msg_elem(msg, i);
2345                 front = start - offset;
2346                 back = psge->length - front;
2347                 from = sg_virt(psge);
2348
2349                 if (front)
2350                         memcpy(raw, from, front);
2351
2352                 if (back) {
2353                         from += front;
2354                         to = raw + front + len;
2355
2356                         memcpy(to, from, back);
2357                 }
2358
2359                 put_page(sg_page(psge));
2360         } else if (start - offset) {
2361                 psge = sk_msg_elem(msg, i);
2362                 rsge = sk_msg_elem_cpy(msg, i);
2363
2364                 psge->length = start - offset;
2365                 rsge.length -= psge->length;
2366                 rsge.offset += start;
2367
2368                 sk_msg_iter_var_next(i);
2369                 sg_unmark_end(psge);
2370                 sk_msg_iter_next(msg, end);
2371         }
2372
2373         /* Slot(s) to place newly allocated data */
2374         new = i;
2375
2376         /* Shift one or two slots as needed */
2377         if (!copy) {
2378                 sge = sk_msg_elem_cpy(msg, i);
2379
2380                 sk_msg_iter_var_next(i);
2381                 sg_unmark_end(&sge);
2382                 sk_msg_iter_next(msg, end);
2383
2384                 nsge = sk_msg_elem_cpy(msg, i);
2385                 if (rsge.length) {
2386                         sk_msg_iter_var_next(i);
2387                         nnsge = sk_msg_elem_cpy(msg, i);
2388                 }
2389
2390                 while (i != msg->sg.end) {
2391                         msg->sg.data[i] = sge;
2392                         sge = nsge;
2393                         sk_msg_iter_var_next(i);
2394                         if (rsge.length) {
2395                                 nsge = nnsge;
2396                                 nnsge = sk_msg_elem_cpy(msg, i);
2397                         } else {
2398                                 nsge = sk_msg_elem_cpy(msg, i);
2399                         }
2400                 }
2401         }
2402
2403         /* Place newly allocated data buffer */
2404         sk_mem_charge(msg->sk, len);
2405         msg->sg.size += len;
2406         msg->sg.copy[new] = false;
2407         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2408         if (rsge.length) {
2409                 get_page(sg_page(&rsge));
2410                 sk_msg_iter_var_next(new);
2411                 msg->sg.data[new] = rsge;
2412         }
2413
2414         sk_msg_compute_data_pointers(msg);
2415         return 0;
2416 }
2417
2418 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2419         .func           = bpf_msg_push_data,
2420         .gpl_only       = false,
2421         .ret_type       = RET_INTEGER,
2422         .arg1_type      = ARG_PTR_TO_CTX,
2423         .arg2_type      = ARG_ANYTHING,
2424         .arg3_type      = ARG_ANYTHING,
2425         .arg4_type      = ARG_ANYTHING,
2426 };
2427
2428 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2429 {
2430         int prev;
2431
2432         do {
2433                 prev = i;
2434                 sk_msg_iter_var_next(i);
2435                 msg->sg.data[prev] = msg->sg.data[i];
2436         } while (i != msg->sg.end);
2437
2438         sk_msg_iter_prev(msg, end);
2439 }
2440
2441 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2442 {
2443         struct scatterlist tmp, sge;
2444
2445         sk_msg_iter_next(msg, end);
2446         sge = sk_msg_elem_cpy(msg, i);
2447         sk_msg_iter_var_next(i);
2448         tmp = sk_msg_elem_cpy(msg, i);
2449
2450         while (i != msg->sg.end) {
2451                 msg->sg.data[i] = sge;
2452                 sk_msg_iter_var_next(i);
2453                 sge = tmp;
2454                 tmp = sk_msg_elem_cpy(msg, i);
2455         }
2456 }
2457
2458 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2459            u32, len, u64, flags)
2460 {
2461         u32 i = 0, l, space, offset = 0;
2462         u64 last = start + len;
2463         int pop;
2464
2465         if (unlikely(flags))
2466                 return -EINVAL;
2467
2468         /* First find the starting scatterlist element */
2469         i = msg->sg.start;
2470         do {
2471                 l = sk_msg_elem(msg, i)->length;
2472
2473                 if (start < offset + l)
2474                         break;
2475                 offset += l;
2476                 sk_msg_iter_var_next(i);
2477         } while (i != msg->sg.end);
2478
2479         /* Bounds checks: start and pop must be inside message */
2480         if (start >= offset + l || last >= msg->sg.size)
2481                 return -EINVAL;
2482
2483         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2484
2485         pop = len;
2486         /* --------------| offset
2487          * -| start      |-------- len -------|
2488          *
2489          *  |----- a ----|-------- pop -------|----- b ----|
2490          *  |______________________________________________| length
2491          *
2492          *
2493          * a:   region at front of scatter element to save
2494          * b:   region at back of scatter element to save when length > A + pop
2495          * pop: region to pop from element, same as input 'pop' here will be
2496          *      decremented below per iteration.
2497          *
2498          * Two top-level cases to handle when start != offset, first B is non
2499          * zero and second B is zero corresponding to when a pop includes more
2500          * than one element.
2501          *
2502          * Then if B is non-zero AND there is no space allocate space and
2503          * compact A, B regions into page. If there is space shift ring to
2504          * the rigth free'ing the next element in ring to place B, leaving
2505          * A untouched except to reduce length.
2506          */
2507         if (start != offset) {
2508                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2509                 int a = start;
2510                 int b = sge->length - pop - a;
2511
2512                 sk_msg_iter_var_next(i);
2513
2514                 if (pop < sge->length - a) {
2515                         if (space) {
2516                                 sge->length = a;
2517                                 sk_msg_shift_right(msg, i);
2518                                 nsge = sk_msg_elem(msg, i);
2519                                 get_page(sg_page(sge));
2520                                 sg_set_page(nsge,
2521                                             sg_page(sge),
2522                                             b, sge->offset + pop + a);
2523                         } else {
2524                                 struct page *page, *orig;
2525                                 u8 *to, *from;
2526
2527                                 page = alloc_pages(__GFP_NOWARN |
2528                                                    __GFP_COMP   | GFP_ATOMIC,
2529                                                    get_order(a + b));
2530                                 if (unlikely(!page))
2531                                         return -ENOMEM;
2532
2533                                 sge->length = a;
2534                                 orig = sg_page(sge);
2535                                 from = sg_virt(sge);
2536                                 to = page_address(page);
2537                                 memcpy(to, from, a);
2538                                 memcpy(to + a, from + a + pop, b);
2539                                 sg_set_page(sge, page, a + b, 0);
2540                                 put_page(orig);
2541                         }
2542                         pop = 0;
2543                 } else if (pop >= sge->length - a) {
2544                         sge->length = a;
2545                         pop -= (sge->length - a);
2546                 }
2547         }
2548
2549         /* From above the current layout _must_ be as follows,
2550          *
2551          * -| offset
2552          * -| start
2553          *
2554          *  |---- pop ---|---------------- b ------------|
2555          *  |____________________________________________| length
2556          *
2557          * Offset and start of the current msg elem are equal because in the
2558          * previous case we handled offset != start and either consumed the
2559          * entire element and advanced to the next element OR pop == 0.
2560          *
2561          * Two cases to handle here are first pop is less than the length
2562          * leaving some remainder b above. Simply adjust the element's layout
2563          * in this case. Or pop >= length of the element so that b = 0. In this
2564          * case advance to next element decrementing pop.
2565          */
2566         while (pop) {
2567                 struct scatterlist *sge = sk_msg_elem(msg, i);
2568
2569                 if (pop < sge->length) {
2570                         sge->length -= pop;
2571                         sge->offset += pop;
2572                         pop = 0;
2573                 } else {
2574                         pop -= sge->length;
2575                         sk_msg_shift_left(msg, i);
2576                 }
2577                 sk_msg_iter_var_next(i);
2578         }
2579
2580         sk_mem_uncharge(msg->sk, len - pop);
2581         msg->sg.size -= (len - pop);
2582         sk_msg_compute_data_pointers(msg);
2583         return 0;
2584 }
2585
2586 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2587         .func           = bpf_msg_pop_data,
2588         .gpl_only       = false,
2589         .ret_type       = RET_INTEGER,
2590         .arg1_type      = ARG_PTR_TO_CTX,
2591         .arg2_type      = ARG_ANYTHING,
2592         .arg3_type      = ARG_ANYTHING,
2593         .arg4_type      = ARG_ANYTHING,
2594 };
2595
2596 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2597 {
2598         return task_get_classid(skb);
2599 }
2600
2601 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2602         .func           = bpf_get_cgroup_classid,
2603         .gpl_only       = false,
2604         .ret_type       = RET_INTEGER,
2605         .arg1_type      = ARG_PTR_TO_CTX,
2606 };
2607
2608 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2609 {
2610         return dst_tclassid(skb);
2611 }
2612
2613 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2614         .func           = bpf_get_route_realm,
2615         .gpl_only       = false,
2616         .ret_type       = RET_INTEGER,
2617         .arg1_type      = ARG_PTR_TO_CTX,
2618 };
2619
2620 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2621 {
2622         /* If skb_clear_hash() was called due to mangling, we can
2623          * trigger SW recalculation here. Later access to hash
2624          * can then use the inline skb->hash via context directly
2625          * instead of calling this helper again.
2626          */
2627         return skb_get_hash(skb);
2628 }
2629
2630 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2631         .func           = bpf_get_hash_recalc,
2632         .gpl_only       = false,
2633         .ret_type       = RET_INTEGER,
2634         .arg1_type      = ARG_PTR_TO_CTX,
2635 };
2636
2637 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2638 {
2639         /* After all direct packet write, this can be used once for
2640          * triggering a lazy recalc on next skb_get_hash() invocation.
2641          */
2642         skb_clear_hash(skb);
2643         return 0;
2644 }
2645
2646 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2647         .func           = bpf_set_hash_invalid,
2648         .gpl_only       = false,
2649         .ret_type       = RET_INTEGER,
2650         .arg1_type      = ARG_PTR_TO_CTX,
2651 };
2652
2653 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2654 {
2655         /* Set user specified hash as L4(+), so that it gets returned
2656          * on skb_get_hash() call unless BPF prog later on triggers a
2657          * skb_clear_hash().
2658          */
2659         __skb_set_sw_hash(skb, hash, true);
2660         return 0;
2661 }
2662
2663 static const struct bpf_func_proto bpf_set_hash_proto = {
2664         .func           = bpf_set_hash,
2665         .gpl_only       = false,
2666         .ret_type       = RET_INTEGER,
2667         .arg1_type      = ARG_PTR_TO_CTX,
2668         .arg2_type      = ARG_ANYTHING,
2669 };
2670
2671 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2672            u16, vlan_tci)
2673 {
2674         int ret;
2675
2676         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2677                      vlan_proto != htons(ETH_P_8021AD)))
2678                 vlan_proto = htons(ETH_P_8021Q);
2679
2680         bpf_push_mac_rcsum(skb);
2681         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2682         bpf_pull_mac_rcsum(skb);
2683
2684         bpf_compute_data_pointers(skb);
2685         return ret;
2686 }
2687
2688 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2689         .func           = bpf_skb_vlan_push,
2690         .gpl_only       = false,
2691         .ret_type       = RET_INTEGER,
2692         .arg1_type      = ARG_PTR_TO_CTX,
2693         .arg2_type      = ARG_ANYTHING,
2694         .arg3_type      = ARG_ANYTHING,
2695 };
2696
2697 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2698 {
2699         int ret;
2700
2701         bpf_push_mac_rcsum(skb);
2702         ret = skb_vlan_pop(skb);
2703         bpf_pull_mac_rcsum(skb);
2704
2705         bpf_compute_data_pointers(skb);
2706         return ret;
2707 }
2708
2709 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2710         .func           = bpf_skb_vlan_pop,
2711         .gpl_only       = false,
2712         .ret_type       = RET_INTEGER,
2713         .arg1_type      = ARG_PTR_TO_CTX,
2714 };
2715
2716 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2717 {
2718         /* Caller already did skb_cow() with len as headroom,
2719          * so no need to do it here.
2720          */
2721         skb_push(skb, len);
2722         memmove(skb->data, skb->data + len, off);
2723         memset(skb->data + off, 0, len);
2724
2725         /* No skb_postpush_rcsum(skb, skb->data + off, len)
2726          * needed here as it does not change the skb->csum
2727          * result for checksum complete when summing over
2728          * zeroed blocks.
2729          */
2730         return 0;
2731 }
2732
2733 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2734 {
2735         /* skb_ensure_writable() is not needed here, as we're
2736          * already working on an uncloned skb.
2737          */
2738         if (unlikely(!pskb_may_pull(skb, off + len)))
2739                 return -ENOMEM;
2740
2741         skb_postpull_rcsum(skb, skb->data + off, len);
2742         memmove(skb->data + len, skb->data, off);
2743         __skb_pull(skb, len);
2744
2745         return 0;
2746 }
2747
2748 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2749 {
2750         bool trans_same = skb->transport_header == skb->network_header;
2751         int ret;
2752
2753         /* There's no need for __skb_push()/__skb_pull() pair to
2754          * get to the start of the mac header as we're guaranteed
2755          * to always start from here under eBPF.
2756          */
2757         ret = bpf_skb_generic_push(skb, off, len);
2758         if (likely(!ret)) {
2759                 skb->mac_header -= len;
2760                 skb->network_header -= len;
2761                 if (trans_same)
2762                         skb->transport_header = skb->network_header;
2763         }
2764
2765         return ret;
2766 }
2767
2768 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2769 {
2770         bool trans_same = skb->transport_header == skb->network_header;
2771         int ret;
2772
2773         /* Same here, __skb_push()/__skb_pull() pair not needed. */
2774         ret = bpf_skb_generic_pop(skb, off, len);
2775         if (likely(!ret)) {
2776                 skb->mac_header += len;
2777                 skb->network_header += len;
2778                 if (trans_same)
2779                         skb->transport_header = skb->network_header;
2780         }
2781
2782         return ret;
2783 }
2784
2785 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2786 {
2787         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2788         u32 off = skb_mac_header_len(skb);
2789         int ret;
2790
2791         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2792         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2793                 return -ENOTSUPP;
2794
2795         ret = skb_cow(skb, len_diff);
2796         if (unlikely(ret < 0))
2797                 return ret;
2798
2799         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2800         if (unlikely(ret < 0))
2801                 return ret;
2802
2803         if (skb_is_gso(skb)) {
2804                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2805
2806                 /* SKB_GSO_TCPV4 needs to be changed into
2807                  * SKB_GSO_TCPV6.
2808                  */
2809                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2810                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
2811                         shinfo->gso_type |=  SKB_GSO_TCPV6;
2812                 }
2813
2814                 /* Due to IPv6 header, MSS needs to be downgraded. */
2815                 skb_decrease_gso_size(shinfo, len_diff);
2816                 /* Header must be checked, and gso_segs recomputed. */
2817                 shinfo->gso_type |= SKB_GSO_DODGY;
2818                 shinfo->gso_segs = 0;
2819         }
2820
2821         skb->protocol = htons(ETH_P_IPV6);
2822         skb_clear_hash(skb);
2823
2824         return 0;
2825 }
2826
2827 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2828 {
2829         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2830         u32 off = skb_mac_header_len(skb);
2831         int ret;
2832
2833         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2834         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2835                 return -ENOTSUPP;
2836
2837         ret = skb_unclone(skb, GFP_ATOMIC);
2838         if (unlikely(ret < 0))
2839                 return ret;
2840
2841         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2842         if (unlikely(ret < 0))
2843                 return ret;
2844
2845         if (skb_is_gso(skb)) {
2846                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2847
2848                 /* SKB_GSO_TCPV6 needs to be changed into
2849                  * SKB_GSO_TCPV4.
2850                  */
2851                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2852                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
2853                         shinfo->gso_type |=  SKB_GSO_TCPV4;
2854                 }
2855
2856                 /* Due to IPv4 header, MSS can be upgraded. */
2857                 skb_increase_gso_size(shinfo, len_diff);
2858                 /* Header must be checked, and gso_segs recomputed. */
2859                 shinfo->gso_type |= SKB_GSO_DODGY;
2860                 shinfo->gso_segs = 0;
2861         }
2862
2863         skb->protocol = htons(ETH_P_IP);
2864         skb_clear_hash(skb);
2865
2866         return 0;
2867 }
2868
2869 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2870 {
2871         __be16 from_proto = skb->protocol;
2872
2873         if (from_proto == htons(ETH_P_IP) &&
2874               to_proto == htons(ETH_P_IPV6))
2875                 return bpf_skb_proto_4_to_6(skb);
2876
2877         if (from_proto == htons(ETH_P_IPV6) &&
2878               to_proto == htons(ETH_P_IP))
2879                 return bpf_skb_proto_6_to_4(skb);
2880
2881         return -ENOTSUPP;
2882 }
2883
2884 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2885            u64, flags)
2886 {
2887         int ret;
2888
2889         if (unlikely(flags))
2890                 return -EINVAL;
2891
2892         /* General idea is that this helper does the basic groundwork
2893          * needed for changing the protocol, and eBPF program fills the
2894          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2895          * and other helpers, rather than passing a raw buffer here.
2896          *
2897          * The rationale is to keep this minimal and without a need to
2898          * deal with raw packet data. F.e. even if we would pass buffers
2899          * here, the program still needs to call the bpf_lX_csum_replace()
2900          * helpers anyway. Plus, this way we keep also separation of
2901          * concerns, since f.e. bpf_skb_store_bytes() should only take
2902          * care of stores.
2903          *
2904          * Currently, additional options and extension header space are
2905          * not supported, but flags register is reserved so we can adapt
2906          * that. For offloads, we mark packet as dodgy, so that headers
2907          * need to be verified first.
2908          */
2909         ret = bpf_skb_proto_xlat(skb, proto);
2910         bpf_compute_data_pointers(skb);
2911         return ret;
2912 }
2913
2914 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2915         .func           = bpf_skb_change_proto,
2916         .gpl_only       = false,
2917         .ret_type       = RET_INTEGER,
2918         .arg1_type      = ARG_PTR_TO_CTX,
2919         .arg2_type      = ARG_ANYTHING,
2920         .arg3_type      = ARG_ANYTHING,
2921 };
2922
2923 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2924 {
2925         /* We only allow a restricted subset to be changed for now. */
2926         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2927                      !skb_pkt_type_ok(pkt_type)))
2928                 return -EINVAL;
2929
2930         skb->pkt_type = pkt_type;
2931         return 0;
2932 }
2933
2934 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2935         .func           = bpf_skb_change_type,
2936         .gpl_only       = false,
2937         .ret_type       = RET_INTEGER,
2938         .arg1_type      = ARG_PTR_TO_CTX,
2939         .arg2_type      = ARG_ANYTHING,
2940 };
2941
2942 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2943 {
2944         switch (skb->protocol) {
2945         case htons(ETH_P_IP):
2946                 return sizeof(struct iphdr);
2947         case htons(ETH_P_IPV6):
2948                 return sizeof(struct ipv6hdr);
2949         default:
2950                 return ~0U;
2951         }
2952 }
2953
2954 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2955 {
2956         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2957         int ret;
2958
2959         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2960         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2961                 return -ENOTSUPP;
2962
2963         ret = skb_cow(skb, len_diff);
2964         if (unlikely(ret < 0))
2965                 return ret;
2966
2967         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2968         if (unlikely(ret < 0))
2969                 return ret;
2970
2971         if (skb_is_gso(skb)) {
2972                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2973
2974                 /* Due to header grow, MSS needs to be downgraded. */
2975                 skb_decrease_gso_size(shinfo, len_diff);
2976                 /* Header must be checked, and gso_segs recomputed. */
2977                 shinfo->gso_type |= SKB_GSO_DODGY;
2978                 shinfo->gso_segs = 0;
2979         }
2980
2981         return 0;
2982 }
2983
2984 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2985 {
2986         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2987         int ret;
2988
2989         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2990         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2991                 return -ENOTSUPP;
2992
2993         ret = skb_unclone(skb, GFP_ATOMIC);
2994         if (unlikely(ret < 0))
2995                 return ret;
2996
2997         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2998         if (unlikely(ret < 0))
2999                 return ret;
3000
3001         if (skb_is_gso(skb)) {
3002                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3003
3004                 /* Due to header shrink, MSS can be upgraded. */
3005                 skb_increase_gso_size(shinfo, len_diff);
3006                 /* Header must be checked, and gso_segs recomputed. */
3007                 shinfo->gso_type |= SKB_GSO_DODGY;
3008                 shinfo->gso_segs = 0;
3009         }
3010
3011         return 0;
3012 }
3013
3014 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3015 {
3016         return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3017                           SKB_MAX_ALLOC;
3018 }
3019
3020 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
3021 {
3022         bool trans_same = skb->transport_header == skb->network_header;
3023         u32 len_cur, len_diff_abs = abs(len_diff);
3024         u32 len_min = bpf_skb_net_base_len(skb);
3025         u32 len_max = __bpf_skb_max_len(skb);
3026         __be16 proto = skb->protocol;
3027         bool shrink = len_diff < 0;
3028         int ret;
3029
3030         if (unlikely(len_diff_abs > 0xfffU))
3031                 return -EFAULT;
3032         if (unlikely(proto != htons(ETH_P_IP) &&
3033                      proto != htons(ETH_P_IPV6)))
3034                 return -ENOTSUPP;
3035
3036         len_cur = skb->len - skb_network_offset(skb);
3037         if (skb_transport_header_was_set(skb) && !trans_same)
3038                 len_cur = skb_network_header_len(skb);
3039         if ((shrink && (len_diff_abs >= len_cur ||
3040                         len_cur - len_diff_abs < len_min)) ||
3041             (!shrink && (skb->len + len_diff_abs > len_max &&
3042                          !skb_is_gso(skb))))
3043                 return -ENOTSUPP;
3044
3045         ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
3046                        bpf_skb_net_grow(skb, len_diff_abs);
3047
3048         bpf_compute_data_pointers(skb);
3049         return ret;
3050 }
3051
3052 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3053            u32, mode, u64, flags)
3054 {
3055         if (unlikely(flags))
3056                 return -EINVAL;
3057         if (likely(mode == BPF_ADJ_ROOM_NET))
3058                 return bpf_skb_adjust_net(skb, len_diff);
3059
3060         return -ENOTSUPP;
3061 }
3062
3063 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3064         .func           = bpf_skb_adjust_room,
3065         .gpl_only       = false,
3066         .ret_type       = RET_INTEGER,
3067         .arg1_type      = ARG_PTR_TO_CTX,
3068         .arg2_type      = ARG_ANYTHING,
3069         .arg3_type      = ARG_ANYTHING,
3070         .arg4_type      = ARG_ANYTHING,
3071 };
3072
3073 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3074 {
3075         u32 min_len = skb_network_offset(skb);
3076
3077         if (skb_transport_header_was_set(skb))
3078                 min_len = skb_transport_offset(skb);
3079         if (skb->ip_summed == CHECKSUM_PARTIAL)
3080                 min_len = skb_checksum_start_offset(skb) +
3081                           skb->csum_offset + sizeof(__sum16);
3082         return min_len;
3083 }
3084
3085 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3086 {
3087         unsigned int old_len = skb->len;
3088         int ret;
3089
3090         ret = __skb_grow_rcsum(skb, new_len);
3091         if (!ret)
3092                 memset(skb->data + old_len, 0, new_len - old_len);
3093         return ret;
3094 }
3095
3096 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3097 {
3098         return __skb_trim_rcsum(skb, new_len);
3099 }
3100
3101 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3102                                         u64 flags)
3103 {
3104         u32 max_len = __bpf_skb_max_len(skb);
3105         u32 min_len = __bpf_skb_min_len(skb);
3106         int ret;
3107
3108         if (unlikely(flags || new_len > max_len || new_len < min_len))
3109                 return -EINVAL;
3110         if (skb->encapsulation)
3111                 return -ENOTSUPP;
3112
3113         /* The basic idea of this helper is that it's performing the
3114          * needed work to either grow or trim an skb, and eBPF program
3115          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3116          * bpf_lX_csum_replace() and others rather than passing a raw
3117          * buffer here. This one is a slow path helper and intended
3118          * for replies with control messages.
3119          *
3120          * Like in bpf_skb_change_proto(), we want to keep this rather
3121          * minimal and without protocol specifics so that we are able
3122          * to separate concerns as in bpf_skb_store_bytes() should only
3123          * be the one responsible for writing buffers.
3124          *
3125          * It's really expected to be a slow path operation here for
3126          * control message replies, so we're implicitly linearizing,
3127          * uncloning and drop offloads from the skb by this.
3128          */
3129         ret = __bpf_try_make_writable(skb, skb->len);
3130         if (!ret) {
3131                 if (new_len > skb->len)
3132                         ret = bpf_skb_grow_rcsum(skb, new_len);
3133                 else if (new_len < skb->len)
3134                         ret = bpf_skb_trim_rcsum(skb, new_len);
3135                 if (!ret && skb_is_gso(skb))
3136                         skb_gso_reset(skb);
3137         }
3138         return ret;
3139 }
3140
3141 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3142            u64, flags)
3143 {
3144         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3145
3146         bpf_compute_data_pointers(skb);
3147         return ret;
3148 }
3149
3150 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3151         .func           = bpf_skb_change_tail,
3152         .gpl_only       = false,
3153         .ret_type       = RET_INTEGER,
3154         .arg1_type      = ARG_PTR_TO_CTX,
3155         .arg2_type      = ARG_ANYTHING,
3156         .arg3_type      = ARG_ANYTHING,
3157 };
3158
3159 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3160            u64, flags)
3161 {
3162         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3163
3164         bpf_compute_data_end_sk_skb(skb);
3165         return ret;
3166 }
3167
3168 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3169         .func           = sk_skb_change_tail,
3170         .gpl_only       = false,
3171         .ret_type       = RET_INTEGER,
3172         .arg1_type      = ARG_PTR_TO_CTX,
3173         .arg2_type      = ARG_ANYTHING,
3174         .arg3_type      = ARG_ANYTHING,
3175 };
3176
3177 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3178                                         u64 flags)
3179 {
3180         u32 max_len = __bpf_skb_max_len(skb);
3181         u32 new_len = skb->len + head_room;
3182         int ret;
3183
3184         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3185                      new_len < skb->len))
3186                 return -EINVAL;
3187
3188         ret = skb_cow(skb, head_room);
3189         if (likely(!ret)) {
3190                 /* Idea for this helper is that we currently only
3191                  * allow to expand on mac header. This means that
3192                  * skb->protocol network header, etc, stay as is.
3193                  * Compared to bpf_skb_change_tail(), we're more
3194                  * flexible due to not needing to linearize or
3195                  * reset GSO. Intention for this helper is to be
3196                  * used by an L3 skb that needs to push mac header
3197                  * for redirection into L2 device.
3198                  */
3199                 __skb_push(skb, head_room);
3200                 memset(skb->data, 0, head_room);
3201                 skb_reset_mac_header(skb);
3202         }
3203
3204         return ret;
3205 }
3206
3207 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3208            u64, flags)
3209 {
3210         int ret = __bpf_skb_change_head(skb, head_room, flags);
3211
3212         bpf_compute_data_pointers(skb);
3213         return ret;
3214 }
3215
3216 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3217         .func           = bpf_skb_change_head,
3218         .gpl_only       = false,
3219         .ret_type       = RET_INTEGER,
3220         .arg1_type      = ARG_PTR_TO_CTX,
3221         .arg2_type      = ARG_ANYTHING,
3222         .arg3_type      = ARG_ANYTHING,
3223 };
3224
3225 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3226            u64, flags)
3227 {
3228         int ret = __bpf_skb_change_head(skb, head_room, flags);
3229
3230         bpf_compute_data_end_sk_skb(skb);
3231         return ret;
3232 }
3233
3234 static const struct bpf_func_proto sk_skb_change_head_proto = {
3235         .func           = sk_skb_change_head,
3236         .gpl_only       = false,
3237         .ret_type       = RET_INTEGER,
3238         .arg1_type      = ARG_PTR_TO_CTX,
3239         .arg2_type      = ARG_ANYTHING,
3240         .arg3_type      = ARG_ANYTHING,
3241 };
3242 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3243 {
3244         return xdp_data_meta_unsupported(xdp) ? 0 :
3245                xdp->data - xdp->data_meta;
3246 }
3247
3248 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3249 {
3250         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3251         unsigned long metalen = xdp_get_metalen(xdp);
3252         void *data_start = xdp_frame_end + metalen;
3253         void *data = xdp->data + offset;
3254
3255         if (unlikely(data < data_start ||
3256                      data > xdp->data_end - ETH_HLEN))
3257                 return -EINVAL;
3258
3259         if (metalen)
3260                 memmove(xdp->data_meta + offset,
3261                         xdp->data_meta, metalen);
3262         xdp->data_meta += offset;
3263         xdp->data = data;
3264
3265         return 0;
3266 }
3267
3268 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3269         .func           = bpf_xdp_adjust_head,
3270         .gpl_only       = false,
3271         .ret_type       = RET_INTEGER,
3272         .arg1_type      = ARG_PTR_TO_CTX,
3273         .arg2_type      = ARG_ANYTHING,
3274 };
3275
3276 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3277 {
3278         void *data_end = xdp->data_end + offset;
3279
3280         /* only shrinking is allowed for now. */
3281         if (unlikely(offset >= 0))
3282                 return -EINVAL;
3283
3284         if (unlikely(data_end < xdp->data + ETH_HLEN))
3285                 return -EINVAL;
3286
3287         xdp->data_end = data_end;
3288
3289         return 0;
3290 }
3291
3292 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3293         .func           = bpf_xdp_adjust_tail,
3294         .gpl_only       = false,
3295         .ret_type       = RET_INTEGER,
3296         .arg1_type      = ARG_PTR_TO_CTX,
3297         .arg2_type      = ARG_ANYTHING,
3298 };
3299
3300 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3301 {
3302         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3303         void *meta = xdp->data_meta + offset;
3304         unsigned long metalen = xdp->data - meta;
3305
3306         if (xdp_data_meta_unsupported(xdp))
3307                 return -ENOTSUPP;
3308         if (unlikely(meta < xdp_frame_end ||
3309                      meta > xdp->data))
3310                 return -EINVAL;
3311         if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3312                      (metalen > 32)))
3313                 return -EACCES;
3314
3315         xdp->data_meta = meta;
3316
3317         return 0;
3318 }
3319
3320 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3321         .func           = bpf_xdp_adjust_meta,
3322         .gpl_only       = false,
3323         .ret_type       = RET_INTEGER,
3324         .arg1_type      = ARG_PTR_TO_CTX,
3325         .arg2_type      = ARG_ANYTHING,
3326 };
3327
3328 static int __bpf_tx_xdp(struct net_device *dev,
3329                         struct bpf_map *map,
3330                         struct xdp_buff *xdp,
3331                         u32 index)
3332 {
3333         struct xdp_frame *xdpf;
3334         int err, sent;
3335
3336         if (!dev->netdev_ops->ndo_xdp_xmit) {
3337                 return -EOPNOTSUPP;
3338         }
3339
3340         err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
3341         if (unlikely(err))
3342                 return err;
3343
3344         xdpf = convert_to_xdp_frame(xdp);
3345         if (unlikely(!xdpf))
3346                 return -EOVERFLOW;
3347
3348         sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3349         if (sent <= 0)
3350                 return sent;
3351         return 0;
3352 }
3353
3354 static noinline int
3355 xdp_do_redirect_slow(struct net_device *dev, struct xdp_buff *xdp,
3356                      struct bpf_prog *xdp_prog, struct bpf_redirect_info *ri)
3357 {
3358         struct net_device *fwd;
3359         u32 index = ri->ifindex;
3360         int err;
3361
3362         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3363         ri->ifindex = 0;
3364         if (unlikely(!fwd)) {
3365                 err = -EINVAL;
3366                 goto err;
3367         }
3368
3369         err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3370         if (unlikely(err))
3371                 goto err;
3372
3373         _trace_xdp_redirect(dev, xdp_prog, index);
3374         return 0;
3375 err:
3376         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3377         return err;
3378 }
3379
3380 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3381                             struct bpf_map *map,
3382                             struct xdp_buff *xdp,
3383                             u32 index)
3384 {
3385         int err;
3386
3387         switch (map->map_type) {
3388         case BPF_MAP_TYPE_DEVMAP: {
3389                 struct bpf_dtab_netdev *dst = fwd;
3390
3391                 err = dev_map_enqueue(dst, xdp, dev_rx);
3392                 if (unlikely(err))
3393                         return err;
3394                 __dev_map_insert_ctx(map, index);
3395                 break;
3396         }
3397         case BPF_MAP_TYPE_CPUMAP: {
3398                 struct bpf_cpu_map_entry *rcpu = fwd;
3399
3400                 err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3401                 if (unlikely(err))
3402                         return err;
3403                 __cpu_map_insert_ctx(map, index);
3404                 break;
3405         }
3406         case BPF_MAP_TYPE_XSKMAP: {
3407                 struct xdp_sock *xs = fwd;
3408
3409                 err = __xsk_map_redirect(map, xdp, xs);
3410                 return err;
3411         }
3412         default:
3413                 break;
3414         }
3415         return 0;
3416 }
3417
3418 void xdp_do_flush_map(void)
3419 {
3420         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3421         struct bpf_map *map = ri->map_to_flush;
3422
3423         ri->map_to_flush = NULL;
3424         if (map) {
3425                 switch (map->map_type) {
3426                 case BPF_MAP_TYPE_DEVMAP:
3427                         __dev_map_flush(map);
3428                         break;
3429                 case BPF_MAP_TYPE_CPUMAP:
3430                         __cpu_map_flush(map);
3431                         break;
3432                 case BPF_MAP_TYPE_XSKMAP:
3433                         __xsk_map_flush(map);
3434                         break;
3435                 default:
3436                         break;
3437                 }
3438         }
3439 }
3440 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3441
3442 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3443 {
3444         switch (map->map_type) {
3445         case BPF_MAP_TYPE_DEVMAP:
3446                 return __dev_map_lookup_elem(map, index);
3447         case BPF_MAP_TYPE_CPUMAP:
3448                 return __cpu_map_lookup_elem(map, index);
3449         case BPF_MAP_TYPE_XSKMAP:
3450                 return __xsk_map_lookup_elem(map, index);
3451         default:
3452                 return NULL;
3453         }
3454 }
3455
3456 void bpf_clear_redirect_map(struct bpf_map *map)
3457 {
3458         struct bpf_redirect_info *ri;
3459         int cpu;
3460
3461         for_each_possible_cpu(cpu) {
3462                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3463                 /* Avoid polluting remote cacheline due to writes if
3464                  * not needed. Once we pass this test, we need the
3465                  * cmpxchg() to make sure it hasn't been changed in
3466                  * the meantime by remote CPU.
3467                  */
3468                 if (unlikely(READ_ONCE(ri->map) == map))
3469                         cmpxchg(&ri->map, map, NULL);
3470         }
3471 }
3472
3473 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3474                                struct bpf_prog *xdp_prog, struct bpf_map *map,
3475                                struct bpf_redirect_info *ri)
3476 {
3477         u32 index = ri->ifindex;
3478         void *fwd = NULL;
3479         int err;
3480
3481         ri->ifindex = 0;
3482         WRITE_ONCE(ri->map, NULL);
3483
3484         fwd = __xdp_map_lookup_elem(map, index);
3485         if (unlikely(!fwd)) {
3486                 err = -EINVAL;
3487                 goto err;
3488         }
3489         if (ri->map_to_flush && unlikely(ri->map_to_flush != map))
3490                 xdp_do_flush_map();
3491
3492         err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3493         if (unlikely(err))
3494                 goto err;
3495
3496         ri->map_to_flush = map;
3497         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3498         return 0;
3499 err:
3500         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3501         return err;
3502 }
3503
3504 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3505                     struct bpf_prog *xdp_prog)
3506 {
3507         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3508         struct bpf_map *map = READ_ONCE(ri->map);
3509
3510         if (likely(map))
3511                 return xdp_do_redirect_map(dev, xdp, xdp_prog, map, ri);
3512
3513         return xdp_do_redirect_slow(dev, xdp, xdp_prog, ri);
3514 }
3515 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3516
3517 static int xdp_do_generic_redirect_map(struct net_device *dev,
3518                                        struct sk_buff *skb,
3519                                        struct xdp_buff *xdp,
3520                                        struct bpf_prog *xdp_prog,
3521                                        struct bpf_map *map)
3522 {
3523         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3524         u32 index = ri->ifindex;
3525         void *fwd = NULL;
3526         int err = 0;
3527
3528         ri->ifindex = 0;
3529         WRITE_ONCE(ri->map, NULL);
3530
3531         fwd = __xdp_map_lookup_elem(map, index);
3532         if (unlikely(!fwd)) {
3533                 err = -EINVAL;
3534                 goto err;
3535         }
3536
3537         if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
3538                 struct bpf_dtab_netdev *dst = fwd;
3539
3540                 err = dev_map_generic_redirect(dst, skb, xdp_prog);
3541                 if (unlikely(err))
3542                         goto err;
3543         } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3544                 struct xdp_sock *xs = fwd;
3545
3546                 err = xsk_generic_rcv(xs, xdp);
3547                 if (err)
3548                         goto err;
3549                 consume_skb(skb);
3550         } else {
3551                 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3552                 err = -EBADRQC;
3553                 goto err;
3554         }
3555
3556         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3557         return 0;
3558 err:
3559         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3560         return err;
3561 }
3562
3563 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3564                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3565 {
3566         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3567         struct bpf_map *map = READ_ONCE(ri->map);
3568         u32 index = ri->ifindex;
3569         struct net_device *fwd;
3570         int err = 0;
3571
3572         if (map)
3573                 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3574                                                    map);
3575         ri->ifindex = 0;
3576         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3577         if (unlikely(!fwd)) {
3578                 err = -EINVAL;
3579                 goto err;
3580         }
3581
3582         err = xdp_ok_fwd_dev(fwd, skb->len);
3583         if (unlikely(err))
3584                 goto err;
3585
3586         skb->dev = fwd;
3587         _trace_xdp_redirect(dev, xdp_prog, index);
3588         generic_xdp_tx(skb, xdp_prog);
3589         return 0;
3590 err:
3591         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3592         return err;
3593 }
3594 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3595
3596 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3597 {
3598         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3599
3600         if (unlikely(flags))
3601                 return XDP_ABORTED;
3602
3603         ri->ifindex = ifindex;
3604         ri->flags = flags;
3605         WRITE_ONCE(ri->map, NULL);
3606
3607         return XDP_REDIRECT;
3608 }
3609
3610 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3611         .func           = bpf_xdp_redirect,
3612         .gpl_only       = false,
3613         .ret_type       = RET_INTEGER,
3614         .arg1_type      = ARG_ANYTHING,
3615         .arg2_type      = ARG_ANYTHING,
3616 };
3617
3618 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3619            u64, flags)
3620 {
3621         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3622
3623         if (unlikely(flags))
3624                 return XDP_ABORTED;
3625
3626         ri->ifindex = ifindex;
3627         ri->flags = flags;
3628         WRITE_ONCE(ri->map, map);
3629
3630         return XDP_REDIRECT;
3631 }
3632
3633 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3634         .func           = bpf_xdp_redirect_map,
3635         .gpl_only       = false,
3636         .ret_type       = RET_INTEGER,
3637         .arg1_type      = ARG_CONST_MAP_PTR,
3638         .arg2_type      = ARG_ANYTHING,
3639         .arg3_type      = ARG_ANYTHING,
3640 };
3641
3642 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3643                                   unsigned long off, unsigned long len)
3644 {
3645         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3646
3647         if (unlikely(!ptr))
3648                 return len;
3649         if (ptr != dst_buff)
3650                 memcpy(dst_buff, ptr, len);
3651
3652         return 0;
3653 }
3654
3655 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3656            u64, flags, void *, meta, u64, meta_size)
3657 {
3658         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3659
3660         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3661                 return -EINVAL;
3662         if (unlikely(skb_size > skb->len))
3663                 return -EFAULT;
3664
3665         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3666                                 bpf_skb_copy);
3667 }
3668
3669 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3670         .func           = bpf_skb_event_output,
3671         .gpl_only       = true,
3672         .ret_type       = RET_INTEGER,
3673         .arg1_type      = ARG_PTR_TO_CTX,
3674         .arg2_type      = ARG_CONST_MAP_PTR,
3675         .arg3_type      = ARG_ANYTHING,
3676         .arg4_type      = ARG_PTR_TO_MEM,
3677         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3678 };
3679
3680 static unsigned short bpf_tunnel_key_af(u64 flags)
3681 {
3682         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3683 }
3684
3685 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3686            u32, size, u64, flags)
3687 {
3688         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3689         u8 compat[sizeof(struct bpf_tunnel_key)];
3690         void *to_orig = to;
3691         int err;
3692
3693         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3694                 err = -EINVAL;
3695                 goto err_clear;
3696         }
3697         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3698                 err = -EPROTO;
3699                 goto err_clear;
3700         }
3701         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3702                 err = -EINVAL;
3703                 switch (size) {
3704                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3705                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3706                         goto set_compat;
3707                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3708                         /* Fixup deprecated structure layouts here, so we have
3709                          * a common path later on.
3710                          */
3711                         if (ip_tunnel_info_af(info) != AF_INET)
3712                                 goto err_clear;
3713 set_compat:
3714                         to = (struct bpf_tunnel_key *)compat;
3715                         break;
3716                 default:
3717                         goto err_clear;
3718                 }
3719         }
3720
3721         to->tunnel_id = be64_to_cpu(info->key.tun_id);
3722         to->tunnel_tos = info->key.tos;
3723         to->tunnel_ttl = info->key.ttl;
3724         to->tunnel_ext = 0;
3725
3726         if (flags & BPF_F_TUNINFO_IPV6) {
3727                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3728                        sizeof(to->remote_ipv6));
3729                 to->tunnel_label = be32_to_cpu(info->key.label);
3730         } else {
3731                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3732                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3733                 to->tunnel_label = 0;
3734         }
3735
3736         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3737                 memcpy(to_orig, to, size);
3738
3739         return 0;
3740 err_clear:
3741         memset(to_orig, 0, size);
3742         return err;
3743 }
3744
3745 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3746         .func           = bpf_skb_get_tunnel_key,
3747         .gpl_only       = false,
3748         .ret_type       = RET_INTEGER,
3749         .arg1_type      = ARG_PTR_TO_CTX,
3750         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3751         .arg3_type      = ARG_CONST_SIZE,
3752         .arg4_type      = ARG_ANYTHING,
3753 };
3754
3755 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3756 {
3757         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3758         int err;
3759
3760         if (unlikely(!info ||
3761                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3762                 err = -ENOENT;
3763                 goto err_clear;
3764         }
3765         if (unlikely(size < info->options_len)) {
3766                 err = -ENOMEM;
3767                 goto err_clear;
3768         }
3769
3770         ip_tunnel_info_opts_get(to, info);
3771         if (size > info->options_len)
3772                 memset(to + info->options_len, 0, size - info->options_len);
3773
3774         return info->options_len;
3775 err_clear:
3776         memset(to, 0, size);
3777         return err;
3778 }
3779
3780 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3781         .func           = bpf_skb_get_tunnel_opt,
3782         .gpl_only       = false,
3783         .ret_type       = RET_INTEGER,
3784         .arg1_type      = ARG_PTR_TO_CTX,
3785         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3786         .arg3_type      = ARG_CONST_SIZE,
3787 };
3788
3789 static struct metadata_dst __percpu *md_dst;
3790
3791 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3792            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3793 {
3794         struct metadata_dst *md = this_cpu_ptr(md_dst);
3795         u8 compat[sizeof(struct bpf_tunnel_key)];
3796         struct ip_tunnel_info *info;
3797
3798         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3799                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3800                 return -EINVAL;
3801         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3802                 switch (size) {
3803                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3804                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3805                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3806                         /* Fixup deprecated structure layouts here, so we have
3807                          * a common path later on.
3808                          */
3809                         memcpy(compat, from, size);
3810                         memset(compat + size, 0, sizeof(compat) - size);
3811                         from = (const struct bpf_tunnel_key *) compat;
3812                         break;
3813                 default:
3814                         return -EINVAL;
3815                 }
3816         }
3817         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3818                      from->tunnel_ext))
3819                 return -EINVAL;
3820
3821         skb_dst_drop(skb);
3822         dst_hold((struct dst_entry *) md);
3823         skb_dst_set(skb, (struct dst_entry *) md);
3824
3825         info = &md->u.tun_info;
3826         memset(info, 0, sizeof(*info));
3827         info->mode = IP_TUNNEL_INFO_TX;
3828
3829         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3830         if (flags & BPF_F_DONT_FRAGMENT)
3831                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3832         if (flags & BPF_F_ZERO_CSUM_TX)
3833                 info->key.tun_flags &= ~TUNNEL_CSUM;
3834         if (flags & BPF_F_SEQ_NUMBER)
3835                 info->key.tun_flags |= TUNNEL_SEQ;
3836
3837         info->key.tun_id = cpu_to_be64(from->tunnel_id);
3838         info->key.tos = from->tunnel_tos;
3839         info->key.ttl = from->tunnel_ttl;
3840
3841         if (flags & BPF_F_TUNINFO_IPV6) {
3842                 info->mode |= IP_TUNNEL_INFO_IPV6;
3843                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3844                        sizeof(from->remote_ipv6));
3845                 info->key.label = cpu_to_be32(from->tunnel_label) &
3846                                   IPV6_FLOWLABEL_MASK;
3847         } else {
3848                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3849         }
3850
3851         return 0;
3852 }
3853
3854 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3855         .func           = bpf_skb_set_tunnel_key,
3856         .gpl_only       = false,
3857         .ret_type       = RET_INTEGER,
3858         .arg1_type      = ARG_PTR_TO_CTX,
3859         .arg2_type      = ARG_PTR_TO_MEM,
3860         .arg3_type      = ARG_CONST_SIZE,
3861         .arg4_type      = ARG_ANYTHING,
3862 };
3863
3864 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3865            const u8 *, from, u32, size)
3866 {
3867         struct ip_tunnel_info *info = skb_tunnel_info(skb);
3868         const struct metadata_dst *md = this_cpu_ptr(md_dst);
3869
3870         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3871                 return -EINVAL;
3872         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3873                 return -ENOMEM;
3874
3875         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
3876
3877         return 0;
3878 }
3879
3880 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3881         .func           = bpf_skb_set_tunnel_opt,
3882         .gpl_only       = false,
3883         .ret_type       = RET_INTEGER,
3884         .arg1_type      = ARG_PTR_TO_CTX,
3885         .arg2_type      = ARG_PTR_TO_MEM,
3886         .arg3_type      = ARG_CONST_SIZE,
3887 };
3888
3889 static const struct bpf_func_proto *
3890 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3891 {
3892         if (!md_dst) {
3893                 struct metadata_dst __percpu *tmp;
3894
3895                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3896                                                 METADATA_IP_TUNNEL,
3897                                                 GFP_KERNEL);
3898                 if (!tmp)
3899                         return NULL;
3900                 if (cmpxchg(&md_dst, NULL, tmp))
3901                         metadata_dst_free_percpu(tmp);
3902         }
3903
3904         switch (which) {
3905         case BPF_FUNC_skb_set_tunnel_key:
3906                 return &bpf_skb_set_tunnel_key_proto;
3907         case BPF_FUNC_skb_set_tunnel_opt:
3908                 return &bpf_skb_set_tunnel_opt_proto;
3909         default:
3910                 return NULL;
3911         }
3912 }
3913
3914 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3915            u32, idx)
3916 {
3917         struct bpf_array *array = container_of(map, struct bpf_array, map);
3918         struct cgroup *cgrp;
3919         struct sock *sk;
3920
3921         sk = skb_to_full_sk(skb);
3922         if (!sk || !sk_fullsock(sk))
3923                 return -ENOENT;
3924         if (unlikely(idx >= array->map.max_entries))
3925                 return -E2BIG;
3926
3927         cgrp = READ_ONCE(array->ptrs[idx]);
3928         if (unlikely(!cgrp))
3929                 return -EAGAIN;
3930
3931         return sk_under_cgroup_hierarchy(sk, cgrp);
3932 }
3933
3934 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3935         .func           = bpf_skb_under_cgroup,
3936         .gpl_only       = false,
3937         .ret_type       = RET_INTEGER,
3938         .arg1_type      = ARG_PTR_TO_CTX,
3939         .arg2_type      = ARG_CONST_MAP_PTR,
3940         .arg3_type      = ARG_ANYTHING,
3941 };
3942
3943 #ifdef CONFIG_SOCK_CGROUP_DATA
3944 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
3945 {
3946         struct sock *sk = skb_to_full_sk(skb);
3947         struct cgroup *cgrp;
3948
3949         if (!sk || !sk_fullsock(sk))
3950                 return 0;
3951
3952         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3953         return cgrp->kn->id.id;
3954 }
3955
3956 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
3957         .func           = bpf_skb_cgroup_id,
3958         .gpl_only       = false,
3959         .ret_type       = RET_INTEGER,
3960         .arg1_type      = ARG_PTR_TO_CTX,
3961 };
3962
3963 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
3964            ancestor_level)
3965 {
3966         struct sock *sk = skb_to_full_sk(skb);
3967         struct cgroup *ancestor;
3968         struct cgroup *cgrp;
3969
3970         if (!sk || !sk_fullsock(sk))
3971                 return 0;
3972
3973         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3974         ancestor = cgroup_ancestor(cgrp, ancestor_level);
3975         if (!ancestor)
3976                 return 0;
3977
3978         return ancestor->kn->id.id;
3979 }
3980
3981 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
3982         .func           = bpf_skb_ancestor_cgroup_id,
3983         .gpl_only       = false,
3984         .ret_type       = RET_INTEGER,
3985         .arg1_type      = ARG_PTR_TO_CTX,
3986         .arg2_type      = ARG_ANYTHING,
3987 };
3988 #endif
3989
3990 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3991                                   unsigned long off, unsigned long len)
3992 {
3993         memcpy(dst_buff, src_buff + off, len);
3994         return 0;
3995 }
3996
3997 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3998            u64, flags, void *, meta, u64, meta_size)
3999 {
4000         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4001
4002         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4003                 return -EINVAL;
4004         if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4005                 return -EFAULT;
4006
4007         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4008                                 xdp_size, bpf_xdp_copy);
4009 }
4010
4011 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4012         .func           = bpf_xdp_event_output,
4013         .gpl_only       = true,
4014         .ret_type       = RET_INTEGER,
4015         .arg1_type      = ARG_PTR_TO_CTX,
4016         .arg2_type      = ARG_CONST_MAP_PTR,
4017         .arg3_type      = ARG_ANYTHING,
4018         .arg4_type      = ARG_PTR_TO_MEM,
4019         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4020 };
4021
4022 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4023 {
4024         return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4025 }
4026
4027 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4028         .func           = bpf_get_socket_cookie,
4029         .gpl_only       = false,
4030         .ret_type       = RET_INTEGER,
4031         .arg1_type      = ARG_PTR_TO_CTX,
4032 };
4033
4034 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4035 {
4036         return sock_gen_cookie(ctx->sk);
4037 }
4038
4039 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4040         .func           = bpf_get_socket_cookie_sock_addr,
4041         .gpl_only       = false,
4042         .ret_type       = RET_INTEGER,
4043         .arg1_type      = ARG_PTR_TO_CTX,
4044 };
4045
4046 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4047 {
4048         return sock_gen_cookie(ctx->sk);
4049 }
4050
4051 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4052         .func           = bpf_get_socket_cookie_sock_ops,
4053         .gpl_only       = false,
4054         .ret_type       = RET_INTEGER,
4055         .arg1_type      = ARG_PTR_TO_CTX,
4056 };
4057
4058 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4059 {
4060         struct sock *sk = sk_to_full_sk(skb->sk);
4061         kuid_t kuid;
4062
4063         if (!sk || !sk_fullsock(sk))
4064                 return overflowuid;
4065         kuid = sock_net_uid(sock_net(sk), sk);
4066         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4067 }
4068
4069 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4070         .func           = bpf_get_socket_uid,
4071         .gpl_only       = false,
4072         .ret_type       = RET_INTEGER,
4073         .arg1_type      = ARG_PTR_TO_CTX,
4074 };
4075
4076 BPF_CALL_5(bpf_sockopt_event_output, struct bpf_sock_ops_kern *, bpf_sock,
4077            struct bpf_map *, map, u64, flags, void *, data, u64, size)
4078 {
4079         if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
4080                 return -EINVAL;
4081
4082         return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
4083 }
4084
4085 static const struct bpf_func_proto bpf_sockopt_event_output_proto =  {
4086         .func           = bpf_sockopt_event_output,
4087         .gpl_only       = true,
4088         .ret_type       = RET_INTEGER,
4089         .arg1_type      = ARG_PTR_TO_CTX,
4090         .arg2_type      = ARG_CONST_MAP_PTR,
4091         .arg3_type      = ARG_ANYTHING,
4092         .arg4_type      = ARG_PTR_TO_MEM,
4093         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4094 };
4095
4096 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4097            int, level, int, optname, char *, optval, int, optlen)
4098 {
4099         struct sock *sk = bpf_sock->sk;
4100         int ret = 0;
4101         int val;
4102
4103         if (!sk_fullsock(sk))
4104                 return -EINVAL;
4105
4106         if (level == SOL_SOCKET) {
4107                 if (optlen != sizeof(int))
4108                         return -EINVAL;
4109                 val = *((int *)optval);
4110
4111                 /* Only some socketops are supported */
4112                 switch (optname) {
4113                 case SO_RCVBUF:
4114                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4115                         sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
4116                         break;
4117                 case SO_SNDBUF:
4118                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4119                         sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
4120                         break;
4121                 case SO_MAX_PACING_RATE: /* 32bit version */
4122                         sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4123                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4124                                                  sk->sk_max_pacing_rate);
4125                         break;
4126                 case SO_PRIORITY:
4127                         sk->sk_priority = val;
4128                         break;
4129                 case SO_RCVLOWAT:
4130                         if (val < 0)
4131                                 val = INT_MAX;
4132                         sk->sk_rcvlowat = val ? : 1;
4133                         break;
4134                 case SO_MARK:
4135                         if (sk->sk_mark != val) {
4136                                 sk->sk_mark = val;
4137                                 sk_dst_reset(sk);
4138                         }
4139                         break;
4140                 default:
4141                         ret = -EINVAL;
4142                 }
4143 #ifdef CONFIG_INET
4144         } else if (level == SOL_IP) {
4145                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4146                         return -EINVAL;
4147
4148                 val = *((int *)optval);
4149                 /* Only some options are supported */
4150                 switch (optname) {
4151                 case IP_TOS:
4152                         if (val < -1 || val > 0xff) {
4153                                 ret = -EINVAL;
4154                         } else {
4155                                 struct inet_sock *inet = inet_sk(sk);
4156
4157                                 if (val == -1)
4158                                         val = 0;
4159                                 inet->tos = val;
4160                         }
4161                         break;
4162                 default:
4163                         ret = -EINVAL;
4164                 }
4165 #if IS_ENABLED(CONFIG_IPV6)
4166         } else if (level == SOL_IPV6) {
4167                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4168                         return -EINVAL;
4169
4170                 val = *((int *)optval);
4171                 /* Only some options are supported */
4172                 switch (optname) {
4173                 case IPV6_TCLASS:
4174                         if (val < -1 || val > 0xff) {
4175                                 ret = -EINVAL;
4176                         } else {
4177                                 struct ipv6_pinfo *np = inet6_sk(sk);
4178
4179                                 if (val == -1)
4180                                         val = 0;
4181                                 np->tclass = val;
4182                         }
4183                         break;
4184                 default:
4185                         ret = -EINVAL;
4186                 }
4187 #endif
4188         } else if (level == SOL_TCP &&
4189                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4190                 if (optname == TCP_CONGESTION) {
4191                         char name[TCP_CA_NAME_MAX];
4192                         bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
4193
4194                         strncpy(name, optval, min_t(long, optlen,
4195                                                     TCP_CA_NAME_MAX-1));
4196                         name[TCP_CA_NAME_MAX-1] = 0;
4197                         ret = tcp_set_congestion_control(sk, name, false,
4198                                                          reinit);
4199                 } else {
4200                         struct tcp_sock *tp = tcp_sk(sk);
4201
4202                         if (optlen != sizeof(int))
4203                                 return -EINVAL;
4204
4205                         val = *((int *)optval);
4206                         /* Only some options are supported */
4207                         switch (optname) {
4208                         case TCP_BPF_IW:
4209                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4210                                         ret = -EINVAL;
4211                                 else
4212                                         tp->snd_cwnd = val;
4213                                 break;
4214                         case TCP_BPF_SNDCWND_CLAMP:
4215                                 if (val <= 0) {
4216                                         ret = -EINVAL;
4217                                 } else {
4218                                         tp->snd_cwnd_clamp = val;
4219                                         tp->snd_ssthresh = val;
4220                                 }
4221                                 break;
4222                         case TCP_SAVE_SYN:
4223                                 if (val < 0 || val > 1)
4224                                         ret = -EINVAL;
4225                                 else
4226                                         tp->save_syn = val;
4227                                 break;
4228                         default:
4229                                 ret = -EINVAL;
4230                         }
4231                 }
4232 #endif
4233         } else {
4234                 ret = -EINVAL;
4235         }
4236         return ret;
4237 }
4238
4239 static const struct bpf_func_proto bpf_setsockopt_proto = {
4240         .func           = bpf_setsockopt,
4241         .gpl_only       = false,
4242         .ret_type       = RET_INTEGER,
4243         .arg1_type      = ARG_PTR_TO_CTX,
4244         .arg2_type      = ARG_ANYTHING,
4245         .arg3_type      = ARG_ANYTHING,
4246         .arg4_type      = ARG_PTR_TO_MEM,
4247         .arg5_type      = ARG_CONST_SIZE,
4248 };
4249
4250 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4251            int, level, int, optname, char *, optval, int, optlen)
4252 {
4253         struct sock *sk = bpf_sock->sk;
4254
4255         if (!sk_fullsock(sk))
4256                 goto err_clear;
4257 #ifdef CONFIG_INET
4258         if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4259                 struct inet_connection_sock *icsk;
4260                 struct tcp_sock *tp;
4261
4262                 switch (optname) {
4263                 case TCP_CONGESTION:
4264                         icsk = inet_csk(sk);
4265
4266                         if (!icsk->icsk_ca_ops || optlen <= 1)
4267                                 goto err_clear;
4268                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4269                         optval[optlen - 1] = 0;
4270                         break;
4271                 case TCP_SAVED_SYN:
4272                         tp = tcp_sk(sk);
4273
4274                         if (optlen <= 0 || !tp->saved_syn ||
4275                             optlen > tp->saved_syn[0])
4276                                 goto err_clear;
4277                         memcpy(optval, tp->saved_syn + 1, optlen);
4278                         break;
4279                 default:
4280                         goto err_clear;
4281                 }
4282         } else if (level == SOL_IP) {
4283                 struct inet_sock *inet = inet_sk(sk);
4284
4285                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4286                         goto err_clear;
4287
4288                 /* Only some options are supported */
4289                 switch (optname) {
4290                 case IP_TOS:
4291                         *((int *)optval) = (int)inet->tos;
4292                         break;
4293                 default:
4294                         goto err_clear;
4295                 }
4296 #if IS_ENABLED(CONFIG_IPV6)
4297         } else if (level == SOL_IPV6) {
4298                 struct ipv6_pinfo *np = inet6_sk(sk);
4299
4300                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4301                         goto err_clear;
4302
4303                 /* Only some options are supported */
4304                 switch (optname) {
4305                 case IPV6_TCLASS:
4306                         *((int *)optval) = (int)np->tclass;
4307                         break;
4308                 default:
4309                         goto err_clear;
4310                 }
4311 #endif
4312         } else {
4313                 goto err_clear;
4314         }
4315         return 0;
4316 #endif
4317 err_clear:
4318         memset(optval, 0, optlen);
4319         return -EINVAL;
4320 }
4321
4322 static const struct bpf_func_proto bpf_getsockopt_proto = {
4323         .func           = bpf_getsockopt,
4324         .gpl_only       = false,
4325         .ret_type       = RET_INTEGER,
4326         .arg1_type      = ARG_PTR_TO_CTX,
4327         .arg2_type      = ARG_ANYTHING,
4328         .arg3_type      = ARG_ANYTHING,
4329         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4330         .arg5_type      = ARG_CONST_SIZE,
4331 };
4332
4333 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4334            int, argval)
4335 {
4336         struct sock *sk = bpf_sock->sk;
4337         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4338
4339         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4340                 return -EINVAL;
4341
4342         if (val)
4343                 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4344
4345         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4346 }
4347
4348 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4349         .func           = bpf_sock_ops_cb_flags_set,
4350         .gpl_only       = false,
4351         .ret_type       = RET_INTEGER,
4352         .arg1_type      = ARG_PTR_TO_CTX,
4353         .arg2_type      = ARG_ANYTHING,
4354 };
4355
4356 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4357 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4358
4359 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4360            int, addr_len)
4361 {
4362 #ifdef CONFIG_INET
4363         struct sock *sk = ctx->sk;
4364         int err;
4365
4366         /* Binding to port can be expensive so it's prohibited in the helper.
4367          * Only binding to IP is supported.
4368          */
4369         err = -EINVAL;
4370         if (addr->sa_family == AF_INET) {
4371                 if (addr_len < sizeof(struct sockaddr_in))
4372                         return err;
4373                 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4374                         return err;
4375                 return __inet_bind(sk, addr, addr_len, true, false);
4376 #if IS_ENABLED(CONFIG_IPV6)
4377         } else if (addr->sa_family == AF_INET6) {
4378                 if (addr_len < SIN6_LEN_RFC2133)
4379                         return err;
4380                 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4381                         return err;
4382                 /* ipv6_bpf_stub cannot be NULL, since it's called from
4383                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4384                  */
4385                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4386 #endif /* CONFIG_IPV6 */
4387         }
4388 #endif /* CONFIG_INET */
4389
4390         return -EAFNOSUPPORT;
4391 }
4392
4393 static const struct bpf_func_proto bpf_bind_proto = {
4394         .func           = bpf_bind,
4395         .gpl_only       = false,
4396         .ret_type       = RET_INTEGER,
4397         .arg1_type      = ARG_PTR_TO_CTX,
4398         .arg2_type      = ARG_PTR_TO_MEM,
4399         .arg3_type      = ARG_CONST_SIZE,
4400 };
4401
4402 #ifdef CONFIG_XFRM
4403 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4404            struct bpf_xfrm_state *, to, u32, size, u64, flags)
4405 {
4406         const struct sec_path *sp = skb_sec_path(skb);
4407         const struct xfrm_state *x;
4408
4409         if (!sp || unlikely(index >= sp->len || flags))
4410                 goto err_clear;
4411
4412         x = sp->xvec[index];
4413
4414         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4415                 goto err_clear;
4416
4417         to->reqid = x->props.reqid;
4418         to->spi = x->id.spi;
4419         to->family = x->props.family;
4420         to->ext = 0;
4421
4422         if (to->family == AF_INET6) {
4423                 memcpy(to->remote_ipv6, x->props.saddr.a6,
4424                        sizeof(to->remote_ipv6));
4425         } else {
4426                 to->remote_ipv4 = x->props.saddr.a4;
4427                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4428         }
4429
4430         return 0;
4431 err_clear:
4432         memset(to, 0, size);
4433         return -EINVAL;
4434 }
4435
4436 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4437         .func           = bpf_skb_get_xfrm_state,
4438         .gpl_only       = false,
4439         .ret_type       = RET_INTEGER,
4440         .arg1_type      = ARG_PTR_TO_CTX,
4441         .arg2_type      = ARG_ANYTHING,
4442         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4443         .arg4_type      = ARG_CONST_SIZE,
4444         .arg5_type      = ARG_ANYTHING,
4445 };
4446 #endif
4447
4448 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4449 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4450                                   const struct neighbour *neigh,
4451                                   const struct net_device *dev)
4452 {
4453         memcpy(params->dmac, neigh->ha, ETH_ALEN);
4454         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4455         params->h_vlan_TCI = 0;
4456         params->h_vlan_proto = 0;
4457         params->ifindex = dev->ifindex;
4458
4459         return 0;
4460 }
4461 #endif
4462
4463 #if IS_ENABLED(CONFIG_INET)
4464 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4465                                u32 flags, bool check_mtu)
4466 {
4467         struct in_device *in_dev;
4468         struct neighbour *neigh;
4469         struct net_device *dev;
4470         struct fib_result res;
4471         struct fib_nh *nh;
4472         struct flowi4 fl4;
4473         int err;
4474         u32 mtu;
4475
4476         dev = dev_get_by_index_rcu(net, params->ifindex);
4477         if (unlikely(!dev))
4478                 return -ENODEV;
4479
4480         /* verify forwarding is enabled on this interface */
4481         in_dev = __in_dev_get_rcu(dev);
4482         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4483                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4484
4485         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4486                 fl4.flowi4_iif = 1;
4487                 fl4.flowi4_oif = params->ifindex;
4488         } else {
4489                 fl4.flowi4_iif = params->ifindex;
4490                 fl4.flowi4_oif = 0;
4491         }
4492         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4493         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4494         fl4.flowi4_flags = 0;
4495
4496         fl4.flowi4_proto = params->l4_protocol;
4497         fl4.daddr = params->ipv4_dst;
4498         fl4.saddr = params->ipv4_src;
4499         fl4.fl4_sport = params->sport;
4500         fl4.fl4_dport = params->dport;
4501
4502         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4503                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4504                 struct fib_table *tb;
4505
4506                 tb = fib_get_table(net, tbid);
4507                 if (unlikely(!tb))
4508                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4509
4510                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4511         } else {
4512                 fl4.flowi4_mark = 0;
4513                 fl4.flowi4_secid = 0;
4514                 fl4.flowi4_tun_key.tun_id = 0;
4515                 fl4.flowi4_uid = sock_net_uid(net, NULL);
4516
4517                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4518         }
4519
4520         if (err) {
4521                 /* map fib lookup errors to RTN_ type */
4522                 if (err == -EINVAL)
4523                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4524                 if (err == -EHOSTUNREACH)
4525                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4526                 if (err == -EACCES)
4527                         return BPF_FIB_LKUP_RET_PROHIBIT;
4528
4529                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4530         }
4531
4532         if (res.type != RTN_UNICAST)
4533                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4534
4535         if (res.fi->fib_nhs > 1)
4536                 fib_select_path(net, &res, &fl4, NULL);
4537
4538         if (check_mtu) {
4539                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4540                 if (params->tot_len > mtu)
4541                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4542         }
4543
4544         nh = &res.fi->fib_nh[res.nh_sel];
4545
4546         /* do not handle lwt encaps right now */
4547         if (nh->nh_lwtstate)
4548                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4549
4550         dev = nh->nh_dev;
4551         if (nh->nh_gw)
4552                 params->ipv4_dst = nh->nh_gw;
4553
4554         params->rt_metric = res.fi->fib_priority;
4555
4556         /* xdp and cls_bpf programs are run in RCU-bh so
4557          * rcu_read_lock_bh is not needed here
4558          */
4559         neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst);
4560         if (!neigh)
4561                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4562
4563         return bpf_fib_set_fwd_params(params, neigh, dev);
4564 }
4565 #endif
4566
4567 #if IS_ENABLED(CONFIG_IPV6)
4568 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4569                                u32 flags, bool check_mtu)
4570 {
4571         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4572         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4573         struct neighbour *neigh;
4574         struct net_device *dev;
4575         struct inet6_dev *idev;
4576         struct fib6_info *f6i;
4577         struct flowi6 fl6;
4578         int strict = 0;
4579         int oif;
4580         u32 mtu;
4581
4582         /* link local addresses are never forwarded */
4583         if (rt6_need_strict(dst) || rt6_need_strict(src))
4584                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4585
4586         dev = dev_get_by_index_rcu(net, params->ifindex);
4587         if (unlikely(!dev))
4588                 return -ENODEV;
4589
4590         idev = __in6_dev_get_safely(dev);
4591         if (unlikely(!idev || !net->ipv6.devconf_all->forwarding))
4592                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4593
4594         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4595                 fl6.flowi6_iif = 1;
4596                 oif = fl6.flowi6_oif = params->ifindex;
4597         } else {
4598                 oif = fl6.flowi6_iif = params->ifindex;
4599                 fl6.flowi6_oif = 0;
4600                 strict = RT6_LOOKUP_F_HAS_SADDR;
4601         }
4602         fl6.flowlabel = params->flowinfo;
4603         fl6.flowi6_scope = 0;
4604         fl6.flowi6_flags = 0;
4605         fl6.mp_hash = 0;
4606
4607         fl6.flowi6_proto = params->l4_protocol;
4608         fl6.daddr = *dst;
4609         fl6.saddr = *src;
4610         fl6.fl6_sport = params->sport;
4611         fl6.fl6_dport = params->dport;
4612
4613         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4614                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4615                 struct fib6_table *tb;
4616
4617                 tb = ipv6_stub->fib6_get_table(net, tbid);
4618                 if (unlikely(!tb))
4619                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4620
4621                 f6i = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, strict);
4622         } else {
4623                 fl6.flowi6_mark = 0;
4624                 fl6.flowi6_secid = 0;
4625                 fl6.flowi6_tun_key.tun_id = 0;
4626                 fl6.flowi6_uid = sock_net_uid(net, NULL);
4627
4628                 f6i = ipv6_stub->fib6_lookup(net, oif, &fl6, strict);
4629         }
4630
4631         if (unlikely(IS_ERR_OR_NULL(f6i) || f6i == net->ipv6.fib6_null_entry))
4632                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4633
4634         if (unlikely(f6i->fib6_flags & RTF_REJECT)) {
4635                 switch (f6i->fib6_type) {
4636                 case RTN_BLACKHOLE:
4637                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4638                 case RTN_UNREACHABLE:
4639                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4640                 case RTN_PROHIBIT:
4641                         return BPF_FIB_LKUP_RET_PROHIBIT;
4642                 default:
4643                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4644                 }
4645         }
4646
4647         if (f6i->fib6_type != RTN_UNICAST)
4648                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4649
4650         if (f6i->fib6_nsiblings && fl6.flowi6_oif == 0)
4651                 f6i = ipv6_stub->fib6_multipath_select(net, f6i, &fl6,
4652                                                        fl6.flowi6_oif, NULL,
4653                                                        strict);
4654
4655         if (check_mtu) {
4656                 mtu = ipv6_stub->ip6_mtu_from_fib6(f6i, dst, src);
4657                 if (params->tot_len > mtu)
4658                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4659         }
4660
4661         if (f6i->fib6_nh.nh_lwtstate)
4662                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4663
4664         if (f6i->fib6_flags & RTF_GATEWAY)
4665                 *dst = f6i->fib6_nh.nh_gw;
4666
4667         dev = f6i->fib6_nh.nh_dev;
4668         params->rt_metric = f6i->fib6_metric;
4669
4670         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4671          * not needed here. Can not use __ipv6_neigh_lookup_noref here
4672          * because we need to get nd_tbl via the stub
4673          */
4674         neigh = ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128,
4675                                       ndisc_hashfn, dst, dev);
4676         if (!neigh)
4677                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4678
4679         return bpf_fib_set_fwd_params(params, neigh, dev);
4680 }
4681 #endif
4682
4683 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4684            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4685 {
4686         if (plen < sizeof(*params))
4687                 return -EINVAL;
4688
4689         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4690                 return -EINVAL;
4691
4692         switch (params->family) {
4693 #if IS_ENABLED(CONFIG_INET)
4694         case AF_INET:
4695                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4696                                            flags, true);
4697 #endif
4698 #if IS_ENABLED(CONFIG_IPV6)
4699         case AF_INET6:
4700                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4701                                            flags, true);
4702 #endif
4703         }
4704         return -EAFNOSUPPORT;
4705 }
4706
4707 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4708         .func           = bpf_xdp_fib_lookup,
4709         .gpl_only       = true,
4710         .ret_type       = RET_INTEGER,
4711         .arg1_type      = ARG_PTR_TO_CTX,
4712         .arg2_type      = ARG_PTR_TO_MEM,
4713         .arg3_type      = ARG_CONST_SIZE,
4714         .arg4_type      = ARG_ANYTHING,
4715 };
4716
4717 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4718            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4719 {
4720         struct net *net = dev_net(skb->dev);
4721         int rc = -EAFNOSUPPORT;
4722
4723         if (plen < sizeof(*params))
4724                 return -EINVAL;
4725
4726         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4727                 return -EINVAL;
4728
4729         switch (params->family) {
4730 #if IS_ENABLED(CONFIG_INET)
4731         case AF_INET:
4732                 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4733                 break;
4734 #endif
4735 #if IS_ENABLED(CONFIG_IPV6)
4736         case AF_INET6:
4737                 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4738                 break;
4739 #endif
4740         }
4741
4742         if (!rc) {
4743                 struct net_device *dev;
4744
4745                 dev = dev_get_by_index_rcu(net, params->ifindex);
4746                 if (!is_skb_forwardable(dev, skb))
4747                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4748         }
4749
4750         return rc;
4751 }
4752
4753 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4754         .func           = bpf_skb_fib_lookup,
4755         .gpl_only       = true,
4756         .ret_type       = RET_INTEGER,
4757         .arg1_type      = ARG_PTR_TO_CTX,
4758         .arg2_type      = ARG_PTR_TO_MEM,
4759         .arg3_type      = ARG_CONST_SIZE,
4760         .arg4_type      = ARG_ANYTHING,
4761 };
4762
4763 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4764 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4765 {
4766         int err;
4767         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4768
4769         if (!seg6_validate_srh(srh, len))
4770                 return -EINVAL;
4771
4772         switch (type) {
4773         case BPF_LWT_ENCAP_SEG6_INLINE:
4774                 if (skb->protocol != htons(ETH_P_IPV6))
4775                         return -EBADMSG;
4776
4777                 err = seg6_do_srh_inline(skb, srh);
4778                 break;
4779         case BPF_LWT_ENCAP_SEG6:
4780                 skb_reset_inner_headers(skb);
4781                 skb->encapsulation = 1;
4782                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4783                 break;
4784         default:
4785                 return -EINVAL;
4786         }
4787
4788         bpf_compute_data_pointers(skb);
4789         if (err)
4790                 return err;
4791
4792         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4793         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4794
4795         return seg6_lookup_nexthop(skb, NULL, 0);
4796 }
4797 #endif /* CONFIG_IPV6_SEG6_BPF */
4798
4799 BPF_CALL_4(bpf_lwt_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4800            u32, len)
4801 {
4802         switch (type) {
4803 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4804         case BPF_LWT_ENCAP_SEG6:
4805         case BPF_LWT_ENCAP_SEG6_INLINE:
4806                 return bpf_push_seg6_encap(skb, type, hdr, len);
4807 #endif
4808         default:
4809                 return -EINVAL;
4810         }
4811 }
4812
4813 static const struct bpf_func_proto bpf_lwt_push_encap_proto = {
4814         .func           = bpf_lwt_push_encap,
4815         .gpl_only       = false,
4816         .ret_type       = RET_INTEGER,
4817         .arg1_type      = ARG_PTR_TO_CTX,
4818         .arg2_type      = ARG_ANYTHING,
4819         .arg3_type      = ARG_PTR_TO_MEM,
4820         .arg4_type      = ARG_CONST_SIZE
4821 };
4822
4823 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4824 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
4825            const void *, from, u32, len)
4826 {
4827         struct seg6_bpf_srh_state *srh_state =
4828                 this_cpu_ptr(&seg6_bpf_srh_states);
4829         struct ipv6_sr_hdr *srh = srh_state->srh;
4830         void *srh_tlvs, *srh_end, *ptr;
4831         int srhoff = 0;
4832
4833         if (srh == NULL)
4834                 return -EINVAL;
4835
4836         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
4837         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
4838
4839         ptr = skb->data + offset;
4840         if (ptr >= srh_tlvs && ptr + len <= srh_end)
4841                 srh_state->valid = false;
4842         else if (ptr < (void *)&srh->flags ||
4843                  ptr + len > (void *)&srh->segments)
4844                 return -EFAULT;
4845
4846         if (unlikely(bpf_try_make_writable(skb, offset + len)))
4847                 return -EFAULT;
4848         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4849                 return -EINVAL;
4850         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4851
4852         memcpy(skb->data + offset, from, len);
4853         return 0;
4854 }
4855
4856 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
4857         .func           = bpf_lwt_seg6_store_bytes,
4858         .gpl_only       = false,
4859         .ret_type       = RET_INTEGER,
4860         .arg1_type      = ARG_PTR_TO_CTX,
4861         .arg2_type      = ARG_ANYTHING,
4862         .arg3_type      = ARG_PTR_TO_MEM,
4863         .arg4_type      = ARG_CONST_SIZE
4864 };
4865
4866 static void bpf_update_srh_state(struct sk_buff *skb)
4867 {
4868         struct seg6_bpf_srh_state *srh_state =
4869                 this_cpu_ptr(&seg6_bpf_srh_states);
4870         int srhoff = 0;
4871
4872         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
4873                 srh_state->srh = NULL;
4874         } else {
4875                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4876                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
4877                 srh_state->valid = true;
4878         }
4879 }
4880
4881 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
4882            u32, action, void *, param, u32, param_len)
4883 {
4884         struct seg6_bpf_srh_state *srh_state =
4885                 this_cpu_ptr(&seg6_bpf_srh_states);
4886         int hdroff = 0;
4887         int err;
4888
4889         switch (action) {
4890         case SEG6_LOCAL_ACTION_END_X:
4891                 if (!seg6_bpf_has_valid_srh(skb))
4892                         return -EBADMSG;
4893                 if (param_len != sizeof(struct in6_addr))
4894                         return -EINVAL;
4895                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
4896         case SEG6_LOCAL_ACTION_END_T:
4897                 if (!seg6_bpf_has_valid_srh(skb))
4898                         return -EBADMSG;
4899                 if (param_len != sizeof(int))
4900                         return -EINVAL;
4901                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4902         case SEG6_LOCAL_ACTION_END_DT6:
4903                 if (!seg6_bpf_has_valid_srh(skb))
4904                         return -EBADMSG;
4905                 if (param_len != sizeof(int))
4906                         return -EINVAL;
4907
4908                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
4909                         return -EBADMSG;
4910                 if (!pskb_pull(skb, hdroff))
4911                         return -EBADMSG;
4912
4913                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
4914                 skb_reset_network_header(skb);
4915                 skb_reset_transport_header(skb);
4916                 skb->encapsulation = 0;
4917
4918                 bpf_compute_data_pointers(skb);
4919                 bpf_update_srh_state(skb);
4920                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4921         case SEG6_LOCAL_ACTION_END_B6:
4922                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
4923                         return -EBADMSG;
4924                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
4925                                           param, param_len);
4926                 if (!err)
4927                         bpf_update_srh_state(skb);
4928
4929                 return err;
4930         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
4931                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
4932                         return -EBADMSG;
4933                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
4934                                           param, param_len);
4935                 if (!err)
4936                         bpf_update_srh_state(skb);
4937
4938                 return err;
4939         default:
4940                 return -EINVAL;
4941         }
4942 }
4943
4944 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
4945         .func           = bpf_lwt_seg6_action,
4946         .gpl_only       = false,
4947         .ret_type       = RET_INTEGER,
4948         .arg1_type      = ARG_PTR_TO_CTX,
4949         .arg2_type      = ARG_ANYTHING,
4950         .arg3_type      = ARG_PTR_TO_MEM,
4951         .arg4_type      = ARG_CONST_SIZE
4952 };
4953
4954 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
4955            s32, len)
4956 {
4957         struct seg6_bpf_srh_state *srh_state =
4958                 this_cpu_ptr(&seg6_bpf_srh_states);
4959         struct ipv6_sr_hdr *srh = srh_state->srh;
4960         void *srh_end, *srh_tlvs, *ptr;
4961         struct ipv6hdr *hdr;
4962         int srhoff = 0;
4963         int ret;
4964
4965         if (unlikely(srh == NULL))
4966                 return -EINVAL;
4967
4968         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
4969                         ((srh->first_segment + 1) << 4));
4970         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
4971                         srh_state->hdrlen);
4972         ptr = skb->data + offset;
4973
4974         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
4975                 return -EFAULT;
4976         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
4977                 return -EFAULT;
4978
4979         if (len > 0) {
4980                 ret = skb_cow_head(skb, len);
4981                 if (unlikely(ret < 0))
4982                         return ret;
4983
4984                 ret = bpf_skb_net_hdr_push(skb, offset, len);
4985         } else {
4986                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
4987         }
4988
4989         bpf_compute_data_pointers(skb);
4990         if (unlikely(ret < 0))
4991                 return ret;
4992
4993         hdr = (struct ipv6hdr *)skb->data;
4994         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4995
4996         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4997                 return -EINVAL;
4998         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4999         srh_state->hdrlen += len;
5000         srh_state->valid = false;
5001         return 0;
5002 }
5003
5004 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5005         .func           = bpf_lwt_seg6_adjust_srh,
5006         .gpl_only       = false,
5007         .ret_type       = RET_INTEGER,
5008         .arg1_type      = ARG_PTR_TO_CTX,
5009         .arg2_type      = ARG_ANYTHING,
5010         .arg3_type      = ARG_ANYTHING,
5011 };
5012 #endif /* CONFIG_IPV6_SEG6_BPF */
5013
5014 #ifdef CONFIG_INET
5015 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5016                               int dif, int sdif, u8 family, u8 proto)
5017 {
5018         bool refcounted = false;
5019         struct sock *sk = NULL;
5020
5021         if (family == AF_INET) {
5022                 __be32 src4 = tuple->ipv4.saddr;
5023                 __be32 dst4 = tuple->ipv4.daddr;
5024
5025                 if (proto == IPPROTO_TCP)
5026                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5027                                            src4, tuple->ipv4.sport,
5028                                            dst4, tuple->ipv4.dport,
5029                                            dif, sdif, &refcounted);
5030                 else
5031                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5032                                                dst4, tuple->ipv4.dport,
5033                                                dif, sdif, &udp_table, NULL);
5034 #if IS_ENABLED(CONFIG_IPV6)
5035         } else {
5036                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5037                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5038
5039                 if (proto == IPPROTO_TCP)
5040                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5041                                             src6, tuple->ipv6.sport,
5042                                             dst6, ntohs(tuple->ipv6.dport),
5043                                             dif, sdif, &refcounted);
5044                 else if (likely(ipv6_bpf_stub))
5045                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5046                                                             src6, tuple->ipv6.sport,
5047                                                             dst6, tuple->ipv6.dport,
5048                                                             dif, sdif,
5049                                                             &udp_table, NULL);
5050 #endif
5051         }
5052
5053         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5054                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5055                 sk = NULL;
5056         }
5057         return sk;
5058 }
5059
5060 /* bpf_sk_lookup performs the core lookup for different types of sockets,
5061  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5062  * Returns the socket as an 'unsigned long' to simplify the casting in the
5063  * callers to satisfy BPF_CALL declarations.
5064  */
5065 static unsigned long
5066 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5067                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5068                 u64 flags)
5069 {
5070         struct sock *sk = NULL;
5071         u8 family = AF_UNSPEC;
5072         struct net *net;
5073         int sdif;
5074
5075         family = len == sizeof(tuple->ipv4) ? AF_INET : AF_INET6;
5076         if (unlikely(family == AF_UNSPEC || flags ||
5077                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5078                 goto out;
5079
5080         if (family == AF_INET)
5081                 sdif = inet_sdif(skb);
5082         else
5083                 sdif = inet6_sdif(skb);
5084
5085         if ((s32)netns_id < 0) {
5086                 net = caller_net;
5087                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5088         } else {
5089                 net = get_net_ns_by_id(caller_net, netns_id);
5090                 if (unlikely(!net))
5091                         goto out;
5092                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5093                 put_net(net);
5094         }
5095
5096         if (sk)
5097                 sk = sk_to_full_sk(sk);
5098 out:
5099         return (unsigned long) sk;
5100 }
5101
5102 static unsigned long
5103 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5104               u8 proto, u64 netns_id, u64 flags)
5105 {
5106         struct net *caller_net;
5107         int ifindex;
5108
5109         if (skb->dev) {
5110                 caller_net = dev_net(skb->dev);
5111                 ifindex = skb->dev->ifindex;
5112         } else {
5113                 caller_net = sock_net(skb->sk);
5114                 ifindex = 0;
5115         }
5116
5117         return __bpf_sk_lookup(skb, tuple, len, caller_net, ifindex,
5118                               proto, netns_id, flags);
5119 }
5120
5121 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5122            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5123 {
5124         return bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP, netns_id, flags);
5125 }
5126
5127 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5128         .func           = bpf_sk_lookup_tcp,
5129         .gpl_only       = false,
5130         .pkt_access     = true,
5131         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5132         .arg1_type      = ARG_PTR_TO_CTX,
5133         .arg2_type      = ARG_PTR_TO_MEM,
5134         .arg3_type      = ARG_CONST_SIZE,
5135         .arg4_type      = ARG_ANYTHING,
5136         .arg5_type      = ARG_ANYTHING,
5137 };
5138
5139 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5140            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5141 {
5142         return bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP, netns_id, flags);
5143 }
5144
5145 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5146         .func           = bpf_sk_lookup_udp,
5147         .gpl_only       = false,
5148         .pkt_access     = true,
5149         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5150         .arg1_type      = ARG_PTR_TO_CTX,
5151         .arg2_type      = ARG_PTR_TO_MEM,
5152         .arg3_type      = ARG_CONST_SIZE,
5153         .arg4_type      = ARG_ANYTHING,
5154         .arg5_type      = ARG_ANYTHING,
5155 };
5156
5157 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5158 {
5159         if (!sock_flag(sk, SOCK_RCU_FREE))
5160                 sock_gen_put(sk);
5161         return 0;
5162 }
5163
5164 static const struct bpf_func_proto bpf_sk_release_proto = {
5165         .func           = bpf_sk_release,
5166         .gpl_only       = false,
5167         .ret_type       = RET_INTEGER,
5168         .arg1_type      = ARG_PTR_TO_SOCKET,
5169 };
5170
5171 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5172            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5173 {
5174         struct net *caller_net = dev_net(ctx->rxq->dev);
5175         int ifindex = ctx->rxq->dev->ifindex;
5176
5177         return __bpf_sk_lookup(NULL, tuple, len, caller_net, ifindex,
5178                               IPPROTO_UDP, netns_id, flags);
5179 }
5180
5181 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5182         .func           = bpf_xdp_sk_lookup_udp,
5183         .gpl_only       = false,
5184         .pkt_access     = true,
5185         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5186         .arg1_type      = ARG_PTR_TO_CTX,
5187         .arg2_type      = ARG_PTR_TO_MEM,
5188         .arg3_type      = ARG_CONST_SIZE,
5189         .arg4_type      = ARG_ANYTHING,
5190         .arg5_type      = ARG_ANYTHING,
5191 };
5192
5193 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5194            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5195 {
5196         struct net *caller_net = dev_net(ctx->rxq->dev);
5197         int ifindex = ctx->rxq->dev->ifindex;
5198
5199         return __bpf_sk_lookup(NULL, tuple, len, caller_net, ifindex,
5200                               IPPROTO_TCP, netns_id, flags);
5201 }
5202
5203 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5204         .func           = bpf_xdp_sk_lookup_tcp,
5205         .gpl_only       = false,
5206         .pkt_access     = true,
5207         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5208         .arg1_type      = ARG_PTR_TO_CTX,
5209         .arg2_type      = ARG_PTR_TO_MEM,
5210         .arg3_type      = ARG_CONST_SIZE,
5211         .arg4_type      = ARG_ANYTHING,
5212         .arg5_type      = ARG_ANYTHING,
5213 };
5214
5215 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5216            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5217 {
5218         return __bpf_sk_lookup(NULL, tuple, len, sock_net(ctx->sk), 0,
5219                                IPPROTO_TCP, netns_id, flags);
5220 }
5221
5222 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5223         .func           = bpf_sock_addr_sk_lookup_tcp,
5224         .gpl_only       = false,
5225         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5226         .arg1_type      = ARG_PTR_TO_CTX,
5227         .arg2_type      = ARG_PTR_TO_MEM,
5228         .arg3_type      = ARG_CONST_SIZE,
5229         .arg4_type      = ARG_ANYTHING,
5230         .arg5_type      = ARG_ANYTHING,
5231 };
5232
5233 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5234            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5235 {
5236         return __bpf_sk_lookup(NULL, tuple, len, sock_net(ctx->sk), 0,
5237                                IPPROTO_UDP, netns_id, flags);
5238 }
5239
5240 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5241         .func           = bpf_sock_addr_sk_lookup_udp,
5242         .gpl_only       = false,
5243         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5244         .arg1_type      = ARG_PTR_TO_CTX,
5245         .arg2_type      = ARG_PTR_TO_MEM,
5246         .arg3_type      = ARG_CONST_SIZE,
5247         .arg4_type      = ARG_ANYTHING,
5248         .arg5_type      = ARG_ANYTHING,
5249 };
5250
5251 #endif /* CONFIG_INET */
5252
5253 bool bpf_helper_changes_pkt_data(void *func)
5254 {
5255         if (func == bpf_skb_vlan_push ||
5256             func == bpf_skb_vlan_pop ||
5257             func == bpf_skb_store_bytes ||
5258             func == bpf_skb_change_proto ||
5259             func == bpf_skb_change_head ||
5260             func == sk_skb_change_head ||
5261             func == bpf_skb_change_tail ||
5262             func == sk_skb_change_tail ||
5263             func == bpf_skb_adjust_room ||
5264             func == bpf_skb_pull_data ||
5265             func == sk_skb_pull_data ||
5266             func == bpf_clone_redirect ||
5267             func == bpf_l3_csum_replace ||
5268             func == bpf_l4_csum_replace ||
5269             func == bpf_xdp_adjust_head ||
5270             func == bpf_xdp_adjust_meta ||
5271             func == bpf_msg_pull_data ||
5272             func == bpf_msg_push_data ||
5273             func == bpf_msg_pop_data ||
5274             func == bpf_xdp_adjust_tail ||
5275 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5276             func == bpf_lwt_seg6_store_bytes ||
5277             func == bpf_lwt_seg6_adjust_srh ||
5278             func == bpf_lwt_seg6_action ||
5279 #endif
5280             func == bpf_lwt_push_encap)
5281                 return true;
5282
5283         return false;
5284 }
5285
5286 static const struct bpf_func_proto *
5287 bpf_base_func_proto(enum bpf_func_id func_id)
5288 {
5289         switch (func_id) {
5290         case BPF_FUNC_map_lookup_elem:
5291                 return &bpf_map_lookup_elem_proto;
5292         case BPF_FUNC_map_update_elem:
5293                 return &bpf_map_update_elem_proto;
5294         case BPF_FUNC_map_delete_elem:
5295                 return &bpf_map_delete_elem_proto;
5296         case BPF_FUNC_map_push_elem:
5297                 return &bpf_map_push_elem_proto;
5298         case BPF_FUNC_map_pop_elem:
5299                 return &bpf_map_pop_elem_proto;
5300         case BPF_FUNC_map_peek_elem:
5301                 return &bpf_map_peek_elem_proto;
5302         case BPF_FUNC_get_prandom_u32:
5303                 return &bpf_get_prandom_u32_proto;
5304         case BPF_FUNC_get_smp_processor_id:
5305                 return &bpf_get_raw_smp_processor_id_proto;
5306         case BPF_FUNC_get_numa_node_id:
5307                 return &bpf_get_numa_node_id_proto;
5308         case BPF_FUNC_tail_call:
5309                 return &bpf_tail_call_proto;
5310         case BPF_FUNC_ktime_get_ns:
5311                 return &bpf_ktime_get_ns_proto;
5312         case BPF_FUNC_trace_printk:
5313                 if (capable(CAP_SYS_ADMIN))
5314                         return bpf_get_trace_printk_proto();
5315                 /* else, fall through */
5316         default:
5317                 return NULL;
5318         }
5319 }
5320
5321 static const struct bpf_func_proto *
5322 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5323 {
5324         switch (func_id) {
5325         /* inet and inet6 sockets are created in a process
5326          * context so there is always a valid uid/gid
5327          */
5328         case BPF_FUNC_get_current_uid_gid:
5329                 return &bpf_get_current_uid_gid_proto;
5330         case BPF_FUNC_get_local_storage:
5331                 return &bpf_get_local_storage_proto;
5332         default:
5333                 return bpf_base_func_proto(func_id);
5334         }
5335 }
5336
5337 static const struct bpf_func_proto *
5338 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5339 {
5340         switch (func_id) {
5341         /* inet and inet6 sockets are created in a process
5342          * context so there is always a valid uid/gid
5343          */
5344         case BPF_FUNC_get_current_uid_gid:
5345                 return &bpf_get_current_uid_gid_proto;
5346         case BPF_FUNC_bind:
5347                 switch (prog->expected_attach_type) {
5348                 case BPF_CGROUP_INET4_CONNECT:
5349                 case BPF_CGROUP_INET6_CONNECT:
5350                         return &bpf_bind_proto;
5351                 default:
5352                         return NULL;
5353                 }
5354         case BPF_FUNC_get_socket_cookie:
5355                 return &bpf_get_socket_cookie_sock_addr_proto;
5356         case BPF_FUNC_get_local_storage:
5357                 return &bpf_get_local_storage_proto;
5358 #ifdef CONFIG_INET
5359         case BPF_FUNC_sk_lookup_tcp:
5360                 return &bpf_sock_addr_sk_lookup_tcp_proto;
5361         case BPF_FUNC_sk_lookup_udp:
5362                 return &bpf_sock_addr_sk_lookup_udp_proto;
5363         case BPF_FUNC_sk_release:
5364                 return &bpf_sk_release_proto;
5365 #endif /* CONFIG_INET */
5366         default:
5367                 return bpf_base_func_proto(func_id);
5368         }
5369 }
5370
5371 static const struct bpf_func_proto *
5372 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5373 {
5374         switch (func_id) {
5375         case BPF_FUNC_skb_load_bytes:
5376                 return &bpf_skb_load_bytes_proto;
5377         case BPF_FUNC_skb_load_bytes_relative:
5378                 return &bpf_skb_load_bytes_relative_proto;
5379         case BPF_FUNC_get_socket_cookie:
5380                 return &bpf_get_socket_cookie_proto;
5381         case BPF_FUNC_get_socket_uid:
5382                 return &bpf_get_socket_uid_proto;
5383         default:
5384                 return bpf_base_func_proto(func_id);
5385         }
5386 }
5387
5388 static const struct bpf_func_proto *
5389 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5390 {
5391         switch (func_id) {
5392         case BPF_FUNC_get_local_storage:
5393                 return &bpf_get_local_storage_proto;
5394         default:
5395                 return sk_filter_func_proto(func_id, prog);
5396         }
5397 }
5398
5399 static const struct bpf_func_proto *
5400 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5401 {
5402         switch (func_id) {
5403         case BPF_FUNC_skb_store_bytes:
5404                 return &bpf_skb_store_bytes_proto;
5405         case BPF_FUNC_skb_load_bytes:
5406                 return &bpf_skb_load_bytes_proto;
5407         case BPF_FUNC_skb_load_bytes_relative:
5408                 return &bpf_skb_load_bytes_relative_proto;
5409         case BPF_FUNC_skb_pull_data:
5410                 return &bpf_skb_pull_data_proto;
5411         case BPF_FUNC_csum_diff:
5412                 return &bpf_csum_diff_proto;
5413         case BPF_FUNC_csum_update:
5414                 return &bpf_csum_update_proto;
5415         case BPF_FUNC_l3_csum_replace:
5416                 return &bpf_l3_csum_replace_proto;
5417         case BPF_FUNC_l4_csum_replace:
5418                 return &bpf_l4_csum_replace_proto;
5419         case BPF_FUNC_clone_redirect:
5420                 return &bpf_clone_redirect_proto;
5421         case BPF_FUNC_get_cgroup_classid:
5422                 return &bpf_get_cgroup_classid_proto;
5423         case BPF_FUNC_skb_vlan_push:
5424                 return &bpf_skb_vlan_push_proto;
5425         case BPF_FUNC_skb_vlan_pop:
5426                 return &bpf_skb_vlan_pop_proto;
5427         case BPF_FUNC_skb_change_proto:
5428                 return &bpf_skb_change_proto_proto;
5429         case BPF_FUNC_skb_change_type:
5430                 return &bpf_skb_change_type_proto;
5431         case BPF_FUNC_skb_adjust_room:
5432                 return &bpf_skb_adjust_room_proto;
5433         case BPF_FUNC_skb_change_tail:
5434                 return &bpf_skb_change_tail_proto;
5435         case BPF_FUNC_skb_get_tunnel_key:
5436                 return &bpf_skb_get_tunnel_key_proto;
5437         case BPF_FUNC_skb_set_tunnel_key:
5438                 return bpf_get_skb_set_tunnel_proto(func_id);
5439         case BPF_FUNC_skb_get_tunnel_opt:
5440                 return &bpf_skb_get_tunnel_opt_proto;
5441         case BPF_FUNC_skb_set_tunnel_opt:
5442                 return bpf_get_skb_set_tunnel_proto(func_id);
5443         case BPF_FUNC_redirect:
5444                 return &bpf_redirect_proto;
5445         case BPF_FUNC_get_route_realm:
5446                 return &bpf_get_route_realm_proto;
5447         case BPF_FUNC_get_hash_recalc:
5448                 return &bpf_get_hash_recalc_proto;
5449         case BPF_FUNC_set_hash_invalid:
5450                 return &bpf_set_hash_invalid_proto;
5451         case BPF_FUNC_set_hash:
5452                 return &bpf_set_hash_proto;
5453         case BPF_FUNC_perf_event_output:
5454                 return &bpf_skb_event_output_proto;
5455         case BPF_FUNC_get_smp_processor_id:
5456                 return &bpf_get_smp_processor_id_proto;
5457         case BPF_FUNC_skb_under_cgroup:
5458                 return &bpf_skb_under_cgroup_proto;
5459         case BPF_FUNC_get_socket_cookie:
5460                 return &bpf_get_socket_cookie_proto;
5461         case BPF_FUNC_get_socket_uid:
5462                 return &bpf_get_socket_uid_proto;
5463         case BPF_FUNC_fib_lookup:
5464                 return &bpf_skb_fib_lookup_proto;
5465 #ifdef CONFIG_XFRM
5466         case BPF_FUNC_skb_get_xfrm_state:
5467                 return &bpf_skb_get_xfrm_state_proto;
5468 #endif
5469 #ifdef CONFIG_SOCK_CGROUP_DATA
5470         case BPF_FUNC_skb_cgroup_id:
5471                 return &bpf_skb_cgroup_id_proto;
5472         case BPF_FUNC_skb_ancestor_cgroup_id:
5473                 return &bpf_skb_ancestor_cgroup_id_proto;
5474 #endif
5475 #ifdef CONFIG_INET
5476         case BPF_FUNC_sk_lookup_tcp:
5477                 return &bpf_sk_lookup_tcp_proto;
5478         case BPF_FUNC_sk_lookup_udp:
5479                 return &bpf_sk_lookup_udp_proto;
5480         case BPF_FUNC_sk_release:
5481                 return &bpf_sk_release_proto;
5482 #endif
5483         default:
5484                 return bpf_base_func_proto(func_id);
5485         }
5486 }
5487
5488 static const struct bpf_func_proto *
5489 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5490 {
5491         switch (func_id) {
5492         case BPF_FUNC_perf_event_output:
5493                 return &bpf_xdp_event_output_proto;
5494         case BPF_FUNC_get_smp_processor_id:
5495                 return &bpf_get_smp_processor_id_proto;
5496         case BPF_FUNC_csum_diff:
5497                 return &bpf_csum_diff_proto;
5498         case BPF_FUNC_xdp_adjust_head:
5499                 return &bpf_xdp_adjust_head_proto;
5500         case BPF_FUNC_xdp_adjust_meta:
5501                 return &bpf_xdp_adjust_meta_proto;
5502         case BPF_FUNC_redirect:
5503                 return &bpf_xdp_redirect_proto;
5504         case BPF_FUNC_redirect_map:
5505                 return &bpf_xdp_redirect_map_proto;
5506         case BPF_FUNC_xdp_adjust_tail:
5507                 return &bpf_xdp_adjust_tail_proto;
5508         case BPF_FUNC_fib_lookup:
5509                 return &bpf_xdp_fib_lookup_proto;
5510 #ifdef CONFIG_INET
5511         case BPF_FUNC_sk_lookup_udp:
5512                 return &bpf_xdp_sk_lookup_udp_proto;
5513         case BPF_FUNC_sk_lookup_tcp:
5514                 return &bpf_xdp_sk_lookup_tcp_proto;
5515         case BPF_FUNC_sk_release:
5516                 return &bpf_sk_release_proto;
5517 #endif
5518         default:
5519                 return bpf_base_func_proto(func_id);
5520         }
5521 }
5522
5523 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
5524 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
5525
5526 static const struct bpf_func_proto *
5527 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5528 {
5529         switch (func_id) {
5530         case BPF_FUNC_setsockopt:
5531                 return &bpf_setsockopt_proto;
5532         case BPF_FUNC_getsockopt:
5533                 return &bpf_getsockopt_proto;
5534         case BPF_FUNC_sock_ops_cb_flags_set:
5535                 return &bpf_sock_ops_cb_flags_set_proto;
5536         case BPF_FUNC_sock_map_update:
5537                 return &bpf_sock_map_update_proto;
5538         case BPF_FUNC_sock_hash_update:
5539                 return &bpf_sock_hash_update_proto;
5540         case BPF_FUNC_get_socket_cookie:
5541                 return &bpf_get_socket_cookie_sock_ops_proto;
5542         case BPF_FUNC_get_local_storage:
5543                 return &bpf_get_local_storage_proto;
5544         case BPF_FUNC_perf_event_output:
5545                 return &bpf_sockopt_event_output_proto;
5546         default:
5547                 return bpf_base_func_proto(func_id);
5548         }
5549 }
5550
5551 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
5552 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
5553
5554 static const struct bpf_func_proto *
5555 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5556 {
5557         switch (func_id) {
5558         case BPF_FUNC_msg_redirect_map:
5559                 return &bpf_msg_redirect_map_proto;
5560         case BPF_FUNC_msg_redirect_hash:
5561                 return &bpf_msg_redirect_hash_proto;
5562         case BPF_FUNC_msg_apply_bytes:
5563                 return &bpf_msg_apply_bytes_proto;
5564         case BPF_FUNC_msg_cork_bytes:
5565                 return &bpf_msg_cork_bytes_proto;
5566         case BPF_FUNC_msg_pull_data:
5567                 return &bpf_msg_pull_data_proto;
5568         case BPF_FUNC_msg_push_data:
5569                 return &bpf_msg_push_data_proto;
5570         case BPF_FUNC_msg_pop_data:
5571                 return &bpf_msg_pop_data_proto;
5572         default:
5573                 return bpf_base_func_proto(func_id);
5574         }
5575 }
5576
5577 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
5578 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
5579
5580 static const struct bpf_func_proto *
5581 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5582 {
5583         switch (func_id) {
5584         case BPF_FUNC_skb_store_bytes:
5585                 return &bpf_skb_store_bytes_proto;
5586         case BPF_FUNC_skb_load_bytes:
5587                 return &bpf_skb_load_bytes_proto;
5588         case BPF_FUNC_skb_pull_data:
5589                 return &sk_skb_pull_data_proto;
5590         case BPF_FUNC_skb_change_tail:
5591                 return &sk_skb_change_tail_proto;
5592         case BPF_FUNC_skb_change_head:
5593                 return &sk_skb_change_head_proto;
5594         case BPF_FUNC_get_socket_cookie:
5595                 return &bpf_get_socket_cookie_proto;
5596         case BPF_FUNC_get_socket_uid:
5597                 return &bpf_get_socket_uid_proto;
5598         case BPF_FUNC_sk_redirect_map:
5599                 return &bpf_sk_redirect_map_proto;
5600         case BPF_FUNC_sk_redirect_hash:
5601                 return &bpf_sk_redirect_hash_proto;
5602 #ifdef CONFIG_INET
5603         case BPF_FUNC_sk_lookup_tcp:
5604                 return &bpf_sk_lookup_tcp_proto;
5605         case BPF_FUNC_sk_lookup_udp:
5606                 return &bpf_sk_lookup_udp_proto;
5607         case BPF_FUNC_sk_release:
5608                 return &bpf_sk_release_proto;
5609 #endif
5610         default:
5611                 return bpf_base_func_proto(func_id);
5612         }
5613 }
5614
5615 static const struct bpf_func_proto *
5616 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5617 {
5618         switch (func_id) {
5619         case BPF_FUNC_skb_load_bytes:
5620                 return &bpf_skb_load_bytes_proto;
5621         default:
5622                 return bpf_base_func_proto(func_id);
5623         }
5624 }
5625
5626 static const struct bpf_func_proto *
5627 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5628 {
5629         switch (func_id) {
5630         case BPF_FUNC_skb_load_bytes:
5631                 return &bpf_skb_load_bytes_proto;
5632         case BPF_FUNC_skb_pull_data:
5633                 return &bpf_skb_pull_data_proto;
5634         case BPF_FUNC_csum_diff:
5635                 return &bpf_csum_diff_proto;
5636         case BPF_FUNC_get_cgroup_classid:
5637                 return &bpf_get_cgroup_classid_proto;
5638         case BPF_FUNC_get_route_realm:
5639                 return &bpf_get_route_realm_proto;
5640         case BPF_FUNC_get_hash_recalc:
5641                 return &bpf_get_hash_recalc_proto;
5642         case BPF_FUNC_perf_event_output:
5643                 return &bpf_skb_event_output_proto;
5644         case BPF_FUNC_get_smp_processor_id:
5645                 return &bpf_get_smp_processor_id_proto;
5646         case BPF_FUNC_skb_under_cgroup:
5647                 return &bpf_skb_under_cgroup_proto;
5648         default:
5649                 return bpf_base_func_proto(func_id);
5650         }
5651 }
5652
5653 static const struct bpf_func_proto *
5654 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5655 {
5656         switch (func_id) {
5657         case BPF_FUNC_lwt_push_encap:
5658                 return &bpf_lwt_push_encap_proto;
5659         default:
5660                 return lwt_out_func_proto(func_id, prog);
5661         }
5662 }
5663
5664 static const struct bpf_func_proto *
5665 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5666 {
5667         switch (func_id) {
5668         case BPF_FUNC_skb_get_tunnel_key:
5669                 return &bpf_skb_get_tunnel_key_proto;
5670         case BPF_FUNC_skb_set_tunnel_key:
5671                 return bpf_get_skb_set_tunnel_proto(func_id);
5672         case BPF_FUNC_skb_get_tunnel_opt:
5673                 return &bpf_skb_get_tunnel_opt_proto;
5674         case BPF_FUNC_skb_set_tunnel_opt:
5675                 return bpf_get_skb_set_tunnel_proto(func_id);
5676         case BPF_FUNC_redirect:
5677                 return &bpf_redirect_proto;
5678         case BPF_FUNC_clone_redirect:
5679                 return &bpf_clone_redirect_proto;
5680         case BPF_FUNC_skb_change_tail:
5681                 return &bpf_skb_change_tail_proto;
5682         case BPF_FUNC_skb_change_head:
5683                 return &bpf_skb_change_head_proto;
5684         case BPF_FUNC_skb_store_bytes:
5685                 return &bpf_skb_store_bytes_proto;
5686         case BPF_FUNC_csum_update:
5687                 return &bpf_csum_update_proto;
5688         case BPF_FUNC_l3_csum_replace:
5689                 return &bpf_l3_csum_replace_proto;
5690         case BPF_FUNC_l4_csum_replace:
5691                 return &bpf_l4_csum_replace_proto;
5692         case BPF_FUNC_set_hash_invalid:
5693                 return &bpf_set_hash_invalid_proto;
5694         default:
5695                 return lwt_out_func_proto(func_id, prog);
5696         }
5697 }
5698
5699 static const struct bpf_func_proto *
5700 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5701 {
5702         switch (func_id) {
5703 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5704         case BPF_FUNC_lwt_seg6_store_bytes:
5705                 return &bpf_lwt_seg6_store_bytes_proto;
5706         case BPF_FUNC_lwt_seg6_action:
5707                 return &bpf_lwt_seg6_action_proto;
5708         case BPF_FUNC_lwt_seg6_adjust_srh:
5709                 return &bpf_lwt_seg6_adjust_srh_proto;
5710 #endif
5711         default:
5712                 return lwt_out_func_proto(func_id, prog);
5713         }
5714 }
5715
5716 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
5717                                     const struct bpf_prog *prog,
5718                                     struct bpf_insn_access_aux *info)
5719 {
5720         const int size_default = sizeof(__u32);
5721
5722         if (off < 0 || off >= sizeof(struct __sk_buff))
5723                 return false;
5724
5725         /* The verifier guarantees that size > 0. */
5726         if (off % size != 0)
5727                 return false;
5728
5729         switch (off) {
5730         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5731                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
5732                         return false;
5733                 break;
5734         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
5735         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
5736         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
5737         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
5738         case bpf_ctx_range(struct __sk_buff, data):
5739         case bpf_ctx_range(struct __sk_buff, data_meta):
5740         case bpf_ctx_range(struct __sk_buff, data_end):
5741                 if (size != size_default)
5742                         return false;
5743                 break;
5744         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
5745                 if (size != sizeof(__u64))
5746                         return false;
5747                 break;
5748         case bpf_ctx_range(struct __sk_buff, tstamp):
5749                 if (size != sizeof(__u64))
5750                         return false;
5751                 break;
5752         default:
5753                 /* Only narrow read access allowed for now. */
5754                 if (type == BPF_WRITE) {
5755                         if (size != size_default)
5756                                 return false;
5757                 } else {
5758                         bpf_ctx_record_field_size(info, size_default);
5759                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5760                                 return false;
5761                 }
5762         }
5763
5764         return true;
5765 }
5766
5767 static bool sk_filter_is_valid_access(int off, int size,
5768                                       enum bpf_access_type type,
5769                                       const struct bpf_prog *prog,
5770                                       struct bpf_insn_access_aux *info)
5771 {
5772         switch (off) {
5773         case bpf_ctx_range(struct __sk_buff, tc_classid):
5774         case bpf_ctx_range(struct __sk_buff, data):
5775         case bpf_ctx_range(struct __sk_buff, data_meta):
5776         case bpf_ctx_range(struct __sk_buff, data_end):
5777         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
5778         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5779         case bpf_ctx_range(struct __sk_buff, tstamp):
5780         case bpf_ctx_range(struct __sk_buff, wire_len):
5781                 return false;
5782         }
5783
5784         if (type == BPF_WRITE) {
5785                 switch (off) {
5786                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5787                         break;
5788                 default:
5789                         return false;
5790                 }
5791         }
5792
5793         return bpf_skb_is_valid_access(off, size, type, prog, info);
5794 }
5795
5796 static bool cg_skb_is_valid_access(int off, int size,
5797                                    enum bpf_access_type type,
5798                                    const struct bpf_prog *prog,
5799                                    struct bpf_insn_access_aux *info)
5800 {
5801         switch (off) {
5802         case bpf_ctx_range(struct __sk_buff, tc_classid):
5803         case bpf_ctx_range(struct __sk_buff, data_meta):
5804         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
5805         case bpf_ctx_range(struct __sk_buff, wire_len):
5806                 return false;
5807         case bpf_ctx_range(struct __sk_buff, data):
5808         case bpf_ctx_range(struct __sk_buff, data_end):
5809                 if (!capable(CAP_SYS_ADMIN))
5810                         return false;
5811                 break;
5812         }
5813
5814         if (type == BPF_WRITE) {
5815                 switch (off) {
5816                 case bpf_ctx_range(struct __sk_buff, mark):
5817                 case bpf_ctx_range(struct __sk_buff, priority):
5818                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5819                         break;
5820                 case bpf_ctx_range(struct __sk_buff, tstamp):
5821                         if (!capable(CAP_SYS_ADMIN))
5822                                 return false;
5823                         break;
5824                 default:
5825                         return false;
5826                 }
5827         }
5828
5829         switch (off) {
5830         case bpf_ctx_range(struct __sk_buff, data):
5831                 info->reg_type = PTR_TO_PACKET;
5832                 break;
5833         case bpf_ctx_range(struct __sk_buff, data_end):
5834                 info->reg_type = PTR_TO_PACKET_END;
5835                 break;
5836         }
5837
5838         return bpf_skb_is_valid_access(off, size, type, prog, info);
5839 }
5840
5841 static bool lwt_is_valid_access(int off, int size,
5842                                 enum bpf_access_type type,
5843                                 const struct bpf_prog *prog,
5844                                 struct bpf_insn_access_aux *info)
5845 {
5846         switch (off) {
5847         case bpf_ctx_range(struct __sk_buff, tc_classid):
5848         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5849         case bpf_ctx_range(struct __sk_buff, data_meta):
5850         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
5851         case bpf_ctx_range(struct __sk_buff, tstamp):
5852         case bpf_ctx_range(struct __sk_buff, wire_len):
5853                 return false;
5854         }
5855
5856         if (type == BPF_WRITE) {
5857                 switch (off) {
5858                 case bpf_ctx_range(struct __sk_buff, mark):
5859                 case bpf_ctx_range(struct __sk_buff, priority):
5860                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5861                         break;
5862                 default:
5863                         return false;
5864                 }
5865         }
5866
5867         switch (off) {
5868         case bpf_ctx_range(struct __sk_buff, data):
5869                 info->reg_type = PTR_TO_PACKET;
5870                 break;
5871         case bpf_ctx_range(struct __sk_buff, data_end):
5872                 info->reg_type = PTR_TO_PACKET_END;
5873                 break;
5874         }
5875
5876         return bpf_skb_is_valid_access(off, size, type, prog, info);
5877 }
5878
5879 /* Attach type specific accesses */
5880 static bool __sock_filter_check_attach_type(int off,
5881                                             enum bpf_access_type access_type,
5882                                             enum bpf_attach_type attach_type)
5883 {
5884         switch (off) {
5885         case offsetof(struct bpf_sock, bound_dev_if):
5886         case offsetof(struct bpf_sock, mark):
5887         case offsetof(struct bpf_sock, priority):
5888                 switch (attach_type) {
5889                 case BPF_CGROUP_INET_SOCK_CREATE:
5890                         goto full_access;
5891                 default:
5892                         return false;
5893                 }
5894         case bpf_ctx_range(struct bpf_sock, src_ip4):
5895                 switch (attach_type) {
5896                 case BPF_CGROUP_INET4_POST_BIND:
5897                         goto read_only;
5898                 default:
5899                         return false;
5900                 }
5901         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5902                 switch (attach_type) {
5903                 case BPF_CGROUP_INET6_POST_BIND:
5904                         goto read_only;
5905                 default:
5906                         return false;
5907                 }
5908         case bpf_ctx_range(struct bpf_sock, src_port):
5909                 switch (attach_type) {
5910                 case BPF_CGROUP_INET4_POST_BIND:
5911                 case BPF_CGROUP_INET6_POST_BIND:
5912                         goto read_only;
5913                 default:
5914                         return false;
5915                 }
5916         }
5917 read_only:
5918         return access_type == BPF_READ;
5919 full_access:
5920         return true;
5921 }
5922
5923 static bool __sock_filter_check_size(int off, int size,
5924                                      struct bpf_insn_access_aux *info)
5925 {
5926         const int size_default = sizeof(__u32);
5927
5928         switch (off) {
5929         case bpf_ctx_range(struct bpf_sock, src_ip4):
5930         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5931                 bpf_ctx_record_field_size(info, size_default);
5932                 return bpf_ctx_narrow_access_ok(off, size, size_default);
5933         }
5934
5935         return size == size_default;
5936 }
5937
5938 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5939                               struct bpf_insn_access_aux *info)
5940 {
5941         if (off < 0 || off >= sizeof(struct bpf_sock))
5942                 return false;
5943         if (off % size != 0)
5944                 return false;
5945         if (!__sock_filter_check_size(off, size, info))
5946                 return false;
5947         return true;
5948 }
5949
5950 static bool sock_filter_is_valid_access(int off, int size,
5951                                         enum bpf_access_type type,
5952                                         const struct bpf_prog *prog,
5953                                         struct bpf_insn_access_aux *info)
5954 {
5955         if (!bpf_sock_is_valid_access(off, size, type, info))
5956                 return false;
5957         return __sock_filter_check_attach_type(off, type,
5958                                                prog->expected_attach_type);
5959 }
5960
5961 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
5962                              const struct bpf_prog *prog)
5963 {
5964         /* Neither direct read nor direct write requires any preliminary
5965          * action.
5966          */
5967         return 0;
5968 }
5969
5970 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
5971                                 const struct bpf_prog *prog, int drop_verdict)
5972 {
5973         struct bpf_insn *insn = insn_buf;
5974
5975         if (!direct_write)
5976                 return 0;
5977
5978         /* if (!skb->cloned)
5979          *       goto start;
5980          *
5981          * (Fast-path, otherwise approximation that we might be
5982          *  a clone, do the rest in helper.)
5983          */
5984         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
5985         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
5986         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
5987
5988         /* ret = bpf_skb_pull_data(skb, 0); */
5989         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
5990         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
5991         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
5992                                BPF_FUNC_skb_pull_data);
5993         /* if (!ret)
5994          *      goto restore;
5995          * return TC_ACT_SHOT;
5996          */
5997         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
5998         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
5999         *insn++ = BPF_EXIT_INSN();
6000
6001         /* restore: */
6002         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
6003         /* start: */
6004         *insn++ = prog->insnsi[0];
6005
6006         return insn - insn_buf;
6007 }
6008
6009 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
6010                           struct bpf_insn *insn_buf)
6011 {
6012         bool indirect = BPF_MODE(orig->code) == BPF_IND;
6013         struct bpf_insn *insn = insn_buf;
6014
6015         /* We're guaranteed here that CTX is in R6. */
6016         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
6017         if (!indirect) {
6018                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
6019         } else {
6020                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
6021                 if (orig->imm)
6022                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
6023         }
6024
6025         switch (BPF_SIZE(orig->code)) {
6026         case BPF_B:
6027                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
6028                 break;
6029         case BPF_H:
6030                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
6031                 break;
6032         case BPF_W:
6033                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
6034                 break;
6035         }
6036
6037         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
6038         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
6039         *insn++ = BPF_EXIT_INSN();
6040
6041         return insn - insn_buf;
6042 }
6043
6044 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
6045                                const struct bpf_prog *prog)
6046 {
6047         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
6048 }
6049
6050 static bool tc_cls_act_is_valid_access(int off, int size,
6051                                        enum bpf_access_type type,
6052                                        const struct bpf_prog *prog,
6053                                        struct bpf_insn_access_aux *info)
6054 {
6055         if (type == BPF_WRITE) {
6056                 switch (off) {
6057                 case bpf_ctx_range(struct __sk_buff, mark):
6058                 case bpf_ctx_range(struct __sk_buff, tc_index):
6059                 case bpf_ctx_range(struct __sk_buff, priority):
6060                 case bpf_ctx_range(struct __sk_buff, tc_classid):
6061                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6062                 case bpf_ctx_range(struct __sk_buff, tstamp):
6063                         break;
6064                 default:
6065                         return false;
6066                 }
6067         }
6068
6069         switch (off) {
6070         case bpf_ctx_range(struct __sk_buff, data):
6071                 info->reg_type = PTR_TO_PACKET;
6072                 break;
6073         case bpf_ctx_range(struct __sk_buff, data_meta):
6074                 info->reg_type = PTR_TO_PACKET_META;
6075                 break;
6076         case bpf_ctx_range(struct __sk_buff, data_end):
6077                 info->reg_type = PTR_TO_PACKET_END;
6078                 break;
6079         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6080         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6081                 return false;
6082         }
6083
6084         return bpf_skb_is_valid_access(off, size, type, prog, info);
6085 }
6086
6087 static bool __is_valid_xdp_access(int off, int size)
6088 {
6089         if (off < 0 || off >= sizeof(struct xdp_md))
6090                 return false;
6091         if (off % size != 0)
6092                 return false;
6093         if (size != sizeof(__u32))
6094                 return false;
6095
6096         return true;
6097 }
6098
6099 static bool xdp_is_valid_access(int off, int size,
6100                                 enum bpf_access_type type,
6101                                 const struct bpf_prog *prog,
6102                                 struct bpf_insn_access_aux *info)
6103 {
6104         if (type == BPF_WRITE) {
6105                 if (bpf_prog_is_dev_bound(prog->aux)) {
6106                         switch (off) {
6107                         case offsetof(struct xdp_md, rx_queue_index):
6108                                 return __is_valid_xdp_access(off, size);
6109                         }
6110                 }
6111                 return false;
6112         }
6113
6114         switch (off) {
6115         case offsetof(struct xdp_md, data):
6116                 info->reg_type = PTR_TO_PACKET;
6117                 break;
6118         case offsetof(struct xdp_md, data_meta):
6119                 info->reg_type = PTR_TO_PACKET_META;
6120                 break;
6121         case offsetof(struct xdp_md, data_end):
6122                 info->reg_type = PTR_TO_PACKET_END;
6123                 break;
6124         }
6125
6126         return __is_valid_xdp_access(off, size);
6127 }
6128
6129 void bpf_warn_invalid_xdp_action(u32 act)
6130 {
6131         const u32 act_max = XDP_REDIRECT;
6132
6133         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
6134                   act > act_max ? "Illegal" : "Driver unsupported",
6135                   act);
6136 }
6137 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
6138
6139 static bool sock_addr_is_valid_access(int off, int size,
6140                                       enum bpf_access_type type,
6141                                       const struct bpf_prog *prog,
6142                                       struct bpf_insn_access_aux *info)
6143 {
6144         const int size_default = sizeof(__u32);
6145
6146         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
6147                 return false;
6148         if (off % size != 0)
6149                 return false;
6150
6151         /* Disallow access to IPv6 fields from IPv4 contex and vise
6152          * versa.
6153          */
6154         switch (off) {
6155         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6156                 switch (prog->expected_attach_type) {
6157                 case BPF_CGROUP_INET4_BIND:
6158                 case BPF_CGROUP_INET4_CONNECT:
6159                 case BPF_CGROUP_UDP4_SENDMSG:
6160                         break;
6161                 default:
6162                         return false;
6163                 }
6164                 break;
6165         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6166                 switch (prog->expected_attach_type) {
6167                 case BPF_CGROUP_INET6_BIND:
6168                 case BPF_CGROUP_INET6_CONNECT:
6169                 case BPF_CGROUP_UDP6_SENDMSG:
6170                         break;
6171                 default:
6172                         return false;
6173                 }
6174                 break;
6175         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6176                 switch (prog->expected_attach_type) {
6177                 case BPF_CGROUP_UDP4_SENDMSG:
6178                         break;
6179                 default:
6180                         return false;
6181                 }
6182                 break;
6183         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6184                                 msg_src_ip6[3]):
6185                 switch (prog->expected_attach_type) {
6186                 case BPF_CGROUP_UDP6_SENDMSG:
6187                         break;
6188                 default:
6189                         return false;
6190                 }
6191                 break;
6192         }
6193
6194         switch (off) {
6195         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6196         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6197         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6198         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6199                                 msg_src_ip6[3]):
6200                 /* Only narrow read access allowed for now. */
6201                 if (type == BPF_READ) {
6202                         bpf_ctx_record_field_size(info, size_default);
6203                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6204                                 return false;
6205                 } else {
6206                         if (size != size_default)
6207                                 return false;
6208                 }
6209                 break;
6210         case bpf_ctx_range(struct bpf_sock_addr, user_port):
6211                 if (size != size_default)
6212                         return false;
6213                 break;
6214         default:
6215                 if (type == BPF_READ) {
6216                         if (size != size_default)
6217                                 return false;
6218                 } else {
6219                         return false;
6220                 }
6221         }
6222
6223         return true;
6224 }
6225
6226 static bool sock_ops_is_valid_access(int off, int size,
6227                                      enum bpf_access_type type,
6228                                      const struct bpf_prog *prog,
6229                                      struct bpf_insn_access_aux *info)
6230 {
6231         const int size_default = sizeof(__u32);
6232
6233         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
6234                 return false;
6235
6236         /* The verifier guarantees that size > 0. */
6237         if (off % size != 0)
6238                 return false;
6239
6240         if (type == BPF_WRITE) {
6241                 switch (off) {
6242                 case offsetof(struct bpf_sock_ops, reply):
6243                 case offsetof(struct bpf_sock_ops, sk_txhash):
6244                         if (size != size_default)
6245                                 return false;
6246                         break;
6247                 default:
6248                         return false;
6249                 }
6250         } else {
6251                 switch (off) {
6252                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
6253                                         bytes_acked):
6254                         if (size != sizeof(__u64))
6255                                 return false;
6256                         break;
6257                 default:
6258                         if (size != size_default)
6259                                 return false;
6260                         break;
6261                 }
6262         }
6263
6264         return true;
6265 }
6266
6267 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
6268                            const struct bpf_prog *prog)
6269 {
6270         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
6271 }
6272
6273 static bool sk_skb_is_valid_access(int off, int size,
6274                                    enum bpf_access_type type,
6275                                    const struct bpf_prog *prog,
6276                                    struct bpf_insn_access_aux *info)
6277 {
6278         switch (off) {
6279         case bpf_ctx_range(struct __sk_buff, tc_classid):
6280         case bpf_ctx_range(struct __sk_buff, data_meta):
6281         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6282         case bpf_ctx_range(struct __sk_buff, tstamp):
6283         case bpf_ctx_range(struct __sk_buff, wire_len):
6284                 return false;
6285         }
6286
6287         if (type == BPF_WRITE) {
6288                 switch (off) {
6289                 case bpf_ctx_range(struct __sk_buff, tc_index):
6290                 case bpf_ctx_range(struct __sk_buff, priority):
6291                         break;
6292                 default:
6293                         return false;
6294                 }
6295         }
6296
6297         switch (off) {
6298         case bpf_ctx_range(struct __sk_buff, mark):
6299                 return false;
6300         case bpf_ctx_range(struct __sk_buff, data):
6301                 info->reg_type = PTR_TO_PACKET;
6302                 break;
6303         case bpf_ctx_range(struct __sk_buff, data_end):
6304                 info->reg_type = PTR_TO_PACKET_END;
6305                 break;
6306         }
6307
6308         return bpf_skb_is_valid_access(off, size, type, prog, info);
6309 }
6310
6311 static bool sk_msg_is_valid_access(int off, int size,
6312                                    enum bpf_access_type type,
6313                                    const struct bpf_prog *prog,
6314                                    struct bpf_insn_access_aux *info)
6315 {
6316         if (type == BPF_WRITE)
6317                 return false;
6318
6319         if (off % size != 0)
6320                 return false;
6321
6322         switch (off) {
6323         case offsetof(struct sk_msg_md, data):
6324                 info->reg_type = PTR_TO_PACKET;
6325                 if (size != sizeof(__u64))
6326                         return false;
6327                 break;
6328         case offsetof(struct sk_msg_md, data_end):
6329                 info->reg_type = PTR_TO_PACKET_END;
6330                 if (size != sizeof(__u64))
6331                         return false;
6332                 break;
6333         case bpf_ctx_range(struct sk_msg_md, family):
6334         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
6335         case bpf_ctx_range(struct sk_msg_md, local_ip4):
6336         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
6337         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
6338         case bpf_ctx_range(struct sk_msg_md, remote_port):
6339         case bpf_ctx_range(struct sk_msg_md, local_port):
6340         case bpf_ctx_range(struct sk_msg_md, size):
6341                 if (size != sizeof(__u32))
6342                         return false;
6343                 break;
6344         default:
6345                 return false;
6346         }
6347         return true;
6348 }
6349
6350 static bool flow_dissector_is_valid_access(int off, int size,
6351                                            enum bpf_access_type type,
6352                                            const struct bpf_prog *prog,
6353                                            struct bpf_insn_access_aux *info)
6354 {
6355         if (type == BPF_WRITE) {
6356                 switch (off) {
6357                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6358                         break;
6359                 default:
6360                         return false;
6361                 }
6362         }
6363
6364         switch (off) {
6365         case bpf_ctx_range(struct __sk_buff, data):
6366                 info->reg_type = PTR_TO_PACKET;
6367                 break;
6368         case bpf_ctx_range(struct __sk_buff, data_end):
6369                 info->reg_type = PTR_TO_PACKET_END;
6370                 break;
6371         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6372                 info->reg_type = PTR_TO_FLOW_KEYS;
6373                 break;
6374         case bpf_ctx_range(struct __sk_buff, tc_classid):
6375         case bpf_ctx_range(struct __sk_buff, data_meta):
6376         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6377         case bpf_ctx_range(struct __sk_buff, tstamp):
6378         case bpf_ctx_range(struct __sk_buff, wire_len):
6379                 return false;
6380         }
6381
6382         return bpf_skb_is_valid_access(off, size, type, prog, info);
6383 }
6384
6385 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
6386                                   const struct bpf_insn *si,
6387                                   struct bpf_insn *insn_buf,
6388                                   struct bpf_prog *prog, u32 *target_size)
6389 {
6390         struct bpf_insn *insn = insn_buf;
6391         int off;
6392
6393         switch (si->off) {
6394         case offsetof(struct __sk_buff, len):
6395                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6396                                       bpf_target_off(struct sk_buff, len, 4,
6397                                                      target_size));
6398                 break;
6399
6400         case offsetof(struct __sk_buff, protocol):
6401                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6402                                       bpf_target_off(struct sk_buff, protocol, 2,
6403                                                      target_size));
6404                 break;
6405
6406         case offsetof(struct __sk_buff, vlan_proto):
6407                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6408                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
6409                                                      target_size));
6410                 break;
6411
6412         case offsetof(struct __sk_buff, priority):
6413                 if (type == BPF_WRITE)
6414                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6415                                               bpf_target_off(struct sk_buff, priority, 4,
6416                                                              target_size));
6417                 else
6418                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6419                                               bpf_target_off(struct sk_buff, priority, 4,
6420                                                              target_size));
6421                 break;
6422
6423         case offsetof(struct __sk_buff, ingress_ifindex):
6424                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6425                                       bpf_target_off(struct sk_buff, skb_iif, 4,
6426                                                      target_size));
6427                 break;
6428
6429         case offsetof(struct __sk_buff, ifindex):
6430                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
6431                                       si->dst_reg, si->src_reg,
6432                                       offsetof(struct sk_buff, dev));
6433                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
6434                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6435                                       bpf_target_off(struct net_device, ifindex, 4,
6436                                                      target_size));
6437                 break;
6438
6439         case offsetof(struct __sk_buff, hash):
6440                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6441                                       bpf_target_off(struct sk_buff, hash, 4,
6442                                                      target_size));
6443                 break;
6444
6445         case offsetof(struct __sk_buff, mark):
6446                 if (type == BPF_WRITE)
6447                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6448                                               bpf_target_off(struct sk_buff, mark, 4,
6449                                                              target_size));
6450                 else
6451                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6452                                               bpf_target_off(struct sk_buff, mark, 4,
6453                                                              target_size));
6454                 break;
6455
6456         case offsetof(struct __sk_buff, pkt_type):
6457                 *target_size = 1;
6458                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
6459                                       PKT_TYPE_OFFSET());
6460                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
6461 #ifdef __BIG_ENDIAN_BITFIELD
6462                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
6463 #endif
6464                 break;
6465
6466         case offsetof(struct __sk_buff, queue_mapping):
6467                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6468                                       bpf_target_off(struct sk_buff, queue_mapping, 2,
6469                                                      target_size));
6470                 break;
6471
6472         case offsetof(struct __sk_buff, vlan_present):
6473                 *target_size = 1;
6474                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
6475                                       PKT_VLAN_PRESENT_OFFSET());
6476                 if (PKT_VLAN_PRESENT_BIT)
6477                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
6478                 if (PKT_VLAN_PRESENT_BIT < 7)
6479                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
6480                 break;
6481
6482         case offsetof(struct __sk_buff, vlan_tci):
6483                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6484                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
6485                                                      target_size));
6486                 break;
6487
6488         case offsetof(struct __sk_buff, cb[0]) ...
6489              offsetofend(struct __sk_buff, cb[4]) - 1:
6490                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
6491                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
6492                               offsetof(struct qdisc_skb_cb, data)) %
6493                              sizeof(__u64));
6494
6495                 prog->cb_access = 1;
6496                 off  = si->off;
6497                 off -= offsetof(struct __sk_buff, cb[0]);
6498                 off += offsetof(struct sk_buff, cb);
6499                 off += offsetof(struct qdisc_skb_cb, data);
6500                 if (type == BPF_WRITE)
6501                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
6502                                               si->src_reg, off);
6503                 else
6504                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
6505                                               si->src_reg, off);
6506                 break;
6507
6508         case offsetof(struct __sk_buff, tc_classid):
6509                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
6510
6511                 off  = si->off;
6512                 off -= offsetof(struct __sk_buff, tc_classid);
6513                 off += offsetof(struct sk_buff, cb);
6514                 off += offsetof(struct qdisc_skb_cb, tc_classid);
6515                 *target_size = 2;
6516                 if (type == BPF_WRITE)
6517                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
6518                                               si->src_reg, off);
6519                 else
6520                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
6521                                               si->src_reg, off);
6522                 break;
6523
6524         case offsetof(struct __sk_buff, data):
6525                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
6526                                       si->dst_reg, si->src_reg,
6527                                       offsetof(struct sk_buff, data));
6528                 break;
6529
6530         case offsetof(struct __sk_buff, data_meta):
6531                 off  = si->off;
6532                 off -= offsetof(struct __sk_buff, data_meta);
6533                 off += offsetof(struct sk_buff, cb);
6534                 off += offsetof(struct bpf_skb_data_end, data_meta);
6535                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6536                                       si->src_reg, off);
6537                 break;
6538
6539         case offsetof(struct __sk_buff, data_end):
6540                 off  = si->off;
6541                 off -= offsetof(struct __sk_buff, data_end);
6542                 off += offsetof(struct sk_buff, cb);
6543                 off += offsetof(struct bpf_skb_data_end, data_end);
6544                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6545                                       si->src_reg, off);
6546                 break;
6547
6548         case offsetof(struct __sk_buff, tc_index):
6549 #ifdef CONFIG_NET_SCHED
6550                 if (type == BPF_WRITE)
6551                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
6552                                               bpf_target_off(struct sk_buff, tc_index, 2,
6553                                                              target_size));
6554                 else
6555                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6556                                               bpf_target_off(struct sk_buff, tc_index, 2,
6557                                                              target_size));
6558 #else
6559                 *target_size = 2;
6560                 if (type == BPF_WRITE)
6561                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
6562                 else
6563                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
6564 #endif
6565                 break;
6566
6567         case offsetof(struct __sk_buff, napi_id):
6568 #if defined(CONFIG_NET_RX_BUSY_POLL)
6569                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6570                                       bpf_target_off(struct sk_buff, napi_id, 4,
6571                                                      target_size));
6572                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
6573                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
6574 #else
6575                 *target_size = 4;
6576                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
6577 #endif
6578                 break;
6579         case offsetof(struct __sk_buff, family):
6580                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6581
6582                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6583                                       si->dst_reg, si->src_reg,
6584                                       offsetof(struct sk_buff, sk));
6585                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6586                                       bpf_target_off(struct sock_common,
6587                                                      skc_family,
6588                                                      2, target_size));
6589                 break;
6590         case offsetof(struct __sk_buff, remote_ip4):
6591                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6592
6593                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6594                                       si->dst_reg, si->src_reg,
6595                                       offsetof(struct sk_buff, sk));
6596                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6597                                       bpf_target_off(struct sock_common,
6598                                                      skc_daddr,
6599                                                      4, target_size));
6600                 break;
6601         case offsetof(struct __sk_buff, local_ip4):
6602                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6603                                           skc_rcv_saddr) != 4);
6604
6605                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6606                                       si->dst_reg, si->src_reg,
6607                                       offsetof(struct sk_buff, sk));
6608                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6609                                       bpf_target_off(struct sock_common,
6610                                                      skc_rcv_saddr,
6611                                                      4, target_size));
6612                 break;
6613         case offsetof(struct __sk_buff, remote_ip6[0]) ...
6614              offsetof(struct __sk_buff, remote_ip6[3]):
6615 #if IS_ENABLED(CONFIG_IPV6)
6616                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6617                                           skc_v6_daddr.s6_addr32[0]) != 4);
6618
6619                 off = si->off;
6620                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
6621
6622                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6623                                       si->dst_reg, si->src_reg,
6624                                       offsetof(struct sk_buff, sk));
6625                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6626                                       offsetof(struct sock_common,
6627                                                skc_v6_daddr.s6_addr32[0]) +
6628                                       off);
6629 #else
6630                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6631 #endif
6632                 break;
6633         case offsetof(struct __sk_buff, local_ip6[0]) ...
6634              offsetof(struct __sk_buff, local_ip6[3]):
6635 #if IS_ENABLED(CONFIG_IPV6)
6636                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6637                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6638
6639                 off = si->off;
6640                 off -= offsetof(struct __sk_buff, local_ip6[0]);
6641
6642                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6643                                       si->dst_reg, si->src_reg,
6644                                       offsetof(struct sk_buff, sk));
6645                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6646                                       offsetof(struct sock_common,
6647                                                skc_v6_rcv_saddr.s6_addr32[0]) +
6648                                       off);
6649 #else
6650                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6651 #endif
6652                 break;
6653
6654         case offsetof(struct __sk_buff, remote_port):
6655                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6656
6657                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6658                                       si->dst_reg, si->src_reg,
6659                                       offsetof(struct sk_buff, sk));
6660                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6661                                       bpf_target_off(struct sock_common,
6662                                                      skc_dport,
6663                                                      2, target_size));
6664 #ifndef __BIG_ENDIAN_BITFIELD
6665                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6666 #endif
6667                 break;
6668
6669         case offsetof(struct __sk_buff, local_port):
6670                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6671
6672                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6673                                       si->dst_reg, si->src_reg,
6674                                       offsetof(struct sk_buff, sk));
6675                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6676                                       bpf_target_off(struct sock_common,
6677                                                      skc_num, 2, target_size));
6678                 break;
6679
6680         case offsetof(struct __sk_buff, flow_keys):
6681                 off  = si->off;
6682                 off -= offsetof(struct __sk_buff, flow_keys);
6683                 off += offsetof(struct sk_buff, cb);
6684                 off += offsetof(struct qdisc_skb_cb, flow_keys);
6685                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6686                                       si->src_reg, off);
6687                 break;
6688
6689         case offsetof(struct __sk_buff, tstamp):
6690                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tstamp) != 8);
6691
6692                 if (type == BPF_WRITE)
6693                         *insn++ = BPF_STX_MEM(BPF_DW,
6694                                               si->dst_reg, si->src_reg,
6695                                               bpf_target_off(struct sk_buff,
6696                                                              tstamp, 8,
6697                                                              target_size));
6698                 else
6699                         *insn++ = BPF_LDX_MEM(BPF_DW,
6700                                               si->dst_reg, si->src_reg,
6701                                               bpf_target_off(struct sk_buff,
6702                                                              tstamp, 8,
6703                                                              target_size));
6704                 break;
6705
6706         case offsetof(struct __sk_buff, wire_len):
6707                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, pkt_len) != 4);
6708
6709                 off = si->off;
6710                 off -= offsetof(struct __sk_buff, wire_len);
6711                 off += offsetof(struct sk_buff, cb);
6712                 off += offsetof(struct qdisc_skb_cb, pkt_len);
6713                 *target_size = 4;
6714                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
6715         }
6716
6717         return insn - insn_buf;
6718 }
6719
6720 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
6721                                 const struct bpf_insn *si,
6722                                 struct bpf_insn *insn_buf,
6723                                 struct bpf_prog *prog, u32 *target_size)
6724 {
6725         struct bpf_insn *insn = insn_buf;
6726         int off;
6727
6728         switch (si->off) {
6729         case offsetof(struct bpf_sock, bound_dev_if):
6730                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
6731
6732                 if (type == BPF_WRITE)
6733                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6734                                         offsetof(struct sock, sk_bound_dev_if));
6735                 else
6736                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6737                                       offsetof(struct sock, sk_bound_dev_if));
6738                 break;
6739
6740         case offsetof(struct bpf_sock, mark):
6741                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
6742
6743                 if (type == BPF_WRITE)
6744                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6745                                         offsetof(struct sock, sk_mark));
6746                 else
6747                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6748                                       offsetof(struct sock, sk_mark));
6749                 break;
6750
6751         case offsetof(struct bpf_sock, priority):
6752                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
6753
6754                 if (type == BPF_WRITE)
6755                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6756                                         offsetof(struct sock, sk_priority));
6757                 else
6758                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6759                                       offsetof(struct sock, sk_priority));
6760                 break;
6761
6762         case offsetof(struct bpf_sock, family):
6763                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
6764
6765                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6766                                       offsetof(struct sock, sk_family));
6767                 break;
6768
6769         case offsetof(struct bpf_sock, type):
6770                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6771                                       offsetof(struct sock, __sk_flags_offset));
6772                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
6773                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
6774                 break;
6775
6776         case offsetof(struct bpf_sock, protocol):
6777                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6778                                       offsetof(struct sock, __sk_flags_offset));
6779                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
6780                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
6781                 break;
6782
6783         case offsetof(struct bpf_sock, src_ip4):
6784                 *insn++ = BPF_LDX_MEM(
6785                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
6786                         bpf_target_off(struct sock_common, skc_rcv_saddr,
6787                                        FIELD_SIZEOF(struct sock_common,
6788                                                     skc_rcv_saddr),
6789                                        target_size));
6790                 break;
6791
6792         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6793 #if IS_ENABLED(CONFIG_IPV6)
6794                 off = si->off;
6795                 off -= offsetof(struct bpf_sock, src_ip6[0]);
6796                 *insn++ = BPF_LDX_MEM(
6797                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
6798                         bpf_target_off(
6799                                 struct sock_common,
6800                                 skc_v6_rcv_saddr.s6_addr32[0],
6801                                 FIELD_SIZEOF(struct sock_common,
6802                                              skc_v6_rcv_saddr.s6_addr32[0]),
6803                                 target_size) + off);
6804 #else
6805                 (void)off;
6806                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6807 #endif
6808                 break;
6809
6810         case offsetof(struct bpf_sock, src_port):
6811                 *insn++ = BPF_LDX_MEM(
6812                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
6813                         si->dst_reg, si->src_reg,
6814                         bpf_target_off(struct sock_common, skc_num,
6815                                        FIELD_SIZEOF(struct sock_common,
6816                                                     skc_num),
6817                                        target_size));
6818                 break;
6819         }
6820
6821         return insn - insn_buf;
6822 }
6823
6824 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
6825                                          const struct bpf_insn *si,
6826                                          struct bpf_insn *insn_buf,
6827                                          struct bpf_prog *prog, u32 *target_size)
6828 {
6829         struct bpf_insn *insn = insn_buf;
6830
6831         switch (si->off) {
6832         case offsetof(struct __sk_buff, ifindex):
6833                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
6834                                       si->dst_reg, si->src_reg,
6835                                       offsetof(struct sk_buff, dev));
6836                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6837                                       bpf_target_off(struct net_device, ifindex, 4,
6838                                                      target_size));
6839                 break;
6840         default:
6841                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
6842                                               target_size);
6843         }
6844
6845         return insn - insn_buf;
6846 }
6847
6848 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
6849                                   const struct bpf_insn *si,
6850                                   struct bpf_insn *insn_buf,
6851                                   struct bpf_prog *prog, u32 *target_size)
6852 {
6853         struct bpf_insn *insn = insn_buf;
6854
6855         switch (si->off) {
6856         case offsetof(struct xdp_md, data):
6857                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
6858                                       si->dst_reg, si->src_reg,
6859                                       offsetof(struct xdp_buff, data));
6860                 break;
6861         case offsetof(struct xdp_md, data_meta):
6862                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
6863                                       si->dst_reg, si->src_reg,
6864                                       offsetof(struct xdp_buff, data_meta));
6865                 break;
6866         case offsetof(struct xdp_md, data_end):
6867                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
6868                                       si->dst_reg, si->src_reg,
6869                                       offsetof(struct xdp_buff, data_end));
6870                 break;
6871         case offsetof(struct xdp_md, ingress_ifindex):
6872                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6873                                       si->dst_reg, si->src_reg,
6874                                       offsetof(struct xdp_buff, rxq));
6875                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
6876                                       si->dst_reg, si->dst_reg,
6877                                       offsetof(struct xdp_rxq_info, dev));
6878                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6879                                       offsetof(struct net_device, ifindex));
6880                 break;
6881         case offsetof(struct xdp_md, rx_queue_index):
6882                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6883                                       si->dst_reg, si->src_reg,
6884                                       offsetof(struct xdp_buff, rxq));
6885                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6886                                       offsetof(struct xdp_rxq_info,
6887                                                queue_index));
6888                 break;
6889         }
6890
6891         return insn - insn_buf;
6892 }
6893
6894 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
6895  * context Structure, F is Field in context structure that contains a pointer
6896  * to Nested Structure of type NS that has the field NF.
6897  *
6898  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
6899  * sure that SIZE is not greater than actual size of S.F.NF.
6900  *
6901  * If offset OFF is provided, the load happens from that offset relative to
6902  * offset of NF.
6903  */
6904 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
6905         do {                                                                   \
6906                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
6907                                       si->src_reg, offsetof(S, F));            \
6908                 *insn++ = BPF_LDX_MEM(                                         \
6909                         SIZE, si->dst_reg, si->dst_reg,                        \
6910                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
6911                                        target_size)                            \
6912                                 + OFF);                                        \
6913         } while (0)
6914
6915 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
6916         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
6917                                              BPF_FIELD_SIZEOF(NS, NF), 0)
6918
6919 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
6920  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
6921  *
6922  * It doesn't support SIZE argument though since narrow stores are not
6923  * supported for now.
6924  *
6925  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
6926  * "register" since two registers available in convert_ctx_access are not
6927  * enough: we can't override neither SRC, since it contains value to store, nor
6928  * DST since it contains pointer to context that may be used by later
6929  * instructions. But we need a temporary place to save pointer to nested
6930  * structure whose field we want to store to.
6931  */
6932 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF)                \
6933         do {                                                                   \
6934                 int tmp_reg = BPF_REG_9;                                       \
6935                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
6936                         --tmp_reg;                                             \
6937                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
6938                         --tmp_reg;                                             \
6939                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
6940                                       offsetof(S, TF));                        \
6941                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
6942                                       si->dst_reg, offsetof(S, F));            \
6943                 *insn++ = BPF_STX_MEM(                                         \
6944                         BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg,        \
6945                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
6946                                        target_size)                            \
6947                                 + OFF);                                        \
6948                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
6949                                       offsetof(S, TF));                        \
6950         } while (0)
6951
6952 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
6953                                                       TF)                      \
6954         do {                                                                   \
6955                 if (type == BPF_WRITE) {                                       \
6956                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF,    \
6957                                                          TF);                  \
6958                 } else {                                                       \
6959                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
6960                                 S, NS, F, NF, SIZE, OFF);  \
6961                 }                                                              \
6962         } while (0)
6963
6964 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
6965         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
6966                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
6967
6968 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
6969                                         const struct bpf_insn *si,
6970                                         struct bpf_insn *insn_buf,
6971                                         struct bpf_prog *prog, u32 *target_size)
6972 {
6973         struct bpf_insn *insn = insn_buf;
6974         int off;
6975
6976         switch (si->off) {
6977         case offsetof(struct bpf_sock_addr, user_family):
6978                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6979                                             struct sockaddr, uaddr, sa_family);
6980                 break;
6981
6982         case offsetof(struct bpf_sock_addr, user_ip4):
6983                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6984                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
6985                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
6986                 break;
6987
6988         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6989                 off = si->off;
6990                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
6991                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6992                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
6993                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
6994                         tmp_reg);
6995                 break;
6996
6997         case offsetof(struct bpf_sock_addr, user_port):
6998                 /* To get port we need to know sa_family first and then treat
6999                  * sockaddr as either sockaddr_in or sockaddr_in6.
7000                  * Though we can simplify since port field has same offset and
7001                  * size in both structures.
7002                  * Here we check this invariant and use just one of the
7003                  * structures if it's true.
7004                  */
7005                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
7006                              offsetof(struct sockaddr_in6, sin6_port));
7007                 BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
7008                              FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
7009                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
7010                                                      struct sockaddr_in6, uaddr,
7011                                                      sin6_port, tmp_reg);
7012                 break;
7013
7014         case offsetof(struct bpf_sock_addr, family):
7015                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7016                                             struct sock, sk, sk_family);
7017                 break;
7018
7019         case offsetof(struct bpf_sock_addr, type):
7020                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7021                         struct bpf_sock_addr_kern, struct sock, sk,
7022                         __sk_flags_offset, BPF_W, 0);
7023                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7024                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7025                 break;
7026
7027         case offsetof(struct bpf_sock_addr, protocol):
7028                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7029                         struct bpf_sock_addr_kern, struct sock, sk,
7030                         __sk_flags_offset, BPF_W, 0);
7031                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7032                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
7033                                         SK_FL_PROTO_SHIFT);
7034                 break;
7035
7036         case offsetof(struct bpf_sock_addr, msg_src_ip4):
7037                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
7038                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7039                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
7040                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
7041                 break;
7042
7043         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7044                                 msg_src_ip6[3]):
7045                 off = si->off;
7046                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
7047                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
7048                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7049                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
7050                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
7051                 break;
7052         }
7053
7054         return insn - insn_buf;
7055 }
7056
7057 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
7058                                        const struct bpf_insn *si,
7059                                        struct bpf_insn *insn_buf,
7060                                        struct bpf_prog *prog,
7061                                        u32 *target_size)
7062 {
7063         struct bpf_insn *insn = insn_buf;
7064         int off;
7065
7066         switch (si->off) {
7067         case offsetof(struct bpf_sock_ops, op) ...
7068              offsetof(struct bpf_sock_ops, replylong[3]):
7069                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
7070                              FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
7071                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
7072                              FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
7073                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
7074                              FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
7075                 off = si->off;
7076                 off -= offsetof(struct bpf_sock_ops, op);
7077                 off += offsetof(struct bpf_sock_ops_kern, op);
7078                 if (type == BPF_WRITE)
7079                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7080                                               off);
7081                 else
7082                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7083                                               off);
7084                 break;
7085
7086         case offsetof(struct bpf_sock_ops, family):
7087                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
7088
7089                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7090                                               struct bpf_sock_ops_kern, sk),
7091                                       si->dst_reg, si->src_reg,
7092                                       offsetof(struct bpf_sock_ops_kern, sk));
7093                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7094                                       offsetof(struct sock_common, skc_family));
7095                 break;
7096
7097         case offsetof(struct bpf_sock_ops, remote_ip4):
7098                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
7099
7100                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7101                                                 struct bpf_sock_ops_kern, sk),
7102                                       si->dst_reg, si->src_reg,
7103                                       offsetof(struct bpf_sock_ops_kern, sk));
7104                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7105                                       offsetof(struct sock_common, skc_daddr));
7106                 break;
7107
7108         case offsetof(struct bpf_sock_ops, local_ip4):
7109                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7110                                           skc_rcv_saddr) != 4);
7111
7112                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7113                                               struct bpf_sock_ops_kern, sk),
7114                                       si->dst_reg, si->src_reg,
7115                                       offsetof(struct bpf_sock_ops_kern, sk));
7116                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7117                                       offsetof(struct sock_common,
7118                                                skc_rcv_saddr));
7119                 break;
7120
7121         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
7122              offsetof(struct bpf_sock_ops, remote_ip6[3]):
7123 #if IS_ENABLED(CONFIG_IPV6)
7124                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7125                                           skc_v6_daddr.s6_addr32[0]) != 4);
7126
7127                 off = si->off;
7128                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
7129                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7130                                                 struct bpf_sock_ops_kern, sk),
7131                                       si->dst_reg, si->src_reg,
7132                                       offsetof(struct bpf_sock_ops_kern, sk));
7133                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7134                                       offsetof(struct sock_common,
7135                                                skc_v6_daddr.s6_addr32[0]) +
7136                                       off);
7137 #else
7138                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7139 #endif
7140                 break;
7141
7142         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
7143              offsetof(struct bpf_sock_ops, local_ip6[3]):
7144 #if IS_ENABLED(CONFIG_IPV6)
7145                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7146                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7147
7148                 off = si->off;
7149                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
7150                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7151                                                 struct bpf_sock_ops_kern, sk),
7152                                       si->dst_reg, si->src_reg,
7153                                       offsetof(struct bpf_sock_ops_kern, sk));
7154                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7155                                       offsetof(struct sock_common,
7156                                                skc_v6_rcv_saddr.s6_addr32[0]) +
7157                                       off);
7158 #else
7159                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7160 #endif
7161                 break;
7162
7163         case offsetof(struct bpf_sock_ops, remote_port):
7164                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
7165
7166                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7167                                                 struct bpf_sock_ops_kern, sk),
7168                                       si->dst_reg, si->src_reg,
7169                                       offsetof(struct bpf_sock_ops_kern, sk));
7170                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7171                                       offsetof(struct sock_common, skc_dport));
7172 #ifndef __BIG_ENDIAN_BITFIELD
7173                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7174 #endif
7175                 break;
7176
7177         case offsetof(struct bpf_sock_ops, local_port):
7178                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
7179
7180                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7181                                                 struct bpf_sock_ops_kern, sk),
7182                                       si->dst_reg, si->src_reg,
7183                                       offsetof(struct bpf_sock_ops_kern, sk));
7184                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7185                                       offsetof(struct sock_common, skc_num));
7186                 break;
7187
7188         case offsetof(struct bpf_sock_ops, is_fullsock):
7189                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7190                                                 struct bpf_sock_ops_kern,
7191                                                 is_fullsock),
7192                                       si->dst_reg, si->src_reg,
7193                                       offsetof(struct bpf_sock_ops_kern,
7194                                                is_fullsock));
7195                 break;
7196
7197         case offsetof(struct bpf_sock_ops, state):
7198                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
7199
7200                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7201                                                 struct bpf_sock_ops_kern, sk),
7202                                       si->dst_reg, si->src_reg,
7203                                       offsetof(struct bpf_sock_ops_kern, sk));
7204                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
7205                                       offsetof(struct sock_common, skc_state));
7206                 break;
7207
7208         case offsetof(struct bpf_sock_ops, rtt_min):
7209                 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
7210                              sizeof(struct minmax));
7211                 BUILD_BUG_ON(sizeof(struct minmax) <
7212                              sizeof(struct minmax_sample));
7213
7214                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7215                                                 struct bpf_sock_ops_kern, sk),
7216                                       si->dst_reg, si->src_reg,
7217                                       offsetof(struct bpf_sock_ops_kern, sk));
7218                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7219                                       offsetof(struct tcp_sock, rtt_min) +
7220                                       FIELD_SIZEOF(struct minmax_sample, t));
7221                 break;
7222
7223 /* Helper macro for adding read access to tcp_sock or sock fields. */
7224 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
7225         do {                                                                  \
7226                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
7227                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
7228                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7229                                                 struct bpf_sock_ops_kern,     \
7230                                                 is_fullsock),                 \
7231                                       si->dst_reg, si->src_reg,               \
7232                                       offsetof(struct bpf_sock_ops_kern,      \
7233                                                is_fullsock));                 \
7234                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);            \
7235                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7236                                                 struct bpf_sock_ops_kern, sk),\
7237                                       si->dst_reg, si->src_reg,               \
7238                                       offsetof(struct bpf_sock_ops_kern, sk));\
7239                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
7240                                                        OBJ_FIELD),            \
7241                                       si->dst_reg, si->dst_reg,               \
7242                                       offsetof(OBJ, OBJ_FIELD));              \
7243         } while (0)
7244
7245 /* Helper macro for adding write access to tcp_sock or sock fields.
7246  * The macro is called with two registers, dst_reg which contains a pointer
7247  * to ctx (context) and src_reg which contains the value that should be
7248  * stored. However, we need an additional register since we cannot overwrite
7249  * dst_reg because it may be used later in the program.
7250  * Instead we "borrow" one of the other register. We first save its value
7251  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
7252  * it at the end of the macro.
7253  */
7254 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
7255         do {                                                                  \
7256                 int reg = BPF_REG_9;                                          \
7257                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
7258                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
7259                 if (si->dst_reg == reg || si->src_reg == reg)                 \
7260                         reg--;                                                \
7261                 if (si->dst_reg == reg || si->src_reg == reg)                 \
7262                         reg--;                                                \
7263                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
7264                                       offsetof(struct bpf_sock_ops_kern,      \
7265                                                temp));                        \
7266                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7267                                                 struct bpf_sock_ops_kern,     \
7268                                                 is_fullsock),                 \
7269                                       reg, si->dst_reg,                       \
7270                                       offsetof(struct bpf_sock_ops_kern,      \
7271                                                is_fullsock));                 \
7272                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
7273                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7274                                                 struct bpf_sock_ops_kern, sk),\
7275                                       reg, si->dst_reg,                       \
7276                                       offsetof(struct bpf_sock_ops_kern, sk));\
7277                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
7278                                       reg, si->src_reg,                       \
7279                                       offsetof(OBJ, OBJ_FIELD));              \
7280                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
7281                                       offsetof(struct bpf_sock_ops_kern,      \
7282                                                temp));                        \
7283         } while (0)
7284
7285 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
7286         do {                                                                  \
7287                 if (TYPE == BPF_WRITE)                                        \
7288                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
7289                 else                                                          \
7290                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
7291         } while (0)
7292
7293         case offsetof(struct bpf_sock_ops, snd_cwnd):
7294                 SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
7295                 break;
7296
7297         case offsetof(struct bpf_sock_ops, srtt_us):
7298                 SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
7299                 break;
7300
7301         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
7302                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
7303                                    struct tcp_sock);
7304                 break;
7305
7306         case offsetof(struct bpf_sock_ops, snd_ssthresh):
7307                 SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
7308                 break;
7309
7310         case offsetof(struct bpf_sock_ops, rcv_nxt):
7311                 SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
7312                 break;
7313
7314         case offsetof(struct bpf_sock_ops, snd_nxt):
7315                 SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
7316                 break;
7317
7318         case offsetof(struct bpf_sock_ops, snd_una):
7319                 SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
7320                 break;
7321
7322         case offsetof(struct bpf_sock_ops, mss_cache):
7323                 SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
7324                 break;
7325
7326         case offsetof(struct bpf_sock_ops, ecn_flags):
7327                 SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
7328                 break;
7329
7330         case offsetof(struct bpf_sock_ops, rate_delivered):
7331                 SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
7332                                    struct tcp_sock);
7333                 break;
7334
7335         case offsetof(struct bpf_sock_ops, rate_interval_us):
7336                 SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
7337                                    struct tcp_sock);
7338                 break;
7339
7340         case offsetof(struct bpf_sock_ops, packets_out):
7341                 SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
7342                 break;
7343
7344         case offsetof(struct bpf_sock_ops, retrans_out):
7345                 SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
7346                 break;
7347
7348         case offsetof(struct bpf_sock_ops, total_retrans):
7349                 SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
7350                                    struct tcp_sock);
7351                 break;
7352
7353         case offsetof(struct bpf_sock_ops, segs_in):
7354                 SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
7355                 break;
7356
7357         case offsetof(struct bpf_sock_ops, data_segs_in):
7358                 SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
7359                 break;
7360
7361         case offsetof(struct bpf_sock_ops, segs_out):
7362                 SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
7363                 break;
7364
7365         case offsetof(struct bpf_sock_ops, data_segs_out):
7366                 SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
7367                                    struct tcp_sock);
7368                 break;
7369
7370         case offsetof(struct bpf_sock_ops, lost_out):
7371                 SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
7372                 break;
7373
7374         case offsetof(struct bpf_sock_ops, sacked_out):
7375                 SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
7376                 break;
7377
7378         case offsetof(struct bpf_sock_ops, sk_txhash):
7379                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
7380                                           struct sock, type);
7381                 break;
7382
7383         case offsetof(struct bpf_sock_ops, bytes_received):
7384                 SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
7385                                    struct tcp_sock);
7386                 break;
7387
7388         case offsetof(struct bpf_sock_ops, bytes_acked):
7389                 SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
7390                 break;
7391
7392         }
7393         return insn - insn_buf;
7394 }
7395
7396 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
7397                                      const struct bpf_insn *si,
7398                                      struct bpf_insn *insn_buf,
7399                                      struct bpf_prog *prog, u32 *target_size)
7400 {
7401         struct bpf_insn *insn = insn_buf;
7402         int off;
7403
7404         switch (si->off) {
7405         case offsetof(struct __sk_buff, data_end):
7406                 off  = si->off;
7407                 off -= offsetof(struct __sk_buff, data_end);
7408                 off += offsetof(struct sk_buff, cb);
7409                 off += offsetof(struct tcp_skb_cb, bpf.data_end);
7410                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7411                                       si->src_reg, off);
7412                 break;
7413         default:
7414                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
7415                                               target_size);
7416         }
7417
7418         return insn - insn_buf;
7419 }
7420
7421 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
7422                                      const struct bpf_insn *si,
7423                                      struct bpf_insn *insn_buf,
7424                                      struct bpf_prog *prog, u32 *target_size)
7425 {
7426         struct bpf_insn *insn = insn_buf;
7427 #if IS_ENABLED(CONFIG_IPV6)
7428         int off;
7429 #endif
7430
7431         /* convert ctx uses the fact sg element is first in struct */
7432         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
7433
7434         switch (si->off) {
7435         case offsetof(struct sk_msg_md, data):
7436                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
7437                                       si->dst_reg, si->src_reg,
7438                                       offsetof(struct sk_msg, data));
7439                 break;
7440         case offsetof(struct sk_msg_md, data_end):
7441                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
7442                                       si->dst_reg, si->src_reg,
7443                                       offsetof(struct sk_msg, data_end));
7444                 break;
7445         case offsetof(struct sk_msg_md, family):
7446                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
7447
7448                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7449                                               struct sk_msg, sk),
7450                                       si->dst_reg, si->src_reg,
7451                                       offsetof(struct sk_msg, sk));
7452                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7453                                       offsetof(struct sock_common, skc_family));
7454                 break;
7455
7456         case offsetof(struct sk_msg_md, remote_ip4):
7457                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
7458
7459                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7460                                                 struct sk_msg, sk),
7461                                       si->dst_reg, si->src_reg,
7462                                       offsetof(struct sk_msg, sk));
7463                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7464                                       offsetof(struct sock_common, skc_daddr));
7465                 break;
7466
7467         case offsetof(struct sk_msg_md, local_ip4):
7468                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7469                                           skc_rcv_saddr) != 4);
7470
7471                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7472                                               struct sk_msg, sk),
7473                                       si->dst_reg, si->src_reg,
7474                                       offsetof(struct sk_msg, sk));
7475                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7476                                       offsetof(struct sock_common,
7477                                                skc_rcv_saddr));
7478                 break;
7479
7480         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
7481              offsetof(struct sk_msg_md, remote_ip6[3]):
7482 #if IS_ENABLED(CONFIG_IPV6)
7483                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7484                                           skc_v6_daddr.s6_addr32[0]) != 4);
7485
7486                 off = si->off;
7487                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
7488                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7489                                                 struct sk_msg, sk),
7490                                       si->dst_reg, si->src_reg,
7491                                       offsetof(struct sk_msg, sk));
7492                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7493                                       offsetof(struct sock_common,
7494                                                skc_v6_daddr.s6_addr32[0]) +
7495                                       off);
7496 #else
7497                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7498 #endif
7499                 break;
7500
7501         case offsetof(struct sk_msg_md, local_ip6[0]) ...
7502              offsetof(struct sk_msg_md, local_ip6[3]):
7503 #if IS_ENABLED(CONFIG_IPV6)
7504                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7505                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7506
7507                 off = si->off;
7508                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
7509                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7510                                                 struct sk_msg, sk),
7511                                       si->dst_reg, si->src_reg,
7512                                       offsetof(struct sk_msg, sk));
7513                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7514                                       offsetof(struct sock_common,
7515                                                skc_v6_rcv_saddr.s6_addr32[0]) +
7516                                       off);
7517 #else
7518                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7519 #endif
7520                 break;
7521
7522         case offsetof(struct sk_msg_md, remote_port):
7523                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
7524
7525                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7526                                                 struct sk_msg, sk),
7527                                       si->dst_reg, si->src_reg,
7528                                       offsetof(struct sk_msg, sk));
7529                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7530                                       offsetof(struct sock_common, skc_dport));
7531 #ifndef __BIG_ENDIAN_BITFIELD
7532                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7533 #endif
7534                 break;
7535
7536         case offsetof(struct sk_msg_md, local_port):
7537                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
7538
7539                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7540                                                 struct sk_msg, sk),
7541                                       si->dst_reg, si->src_reg,
7542                                       offsetof(struct sk_msg, sk));
7543                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7544                                       offsetof(struct sock_common, skc_num));
7545                 break;
7546
7547         case offsetof(struct sk_msg_md, size):
7548                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
7549                                       si->dst_reg, si->src_reg,
7550                                       offsetof(struct sk_msg_sg, size));
7551                 break;
7552         }
7553
7554         return insn - insn_buf;
7555 }
7556
7557 const struct bpf_verifier_ops sk_filter_verifier_ops = {
7558         .get_func_proto         = sk_filter_func_proto,
7559         .is_valid_access        = sk_filter_is_valid_access,
7560         .convert_ctx_access     = bpf_convert_ctx_access,
7561         .gen_ld_abs             = bpf_gen_ld_abs,
7562 };
7563
7564 const struct bpf_prog_ops sk_filter_prog_ops = {
7565         .test_run               = bpf_prog_test_run_skb,
7566 };
7567
7568 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
7569         .get_func_proto         = tc_cls_act_func_proto,
7570         .is_valid_access        = tc_cls_act_is_valid_access,
7571         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
7572         .gen_prologue           = tc_cls_act_prologue,
7573         .gen_ld_abs             = bpf_gen_ld_abs,
7574 };
7575
7576 const struct bpf_prog_ops tc_cls_act_prog_ops = {
7577         .test_run               = bpf_prog_test_run_skb,
7578 };
7579
7580 const struct bpf_verifier_ops xdp_verifier_ops = {
7581         .get_func_proto         = xdp_func_proto,
7582         .is_valid_access        = xdp_is_valid_access,
7583         .convert_ctx_access     = xdp_convert_ctx_access,
7584         .gen_prologue           = bpf_noop_prologue,
7585 };
7586
7587 const struct bpf_prog_ops xdp_prog_ops = {
7588         .test_run               = bpf_prog_test_run_xdp,
7589 };
7590
7591 const struct bpf_verifier_ops cg_skb_verifier_ops = {
7592         .get_func_proto         = cg_skb_func_proto,
7593         .is_valid_access        = cg_skb_is_valid_access,
7594         .convert_ctx_access     = bpf_convert_ctx_access,
7595 };
7596
7597 const struct bpf_prog_ops cg_skb_prog_ops = {
7598         .test_run               = bpf_prog_test_run_skb,
7599 };
7600
7601 const struct bpf_verifier_ops lwt_in_verifier_ops = {
7602         .get_func_proto         = lwt_in_func_proto,
7603         .is_valid_access        = lwt_is_valid_access,
7604         .convert_ctx_access     = bpf_convert_ctx_access,
7605 };
7606
7607 const struct bpf_prog_ops lwt_in_prog_ops = {
7608         .test_run               = bpf_prog_test_run_skb,
7609 };
7610
7611 const struct bpf_verifier_ops lwt_out_verifier_ops = {
7612         .get_func_proto         = lwt_out_func_proto,
7613         .is_valid_access        = lwt_is_valid_access,
7614         .convert_ctx_access     = bpf_convert_ctx_access,
7615 };
7616
7617 const struct bpf_prog_ops lwt_out_prog_ops = {
7618         .test_run               = bpf_prog_test_run_skb,
7619 };
7620
7621 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
7622         .get_func_proto         = lwt_xmit_func_proto,
7623         .is_valid_access        = lwt_is_valid_access,
7624         .convert_ctx_access     = bpf_convert_ctx_access,
7625         .gen_prologue           = tc_cls_act_prologue,
7626 };
7627
7628 const struct bpf_prog_ops lwt_xmit_prog_ops = {
7629         .test_run               = bpf_prog_test_run_skb,
7630 };
7631
7632 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
7633         .get_func_proto         = lwt_seg6local_func_proto,
7634         .is_valid_access        = lwt_is_valid_access,
7635         .convert_ctx_access     = bpf_convert_ctx_access,
7636 };
7637
7638 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
7639         .test_run               = bpf_prog_test_run_skb,
7640 };
7641
7642 const struct bpf_verifier_ops cg_sock_verifier_ops = {
7643         .get_func_proto         = sock_filter_func_proto,
7644         .is_valid_access        = sock_filter_is_valid_access,
7645         .convert_ctx_access     = bpf_sock_convert_ctx_access,
7646 };
7647
7648 const struct bpf_prog_ops cg_sock_prog_ops = {
7649 };
7650
7651 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
7652         .get_func_proto         = sock_addr_func_proto,
7653         .is_valid_access        = sock_addr_is_valid_access,
7654         .convert_ctx_access     = sock_addr_convert_ctx_access,
7655 };
7656
7657 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
7658 };
7659
7660 const struct bpf_verifier_ops sock_ops_verifier_ops = {
7661         .get_func_proto         = sock_ops_func_proto,
7662         .is_valid_access        = sock_ops_is_valid_access,
7663         .convert_ctx_access     = sock_ops_convert_ctx_access,
7664 };
7665
7666 const struct bpf_prog_ops sock_ops_prog_ops = {
7667 };
7668
7669 const struct bpf_verifier_ops sk_skb_verifier_ops = {
7670         .get_func_proto         = sk_skb_func_proto,
7671         .is_valid_access        = sk_skb_is_valid_access,
7672         .convert_ctx_access     = sk_skb_convert_ctx_access,
7673         .gen_prologue           = sk_skb_prologue,
7674 };
7675
7676 const struct bpf_prog_ops sk_skb_prog_ops = {
7677 };
7678
7679 const struct bpf_verifier_ops sk_msg_verifier_ops = {
7680         .get_func_proto         = sk_msg_func_proto,
7681         .is_valid_access        = sk_msg_is_valid_access,
7682         .convert_ctx_access     = sk_msg_convert_ctx_access,
7683         .gen_prologue           = bpf_noop_prologue,
7684 };
7685
7686 const struct bpf_prog_ops sk_msg_prog_ops = {
7687 };
7688
7689 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
7690         .get_func_proto         = flow_dissector_func_proto,
7691         .is_valid_access        = flow_dissector_is_valid_access,
7692         .convert_ctx_access     = bpf_convert_ctx_access,
7693 };
7694
7695 const struct bpf_prog_ops flow_dissector_prog_ops = {
7696 };
7697
7698 int sk_detach_filter(struct sock *sk)
7699 {
7700         int ret = -ENOENT;
7701         struct sk_filter *filter;
7702
7703         if (sock_flag(sk, SOCK_FILTER_LOCKED))
7704                 return -EPERM;
7705
7706         filter = rcu_dereference_protected(sk->sk_filter,
7707                                            lockdep_sock_is_held(sk));
7708         if (filter) {
7709                 RCU_INIT_POINTER(sk->sk_filter, NULL);
7710                 sk_filter_uncharge(sk, filter);
7711                 ret = 0;
7712         }
7713
7714         return ret;
7715 }
7716 EXPORT_SYMBOL_GPL(sk_detach_filter);
7717
7718 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
7719                   unsigned int len)
7720 {
7721         struct sock_fprog_kern *fprog;
7722         struct sk_filter *filter;
7723         int ret = 0;
7724
7725         lock_sock(sk);
7726         filter = rcu_dereference_protected(sk->sk_filter,
7727                                            lockdep_sock_is_held(sk));
7728         if (!filter)
7729                 goto out;
7730
7731         /* We're copying the filter that has been originally attached,
7732          * so no conversion/decode needed anymore. eBPF programs that
7733          * have no original program cannot be dumped through this.
7734          */
7735         ret = -EACCES;
7736         fprog = filter->prog->orig_prog;
7737         if (!fprog)
7738                 goto out;
7739
7740         ret = fprog->len;
7741         if (!len)
7742                 /* User space only enquires number of filter blocks. */
7743                 goto out;
7744
7745         ret = -EINVAL;
7746         if (len < fprog->len)
7747                 goto out;
7748
7749         ret = -EFAULT;
7750         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
7751                 goto out;
7752
7753         /* Instead of bytes, the API requests to return the number
7754          * of filter blocks.
7755          */
7756         ret = fprog->len;
7757 out:
7758         release_sock(sk);
7759         return ret;
7760 }
7761
7762 #ifdef CONFIG_INET
7763 struct sk_reuseport_kern {
7764         struct sk_buff *skb;
7765         struct sock *sk;
7766         struct sock *selected_sk;
7767         void *data_end;
7768         u32 hash;
7769         u32 reuseport_id;
7770         bool bind_inany;
7771 };
7772
7773 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
7774                                     struct sock_reuseport *reuse,
7775                                     struct sock *sk, struct sk_buff *skb,
7776                                     u32 hash)
7777 {
7778         reuse_kern->skb = skb;
7779         reuse_kern->sk = sk;
7780         reuse_kern->selected_sk = NULL;
7781         reuse_kern->data_end = skb->data + skb_headlen(skb);
7782         reuse_kern->hash = hash;
7783         reuse_kern->reuseport_id = reuse->reuseport_id;
7784         reuse_kern->bind_inany = reuse->bind_inany;
7785 }
7786
7787 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
7788                                   struct bpf_prog *prog, struct sk_buff *skb,
7789                                   u32 hash)
7790 {
7791         struct sk_reuseport_kern reuse_kern;
7792         enum sk_action action;
7793
7794         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
7795         action = BPF_PROG_RUN(prog, &reuse_kern);
7796
7797         if (action == SK_PASS)
7798                 return reuse_kern.selected_sk;
7799         else
7800                 return ERR_PTR(-ECONNREFUSED);
7801 }
7802
7803 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
7804            struct bpf_map *, map, void *, key, u32, flags)
7805 {
7806         struct sock_reuseport *reuse;
7807         struct sock *selected_sk;
7808
7809         selected_sk = map->ops->map_lookup_elem(map, key);
7810         if (!selected_sk)
7811                 return -ENOENT;
7812
7813         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
7814         if (!reuse)
7815                 /* selected_sk is unhashed (e.g. by close()) after the
7816                  * above map_lookup_elem().  Treat selected_sk has already
7817                  * been removed from the map.
7818                  */
7819                 return -ENOENT;
7820
7821         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
7822                 struct sock *sk;
7823
7824                 if (unlikely(!reuse_kern->reuseport_id))
7825                         /* There is a small race between adding the
7826                          * sk to the map and setting the
7827                          * reuse_kern->reuseport_id.
7828                          * Treat it as the sk has not been added to
7829                          * the bpf map yet.
7830                          */
7831                         return -ENOENT;
7832
7833                 sk = reuse_kern->sk;
7834                 if (sk->sk_protocol != selected_sk->sk_protocol)
7835                         return -EPROTOTYPE;
7836                 else if (sk->sk_family != selected_sk->sk_family)
7837                         return -EAFNOSUPPORT;
7838
7839                 /* Catch all. Likely bound to a different sockaddr. */
7840                 return -EBADFD;
7841         }
7842
7843         reuse_kern->selected_sk = selected_sk;
7844
7845         return 0;
7846 }
7847
7848 static const struct bpf_func_proto sk_select_reuseport_proto = {
7849         .func           = sk_select_reuseport,
7850         .gpl_only       = false,
7851         .ret_type       = RET_INTEGER,
7852         .arg1_type      = ARG_PTR_TO_CTX,
7853         .arg2_type      = ARG_CONST_MAP_PTR,
7854         .arg3_type      = ARG_PTR_TO_MAP_KEY,
7855         .arg4_type      = ARG_ANYTHING,
7856 };
7857
7858 BPF_CALL_4(sk_reuseport_load_bytes,
7859            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
7860            void *, to, u32, len)
7861 {
7862         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
7863 }
7864
7865 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
7866         .func           = sk_reuseport_load_bytes,
7867         .gpl_only       = false,
7868         .ret_type       = RET_INTEGER,
7869         .arg1_type      = ARG_PTR_TO_CTX,
7870         .arg2_type      = ARG_ANYTHING,
7871         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
7872         .arg4_type      = ARG_CONST_SIZE,
7873 };
7874
7875 BPF_CALL_5(sk_reuseport_load_bytes_relative,
7876            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
7877            void *, to, u32, len, u32, start_header)
7878 {
7879         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
7880                                                len, start_header);
7881 }
7882
7883 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
7884         .func           = sk_reuseport_load_bytes_relative,
7885         .gpl_only       = false,
7886         .ret_type       = RET_INTEGER,
7887         .arg1_type      = ARG_PTR_TO_CTX,
7888         .arg2_type      = ARG_ANYTHING,
7889         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
7890         .arg4_type      = ARG_CONST_SIZE,
7891         .arg5_type      = ARG_ANYTHING,
7892 };
7893
7894 static const struct bpf_func_proto *
7895 sk_reuseport_func_proto(enum bpf_func_id func_id,
7896                         const struct bpf_prog *prog)
7897 {
7898         switch (func_id) {
7899         case BPF_FUNC_sk_select_reuseport:
7900                 return &sk_select_reuseport_proto;
7901         case BPF_FUNC_skb_load_bytes:
7902                 return &sk_reuseport_load_bytes_proto;
7903         case BPF_FUNC_skb_load_bytes_relative:
7904                 return &sk_reuseport_load_bytes_relative_proto;
7905         default:
7906                 return bpf_base_func_proto(func_id);
7907         }
7908 }
7909
7910 static bool
7911 sk_reuseport_is_valid_access(int off, int size,
7912                              enum bpf_access_type type,
7913                              const struct bpf_prog *prog,
7914                              struct bpf_insn_access_aux *info)
7915 {
7916         const u32 size_default = sizeof(__u32);
7917
7918         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
7919             off % size || type != BPF_READ)
7920                 return false;
7921
7922         switch (off) {
7923         case offsetof(struct sk_reuseport_md, data):
7924                 info->reg_type = PTR_TO_PACKET;
7925                 return size == sizeof(__u64);
7926
7927         case offsetof(struct sk_reuseport_md, data_end):
7928                 info->reg_type = PTR_TO_PACKET_END;
7929                 return size == sizeof(__u64);
7930
7931         case offsetof(struct sk_reuseport_md, hash):
7932                 return size == size_default;
7933
7934         /* Fields that allow narrowing */
7935         case offsetof(struct sk_reuseport_md, eth_protocol):
7936                 if (size < FIELD_SIZEOF(struct sk_buff, protocol))
7937                         return false;
7938                 /* fall through */
7939         case offsetof(struct sk_reuseport_md, ip_protocol):
7940         case offsetof(struct sk_reuseport_md, bind_inany):
7941         case offsetof(struct sk_reuseport_md, len):
7942                 bpf_ctx_record_field_size(info, size_default);
7943                 return bpf_ctx_narrow_access_ok(off, size, size_default);
7944
7945         default:
7946                 return false;
7947         }
7948 }
7949
7950 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
7951         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
7952                               si->dst_reg, si->src_reg,                 \
7953                               bpf_target_off(struct sk_reuseport_kern, F, \
7954                                              FIELD_SIZEOF(struct sk_reuseport_kern, F), \
7955                                              target_size));             \
7956         })
7957
7958 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
7959         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
7960                                     struct sk_buff,                     \
7961                                     skb,                                \
7962                                     SKB_FIELD)
7963
7964 #define SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(SK_FIELD, BPF_SIZE, EXTRA_OFF) \
7965         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(struct sk_reuseport_kern,  \
7966                                              struct sock,               \
7967                                              sk,                        \
7968                                              SK_FIELD, BPF_SIZE, EXTRA_OFF)
7969
7970 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
7971                                            const struct bpf_insn *si,
7972                                            struct bpf_insn *insn_buf,
7973                                            struct bpf_prog *prog,
7974                                            u32 *target_size)
7975 {
7976         struct bpf_insn *insn = insn_buf;
7977
7978         switch (si->off) {
7979         case offsetof(struct sk_reuseport_md, data):
7980                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
7981                 break;
7982
7983         case offsetof(struct sk_reuseport_md, len):
7984                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
7985                 break;
7986
7987         case offsetof(struct sk_reuseport_md, eth_protocol):
7988                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
7989                 break;
7990
7991         case offsetof(struct sk_reuseport_md, ip_protocol):
7992                 BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
7993                 SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(__sk_flags_offset,
7994                                                     BPF_W, 0);
7995                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7996                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
7997                                         SK_FL_PROTO_SHIFT);
7998                 /* SK_FL_PROTO_MASK and SK_FL_PROTO_SHIFT are endian
7999                  * aware.  No further narrowing or masking is needed.
8000                  */
8001                 *target_size = 1;
8002                 break;
8003
8004         case offsetof(struct sk_reuseport_md, data_end):
8005                 SK_REUSEPORT_LOAD_FIELD(data_end);
8006                 break;
8007
8008         case offsetof(struct sk_reuseport_md, hash):
8009                 SK_REUSEPORT_LOAD_FIELD(hash);
8010                 break;
8011
8012         case offsetof(struct sk_reuseport_md, bind_inany):
8013                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
8014                 break;
8015         }
8016
8017         return insn - insn_buf;
8018 }
8019
8020 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
8021         .get_func_proto         = sk_reuseport_func_proto,
8022         .is_valid_access        = sk_reuseport_is_valid_access,
8023         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
8024 };
8025
8026 const struct bpf_prog_ops sk_reuseport_prog_ops = {
8027 };
8028 #endif /* CONFIG_INET */