]> asedeno.scripts.mit.edu Git - linux.git/blob - net/rds/ib_recv.c
Merge tag 'drm-next-2018-08-17-1' of git://anongit.freedesktop.org/drm/drm
[linux.git] / net / rds / ib_recv.c
1 /*
2  * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
42
43 static struct kmem_cache *rds_ib_incoming_slab;
44 static struct kmem_cache *rds_ib_frag_slab;
45 static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
46
47 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
48 {
49         struct rds_ib_recv_work *recv;
50         u32 i;
51
52         for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
53                 struct ib_sge *sge;
54
55                 recv->r_ibinc = NULL;
56                 recv->r_frag = NULL;
57
58                 recv->r_wr.next = NULL;
59                 recv->r_wr.wr_id = i;
60                 recv->r_wr.sg_list = recv->r_sge;
61                 recv->r_wr.num_sge = RDS_IB_RECV_SGE;
62
63                 sge = &recv->r_sge[0];
64                 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
65                 sge->length = sizeof(struct rds_header);
66                 sge->lkey = ic->i_pd->local_dma_lkey;
67
68                 sge = &recv->r_sge[1];
69                 sge->addr = 0;
70                 sge->length = RDS_FRAG_SIZE;
71                 sge->lkey = ic->i_pd->local_dma_lkey;
72         }
73 }
74
75 /*
76  * The entire 'from' list, including the from element itself, is put on
77  * to the tail of the 'to' list.
78  */
79 static void list_splice_entire_tail(struct list_head *from,
80                                     struct list_head *to)
81 {
82         struct list_head *from_last = from->prev;
83
84         list_splice_tail(from_last, to);
85         list_add_tail(from_last, to);
86 }
87
88 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
89 {
90         struct list_head *tmp;
91
92         tmp = xchg(&cache->xfer, NULL);
93         if (tmp) {
94                 if (cache->ready)
95                         list_splice_entire_tail(tmp, cache->ready);
96                 else
97                         cache->ready = tmp;
98         }
99 }
100
101 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
102 {
103         struct rds_ib_cache_head *head;
104         int cpu;
105
106         cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
107         if (!cache->percpu)
108                return -ENOMEM;
109
110         for_each_possible_cpu(cpu) {
111                 head = per_cpu_ptr(cache->percpu, cpu);
112                 head->first = NULL;
113                 head->count = 0;
114         }
115         cache->xfer = NULL;
116         cache->ready = NULL;
117
118         return 0;
119 }
120
121 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
122 {
123         int ret;
124
125         ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
126         if (!ret) {
127                 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
128                 if (ret)
129                         free_percpu(ic->i_cache_incs.percpu);
130         }
131
132         return ret;
133 }
134
135 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
136                                           struct list_head *caller_list)
137 {
138         struct rds_ib_cache_head *head;
139         int cpu;
140
141         for_each_possible_cpu(cpu) {
142                 head = per_cpu_ptr(cache->percpu, cpu);
143                 if (head->first) {
144                         list_splice_entire_tail(head->first, caller_list);
145                         head->first = NULL;
146                 }
147         }
148
149         if (cache->ready) {
150                 list_splice_entire_tail(cache->ready, caller_list);
151                 cache->ready = NULL;
152         }
153 }
154
155 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
156 {
157         struct rds_ib_incoming *inc;
158         struct rds_ib_incoming *inc_tmp;
159         struct rds_page_frag *frag;
160         struct rds_page_frag *frag_tmp;
161         LIST_HEAD(list);
162
163         rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
164         rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
165         free_percpu(ic->i_cache_incs.percpu);
166
167         list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
168                 list_del(&inc->ii_cache_entry);
169                 WARN_ON(!list_empty(&inc->ii_frags));
170                 kmem_cache_free(rds_ib_incoming_slab, inc);
171         }
172
173         rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
174         rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
175         free_percpu(ic->i_cache_frags.percpu);
176
177         list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
178                 list_del(&frag->f_cache_entry);
179                 WARN_ON(!list_empty(&frag->f_item));
180                 kmem_cache_free(rds_ib_frag_slab, frag);
181         }
182 }
183
184 /* fwd decl */
185 static void rds_ib_recv_cache_put(struct list_head *new_item,
186                                   struct rds_ib_refill_cache *cache);
187 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
188
189
190 /* Recycle frag and attached recv buffer f_sg */
191 static void rds_ib_frag_free(struct rds_ib_connection *ic,
192                              struct rds_page_frag *frag)
193 {
194         rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
195
196         rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
197         atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
198         rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
199 }
200
201 /* Recycle inc after freeing attached frags */
202 void rds_ib_inc_free(struct rds_incoming *inc)
203 {
204         struct rds_ib_incoming *ibinc;
205         struct rds_page_frag *frag;
206         struct rds_page_frag *pos;
207         struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
208
209         ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
210
211         /* Free attached frags */
212         list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
213                 list_del_init(&frag->f_item);
214                 rds_ib_frag_free(ic, frag);
215         }
216         BUG_ON(!list_empty(&ibinc->ii_frags));
217
218         rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
219         rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
220 }
221
222 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
223                                   struct rds_ib_recv_work *recv)
224 {
225         if (recv->r_ibinc) {
226                 rds_inc_put(&recv->r_ibinc->ii_inc);
227                 recv->r_ibinc = NULL;
228         }
229         if (recv->r_frag) {
230                 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
231                 rds_ib_frag_free(ic, recv->r_frag);
232                 recv->r_frag = NULL;
233         }
234 }
235
236 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
237 {
238         u32 i;
239
240         for (i = 0; i < ic->i_recv_ring.w_nr; i++)
241                 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
242 }
243
244 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
245                                                      gfp_t slab_mask)
246 {
247         struct rds_ib_incoming *ibinc;
248         struct list_head *cache_item;
249         int avail_allocs;
250
251         cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
252         if (cache_item) {
253                 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
254         } else {
255                 avail_allocs = atomic_add_unless(&rds_ib_allocation,
256                                                  1, rds_ib_sysctl_max_recv_allocation);
257                 if (!avail_allocs) {
258                         rds_ib_stats_inc(s_ib_rx_alloc_limit);
259                         return NULL;
260                 }
261                 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
262                 if (!ibinc) {
263                         atomic_dec(&rds_ib_allocation);
264                         return NULL;
265                 }
266                 rds_ib_stats_inc(s_ib_rx_total_incs);
267         }
268         INIT_LIST_HEAD(&ibinc->ii_frags);
269         rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
270
271         return ibinc;
272 }
273
274 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
275                                                     gfp_t slab_mask, gfp_t page_mask)
276 {
277         struct rds_page_frag *frag;
278         struct list_head *cache_item;
279         int ret;
280
281         cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
282         if (cache_item) {
283                 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
284                 atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
285                 rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
286         } else {
287                 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
288                 if (!frag)
289                         return NULL;
290
291                 sg_init_table(&frag->f_sg, 1);
292                 ret = rds_page_remainder_alloc(&frag->f_sg,
293                                                RDS_FRAG_SIZE, page_mask);
294                 if (ret) {
295                         kmem_cache_free(rds_ib_frag_slab, frag);
296                         return NULL;
297                 }
298                 rds_ib_stats_inc(s_ib_rx_total_frags);
299         }
300
301         INIT_LIST_HEAD(&frag->f_item);
302
303         return frag;
304 }
305
306 static int rds_ib_recv_refill_one(struct rds_connection *conn,
307                                   struct rds_ib_recv_work *recv, gfp_t gfp)
308 {
309         struct rds_ib_connection *ic = conn->c_transport_data;
310         struct ib_sge *sge;
311         int ret = -ENOMEM;
312         gfp_t slab_mask = GFP_NOWAIT;
313         gfp_t page_mask = GFP_NOWAIT;
314
315         if (gfp & __GFP_DIRECT_RECLAIM) {
316                 slab_mask = GFP_KERNEL;
317                 page_mask = GFP_HIGHUSER;
318         }
319
320         if (!ic->i_cache_incs.ready)
321                 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
322         if (!ic->i_cache_frags.ready)
323                 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
324
325         /*
326          * ibinc was taken from recv if recv contained the start of a message.
327          * recvs that were continuations will still have this allocated.
328          */
329         if (!recv->r_ibinc) {
330                 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
331                 if (!recv->r_ibinc)
332                         goto out;
333         }
334
335         WARN_ON(recv->r_frag); /* leak! */
336         recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
337         if (!recv->r_frag)
338                 goto out;
339
340         ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
341                             1, DMA_FROM_DEVICE);
342         WARN_ON(ret != 1);
343
344         sge = &recv->r_sge[0];
345         sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
346         sge->length = sizeof(struct rds_header);
347
348         sge = &recv->r_sge[1];
349         sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
350         sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
351
352         ret = 0;
353 out:
354         return ret;
355 }
356
357 static int acquire_refill(struct rds_connection *conn)
358 {
359         return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
360 }
361
362 static void release_refill(struct rds_connection *conn)
363 {
364         clear_bit(RDS_RECV_REFILL, &conn->c_flags);
365
366         /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
367          * hot path and finding waiters is very rare.  We don't want to walk
368          * the system-wide hashed waitqueue buckets in the fast path only to
369          * almost never find waiters.
370          */
371         if (waitqueue_active(&conn->c_waitq))
372                 wake_up_all(&conn->c_waitq);
373 }
374
375 /*
376  * This tries to allocate and post unused work requests after making sure that
377  * they have all the allocations they need to queue received fragments into
378  * sockets.
379  */
380 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
381 {
382         struct rds_ib_connection *ic = conn->c_transport_data;
383         struct rds_ib_recv_work *recv;
384         struct ib_recv_wr *failed_wr;
385         unsigned int posted = 0;
386         int ret = 0;
387         bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
388         u32 pos;
389
390         /* the goal here is to just make sure that someone, somewhere
391          * is posting buffers.  If we can't get the refill lock,
392          * let them do their thing
393          */
394         if (!acquire_refill(conn))
395                 return;
396
397         while ((prefill || rds_conn_up(conn)) &&
398                rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
399                 if (pos >= ic->i_recv_ring.w_nr) {
400                         printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
401                                         pos);
402                         break;
403                 }
404
405                 recv = &ic->i_recvs[pos];
406                 ret = rds_ib_recv_refill_one(conn, recv, gfp);
407                 if (ret) {
408                         break;
409                 }
410
411                 rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
412                          recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
413                          (long) ib_sg_dma_address(
414                                 ic->i_cm_id->device,
415                                 &recv->r_frag->f_sg));
416
417                 /* XXX when can this fail? */
418                 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
419                 if (ret) {
420                         rds_ib_conn_error(conn, "recv post on "
421                                "%pI6c returned %d, disconnecting and "
422                                "reconnecting\n", &conn->c_faddr,
423                                ret);
424                         break;
425                 }
426
427                 posted++;
428         }
429
430         /* We're doing flow control - update the window. */
431         if (ic->i_flowctl && posted)
432                 rds_ib_advertise_credits(conn, posted);
433
434         if (ret)
435                 rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
436
437         release_refill(conn);
438
439         /* if we're called from the softirq handler, we'll be GFP_NOWAIT.
440          * in this case the ring being low is going to lead to more interrupts
441          * and we can safely let the softirq code take care of it unless the
442          * ring is completely empty.
443          *
444          * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
445          * we might have raced with the softirq code while we had the refill
446          * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
447          * if we should requeue.
448          */
449         if (rds_conn_up(conn) &&
450             ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
451             rds_ib_ring_empty(&ic->i_recv_ring))) {
452                 queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
453         }
454 }
455
456 /*
457  * We want to recycle several types of recv allocations, like incs and frags.
458  * To use this, the *_free() function passes in the ptr to a list_head within
459  * the recyclee, as well as the cache to put it on.
460  *
461  * First, we put the memory on a percpu list. When this reaches a certain size,
462  * We move it to an intermediate non-percpu list in a lockless manner, with some
463  * xchg/compxchg wizardry.
464  *
465  * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
466  * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
467  * list_empty() will return true with one element is actually present.
468  */
469 static void rds_ib_recv_cache_put(struct list_head *new_item,
470                                  struct rds_ib_refill_cache *cache)
471 {
472         unsigned long flags;
473         struct list_head *old, *chpfirst;
474
475         local_irq_save(flags);
476
477         chpfirst = __this_cpu_read(cache->percpu->first);
478         if (!chpfirst)
479                 INIT_LIST_HEAD(new_item);
480         else /* put on front */
481                 list_add_tail(new_item, chpfirst);
482
483         __this_cpu_write(cache->percpu->first, new_item);
484         __this_cpu_inc(cache->percpu->count);
485
486         if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
487                 goto end;
488
489         /*
490          * Return our per-cpu first list to the cache's xfer by atomically
491          * grabbing the current xfer list, appending it to our per-cpu list,
492          * and then atomically returning that entire list back to the
493          * cache's xfer list as long as it's still empty.
494          */
495         do {
496                 old = xchg(&cache->xfer, NULL);
497                 if (old)
498                         list_splice_entire_tail(old, chpfirst);
499                 old = cmpxchg(&cache->xfer, NULL, chpfirst);
500         } while (old);
501
502
503         __this_cpu_write(cache->percpu->first, NULL);
504         __this_cpu_write(cache->percpu->count, 0);
505 end:
506         local_irq_restore(flags);
507 }
508
509 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
510 {
511         struct list_head *head = cache->ready;
512
513         if (head) {
514                 if (!list_empty(head)) {
515                         cache->ready = head->next;
516                         list_del_init(head);
517                 } else
518                         cache->ready = NULL;
519         }
520
521         return head;
522 }
523
524 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
525 {
526         struct rds_ib_incoming *ibinc;
527         struct rds_page_frag *frag;
528         unsigned long to_copy;
529         unsigned long frag_off = 0;
530         int copied = 0;
531         int ret;
532         u32 len;
533
534         ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
535         frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
536         len = be32_to_cpu(inc->i_hdr.h_len);
537
538         while (iov_iter_count(to) && copied < len) {
539                 if (frag_off == RDS_FRAG_SIZE) {
540                         frag = list_entry(frag->f_item.next,
541                                           struct rds_page_frag, f_item);
542                         frag_off = 0;
543                 }
544                 to_copy = min_t(unsigned long, iov_iter_count(to),
545                                 RDS_FRAG_SIZE - frag_off);
546                 to_copy = min_t(unsigned long, to_copy, len - copied);
547
548                 /* XXX needs + offset for multiple recvs per page */
549                 rds_stats_add(s_copy_to_user, to_copy);
550                 ret = copy_page_to_iter(sg_page(&frag->f_sg),
551                                         frag->f_sg.offset + frag_off,
552                                         to_copy,
553                                         to);
554                 if (ret != to_copy)
555                         return -EFAULT;
556
557                 frag_off += to_copy;
558                 copied += to_copy;
559         }
560
561         return copied;
562 }
563
564 /* ic starts out kzalloc()ed */
565 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
566 {
567         struct ib_send_wr *wr = &ic->i_ack_wr;
568         struct ib_sge *sge = &ic->i_ack_sge;
569
570         sge->addr = ic->i_ack_dma;
571         sge->length = sizeof(struct rds_header);
572         sge->lkey = ic->i_pd->local_dma_lkey;
573
574         wr->sg_list = sge;
575         wr->num_sge = 1;
576         wr->opcode = IB_WR_SEND;
577         wr->wr_id = RDS_IB_ACK_WR_ID;
578         wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
579 }
580
581 /*
582  * You'd think that with reliable IB connections you wouldn't need to ack
583  * messages that have been received.  The problem is that IB hardware generates
584  * an ack message before it has DMAed the message into memory.  This creates a
585  * potential message loss if the HCA is disabled for any reason between when it
586  * sends the ack and before the message is DMAed and processed.  This is only a
587  * potential issue if another HCA is available for fail-over.
588  *
589  * When the remote host receives our ack they'll free the sent message from
590  * their send queue.  To decrease the latency of this we always send an ack
591  * immediately after we've received messages.
592  *
593  * For simplicity, we only have one ack in flight at a time.  This puts
594  * pressure on senders to have deep enough send queues to absorb the latency of
595  * a single ack frame being in flight.  This might not be good enough.
596  *
597  * This is implemented by have a long-lived send_wr and sge which point to a
598  * statically allocated ack frame.  This ack wr does not fall under the ring
599  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
600  * room for it beyond the ring size.  Send completion notices its special
601  * wr_id and avoids working with the ring in that case.
602  */
603 #ifndef KERNEL_HAS_ATOMIC64
604 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
605 {
606         unsigned long flags;
607
608         spin_lock_irqsave(&ic->i_ack_lock, flags);
609         ic->i_ack_next = seq;
610         if (ack_required)
611                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
612         spin_unlock_irqrestore(&ic->i_ack_lock, flags);
613 }
614
615 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
616 {
617         unsigned long flags;
618         u64 seq;
619
620         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
621
622         spin_lock_irqsave(&ic->i_ack_lock, flags);
623         seq = ic->i_ack_next;
624         spin_unlock_irqrestore(&ic->i_ack_lock, flags);
625
626         return seq;
627 }
628 #else
629 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
630 {
631         atomic64_set(&ic->i_ack_next, seq);
632         if (ack_required) {
633                 smp_mb__before_atomic();
634                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
635         }
636 }
637
638 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
639 {
640         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
641         smp_mb__after_atomic();
642
643         return atomic64_read(&ic->i_ack_next);
644 }
645 #endif
646
647
648 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
649 {
650         struct rds_header *hdr = ic->i_ack;
651         struct ib_send_wr *failed_wr;
652         u64 seq;
653         int ret;
654
655         seq = rds_ib_get_ack(ic);
656
657         rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
658         rds_message_populate_header(hdr, 0, 0, 0);
659         hdr->h_ack = cpu_to_be64(seq);
660         hdr->h_credit = adv_credits;
661         rds_message_make_checksum(hdr);
662         ic->i_ack_queued = jiffies;
663
664         ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
665         if (unlikely(ret)) {
666                 /* Failed to send. Release the WR, and
667                  * force another ACK.
668                  */
669                 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
670                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
671
672                 rds_ib_stats_inc(s_ib_ack_send_failure);
673
674                 rds_ib_conn_error(ic->conn, "sending ack failed\n");
675         } else
676                 rds_ib_stats_inc(s_ib_ack_sent);
677 }
678
679 /*
680  * There are 3 ways of getting acknowledgements to the peer:
681  *  1.  We call rds_ib_attempt_ack from the recv completion handler
682  *      to send an ACK-only frame.
683  *      However, there can be only one such frame in the send queue
684  *      at any time, so we may have to postpone it.
685  *  2.  When another (data) packet is transmitted while there's
686  *      an ACK in the queue, we piggyback the ACK sequence number
687  *      on the data packet.
688  *  3.  If the ACK WR is done sending, we get called from the
689  *      send queue completion handler, and check whether there's
690  *      another ACK pending (postponed because the WR was on the
691  *      queue). If so, we transmit it.
692  *
693  * We maintain 2 variables:
694  *  -   i_ack_flags, which keeps track of whether the ACK WR
695  *      is currently in the send queue or not (IB_ACK_IN_FLIGHT)
696  *  -   i_ack_next, which is the last sequence number we received
697  *
698  * Potentially, send queue and receive queue handlers can run concurrently.
699  * It would be nice to not have to use a spinlock to synchronize things,
700  * but the one problem that rules this out is that 64bit updates are
701  * not atomic on all platforms. Things would be a lot simpler if
702  * we had atomic64 or maybe cmpxchg64 everywhere.
703  *
704  * Reconnecting complicates this picture just slightly. When we
705  * reconnect, we may be seeing duplicate packets. The peer
706  * is retransmitting them, because it hasn't seen an ACK for
707  * them. It is important that we ACK these.
708  *
709  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
710  * this flag set *MUST* be acknowledged immediately.
711  */
712
713 /*
714  * When we get here, we're called from the recv queue handler.
715  * Check whether we ought to transmit an ACK.
716  */
717 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
718 {
719         unsigned int adv_credits;
720
721         if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
722                 return;
723
724         if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
725                 rds_ib_stats_inc(s_ib_ack_send_delayed);
726                 return;
727         }
728
729         /* Can we get a send credit? */
730         if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
731                 rds_ib_stats_inc(s_ib_tx_throttle);
732                 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
733                 return;
734         }
735
736         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
737         rds_ib_send_ack(ic, adv_credits);
738 }
739
740 /*
741  * We get here from the send completion handler, when the
742  * adapter tells us the ACK frame was sent.
743  */
744 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
745 {
746         clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
747         rds_ib_attempt_ack(ic);
748 }
749
750 /*
751  * This is called by the regular xmit code when it wants to piggyback
752  * an ACK on an outgoing frame.
753  */
754 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
755 {
756         if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
757                 rds_ib_stats_inc(s_ib_ack_send_piggybacked);
758         return rds_ib_get_ack(ic);
759 }
760
761 /*
762  * It's kind of lame that we're copying from the posted receive pages into
763  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
764  * them.  But receiving new congestion bitmaps should be a *rare* event, so
765  * hopefully we won't need to invest that complexity in making it more
766  * efficient.  By copying we can share a simpler core with TCP which has to
767  * copy.
768  */
769 static void rds_ib_cong_recv(struct rds_connection *conn,
770                               struct rds_ib_incoming *ibinc)
771 {
772         struct rds_cong_map *map;
773         unsigned int map_off;
774         unsigned int map_page;
775         struct rds_page_frag *frag;
776         unsigned long frag_off;
777         unsigned long to_copy;
778         unsigned long copied;
779         uint64_t uncongested = 0;
780         void *addr;
781
782         /* catch completely corrupt packets */
783         if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
784                 return;
785
786         map = conn->c_fcong;
787         map_page = 0;
788         map_off = 0;
789
790         frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
791         frag_off = 0;
792
793         copied = 0;
794
795         while (copied < RDS_CONG_MAP_BYTES) {
796                 uint64_t *src, *dst;
797                 unsigned int k;
798
799                 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
800                 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
801
802                 addr = kmap_atomic(sg_page(&frag->f_sg));
803
804                 src = addr + frag->f_sg.offset + frag_off;
805                 dst = (void *)map->m_page_addrs[map_page] + map_off;
806                 for (k = 0; k < to_copy; k += 8) {
807                         /* Record ports that became uncongested, ie
808                          * bits that changed from 0 to 1. */
809                         uncongested |= ~(*src) & *dst;
810                         *dst++ = *src++;
811                 }
812                 kunmap_atomic(addr);
813
814                 copied += to_copy;
815
816                 map_off += to_copy;
817                 if (map_off == PAGE_SIZE) {
818                         map_off = 0;
819                         map_page++;
820                 }
821
822                 frag_off += to_copy;
823                 if (frag_off == RDS_FRAG_SIZE) {
824                         frag = list_entry(frag->f_item.next,
825                                           struct rds_page_frag, f_item);
826                         frag_off = 0;
827                 }
828         }
829
830         /* the congestion map is in little endian order */
831         uncongested = le64_to_cpu(uncongested);
832
833         rds_cong_map_updated(map, uncongested);
834 }
835
836 static void rds_ib_process_recv(struct rds_connection *conn,
837                                 struct rds_ib_recv_work *recv, u32 data_len,
838                                 struct rds_ib_ack_state *state)
839 {
840         struct rds_ib_connection *ic = conn->c_transport_data;
841         struct rds_ib_incoming *ibinc = ic->i_ibinc;
842         struct rds_header *ihdr, *hdr;
843
844         /* XXX shut down the connection if port 0,0 are seen? */
845
846         rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
847                  data_len);
848
849         if (data_len < sizeof(struct rds_header)) {
850                 rds_ib_conn_error(conn, "incoming message "
851                        "from %pI6c didn't include a "
852                        "header, disconnecting and "
853                        "reconnecting\n",
854                        &conn->c_faddr);
855                 return;
856         }
857         data_len -= sizeof(struct rds_header);
858
859         ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
860
861         /* Validate the checksum. */
862         if (!rds_message_verify_checksum(ihdr)) {
863                 rds_ib_conn_error(conn, "incoming message "
864                        "from %pI6c has corrupted header - "
865                        "forcing a reconnect\n",
866                        &conn->c_faddr);
867                 rds_stats_inc(s_recv_drop_bad_checksum);
868                 return;
869         }
870
871         /* Process the ACK sequence which comes with every packet */
872         state->ack_recv = be64_to_cpu(ihdr->h_ack);
873         state->ack_recv_valid = 1;
874
875         /* Process the credits update if there was one */
876         if (ihdr->h_credit)
877                 rds_ib_send_add_credits(conn, ihdr->h_credit);
878
879         if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
880                 /* This is an ACK-only packet. The fact that it gets
881                  * special treatment here is that historically, ACKs
882                  * were rather special beasts.
883                  */
884                 rds_ib_stats_inc(s_ib_ack_received);
885
886                 /*
887                  * Usually the frags make their way on to incs and are then freed as
888                  * the inc is freed.  We don't go that route, so we have to drop the
889                  * page ref ourselves.  We can't just leave the page on the recv
890                  * because that confuses the dma mapping of pages and each recv's use
891                  * of a partial page.
892                  *
893                  * FIXME: Fold this into the code path below.
894                  */
895                 rds_ib_frag_free(ic, recv->r_frag);
896                 recv->r_frag = NULL;
897                 return;
898         }
899
900         /*
901          * If we don't already have an inc on the connection then this
902          * fragment has a header and starts a message.. copy its header
903          * into the inc and save the inc so we can hang upcoming fragments
904          * off its list.
905          */
906         if (!ibinc) {
907                 ibinc = recv->r_ibinc;
908                 recv->r_ibinc = NULL;
909                 ic->i_ibinc = ibinc;
910
911                 hdr = &ibinc->ii_inc.i_hdr;
912                 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
913                                 local_clock();
914                 memcpy(hdr, ihdr, sizeof(*hdr));
915                 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
916                 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
917                                 local_clock();
918
919                 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
920                          ic->i_recv_data_rem, hdr->h_flags);
921         } else {
922                 hdr = &ibinc->ii_inc.i_hdr;
923                 /* We can't just use memcmp here; fragments of a
924                  * single message may carry different ACKs */
925                 if (hdr->h_sequence != ihdr->h_sequence ||
926                     hdr->h_len != ihdr->h_len ||
927                     hdr->h_sport != ihdr->h_sport ||
928                     hdr->h_dport != ihdr->h_dport) {
929                         rds_ib_conn_error(conn,
930                                 "fragment header mismatch; forcing reconnect\n");
931                         return;
932                 }
933         }
934
935         list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
936         recv->r_frag = NULL;
937
938         if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
939                 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
940         else {
941                 ic->i_recv_data_rem = 0;
942                 ic->i_ibinc = NULL;
943
944                 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
945                         rds_ib_cong_recv(conn, ibinc);
946                 } else {
947                         rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
948                                           &ibinc->ii_inc, GFP_ATOMIC);
949                         state->ack_next = be64_to_cpu(hdr->h_sequence);
950                         state->ack_next_valid = 1;
951                 }
952
953                 /* Evaluate the ACK_REQUIRED flag *after* we received
954                  * the complete frame, and after bumping the next_rx
955                  * sequence. */
956                 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
957                         rds_stats_inc(s_recv_ack_required);
958                         state->ack_required = 1;
959                 }
960
961                 rds_inc_put(&ibinc->ii_inc);
962         }
963 }
964
965 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
966                              struct ib_wc *wc,
967                              struct rds_ib_ack_state *state)
968 {
969         struct rds_connection *conn = ic->conn;
970         struct rds_ib_recv_work *recv;
971
972         rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
973                  (unsigned long long)wc->wr_id, wc->status,
974                  ib_wc_status_msg(wc->status), wc->byte_len,
975                  be32_to_cpu(wc->ex.imm_data));
976
977         rds_ib_stats_inc(s_ib_rx_cq_event);
978         recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
979         ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
980                         DMA_FROM_DEVICE);
981
982         /* Also process recvs in connecting state because it is possible
983          * to get a recv completion _before_ the rdmacm ESTABLISHED
984          * event is processed.
985          */
986         if (wc->status == IB_WC_SUCCESS) {
987                 rds_ib_process_recv(conn, recv, wc->byte_len, state);
988         } else {
989                 /* We expect errors as the qp is drained during shutdown */
990                 if (rds_conn_up(conn) || rds_conn_connecting(conn))
991                         rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c> had status %u (%s), disconnecting and reconnecting\n",
992                                           &conn->c_laddr, &conn->c_faddr,
993                                           wc->status,
994                                           ib_wc_status_msg(wc->status));
995         }
996
997         /* rds_ib_process_recv() doesn't always consume the frag, and
998          * we might not have called it at all if the wc didn't indicate
999          * success. We already unmapped the frag's pages, though, and
1000          * the following rds_ib_ring_free() call tells the refill path
1001          * that it will not find an allocated frag here. Make sure we
1002          * keep that promise by freeing a frag that's still on the ring.
1003          */
1004         if (recv->r_frag) {
1005                 rds_ib_frag_free(ic, recv->r_frag);
1006                 recv->r_frag = NULL;
1007         }
1008         rds_ib_ring_free(&ic->i_recv_ring, 1);
1009
1010         /* If we ever end up with a really empty receive ring, we're
1011          * in deep trouble, as the sender will definitely see RNR
1012          * timeouts. */
1013         if (rds_ib_ring_empty(&ic->i_recv_ring))
1014                 rds_ib_stats_inc(s_ib_rx_ring_empty);
1015
1016         if (rds_ib_ring_low(&ic->i_recv_ring)) {
1017                 rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
1018                 rds_ib_stats_inc(s_ib_rx_refill_from_cq);
1019         }
1020 }
1021
1022 int rds_ib_recv_path(struct rds_conn_path *cp)
1023 {
1024         struct rds_connection *conn = cp->cp_conn;
1025         struct rds_ib_connection *ic = conn->c_transport_data;
1026
1027         rdsdebug("conn %p\n", conn);
1028         if (rds_conn_up(conn)) {
1029                 rds_ib_attempt_ack(ic);
1030                 rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1031                 rds_ib_stats_inc(s_ib_rx_refill_from_thread);
1032         }
1033
1034         return 0;
1035 }
1036
1037 int rds_ib_recv_init(void)
1038 {
1039         struct sysinfo si;
1040         int ret = -ENOMEM;
1041
1042         /* Default to 30% of all available RAM for recv memory */
1043         si_meminfo(&si);
1044         rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1045
1046         rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1047                                         sizeof(struct rds_ib_incoming),
1048                                         0, SLAB_HWCACHE_ALIGN, NULL);
1049         if (!rds_ib_incoming_slab)
1050                 goto out;
1051
1052         rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1053                                         sizeof(struct rds_page_frag),
1054                                         0, SLAB_HWCACHE_ALIGN, NULL);
1055         if (!rds_ib_frag_slab) {
1056                 kmem_cache_destroy(rds_ib_incoming_slab);
1057                 rds_ib_incoming_slab = NULL;
1058         } else
1059                 ret = 0;
1060 out:
1061         return ret;
1062 }
1063
1064 void rds_ib_recv_exit(void)
1065 {
1066         kmem_cache_destroy(rds_ib_incoming_slab);
1067         kmem_cache_destroy(rds_ib_frag_slab);
1068 }