]> asedeno.scripts.mit.edu Git - linux.git/blob - net/rds/send.c
Merge tag 'for-5.3-rc8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
[linux.git] / net / rds / send.c
1 /*
2  * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
42
43 #include "rds.h"
44
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46  * time to time and briefly release the CPU. Otherwise the softlock watchdog
47  * will kick our shin.
48  * Also, it seems fairer to not let one busy connection stall all the
49  * others.
50  *
51  * send_batch_count is the number of times we'll loop in send_xmit. Setting
52  * it to 0 will restore the old behavior (where we looped until we had
53  * drained the queue).
54  */
55 static int send_batch_count = SZ_1K;
56 module_param(send_batch_count, int, 0444);
57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58
59 static void rds_send_remove_from_sock(struct list_head *messages, int status);
60
61 /*
62  * Reset the send state.  Callers must ensure that this doesn't race with
63  * rds_send_xmit().
64  */
65 void rds_send_path_reset(struct rds_conn_path *cp)
66 {
67         struct rds_message *rm, *tmp;
68         unsigned long flags;
69
70         if (cp->cp_xmit_rm) {
71                 rm = cp->cp_xmit_rm;
72                 cp->cp_xmit_rm = NULL;
73                 /* Tell the user the RDMA op is no longer mapped by the
74                  * transport. This isn't entirely true (it's flushed out
75                  * independently) but as the connection is down, there's
76                  * no ongoing RDMA to/from that memory */
77                 rds_message_unmapped(rm);
78                 rds_message_put(rm);
79         }
80
81         cp->cp_xmit_sg = 0;
82         cp->cp_xmit_hdr_off = 0;
83         cp->cp_xmit_data_off = 0;
84         cp->cp_xmit_atomic_sent = 0;
85         cp->cp_xmit_rdma_sent = 0;
86         cp->cp_xmit_data_sent = 0;
87
88         cp->cp_conn->c_map_queued = 0;
89
90         cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
91         cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
92
93         /* Mark messages as retransmissions, and move them to the send q */
94         spin_lock_irqsave(&cp->cp_lock, flags);
95         list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
96                 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97                 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98         }
99         list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
100         spin_unlock_irqrestore(&cp->cp_lock, flags);
101 }
102 EXPORT_SYMBOL_GPL(rds_send_path_reset);
103
104 static int acquire_in_xmit(struct rds_conn_path *cp)
105 {
106         return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
107 }
108
109 static void release_in_xmit(struct rds_conn_path *cp)
110 {
111         clear_bit(RDS_IN_XMIT, &cp->cp_flags);
112         smp_mb__after_atomic();
113         /*
114          * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115          * hot path and finding waiters is very rare.  We don't want to walk
116          * the system-wide hashed waitqueue buckets in the fast path only to
117          * almost never find waiters.
118          */
119         if (waitqueue_active(&cp->cp_waitq))
120                 wake_up_all(&cp->cp_waitq);
121 }
122
123 /*
124  * We're making the conscious trade-off here to only send one message
125  * down the connection at a time.
126  *   Pro:
127  *      - tx queueing is a simple fifo list
128  *      - reassembly is optional and easily done by transports per conn
129  *      - no per flow rx lookup at all, straight to the socket
130  *      - less per-frag memory and wire overhead
131  *   Con:
132  *      - queued acks can be delayed behind large messages
133  *   Depends:
134  *      - small message latency is higher behind queued large messages
135  *      - large message latency isn't starved by intervening small sends
136  */
137 int rds_send_xmit(struct rds_conn_path *cp)
138 {
139         struct rds_connection *conn = cp->cp_conn;
140         struct rds_message *rm;
141         unsigned long flags;
142         unsigned int tmp;
143         struct scatterlist *sg;
144         int ret = 0;
145         LIST_HEAD(to_be_dropped);
146         int batch_count;
147         unsigned long send_gen = 0;
148
149 restart:
150         batch_count = 0;
151
152         /*
153          * sendmsg calls here after having queued its message on the send
154          * queue.  We only have one task feeding the connection at a time.  If
155          * another thread is already feeding the queue then we back off.  This
156          * avoids blocking the caller and trading per-connection data between
157          * caches per message.
158          */
159         if (!acquire_in_xmit(cp)) {
160                 rds_stats_inc(s_send_lock_contention);
161                 ret = -ENOMEM;
162                 goto out;
163         }
164
165         if (rds_destroy_pending(cp->cp_conn)) {
166                 release_in_xmit(cp);
167                 ret = -ENETUNREACH; /* dont requeue send work */
168                 goto out;
169         }
170
171         /*
172          * we record the send generation after doing the xmit acquire.
173          * if someone else manages to jump in and do some work, we'll use
174          * this to avoid a goto restart farther down.
175          *
176          * The acquire_in_xmit() check above ensures that only one
177          * caller can increment c_send_gen at any time.
178          */
179         send_gen = READ_ONCE(cp->cp_send_gen) + 1;
180         WRITE_ONCE(cp->cp_send_gen, send_gen);
181
182         /*
183          * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
184          * we do the opposite to avoid races.
185          */
186         if (!rds_conn_path_up(cp)) {
187                 release_in_xmit(cp);
188                 ret = 0;
189                 goto out;
190         }
191
192         if (conn->c_trans->xmit_path_prepare)
193                 conn->c_trans->xmit_path_prepare(cp);
194
195         /*
196          * spin trying to push headers and data down the connection until
197          * the connection doesn't make forward progress.
198          */
199         while (1) {
200
201                 rm = cp->cp_xmit_rm;
202
203                 /*
204                  * If between sending messages, we can send a pending congestion
205                  * map update.
206                  */
207                 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
208                         rm = rds_cong_update_alloc(conn);
209                         if (IS_ERR(rm)) {
210                                 ret = PTR_ERR(rm);
211                                 break;
212                         }
213                         rm->data.op_active = 1;
214                         rm->m_inc.i_conn_path = cp;
215                         rm->m_inc.i_conn = cp->cp_conn;
216
217                         cp->cp_xmit_rm = rm;
218                 }
219
220                 /*
221                  * If not already working on one, grab the next message.
222                  *
223                  * cp_xmit_rm holds a ref while we're sending this message down
224                  * the connction.  We can use this ref while holding the
225                  * send_sem.. rds_send_reset() is serialized with it.
226                  */
227                 if (!rm) {
228                         unsigned int len;
229
230                         batch_count++;
231
232                         /* we want to process as big a batch as we can, but
233                          * we also want to avoid softlockups.  If we've been
234                          * through a lot of messages, lets back off and see
235                          * if anyone else jumps in
236                          */
237                         if (batch_count >= send_batch_count)
238                                 goto over_batch;
239
240                         spin_lock_irqsave(&cp->cp_lock, flags);
241
242                         if (!list_empty(&cp->cp_send_queue)) {
243                                 rm = list_entry(cp->cp_send_queue.next,
244                                                 struct rds_message,
245                                                 m_conn_item);
246                                 rds_message_addref(rm);
247
248                                 /*
249                                  * Move the message from the send queue to the retransmit
250                                  * list right away.
251                                  */
252                                 list_move_tail(&rm->m_conn_item,
253                                                &cp->cp_retrans);
254                         }
255
256                         spin_unlock_irqrestore(&cp->cp_lock, flags);
257
258                         if (!rm)
259                                 break;
260
261                         /* Unfortunately, the way Infiniband deals with
262                          * RDMA to a bad MR key is by moving the entire
263                          * queue pair to error state. We cold possibly
264                          * recover from that, but right now we drop the
265                          * connection.
266                          * Therefore, we never retransmit messages with RDMA ops.
267                          */
268                         if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
269                             (rm->rdma.op_active &&
270                             test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
271                                 spin_lock_irqsave(&cp->cp_lock, flags);
272                                 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
273                                         list_move(&rm->m_conn_item, &to_be_dropped);
274                                 spin_unlock_irqrestore(&cp->cp_lock, flags);
275                                 continue;
276                         }
277
278                         /* Require an ACK every once in a while */
279                         len = ntohl(rm->m_inc.i_hdr.h_len);
280                         if (cp->cp_unacked_packets == 0 ||
281                             cp->cp_unacked_bytes < len) {
282                                 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
283
284                                 cp->cp_unacked_packets =
285                                         rds_sysctl_max_unacked_packets;
286                                 cp->cp_unacked_bytes =
287                                         rds_sysctl_max_unacked_bytes;
288                                 rds_stats_inc(s_send_ack_required);
289                         } else {
290                                 cp->cp_unacked_bytes -= len;
291                                 cp->cp_unacked_packets--;
292                         }
293
294                         cp->cp_xmit_rm = rm;
295                 }
296
297                 /* The transport either sends the whole rdma or none of it */
298                 if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
299                         rm->m_final_op = &rm->rdma;
300                         /* The transport owns the mapped memory for now.
301                          * You can't unmap it while it's on the send queue
302                          */
303                         set_bit(RDS_MSG_MAPPED, &rm->m_flags);
304                         ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
305                         if (ret) {
306                                 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
307                                 wake_up_interruptible(&rm->m_flush_wait);
308                                 break;
309                         }
310                         cp->cp_xmit_rdma_sent = 1;
311
312                 }
313
314                 if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
315                         rm->m_final_op = &rm->atomic;
316                         /* The transport owns the mapped memory for now.
317                          * You can't unmap it while it's on the send queue
318                          */
319                         set_bit(RDS_MSG_MAPPED, &rm->m_flags);
320                         ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
321                         if (ret) {
322                                 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
323                                 wake_up_interruptible(&rm->m_flush_wait);
324                                 break;
325                         }
326                         cp->cp_xmit_atomic_sent = 1;
327
328                 }
329
330                 /*
331                  * A number of cases require an RDS header to be sent
332                  * even if there is no data.
333                  * We permit 0-byte sends; rds-ping depends on this.
334                  * However, if there are exclusively attached silent ops,
335                  * we skip the hdr/data send, to enable silent operation.
336                  */
337                 if (rm->data.op_nents == 0) {
338                         int ops_present;
339                         int all_ops_are_silent = 1;
340
341                         ops_present = (rm->atomic.op_active || rm->rdma.op_active);
342                         if (rm->atomic.op_active && !rm->atomic.op_silent)
343                                 all_ops_are_silent = 0;
344                         if (rm->rdma.op_active && !rm->rdma.op_silent)
345                                 all_ops_are_silent = 0;
346
347                         if (ops_present && all_ops_are_silent
348                             && !rm->m_rdma_cookie)
349                                 rm->data.op_active = 0;
350                 }
351
352                 if (rm->data.op_active && !cp->cp_xmit_data_sent) {
353                         rm->m_final_op = &rm->data;
354
355                         ret = conn->c_trans->xmit(conn, rm,
356                                                   cp->cp_xmit_hdr_off,
357                                                   cp->cp_xmit_sg,
358                                                   cp->cp_xmit_data_off);
359                         if (ret <= 0)
360                                 break;
361
362                         if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
363                                 tmp = min_t(int, ret,
364                                             sizeof(struct rds_header) -
365                                             cp->cp_xmit_hdr_off);
366                                 cp->cp_xmit_hdr_off += tmp;
367                                 ret -= tmp;
368                         }
369
370                         sg = &rm->data.op_sg[cp->cp_xmit_sg];
371                         while (ret) {
372                                 tmp = min_t(int, ret, sg->length -
373                                                       cp->cp_xmit_data_off);
374                                 cp->cp_xmit_data_off += tmp;
375                                 ret -= tmp;
376                                 if (cp->cp_xmit_data_off == sg->length) {
377                                         cp->cp_xmit_data_off = 0;
378                                         sg++;
379                                         cp->cp_xmit_sg++;
380                                         BUG_ON(ret != 0 && cp->cp_xmit_sg ==
381                                                rm->data.op_nents);
382                                 }
383                         }
384
385                         if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
386                             (cp->cp_xmit_sg == rm->data.op_nents))
387                                 cp->cp_xmit_data_sent = 1;
388                 }
389
390                 /*
391                  * A rm will only take multiple times through this loop
392                  * if there is a data op. Thus, if the data is sent (or there was
393                  * none), then we're done with the rm.
394                  */
395                 if (!rm->data.op_active || cp->cp_xmit_data_sent) {
396                         cp->cp_xmit_rm = NULL;
397                         cp->cp_xmit_sg = 0;
398                         cp->cp_xmit_hdr_off = 0;
399                         cp->cp_xmit_data_off = 0;
400                         cp->cp_xmit_rdma_sent = 0;
401                         cp->cp_xmit_atomic_sent = 0;
402                         cp->cp_xmit_data_sent = 0;
403
404                         rds_message_put(rm);
405                 }
406         }
407
408 over_batch:
409         if (conn->c_trans->xmit_path_complete)
410                 conn->c_trans->xmit_path_complete(cp);
411         release_in_xmit(cp);
412
413         /* Nuke any messages we decided not to retransmit. */
414         if (!list_empty(&to_be_dropped)) {
415                 /* irqs on here, so we can put(), unlike above */
416                 list_for_each_entry(rm, &to_be_dropped, m_conn_item)
417                         rds_message_put(rm);
418                 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
419         }
420
421         /*
422          * Other senders can queue a message after we last test the send queue
423          * but before we clear RDS_IN_XMIT.  In that case they'd back off and
424          * not try and send their newly queued message.  We need to check the
425          * send queue after having cleared RDS_IN_XMIT so that their message
426          * doesn't get stuck on the send queue.
427          *
428          * If the transport cannot continue (i.e ret != 0), then it must
429          * call us when more room is available, such as from the tx
430          * completion handler.
431          *
432          * We have an extra generation check here so that if someone manages
433          * to jump in after our release_in_xmit, we'll see that they have done
434          * some work and we will skip our goto
435          */
436         if (ret == 0) {
437                 bool raced;
438
439                 smp_mb();
440                 raced = send_gen != READ_ONCE(cp->cp_send_gen);
441
442                 if ((test_bit(0, &conn->c_map_queued) ||
443                     !list_empty(&cp->cp_send_queue)) && !raced) {
444                         if (batch_count < send_batch_count)
445                                 goto restart;
446                         rcu_read_lock();
447                         if (rds_destroy_pending(cp->cp_conn))
448                                 ret = -ENETUNREACH;
449                         else
450                                 queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
451                         rcu_read_unlock();
452                 } else if (raced) {
453                         rds_stats_inc(s_send_lock_queue_raced);
454                 }
455         }
456 out:
457         return ret;
458 }
459 EXPORT_SYMBOL_GPL(rds_send_xmit);
460
461 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
462 {
463         u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
464
465         assert_spin_locked(&rs->rs_lock);
466
467         BUG_ON(rs->rs_snd_bytes < len);
468         rs->rs_snd_bytes -= len;
469
470         if (rs->rs_snd_bytes == 0)
471                 rds_stats_inc(s_send_queue_empty);
472 }
473
474 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
475                                     is_acked_func is_acked)
476 {
477         if (is_acked)
478                 return is_acked(rm, ack);
479         return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
480 }
481
482 /*
483  * This is pretty similar to what happens below in the ACK
484  * handling code - except that we call here as soon as we get
485  * the IB send completion on the RDMA op and the accompanying
486  * message.
487  */
488 void rds_rdma_send_complete(struct rds_message *rm, int status)
489 {
490         struct rds_sock *rs = NULL;
491         struct rm_rdma_op *ro;
492         struct rds_notifier *notifier;
493         unsigned long flags;
494
495         spin_lock_irqsave(&rm->m_rs_lock, flags);
496
497         ro = &rm->rdma;
498         if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
499             ro->op_active && ro->op_notify && ro->op_notifier) {
500                 notifier = ro->op_notifier;
501                 rs = rm->m_rs;
502                 sock_hold(rds_rs_to_sk(rs));
503
504                 notifier->n_status = status;
505                 spin_lock(&rs->rs_lock);
506                 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
507                 spin_unlock(&rs->rs_lock);
508
509                 ro->op_notifier = NULL;
510         }
511
512         spin_unlock_irqrestore(&rm->m_rs_lock, flags);
513
514         if (rs) {
515                 rds_wake_sk_sleep(rs);
516                 sock_put(rds_rs_to_sk(rs));
517         }
518 }
519 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
520
521 /*
522  * Just like above, except looks at atomic op
523  */
524 void rds_atomic_send_complete(struct rds_message *rm, int status)
525 {
526         struct rds_sock *rs = NULL;
527         struct rm_atomic_op *ao;
528         struct rds_notifier *notifier;
529         unsigned long flags;
530
531         spin_lock_irqsave(&rm->m_rs_lock, flags);
532
533         ao = &rm->atomic;
534         if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
535             && ao->op_active && ao->op_notify && ao->op_notifier) {
536                 notifier = ao->op_notifier;
537                 rs = rm->m_rs;
538                 sock_hold(rds_rs_to_sk(rs));
539
540                 notifier->n_status = status;
541                 spin_lock(&rs->rs_lock);
542                 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
543                 spin_unlock(&rs->rs_lock);
544
545                 ao->op_notifier = NULL;
546         }
547
548         spin_unlock_irqrestore(&rm->m_rs_lock, flags);
549
550         if (rs) {
551                 rds_wake_sk_sleep(rs);
552                 sock_put(rds_rs_to_sk(rs));
553         }
554 }
555 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
556
557 /*
558  * This is the same as rds_rdma_send_complete except we
559  * don't do any locking - we have all the ingredients (message,
560  * socket, socket lock) and can just move the notifier.
561  */
562 static inline void
563 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
564 {
565         struct rm_rdma_op *ro;
566         struct rm_atomic_op *ao;
567
568         ro = &rm->rdma;
569         if (ro->op_active && ro->op_notify && ro->op_notifier) {
570                 ro->op_notifier->n_status = status;
571                 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
572                 ro->op_notifier = NULL;
573         }
574
575         ao = &rm->atomic;
576         if (ao->op_active && ao->op_notify && ao->op_notifier) {
577                 ao->op_notifier->n_status = status;
578                 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
579                 ao->op_notifier = NULL;
580         }
581
582         /* No need to wake the app - caller does this */
583 }
584
585 /*
586  * This removes messages from the socket's list if they're on it.  The list
587  * argument must be private to the caller, we must be able to modify it
588  * without locks.  The messages must have a reference held for their
589  * position on the list.  This function will drop that reference after
590  * removing the messages from the 'messages' list regardless of if it found
591  * the messages on the socket list or not.
592  */
593 static void rds_send_remove_from_sock(struct list_head *messages, int status)
594 {
595         unsigned long flags;
596         struct rds_sock *rs = NULL;
597         struct rds_message *rm;
598
599         while (!list_empty(messages)) {
600                 int was_on_sock = 0;
601
602                 rm = list_entry(messages->next, struct rds_message,
603                                 m_conn_item);
604                 list_del_init(&rm->m_conn_item);
605
606                 /*
607                  * If we see this flag cleared then we're *sure* that someone
608                  * else beat us to removing it from the sock.  If we race
609                  * with their flag update we'll get the lock and then really
610                  * see that the flag has been cleared.
611                  *
612                  * The message spinlock makes sure nobody clears rm->m_rs
613                  * while we're messing with it. It does not prevent the
614                  * message from being removed from the socket, though.
615                  */
616                 spin_lock_irqsave(&rm->m_rs_lock, flags);
617                 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
618                         goto unlock_and_drop;
619
620                 if (rs != rm->m_rs) {
621                         if (rs) {
622                                 rds_wake_sk_sleep(rs);
623                                 sock_put(rds_rs_to_sk(rs));
624                         }
625                         rs = rm->m_rs;
626                         if (rs)
627                                 sock_hold(rds_rs_to_sk(rs));
628                 }
629                 if (!rs)
630                         goto unlock_and_drop;
631                 spin_lock(&rs->rs_lock);
632
633                 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
634                         struct rm_rdma_op *ro = &rm->rdma;
635                         struct rds_notifier *notifier;
636
637                         list_del_init(&rm->m_sock_item);
638                         rds_send_sndbuf_remove(rs, rm);
639
640                         if (ro->op_active && ro->op_notifier &&
641                                (ro->op_notify || (ro->op_recverr && status))) {
642                                 notifier = ro->op_notifier;
643                                 list_add_tail(&notifier->n_list,
644                                                 &rs->rs_notify_queue);
645                                 if (!notifier->n_status)
646                                         notifier->n_status = status;
647                                 rm->rdma.op_notifier = NULL;
648                         }
649                         was_on_sock = 1;
650                 }
651                 spin_unlock(&rs->rs_lock);
652
653 unlock_and_drop:
654                 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
655                 rds_message_put(rm);
656                 if (was_on_sock)
657                         rds_message_put(rm);
658         }
659
660         if (rs) {
661                 rds_wake_sk_sleep(rs);
662                 sock_put(rds_rs_to_sk(rs));
663         }
664 }
665
666 /*
667  * Transports call here when they've determined that the receiver queued
668  * messages up to, and including, the given sequence number.  Messages are
669  * moved to the retrans queue when rds_send_xmit picks them off the send
670  * queue. This means that in the TCP case, the message may not have been
671  * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
672  * checks the RDS_MSG_HAS_ACK_SEQ bit.
673  */
674 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
675                               is_acked_func is_acked)
676 {
677         struct rds_message *rm, *tmp;
678         unsigned long flags;
679         LIST_HEAD(list);
680
681         spin_lock_irqsave(&cp->cp_lock, flags);
682
683         list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
684                 if (!rds_send_is_acked(rm, ack, is_acked))
685                         break;
686
687                 list_move(&rm->m_conn_item, &list);
688                 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
689         }
690
691         /* order flag updates with spin locks */
692         if (!list_empty(&list))
693                 smp_mb__after_atomic();
694
695         spin_unlock_irqrestore(&cp->cp_lock, flags);
696
697         /* now remove the messages from the sock list as needed */
698         rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
699 }
700 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
701
702 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
703                          is_acked_func is_acked)
704 {
705         WARN_ON(conn->c_trans->t_mp_capable);
706         rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
707 }
708 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
709
710 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest)
711 {
712         struct rds_message *rm, *tmp;
713         struct rds_connection *conn;
714         struct rds_conn_path *cp;
715         unsigned long flags;
716         LIST_HEAD(list);
717
718         /* get all the messages we're dropping under the rs lock */
719         spin_lock_irqsave(&rs->rs_lock, flags);
720
721         list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
722                 if (dest &&
723                     (!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) ||
724                      dest->sin6_port != rm->m_inc.i_hdr.h_dport))
725                         continue;
726
727                 list_move(&rm->m_sock_item, &list);
728                 rds_send_sndbuf_remove(rs, rm);
729                 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
730         }
731
732         /* order flag updates with the rs lock */
733         smp_mb__after_atomic();
734
735         spin_unlock_irqrestore(&rs->rs_lock, flags);
736
737         if (list_empty(&list))
738                 return;
739
740         /* Remove the messages from the conn */
741         list_for_each_entry(rm, &list, m_sock_item) {
742
743                 conn = rm->m_inc.i_conn;
744                 if (conn->c_trans->t_mp_capable)
745                         cp = rm->m_inc.i_conn_path;
746                 else
747                         cp = &conn->c_path[0];
748
749                 spin_lock_irqsave(&cp->cp_lock, flags);
750                 /*
751                  * Maybe someone else beat us to removing rm from the conn.
752                  * If we race with their flag update we'll get the lock and
753                  * then really see that the flag has been cleared.
754                  */
755                 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
756                         spin_unlock_irqrestore(&cp->cp_lock, flags);
757                         continue;
758                 }
759                 list_del_init(&rm->m_conn_item);
760                 spin_unlock_irqrestore(&cp->cp_lock, flags);
761
762                 /*
763                  * Couldn't grab m_rs_lock in top loop (lock ordering),
764                  * but we can now.
765                  */
766                 spin_lock_irqsave(&rm->m_rs_lock, flags);
767
768                 spin_lock(&rs->rs_lock);
769                 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
770                 spin_unlock(&rs->rs_lock);
771
772                 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
773
774                 rds_message_put(rm);
775         }
776
777         rds_wake_sk_sleep(rs);
778
779         while (!list_empty(&list)) {
780                 rm = list_entry(list.next, struct rds_message, m_sock_item);
781                 list_del_init(&rm->m_sock_item);
782                 rds_message_wait(rm);
783
784                 /* just in case the code above skipped this message
785                  * because RDS_MSG_ON_CONN wasn't set, run it again here
786                  * taking m_rs_lock is the only thing that keeps us
787                  * from racing with ack processing.
788                  */
789                 spin_lock_irqsave(&rm->m_rs_lock, flags);
790
791                 spin_lock(&rs->rs_lock);
792                 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
793                 spin_unlock(&rs->rs_lock);
794
795                 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
796
797                 rds_message_put(rm);
798         }
799 }
800
801 /*
802  * we only want this to fire once so we use the callers 'queued'.  It's
803  * possible that another thread can race with us and remove the
804  * message from the flow with RDS_CANCEL_SENT_TO.
805  */
806 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
807                              struct rds_conn_path *cp,
808                              struct rds_message *rm, __be16 sport,
809                              __be16 dport, int *queued)
810 {
811         unsigned long flags;
812         u32 len;
813
814         if (*queued)
815                 goto out;
816
817         len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
818
819         /* this is the only place which holds both the socket's rs_lock
820          * and the connection's c_lock */
821         spin_lock_irqsave(&rs->rs_lock, flags);
822
823         /*
824          * If there is a little space in sndbuf, we don't queue anything,
825          * and userspace gets -EAGAIN. But poll() indicates there's send
826          * room. This can lead to bad behavior (spinning) if snd_bytes isn't
827          * freed up by incoming acks. So we check the *old* value of
828          * rs_snd_bytes here to allow the last msg to exceed the buffer,
829          * and poll() now knows no more data can be sent.
830          */
831         if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
832                 rs->rs_snd_bytes += len;
833
834                 /* let recv side know we are close to send space exhaustion.
835                  * This is probably not the optimal way to do it, as this
836                  * means we set the flag on *all* messages as soon as our
837                  * throughput hits a certain threshold.
838                  */
839                 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
840                         set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
841
842                 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
843                 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
844                 rds_message_addref(rm);
845                 sock_hold(rds_rs_to_sk(rs));
846                 rm->m_rs = rs;
847
848                 /* The code ordering is a little weird, but we're
849                    trying to minimize the time we hold c_lock */
850                 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
851                 rm->m_inc.i_conn = conn;
852                 rm->m_inc.i_conn_path = cp;
853                 rds_message_addref(rm);
854
855                 spin_lock(&cp->cp_lock);
856                 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
857                 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
858                 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
859                 spin_unlock(&cp->cp_lock);
860
861                 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
862                          rm, len, rs, rs->rs_snd_bytes,
863                          (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
864
865                 *queued = 1;
866         }
867
868         spin_unlock_irqrestore(&rs->rs_lock, flags);
869 out:
870         return *queued;
871 }
872
873 /*
874  * rds_message is getting to be quite complicated, and we'd like to allocate
875  * it all in one go. This figures out how big it needs to be up front.
876  */
877 static int rds_rm_size(struct msghdr *msg, int num_sgs,
878                        struct rds_iov_vector_arr *vct)
879 {
880         struct cmsghdr *cmsg;
881         int size = 0;
882         int cmsg_groups = 0;
883         int retval;
884         bool zcopy_cookie = false;
885         struct rds_iov_vector *iov, *tmp_iov;
886
887         if (num_sgs < 0)
888                 return -EINVAL;
889
890         for_each_cmsghdr(cmsg, msg) {
891                 if (!CMSG_OK(msg, cmsg))
892                         return -EINVAL;
893
894                 if (cmsg->cmsg_level != SOL_RDS)
895                         continue;
896
897                 switch (cmsg->cmsg_type) {
898                 case RDS_CMSG_RDMA_ARGS:
899                         if (vct->indx >= vct->len) {
900                                 vct->len += vct->incr;
901                                 tmp_iov =
902                                         krealloc(vct->vec,
903                                                  vct->len *
904                                                  sizeof(struct rds_iov_vector),
905                                                  GFP_KERNEL);
906                                 if (!tmp_iov) {
907                                         vct->len -= vct->incr;
908                                         return -ENOMEM;
909                                 }
910                                 vct->vec = tmp_iov;
911                         }
912                         iov = &vct->vec[vct->indx];
913                         memset(iov, 0, sizeof(struct rds_iov_vector));
914                         vct->indx++;
915                         cmsg_groups |= 1;
916                         retval = rds_rdma_extra_size(CMSG_DATA(cmsg), iov);
917                         if (retval < 0)
918                                 return retval;
919                         size += retval;
920
921                         break;
922
923                 case RDS_CMSG_ZCOPY_COOKIE:
924                         zcopy_cookie = true;
925                         /* fall through */
926
927                 case RDS_CMSG_RDMA_DEST:
928                 case RDS_CMSG_RDMA_MAP:
929                         cmsg_groups |= 2;
930                         /* these are valid but do no add any size */
931                         break;
932
933                 case RDS_CMSG_ATOMIC_CSWP:
934                 case RDS_CMSG_ATOMIC_FADD:
935                 case RDS_CMSG_MASKED_ATOMIC_CSWP:
936                 case RDS_CMSG_MASKED_ATOMIC_FADD:
937                         cmsg_groups |= 1;
938                         size += sizeof(struct scatterlist);
939                         break;
940
941                 default:
942                         return -EINVAL;
943                 }
944
945         }
946
947         if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie)
948                 return -EINVAL;
949
950         size += num_sgs * sizeof(struct scatterlist);
951
952         /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
953         if (cmsg_groups == 3)
954                 return -EINVAL;
955
956         return size;
957 }
958
959 static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm,
960                           struct cmsghdr *cmsg)
961 {
962         u32 *cookie;
963
964         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) ||
965             !rm->data.op_mmp_znotifier)
966                 return -EINVAL;
967         cookie = CMSG_DATA(cmsg);
968         rm->data.op_mmp_znotifier->z_cookie = *cookie;
969         return 0;
970 }
971
972 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
973                          struct msghdr *msg, int *allocated_mr,
974                          struct rds_iov_vector_arr *vct)
975 {
976         struct cmsghdr *cmsg;
977         int ret = 0, ind = 0;
978
979         for_each_cmsghdr(cmsg, msg) {
980                 if (!CMSG_OK(msg, cmsg))
981                         return -EINVAL;
982
983                 if (cmsg->cmsg_level != SOL_RDS)
984                         continue;
985
986                 /* As a side effect, RDMA_DEST and RDMA_MAP will set
987                  * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
988                  */
989                 switch (cmsg->cmsg_type) {
990                 case RDS_CMSG_RDMA_ARGS:
991                         if (ind >= vct->indx)
992                                 return -ENOMEM;
993                         ret = rds_cmsg_rdma_args(rs, rm, cmsg, &vct->vec[ind]);
994                         ind++;
995                         break;
996
997                 case RDS_CMSG_RDMA_DEST:
998                         ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
999                         break;
1000
1001                 case RDS_CMSG_RDMA_MAP:
1002                         ret = rds_cmsg_rdma_map(rs, rm, cmsg);
1003                         if (!ret)
1004                                 *allocated_mr = 1;
1005                         else if (ret == -ENODEV)
1006                                 /* Accommodate the get_mr() case which can fail
1007                                  * if connection isn't established yet.
1008                                  */
1009                                 ret = -EAGAIN;
1010                         break;
1011                 case RDS_CMSG_ATOMIC_CSWP:
1012                 case RDS_CMSG_ATOMIC_FADD:
1013                 case RDS_CMSG_MASKED_ATOMIC_CSWP:
1014                 case RDS_CMSG_MASKED_ATOMIC_FADD:
1015                         ret = rds_cmsg_atomic(rs, rm, cmsg);
1016                         break;
1017
1018                 case RDS_CMSG_ZCOPY_COOKIE:
1019                         ret = rds_cmsg_zcopy(rs, rm, cmsg);
1020                         break;
1021
1022                 default:
1023                         return -EINVAL;
1024                 }
1025
1026                 if (ret)
1027                         break;
1028         }
1029
1030         return ret;
1031 }
1032
1033 static int rds_send_mprds_hash(struct rds_sock *rs,
1034                                struct rds_connection *conn, int nonblock)
1035 {
1036         int hash;
1037
1038         if (conn->c_npaths == 0)
1039                 hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
1040         else
1041                 hash = RDS_MPATH_HASH(rs, conn->c_npaths);
1042         if (conn->c_npaths == 0 && hash != 0) {
1043                 rds_send_ping(conn, 0);
1044
1045                 /* The underlying connection is not up yet.  Need to wait
1046                  * until it is up to be sure that the non-zero c_path can be
1047                  * used.  But if we are interrupted, we have to use the zero
1048                  * c_path in case the connection ends up being non-MP capable.
1049                  */
1050                 if (conn->c_npaths == 0) {
1051                         /* Cannot wait for the connection be made, so just use
1052                          * the base c_path.
1053                          */
1054                         if (nonblock)
1055                                 return 0;
1056                         if (wait_event_interruptible(conn->c_hs_waitq,
1057                                                      conn->c_npaths != 0))
1058                                 hash = 0;
1059                 }
1060                 if (conn->c_npaths == 1)
1061                         hash = 0;
1062         }
1063         return hash;
1064 }
1065
1066 static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
1067 {
1068         struct rds_rdma_args *args;
1069         struct cmsghdr *cmsg;
1070
1071         for_each_cmsghdr(cmsg, msg) {
1072                 if (!CMSG_OK(msg, cmsg))
1073                         return -EINVAL;
1074
1075                 if (cmsg->cmsg_level != SOL_RDS)
1076                         continue;
1077
1078                 if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
1079                         if (cmsg->cmsg_len <
1080                             CMSG_LEN(sizeof(struct rds_rdma_args)))
1081                                 return -EINVAL;
1082                         args = CMSG_DATA(cmsg);
1083                         *rdma_bytes += args->remote_vec.bytes;
1084                 }
1085         }
1086         return 0;
1087 }
1088
1089 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
1090 {
1091         struct sock *sk = sock->sk;
1092         struct rds_sock *rs = rds_sk_to_rs(sk);
1093         DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
1094         DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1095         __be16 dport;
1096         struct rds_message *rm = NULL;
1097         struct rds_connection *conn;
1098         int ret = 0;
1099         int queued = 0, allocated_mr = 0;
1100         int nonblock = msg->msg_flags & MSG_DONTWAIT;
1101         long timeo = sock_sndtimeo(sk, nonblock);
1102         struct rds_conn_path *cpath;
1103         struct in6_addr daddr;
1104         __u32 scope_id = 0;
1105         size_t total_payload_len = payload_len, rdma_payload_len = 0;
1106         bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) &&
1107                       sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY));
1108         int num_sgs = DIV_ROUND_UP(payload_len, PAGE_SIZE);
1109         int namelen;
1110         struct rds_iov_vector_arr vct;
1111         int ind;
1112
1113         memset(&vct, 0, sizeof(vct));
1114
1115         /* expect 1 RDMA CMSG per rds_sendmsg. can still grow if more needed. */
1116         vct.incr = 1;
1117
1118         /* Mirror Linux UDP mirror of BSD error message compatibility */
1119         /* XXX: Perhaps MSG_MORE someday */
1120         if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) {
1121                 ret = -EOPNOTSUPP;
1122                 goto out;
1123         }
1124
1125         namelen = msg->msg_namelen;
1126         if (namelen != 0) {
1127                 if (namelen < sizeof(*usin)) {
1128                         ret = -EINVAL;
1129                         goto out;
1130                 }
1131                 switch (usin->sin_family) {
1132                 case AF_INET:
1133                         if (usin->sin_addr.s_addr == htonl(INADDR_ANY) ||
1134                             usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) ||
1135                             IN_MULTICAST(ntohl(usin->sin_addr.s_addr))) {
1136                                 ret = -EINVAL;
1137                                 goto out;
1138                         }
1139                         ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr);
1140                         dport = usin->sin_port;
1141                         break;
1142
1143 #if IS_ENABLED(CONFIG_IPV6)
1144                 case AF_INET6: {
1145                         int addr_type;
1146
1147                         if (namelen < sizeof(*sin6)) {
1148                                 ret = -EINVAL;
1149                                 goto out;
1150                         }
1151                         addr_type = ipv6_addr_type(&sin6->sin6_addr);
1152                         if (!(addr_type & IPV6_ADDR_UNICAST)) {
1153                                 __be32 addr4;
1154
1155                                 if (!(addr_type & IPV6_ADDR_MAPPED)) {
1156                                         ret = -EINVAL;
1157                                         goto out;
1158                                 }
1159
1160                                 /* It is a mapped address.  Need to do some
1161                                  * sanity checks.
1162                                  */
1163                                 addr4 = sin6->sin6_addr.s6_addr32[3];
1164                                 if (addr4 == htonl(INADDR_ANY) ||
1165                                     addr4 == htonl(INADDR_BROADCAST) ||
1166                                     IN_MULTICAST(ntohl(addr4))) {
1167                                         ret = -EINVAL;
1168                                         goto out;
1169                                 }
1170                         }
1171                         if (addr_type & IPV6_ADDR_LINKLOCAL) {
1172                                 if (sin6->sin6_scope_id == 0) {
1173                                         ret = -EINVAL;
1174                                         goto out;
1175                                 }
1176                                 scope_id = sin6->sin6_scope_id;
1177                         }
1178
1179                         daddr = sin6->sin6_addr;
1180                         dport = sin6->sin6_port;
1181                         break;
1182                 }
1183 #endif
1184
1185                 default:
1186                         ret = -EINVAL;
1187                         goto out;
1188                 }
1189         } else {
1190                 /* We only care about consistency with ->connect() */
1191                 lock_sock(sk);
1192                 daddr = rs->rs_conn_addr;
1193                 dport = rs->rs_conn_port;
1194                 scope_id = rs->rs_bound_scope_id;
1195                 release_sock(sk);
1196         }
1197
1198         lock_sock(sk);
1199         if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) {
1200                 release_sock(sk);
1201                 ret = -ENOTCONN;
1202                 goto out;
1203         } else if (namelen != 0) {
1204                 /* Cannot send to an IPv4 address using an IPv6 source
1205                  * address and cannot send to an IPv6 address using an
1206                  * IPv4 source address.
1207                  */
1208                 if (ipv6_addr_v4mapped(&daddr) ^
1209                     ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
1210                         release_sock(sk);
1211                         ret = -EOPNOTSUPP;
1212                         goto out;
1213                 }
1214                 /* If the socket is already bound to a link local address,
1215                  * it can only send to peers on the same link.  But allow
1216                  * communicating beween link local and non-link local address.
1217                  */
1218                 if (scope_id != rs->rs_bound_scope_id) {
1219                         if (!scope_id) {
1220                                 scope_id = rs->rs_bound_scope_id;
1221                         } else if (rs->rs_bound_scope_id) {
1222                                 release_sock(sk);
1223                                 ret = -EINVAL;
1224                                 goto out;
1225                         }
1226                 }
1227         }
1228         release_sock(sk);
1229
1230         ret = rds_rdma_bytes(msg, &rdma_payload_len);
1231         if (ret)
1232                 goto out;
1233
1234         total_payload_len += rdma_payload_len;
1235         if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
1236                 ret = -EMSGSIZE;
1237                 goto out;
1238         }
1239
1240         if (payload_len > rds_sk_sndbuf(rs)) {
1241                 ret = -EMSGSIZE;
1242                 goto out;
1243         }
1244
1245         if (zcopy) {
1246                 if (rs->rs_transport->t_type != RDS_TRANS_TCP) {
1247                         ret = -EOPNOTSUPP;
1248                         goto out;
1249                 }
1250                 num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX);
1251         }
1252         /* size of rm including all sgs */
1253         ret = rds_rm_size(msg, num_sgs, &vct);
1254         if (ret < 0)
1255                 goto out;
1256
1257         rm = rds_message_alloc(ret, GFP_KERNEL);
1258         if (!rm) {
1259                 ret = -ENOMEM;
1260                 goto out;
1261         }
1262
1263         /* Attach data to the rm */
1264         if (payload_len) {
1265                 rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs, &ret);
1266                 if (!rm->data.op_sg)
1267                         goto out;
1268                 ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy);
1269                 if (ret)
1270                         goto out;
1271         }
1272         rm->data.op_active = 1;
1273
1274         rm->m_daddr = daddr;
1275
1276         /* rds_conn_create has a spinlock that runs with IRQ off.
1277          * Caching the conn in the socket helps a lot. */
1278         if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr) &&
1279             rs->rs_tos == rs->rs_conn->c_tos) {
1280                 conn = rs->rs_conn;
1281         } else {
1282                 conn = rds_conn_create_outgoing(sock_net(sock->sk),
1283                                                 &rs->rs_bound_addr, &daddr,
1284                                                 rs->rs_transport, rs->rs_tos,
1285                                                 sock->sk->sk_allocation,
1286                                                 scope_id);
1287                 if (IS_ERR(conn)) {
1288                         ret = PTR_ERR(conn);
1289                         goto out;
1290                 }
1291                 rs->rs_conn = conn;
1292         }
1293
1294         if (conn->c_trans->t_mp_capable)
1295                 cpath = &conn->c_path[rds_send_mprds_hash(rs, conn, nonblock)];
1296         else
1297                 cpath = &conn->c_path[0];
1298
1299         rm->m_conn_path = cpath;
1300
1301         /* Parse any control messages the user may have included. */
1302         ret = rds_cmsg_send(rs, rm, msg, &allocated_mr, &vct);
1303         if (ret) {
1304                 /* Trigger connection so that its ready for the next retry */
1305                 if (ret ==  -EAGAIN)
1306                         rds_conn_connect_if_down(conn);
1307                 goto out;
1308         }
1309
1310         if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1311                 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1312                                &rm->rdma, conn->c_trans->xmit_rdma);
1313                 ret = -EOPNOTSUPP;
1314                 goto out;
1315         }
1316
1317         if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1318                 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1319                                &rm->atomic, conn->c_trans->xmit_atomic);
1320                 ret = -EOPNOTSUPP;
1321                 goto out;
1322         }
1323
1324         if (rds_destroy_pending(conn)) {
1325                 ret = -EAGAIN;
1326                 goto out;
1327         }
1328
1329         rds_conn_path_connect_if_down(cpath);
1330
1331         ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1332         if (ret) {
1333                 rs->rs_seen_congestion = 1;
1334                 goto out;
1335         }
1336         while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
1337                                   dport, &queued)) {
1338                 rds_stats_inc(s_send_queue_full);
1339
1340                 if (nonblock) {
1341                         ret = -EAGAIN;
1342                         goto out;
1343                 }
1344
1345                 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1346                                         rds_send_queue_rm(rs, conn, cpath, rm,
1347                                                           rs->rs_bound_port,
1348                                                           dport,
1349                                                           &queued),
1350                                         timeo);
1351                 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1352                 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1353                         continue;
1354
1355                 ret = timeo;
1356                 if (ret == 0)
1357                         ret = -ETIMEDOUT;
1358                 goto out;
1359         }
1360
1361         /*
1362          * By now we've committed to the send.  We reuse rds_send_worker()
1363          * to retry sends in the rds thread if the transport asks us to.
1364          */
1365         rds_stats_inc(s_send_queued);
1366
1367         ret = rds_send_xmit(cpath);
1368         if (ret == -ENOMEM || ret == -EAGAIN) {
1369                 ret = 0;
1370                 rcu_read_lock();
1371                 if (rds_destroy_pending(cpath->cp_conn))
1372                         ret = -ENETUNREACH;
1373                 else
1374                         queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1375                 rcu_read_unlock();
1376         }
1377         if (ret)
1378                 goto out;
1379         rds_message_put(rm);
1380
1381         for (ind = 0; ind < vct.indx; ind++)
1382                 kfree(vct.vec[ind].iov);
1383         kfree(vct.vec);
1384
1385         return payload_len;
1386
1387 out:
1388         for (ind = 0; ind < vct.indx; ind++)
1389                 kfree(vct.vec[ind].iov);
1390         kfree(vct.vec);
1391
1392         /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1393          * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1394          * or in any other way, we need to destroy the MR again */
1395         if (allocated_mr)
1396                 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1397
1398         if (rm)
1399                 rds_message_put(rm);
1400         return ret;
1401 }
1402
1403 /*
1404  * send out a probe. Can be shared by rds_send_ping,
1405  * rds_send_pong, rds_send_hb.
1406  * rds_send_hb should use h_flags
1407  *   RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1408  * or
1409  *   RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1410  */
1411 static int
1412 rds_send_probe(struct rds_conn_path *cp, __be16 sport,
1413                __be16 dport, u8 h_flags)
1414 {
1415         struct rds_message *rm;
1416         unsigned long flags;
1417         int ret = 0;
1418
1419         rm = rds_message_alloc(0, GFP_ATOMIC);
1420         if (!rm) {
1421                 ret = -ENOMEM;
1422                 goto out;
1423         }
1424
1425         rm->m_daddr = cp->cp_conn->c_faddr;
1426         rm->data.op_active = 1;
1427
1428         rds_conn_path_connect_if_down(cp);
1429
1430         ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
1431         if (ret)
1432                 goto out;
1433
1434         spin_lock_irqsave(&cp->cp_lock, flags);
1435         list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
1436         set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1437         rds_message_addref(rm);
1438         rm->m_inc.i_conn = cp->cp_conn;
1439         rm->m_inc.i_conn_path = cp;
1440
1441         rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
1442                                     cp->cp_next_tx_seq);
1443         rm->m_inc.i_hdr.h_flags |= h_flags;
1444         cp->cp_next_tx_seq++;
1445
1446         if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
1447             cp->cp_conn->c_trans->t_mp_capable) {
1448                 u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
1449                 u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
1450
1451                 rds_message_add_extension(&rm->m_inc.i_hdr,
1452                                           RDS_EXTHDR_NPATHS, &npaths,
1453                                           sizeof(npaths));
1454                 rds_message_add_extension(&rm->m_inc.i_hdr,
1455                                           RDS_EXTHDR_GEN_NUM,
1456                                           &my_gen_num,
1457                                           sizeof(u32));
1458         }
1459         spin_unlock_irqrestore(&cp->cp_lock, flags);
1460
1461         rds_stats_inc(s_send_queued);
1462         rds_stats_inc(s_send_pong);
1463
1464         /* schedule the send work on rds_wq */
1465         rcu_read_lock();
1466         if (!rds_destroy_pending(cp->cp_conn))
1467                 queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1468         rcu_read_unlock();
1469
1470         rds_message_put(rm);
1471         return 0;
1472
1473 out:
1474         if (rm)
1475                 rds_message_put(rm);
1476         return ret;
1477 }
1478
1479 int
1480 rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1481 {
1482         return rds_send_probe(cp, 0, dport, 0);
1483 }
1484
1485 void
1486 rds_send_ping(struct rds_connection *conn, int cp_index)
1487 {
1488         unsigned long flags;
1489         struct rds_conn_path *cp = &conn->c_path[cp_index];
1490
1491         spin_lock_irqsave(&cp->cp_lock, flags);
1492         if (conn->c_ping_triggered) {
1493                 spin_unlock_irqrestore(&cp->cp_lock, flags);
1494                 return;
1495         }
1496         conn->c_ping_triggered = 1;
1497         spin_unlock_irqrestore(&cp->cp_lock, flags);
1498         rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
1499 }
1500 EXPORT_SYMBOL_GPL(rds_send_ping);