]> asedeno.scripts.mit.edu Git - linux.git/blob - net/sched/sch_taprio.c
net: hns: add phy_attached_info() to the hns driver
[linux.git] / net / sched / sch_taprio.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /* net/sched/sch_taprio.c        Time Aware Priority Scheduler
4  *
5  * Authors:     Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/list.h>
14 #include <linux/errno.h>
15 #include <linux/skbuff.h>
16 #include <linux/math64.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/rcupdate.h>
20 #include <net/netlink.h>
21 #include <net/pkt_sched.h>
22 #include <net/pkt_cls.h>
23 #include <net/sch_generic.h>
24 #include <net/sock.h>
25 #include <net/tcp.h>
26
27 static LIST_HEAD(taprio_list);
28 static DEFINE_SPINLOCK(taprio_list_lock);
29
30 #define TAPRIO_ALL_GATES_OPEN -1
31
32 #define FLAGS_VALID(flags) (!((flags) & ~TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST))
33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
34
35 struct sched_entry {
36         struct list_head list;
37
38         /* The instant that this entry "closes" and the next one
39          * should open, the qdisc will make some effort so that no
40          * packet leaves after this time.
41          */
42         ktime_t close_time;
43         ktime_t next_txtime;
44         atomic_t budget;
45         int index;
46         u32 gate_mask;
47         u32 interval;
48         u8 command;
49 };
50
51 struct sched_gate_list {
52         struct rcu_head rcu;
53         struct list_head entries;
54         size_t num_entries;
55         ktime_t cycle_close_time;
56         s64 cycle_time;
57         s64 cycle_time_extension;
58         s64 base_time;
59 };
60
61 struct taprio_sched {
62         struct Qdisc **qdiscs;
63         struct Qdisc *root;
64         u32 flags;
65         enum tk_offsets tk_offset;
66         int clockid;
67         atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
68                                     * speeds it's sub-nanoseconds per byte
69                                     */
70
71         /* Protects the update side of the RCU protected current_entry */
72         spinlock_t current_entry_lock;
73         struct sched_entry __rcu *current_entry;
74         struct sched_gate_list __rcu *oper_sched;
75         struct sched_gate_list __rcu *admin_sched;
76         struct hrtimer advance_timer;
77         struct list_head taprio_list;
78         u32 txtime_delay;
79 };
80
81 static ktime_t sched_base_time(const struct sched_gate_list *sched)
82 {
83         if (!sched)
84                 return KTIME_MAX;
85
86         return ns_to_ktime(sched->base_time);
87 }
88
89 static ktime_t taprio_get_time(struct taprio_sched *q)
90 {
91         ktime_t mono = ktime_get();
92
93         switch (q->tk_offset) {
94         case TK_OFFS_MAX:
95                 return mono;
96         default:
97                 return ktime_mono_to_any(mono, q->tk_offset);
98         }
99
100         return KTIME_MAX;
101 }
102
103 static void taprio_free_sched_cb(struct rcu_head *head)
104 {
105         struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
106         struct sched_entry *entry, *n;
107
108         if (!sched)
109                 return;
110
111         list_for_each_entry_safe(entry, n, &sched->entries, list) {
112                 list_del(&entry->list);
113                 kfree(entry);
114         }
115
116         kfree(sched);
117 }
118
119 static void switch_schedules(struct taprio_sched *q,
120                              struct sched_gate_list **admin,
121                              struct sched_gate_list **oper)
122 {
123         rcu_assign_pointer(q->oper_sched, *admin);
124         rcu_assign_pointer(q->admin_sched, NULL);
125
126         if (*oper)
127                 call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
128
129         *oper = *admin;
130         *admin = NULL;
131 }
132
133 /* Get how much time has been already elapsed in the current cycle. */
134 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
135 {
136         ktime_t time_since_sched_start;
137         s32 time_elapsed;
138
139         time_since_sched_start = ktime_sub(time, sched->base_time);
140         div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
141
142         return time_elapsed;
143 }
144
145 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
146                                      struct sched_gate_list *admin,
147                                      struct sched_entry *entry,
148                                      ktime_t intv_start)
149 {
150         s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
151         ktime_t intv_end, cycle_ext_end, cycle_end;
152
153         cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
154         intv_end = ktime_add_ns(intv_start, entry->interval);
155         cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
156
157         if (ktime_before(intv_end, cycle_end))
158                 return intv_end;
159         else if (admin && admin != sched &&
160                  ktime_after(admin->base_time, cycle_end) &&
161                  ktime_before(admin->base_time, cycle_ext_end))
162                 return admin->base_time;
163         else
164                 return cycle_end;
165 }
166
167 static int length_to_duration(struct taprio_sched *q, int len)
168 {
169         return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
170 }
171
172 /* Returns the entry corresponding to next available interval. If
173  * validate_interval is set, it only validates whether the timestamp occurs
174  * when the gate corresponding to the skb's traffic class is open.
175  */
176 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
177                                                   struct Qdisc *sch,
178                                                   struct sched_gate_list *sched,
179                                                   struct sched_gate_list *admin,
180                                                   ktime_t time,
181                                                   ktime_t *interval_start,
182                                                   ktime_t *interval_end,
183                                                   bool validate_interval)
184 {
185         ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
186         ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
187         struct sched_entry *entry = NULL, *entry_found = NULL;
188         struct taprio_sched *q = qdisc_priv(sch);
189         struct net_device *dev = qdisc_dev(sch);
190         bool entry_available = false;
191         s32 cycle_elapsed;
192         int tc, n;
193
194         tc = netdev_get_prio_tc_map(dev, skb->priority);
195         packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
196
197         *interval_start = 0;
198         *interval_end = 0;
199
200         if (!sched)
201                 return NULL;
202
203         cycle = sched->cycle_time;
204         cycle_elapsed = get_cycle_time_elapsed(sched, time);
205         curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
206         cycle_end = ktime_add_ns(curr_intv_end, cycle);
207
208         list_for_each_entry(entry, &sched->entries, list) {
209                 curr_intv_start = curr_intv_end;
210                 curr_intv_end = get_interval_end_time(sched, admin, entry,
211                                                       curr_intv_start);
212
213                 if (ktime_after(curr_intv_start, cycle_end))
214                         break;
215
216                 if (!(entry->gate_mask & BIT(tc)) ||
217                     packet_transmit_time > entry->interval)
218                         continue;
219
220                 txtime = entry->next_txtime;
221
222                 if (ktime_before(txtime, time) || validate_interval) {
223                         transmit_end_time = ktime_add_ns(time, packet_transmit_time);
224                         if ((ktime_before(curr_intv_start, time) &&
225                              ktime_before(transmit_end_time, curr_intv_end)) ||
226                             (ktime_after(curr_intv_start, time) && !validate_interval)) {
227                                 entry_found = entry;
228                                 *interval_start = curr_intv_start;
229                                 *interval_end = curr_intv_end;
230                                 break;
231                         } else if (!entry_available && !validate_interval) {
232                                 /* Here, we are just trying to find out the
233                                  * first available interval in the next cycle.
234                                  */
235                                 entry_available = 1;
236                                 entry_found = entry;
237                                 *interval_start = ktime_add_ns(curr_intv_start, cycle);
238                                 *interval_end = ktime_add_ns(curr_intv_end, cycle);
239                         }
240                 } else if (ktime_before(txtime, earliest_txtime) &&
241                            !entry_available) {
242                         earliest_txtime = txtime;
243                         entry_found = entry;
244                         n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
245                         *interval_start = ktime_add(curr_intv_start, n * cycle);
246                         *interval_end = ktime_add(curr_intv_end, n * cycle);
247                 }
248         }
249
250         return entry_found;
251 }
252
253 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
254 {
255         struct taprio_sched *q = qdisc_priv(sch);
256         struct sched_gate_list *sched, *admin;
257         ktime_t interval_start, interval_end;
258         struct sched_entry *entry;
259
260         rcu_read_lock();
261         sched = rcu_dereference(q->oper_sched);
262         admin = rcu_dereference(q->admin_sched);
263
264         entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
265                                        &interval_start, &interval_end, true);
266         rcu_read_unlock();
267
268         return entry;
269 }
270
271 /* This returns the tstamp value set by TCP in terms of the set clock. */
272 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
273 {
274         unsigned int offset = skb_network_offset(skb);
275         const struct ipv6hdr *ipv6h;
276         const struct iphdr *iph;
277         struct ipv6hdr _ipv6h;
278
279         ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
280         if (!ipv6h)
281                 return 0;
282
283         if (ipv6h->version == 4) {
284                 iph = (struct iphdr *)ipv6h;
285                 offset += iph->ihl * 4;
286
287                 /* special-case 6in4 tunnelling, as that is a common way to get
288                  * v6 connectivity in the home
289                  */
290                 if (iph->protocol == IPPROTO_IPV6) {
291                         ipv6h = skb_header_pointer(skb, offset,
292                                                    sizeof(_ipv6h), &_ipv6h);
293
294                         if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
295                                 return 0;
296                 } else if (iph->protocol != IPPROTO_TCP) {
297                         return 0;
298                 }
299         } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
300                 return 0;
301         }
302
303         return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
304 }
305
306 /* There are a few scenarios where we will have to modify the txtime from
307  * what is read from next_txtime in sched_entry. They are:
308  * 1. If txtime is in the past,
309  *    a. The gate for the traffic class is currently open and packet can be
310  *       transmitted before it closes, schedule the packet right away.
311  *    b. If the gate corresponding to the traffic class is going to open later
312  *       in the cycle, set the txtime of packet to the interval start.
313  * 2. If txtime is in the future, there are packets corresponding to the
314  *    current traffic class waiting to be transmitted. So, the following
315  *    possibilities exist:
316  *    a. We can transmit the packet before the window containing the txtime
317  *       closes.
318  *    b. The window might close before the transmission can be completed
319  *       successfully. So, schedule the packet in the next open window.
320  */
321 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
322 {
323         ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
324         struct taprio_sched *q = qdisc_priv(sch);
325         struct sched_gate_list *sched, *admin;
326         ktime_t minimum_time, now, txtime;
327         int len, packet_transmit_time;
328         struct sched_entry *entry;
329         bool sched_changed;
330
331         now = taprio_get_time(q);
332         minimum_time = ktime_add_ns(now, q->txtime_delay);
333
334         tcp_tstamp = get_tcp_tstamp(q, skb);
335         minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
336
337         rcu_read_lock();
338         admin = rcu_dereference(q->admin_sched);
339         sched = rcu_dereference(q->oper_sched);
340         if (admin && ktime_after(minimum_time, admin->base_time))
341                 switch_schedules(q, &admin, &sched);
342
343         /* Until the schedule starts, all the queues are open */
344         if (!sched || ktime_before(minimum_time, sched->base_time)) {
345                 txtime = minimum_time;
346                 goto done;
347         }
348
349         len = qdisc_pkt_len(skb);
350         packet_transmit_time = length_to_duration(q, len);
351
352         do {
353                 sched_changed = 0;
354
355                 entry = find_entry_to_transmit(skb, sch, sched, admin,
356                                                minimum_time,
357                                                &interval_start, &interval_end,
358                                                false);
359                 if (!entry) {
360                         txtime = 0;
361                         goto done;
362                 }
363
364                 txtime = entry->next_txtime;
365                 txtime = max_t(ktime_t, txtime, minimum_time);
366                 txtime = max_t(ktime_t, txtime, interval_start);
367
368                 if (admin && admin != sched &&
369                     ktime_after(txtime, admin->base_time)) {
370                         sched = admin;
371                         sched_changed = 1;
372                         continue;
373                 }
374
375                 transmit_end_time = ktime_add(txtime, packet_transmit_time);
376                 minimum_time = transmit_end_time;
377
378                 /* Update the txtime of current entry to the next time it's
379                  * interval starts.
380                  */
381                 if (ktime_after(transmit_end_time, interval_end))
382                         entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
383         } while (sched_changed || ktime_after(transmit_end_time, interval_end));
384
385         entry->next_txtime = transmit_end_time;
386
387 done:
388         rcu_read_unlock();
389         return txtime;
390 }
391
392 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
393                           struct sk_buff **to_free)
394 {
395         struct taprio_sched *q = qdisc_priv(sch);
396         struct Qdisc *child;
397         int queue;
398
399         queue = skb_get_queue_mapping(skb);
400
401         child = q->qdiscs[queue];
402         if (unlikely(!child))
403                 return qdisc_drop(skb, sch, to_free);
404
405         if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
406                 if (!is_valid_interval(skb, sch))
407                         return qdisc_drop(skb, sch, to_free);
408         } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
409                 skb->tstamp = get_packet_txtime(skb, sch);
410                 if (!skb->tstamp)
411                         return qdisc_drop(skb, sch, to_free);
412         }
413
414         qdisc_qstats_backlog_inc(sch, skb);
415         sch->q.qlen++;
416
417         return qdisc_enqueue(skb, child, to_free);
418 }
419
420 static struct sk_buff *taprio_peek(struct Qdisc *sch)
421 {
422         struct taprio_sched *q = qdisc_priv(sch);
423         struct net_device *dev = qdisc_dev(sch);
424         struct sched_entry *entry;
425         struct sk_buff *skb;
426         u32 gate_mask;
427         int i;
428
429         rcu_read_lock();
430         entry = rcu_dereference(q->current_entry);
431         gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
432         rcu_read_unlock();
433
434         if (!gate_mask)
435                 return NULL;
436
437         for (i = 0; i < dev->num_tx_queues; i++) {
438                 struct Qdisc *child = q->qdiscs[i];
439                 int prio;
440                 u8 tc;
441
442                 if (unlikely(!child))
443                         continue;
444
445                 skb = child->ops->peek(child);
446                 if (!skb)
447                         continue;
448
449                 if (TXTIME_ASSIST_IS_ENABLED(q->flags))
450                         return skb;
451
452                 prio = skb->priority;
453                 tc = netdev_get_prio_tc_map(dev, prio);
454
455                 if (!(gate_mask & BIT(tc)))
456                         continue;
457
458                 return skb;
459         }
460
461         return NULL;
462 }
463
464 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
465 {
466         atomic_set(&entry->budget,
467                    div64_u64((u64)entry->interval * 1000,
468                              atomic64_read(&q->picos_per_byte)));
469 }
470
471 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
472 {
473         struct taprio_sched *q = qdisc_priv(sch);
474         struct net_device *dev = qdisc_dev(sch);
475         struct sk_buff *skb = NULL;
476         struct sched_entry *entry;
477         u32 gate_mask;
478         int i;
479
480         if (atomic64_read(&q->picos_per_byte) == -1) {
481                 WARN_ONCE(1, "taprio: dequeue() called with unknown picos per byte.");
482                 return NULL;
483         }
484
485         rcu_read_lock();
486         entry = rcu_dereference(q->current_entry);
487         /* if there's no entry, it means that the schedule didn't
488          * start yet, so force all gates to be open, this is in
489          * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
490          * "AdminGateSates"
491          */
492         gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
493
494         if (!gate_mask)
495                 goto done;
496
497         for (i = 0; i < dev->num_tx_queues; i++) {
498                 struct Qdisc *child = q->qdiscs[i];
499                 ktime_t guard;
500                 int prio;
501                 int len;
502                 u8 tc;
503
504                 if (unlikely(!child))
505                         continue;
506
507                 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
508                         skb = child->ops->dequeue(child);
509                         if (!skb)
510                                 continue;
511                         goto skb_found;
512                 }
513
514                 skb = child->ops->peek(child);
515                 if (!skb)
516                         continue;
517
518                 prio = skb->priority;
519                 tc = netdev_get_prio_tc_map(dev, prio);
520
521                 if (!(gate_mask & BIT(tc)))
522                         continue;
523
524                 len = qdisc_pkt_len(skb);
525                 guard = ktime_add_ns(taprio_get_time(q),
526                                      length_to_duration(q, len));
527
528                 /* In the case that there's no gate entry, there's no
529                  * guard band ...
530                  */
531                 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
532                     ktime_after(guard, entry->close_time))
533                         continue;
534
535                 /* ... and no budget. */
536                 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
537                     atomic_sub_return(len, &entry->budget) < 0)
538                         continue;
539
540                 skb = child->ops->dequeue(child);
541                 if (unlikely(!skb))
542                         goto done;
543
544 skb_found:
545                 qdisc_bstats_update(sch, skb);
546                 qdisc_qstats_backlog_dec(sch, skb);
547                 sch->q.qlen--;
548
549                 goto done;
550         }
551
552 done:
553         rcu_read_unlock();
554
555         return skb;
556 }
557
558 static bool should_restart_cycle(const struct sched_gate_list *oper,
559                                  const struct sched_entry *entry)
560 {
561         if (list_is_last(&entry->list, &oper->entries))
562                 return true;
563
564         if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
565                 return true;
566
567         return false;
568 }
569
570 static bool should_change_schedules(const struct sched_gate_list *admin,
571                                     const struct sched_gate_list *oper,
572                                     ktime_t close_time)
573 {
574         ktime_t next_base_time, extension_time;
575
576         if (!admin)
577                 return false;
578
579         next_base_time = sched_base_time(admin);
580
581         /* This is the simple case, the close_time would fall after
582          * the next schedule base_time.
583          */
584         if (ktime_compare(next_base_time, close_time) <= 0)
585                 return true;
586
587         /* This is the cycle_time_extension case, if the close_time
588          * plus the amount that can be extended would fall after the
589          * next schedule base_time, we can extend the current schedule
590          * for that amount.
591          */
592         extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
593
594         /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
595          * how precisely the extension should be made. So after
596          * conformance testing, this logic may change.
597          */
598         if (ktime_compare(next_base_time, extension_time) <= 0)
599                 return true;
600
601         return false;
602 }
603
604 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
605 {
606         struct taprio_sched *q = container_of(timer, struct taprio_sched,
607                                               advance_timer);
608         struct sched_gate_list *oper, *admin;
609         struct sched_entry *entry, *next;
610         struct Qdisc *sch = q->root;
611         ktime_t close_time;
612
613         spin_lock(&q->current_entry_lock);
614         entry = rcu_dereference_protected(q->current_entry,
615                                           lockdep_is_held(&q->current_entry_lock));
616         oper = rcu_dereference_protected(q->oper_sched,
617                                          lockdep_is_held(&q->current_entry_lock));
618         admin = rcu_dereference_protected(q->admin_sched,
619                                           lockdep_is_held(&q->current_entry_lock));
620
621         if (!oper)
622                 switch_schedules(q, &admin, &oper);
623
624         /* This can happen in two cases: 1. this is the very first run
625          * of this function (i.e. we weren't running any schedule
626          * previously); 2. The previous schedule just ended. The first
627          * entry of all schedules are pre-calculated during the
628          * schedule initialization.
629          */
630         if (unlikely(!entry || entry->close_time == oper->base_time)) {
631                 next = list_first_entry(&oper->entries, struct sched_entry,
632                                         list);
633                 close_time = next->close_time;
634                 goto first_run;
635         }
636
637         if (should_restart_cycle(oper, entry)) {
638                 next = list_first_entry(&oper->entries, struct sched_entry,
639                                         list);
640                 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
641                                                       oper->cycle_time);
642         } else {
643                 next = list_next_entry(entry, list);
644         }
645
646         close_time = ktime_add_ns(entry->close_time, next->interval);
647         close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
648
649         if (should_change_schedules(admin, oper, close_time)) {
650                 /* Set things so the next time this runs, the new
651                  * schedule runs.
652                  */
653                 close_time = sched_base_time(admin);
654                 switch_schedules(q, &admin, &oper);
655         }
656
657         next->close_time = close_time;
658         taprio_set_budget(q, next);
659
660 first_run:
661         rcu_assign_pointer(q->current_entry, next);
662         spin_unlock(&q->current_entry_lock);
663
664         hrtimer_set_expires(&q->advance_timer, close_time);
665
666         rcu_read_lock();
667         __netif_schedule(sch);
668         rcu_read_unlock();
669
670         return HRTIMER_RESTART;
671 }
672
673 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
674         [TCA_TAPRIO_SCHED_ENTRY_INDEX]     = { .type = NLA_U32 },
675         [TCA_TAPRIO_SCHED_ENTRY_CMD]       = { .type = NLA_U8 },
676         [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
677         [TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
678 };
679
680 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
681         [TCA_TAPRIO_ATTR_PRIOMAP]              = {
682                 .len = sizeof(struct tc_mqprio_qopt)
683         },
684         [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
685         [TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
686         [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
687         [TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
688         [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
689         [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
690 };
691
692 static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry,
693                             struct netlink_ext_ack *extack)
694 {
695         u32 interval = 0;
696
697         if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
698                 entry->command = nla_get_u8(
699                         tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
700
701         if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
702                 entry->gate_mask = nla_get_u32(
703                         tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
704
705         if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
706                 interval = nla_get_u32(
707                         tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
708
709         if (interval == 0) {
710                 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
711                 return -EINVAL;
712         }
713
714         entry->interval = interval;
715
716         return 0;
717 }
718
719 static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry,
720                              int index, struct netlink_ext_ack *extack)
721 {
722         struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
723         int err;
724
725         err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
726                                           entry_policy, NULL);
727         if (err < 0) {
728                 NL_SET_ERR_MSG(extack, "Could not parse nested entry");
729                 return -EINVAL;
730         }
731
732         entry->index = index;
733
734         return fill_sched_entry(tb, entry, extack);
735 }
736
737 static int parse_sched_list(struct nlattr *list,
738                             struct sched_gate_list *sched,
739                             struct netlink_ext_ack *extack)
740 {
741         struct nlattr *n;
742         int err, rem;
743         int i = 0;
744
745         if (!list)
746                 return -EINVAL;
747
748         nla_for_each_nested(n, list, rem) {
749                 struct sched_entry *entry;
750
751                 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
752                         NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
753                         continue;
754                 }
755
756                 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
757                 if (!entry) {
758                         NL_SET_ERR_MSG(extack, "Not enough memory for entry");
759                         return -ENOMEM;
760                 }
761
762                 err = parse_sched_entry(n, entry, i, extack);
763                 if (err < 0) {
764                         kfree(entry);
765                         return err;
766                 }
767
768                 list_add_tail(&entry->list, &sched->entries);
769                 i++;
770         }
771
772         sched->num_entries = i;
773
774         return i;
775 }
776
777 static int parse_taprio_schedule(struct nlattr **tb,
778                                  struct sched_gate_list *new,
779                                  struct netlink_ext_ack *extack)
780 {
781         int err = 0;
782
783         if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
784                 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
785                 return -ENOTSUPP;
786         }
787
788         if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
789                 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
790
791         if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
792                 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
793
794         if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
795                 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
796
797         if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
798                 err = parse_sched_list(
799                         tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack);
800         if (err < 0)
801                 return err;
802
803         if (!new->cycle_time) {
804                 struct sched_entry *entry;
805                 ktime_t cycle = 0;
806
807                 list_for_each_entry(entry, &new->entries, list)
808                         cycle = ktime_add_ns(cycle, entry->interval);
809                 new->cycle_time = cycle;
810         }
811
812         return 0;
813 }
814
815 static int taprio_parse_mqprio_opt(struct net_device *dev,
816                                    struct tc_mqprio_qopt *qopt,
817                                    struct netlink_ext_ack *extack,
818                                    u32 taprio_flags)
819 {
820         int i, j;
821
822         if (!qopt && !dev->num_tc) {
823                 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
824                 return -EINVAL;
825         }
826
827         /* If num_tc is already set, it means that the user already
828          * configured the mqprio part
829          */
830         if (dev->num_tc)
831                 return 0;
832
833         /* Verify num_tc is not out of max range */
834         if (qopt->num_tc > TC_MAX_QUEUE) {
835                 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
836                 return -EINVAL;
837         }
838
839         /* taprio imposes that traffic classes map 1:n to tx queues */
840         if (qopt->num_tc > dev->num_tx_queues) {
841                 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
842                 return -EINVAL;
843         }
844
845         /* Verify priority mapping uses valid tcs */
846         for (i = 0; i < TC_BITMASK + 1; i++) {
847                 if (qopt->prio_tc_map[i] >= qopt->num_tc) {
848                         NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
849                         return -EINVAL;
850                 }
851         }
852
853         for (i = 0; i < qopt->num_tc; i++) {
854                 unsigned int last = qopt->offset[i] + qopt->count[i];
855
856                 /* Verify the queue count is in tx range being equal to the
857                  * real_num_tx_queues indicates the last queue is in use.
858                  */
859                 if (qopt->offset[i] >= dev->num_tx_queues ||
860                     !qopt->count[i] ||
861                     last > dev->real_num_tx_queues) {
862                         NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
863                         return -EINVAL;
864                 }
865
866                 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
867                         continue;
868
869                 /* Verify that the offset and counts do not overlap */
870                 for (j = i + 1; j < qopt->num_tc; j++) {
871                         if (last > qopt->offset[j]) {
872                                 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
873                                 return -EINVAL;
874                         }
875                 }
876         }
877
878         return 0;
879 }
880
881 static int taprio_get_start_time(struct Qdisc *sch,
882                                  struct sched_gate_list *sched,
883                                  ktime_t *start)
884 {
885         struct taprio_sched *q = qdisc_priv(sch);
886         ktime_t now, base, cycle;
887         s64 n;
888
889         base = sched_base_time(sched);
890         now = taprio_get_time(q);
891
892         if (ktime_after(base, now)) {
893                 *start = base;
894                 return 0;
895         }
896
897         cycle = sched->cycle_time;
898
899         /* The qdisc is expected to have at least one sched_entry.  Moreover,
900          * any entry must have 'interval' > 0. Thus if the cycle time is zero,
901          * something went really wrong. In that case, we should warn about this
902          * inconsistent state and return error.
903          */
904         if (WARN_ON(!cycle))
905                 return -EFAULT;
906
907         /* Schedule the start time for the beginning of the next
908          * cycle.
909          */
910         n = div64_s64(ktime_sub_ns(now, base), cycle);
911         *start = ktime_add_ns(base, (n + 1) * cycle);
912         return 0;
913 }
914
915 static void setup_first_close_time(struct taprio_sched *q,
916                                    struct sched_gate_list *sched, ktime_t base)
917 {
918         struct sched_entry *first;
919         ktime_t cycle;
920
921         first = list_first_entry(&sched->entries,
922                                  struct sched_entry, list);
923
924         cycle = sched->cycle_time;
925
926         /* FIXME: find a better place to do this */
927         sched->cycle_close_time = ktime_add_ns(base, cycle);
928
929         first->close_time = ktime_add_ns(base, first->interval);
930         taprio_set_budget(q, first);
931         rcu_assign_pointer(q->current_entry, NULL);
932 }
933
934 static void taprio_start_sched(struct Qdisc *sch,
935                                ktime_t start, struct sched_gate_list *new)
936 {
937         struct taprio_sched *q = qdisc_priv(sch);
938         ktime_t expires;
939
940         expires = hrtimer_get_expires(&q->advance_timer);
941         if (expires == 0)
942                 expires = KTIME_MAX;
943
944         /* If the new schedule starts before the next expiration, we
945          * reprogram it to the earliest one, so we change the admin
946          * schedule to the operational one at the right time.
947          */
948         start = min_t(ktime_t, start, expires);
949
950         hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
951 }
952
953 static void taprio_set_picos_per_byte(struct net_device *dev,
954                                       struct taprio_sched *q)
955 {
956         struct ethtool_link_ksettings ecmd;
957         int picos_per_byte = -1;
958
959         if (!__ethtool_get_link_ksettings(dev, &ecmd) &&
960             ecmd.base.speed != SPEED_UNKNOWN)
961                 picos_per_byte = div64_s64(NSEC_PER_SEC * 1000LL * 8,
962                                            ecmd.base.speed * 1000 * 1000);
963
964         atomic64_set(&q->picos_per_byte, picos_per_byte);
965         netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
966                    dev->name, (long long)atomic64_read(&q->picos_per_byte),
967                    ecmd.base.speed);
968 }
969
970 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
971                                void *ptr)
972 {
973         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
974         struct net_device *qdev;
975         struct taprio_sched *q;
976         bool found = false;
977
978         ASSERT_RTNL();
979
980         if (event != NETDEV_UP && event != NETDEV_CHANGE)
981                 return NOTIFY_DONE;
982
983         spin_lock(&taprio_list_lock);
984         list_for_each_entry(q, &taprio_list, taprio_list) {
985                 qdev = qdisc_dev(q->root);
986                 if (qdev == dev) {
987                         found = true;
988                         break;
989                 }
990         }
991         spin_unlock(&taprio_list_lock);
992
993         if (found)
994                 taprio_set_picos_per_byte(dev, q);
995
996         return NOTIFY_DONE;
997 }
998
999 static void setup_txtime(struct taprio_sched *q,
1000                          struct sched_gate_list *sched, ktime_t base)
1001 {
1002         struct sched_entry *entry;
1003         u32 interval = 0;
1004
1005         list_for_each_entry(entry, &sched->entries, list) {
1006                 entry->next_txtime = ktime_add_ns(base, interval);
1007                 interval += entry->interval;
1008         }
1009 }
1010
1011 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1012                          struct netlink_ext_ack *extack)
1013 {
1014         struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1015         struct sched_gate_list *oper, *admin, *new_admin;
1016         struct taprio_sched *q = qdisc_priv(sch);
1017         struct net_device *dev = qdisc_dev(sch);
1018         struct tc_mqprio_qopt *mqprio = NULL;
1019         u32 taprio_flags = 0;
1020         int i, err, clockid;
1021         unsigned long flags;
1022         ktime_t start;
1023
1024         err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1025                                           taprio_policy, extack);
1026         if (err < 0)
1027                 return err;
1028
1029         if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1030                 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1031
1032         if (tb[TCA_TAPRIO_ATTR_FLAGS]) {
1033                 taprio_flags = nla_get_u32(tb[TCA_TAPRIO_ATTR_FLAGS]);
1034
1035                 if (q->flags != 0 && q->flags != taprio_flags) {
1036                         NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1037                         return -EOPNOTSUPP;
1038                 } else if (!FLAGS_VALID(taprio_flags)) {
1039                         NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1040                         return -EINVAL;
1041                 }
1042
1043                 q->flags = taprio_flags;
1044         }
1045
1046         err = taprio_parse_mqprio_opt(dev, mqprio, extack, taprio_flags);
1047         if (err < 0)
1048                 return err;
1049
1050         new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1051         if (!new_admin) {
1052                 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1053                 return -ENOMEM;
1054         }
1055         INIT_LIST_HEAD(&new_admin->entries);
1056
1057         rcu_read_lock();
1058         oper = rcu_dereference(q->oper_sched);
1059         admin = rcu_dereference(q->admin_sched);
1060         rcu_read_unlock();
1061
1062         if (mqprio && (oper || admin)) {
1063                 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1064                 err = -ENOTSUPP;
1065                 goto free_sched;
1066         }
1067
1068         err = parse_taprio_schedule(tb, new_admin, extack);
1069         if (err < 0)
1070                 goto free_sched;
1071
1072         if (new_admin->num_entries == 0) {
1073                 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1074                 err = -EINVAL;
1075                 goto free_sched;
1076         }
1077
1078         if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1079                 clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1080
1081                 /* We only support static clockids and we don't allow
1082                  * for it to be modified after the first init.
1083                  */
1084                 if (clockid < 0 ||
1085                     (q->clockid != -1 && q->clockid != clockid)) {
1086                         NL_SET_ERR_MSG(extack, "Changing the 'clockid' of a running schedule is not supported");
1087                         err = -ENOTSUPP;
1088                         goto free_sched;
1089                 }
1090
1091                 q->clockid = clockid;
1092         }
1093
1094         if (q->clockid == -1 && !tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1095                 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1096                 err = -EINVAL;
1097                 goto free_sched;
1098         }
1099
1100         taprio_set_picos_per_byte(dev, q);
1101
1102         /* Protects against enqueue()/dequeue() */
1103         spin_lock_bh(qdisc_lock(sch));
1104
1105         if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1106                 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1107                         NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1108                         err = -EINVAL;
1109                         goto unlock;
1110                 }
1111
1112                 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1113         }
1114
1115         if (!TXTIME_ASSIST_IS_ENABLED(taprio_flags) &&
1116             !hrtimer_active(&q->advance_timer)) {
1117                 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1118                 q->advance_timer.function = advance_sched;
1119         }
1120
1121         if (mqprio) {
1122                 netdev_set_num_tc(dev, mqprio->num_tc);
1123                 for (i = 0; i < mqprio->num_tc; i++)
1124                         netdev_set_tc_queue(dev, i,
1125                                             mqprio->count[i],
1126                                             mqprio->offset[i]);
1127
1128                 /* Always use supplied priority mappings */
1129                 for (i = 0; i < TC_BITMASK + 1; i++)
1130                         netdev_set_prio_tc_map(dev, i,
1131                                                mqprio->prio_tc_map[i]);
1132         }
1133
1134         switch (q->clockid) {
1135         case CLOCK_REALTIME:
1136                 q->tk_offset = TK_OFFS_REAL;
1137                 break;
1138         case CLOCK_MONOTONIC:
1139                 q->tk_offset = TK_OFFS_MAX;
1140                 break;
1141         case CLOCK_BOOTTIME:
1142                 q->tk_offset = TK_OFFS_BOOT;
1143                 break;
1144         case CLOCK_TAI:
1145                 q->tk_offset = TK_OFFS_TAI;
1146                 break;
1147         default:
1148                 NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1149                 err = -EINVAL;
1150                 goto unlock;
1151         }
1152
1153         err = taprio_get_start_time(sch, new_admin, &start);
1154         if (err < 0) {
1155                 NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1156                 goto unlock;
1157         }
1158
1159         if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) {
1160                 setup_txtime(q, new_admin, start);
1161
1162                 if (!oper) {
1163                         rcu_assign_pointer(q->oper_sched, new_admin);
1164                         err = 0;
1165                         new_admin = NULL;
1166                         goto unlock;
1167                 }
1168
1169                 rcu_assign_pointer(q->admin_sched, new_admin);
1170                 if (admin)
1171                         call_rcu(&admin->rcu, taprio_free_sched_cb);
1172         } else {
1173                 setup_first_close_time(q, new_admin, start);
1174
1175                 /* Protects against advance_sched() */
1176                 spin_lock_irqsave(&q->current_entry_lock, flags);
1177
1178                 taprio_start_sched(sch, start, new_admin);
1179
1180                 rcu_assign_pointer(q->admin_sched, new_admin);
1181                 if (admin)
1182                         call_rcu(&admin->rcu, taprio_free_sched_cb);
1183
1184                 spin_unlock_irqrestore(&q->current_entry_lock, flags);
1185         }
1186
1187         new_admin = NULL;
1188         err = 0;
1189
1190 unlock:
1191         spin_unlock_bh(qdisc_lock(sch));
1192
1193 free_sched:
1194         kfree(new_admin);
1195
1196         return err;
1197 }
1198
1199 static void taprio_destroy(struct Qdisc *sch)
1200 {
1201         struct taprio_sched *q = qdisc_priv(sch);
1202         struct net_device *dev = qdisc_dev(sch);
1203         unsigned int i;
1204
1205         spin_lock(&taprio_list_lock);
1206         list_del(&q->taprio_list);
1207         spin_unlock(&taprio_list_lock);
1208
1209         hrtimer_cancel(&q->advance_timer);
1210
1211         if (q->qdiscs) {
1212                 for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++)
1213                         qdisc_put(q->qdiscs[i]);
1214
1215                 kfree(q->qdiscs);
1216         }
1217         q->qdiscs = NULL;
1218
1219         netdev_set_num_tc(dev, 0);
1220
1221         if (q->oper_sched)
1222                 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1223
1224         if (q->admin_sched)
1225                 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1226 }
1227
1228 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1229                        struct netlink_ext_ack *extack)
1230 {
1231         struct taprio_sched *q = qdisc_priv(sch);
1232         struct net_device *dev = qdisc_dev(sch);
1233         int i;
1234
1235         spin_lock_init(&q->current_entry_lock);
1236
1237         hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1238         q->advance_timer.function = advance_sched;
1239
1240         q->root = sch;
1241
1242         /* We only support static clockids. Use an invalid value as default
1243          * and get the valid one on taprio_change().
1244          */
1245         q->clockid = -1;
1246
1247         if (sch->parent != TC_H_ROOT)
1248                 return -EOPNOTSUPP;
1249
1250         if (!netif_is_multiqueue(dev))
1251                 return -EOPNOTSUPP;
1252
1253         /* pre-allocate qdisc, attachment can't fail */
1254         q->qdiscs = kcalloc(dev->num_tx_queues,
1255                             sizeof(q->qdiscs[0]),
1256                             GFP_KERNEL);
1257
1258         if (!q->qdiscs)
1259                 return -ENOMEM;
1260
1261         if (!opt)
1262                 return -EINVAL;
1263
1264         spin_lock(&taprio_list_lock);
1265         list_add(&q->taprio_list, &taprio_list);
1266         spin_unlock(&taprio_list_lock);
1267
1268         for (i = 0; i < dev->num_tx_queues; i++) {
1269                 struct netdev_queue *dev_queue;
1270                 struct Qdisc *qdisc;
1271
1272                 dev_queue = netdev_get_tx_queue(dev, i);
1273                 qdisc = qdisc_create_dflt(dev_queue,
1274                                           &pfifo_qdisc_ops,
1275                                           TC_H_MAKE(TC_H_MAJ(sch->handle),
1276                                                     TC_H_MIN(i + 1)),
1277                                           extack);
1278                 if (!qdisc)
1279                         return -ENOMEM;
1280
1281                 if (i < dev->real_num_tx_queues)
1282                         qdisc_hash_add(qdisc, false);
1283
1284                 q->qdiscs[i] = qdisc;
1285         }
1286
1287         return taprio_change(sch, opt, extack);
1288 }
1289
1290 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1291                                              unsigned long cl)
1292 {
1293         struct net_device *dev = qdisc_dev(sch);
1294         unsigned long ntx = cl - 1;
1295
1296         if (ntx >= dev->num_tx_queues)
1297                 return NULL;
1298
1299         return netdev_get_tx_queue(dev, ntx);
1300 }
1301
1302 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1303                         struct Qdisc *new, struct Qdisc **old,
1304                         struct netlink_ext_ack *extack)
1305 {
1306         struct taprio_sched *q = qdisc_priv(sch);
1307         struct net_device *dev = qdisc_dev(sch);
1308         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1309
1310         if (!dev_queue)
1311                 return -EINVAL;
1312
1313         if (dev->flags & IFF_UP)
1314                 dev_deactivate(dev);
1315
1316         *old = q->qdiscs[cl - 1];
1317         q->qdiscs[cl - 1] = new;
1318
1319         if (new)
1320                 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1321
1322         if (dev->flags & IFF_UP)
1323                 dev_activate(dev);
1324
1325         return 0;
1326 }
1327
1328 static int dump_entry(struct sk_buff *msg,
1329                       const struct sched_entry *entry)
1330 {
1331         struct nlattr *item;
1332
1333         item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1334         if (!item)
1335                 return -ENOSPC;
1336
1337         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1338                 goto nla_put_failure;
1339
1340         if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1341                 goto nla_put_failure;
1342
1343         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1344                         entry->gate_mask))
1345                 goto nla_put_failure;
1346
1347         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1348                         entry->interval))
1349                 goto nla_put_failure;
1350
1351         return nla_nest_end(msg, item);
1352
1353 nla_put_failure:
1354         nla_nest_cancel(msg, item);
1355         return -1;
1356 }
1357
1358 static int dump_schedule(struct sk_buff *msg,
1359                          const struct sched_gate_list *root)
1360 {
1361         struct nlattr *entry_list;
1362         struct sched_entry *entry;
1363
1364         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1365                         root->base_time, TCA_TAPRIO_PAD))
1366                 return -1;
1367
1368         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1369                         root->cycle_time, TCA_TAPRIO_PAD))
1370                 return -1;
1371
1372         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1373                         root->cycle_time_extension, TCA_TAPRIO_PAD))
1374                 return -1;
1375
1376         entry_list = nla_nest_start_noflag(msg,
1377                                            TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1378         if (!entry_list)
1379                 goto error_nest;
1380
1381         list_for_each_entry(entry, &root->entries, list) {
1382                 if (dump_entry(msg, entry) < 0)
1383                         goto error_nest;
1384         }
1385
1386         nla_nest_end(msg, entry_list);
1387         return 0;
1388
1389 error_nest:
1390         nla_nest_cancel(msg, entry_list);
1391         return -1;
1392 }
1393
1394 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1395 {
1396         struct taprio_sched *q = qdisc_priv(sch);
1397         struct net_device *dev = qdisc_dev(sch);
1398         struct sched_gate_list *oper, *admin;
1399         struct tc_mqprio_qopt opt = { 0 };
1400         struct nlattr *nest, *sched_nest;
1401         unsigned int i;
1402
1403         rcu_read_lock();
1404         oper = rcu_dereference(q->oper_sched);
1405         admin = rcu_dereference(q->admin_sched);
1406
1407         opt.num_tc = netdev_get_num_tc(dev);
1408         memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1409
1410         for (i = 0; i < netdev_get_num_tc(dev); i++) {
1411                 opt.count[i] = dev->tc_to_txq[i].count;
1412                 opt.offset[i] = dev->tc_to_txq[i].offset;
1413         }
1414
1415         nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1416         if (!nest)
1417                 goto start_error;
1418
1419         if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1420                 goto options_error;
1421
1422         if (nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1423                 goto options_error;
1424
1425         if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1426                 goto options_error;
1427
1428         if (q->txtime_delay &&
1429             nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1430                 goto options_error;
1431
1432         if (oper && dump_schedule(skb, oper))
1433                 goto options_error;
1434
1435         if (!admin)
1436                 goto done;
1437
1438         sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1439         if (!sched_nest)
1440                 goto options_error;
1441
1442         if (dump_schedule(skb, admin))
1443                 goto admin_error;
1444
1445         nla_nest_end(skb, sched_nest);
1446
1447 done:
1448         rcu_read_unlock();
1449
1450         return nla_nest_end(skb, nest);
1451
1452 admin_error:
1453         nla_nest_cancel(skb, sched_nest);
1454
1455 options_error:
1456         nla_nest_cancel(skb, nest);
1457
1458 start_error:
1459         rcu_read_unlock();
1460         return -ENOSPC;
1461 }
1462
1463 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1464 {
1465         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1466
1467         if (!dev_queue)
1468                 return NULL;
1469
1470         return dev_queue->qdisc_sleeping;
1471 }
1472
1473 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1474 {
1475         unsigned int ntx = TC_H_MIN(classid);
1476
1477         if (!taprio_queue_get(sch, ntx))
1478                 return 0;
1479         return ntx;
1480 }
1481
1482 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1483                              struct sk_buff *skb, struct tcmsg *tcm)
1484 {
1485         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1486
1487         tcm->tcm_parent = TC_H_ROOT;
1488         tcm->tcm_handle |= TC_H_MIN(cl);
1489         tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1490
1491         return 0;
1492 }
1493
1494 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1495                                    struct gnet_dump *d)
1496         __releases(d->lock)
1497         __acquires(d->lock)
1498 {
1499         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1500
1501         sch = dev_queue->qdisc_sleeping;
1502         if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1503             qdisc_qstats_copy(d, sch) < 0)
1504                 return -1;
1505         return 0;
1506 }
1507
1508 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1509 {
1510         struct net_device *dev = qdisc_dev(sch);
1511         unsigned long ntx;
1512
1513         if (arg->stop)
1514                 return;
1515
1516         arg->count = arg->skip;
1517         for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1518                 if (arg->fn(sch, ntx + 1, arg) < 0) {
1519                         arg->stop = 1;
1520                         break;
1521                 }
1522                 arg->count++;
1523         }
1524 }
1525
1526 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1527                                                 struct tcmsg *tcm)
1528 {
1529         return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
1530 }
1531
1532 static const struct Qdisc_class_ops taprio_class_ops = {
1533         .graft          = taprio_graft,
1534         .leaf           = taprio_leaf,
1535         .find           = taprio_find,
1536         .walk           = taprio_walk,
1537         .dump           = taprio_dump_class,
1538         .dump_stats     = taprio_dump_class_stats,
1539         .select_queue   = taprio_select_queue,
1540 };
1541
1542 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
1543         .cl_ops         = &taprio_class_ops,
1544         .id             = "taprio",
1545         .priv_size      = sizeof(struct taprio_sched),
1546         .init           = taprio_init,
1547         .change         = taprio_change,
1548         .destroy        = taprio_destroy,
1549         .peek           = taprio_peek,
1550         .dequeue        = taprio_dequeue,
1551         .enqueue        = taprio_enqueue,
1552         .dump           = taprio_dump,
1553         .owner          = THIS_MODULE,
1554 };
1555
1556 static struct notifier_block taprio_device_notifier = {
1557         .notifier_call = taprio_dev_notifier,
1558 };
1559
1560 static int __init taprio_module_init(void)
1561 {
1562         int err = register_netdevice_notifier(&taprio_device_notifier);
1563
1564         if (err)
1565                 return err;
1566
1567         return register_qdisc(&taprio_qdisc_ops);
1568 }
1569
1570 static void __exit taprio_module_exit(void)
1571 {
1572         unregister_qdisc(&taprio_qdisc_ops);
1573         unregister_netdevice_notifier(&taprio_device_notifier);
1574 }
1575
1576 module_init(taprio_module_init);
1577 module_exit(taprio_module_exit);
1578 MODULE_LICENSE("GPL");