]> asedeno.scripts.mit.edu Git - linux.git/blob - net/sunrpc/sched.c
Merge tag 'zonefs-5.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dlemoal...
[linux.git] / net / sunrpc / sched.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27
28 #include "sunrpc.h"
29
30 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
31 #define RPCDBG_FACILITY         RPCDBG_SCHED
32 #endif
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/sunrpc.h>
36
37 /*
38  * RPC slabs and memory pools
39  */
40 #define RPC_BUFFER_MAXSIZE      (2048)
41 #define RPC_BUFFER_POOLSIZE     (8)
42 #define RPC_TASK_POOLSIZE       (8)
43 static struct kmem_cache        *rpc_task_slabp __read_mostly;
44 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
45 static mempool_t        *rpc_task_mempool __read_mostly;
46 static mempool_t        *rpc_buffer_mempool __read_mostly;
47
48 static void                     rpc_async_schedule(struct work_struct *);
49 static void                      rpc_release_task(struct rpc_task *task);
50 static void __rpc_queue_timer_fn(struct work_struct *);
51
52 /*
53  * RPC tasks sit here while waiting for conditions to improve.
54  */
55 static struct rpc_wait_queue delay_queue;
56
57 /*
58  * rpciod-related stuff
59  */
60 struct workqueue_struct *rpciod_workqueue __read_mostly;
61 struct workqueue_struct *xprtiod_workqueue __read_mostly;
62 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
63
64 unsigned long
65 rpc_task_timeout(const struct rpc_task *task)
66 {
67         unsigned long timeout = READ_ONCE(task->tk_timeout);
68
69         if (timeout != 0) {
70                 unsigned long now = jiffies;
71                 if (time_before(now, timeout))
72                         return timeout - now;
73         }
74         return 0;
75 }
76 EXPORT_SYMBOL_GPL(rpc_task_timeout);
77
78 /*
79  * Disable the timer for a given RPC task. Should be called with
80  * queue->lock and bh_disabled in order to avoid races within
81  * rpc_run_timer().
82  */
83 static void
84 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86         if (list_empty(&task->u.tk_wait.timer_list))
87                 return;
88         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
89         task->tk_timeout = 0;
90         list_del(&task->u.tk_wait.timer_list);
91         if (list_empty(&queue->timer_list.list))
92                 cancel_delayed_work(&queue->timer_list.dwork);
93 }
94
95 static void
96 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
97 {
98         unsigned long now = jiffies;
99         queue->timer_list.expires = expires;
100         if (time_before_eq(expires, now))
101                 expires = 0;
102         else
103                 expires -= now;
104         mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
105 }
106
107 /*
108  * Set up a timer for the current task.
109  */
110 static void
111 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
112                 unsigned long timeout)
113 {
114         dprintk("RPC: %5u setting alarm for %u ms\n",
115                 task->tk_pid, jiffies_to_msecs(timeout - jiffies));
116
117         task->tk_timeout = timeout;
118         if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119                 rpc_set_queue_timer(queue, timeout);
120         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
121 }
122
123 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
124 {
125         if (queue->priority != priority) {
126                 queue->priority = priority;
127                 queue->nr = 1U << priority;
128         }
129 }
130
131 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
132 {
133         rpc_set_waitqueue_priority(queue, queue->maxpriority);
134 }
135
136 /*
137  * Add a request to a queue list
138  */
139 static void
140 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
141 {
142         struct rpc_task *t;
143
144         list_for_each_entry(t, q, u.tk_wait.list) {
145                 if (t->tk_owner == task->tk_owner) {
146                         list_add_tail(&task->u.tk_wait.links,
147                                         &t->u.tk_wait.links);
148                         /* Cache the queue head in task->u.tk_wait.list */
149                         task->u.tk_wait.list.next = q;
150                         task->u.tk_wait.list.prev = NULL;
151                         return;
152                 }
153         }
154         INIT_LIST_HEAD(&task->u.tk_wait.links);
155         list_add_tail(&task->u.tk_wait.list, q);
156 }
157
158 /*
159  * Remove request from a queue list
160  */
161 static void
162 __rpc_list_dequeue_task(struct rpc_task *task)
163 {
164         struct list_head *q;
165         struct rpc_task *t;
166
167         if (task->u.tk_wait.list.prev == NULL) {
168                 list_del(&task->u.tk_wait.links);
169                 return;
170         }
171         if (!list_empty(&task->u.tk_wait.links)) {
172                 t = list_first_entry(&task->u.tk_wait.links,
173                                 struct rpc_task,
174                                 u.tk_wait.links);
175                 /* Assume __rpc_list_enqueue_task() cached the queue head */
176                 q = t->u.tk_wait.list.next;
177                 list_add_tail(&t->u.tk_wait.list, q);
178                 list_del(&task->u.tk_wait.links);
179         }
180         list_del(&task->u.tk_wait.list);
181 }
182
183 /*
184  * Add new request to a priority queue.
185  */
186 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187                 struct rpc_task *task,
188                 unsigned char queue_priority)
189 {
190         if (unlikely(queue_priority > queue->maxpriority))
191                 queue_priority = queue->maxpriority;
192         __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
193 }
194
195 /*
196  * Add new request to wait queue.
197  *
198  * Swapper tasks always get inserted at the head of the queue.
199  * This should avoid many nasty memory deadlocks and hopefully
200  * improve overall performance.
201  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
202  */
203 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
204                 struct rpc_task *task,
205                 unsigned char queue_priority)
206 {
207         WARN_ON_ONCE(RPC_IS_QUEUED(task));
208         if (RPC_IS_QUEUED(task))
209                 return;
210
211         INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
212         if (RPC_IS_PRIORITY(queue))
213                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
214         else if (RPC_IS_SWAPPER(task))
215                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
216         else
217                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
218         task->tk_waitqueue = queue;
219         queue->qlen++;
220         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
221         smp_wmb();
222         rpc_set_queued(task);
223
224         dprintk("RPC: %5u added to queue %p \"%s\"\n",
225                         task->tk_pid, queue, rpc_qname(queue));
226 }
227
228 /*
229  * Remove request from a priority queue.
230  */
231 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
232 {
233         __rpc_list_dequeue_task(task);
234 }
235
236 /*
237  * Remove request from queue.
238  * Note: must be called with spin lock held.
239  */
240 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
241 {
242         __rpc_disable_timer(queue, task);
243         if (RPC_IS_PRIORITY(queue))
244                 __rpc_remove_wait_queue_priority(task);
245         else
246                 list_del(&task->u.tk_wait.list);
247         queue->qlen--;
248         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
249                         task->tk_pid, queue, rpc_qname(queue));
250 }
251
252 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
253 {
254         int i;
255
256         spin_lock_init(&queue->lock);
257         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
258                 INIT_LIST_HEAD(&queue->tasks[i]);
259         queue->maxpriority = nr_queues - 1;
260         rpc_reset_waitqueue_priority(queue);
261         queue->qlen = 0;
262         queue->timer_list.expires = 0;
263         INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
264         INIT_LIST_HEAD(&queue->timer_list.list);
265         rpc_assign_waitqueue_name(queue, qname);
266 }
267
268 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
269 {
270         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
271 }
272 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
273
274 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
275 {
276         __rpc_init_priority_wait_queue(queue, qname, 1);
277 }
278 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
279
280 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
281 {
282         cancel_delayed_work_sync(&queue->timer_list.dwork);
283 }
284 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
285
286 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
287 {
288         freezable_schedule_unsafe();
289         if (signal_pending_state(mode, current))
290                 return -ERESTARTSYS;
291         return 0;
292 }
293
294 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
295 static void rpc_task_set_debuginfo(struct rpc_task *task)
296 {
297         static atomic_t rpc_pid;
298
299         task->tk_pid = atomic_inc_return(&rpc_pid);
300 }
301 #else
302 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
303 {
304 }
305 #endif
306
307 static void rpc_set_active(struct rpc_task *task)
308 {
309         rpc_task_set_debuginfo(task);
310         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
311         trace_rpc_task_begin(task, NULL);
312 }
313
314 /*
315  * Mark an RPC call as having completed by clearing the 'active' bit
316  * and then waking up all tasks that were sleeping.
317  */
318 static int rpc_complete_task(struct rpc_task *task)
319 {
320         void *m = &task->tk_runstate;
321         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
322         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
323         unsigned long flags;
324         int ret;
325
326         trace_rpc_task_complete(task, NULL);
327
328         spin_lock_irqsave(&wq->lock, flags);
329         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
330         ret = atomic_dec_and_test(&task->tk_count);
331         if (waitqueue_active(wq))
332                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
333         spin_unlock_irqrestore(&wq->lock, flags);
334         return ret;
335 }
336
337 /*
338  * Allow callers to wait for completion of an RPC call
339  *
340  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
341  * to enforce taking of the wq->lock and hence avoid races with
342  * rpc_complete_task().
343  */
344 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
345 {
346         if (action == NULL)
347                 action = rpc_wait_bit_killable;
348         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
349                         action, TASK_KILLABLE);
350 }
351 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
352
353 /*
354  * Make an RPC task runnable.
355  *
356  * Note: If the task is ASYNC, and is being made runnable after sitting on an
357  * rpc_wait_queue, this must be called with the queue spinlock held to protect
358  * the wait queue operation.
359  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
360  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
361  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
362  * the RPC_TASK_RUNNING flag.
363  */
364 static void rpc_make_runnable(struct workqueue_struct *wq,
365                 struct rpc_task *task)
366 {
367         bool need_wakeup = !rpc_test_and_set_running(task);
368
369         rpc_clear_queued(task);
370         if (!need_wakeup)
371                 return;
372         if (RPC_IS_ASYNC(task)) {
373                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
374                 queue_work(wq, &task->u.tk_work);
375         } else
376                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
377 }
378
379 /*
380  * Prepare for sleeping on a wait queue.
381  * By always appending tasks to the list we ensure FIFO behavior.
382  * NB: An RPC task will only receive interrupt-driven events as long
383  * as it's on a wait queue.
384  */
385 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
386                 struct rpc_task *task,
387                 unsigned char queue_priority)
388 {
389         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
390                         task->tk_pid, rpc_qname(q), jiffies);
391
392         trace_rpc_task_sleep(task, q);
393
394         __rpc_add_wait_queue(q, task, queue_priority);
395
396 }
397
398 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
399                 struct rpc_task *task, unsigned long timeout,
400                 unsigned char queue_priority)
401 {
402         if (time_is_after_jiffies(timeout)) {
403                 __rpc_sleep_on_priority(q, task, queue_priority);
404                 __rpc_add_timer(q, task, timeout);
405         } else
406                 task->tk_status = -ETIMEDOUT;
407 }
408
409 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
410 {
411         if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
412                 task->tk_callback = action;
413 }
414
415 static bool rpc_sleep_check_activated(struct rpc_task *task)
416 {
417         /* We shouldn't ever put an inactive task to sleep */
418         if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
419                 task->tk_status = -EIO;
420                 rpc_put_task_async(task);
421                 return false;
422         }
423         return true;
424 }
425
426 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
427                                 rpc_action action, unsigned long timeout)
428 {
429         if (!rpc_sleep_check_activated(task))
430                 return;
431
432         rpc_set_tk_callback(task, action);
433
434         /*
435          * Protect the queue operations.
436          */
437         spin_lock(&q->lock);
438         __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
439         spin_unlock(&q->lock);
440 }
441 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
442
443 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
444                                 rpc_action action)
445 {
446         if (!rpc_sleep_check_activated(task))
447                 return;
448
449         rpc_set_tk_callback(task, action);
450
451         WARN_ON_ONCE(task->tk_timeout != 0);
452         /*
453          * Protect the queue operations.
454          */
455         spin_lock(&q->lock);
456         __rpc_sleep_on_priority(q, task, task->tk_priority);
457         spin_unlock(&q->lock);
458 }
459 EXPORT_SYMBOL_GPL(rpc_sleep_on);
460
461 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
462                 struct rpc_task *task, unsigned long timeout, int priority)
463 {
464         if (!rpc_sleep_check_activated(task))
465                 return;
466
467         priority -= RPC_PRIORITY_LOW;
468         /*
469          * Protect the queue operations.
470          */
471         spin_lock(&q->lock);
472         __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
473         spin_unlock(&q->lock);
474 }
475 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
476
477 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
478                 int priority)
479 {
480         if (!rpc_sleep_check_activated(task))
481                 return;
482
483         WARN_ON_ONCE(task->tk_timeout != 0);
484         priority -= RPC_PRIORITY_LOW;
485         /*
486          * Protect the queue operations.
487          */
488         spin_lock(&q->lock);
489         __rpc_sleep_on_priority(q, task, priority);
490         spin_unlock(&q->lock);
491 }
492 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
493
494 /**
495  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
496  * @wq: workqueue on which to run task
497  * @queue: wait queue
498  * @task: task to be woken up
499  *
500  * Caller must hold queue->lock, and have cleared the task queued flag.
501  */
502 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
503                 struct rpc_wait_queue *queue,
504                 struct rpc_task *task)
505 {
506         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
507                         task->tk_pid, jiffies);
508
509         /* Has the task been executed yet? If not, we cannot wake it up! */
510         if (!RPC_IS_ACTIVATED(task)) {
511                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
512                 return;
513         }
514
515         trace_rpc_task_wakeup(task, queue);
516
517         __rpc_remove_wait_queue(queue, task);
518
519         rpc_make_runnable(wq, task);
520
521         dprintk("RPC:       __rpc_wake_up_task done\n");
522 }
523
524 /*
525  * Wake up a queued task while the queue lock is being held
526  */
527 static struct rpc_task *
528 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
529                 struct rpc_wait_queue *queue, struct rpc_task *task,
530                 bool (*action)(struct rpc_task *, void *), void *data)
531 {
532         if (RPC_IS_QUEUED(task)) {
533                 smp_rmb();
534                 if (task->tk_waitqueue == queue) {
535                         if (action == NULL || action(task, data)) {
536                                 __rpc_do_wake_up_task_on_wq(wq, queue, task);
537                                 return task;
538                         }
539                 }
540         }
541         return NULL;
542 }
543
544 /*
545  * Wake up a queued task while the queue lock is being held
546  */
547 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
548                                           struct rpc_task *task)
549 {
550         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
551                                                    task, NULL, NULL);
552 }
553
554 /*
555  * Wake up a task on a specific queue
556  */
557 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
558 {
559         if (!RPC_IS_QUEUED(task))
560                 return;
561         spin_lock(&queue->lock);
562         rpc_wake_up_task_queue_locked(queue, task);
563         spin_unlock(&queue->lock);
564 }
565 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
566
567 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
568 {
569         task->tk_status = *(int *)status;
570         return true;
571 }
572
573 static void
574 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
575                 struct rpc_task *task, int status)
576 {
577         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
578                         task, rpc_task_action_set_status, &status);
579 }
580
581 /**
582  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
583  * @queue: pointer to rpc_wait_queue
584  * @task: pointer to rpc_task
585  * @status: integer error value
586  *
587  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
588  * set to the value of @status.
589  */
590 void
591 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
592                 struct rpc_task *task, int status)
593 {
594         if (!RPC_IS_QUEUED(task))
595                 return;
596         spin_lock(&queue->lock);
597         rpc_wake_up_task_queue_set_status_locked(queue, task, status);
598         spin_unlock(&queue->lock);
599 }
600
601 /*
602  * Wake up the next task on a priority queue.
603  */
604 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
605 {
606         struct list_head *q;
607         struct rpc_task *task;
608
609         /*
610          * Service a batch of tasks from a single owner.
611          */
612         q = &queue->tasks[queue->priority];
613         if (!list_empty(q) && --queue->nr) {
614                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
615                 goto out;
616         }
617
618         /*
619          * Service the next queue.
620          */
621         do {
622                 if (q == &queue->tasks[0])
623                         q = &queue->tasks[queue->maxpriority];
624                 else
625                         q = q - 1;
626                 if (!list_empty(q)) {
627                         task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
628                         goto new_queue;
629                 }
630         } while (q != &queue->tasks[queue->priority]);
631
632         rpc_reset_waitqueue_priority(queue);
633         return NULL;
634
635 new_queue:
636         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
637 out:
638         return task;
639 }
640
641 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
642 {
643         if (RPC_IS_PRIORITY(queue))
644                 return __rpc_find_next_queued_priority(queue);
645         if (!list_empty(&queue->tasks[0]))
646                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
647         return NULL;
648 }
649
650 /*
651  * Wake up the first task on the wait queue.
652  */
653 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
654                 struct rpc_wait_queue *queue,
655                 bool (*func)(struct rpc_task *, void *), void *data)
656 {
657         struct rpc_task *task = NULL;
658
659         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
660                         queue, rpc_qname(queue));
661         spin_lock(&queue->lock);
662         task = __rpc_find_next_queued(queue);
663         if (task != NULL)
664                 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
665                                 task, func, data);
666         spin_unlock(&queue->lock);
667
668         return task;
669 }
670
671 /*
672  * Wake up the first task on the wait queue.
673  */
674 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
675                 bool (*func)(struct rpc_task *, void *), void *data)
676 {
677         return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
678 }
679 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
680
681 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
682 {
683         return true;
684 }
685
686 /*
687  * Wake up the next task on the wait queue.
688 */
689 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
690 {
691         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
692 }
693 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
694
695 /**
696  * rpc_wake_up - wake up all rpc_tasks
697  * @queue: rpc_wait_queue on which the tasks are sleeping
698  *
699  * Grabs queue->lock
700  */
701 void rpc_wake_up(struct rpc_wait_queue *queue)
702 {
703         struct list_head *head;
704
705         spin_lock(&queue->lock);
706         head = &queue->tasks[queue->maxpriority];
707         for (;;) {
708                 while (!list_empty(head)) {
709                         struct rpc_task *task;
710                         task = list_first_entry(head,
711                                         struct rpc_task,
712                                         u.tk_wait.list);
713                         rpc_wake_up_task_queue_locked(queue, task);
714                 }
715                 if (head == &queue->tasks[0])
716                         break;
717                 head--;
718         }
719         spin_unlock(&queue->lock);
720 }
721 EXPORT_SYMBOL_GPL(rpc_wake_up);
722
723 /**
724  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
725  * @queue: rpc_wait_queue on which the tasks are sleeping
726  * @status: status value to set
727  *
728  * Grabs queue->lock
729  */
730 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
731 {
732         struct list_head *head;
733
734         spin_lock(&queue->lock);
735         head = &queue->tasks[queue->maxpriority];
736         for (;;) {
737                 while (!list_empty(head)) {
738                         struct rpc_task *task;
739                         task = list_first_entry(head,
740                                         struct rpc_task,
741                                         u.tk_wait.list);
742                         task->tk_status = status;
743                         rpc_wake_up_task_queue_locked(queue, task);
744                 }
745                 if (head == &queue->tasks[0])
746                         break;
747                 head--;
748         }
749         spin_unlock(&queue->lock);
750 }
751 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
752
753 static void __rpc_queue_timer_fn(struct work_struct *work)
754 {
755         struct rpc_wait_queue *queue = container_of(work,
756                         struct rpc_wait_queue,
757                         timer_list.dwork.work);
758         struct rpc_task *task, *n;
759         unsigned long expires, now, timeo;
760
761         spin_lock(&queue->lock);
762         expires = now = jiffies;
763         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
764                 timeo = task->tk_timeout;
765                 if (time_after_eq(now, timeo)) {
766                         dprintk("RPC: %5u timeout\n", task->tk_pid);
767                         task->tk_status = -ETIMEDOUT;
768                         rpc_wake_up_task_queue_locked(queue, task);
769                         continue;
770                 }
771                 if (expires == now || time_after(expires, timeo))
772                         expires = timeo;
773         }
774         if (!list_empty(&queue->timer_list.list))
775                 rpc_set_queue_timer(queue, expires);
776         spin_unlock(&queue->lock);
777 }
778
779 static void __rpc_atrun(struct rpc_task *task)
780 {
781         if (task->tk_status == -ETIMEDOUT)
782                 task->tk_status = 0;
783 }
784
785 /*
786  * Run a task at a later time
787  */
788 void rpc_delay(struct rpc_task *task, unsigned long delay)
789 {
790         rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
791 }
792 EXPORT_SYMBOL_GPL(rpc_delay);
793
794 /*
795  * Helper to call task->tk_ops->rpc_call_prepare
796  */
797 void rpc_prepare_task(struct rpc_task *task)
798 {
799         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
800 }
801
802 static void
803 rpc_init_task_statistics(struct rpc_task *task)
804 {
805         /* Initialize retry counters */
806         task->tk_garb_retry = 2;
807         task->tk_cred_retry = 2;
808         task->tk_rebind_retry = 2;
809
810         /* starting timestamp */
811         task->tk_start = ktime_get();
812 }
813
814 static void
815 rpc_reset_task_statistics(struct rpc_task *task)
816 {
817         task->tk_timeouts = 0;
818         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
819         rpc_init_task_statistics(task);
820 }
821
822 /*
823  * Helper that calls task->tk_ops->rpc_call_done if it exists
824  */
825 void rpc_exit_task(struct rpc_task *task)
826 {
827         trace_rpc_task_end(task, task->tk_action);
828         task->tk_action = NULL;
829         if (task->tk_ops->rpc_count_stats)
830                 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
831         else if (task->tk_client)
832                 rpc_count_iostats(task, task->tk_client->cl_metrics);
833         if (task->tk_ops->rpc_call_done != NULL) {
834                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
835                 if (task->tk_action != NULL) {
836                         /* Always release the RPC slot and buffer memory */
837                         xprt_release(task);
838                         rpc_reset_task_statistics(task);
839                 }
840         }
841 }
842
843 void rpc_signal_task(struct rpc_task *task)
844 {
845         struct rpc_wait_queue *queue;
846
847         if (!RPC_IS_ACTIVATED(task))
848                 return;
849
850         trace_rpc_task_signalled(task, task->tk_action);
851         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
852         smp_mb__after_atomic();
853         queue = READ_ONCE(task->tk_waitqueue);
854         if (queue)
855                 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
856 }
857
858 void rpc_exit(struct rpc_task *task, int status)
859 {
860         task->tk_status = status;
861         task->tk_action = rpc_exit_task;
862         rpc_wake_up_queued_task(task->tk_waitqueue, task);
863 }
864 EXPORT_SYMBOL_GPL(rpc_exit);
865
866 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
867 {
868         if (ops->rpc_release != NULL)
869                 ops->rpc_release(calldata);
870 }
871
872 /*
873  * This is the RPC `scheduler' (or rather, the finite state machine).
874  */
875 static void __rpc_execute(struct rpc_task *task)
876 {
877         struct rpc_wait_queue *queue;
878         int task_is_async = RPC_IS_ASYNC(task);
879         int status = 0;
880
881         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
882                         task->tk_pid, task->tk_flags);
883
884         WARN_ON_ONCE(RPC_IS_QUEUED(task));
885         if (RPC_IS_QUEUED(task))
886                 return;
887
888         for (;;) {
889                 void (*do_action)(struct rpc_task *);
890
891                 /*
892                  * Perform the next FSM step or a pending callback.
893                  *
894                  * tk_action may be NULL if the task has been killed.
895                  * In particular, note that rpc_killall_tasks may
896                  * do this at any time, so beware when dereferencing.
897                  */
898                 do_action = task->tk_action;
899                 if (task->tk_callback) {
900                         do_action = task->tk_callback;
901                         task->tk_callback = NULL;
902                 }
903                 if (!do_action)
904                         break;
905                 trace_rpc_task_run_action(task, do_action);
906                 do_action(task);
907
908                 /*
909                  * Lockless check for whether task is sleeping or not.
910                  */
911                 if (!RPC_IS_QUEUED(task))
912                         continue;
913
914                 /*
915                  * Signalled tasks should exit rather than sleep.
916                  */
917                 if (RPC_SIGNALLED(task)) {
918                         task->tk_rpc_status = -ERESTARTSYS;
919                         rpc_exit(task, -ERESTARTSYS);
920                 }
921
922                 /*
923                  * The queue->lock protects against races with
924                  * rpc_make_runnable().
925                  *
926                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
927                  * rpc_task, rpc_make_runnable() can assign it to a
928                  * different workqueue. We therefore cannot assume that the
929                  * rpc_task pointer may still be dereferenced.
930                  */
931                 queue = task->tk_waitqueue;
932                 spin_lock(&queue->lock);
933                 if (!RPC_IS_QUEUED(task)) {
934                         spin_unlock(&queue->lock);
935                         continue;
936                 }
937                 rpc_clear_running(task);
938                 spin_unlock(&queue->lock);
939                 if (task_is_async)
940                         return;
941
942                 /* sync task: sleep here */
943                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
944                 status = out_of_line_wait_on_bit(&task->tk_runstate,
945                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
946                                 TASK_KILLABLE);
947                 if (status < 0) {
948                         /*
949                          * When a sync task receives a signal, it exits with
950                          * -ERESTARTSYS. In order to catch any callbacks that
951                          * clean up after sleeping on some queue, we don't
952                          * break the loop here, but go around once more.
953                          */
954                         trace_rpc_task_signalled(task, task->tk_action);
955                         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
956                         task->tk_rpc_status = -ERESTARTSYS;
957                         rpc_exit(task, -ERESTARTSYS);
958                 }
959                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
960         }
961
962         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
963                         task->tk_status);
964         /* Release all resources associated with the task */
965         rpc_release_task(task);
966 }
967
968 /*
969  * User-visible entry point to the scheduler.
970  *
971  * This may be called recursively if e.g. an async NFS task updates
972  * the attributes and finds that dirty pages must be flushed.
973  * NOTE: Upon exit of this function the task is guaranteed to be
974  *       released. In particular note that tk_release() will have
975  *       been called, so your task memory may have been freed.
976  */
977 void rpc_execute(struct rpc_task *task)
978 {
979         bool is_async = RPC_IS_ASYNC(task);
980
981         rpc_set_active(task);
982         rpc_make_runnable(rpciod_workqueue, task);
983         if (!is_async)
984                 __rpc_execute(task);
985 }
986
987 static void rpc_async_schedule(struct work_struct *work)
988 {
989         unsigned int pflags = memalloc_nofs_save();
990
991         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
992         memalloc_nofs_restore(pflags);
993 }
994
995 /**
996  * rpc_malloc - allocate RPC buffer resources
997  * @task: RPC task
998  *
999  * A single memory region is allocated, which is split between the
1000  * RPC call and RPC reply that this task is being used for. When
1001  * this RPC is retired, the memory is released by calling rpc_free.
1002  *
1003  * To prevent rpciod from hanging, this allocator never sleeps,
1004  * returning -ENOMEM and suppressing warning if the request cannot
1005  * be serviced immediately. The caller can arrange to sleep in a
1006  * way that is safe for rpciod.
1007  *
1008  * Most requests are 'small' (under 2KiB) and can be serviced from a
1009  * mempool, ensuring that NFS reads and writes can always proceed,
1010  * and that there is good locality of reference for these buffers.
1011  */
1012 int rpc_malloc(struct rpc_task *task)
1013 {
1014         struct rpc_rqst *rqst = task->tk_rqstp;
1015         size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1016         struct rpc_buffer *buf;
1017         gfp_t gfp = GFP_NOFS;
1018
1019         if (RPC_IS_SWAPPER(task))
1020                 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1021
1022         size += sizeof(struct rpc_buffer);
1023         if (size <= RPC_BUFFER_MAXSIZE)
1024                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1025         else
1026                 buf = kmalloc(size, gfp);
1027
1028         if (!buf)
1029                 return -ENOMEM;
1030
1031         buf->len = size;
1032         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1033                         task->tk_pid, size, buf);
1034         rqst->rq_buffer = buf->data;
1035         rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1036         return 0;
1037 }
1038 EXPORT_SYMBOL_GPL(rpc_malloc);
1039
1040 /**
1041  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1042  * @task: RPC task
1043  *
1044  */
1045 void rpc_free(struct rpc_task *task)
1046 {
1047         void *buffer = task->tk_rqstp->rq_buffer;
1048         size_t size;
1049         struct rpc_buffer *buf;
1050
1051         buf = container_of(buffer, struct rpc_buffer, data);
1052         size = buf->len;
1053
1054         dprintk("RPC:       freeing buffer of size %zu at %p\n",
1055                         size, buf);
1056
1057         if (size <= RPC_BUFFER_MAXSIZE)
1058                 mempool_free(buf, rpc_buffer_mempool);
1059         else
1060                 kfree(buf);
1061 }
1062 EXPORT_SYMBOL_GPL(rpc_free);
1063
1064 /*
1065  * Creation and deletion of RPC task structures
1066  */
1067 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1068 {
1069         memset(task, 0, sizeof(*task));
1070         atomic_set(&task->tk_count, 1);
1071         task->tk_flags  = task_setup_data->flags;
1072         task->tk_ops = task_setup_data->callback_ops;
1073         task->tk_calldata = task_setup_data->callback_data;
1074         INIT_LIST_HEAD(&task->tk_task);
1075
1076         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1077         task->tk_owner = current->tgid;
1078
1079         /* Initialize workqueue for async tasks */
1080         task->tk_workqueue = task_setup_data->workqueue;
1081
1082         task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1083                         xprt_get(task_setup_data->rpc_xprt));
1084
1085         task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1086
1087         if (task->tk_ops->rpc_call_prepare != NULL)
1088                 task->tk_action = rpc_prepare_task;
1089
1090         rpc_init_task_statistics(task);
1091
1092         dprintk("RPC:       new task initialized, procpid %u\n",
1093                                 task_pid_nr(current));
1094 }
1095
1096 static struct rpc_task *
1097 rpc_alloc_task(void)
1098 {
1099         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1100 }
1101
1102 /*
1103  * Create a new task for the specified client.
1104  */
1105 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1106 {
1107         struct rpc_task *task = setup_data->task;
1108         unsigned short flags = 0;
1109
1110         if (task == NULL) {
1111                 task = rpc_alloc_task();
1112                 flags = RPC_TASK_DYNAMIC;
1113         }
1114
1115         rpc_init_task(task, setup_data);
1116         task->tk_flags |= flags;
1117         dprintk("RPC:       allocated task %p\n", task);
1118         return task;
1119 }
1120
1121 /*
1122  * rpc_free_task - release rpc task and perform cleanups
1123  *
1124  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1125  * in order to work around a workqueue dependency issue.
1126  *
1127  * Tejun Heo states:
1128  * "Workqueue currently considers two work items to be the same if they're
1129  * on the same address and won't execute them concurrently - ie. it
1130  * makes a work item which is queued again while being executed wait
1131  * for the previous execution to complete.
1132  *
1133  * If a work function frees the work item, and then waits for an event
1134  * which should be performed by another work item and *that* work item
1135  * recycles the freed work item, it can create a false dependency loop.
1136  * There really is no reliable way to detect this short of verifying
1137  * every memory free."
1138  *
1139  */
1140 static void rpc_free_task(struct rpc_task *task)
1141 {
1142         unsigned short tk_flags = task->tk_flags;
1143
1144         put_rpccred(task->tk_op_cred);
1145         rpc_release_calldata(task->tk_ops, task->tk_calldata);
1146
1147         if (tk_flags & RPC_TASK_DYNAMIC) {
1148                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1149                 mempool_free(task, rpc_task_mempool);
1150         }
1151 }
1152
1153 static void rpc_async_release(struct work_struct *work)
1154 {
1155         unsigned int pflags = memalloc_nofs_save();
1156
1157         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1158         memalloc_nofs_restore(pflags);
1159 }
1160
1161 static void rpc_release_resources_task(struct rpc_task *task)
1162 {
1163         xprt_release(task);
1164         if (task->tk_msg.rpc_cred) {
1165                 put_cred(task->tk_msg.rpc_cred);
1166                 task->tk_msg.rpc_cred = NULL;
1167         }
1168         rpc_task_release_client(task);
1169 }
1170
1171 static void rpc_final_put_task(struct rpc_task *task,
1172                 struct workqueue_struct *q)
1173 {
1174         if (q != NULL) {
1175                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1176                 queue_work(q, &task->u.tk_work);
1177         } else
1178                 rpc_free_task(task);
1179 }
1180
1181 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1182 {
1183         if (atomic_dec_and_test(&task->tk_count)) {
1184                 rpc_release_resources_task(task);
1185                 rpc_final_put_task(task, q);
1186         }
1187 }
1188
1189 void rpc_put_task(struct rpc_task *task)
1190 {
1191         rpc_do_put_task(task, NULL);
1192 }
1193 EXPORT_SYMBOL_GPL(rpc_put_task);
1194
1195 void rpc_put_task_async(struct rpc_task *task)
1196 {
1197         rpc_do_put_task(task, task->tk_workqueue);
1198 }
1199 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1200
1201 static void rpc_release_task(struct rpc_task *task)
1202 {
1203         dprintk("RPC: %5u release task\n", task->tk_pid);
1204
1205         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1206
1207         rpc_release_resources_task(task);
1208
1209         /*
1210          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1211          * so it should be safe to use task->tk_count as a test for whether
1212          * or not any other processes still hold references to our rpc_task.
1213          */
1214         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1215                 /* Wake up anyone who may be waiting for task completion */
1216                 if (!rpc_complete_task(task))
1217                         return;
1218         } else {
1219                 if (!atomic_dec_and_test(&task->tk_count))
1220                         return;
1221         }
1222         rpc_final_put_task(task, task->tk_workqueue);
1223 }
1224
1225 int rpciod_up(void)
1226 {
1227         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1228 }
1229
1230 void rpciod_down(void)
1231 {
1232         module_put(THIS_MODULE);
1233 }
1234
1235 /*
1236  * Start up the rpciod workqueue.
1237  */
1238 static int rpciod_start(void)
1239 {
1240         struct workqueue_struct *wq;
1241
1242         /*
1243          * Create the rpciod thread and wait for it to start.
1244          */
1245         dprintk("RPC:       creating workqueue rpciod\n");
1246         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1247         if (!wq)
1248                 goto out_failed;
1249         rpciod_workqueue = wq;
1250         /* Note: highpri because network receive is latency sensitive */
1251         wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1252         if (!wq)
1253                 goto free_rpciod;
1254         xprtiod_workqueue = wq;
1255         return 1;
1256 free_rpciod:
1257         wq = rpciod_workqueue;
1258         rpciod_workqueue = NULL;
1259         destroy_workqueue(wq);
1260 out_failed:
1261         return 0;
1262 }
1263
1264 static void rpciod_stop(void)
1265 {
1266         struct workqueue_struct *wq = NULL;
1267
1268         if (rpciod_workqueue == NULL)
1269                 return;
1270         dprintk("RPC:       destroying workqueue rpciod\n");
1271
1272         wq = rpciod_workqueue;
1273         rpciod_workqueue = NULL;
1274         destroy_workqueue(wq);
1275         wq = xprtiod_workqueue;
1276         xprtiod_workqueue = NULL;
1277         destroy_workqueue(wq);
1278 }
1279
1280 void
1281 rpc_destroy_mempool(void)
1282 {
1283         rpciod_stop();
1284         mempool_destroy(rpc_buffer_mempool);
1285         mempool_destroy(rpc_task_mempool);
1286         kmem_cache_destroy(rpc_task_slabp);
1287         kmem_cache_destroy(rpc_buffer_slabp);
1288         rpc_destroy_wait_queue(&delay_queue);
1289 }
1290
1291 int
1292 rpc_init_mempool(void)
1293 {
1294         /*
1295          * The following is not strictly a mempool initialisation,
1296          * but there is no harm in doing it here
1297          */
1298         rpc_init_wait_queue(&delay_queue, "delayq");
1299         if (!rpciod_start())
1300                 goto err_nomem;
1301
1302         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1303                                              sizeof(struct rpc_task),
1304                                              0, SLAB_HWCACHE_ALIGN,
1305                                              NULL);
1306         if (!rpc_task_slabp)
1307                 goto err_nomem;
1308         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1309                                              RPC_BUFFER_MAXSIZE,
1310                                              0, SLAB_HWCACHE_ALIGN,
1311                                              NULL);
1312         if (!rpc_buffer_slabp)
1313                 goto err_nomem;
1314         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1315                                                     rpc_task_slabp);
1316         if (!rpc_task_mempool)
1317                 goto err_nomem;
1318         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1319                                                       rpc_buffer_slabp);
1320         if (!rpc_buffer_mempool)
1321                 goto err_nomem;
1322         return 0;
1323 err_nomem:
1324         rpc_destroy_mempool();
1325         return -ENOMEM;
1326 }