]> asedeno.scripts.mit.edu Git - linux.git/blob - net/sunrpc/sched.c
Merge tag 'kvm-arm-for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm...
[linux.git] / net / sunrpc / sched.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26
27 #include "sunrpc.h"
28
29 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
30 #define RPCDBG_FACILITY         RPCDBG_SCHED
31 #endif
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/sunrpc.h>
35
36 /*
37  * RPC slabs and memory pools
38  */
39 #define RPC_BUFFER_MAXSIZE      (2048)
40 #define RPC_BUFFER_POOLSIZE     (8)
41 #define RPC_TASK_POOLSIZE       (8)
42 static struct kmem_cache        *rpc_task_slabp __read_mostly;
43 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
44 static mempool_t        *rpc_task_mempool __read_mostly;
45 static mempool_t        *rpc_buffer_mempool __read_mostly;
46
47 static void                     rpc_async_schedule(struct work_struct *);
48 static void                      rpc_release_task(struct rpc_task *task);
49 static void __rpc_queue_timer_fn(struct timer_list *t);
50
51 /*
52  * RPC tasks sit here while waiting for conditions to improve.
53  */
54 static struct rpc_wait_queue delay_queue;
55
56 /*
57  * rpciod-related stuff
58  */
59 struct workqueue_struct *rpciod_workqueue __read_mostly;
60 struct workqueue_struct *xprtiod_workqueue __read_mostly;
61
62 unsigned long
63 rpc_task_timeout(const struct rpc_task *task)
64 {
65         unsigned long timeout = READ_ONCE(task->tk_timeout);
66
67         if (timeout != 0) {
68                 unsigned long now = jiffies;
69                 if (time_before(now, timeout))
70                         return timeout - now;
71         }
72         return 0;
73 }
74 EXPORT_SYMBOL_GPL(rpc_task_timeout);
75
76 /*
77  * Disable the timer for a given RPC task. Should be called with
78  * queue->lock and bh_disabled in order to avoid races within
79  * rpc_run_timer().
80  */
81 static void
82 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
83 {
84         if (list_empty(&task->u.tk_wait.timer_list))
85                 return;
86         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
87         task->tk_timeout = 0;
88         list_del(&task->u.tk_wait.timer_list);
89         if (list_empty(&queue->timer_list.list))
90                 del_timer(&queue->timer_list.timer);
91 }
92
93 static void
94 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
95 {
96         timer_reduce(&queue->timer_list.timer, expires);
97 }
98
99 /*
100  * Set up a timer for the current task.
101  */
102 static void
103 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
104                 unsigned long timeout)
105 {
106         dprintk("RPC: %5u setting alarm for %u ms\n",
107                 task->tk_pid, jiffies_to_msecs(timeout - jiffies));
108
109         task->tk_timeout = timeout;
110         rpc_set_queue_timer(queue, timeout);
111         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
112 }
113
114 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
115 {
116         if (queue->priority != priority) {
117                 queue->priority = priority;
118                 queue->nr = 1U << priority;
119         }
120 }
121
122 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
123 {
124         rpc_set_waitqueue_priority(queue, queue->maxpriority);
125 }
126
127 /*
128  * Add a request to a queue list
129  */
130 static void
131 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
132 {
133         struct rpc_task *t;
134
135         list_for_each_entry(t, q, u.tk_wait.list) {
136                 if (t->tk_owner == task->tk_owner) {
137                         list_add_tail(&task->u.tk_wait.links,
138                                         &t->u.tk_wait.links);
139                         /* Cache the queue head in task->u.tk_wait.list */
140                         task->u.tk_wait.list.next = q;
141                         task->u.tk_wait.list.prev = NULL;
142                         return;
143                 }
144         }
145         INIT_LIST_HEAD(&task->u.tk_wait.links);
146         list_add_tail(&task->u.tk_wait.list, q);
147 }
148
149 /*
150  * Remove request from a queue list
151  */
152 static void
153 __rpc_list_dequeue_task(struct rpc_task *task)
154 {
155         struct list_head *q;
156         struct rpc_task *t;
157
158         if (task->u.tk_wait.list.prev == NULL) {
159                 list_del(&task->u.tk_wait.links);
160                 return;
161         }
162         if (!list_empty(&task->u.tk_wait.links)) {
163                 t = list_first_entry(&task->u.tk_wait.links,
164                                 struct rpc_task,
165                                 u.tk_wait.links);
166                 /* Assume __rpc_list_enqueue_task() cached the queue head */
167                 q = t->u.tk_wait.list.next;
168                 list_add_tail(&t->u.tk_wait.list, q);
169                 list_del(&task->u.tk_wait.links);
170         }
171         list_del(&task->u.tk_wait.list);
172 }
173
174 /*
175  * Add new request to a priority queue.
176  */
177 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
178                 struct rpc_task *task,
179                 unsigned char queue_priority)
180 {
181         if (unlikely(queue_priority > queue->maxpriority))
182                 queue_priority = queue->maxpriority;
183         __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
184 }
185
186 /*
187  * Add new request to wait queue.
188  *
189  * Swapper tasks always get inserted at the head of the queue.
190  * This should avoid many nasty memory deadlocks and hopefully
191  * improve overall performance.
192  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
193  */
194 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
195                 struct rpc_task *task,
196                 unsigned char queue_priority)
197 {
198         WARN_ON_ONCE(RPC_IS_QUEUED(task));
199         if (RPC_IS_QUEUED(task))
200                 return;
201
202         INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
203         if (RPC_IS_PRIORITY(queue))
204                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
205         else if (RPC_IS_SWAPPER(task))
206                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
207         else
208                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
209         task->tk_waitqueue = queue;
210         queue->qlen++;
211         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
212         smp_wmb();
213         rpc_set_queued(task);
214
215         dprintk("RPC: %5u added to queue %p \"%s\"\n",
216                         task->tk_pid, queue, rpc_qname(queue));
217 }
218
219 /*
220  * Remove request from a priority queue.
221  */
222 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
223 {
224         __rpc_list_dequeue_task(task);
225 }
226
227 /*
228  * Remove request from queue.
229  * Note: must be called with spin lock held.
230  */
231 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
232 {
233         __rpc_disable_timer(queue, task);
234         if (RPC_IS_PRIORITY(queue))
235                 __rpc_remove_wait_queue_priority(task);
236         else
237                 list_del(&task->u.tk_wait.list);
238         queue->qlen--;
239         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
240                         task->tk_pid, queue, rpc_qname(queue));
241 }
242
243 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
244 {
245         int i;
246
247         spin_lock_init(&queue->lock);
248         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
249                 INIT_LIST_HEAD(&queue->tasks[i]);
250         queue->maxpriority = nr_queues - 1;
251         rpc_reset_waitqueue_priority(queue);
252         queue->qlen = 0;
253         timer_setup(&queue->timer_list.timer, __rpc_queue_timer_fn, 0);
254         INIT_LIST_HEAD(&queue->timer_list.list);
255         rpc_assign_waitqueue_name(queue, qname);
256 }
257
258 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
259 {
260         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
261 }
262 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
263
264 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
265 {
266         __rpc_init_priority_wait_queue(queue, qname, 1);
267 }
268 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
269
270 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
271 {
272         del_timer_sync(&queue->timer_list.timer);
273 }
274 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
275
276 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
277 {
278         freezable_schedule_unsafe();
279         if (signal_pending_state(mode, current))
280                 return -ERESTARTSYS;
281         return 0;
282 }
283
284 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
285 static void rpc_task_set_debuginfo(struct rpc_task *task)
286 {
287         static atomic_t rpc_pid;
288
289         task->tk_pid = atomic_inc_return(&rpc_pid);
290 }
291 #else
292 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
293 {
294 }
295 #endif
296
297 static void rpc_set_active(struct rpc_task *task)
298 {
299         rpc_task_set_debuginfo(task);
300         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
301         trace_rpc_task_begin(task, NULL);
302 }
303
304 /*
305  * Mark an RPC call as having completed by clearing the 'active' bit
306  * and then waking up all tasks that were sleeping.
307  */
308 static int rpc_complete_task(struct rpc_task *task)
309 {
310         void *m = &task->tk_runstate;
311         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
312         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
313         unsigned long flags;
314         int ret;
315
316         trace_rpc_task_complete(task, NULL);
317
318         spin_lock_irqsave(&wq->lock, flags);
319         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
320         ret = atomic_dec_and_test(&task->tk_count);
321         if (waitqueue_active(wq))
322                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
323         spin_unlock_irqrestore(&wq->lock, flags);
324         return ret;
325 }
326
327 /*
328  * Allow callers to wait for completion of an RPC call
329  *
330  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
331  * to enforce taking of the wq->lock and hence avoid races with
332  * rpc_complete_task().
333  */
334 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
335 {
336         if (action == NULL)
337                 action = rpc_wait_bit_killable;
338         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
339                         action, TASK_KILLABLE);
340 }
341 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
342
343 /*
344  * Make an RPC task runnable.
345  *
346  * Note: If the task is ASYNC, and is being made runnable after sitting on an
347  * rpc_wait_queue, this must be called with the queue spinlock held to protect
348  * the wait queue operation.
349  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
350  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
351  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
352  * the RPC_TASK_RUNNING flag.
353  */
354 static void rpc_make_runnable(struct workqueue_struct *wq,
355                 struct rpc_task *task)
356 {
357         bool need_wakeup = !rpc_test_and_set_running(task);
358
359         rpc_clear_queued(task);
360         if (!need_wakeup)
361                 return;
362         if (RPC_IS_ASYNC(task)) {
363                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
364                 queue_work(wq, &task->u.tk_work);
365         } else
366                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
367 }
368
369 /*
370  * Prepare for sleeping on a wait queue.
371  * By always appending tasks to the list we ensure FIFO behavior.
372  * NB: An RPC task will only receive interrupt-driven events as long
373  * as it's on a wait queue.
374  */
375 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
376                 struct rpc_task *task,
377                 unsigned char queue_priority)
378 {
379         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
380                         task->tk_pid, rpc_qname(q), jiffies);
381
382         trace_rpc_task_sleep(task, q);
383
384         __rpc_add_wait_queue(q, task, queue_priority);
385
386 }
387
388 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
389                 struct rpc_task *task, unsigned long timeout,
390                 unsigned char queue_priority)
391 {
392         if (time_is_after_jiffies(timeout)) {
393                 __rpc_sleep_on_priority(q, task, queue_priority);
394                 __rpc_add_timer(q, task, timeout);
395         } else
396                 task->tk_status = -ETIMEDOUT;
397 }
398
399 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
400 {
401         if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
402                 task->tk_callback = action;
403 }
404
405 static bool rpc_sleep_check_activated(struct rpc_task *task)
406 {
407         /* We shouldn't ever put an inactive task to sleep */
408         if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
409                 task->tk_status = -EIO;
410                 rpc_put_task_async(task);
411                 return false;
412         }
413         return true;
414 }
415
416 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
417                                 rpc_action action, unsigned long timeout)
418 {
419         if (!rpc_sleep_check_activated(task))
420                 return;
421
422         rpc_set_tk_callback(task, action);
423
424         /*
425          * Protect the queue operations.
426          */
427         spin_lock_bh(&q->lock);
428         __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
429         spin_unlock_bh(&q->lock);
430 }
431 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
432
433 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
434                                 rpc_action action)
435 {
436         if (!rpc_sleep_check_activated(task))
437                 return;
438
439         rpc_set_tk_callback(task, action);
440
441         WARN_ON_ONCE(task->tk_timeout != 0);
442         /*
443          * Protect the queue operations.
444          */
445         spin_lock_bh(&q->lock);
446         __rpc_sleep_on_priority(q, task, task->tk_priority);
447         spin_unlock_bh(&q->lock);
448 }
449 EXPORT_SYMBOL_GPL(rpc_sleep_on);
450
451 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
452                 struct rpc_task *task, unsigned long timeout, int priority)
453 {
454         if (!rpc_sleep_check_activated(task))
455                 return;
456
457         priority -= RPC_PRIORITY_LOW;
458         /*
459          * Protect the queue operations.
460          */
461         spin_lock_bh(&q->lock);
462         __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
463         spin_unlock_bh(&q->lock);
464 }
465 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
466
467 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
468                 int priority)
469 {
470         if (!rpc_sleep_check_activated(task))
471                 return;
472
473         WARN_ON_ONCE(task->tk_timeout != 0);
474         priority -= RPC_PRIORITY_LOW;
475         /*
476          * Protect the queue operations.
477          */
478         spin_lock_bh(&q->lock);
479         __rpc_sleep_on_priority(q, task, priority);
480         spin_unlock_bh(&q->lock);
481 }
482 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
483
484 /**
485  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
486  * @wq: workqueue on which to run task
487  * @queue: wait queue
488  * @task: task to be woken up
489  *
490  * Caller must hold queue->lock, and have cleared the task queued flag.
491  */
492 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
493                 struct rpc_wait_queue *queue,
494                 struct rpc_task *task)
495 {
496         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
497                         task->tk_pid, jiffies);
498
499         /* Has the task been executed yet? If not, we cannot wake it up! */
500         if (!RPC_IS_ACTIVATED(task)) {
501                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
502                 return;
503         }
504
505         trace_rpc_task_wakeup(task, queue);
506
507         __rpc_remove_wait_queue(queue, task);
508
509         rpc_make_runnable(wq, task);
510
511         dprintk("RPC:       __rpc_wake_up_task done\n");
512 }
513
514 /*
515  * Wake up a queued task while the queue lock is being held
516  */
517 static struct rpc_task *
518 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
519                 struct rpc_wait_queue *queue, struct rpc_task *task,
520                 bool (*action)(struct rpc_task *, void *), void *data)
521 {
522         if (RPC_IS_QUEUED(task)) {
523                 smp_rmb();
524                 if (task->tk_waitqueue == queue) {
525                         if (action == NULL || action(task, data)) {
526                                 __rpc_do_wake_up_task_on_wq(wq, queue, task);
527                                 return task;
528                         }
529                 }
530         }
531         return NULL;
532 }
533
534 static void
535 rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
536                 struct rpc_wait_queue *queue, struct rpc_task *task)
537 {
538         rpc_wake_up_task_on_wq_queue_action_locked(wq, queue, task, NULL, NULL);
539 }
540
541 /*
542  * Wake up a queued task while the queue lock is being held
543  */
544 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
545 {
546         rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
547 }
548
549 /*
550  * Wake up a task on a specific queue
551  */
552 void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq,
553                 struct rpc_wait_queue *queue,
554                 struct rpc_task *task)
555 {
556         if (!RPC_IS_QUEUED(task))
557                 return;
558         spin_lock_bh(&queue->lock);
559         rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
560         spin_unlock_bh(&queue->lock);
561 }
562
563 /*
564  * Wake up a task on a specific queue
565  */
566 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
567 {
568         if (!RPC_IS_QUEUED(task))
569                 return;
570         spin_lock_bh(&queue->lock);
571         rpc_wake_up_task_queue_locked(queue, task);
572         spin_unlock_bh(&queue->lock);
573 }
574 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
575
576 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
577 {
578         task->tk_status = *(int *)status;
579         return true;
580 }
581
582 static void
583 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
584                 struct rpc_task *task, int status)
585 {
586         rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
587                         task, rpc_task_action_set_status, &status);
588 }
589
590 /**
591  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
592  * @queue: pointer to rpc_wait_queue
593  * @task: pointer to rpc_task
594  * @status: integer error value
595  *
596  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
597  * set to the value of @status.
598  */
599 void
600 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
601                 struct rpc_task *task, int status)
602 {
603         if (!RPC_IS_QUEUED(task))
604                 return;
605         spin_lock_bh(&queue->lock);
606         rpc_wake_up_task_queue_set_status_locked(queue, task, status);
607         spin_unlock_bh(&queue->lock);
608 }
609
610 /*
611  * Wake up the next task on a priority queue.
612  */
613 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
614 {
615         struct list_head *q;
616         struct rpc_task *task;
617
618         /*
619          * Service a batch of tasks from a single owner.
620          */
621         q = &queue->tasks[queue->priority];
622         if (!list_empty(q) && --queue->nr) {
623                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
624                 goto out;
625         }
626
627         /*
628          * Service the next queue.
629          */
630         do {
631                 if (q == &queue->tasks[0])
632                         q = &queue->tasks[queue->maxpriority];
633                 else
634                         q = q - 1;
635                 if (!list_empty(q)) {
636                         task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
637                         goto new_queue;
638                 }
639         } while (q != &queue->tasks[queue->priority]);
640
641         rpc_reset_waitqueue_priority(queue);
642         return NULL;
643
644 new_queue:
645         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
646 out:
647         return task;
648 }
649
650 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
651 {
652         if (RPC_IS_PRIORITY(queue))
653                 return __rpc_find_next_queued_priority(queue);
654         if (!list_empty(&queue->tasks[0]))
655                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
656         return NULL;
657 }
658
659 /*
660  * Wake up the first task on the wait queue.
661  */
662 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
663                 struct rpc_wait_queue *queue,
664                 bool (*func)(struct rpc_task *, void *), void *data)
665 {
666         struct rpc_task *task = NULL;
667
668         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
669                         queue, rpc_qname(queue));
670         spin_lock_bh(&queue->lock);
671         task = __rpc_find_next_queued(queue);
672         if (task != NULL)
673                 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
674                                 task, func, data);
675         spin_unlock_bh(&queue->lock);
676
677         return task;
678 }
679
680 /*
681  * Wake up the first task on the wait queue.
682  */
683 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
684                 bool (*func)(struct rpc_task *, void *), void *data)
685 {
686         return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
687 }
688 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
689
690 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
691 {
692         return true;
693 }
694
695 /*
696  * Wake up the next task on the wait queue.
697 */
698 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
699 {
700         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
701 }
702 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
703
704 /**
705  * rpc_wake_up - wake up all rpc_tasks
706  * @queue: rpc_wait_queue on which the tasks are sleeping
707  *
708  * Grabs queue->lock
709  */
710 void rpc_wake_up(struct rpc_wait_queue *queue)
711 {
712         struct list_head *head;
713
714         spin_lock_bh(&queue->lock);
715         head = &queue->tasks[queue->maxpriority];
716         for (;;) {
717                 while (!list_empty(head)) {
718                         struct rpc_task *task;
719                         task = list_first_entry(head,
720                                         struct rpc_task,
721                                         u.tk_wait.list);
722                         rpc_wake_up_task_queue_locked(queue, task);
723                 }
724                 if (head == &queue->tasks[0])
725                         break;
726                 head--;
727         }
728         spin_unlock_bh(&queue->lock);
729 }
730 EXPORT_SYMBOL_GPL(rpc_wake_up);
731
732 /**
733  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
734  * @queue: rpc_wait_queue on which the tasks are sleeping
735  * @status: status value to set
736  *
737  * Grabs queue->lock
738  */
739 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
740 {
741         struct list_head *head;
742
743         spin_lock_bh(&queue->lock);
744         head = &queue->tasks[queue->maxpriority];
745         for (;;) {
746                 while (!list_empty(head)) {
747                         struct rpc_task *task;
748                         task = list_first_entry(head,
749                                         struct rpc_task,
750                                         u.tk_wait.list);
751                         task->tk_status = status;
752                         rpc_wake_up_task_queue_locked(queue, task);
753                 }
754                 if (head == &queue->tasks[0])
755                         break;
756                 head--;
757         }
758         spin_unlock_bh(&queue->lock);
759 }
760 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
761
762 static void __rpc_queue_timer_fn(struct timer_list *t)
763 {
764         struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer);
765         struct rpc_task *task, *n;
766         unsigned long expires, now, timeo;
767
768         spin_lock(&queue->lock);
769         expires = now = jiffies;
770         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
771                 timeo = task->tk_timeout;
772                 if (time_after_eq(now, timeo)) {
773                         dprintk("RPC: %5u timeout\n", task->tk_pid);
774                         task->tk_status = -ETIMEDOUT;
775                         rpc_wake_up_task_queue_locked(queue, task);
776                         continue;
777                 }
778                 if (expires == now || time_after(expires, timeo))
779                         expires = timeo;
780         }
781         if (!list_empty(&queue->timer_list.list))
782                 rpc_set_queue_timer(queue, expires);
783         spin_unlock(&queue->lock);
784 }
785
786 static void __rpc_atrun(struct rpc_task *task)
787 {
788         if (task->tk_status == -ETIMEDOUT)
789                 task->tk_status = 0;
790 }
791
792 /*
793  * Run a task at a later time
794  */
795 void rpc_delay(struct rpc_task *task, unsigned long delay)
796 {
797         rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
798 }
799 EXPORT_SYMBOL_GPL(rpc_delay);
800
801 /*
802  * Helper to call task->tk_ops->rpc_call_prepare
803  */
804 void rpc_prepare_task(struct rpc_task *task)
805 {
806         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
807 }
808
809 static void
810 rpc_init_task_statistics(struct rpc_task *task)
811 {
812         /* Initialize retry counters */
813         task->tk_garb_retry = 2;
814         task->tk_cred_retry = 2;
815         task->tk_rebind_retry = 2;
816
817         /* starting timestamp */
818         task->tk_start = ktime_get();
819 }
820
821 static void
822 rpc_reset_task_statistics(struct rpc_task *task)
823 {
824         task->tk_timeouts = 0;
825         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
826         rpc_init_task_statistics(task);
827 }
828
829 /*
830  * Helper that calls task->tk_ops->rpc_call_done if it exists
831  */
832 void rpc_exit_task(struct rpc_task *task)
833 {
834         task->tk_action = NULL;
835         if (task->tk_ops->rpc_call_done != NULL) {
836                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
837                 if (task->tk_action != NULL) {
838                         /* Always release the RPC slot and buffer memory */
839                         xprt_release(task);
840                         rpc_reset_task_statistics(task);
841                 }
842         }
843 }
844
845 void rpc_signal_task(struct rpc_task *task)
846 {
847         struct rpc_wait_queue *queue;
848
849         if (!RPC_IS_ACTIVATED(task))
850                 return;
851         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
852         smp_mb__after_atomic();
853         queue = READ_ONCE(task->tk_waitqueue);
854         if (queue)
855                 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
856 }
857
858 void rpc_exit(struct rpc_task *task, int status)
859 {
860         task->tk_status = status;
861         task->tk_action = rpc_exit_task;
862         rpc_wake_up_queued_task(task->tk_waitqueue, task);
863 }
864 EXPORT_SYMBOL_GPL(rpc_exit);
865
866 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
867 {
868         if (ops->rpc_release != NULL)
869                 ops->rpc_release(calldata);
870 }
871
872 /*
873  * This is the RPC `scheduler' (or rather, the finite state machine).
874  */
875 static void __rpc_execute(struct rpc_task *task)
876 {
877         struct rpc_wait_queue *queue;
878         int task_is_async = RPC_IS_ASYNC(task);
879         int status = 0;
880
881         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
882                         task->tk_pid, task->tk_flags);
883
884         WARN_ON_ONCE(RPC_IS_QUEUED(task));
885         if (RPC_IS_QUEUED(task))
886                 return;
887
888         for (;;) {
889                 void (*do_action)(struct rpc_task *);
890
891                 /*
892                  * Perform the next FSM step or a pending callback.
893                  *
894                  * tk_action may be NULL if the task has been killed.
895                  * In particular, note that rpc_killall_tasks may
896                  * do this at any time, so beware when dereferencing.
897                  */
898                 do_action = task->tk_action;
899                 if (task->tk_callback) {
900                         do_action = task->tk_callback;
901                         task->tk_callback = NULL;
902                 }
903                 if (!do_action)
904                         break;
905                 trace_rpc_task_run_action(task, do_action);
906                 do_action(task);
907
908                 /*
909                  * Lockless check for whether task is sleeping or not.
910                  */
911                 if (!RPC_IS_QUEUED(task))
912                         continue;
913
914                 /*
915                  * Signalled tasks should exit rather than sleep.
916                  */
917                 if (RPC_SIGNALLED(task))
918                         rpc_exit(task, -ERESTARTSYS);
919
920                 /*
921                  * The queue->lock protects against races with
922                  * rpc_make_runnable().
923                  *
924                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
925                  * rpc_task, rpc_make_runnable() can assign it to a
926                  * different workqueue. We therefore cannot assume that the
927                  * rpc_task pointer may still be dereferenced.
928                  */
929                 queue = task->tk_waitqueue;
930                 spin_lock_bh(&queue->lock);
931                 if (!RPC_IS_QUEUED(task)) {
932                         spin_unlock_bh(&queue->lock);
933                         continue;
934                 }
935                 rpc_clear_running(task);
936                 spin_unlock_bh(&queue->lock);
937                 if (task_is_async)
938                         return;
939
940                 /* sync task: sleep here */
941                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
942                 status = out_of_line_wait_on_bit(&task->tk_runstate,
943                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
944                                 TASK_KILLABLE);
945                 if (status < 0) {
946                         /*
947                          * When a sync task receives a signal, it exits with
948                          * -ERESTARTSYS. In order to catch any callbacks that
949                          * clean up after sleeping on some queue, we don't
950                          * break the loop here, but go around once more.
951                          */
952                         dprintk("RPC: %5u got signal\n", task->tk_pid);
953                         set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
954                         rpc_exit(task, -ERESTARTSYS);
955                 }
956                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
957         }
958
959         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
960                         task->tk_status);
961         /* Release all resources associated with the task */
962         rpc_release_task(task);
963 }
964
965 /*
966  * User-visible entry point to the scheduler.
967  *
968  * This may be called recursively if e.g. an async NFS task updates
969  * the attributes and finds that dirty pages must be flushed.
970  * NOTE: Upon exit of this function the task is guaranteed to be
971  *       released. In particular note that tk_release() will have
972  *       been called, so your task memory may have been freed.
973  */
974 void rpc_execute(struct rpc_task *task)
975 {
976         bool is_async = RPC_IS_ASYNC(task);
977
978         rpc_set_active(task);
979         rpc_make_runnable(rpciod_workqueue, task);
980         if (!is_async)
981                 __rpc_execute(task);
982 }
983
984 static void rpc_async_schedule(struct work_struct *work)
985 {
986         unsigned int pflags = memalloc_nofs_save();
987
988         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
989         memalloc_nofs_restore(pflags);
990 }
991
992 /**
993  * rpc_malloc - allocate RPC buffer resources
994  * @task: RPC task
995  *
996  * A single memory region is allocated, which is split between the
997  * RPC call and RPC reply that this task is being used for. When
998  * this RPC is retired, the memory is released by calling rpc_free.
999  *
1000  * To prevent rpciod from hanging, this allocator never sleeps,
1001  * returning -ENOMEM and suppressing warning if the request cannot
1002  * be serviced immediately. The caller can arrange to sleep in a
1003  * way that is safe for rpciod.
1004  *
1005  * Most requests are 'small' (under 2KiB) and can be serviced from a
1006  * mempool, ensuring that NFS reads and writes can always proceed,
1007  * and that there is good locality of reference for these buffers.
1008  */
1009 int rpc_malloc(struct rpc_task *task)
1010 {
1011         struct rpc_rqst *rqst = task->tk_rqstp;
1012         size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1013         struct rpc_buffer *buf;
1014         gfp_t gfp = GFP_NOFS;
1015
1016         if (RPC_IS_SWAPPER(task))
1017                 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1018
1019         size += sizeof(struct rpc_buffer);
1020         if (size <= RPC_BUFFER_MAXSIZE)
1021                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1022         else
1023                 buf = kmalloc(size, gfp);
1024
1025         if (!buf)
1026                 return -ENOMEM;
1027
1028         buf->len = size;
1029         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1030                         task->tk_pid, size, buf);
1031         rqst->rq_buffer = buf->data;
1032         rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1033         return 0;
1034 }
1035 EXPORT_SYMBOL_GPL(rpc_malloc);
1036
1037 /**
1038  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1039  * @task: RPC task
1040  *
1041  */
1042 void rpc_free(struct rpc_task *task)
1043 {
1044         void *buffer = task->tk_rqstp->rq_buffer;
1045         size_t size;
1046         struct rpc_buffer *buf;
1047
1048         buf = container_of(buffer, struct rpc_buffer, data);
1049         size = buf->len;
1050
1051         dprintk("RPC:       freeing buffer of size %zu at %p\n",
1052                         size, buf);
1053
1054         if (size <= RPC_BUFFER_MAXSIZE)
1055                 mempool_free(buf, rpc_buffer_mempool);
1056         else
1057                 kfree(buf);
1058 }
1059 EXPORT_SYMBOL_GPL(rpc_free);
1060
1061 /*
1062  * Creation and deletion of RPC task structures
1063  */
1064 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1065 {
1066         memset(task, 0, sizeof(*task));
1067         atomic_set(&task->tk_count, 1);
1068         task->tk_flags  = task_setup_data->flags;
1069         task->tk_ops = task_setup_data->callback_ops;
1070         task->tk_calldata = task_setup_data->callback_data;
1071         INIT_LIST_HEAD(&task->tk_task);
1072
1073         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1074         task->tk_owner = current->tgid;
1075
1076         /* Initialize workqueue for async tasks */
1077         task->tk_workqueue = task_setup_data->workqueue;
1078
1079         task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
1080
1081         task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1082
1083         if (task->tk_ops->rpc_call_prepare != NULL)
1084                 task->tk_action = rpc_prepare_task;
1085
1086         rpc_init_task_statistics(task);
1087
1088         dprintk("RPC:       new task initialized, procpid %u\n",
1089                                 task_pid_nr(current));
1090 }
1091
1092 static struct rpc_task *
1093 rpc_alloc_task(void)
1094 {
1095         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1096 }
1097
1098 /*
1099  * Create a new task for the specified client.
1100  */
1101 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1102 {
1103         struct rpc_task *task = setup_data->task;
1104         unsigned short flags = 0;
1105
1106         if (task == NULL) {
1107                 task = rpc_alloc_task();
1108                 flags = RPC_TASK_DYNAMIC;
1109         }
1110
1111         rpc_init_task(task, setup_data);
1112         task->tk_flags |= flags;
1113         dprintk("RPC:       allocated task %p\n", task);
1114         return task;
1115 }
1116
1117 /*
1118  * rpc_free_task - release rpc task and perform cleanups
1119  *
1120  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1121  * in order to work around a workqueue dependency issue.
1122  *
1123  * Tejun Heo states:
1124  * "Workqueue currently considers two work items to be the same if they're
1125  * on the same address and won't execute them concurrently - ie. it
1126  * makes a work item which is queued again while being executed wait
1127  * for the previous execution to complete.
1128  *
1129  * If a work function frees the work item, and then waits for an event
1130  * which should be performed by another work item and *that* work item
1131  * recycles the freed work item, it can create a false dependency loop.
1132  * There really is no reliable way to detect this short of verifying
1133  * every memory free."
1134  *
1135  */
1136 static void rpc_free_task(struct rpc_task *task)
1137 {
1138         unsigned short tk_flags = task->tk_flags;
1139
1140         put_rpccred(task->tk_op_cred);
1141         rpc_release_calldata(task->tk_ops, task->tk_calldata);
1142
1143         if (tk_flags & RPC_TASK_DYNAMIC) {
1144                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1145                 mempool_free(task, rpc_task_mempool);
1146         }
1147 }
1148
1149 static void rpc_async_release(struct work_struct *work)
1150 {
1151         unsigned int pflags = memalloc_nofs_save();
1152
1153         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1154         memalloc_nofs_restore(pflags);
1155 }
1156
1157 static void rpc_release_resources_task(struct rpc_task *task)
1158 {
1159         xprt_release(task);
1160         if (task->tk_msg.rpc_cred) {
1161                 put_cred(task->tk_msg.rpc_cred);
1162                 task->tk_msg.rpc_cred = NULL;
1163         }
1164         rpc_task_release_client(task);
1165 }
1166
1167 static void rpc_final_put_task(struct rpc_task *task,
1168                 struct workqueue_struct *q)
1169 {
1170         if (q != NULL) {
1171                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1172                 queue_work(q, &task->u.tk_work);
1173         } else
1174                 rpc_free_task(task);
1175 }
1176
1177 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1178 {
1179         if (atomic_dec_and_test(&task->tk_count)) {
1180                 rpc_release_resources_task(task);
1181                 rpc_final_put_task(task, q);
1182         }
1183 }
1184
1185 void rpc_put_task(struct rpc_task *task)
1186 {
1187         rpc_do_put_task(task, NULL);
1188 }
1189 EXPORT_SYMBOL_GPL(rpc_put_task);
1190
1191 void rpc_put_task_async(struct rpc_task *task)
1192 {
1193         rpc_do_put_task(task, task->tk_workqueue);
1194 }
1195 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1196
1197 static void rpc_release_task(struct rpc_task *task)
1198 {
1199         dprintk("RPC: %5u release task\n", task->tk_pid);
1200
1201         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1202
1203         rpc_release_resources_task(task);
1204
1205         /*
1206          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1207          * so it should be safe to use task->tk_count as a test for whether
1208          * or not any other processes still hold references to our rpc_task.
1209          */
1210         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1211                 /* Wake up anyone who may be waiting for task completion */
1212                 if (!rpc_complete_task(task))
1213                         return;
1214         } else {
1215                 if (!atomic_dec_and_test(&task->tk_count))
1216                         return;
1217         }
1218         rpc_final_put_task(task, task->tk_workqueue);
1219 }
1220
1221 int rpciod_up(void)
1222 {
1223         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1224 }
1225
1226 void rpciod_down(void)
1227 {
1228         module_put(THIS_MODULE);
1229 }
1230
1231 /*
1232  * Start up the rpciod workqueue.
1233  */
1234 static int rpciod_start(void)
1235 {
1236         struct workqueue_struct *wq;
1237
1238         /*
1239          * Create the rpciod thread and wait for it to start.
1240          */
1241         dprintk("RPC:       creating workqueue rpciod\n");
1242         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1243         if (!wq)
1244                 goto out_failed;
1245         rpciod_workqueue = wq;
1246         /* Note: highpri because network receive is latency sensitive */
1247         wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1248         if (!wq)
1249                 goto free_rpciod;
1250         xprtiod_workqueue = wq;
1251         return 1;
1252 free_rpciod:
1253         wq = rpciod_workqueue;
1254         rpciod_workqueue = NULL;
1255         destroy_workqueue(wq);
1256 out_failed:
1257         return 0;
1258 }
1259
1260 static void rpciod_stop(void)
1261 {
1262         struct workqueue_struct *wq = NULL;
1263
1264         if (rpciod_workqueue == NULL)
1265                 return;
1266         dprintk("RPC:       destroying workqueue rpciod\n");
1267
1268         wq = rpciod_workqueue;
1269         rpciod_workqueue = NULL;
1270         destroy_workqueue(wq);
1271         wq = xprtiod_workqueue;
1272         xprtiod_workqueue = NULL;
1273         destroy_workqueue(wq);
1274 }
1275
1276 void
1277 rpc_destroy_mempool(void)
1278 {
1279         rpciod_stop();
1280         mempool_destroy(rpc_buffer_mempool);
1281         mempool_destroy(rpc_task_mempool);
1282         kmem_cache_destroy(rpc_task_slabp);
1283         kmem_cache_destroy(rpc_buffer_slabp);
1284         rpc_destroy_wait_queue(&delay_queue);
1285 }
1286
1287 int
1288 rpc_init_mempool(void)
1289 {
1290         /*
1291          * The following is not strictly a mempool initialisation,
1292          * but there is no harm in doing it here
1293          */
1294         rpc_init_wait_queue(&delay_queue, "delayq");
1295         if (!rpciod_start())
1296                 goto err_nomem;
1297
1298         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1299                                              sizeof(struct rpc_task),
1300                                              0, SLAB_HWCACHE_ALIGN,
1301                                              NULL);
1302         if (!rpc_task_slabp)
1303                 goto err_nomem;
1304         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1305                                              RPC_BUFFER_MAXSIZE,
1306                                              0, SLAB_HWCACHE_ALIGN,
1307                                              NULL);
1308         if (!rpc_buffer_slabp)
1309                 goto err_nomem;
1310         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1311                                                     rpc_task_slabp);
1312         if (!rpc_task_mempool)
1313                 goto err_nomem;
1314         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1315                                                       rpc_buffer_slabp);
1316         if (!rpc_buffer_mempool)
1317                 goto err_nomem;
1318         return 0;
1319 err_nomem:
1320         rpc_destroy_mempool();
1321         return -ENOMEM;
1322 }