]> asedeno.scripts.mit.edu Git - linux.git/blob - net/sunrpc/xprtrdma/rpc_rdma.c
net: qrtr: fix len of skb_put_padto in qrtr_node_enqueue
[linux.git] / net / sunrpc / xprtrdma / rpc_rdma.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41
42 /*
43  * rpc_rdma.c
44  *
45  * This file contains the guts of the RPC RDMA protocol, and
46  * does marshaling/unmarshaling, etc. It is also where interfacing
47  * to the Linux RPC framework lives.
48  */
49
50 #include <linux/highmem.h>
51
52 #include <linux/sunrpc/svc_rdma.h>
53
54 #include "xprt_rdma.h"
55 #include <trace/events/rpcrdma.h>
56
57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
58 # define RPCDBG_FACILITY        RPCDBG_TRANS
59 #endif
60
61 /* Returns size of largest RPC-over-RDMA header in a Call message
62  *
63  * The largest Call header contains a full-size Read list and a
64  * minimal Reply chunk.
65  */
66 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
67 {
68         unsigned int size;
69
70         /* Fixed header fields and list discriminators */
71         size = RPCRDMA_HDRLEN_MIN;
72
73         /* Maximum Read list size */
74         size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
75
76         /* Minimal Read chunk size */
77         size += sizeof(__be32); /* segment count */
78         size += rpcrdma_segment_maxsz * sizeof(__be32);
79         size += sizeof(__be32); /* list discriminator */
80
81         return size;
82 }
83
84 /* Returns size of largest RPC-over-RDMA header in a Reply message
85  *
86  * There is only one Write list or one Reply chunk per Reply
87  * message.  The larger list is the Write list.
88  */
89 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
90 {
91         unsigned int size;
92
93         /* Fixed header fields and list discriminators */
94         size = RPCRDMA_HDRLEN_MIN;
95
96         /* Maximum Write list size */
97         size = sizeof(__be32);          /* segment count */
98         size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
99         size += sizeof(__be32); /* list discriminator */
100
101         return size;
102 }
103
104 /**
105  * rpcrdma_set_max_header_sizes - Initialize inline payload sizes
106  * @r_xprt: transport instance to initialize
107  *
108  * The max_inline fields contain the maximum size of an RPC message
109  * so the marshaling code doesn't have to repeat this calculation
110  * for every RPC.
111  */
112 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
113 {
114         unsigned int maxsegs = r_xprt->rx_ia.ri_max_segs;
115         struct rpcrdma_ep *ep = &r_xprt->rx_ep;
116
117         ep->rep_max_inline_send =
118                 ep->rep_inline_send - rpcrdma_max_call_header_size(maxsegs);
119         ep->rep_max_inline_recv =
120                 ep->rep_inline_recv - rpcrdma_max_reply_header_size(maxsegs);
121 }
122
123 /* The client can send a request inline as long as the RPCRDMA header
124  * plus the RPC call fit under the transport's inline limit. If the
125  * combined call message size exceeds that limit, the client must use
126  * a Read chunk for this operation.
127  *
128  * A Read chunk is also required if sending the RPC call inline would
129  * exceed this device's max_sge limit.
130  */
131 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
132                                 struct rpc_rqst *rqst)
133 {
134         struct xdr_buf *xdr = &rqst->rq_snd_buf;
135         unsigned int count, remaining, offset;
136
137         if (xdr->len > r_xprt->rx_ep.rep_max_inline_send)
138                 return false;
139
140         if (xdr->page_len) {
141                 remaining = xdr->page_len;
142                 offset = offset_in_page(xdr->page_base);
143                 count = RPCRDMA_MIN_SEND_SGES;
144                 while (remaining) {
145                         remaining -= min_t(unsigned int,
146                                            PAGE_SIZE - offset, remaining);
147                         offset = 0;
148                         if (++count > r_xprt->rx_ia.ri_max_send_sges)
149                                 return false;
150                 }
151         }
152
153         return true;
154 }
155
156 /* The client can't know how large the actual reply will be. Thus it
157  * plans for the largest possible reply for that particular ULP
158  * operation. If the maximum combined reply message size exceeds that
159  * limit, the client must provide a write list or a reply chunk for
160  * this request.
161  */
162 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
163                                    struct rpc_rqst *rqst)
164 {
165         return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep.rep_max_inline_recv;
166 }
167
168 /* The client is required to provide a Reply chunk if the maximum
169  * size of the non-payload part of the RPC Reply is larger than
170  * the inline threshold.
171  */
172 static bool
173 rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt,
174                           const struct rpc_rqst *rqst)
175 {
176         const struct xdr_buf *buf = &rqst->rq_rcv_buf;
177
178         return (buf->head[0].iov_len + buf->tail[0].iov_len) <
179                 r_xprt->rx_ep.rep_max_inline_recv;
180 }
181
182 /* Split @vec on page boundaries into SGEs. FMR registers pages, not
183  * a byte range. Other modes coalesce these SGEs into a single MR
184  * when they can.
185  *
186  * Returns pointer to next available SGE, and bumps the total number
187  * of SGEs consumed.
188  */
189 static struct rpcrdma_mr_seg *
190 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
191                      unsigned int *n)
192 {
193         u32 remaining, page_offset;
194         char *base;
195
196         base = vec->iov_base;
197         page_offset = offset_in_page(base);
198         remaining = vec->iov_len;
199         while (remaining) {
200                 seg->mr_page = NULL;
201                 seg->mr_offset = base;
202                 seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
203                 remaining -= seg->mr_len;
204                 base += seg->mr_len;
205                 ++seg;
206                 ++(*n);
207                 page_offset = 0;
208         }
209         return seg;
210 }
211
212 /* Convert @xdrbuf into SGEs no larger than a page each. As they
213  * are registered, these SGEs are then coalesced into RDMA segments
214  * when the selected memreg mode supports it.
215  *
216  * Returns positive number of SGEs consumed, or a negative errno.
217  */
218
219 static int
220 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
221                      unsigned int pos, enum rpcrdma_chunktype type,
222                      struct rpcrdma_mr_seg *seg)
223 {
224         unsigned long page_base;
225         unsigned int len, n;
226         struct page **ppages;
227
228         n = 0;
229         if (pos == 0)
230                 seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
231
232         len = xdrbuf->page_len;
233         ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
234         page_base = offset_in_page(xdrbuf->page_base);
235         while (len) {
236                 /* ACL likes to be lazy in allocating pages - ACLs
237                  * are small by default but can get huge.
238                  */
239                 if (unlikely(xdrbuf->flags & XDRBUF_SPARSE_PAGES)) {
240                         if (!*ppages)
241                                 *ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN);
242                         if (!*ppages)
243                                 return -ENOBUFS;
244                 }
245                 seg->mr_page = *ppages;
246                 seg->mr_offset = (char *)page_base;
247                 seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
248                 len -= seg->mr_len;
249                 ++ppages;
250                 ++seg;
251                 ++n;
252                 page_base = 0;
253         }
254
255         /* When encoding a Read chunk, the tail iovec contains an
256          * XDR pad and may be omitted.
257          */
258         if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
259                 goto out;
260
261         /* When encoding a Write chunk, some servers need to see an
262          * extra segment for non-XDR-aligned Write chunks. The upper
263          * layer provides space in the tail iovec that may be used
264          * for this purpose.
265          */
266         if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
267                 goto out;
268
269         if (xdrbuf->tail[0].iov_len)
270                 seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
271
272 out:
273         if (unlikely(n > RPCRDMA_MAX_SEGS))
274                 return -EIO;
275         return n;
276 }
277
278 static inline int
279 encode_item_present(struct xdr_stream *xdr)
280 {
281         __be32 *p;
282
283         p = xdr_reserve_space(xdr, sizeof(*p));
284         if (unlikely(!p))
285                 return -EMSGSIZE;
286
287         *p = xdr_one;
288         return 0;
289 }
290
291 static inline int
292 encode_item_not_present(struct xdr_stream *xdr)
293 {
294         __be32 *p;
295
296         p = xdr_reserve_space(xdr, sizeof(*p));
297         if (unlikely(!p))
298                 return -EMSGSIZE;
299
300         *p = xdr_zero;
301         return 0;
302 }
303
304 static void
305 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr)
306 {
307         *iptr++ = cpu_to_be32(mr->mr_handle);
308         *iptr++ = cpu_to_be32(mr->mr_length);
309         xdr_encode_hyper(iptr, mr->mr_offset);
310 }
311
312 static int
313 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
314 {
315         __be32 *p;
316
317         p = xdr_reserve_space(xdr, 4 * sizeof(*p));
318         if (unlikely(!p))
319                 return -EMSGSIZE;
320
321         xdr_encode_rdma_segment(p, mr);
322         return 0;
323 }
324
325 static int
326 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
327                     u32 position)
328 {
329         __be32 *p;
330
331         p = xdr_reserve_space(xdr, 6 * sizeof(*p));
332         if (unlikely(!p))
333                 return -EMSGSIZE;
334
335         *p++ = xdr_one;                 /* Item present */
336         *p++ = cpu_to_be32(position);
337         xdr_encode_rdma_segment(p, mr);
338         return 0;
339 }
340
341 static struct rpcrdma_mr_seg *rpcrdma_mr_prepare(struct rpcrdma_xprt *r_xprt,
342                                                  struct rpcrdma_req *req,
343                                                  struct rpcrdma_mr_seg *seg,
344                                                  int nsegs, bool writing,
345                                                  struct rpcrdma_mr **mr)
346 {
347         *mr = rpcrdma_mr_pop(&req->rl_free_mrs);
348         if (!*mr) {
349                 *mr = rpcrdma_mr_get(r_xprt);
350                 if (!*mr)
351                         goto out_getmr_err;
352                 trace_xprtrdma_mr_get(req);
353                 (*mr)->mr_req = req;
354         }
355
356         rpcrdma_mr_push(*mr, &req->rl_registered);
357         return frwr_map(r_xprt, seg, nsegs, writing, req->rl_slot.rq_xid, *mr);
358
359 out_getmr_err:
360         trace_xprtrdma_nomrs(req);
361         xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
362         rpcrdma_mrs_refresh(r_xprt);
363         return ERR_PTR(-EAGAIN);
364 }
365
366 /* Register and XDR encode the Read list. Supports encoding a list of read
367  * segments that belong to a single read chunk.
368  *
369  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
370  *
371  *  Read chunklist (a linked list):
372  *   N elements, position P (same P for all chunks of same arg!):
373  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
374  *
375  * Returns zero on success, or a negative errno if a failure occurred.
376  * @xdr is advanced to the next position in the stream.
377  *
378  * Only a single @pos value is currently supported.
379  */
380 static int rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
381                                     struct rpcrdma_req *req,
382                                     struct rpc_rqst *rqst,
383                                     enum rpcrdma_chunktype rtype)
384 {
385         struct xdr_stream *xdr = &req->rl_stream;
386         struct rpcrdma_mr_seg *seg;
387         struct rpcrdma_mr *mr;
388         unsigned int pos;
389         int nsegs;
390
391         if (rtype == rpcrdma_noch_pullup || rtype == rpcrdma_noch_mapped)
392                 goto done;
393
394         pos = rqst->rq_snd_buf.head[0].iov_len;
395         if (rtype == rpcrdma_areadch)
396                 pos = 0;
397         seg = req->rl_segments;
398         nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
399                                      rtype, seg);
400         if (nsegs < 0)
401                 return nsegs;
402
403         do {
404                 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, false, &mr);
405                 if (IS_ERR(seg))
406                         return PTR_ERR(seg);
407
408                 if (encode_read_segment(xdr, mr, pos) < 0)
409                         return -EMSGSIZE;
410
411                 trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs);
412                 r_xprt->rx_stats.read_chunk_count++;
413                 nsegs -= mr->mr_nents;
414         } while (nsegs);
415
416 done:
417         return encode_item_not_present(xdr);
418 }
419
420 /* Register and XDR encode the Write list. Supports encoding a list
421  * containing one array of plain segments that belong to a single
422  * write chunk.
423  *
424  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
425  *
426  *  Write chunklist (a list of (one) counted array):
427  *   N elements:
428  *    1 - N - HLOO - HLOO - ... - HLOO - 0
429  *
430  * Returns zero on success, or a negative errno if a failure occurred.
431  * @xdr is advanced to the next position in the stream.
432  *
433  * Only a single Write chunk is currently supported.
434  */
435 static int rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt,
436                                      struct rpcrdma_req *req,
437                                      struct rpc_rqst *rqst,
438                                      enum rpcrdma_chunktype wtype)
439 {
440         struct xdr_stream *xdr = &req->rl_stream;
441         struct rpcrdma_mr_seg *seg;
442         struct rpcrdma_mr *mr;
443         int nsegs, nchunks;
444         __be32 *segcount;
445
446         if (wtype != rpcrdma_writech)
447                 goto done;
448
449         seg = req->rl_segments;
450         nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
451                                      rqst->rq_rcv_buf.head[0].iov_len,
452                                      wtype, seg);
453         if (nsegs < 0)
454                 return nsegs;
455
456         if (encode_item_present(xdr) < 0)
457                 return -EMSGSIZE;
458         segcount = xdr_reserve_space(xdr, sizeof(*segcount));
459         if (unlikely(!segcount))
460                 return -EMSGSIZE;
461         /* Actual value encoded below */
462
463         nchunks = 0;
464         do {
465                 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
466                 if (IS_ERR(seg))
467                         return PTR_ERR(seg);
468
469                 if (encode_rdma_segment(xdr, mr) < 0)
470                         return -EMSGSIZE;
471
472                 trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs);
473                 r_xprt->rx_stats.write_chunk_count++;
474                 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
475                 nchunks++;
476                 nsegs -= mr->mr_nents;
477         } while (nsegs);
478
479         /* Update count of segments in this Write chunk */
480         *segcount = cpu_to_be32(nchunks);
481
482 done:
483         return encode_item_not_present(xdr);
484 }
485
486 /* Register and XDR encode the Reply chunk. Supports encoding an array
487  * of plain segments that belong to a single write (reply) chunk.
488  *
489  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
490  *
491  *  Reply chunk (a counted array):
492  *   N elements:
493  *    1 - N - HLOO - HLOO - ... - HLOO
494  *
495  * Returns zero on success, or a negative errno if a failure occurred.
496  * @xdr is advanced to the next position in the stream.
497  */
498 static int rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
499                                       struct rpcrdma_req *req,
500                                       struct rpc_rqst *rqst,
501                                       enum rpcrdma_chunktype wtype)
502 {
503         struct xdr_stream *xdr = &req->rl_stream;
504         struct rpcrdma_mr_seg *seg;
505         struct rpcrdma_mr *mr;
506         int nsegs, nchunks;
507         __be32 *segcount;
508
509         if (wtype != rpcrdma_replych)
510                 return encode_item_not_present(xdr);
511
512         seg = req->rl_segments;
513         nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
514         if (nsegs < 0)
515                 return nsegs;
516
517         if (encode_item_present(xdr) < 0)
518                 return -EMSGSIZE;
519         segcount = xdr_reserve_space(xdr, sizeof(*segcount));
520         if (unlikely(!segcount))
521                 return -EMSGSIZE;
522         /* Actual value encoded below */
523
524         nchunks = 0;
525         do {
526                 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
527                 if (IS_ERR(seg))
528                         return PTR_ERR(seg);
529
530                 if (encode_rdma_segment(xdr, mr) < 0)
531                         return -EMSGSIZE;
532
533                 trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs);
534                 r_xprt->rx_stats.reply_chunk_count++;
535                 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
536                 nchunks++;
537                 nsegs -= mr->mr_nents;
538         } while (nsegs);
539
540         /* Update count of segments in the Reply chunk */
541         *segcount = cpu_to_be32(nchunks);
542
543         return 0;
544 }
545
546 static void rpcrdma_sendctx_done(struct kref *kref)
547 {
548         struct rpcrdma_req *req =
549                 container_of(kref, struct rpcrdma_req, rl_kref);
550         struct rpcrdma_rep *rep = req->rl_reply;
551
552         rpcrdma_complete_rqst(rep);
553         rep->rr_rxprt->rx_stats.reply_waits_for_send++;
554 }
555
556 /**
557  * rpcrdma_sendctx_unmap - DMA-unmap Send buffer
558  * @sc: sendctx containing SGEs to unmap
559  *
560  */
561 void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc)
562 {
563         struct rpcrdma_regbuf *rb = sc->sc_req->rl_sendbuf;
564         struct ib_sge *sge;
565
566         if (!sc->sc_unmap_count)
567                 return;
568
569         /* The first two SGEs contain the transport header and
570          * the inline buffer. These are always left mapped so
571          * they can be cheaply re-used.
572          */
573         for (sge = &sc->sc_sges[2]; sc->sc_unmap_count;
574              ++sge, --sc->sc_unmap_count)
575                 ib_dma_unmap_page(rdmab_device(rb), sge->addr, sge->length,
576                                   DMA_TO_DEVICE);
577
578         kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done);
579 }
580
581 /* Prepare an SGE for the RPC-over-RDMA transport header.
582  */
583 static bool rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt,
584                                     struct rpcrdma_req *req, u32 len)
585 {
586         struct rpcrdma_sendctx *sc = req->rl_sendctx;
587         struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
588         struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
589
590         if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
591                 return false;
592         sge->addr = rdmab_addr(rb);
593         sge->length = len;
594         sge->lkey = rdmab_lkey(rb);
595
596         ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
597                                       DMA_TO_DEVICE);
598         return true;
599 }
600
601 /* The head iovec is straightforward, as it is usually already
602  * DMA-mapped. Sync the content that has changed.
603  */
604 static bool rpcrdma_prepare_head_iov(struct rpcrdma_xprt *r_xprt,
605                                      struct rpcrdma_req *req, unsigned int len)
606 {
607         struct rpcrdma_sendctx *sc = req->rl_sendctx;
608         struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
609         struct rpcrdma_regbuf *rb = req->rl_sendbuf;
610
611         if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
612                 return false;
613
614         sge->addr = rdmab_addr(rb);
615         sge->length = len;
616         sge->lkey = rdmab_lkey(rb);
617
618         ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
619                                       DMA_TO_DEVICE);
620         return true;
621 }
622
623 /* If there is a page list present, DMA map and prepare an
624  * SGE for each page to be sent.
625  */
626 static bool rpcrdma_prepare_pagelist(struct rpcrdma_req *req,
627                                      struct xdr_buf *xdr)
628 {
629         struct rpcrdma_sendctx *sc = req->rl_sendctx;
630         struct rpcrdma_regbuf *rb = req->rl_sendbuf;
631         unsigned int page_base, len, remaining;
632         struct page **ppages;
633         struct ib_sge *sge;
634
635         ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
636         page_base = offset_in_page(xdr->page_base);
637         remaining = xdr->page_len;
638         while (remaining) {
639                 sge = &sc->sc_sges[req->rl_wr.num_sge++];
640                 len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
641                 sge->addr = ib_dma_map_page(rdmab_device(rb), *ppages,
642                                             page_base, len, DMA_TO_DEVICE);
643                 if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
644                         goto out_mapping_err;
645
646                 sge->length = len;
647                 sge->lkey = rdmab_lkey(rb);
648
649                 sc->sc_unmap_count++;
650                 ppages++;
651                 remaining -= len;
652                 page_base = 0;
653         }
654
655         return true;
656
657 out_mapping_err:
658         trace_xprtrdma_dma_maperr(sge->addr);
659         return false;
660 }
661
662 /* The tail iovec may include an XDR pad for the page list,
663  * as well as additional content, and may not reside in the
664  * same page as the head iovec.
665  */
666 static bool rpcrdma_prepare_tail_iov(struct rpcrdma_req *req,
667                                      struct xdr_buf *xdr,
668                                      unsigned int page_base, unsigned int len)
669 {
670         struct rpcrdma_sendctx *sc = req->rl_sendctx;
671         struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
672         struct rpcrdma_regbuf *rb = req->rl_sendbuf;
673         struct page *page = virt_to_page(xdr->tail[0].iov_base);
674
675         sge->addr = ib_dma_map_page(rdmab_device(rb), page, page_base, len,
676                                     DMA_TO_DEVICE);
677         if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
678                 goto out_mapping_err;
679
680         sge->length = len;
681         sge->lkey = rdmab_lkey(rb);
682         ++sc->sc_unmap_count;
683         return true;
684
685 out_mapping_err:
686         trace_xprtrdma_dma_maperr(sge->addr);
687         return false;
688 }
689
690 /* Copy the tail to the end of the head buffer.
691  */
692 static void rpcrdma_pullup_tail_iov(struct rpcrdma_xprt *r_xprt,
693                                     struct rpcrdma_req *req,
694                                     struct xdr_buf *xdr)
695 {
696         unsigned char *dst;
697
698         dst = (unsigned char *)xdr->head[0].iov_base;
699         dst += xdr->head[0].iov_len + xdr->page_len;
700         memmove(dst, xdr->tail[0].iov_base, xdr->tail[0].iov_len);
701         r_xprt->rx_stats.pullup_copy_count += xdr->tail[0].iov_len;
702 }
703
704 /* Copy pagelist content into the head buffer.
705  */
706 static void rpcrdma_pullup_pagelist(struct rpcrdma_xprt *r_xprt,
707                                     struct rpcrdma_req *req,
708                                     struct xdr_buf *xdr)
709 {
710         unsigned int len, page_base, remaining;
711         struct page **ppages;
712         unsigned char *src, *dst;
713
714         dst = (unsigned char *)xdr->head[0].iov_base;
715         dst += xdr->head[0].iov_len;
716         ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
717         page_base = offset_in_page(xdr->page_base);
718         remaining = xdr->page_len;
719         while (remaining) {
720                 src = page_address(*ppages);
721                 src += page_base;
722                 len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
723                 memcpy(dst, src, len);
724                 r_xprt->rx_stats.pullup_copy_count += len;
725
726                 ppages++;
727                 dst += len;
728                 remaining -= len;
729                 page_base = 0;
730         }
731 }
732
733 /* Copy the contents of @xdr into @rl_sendbuf and DMA sync it.
734  * When the head, pagelist, and tail are small, a pull-up copy
735  * is considerably less costly than DMA mapping the components
736  * of @xdr.
737  *
738  * Assumptions:
739  *  - the caller has already verified that the total length
740  *    of the RPC Call body will fit into @rl_sendbuf.
741  */
742 static bool rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt *r_xprt,
743                                         struct rpcrdma_req *req,
744                                         struct xdr_buf *xdr)
745 {
746         if (unlikely(xdr->tail[0].iov_len))
747                 rpcrdma_pullup_tail_iov(r_xprt, req, xdr);
748
749         if (unlikely(xdr->page_len))
750                 rpcrdma_pullup_pagelist(r_xprt, req, xdr);
751
752         /* The whole RPC message resides in the head iovec now */
753         return rpcrdma_prepare_head_iov(r_xprt, req, xdr->len);
754 }
755
756 static bool rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt *r_xprt,
757                                         struct rpcrdma_req *req,
758                                         struct xdr_buf *xdr)
759 {
760         struct kvec *tail = &xdr->tail[0];
761
762         if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
763                 return false;
764         if (xdr->page_len)
765                 if (!rpcrdma_prepare_pagelist(req, xdr))
766                         return false;
767         if (tail->iov_len)
768                 if (!rpcrdma_prepare_tail_iov(req, xdr,
769                                               offset_in_page(tail->iov_base),
770                                               tail->iov_len))
771                         return false;
772
773         if (req->rl_sendctx->sc_unmap_count)
774                 kref_get(&req->rl_kref);
775         return true;
776 }
777
778 static bool rpcrdma_prepare_readch(struct rpcrdma_xprt *r_xprt,
779                                    struct rpcrdma_req *req,
780                                    struct xdr_buf *xdr)
781 {
782         if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
783                 return false;
784
785         /* If there is a Read chunk, the page list is being handled
786          * via explicit RDMA, and thus is skipped here.
787          */
788
789         /* Do not include the tail if it is only an XDR pad */
790         if (xdr->tail[0].iov_len > 3) {
791                 unsigned int page_base, len;
792
793                 /* If the content in the page list is an odd length,
794                  * xdr_write_pages() adds a pad at the beginning of
795                  * the tail iovec. Force the tail's non-pad content to
796                  * land at the next XDR position in the Send message.
797                  */
798                 page_base = offset_in_page(xdr->tail[0].iov_base);
799                 len = xdr->tail[0].iov_len;
800                 page_base += len & 3;
801                 len -= len & 3;
802                 if (!rpcrdma_prepare_tail_iov(req, xdr, page_base, len))
803                         return false;
804                 kref_get(&req->rl_kref);
805         }
806
807         return true;
808 }
809
810 /**
811  * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
812  * @r_xprt: controlling transport
813  * @req: context of RPC Call being marshalled
814  * @hdrlen: size of transport header, in bytes
815  * @xdr: xdr_buf containing RPC Call
816  * @rtype: chunk type being encoded
817  *
818  * Returns 0 on success; otherwise a negative errno is returned.
819  */
820 inline int rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
821                                      struct rpcrdma_req *req, u32 hdrlen,
822                                      struct xdr_buf *xdr,
823                                      enum rpcrdma_chunktype rtype)
824 {
825         int ret;
826
827         ret = -EAGAIN;
828         req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt);
829         if (!req->rl_sendctx)
830                 goto out_nosc;
831         req->rl_sendctx->sc_unmap_count = 0;
832         req->rl_sendctx->sc_req = req;
833         kref_init(&req->rl_kref);
834         req->rl_wr.wr_cqe = &req->rl_sendctx->sc_cqe;
835         req->rl_wr.sg_list = req->rl_sendctx->sc_sges;
836         req->rl_wr.num_sge = 0;
837         req->rl_wr.opcode = IB_WR_SEND;
838
839         ret = -EIO;
840         if (!rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen))
841                 goto out_unmap;
842
843         switch (rtype) {
844         case rpcrdma_noch_pullup:
845                 if (!rpcrdma_prepare_noch_pullup(r_xprt, req, xdr))
846                         goto out_unmap;
847                 break;
848         case rpcrdma_noch_mapped:
849                 if (!rpcrdma_prepare_noch_mapped(r_xprt, req, xdr))
850                         goto out_unmap;
851                 break;
852         case rpcrdma_readch:
853                 if (!rpcrdma_prepare_readch(r_xprt, req, xdr))
854                         goto out_unmap;
855                 break;
856         case rpcrdma_areadch:
857                 break;
858         default:
859                 goto out_unmap;
860         }
861
862         return 0;
863
864 out_unmap:
865         rpcrdma_sendctx_unmap(req->rl_sendctx);
866 out_nosc:
867         trace_xprtrdma_prepsend_failed(&req->rl_slot, ret);
868         return ret;
869 }
870
871 /**
872  * rpcrdma_marshal_req - Marshal and send one RPC request
873  * @r_xprt: controlling transport
874  * @rqst: RPC request to be marshaled
875  *
876  * For the RPC in "rqst", this function:
877  *  - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
878  *  - Registers Read, Write, and Reply chunks
879  *  - Constructs the transport header
880  *  - Posts a Send WR to send the transport header and request
881  *
882  * Returns:
883  *      %0 if the RPC was sent successfully,
884  *      %-ENOTCONN if the connection was lost,
885  *      %-EAGAIN if the caller should call again with the same arguments,
886  *      %-ENOBUFS if the caller should call again after a delay,
887  *      %-EMSGSIZE if the transport header is too small,
888  *      %-EIO if a permanent problem occurred while marshaling.
889  */
890 int
891 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
892 {
893         struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
894         struct xdr_stream *xdr = &req->rl_stream;
895         enum rpcrdma_chunktype rtype, wtype;
896         struct xdr_buf *buf = &rqst->rq_snd_buf;
897         bool ddp_allowed;
898         __be32 *p;
899         int ret;
900
901         rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
902         xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf),
903                         rqst);
904
905         /* Fixed header fields */
906         ret = -EMSGSIZE;
907         p = xdr_reserve_space(xdr, 4 * sizeof(*p));
908         if (!p)
909                 goto out_err;
910         *p++ = rqst->rq_xid;
911         *p++ = rpcrdma_version;
912         *p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
913
914         /* When the ULP employs a GSS flavor that guarantees integrity
915          * or privacy, direct data placement of individual data items
916          * is not allowed.
917          */
918         ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
919                                                 RPCAUTH_AUTH_DATATOUCH);
920
921         /*
922          * Chunks needed for results?
923          *
924          * o If the expected result is under the inline threshold, all ops
925          *   return as inline.
926          * o Large read ops return data as write chunk(s), header as
927          *   inline.
928          * o Large non-read ops return as a single reply chunk.
929          */
930         if (rpcrdma_results_inline(r_xprt, rqst))
931                 wtype = rpcrdma_noch;
932         else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) &&
933                  rpcrdma_nonpayload_inline(r_xprt, rqst))
934                 wtype = rpcrdma_writech;
935         else
936                 wtype = rpcrdma_replych;
937
938         /*
939          * Chunks needed for arguments?
940          *
941          * o If the total request is under the inline threshold, all ops
942          *   are sent as inline.
943          * o Large write ops transmit data as read chunk(s), header as
944          *   inline.
945          * o Large non-write ops are sent with the entire message as a
946          *   single read chunk (protocol 0-position special case).
947          *
948          * This assumes that the upper layer does not present a request
949          * that both has a data payload, and whose non-data arguments
950          * by themselves are larger than the inline threshold.
951          */
952         if (rpcrdma_args_inline(r_xprt, rqst)) {
953                 *p++ = rdma_msg;
954                 rtype = buf->len < rdmab_length(req->rl_sendbuf) ?
955                         rpcrdma_noch_pullup : rpcrdma_noch_mapped;
956         } else if (ddp_allowed && buf->flags & XDRBUF_WRITE) {
957                 *p++ = rdma_msg;
958                 rtype = rpcrdma_readch;
959         } else {
960                 r_xprt->rx_stats.nomsg_call_count++;
961                 *p++ = rdma_nomsg;
962                 rtype = rpcrdma_areadch;
963         }
964
965         /* This implementation supports the following combinations
966          * of chunk lists in one RPC-over-RDMA Call message:
967          *
968          *   - Read list
969          *   - Write list
970          *   - Reply chunk
971          *   - Read list + Reply chunk
972          *
973          * It might not yet support the following combinations:
974          *
975          *   - Read list + Write list
976          *
977          * It does not support the following combinations:
978          *
979          *   - Write list + Reply chunk
980          *   - Read list + Write list + Reply chunk
981          *
982          * This implementation supports only a single chunk in each
983          * Read or Write list. Thus for example the client cannot
984          * send a Call message with a Position Zero Read chunk and a
985          * regular Read chunk at the same time.
986          */
987         ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
988         if (ret)
989                 goto out_err;
990         ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
991         if (ret)
992                 goto out_err;
993         ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
994         if (ret)
995                 goto out_err;
996
997         ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len,
998                                         buf, rtype);
999         if (ret)
1000                 goto out_err;
1001
1002         trace_xprtrdma_marshal(req, rtype, wtype);
1003         return 0;
1004
1005 out_err:
1006         trace_xprtrdma_marshal_failed(rqst, ret);
1007         r_xprt->rx_stats.failed_marshal_count++;
1008         frwr_reset(req);
1009         return ret;
1010 }
1011
1012 static void __rpcrdma_update_cwnd_locked(struct rpc_xprt *xprt,
1013                                          struct rpcrdma_buffer *buf,
1014                                          u32 grant)
1015 {
1016         buf->rb_credits = grant;
1017         xprt->cwnd = grant << RPC_CWNDSHIFT;
1018 }
1019
1020 static void rpcrdma_update_cwnd(struct rpcrdma_xprt *r_xprt, u32 grant)
1021 {
1022         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1023
1024         spin_lock(&xprt->transport_lock);
1025         __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, grant);
1026         spin_unlock(&xprt->transport_lock);
1027 }
1028
1029 /**
1030  * rpcrdma_reset_cwnd - Reset the xprt's congestion window
1031  * @r_xprt: controlling transport instance
1032  *
1033  * Prepare @r_xprt for the next connection by reinitializing
1034  * its credit grant to one (see RFC 8166, Section 3.3.3).
1035  */
1036 void rpcrdma_reset_cwnd(struct rpcrdma_xprt *r_xprt)
1037 {
1038         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1039
1040         spin_lock(&xprt->transport_lock);
1041         xprt->cong = 0;
1042         __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, 1);
1043         spin_unlock(&xprt->transport_lock);
1044 }
1045
1046 /**
1047  * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
1048  * @rqst: controlling RPC request
1049  * @srcp: points to RPC message payload in receive buffer
1050  * @copy_len: remaining length of receive buffer content
1051  * @pad: Write chunk pad bytes needed (zero for pure inline)
1052  *
1053  * The upper layer has set the maximum number of bytes it can
1054  * receive in each component of rq_rcv_buf. These values are set in
1055  * the head.iov_len, page_len, tail.iov_len, and buflen fields.
1056  *
1057  * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
1058  * many cases this function simply updates iov_base pointers in
1059  * rq_rcv_buf to point directly to the received reply data, to
1060  * avoid copying reply data.
1061  *
1062  * Returns the count of bytes which had to be memcopied.
1063  */
1064 static unsigned long
1065 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
1066 {
1067         unsigned long fixup_copy_count;
1068         int i, npages, curlen;
1069         char *destp;
1070         struct page **ppages;
1071         int page_base;
1072
1073         /* The head iovec is redirected to the RPC reply message
1074          * in the receive buffer, to avoid a memcopy.
1075          */
1076         rqst->rq_rcv_buf.head[0].iov_base = srcp;
1077         rqst->rq_private_buf.head[0].iov_base = srcp;
1078
1079         /* The contents of the receive buffer that follow
1080          * head.iov_len bytes are copied into the page list.
1081          */
1082         curlen = rqst->rq_rcv_buf.head[0].iov_len;
1083         if (curlen > copy_len)
1084                 curlen = copy_len;
1085         srcp += curlen;
1086         copy_len -= curlen;
1087
1088         ppages = rqst->rq_rcv_buf.pages +
1089                 (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
1090         page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
1091         fixup_copy_count = 0;
1092         if (copy_len && rqst->rq_rcv_buf.page_len) {
1093                 int pagelist_len;
1094
1095                 pagelist_len = rqst->rq_rcv_buf.page_len;
1096                 if (pagelist_len > copy_len)
1097                         pagelist_len = copy_len;
1098                 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
1099                 for (i = 0; i < npages; i++) {
1100                         curlen = PAGE_SIZE - page_base;
1101                         if (curlen > pagelist_len)
1102                                 curlen = pagelist_len;
1103
1104                         destp = kmap_atomic(ppages[i]);
1105                         memcpy(destp + page_base, srcp, curlen);
1106                         flush_dcache_page(ppages[i]);
1107                         kunmap_atomic(destp);
1108                         srcp += curlen;
1109                         copy_len -= curlen;
1110                         fixup_copy_count += curlen;
1111                         pagelist_len -= curlen;
1112                         if (!pagelist_len)
1113                                 break;
1114                         page_base = 0;
1115                 }
1116
1117                 /* Implicit padding for the last segment in a Write
1118                  * chunk is inserted inline at the front of the tail
1119                  * iovec. The upper layer ignores the content of
1120                  * the pad. Simply ensure inline content in the tail
1121                  * that follows the Write chunk is properly aligned.
1122                  */
1123                 if (pad)
1124                         srcp -= pad;
1125         }
1126
1127         /* The tail iovec is redirected to the remaining data
1128          * in the receive buffer, to avoid a memcopy.
1129          */
1130         if (copy_len || pad) {
1131                 rqst->rq_rcv_buf.tail[0].iov_base = srcp;
1132                 rqst->rq_private_buf.tail[0].iov_base = srcp;
1133         }
1134
1135         if (fixup_copy_count)
1136                 trace_xprtrdma_fixup(rqst, fixup_copy_count);
1137         return fixup_copy_count;
1138 }
1139
1140 /* By convention, backchannel calls arrive via rdma_msg type
1141  * messages, and never populate the chunk lists. This makes
1142  * the RPC/RDMA header small and fixed in size, so it is
1143  * straightforward to check the RPC header's direction field.
1144  */
1145 static bool
1146 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1147 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1148 {
1149         struct xdr_stream *xdr = &rep->rr_stream;
1150         __be32 *p;
1151
1152         if (rep->rr_proc != rdma_msg)
1153                 return false;
1154
1155         /* Peek at stream contents without advancing. */
1156         p = xdr_inline_decode(xdr, 0);
1157
1158         /* Chunk lists */
1159         if (*p++ != xdr_zero)
1160                 return false;
1161         if (*p++ != xdr_zero)
1162                 return false;
1163         if (*p++ != xdr_zero)
1164                 return false;
1165
1166         /* RPC header */
1167         if (*p++ != rep->rr_xid)
1168                 return false;
1169         if (*p != cpu_to_be32(RPC_CALL))
1170                 return false;
1171
1172         /* Now that we are sure this is a backchannel call,
1173          * advance to the RPC header.
1174          */
1175         p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1176         if (unlikely(!p))
1177                 goto out_short;
1178
1179         rpcrdma_bc_receive_call(r_xprt, rep);
1180         return true;
1181
1182 out_short:
1183         pr_warn("RPC/RDMA short backward direction call\n");
1184         return true;
1185 }
1186 #else   /* CONFIG_SUNRPC_BACKCHANNEL */
1187 {
1188         return false;
1189 }
1190 #endif  /* CONFIG_SUNRPC_BACKCHANNEL */
1191
1192 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1193 {
1194         u32 handle;
1195         u64 offset;
1196         __be32 *p;
1197
1198         p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1199         if (unlikely(!p))
1200                 return -EIO;
1201
1202         handle = be32_to_cpup(p++);
1203         *length = be32_to_cpup(p++);
1204         xdr_decode_hyper(p, &offset);
1205
1206         trace_xprtrdma_decode_seg(handle, *length, offset);
1207         return 0;
1208 }
1209
1210 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1211 {
1212         u32 segcount, seglength;
1213         __be32 *p;
1214
1215         p = xdr_inline_decode(xdr, sizeof(*p));
1216         if (unlikely(!p))
1217                 return -EIO;
1218
1219         *length = 0;
1220         segcount = be32_to_cpup(p);
1221         while (segcount--) {
1222                 if (decode_rdma_segment(xdr, &seglength))
1223                         return -EIO;
1224                 *length += seglength;
1225         }
1226
1227         return 0;
1228 }
1229
1230 /* In RPC-over-RDMA Version One replies, a Read list is never
1231  * expected. This decoder is a stub that returns an error if
1232  * a Read list is present.
1233  */
1234 static int decode_read_list(struct xdr_stream *xdr)
1235 {
1236         __be32 *p;
1237
1238         p = xdr_inline_decode(xdr, sizeof(*p));
1239         if (unlikely(!p))
1240                 return -EIO;
1241         if (unlikely(*p != xdr_zero))
1242                 return -EIO;
1243         return 0;
1244 }
1245
1246 /* Supports only one Write chunk in the Write list
1247  */
1248 static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1249 {
1250         u32 chunklen;
1251         bool first;
1252         __be32 *p;
1253
1254         *length = 0;
1255         first = true;
1256         do {
1257                 p = xdr_inline_decode(xdr, sizeof(*p));
1258                 if (unlikely(!p))
1259                         return -EIO;
1260                 if (*p == xdr_zero)
1261                         break;
1262                 if (!first)
1263                         return -EIO;
1264
1265                 if (decode_write_chunk(xdr, &chunklen))
1266                         return -EIO;
1267                 *length += chunklen;
1268                 first = false;
1269         } while (true);
1270         return 0;
1271 }
1272
1273 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1274 {
1275         __be32 *p;
1276
1277         p = xdr_inline_decode(xdr, sizeof(*p));
1278         if (unlikely(!p))
1279                 return -EIO;
1280
1281         *length = 0;
1282         if (*p != xdr_zero)
1283                 if (decode_write_chunk(xdr, length))
1284                         return -EIO;
1285         return 0;
1286 }
1287
1288 static int
1289 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1290                    struct rpc_rqst *rqst)
1291 {
1292         struct xdr_stream *xdr = &rep->rr_stream;
1293         u32 writelist, replychunk, rpclen;
1294         char *base;
1295
1296         /* Decode the chunk lists */
1297         if (decode_read_list(xdr))
1298                 return -EIO;
1299         if (decode_write_list(xdr, &writelist))
1300                 return -EIO;
1301         if (decode_reply_chunk(xdr, &replychunk))
1302                 return -EIO;
1303
1304         /* RDMA_MSG sanity checks */
1305         if (unlikely(replychunk))
1306                 return -EIO;
1307
1308         /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1309         base = (char *)xdr_inline_decode(xdr, 0);
1310         rpclen = xdr_stream_remaining(xdr);
1311         r_xprt->rx_stats.fixup_copy_count +=
1312                 rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1313
1314         r_xprt->rx_stats.total_rdma_reply += writelist;
1315         return rpclen + xdr_align_size(writelist);
1316 }
1317
1318 static noinline int
1319 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1320 {
1321         struct xdr_stream *xdr = &rep->rr_stream;
1322         u32 writelist, replychunk;
1323
1324         /* Decode the chunk lists */
1325         if (decode_read_list(xdr))
1326                 return -EIO;
1327         if (decode_write_list(xdr, &writelist))
1328                 return -EIO;
1329         if (decode_reply_chunk(xdr, &replychunk))
1330                 return -EIO;
1331
1332         /* RDMA_NOMSG sanity checks */
1333         if (unlikely(writelist))
1334                 return -EIO;
1335         if (unlikely(!replychunk))
1336                 return -EIO;
1337
1338         /* Reply chunk buffer already is the reply vector */
1339         r_xprt->rx_stats.total_rdma_reply += replychunk;
1340         return replychunk;
1341 }
1342
1343 static noinline int
1344 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1345                      struct rpc_rqst *rqst)
1346 {
1347         struct xdr_stream *xdr = &rep->rr_stream;
1348         __be32 *p;
1349
1350         p = xdr_inline_decode(xdr, sizeof(*p));
1351         if (unlikely(!p))
1352                 return -EIO;
1353
1354         switch (*p) {
1355         case err_vers:
1356                 p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1357                 if (!p)
1358                         break;
1359                 dprintk("RPC:       %s: server reports "
1360                         "version error (%u-%u), xid %08x\n", __func__,
1361                         be32_to_cpup(p), be32_to_cpu(*(p + 1)),
1362                         be32_to_cpu(rep->rr_xid));
1363                 break;
1364         case err_chunk:
1365                 dprintk("RPC:       %s: server reports "
1366                         "header decoding error, xid %08x\n", __func__,
1367                         be32_to_cpu(rep->rr_xid));
1368                 break;
1369         default:
1370                 dprintk("RPC:       %s: server reports "
1371                         "unrecognized error %d, xid %08x\n", __func__,
1372                         be32_to_cpup(p), be32_to_cpu(rep->rr_xid));
1373         }
1374
1375         r_xprt->rx_stats.bad_reply_count++;
1376         return -EREMOTEIO;
1377 }
1378
1379 /* Perform XID lookup, reconstruction of the RPC reply, and
1380  * RPC completion while holding the transport lock to ensure
1381  * the rep, rqst, and rq_task pointers remain stable.
1382  */
1383 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1384 {
1385         struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1386         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1387         struct rpc_rqst *rqst = rep->rr_rqst;
1388         int status;
1389
1390         switch (rep->rr_proc) {
1391         case rdma_msg:
1392                 status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1393                 break;
1394         case rdma_nomsg:
1395                 status = rpcrdma_decode_nomsg(r_xprt, rep);
1396                 break;
1397         case rdma_error:
1398                 status = rpcrdma_decode_error(r_xprt, rep, rqst);
1399                 break;
1400         default:
1401                 status = -EIO;
1402         }
1403         if (status < 0)
1404                 goto out_badheader;
1405
1406 out:
1407         spin_lock(&xprt->queue_lock);
1408         xprt_complete_rqst(rqst->rq_task, status);
1409         xprt_unpin_rqst(rqst);
1410         spin_unlock(&xprt->queue_lock);
1411         return;
1412
1413 /* If the incoming reply terminated a pending RPC, the next
1414  * RPC call will post a replacement receive buffer as it is
1415  * being marshaled.
1416  */
1417 out_badheader:
1418         trace_xprtrdma_reply_hdr(rep);
1419         r_xprt->rx_stats.bad_reply_count++;
1420         goto out;
1421 }
1422
1423 static void rpcrdma_reply_done(struct kref *kref)
1424 {
1425         struct rpcrdma_req *req =
1426                 container_of(kref, struct rpcrdma_req, rl_kref);
1427
1428         rpcrdma_complete_rqst(req->rl_reply);
1429 }
1430
1431 /**
1432  * rpcrdma_reply_handler - Process received RPC/RDMA messages
1433  * @rep: Incoming rpcrdma_rep object to process
1434  *
1435  * Errors must result in the RPC task either being awakened, or
1436  * allowed to timeout, to discover the errors at that time.
1437  */
1438 void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1439 {
1440         struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1441         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1442         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1443         struct rpcrdma_req *req;
1444         struct rpc_rqst *rqst;
1445         u32 credits;
1446         __be32 *p;
1447
1448         /* Any data means we had a useful conversation, so
1449          * then we don't need to delay the next reconnect.
1450          */
1451         if (xprt->reestablish_timeout)
1452                 xprt->reestablish_timeout = 0;
1453
1454         /* Fixed transport header fields */
1455         xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1456                         rep->rr_hdrbuf.head[0].iov_base, NULL);
1457         p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1458         if (unlikely(!p))
1459                 goto out_shortreply;
1460         rep->rr_xid = *p++;
1461         rep->rr_vers = *p++;
1462         credits = be32_to_cpu(*p++);
1463         rep->rr_proc = *p++;
1464
1465         if (rep->rr_vers != rpcrdma_version)
1466                 goto out_badversion;
1467
1468         if (rpcrdma_is_bcall(r_xprt, rep))
1469                 return;
1470
1471         /* Match incoming rpcrdma_rep to an rpcrdma_req to
1472          * get context for handling any incoming chunks.
1473          */
1474         spin_lock(&xprt->queue_lock);
1475         rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1476         if (!rqst)
1477                 goto out_norqst;
1478         xprt_pin_rqst(rqst);
1479         spin_unlock(&xprt->queue_lock);
1480
1481         if (credits == 0)
1482                 credits = 1;    /* don't deadlock */
1483         else if (credits > buf->rb_max_requests)
1484                 credits = buf->rb_max_requests;
1485         if (buf->rb_credits != credits)
1486                 rpcrdma_update_cwnd(r_xprt, credits);
1487         rpcrdma_post_recvs(r_xprt, false);
1488
1489         req = rpcr_to_rdmar(rqst);
1490         if (req->rl_reply) {
1491                 trace_xprtrdma_leaked_rep(rqst, req->rl_reply);
1492                 rpcrdma_recv_buffer_put(req->rl_reply);
1493         }
1494         req->rl_reply = rep;
1495         rep->rr_rqst = rqst;
1496
1497         trace_xprtrdma_reply(rqst->rq_task, rep, req, credits);
1498
1499         if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1500                 frwr_reminv(rep, &req->rl_registered);
1501         if (!list_empty(&req->rl_registered))
1502                 frwr_unmap_async(r_xprt, req);
1503                 /* LocalInv completion will complete the RPC */
1504         else
1505                 kref_put(&req->rl_kref, rpcrdma_reply_done);
1506         return;
1507
1508 out_badversion:
1509         trace_xprtrdma_reply_vers(rep);
1510         goto out;
1511
1512 out_norqst:
1513         spin_unlock(&xprt->queue_lock);
1514         trace_xprtrdma_reply_rqst(rep);
1515         goto out;
1516
1517 out_shortreply:
1518         trace_xprtrdma_reply_short(rep);
1519
1520 out:
1521         rpcrdma_recv_buffer_put(rep);
1522 }