]> asedeno.scripts.mit.edu Git - linux.git/blob - net/sunrpc/xprtrdma/verbs.c
Linux 5.6-rc7
[linux.git] / net / sunrpc / xprtrdma / verbs.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41
42 /*
43  * verbs.c
44  *
45  * Encapsulates the major functions managing:
46  *  o adapters
47  *  o endpoints
48  *  o connections
49  *  o buffer memory
50  */
51
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60
61 #include <rdma/ib_cm.h>
62
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65
66 /*
67  * Globals/Macros
68  */
69
70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
71 # define RPCDBG_FACILITY        RPCDBG_TRANS
72 #endif
73
74 /*
75  * internal functions
76  */
77 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt);
78 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt);
79 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
80                                        struct rpcrdma_sendctx *sc);
81 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt);
82 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
83 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep);
84 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
85 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
86 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
87 static struct rpcrdma_regbuf *
88 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
89                      gfp_t flags);
90 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
91 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
92
93 /* Wait for outstanding transport work to finish. ib_drain_qp
94  * handles the drains in the wrong order for us, so open code
95  * them here.
96  */
97 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
98 {
99         struct rpcrdma_ia *ia = &r_xprt->rx_ia;
100
101         /* Flush Receives, then wait for deferred Reply work
102          * to complete.
103          */
104         ib_drain_rq(ia->ri_id->qp);
105
106         /* Deferred Reply processing might have scheduled
107          * local invalidations.
108          */
109         ib_drain_sq(ia->ri_id->qp);
110 }
111
112 /**
113  * rpcrdma_qp_event_handler - Handle one QP event (error notification)
114  * @event: details of the event
115  * @context: ep that owns QP where event occurred
116  *
117  * Called from the RDMA provider (device driver) possibly in an interrupt
118  * context.
119  */
120 static void
121 rpcrdma_qp_event_handler(struct ib_event *event, void *context)
122 {
123         struct rpcrdma_ep *ep = context;
124         struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt,
125                                                    rx_ep);
126
127         trace_xprtrdma_qp_event(r_xprt, event);
128 }
129
130 /**
131  * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
132  * @cq: completion queue
133  * @wc: completed WR
134  *
135  */
136 static void
137 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
138 {
139         struct ib_cqe *cqe = wc->wr_cqe;
140         struct rpcrdma_sendctx *sc =
141                 container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
142
143         /* WARNING: Only wr_cqe and status are reliable at this point */
144         trace_xprtrdma_wc_send(sc, wc);
145         rpcrdma_sendctx_put_locked((struct rpcrdma_xprt *)cq->cq_context, sc);
146 }
147
148 /**
149  * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
150  * @cq: completion queue (ignored)
151  * @wc: completed WR
152  *
153  */
154 static void
155 rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
156 {
157         struct ib_cqe *cqe = wc->wr_cqe;
158         struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
159                                                rr_cqe);
160         struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
161
162         /* WARNING: Only wr_cqe and status are reliable at this point */
163         trace_xprtrdma_wc_receive(wc);
164         --r_xprt->rx_ep.rep_receive_count;
165         if (wc->status != IB_WC_SUCCESS)
166                 goto out_flushed;
167
168         /* status == SUCCESS means all fields in wc are trustworthy */
169         rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
170         rep->rr_wc_flags = wc->wc_flags;
171         rep->rr_inv_rkey = wc->ex.invalidate_rkey;
172
173         ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
174                                    rdmab_addr(rep->rr_rdmabuf),
175                                    wc->byte_len, DMA_FROM_DEVICE);
176
177         rpcrdma_reply_handler(rep);
178         return;
179
180 out_flushed:
181         rpcrdma_rep_destroy(rep);
182 }
183
184 static void rpcrdma_update_cm_private(struct rpcrdma_xprt *r_xprt,
185                                       struct rdma_conn_param *param)
186 {
187         const struct rpcrdma_connect_private *pmsg = param->private_data;
188         struct rpcrdma_ep *ep = &r_xprt->rx_ep;
189         unsigned int rsize, wsize;
190
191         /* Default settings for RPC-over-RDMA Version One */
192         r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize;
193         rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
194         wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
195
196         if (pmsg &&
197             pmsg->cp_magic == rpcrdma_cmp_magic &&
198             pmsg->cp_version == RPCRDMA_CMP_VERSION) {
199                 r_xprt->rx_ia.ri_implicit_roundup = true;
200                 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
201                 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
202         }
203
204         if (rsize < ep->rep_inline_recv)
205                 ep->rep_inline_recv = rsize;
206         if (wsize < ep->rep_inline_send)
207                 ep->rep_inline_send = wsize;
208
209         rpcrdma_set_max_header_sizes(r_xprt);
210 }
211
212 /**
213  * rpcrdma_cm_event_handler - Handle RDMA CM events
214  * @id: rdma_cm_id on which an event has occurred
215  * @event: details of the event
216  *
217  * Called with @id's mutex held. Returns 1 if caller should
218  * destroy @id, otherwise 0.
219  */
220 static int
221 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
222 {
223         struct rpcrdma_xprt *r_xprt = id->context;
224         struct rpcrdma_ia *ia = &r_xprt->rx_ia;
225         struct rpcrdma_ep *ep = &r_xprt->rx_ep;
226         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
227
228         might_sleep();
229
230         trace_xprtrdma_cm_event(r_xprt, event);
231         switch (event->event) {
232         case RDMA_CM_EVENT_ADDR_RESOLVED:
233         case RDMA_CM_EVENT_ROUTE_RESOLVED:
234                 ia->ri_async_rc = 0;
235                 complete(&ia->ri_done);
236                 return 0;
237         case RDMA_CM_EVENT_ADDR_ERROR:
238                 ia->ri_async_rc = -EPROTO;
239                 complete(&ia->ri_done);
240                 return 0;
241         case RDMA_CM_EVENT_ROUTE_ERROR:
242                 ia->ri_async_rc = -ENETUNREACH;
243                 complete(&ia->ri_done);
244                 return 0;
245         case RDMA_CM_EVENT_DEVICE_REMOVAL:
246 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
247                 pr_info("rpcrdma: removing device %s for %s:%s\n",
248                         ia->ri_id->device->name,
249                         rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt));
250 #endif
251                 init_completion(&ia->ri_remove_done);
252                 set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags);
253                 ep->rep_connected = -ENODEV;
254                 xprt_force_disconnect(xprt);
255                 wait_for_completion(&ia->ri_remove_done);
256
257                 ia->ri_id = NULL;
258                 /* Return 1 to ensure the core destroys the id. */
259                 return 1;
260         case RDMA_CM_EVENT_ESTABLISHED:
261                 ++xprt->connect_cookie;
262                 ep->rep_connected = 1;
263                 rpcrdma_update_cm_private(r_xprt, &event->param.conn);
264                 trace_xprtrdma_inline_thresh(r_xprt);
265                 wake_up_all(&ep->rep_connect_wait);
266                 break;
267         case RDMA_CM_EVENT_CONNECT_ERROR:
268                 ep->rep_connected = -ENOTCONN;
269                 goto disconnected;
270         case RDMA_CM_EVENT_UNREACHABLE:
271                 ep->rep_connected = -ENETUNREACH;
272                 goto disconnected;
273         case RDMA_CM_EVENT_REJECTED:
274                 dprintk("rpcrdma: connection to %s:%s rejected: %s\n",
275                         rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt),
276                         rdma_reject_msg(id, event->status));
277                 ep->rep_connected = -ECONNREFUSED;
278                 if (event->status == IB_CM_REJ_STALE_CONN)
279                         ep->rep_connected = -EAGAIN;
280                 goto disconnected;
281         case RDMA_CM_EVENT_DISCONNECTED:
282                 ep->rep_connected = -ECONNABORTED;
283 disconnected:
284                 xprt_force_disconnect(xprt);
285                 wake_up_all(&ep->rep_connect_wait);
286                 break;
287         default:
288                 break;
289         }
290
291         dprintk("RPC:       %s: %s:%s on %s/frwr: %s\n", __func__,
292                 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt),
293                 ia->ri_id->device->name, rdma_event_msg(event->event));
294         return 0;
295 }
296
297 static struct rdma_cm_id *
298 rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia)
299 {
300         unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
301         struct rdma_cm_id *id;
302         int rc;
303
304         init_completion(&ia->ri_done);
305
306         id = rdma_create_id(xprt->rx_xprt.xprt_net, rpcrdma_cm_event_handler,
307                             xprt, RDMA_PS_TCP, IB_QPT_RC);
308         if (IS_ERR(id))
309                 return id;
310
311         ia->ri_async_rc = -ETIMEDOUT;
312         rc = rdma_resolve_addr(id, NULL,
313                                (struct sockaddr *)&xprt->rx_xprt.addr,
314                                RDMA_RESOLVE_TIMEOUT);
315         if (rc)
316                 goto out;
317         rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
318         if (rc < 0)
319                 goto out;
320
321         rc = ia->ri_async_rc;
322         if (rc)
323                 goto out;
324
325         ia->ri_async_rc = -ETIMEDOUT;
326         rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
327         if (rc)
328                 goto out;
329         rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
330         if (rc < 0)
331                 goto out;
332         rc = ia->ri_async_rc;
333         if (rc)
334                 goto out;
335
336         return id;
337
338 out:
339         rdma_destroy_id(id);
340         return ERR_PTR(rc);
341 }
342
343 /*
344  * Exported functions.
345  */
346
347 /**
348  * rpcrdma_ia_open - Open and initialize an Interface Adapter.
349  * @xprt: transport with IA to (re)initialize
350  *
351  * Returns 0 on success, negative errno if an appropriate
352  * Interface Adapter could not be found and opened.
353  */
354 int
355 rpcrdma_ia_open(struct rpcrdma_xprt *xprt)
356 {
357         struct rpcrdma_ia *ia = &xprt->rx_ia;
358         int rc;
359
360         ia->ri_id = rpcrdma_create_id(xprt, ia);
361         if (IS_ERR(ia->ri_id)) {
362                 rc = PTR_ERR(ia->ri_id);
363                 goto out_err;
364         }
365
366         ia->ri_pd = ib_alloc_pd(ia->ri_id->device, 0);
367         if (IS_ERR(ia->ri_pd)) {
368                 rc = PTR_ERR(ia->ri_pd);
369                 pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc);
370                 goto out_err;
371         }
372
373         return 0;
374
375 out_err:
376         rpcrdma_ia_close(ia);
377         return rc;
378 }
379
380 /**
381  * rpcrdma_ia_remove - Handle device driver unload
382  * @ia: interface adapter being removed
383  *
384  * Divest transport H/W resources associated with this adapter,
385  * but allow it to be restored later.
386  *
387  * Caller must hold the transport send lock.
388  */
389 void
390 rpcrdma_ia_remove(struct rpcrdma_ia *ia)
391 {
392         struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
393                                                    rx_ia);
394         struct rpcrdma_ep *ep = &r_xprt->rx_ep;
395
396         /* This is similar to rpcrdma_ep_destroy, but:
397          * - Don't cancel the connect worker.
398          * - Don't call rpcrdma_ep_disconnect, which waits
399          *   for another conn upcall, which will deadlock.
400          * - rdma_disconnect is unneeded, the underlying
401          *   connection is already gone.
402          */
403         if (ia->ri_id->qp) {
404                 rpcrdma_xprt_drain(r_xprt);
405                 rdma_destroy_qp(ia->ri_id);
406                 ia->ri_id->qp = NULL;
407         }
408         ib_free_cq(ep->rep_attr.recv_cq);
409         ep->rep_attr.recv_cq = NULL;
410         ib_free_cq(ep->rep_attr.send_cq);
411         ep->rep_attr.send_cq = NULL;
412
413         /* The ULP is responsible for ensuring all DMA
414          * mappings and MRs are gone.
415          */
416         rpcrdma_reps_unmap(r_xprt);
417         rpcrdma_reqs_reset(r_xprt);
418         rpcrdma_mrs_destroy(r_xprt);
419         rpcrdma_sendctxs_destroy(r_xprt);
420         ib_dealloc_pd(ia->ri_pd);
421         ia->ri_pd = NULL;
422
423         /* Allow waiters to continue */
424         complete(&ia->ri_remove_done);
425
426         trace_xprtrdma_remove(r_xprt);
427 }
428
429 /**
430  * rpcrdma_ia_close - Clean up/close an IA.
431  * @ia: interface adapter to close
432  *
433  */
434 void
435 rpcrdma_ia_close(struct rpcrdma_ia *ia)
436 {
437         if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) {
438                 if (ia->ri_id->qp)
439                         rdma_destroy_qp(ia->ri_id);
440                 rdma_destroy_id(ia->ri_id);
441         }
442         ia->ri_id = NULL;
443
444         /* If the pd is still busy, xprtrdma missed freeing a resource */
445         if (ia->ri_pd && !IS_ERR(ia->ri_pd))
446                 ib_dealloc_pd(ia->ri_pd);
447         ia->ri_pd = NULL;
448 }
449
450 /**
451  * rpcrdma_ep_create - Create unconnected endpoint
452  * @r_xprt: transport to instantiate
453  *
454  * Returns zero on success, or a negative errno.
455  */
456 int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
457 {
458         struct rpcrdma_ep *ep = &r_xprt->rx_ep;
459         struct rpcrdma_ia *ia = &r_xprt->rx_ia;
460         struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private;
461         struct ib_cq *sendcq, *recvcq;
462         int rc;
463
464         ep->rep_max_requests = r_xprt->rx_xprt.max_reqs;
465         ep->rep_inline_send = xprt_rdma_max_inline_write;
466         ep->rep_inline_recv = xprt_rdma_max_inline_read;
467
468         rc = frwr_query_device(r_xprt, ia->ri_id->device);
469         if (rc)
470                 return rc;
471         r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->rep_max_requests);
472
473         ep->rep_attr.event_handler = rpcrdma_qp_event_handler;
474         ep->rep_attr.qp_context = ep;
475         ep->rep_attr.srq = NULL;
476         ep->rep_attr.cap.max_inline_data = 0;
477         ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
478         ep->rep_attr.qp_type = IB_QPT_RC;
479         ep->rep_attr.port_num = ~0;
480
481         dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
482                 "iovs: send %d recv %d\n",
483                 __func__,
484                 ep->rep_attr.cap.max_send_wr,
485                 ep->rep_attr.cap.max_recv_wr,
486                 ep->rep_attr.cap.max_send_sge,
487                 ep->rep_attr.cap.max_recv_sge);
488
489         ep->rep_send_batch = ep->rep_max_requests >> 3;
490         ep->rep_send_count = ep->rep_send_batch;
491         init_waitqueue_head(&ep->rep_connect_wait);
492         ep->rep_receive_count = 0;
493
494         sendcq = ib_alloc_cq_any(ia->ri_id->device, r_xprt,
495                                  ep->rep_attr.cap.max_send_wr + 1,
496                                  IB_POLL_WORKQUEUE);
497         if (IS_ERR(sendcq)) {
498                 rc = PTR_ERR(sendcq);
499                 goto out1;
500         }
501
502         recvcq = ib_alloc_cq_any(ia->ri_id->device, NULL,
503                                  ep->rep_attr.cap.max_recv_wr + 1,
504                                  IB_POLL_WORKQUEUE);
505         if (IS_ERR(recvcq)) {
506                 rc = PTR_ERR(recvcq);
507                 goto out2;
508         }
509
510         ep->rep_attr.send_cq = sendcq;
511         ep->rep_attr.recv_cq = recvcq;
512
513         /* Initialize cma parameters */
514         memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma));
515
516         /* Prepare RDMA-CM private message */
517         pmsg->cp_magic = rpcrdma_cmp_magic;
518         pmsg->cp_version = RPCRDMA_CMP_VERSION;
519         pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
520         pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->rep_inline_send);
521         pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->rep_inline_recv);
522         ep->rep_remote_cma.private_data = pmsg;
523         ep->rep_remote_cma.private_data_len = sizeof(*pmsg);
524
525         /* Client offers RDMA Read but does not initiate */
526         ep->rep_remote_cma.initiator_depth = 0;
527         ep->rep_remote_cma.responder_resources =
528                 min_t(int, U8_MAX, ia->ri_id->device->attrs.max_qp_rd_atom);
529
530         /* Limit transport retries so client can detect server
531          * GID changes quickly. RPC layer handles re-establishing
532          * transport connection and retransmission.
533          */
534         ep->rep_remote_cma.retry_count = 6;
535
536         /* RPC-over-RDMA handles its own flow control. In addition,
537          * make all RNR NAKs visible so we know that RPC-over-RDMA
538          * flow control is working correctly (no NAKs should be seen).
539          */
540         ep->rep_remote_cma.flow_control = 0;
541         ep->rep_remote_cma.rnr_retry_count = 0;
542
543         return 0;
544
545 out2:
546         ib_free_cq(sendcq);
547 out1:
548         return rc;
549 }
550
551 /**
552  * rpcrdma_ep_destroy - Disconnect and destroy endpoint.
553  * @r_xprt: transport instance to shut down
554  *
555  */
556 void rpcrdma_ep_destroy(struct rpcrdma_xprt *r_xprt)
557 {
558         struct rpcrdma_ep *ep = &r_xprt->rx_ep;
559         struct rpcrdma_ia *ia = &r_xprt->rx_ia;
560
561         if (ia->ri_id && ia->ri_id->qp) {
562                 rpcrdma_ep_disconnect(ep, ia);
563                 rdma_destroy_qp(ia->ri_id);
564                 ia->ri_id->qp = NULL;
565         }
566
567         if (ep->rep_attr.recv_cq)
568                 ib_free_cq(ep->rep_attr.recv_cq);
569         if (ep->rep_attr.send_cq)
570                 ib_free_cq(ep->rep_attr.send_cq);
571 }
572
573 /* Re-establish a connection after a device removal event.
574  * Unlike a normal reconnection, a fresh PD and a new set
575  * of MRs and buffers is needed.
576  */
577 static int rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt,
578                                     struct ib_qp_init_attr *qp_init_attr)
579 {
580         struct rpcrdma_ia *ia = &r_xprt->rx_ia;
581         struct rpcrdma_ep *ep = &r_xprt->rx_ep;
582         int rc, err;
583
584         trace_xprtrdma_reinsert(r_xprt);
585
586         rc = -EHOSTUNREACH;
587         if (rpcrdma_ia_open(r_xprt))
588                 goto out1;
589
590         rc = -ENOMEM;
591         err = rpcrdma_ep_create(r_xprt);
592         if (err) {
593                 pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err);
594                 goto out2;
595         }
596         memcpy(qp_init_attr, &ep->rep_attr, sizeof(*qp_init_attr));
597
598         rc = -ENETUNREACH;
599         err = rdma_create_qp(ia->ri_id, ia->ri_pd, qp_init_attr);
600         if (err) {
601                 pr_err("rpcrdma: rdma_create_qp returned %d\n", err);
602                 goto out3;
603         }
604         return 0;
605
606 out3:
607         rpcrdma_ep_destroy(r_xprt);
608 out2:
609         rpcrdma_ia_close(ia);
610 out1:
611         return rc;
612 }
613
614 static int rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt,
615                                 struct ib_qp_init_attr *qp_init_attr)
616 {
617         struct rpcrdma_ia *ia = &r_xprt->rx_ia;
618         struct rdma_cm_id *id, *old;
619         int err, rc;
620
621         rpcrdma_ep_disconnect(&r_xprt->rx_ep, ia);
622
623         rc = -EHOSTUNREACH;
624         id = rpcrdma_create_id(r_xprt, ia);
625         if (IS_ERR(id))
626                 goto out;
627
628         /* As long as the new ID points to the same device as the
629          * old ID, we can reuse the transport's existing PD and all
630          * previously allocated MRs. Also, the same device means
631          * the transport's previous DMA mappings are still valid.
632          *
633          * This is a sanity check only. There should be no way these
634          * point to two different devices here.
635          */
636         old = id;
637         rc = -ENETUNREACH;
638         if (ia->ri_id->device != id->device) {
639                 pr_err("rpcrdma: can't reconnect on different device!\n");
640                 goto out_destroy;
641         }
642
643         err = rdma_create_qp(id, ia->ri_pd, qp_init_attr);
644         if (err)
645                 goto out_destroy;
646
647         /* Atomically replace the transport's ID and QP. */
648         rc = 0;
649         old = ia->ri_id;
650         ia->ri_id = id;
651         rdma_destroy_qp(old);
652
653 out_destroy:
654         rdma_destroy_id(old);
655 out:
656         return rc;
657 }
658
659 /*
660  * Connect unconnected endpoint.
661  */
662 int
663 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
664 {
665         struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
666                                                    rx_ia);
667         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
668         struct ib_qp_init_attr qp_init_attr;
669         int rc;
670
671 retry:
672         memcpy(&qp_init_attr, &ep->rep_attr, sizeof(qp_init_attr));
673         switch (ep->rep_connected) {
674         case 0:
675                 rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &qp_init_attr);
676                 if (rc) {
677                         rc = -ENETUNREACH;
678                         goto out_noupdate;
679                 }
680                 break;
681         case -ENODEV:
682                 rc = rpcrdma_ep_recreate_xprt(r_xprt, &qp_init_attr);
683                 if (rc)
684                         goto out_noupdate;
685                 break;
686         default:
687                 rc = rpcrdma_ep_reconnect(r_xprt, &qp_init_attr);
688                 if (rc)
689                         goto out;
690         }
691
692         ep->rep_connected = 0;
693         xprt_clear_connected(xprt);
694
695         rpcrdma_reset_cwnd(r_xprt);
696         rpcrdma_post_recvs(r_xprt, true);
697
698         rc = rpcrdma_sendctxs_create(r_xprt);
699         if (rc)
700                 goto out;
701
702         rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
703         if (rc)
704                 goto out;
705
706         if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
707                 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
708         wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
709         if (ep->rep_connected <= 0) {
710                 if (ep->rep_connected == -EAGAIN)
711                         goto retry;
712                 rc = ep->rep_connected;
713                 goto out;
714         }
715
716         rc = rpcrdma_reqs_setup(r_xprt);
717         if (rc) {
718                 rpcrdma_ep_disconnect(ep, ia);
719                 goto out;
720         }
721         rpcrdma_mrs_create(r_xprt);
722
723 out:
724         if (rc)
725                 ep->rep_connected = rc;
726
727 out_noupdate:
728         trace_xprtrdma_connect(r_xprt, rc);
729         return rc;
730 }
731
732 /**
733  * rpcrdma_ep_disconnect - Disconnect underlying transport
734  * @ep: endpoint to disconnect
735  * @ia: associated interface adapter
736  *
737  * Caller serializes. Either the transport send lock is held,
738  * or we're being called to destroy the transport.
739  */
740 void
741 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
742 {
743         struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt,
744                                                    rx_ep);
745         int rc;
746
747         /* returns without wait if ID is not connected */
748         rc = rdma_disconnect(ia->ri_id);
749         if (!rc)
750                 wait_event_interruptible(ep->rep_connect_wait,
751                                                         ep->rep_connected != 1);
752         else
753                 ep->rep_connected = rc;
754         trace_xprtrdma_disconnect(r_xprt, rc);
755
756         rpcrdma_xprt_drain(r_xprt);
757         rpcrdma_reqs_reset(r_xprt);
758         rpcrdma_mrs_destroy(r_xprt);
759         rpcrdma_sendctxs_destroy(r_xprt);
760 }
761
762 /* Fixed-size circular FIFO queue. This implementation is wait-free and
763  * lock-free.
764  *
765  * Consumer is the code path that posts Sends. This path dequeues a
766  * sendctx for use by a Send operation. Multiple consumer threads
767  * are serialized by the RPC transport lock, which allows only one
768  * ->send_request call at a time.
769  *
770  * Producer is the code path that handles Send completions. This path
771  * enqueues a sendctx that has been completed. Multiple producer
772  * threads are serialized by the ib_poll_cq() function.
773  */
774
775 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
776  * queue activity, and rpcrdma_xprt_drain has flushed all remaining
777  * Send requests.
778  */
779 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt)
780 {
781         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
782         unsigned long i;
783
784         if (!buf->rb_sc_ctxs)
785                 return;
786         for (i = 0; i <= buf->rb_sc_last; i++)
787                 kfree(buf->rb_sc_ctxs[i]);
788         kfree(buf->rb_sc_ctxs);
789         buf->rb_sc_ctxs = NULL;
790 }
791
792 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep)
793 {
794         struct rpcrdma_sendctx *sc;
795
796         sc = kzalloc(struct_size(sc, sc_sges, ep->rep_attr.cap.max_send_sge),
797                      GFP_KERNEL);
798         if (!sc)
799                 return NULL;
800
801         sc->sc_cqe.done = rpcrdma_wc_send;
802         return sc;
803 }
804
805 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
806 {
807         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
808         struct rpcrdma_sendctx *sc;
809         unsigned long i;
810
811         /* Maximum number of concurrent outstanding Send WRs. Capping
812          * the circular queue size stops Send Queue overflow by causing
813          * the ->send_request call to fail temporarily before too many
814          * Sends are posted.
815          */
816         i = r_xprt->rx_ep.rep_max_requests + RPCRDMA_MAX_BC_REQUESTS;
817         buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
818         if (!buf->rb_sc_ctxs)
819                 return -ENOMEM;
820
821         buf->rb_sc_last = i - 1;
822         for (i = 0; i <= buf->rb_sc_last; i++) {
823                 sc = rpcrdma_sendctx_create(&r_xprt->rx_ep);
824                 if (!sc)
825                         return -ENOMEM;
826
827                 buf->rb_sc_ctxs[i] = sc;
828         }
829
830         buf->rb_sc_head = 0;
831         buf->rb_sc_tail = 0;
832         return 0;
833 }
834
835 /* The sendctx queue is not guaranteed to have a size that is a
836  * power of two, thus the helpers in circ_buf.h cannot be used.
837  * The other option is to use modulus (%), which can be expensive.
838  */
839 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
840                                           unsigned long item)
841 {
842         return likely(item < buf->rb_sc_last) ? item + 1 : 0;
843 }
844
845 /**
846  * rpcrdma_sendctx_get_locked - Acquire a send context
847  * @r_xprt: controlling transport instance
848  *
849  * Returns pointer to a free send completion context; or NULL if
850  * the queue is empty.
851  *
852  * Usage: Called to acquire an SGE array before preparing a Send WR.
853  *
854  * The caller serializes calls to this function (per transport), and
855  * provides an effective memory barrier that flushes the new value
856  * of rb_sc_head.
857  */
858 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
859 {
860         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
861         struct rpcrdma_sendctx *sc;
862         unsigned long next_head;
863
864         next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
865
866         if (next_head == READ_ONCE(buf->rb_sc_tail))
867                 goto out_emptyq;
868
869         /* ORDER: item must be accessed _before_ head is updated */
870         sc = buf->rb_sc_ctxs[next_head];
871
872         /* Releasing the lock in the caller acts as a memory
873          * barrier that flushes rb_sc_head.
874          */
875         buf->rb_sc_head = next_head;
876
877         return sc;
878
879 out_emptyq:
880         /* The queue is "empty" if there have not been enough Send
881          * completions recently. This is a sign the Send Queue is
882          * backing up. Cause the caller to pause and try again.
883          */
884         xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
885         r_xprt->rx_stats.empty_sendctx_q++;
886         return NULL;
887 }
888
889 /**
890  * rpcrdma_sendctx_put_locked - Release a send context
891  * @r_xprt: controlling transport instance
892  * @sc: send context to release
893  *
894  * Usage: Called from Send completion to return a sendctxt
895  * to the queue.
896  *
897  * The caller serializes calls to this function (per transport).
898  */
899 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
900                                        struct rpcrdma_sendctx *sc)
901 {
902         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
903         unsigned long next_tail;
904
905         /* Unmap SGEs of previously completed but unsignaled
906          * Sends by walking up the queue until @sc is found.
907          */
908         next_tail = buf->rb_sc_tail;
909         do {
910                 next_tail = rpcrdma_sendctx_next(buf, next_tail);
911
912                 /* ORDER: item must be accessed _before_ tail is updated */
913                 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
914
915         } while (buf->rb_sc_ctxs[next_tail] != sc);
916
917         /* Paired with READ_ONCE */
918         smp_store_release(&buf->rb_sc_tail, next_tail);
919
920         xprt_write_space(&r_xprt->rx_xprt);
921 }
922
923 static void
924 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
925 {
926         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
927         struct rpcrdma_ia *ia = &r_xprt->rx_ia;
928         unsigned int count;
929
930         for (count = 0; count < ia->ri_max_rdma_segs; count++) {
931                 struct rpcrdma_mr *mr;
932                 int rc;
933
934                 mr = kzalloc(sizeof(*mr), GFP_NOFS);
935                 if (!mr)
936                         break;
937
938                 rc = frwr_init_mr(ia, mr);
939                 if (rc) {
940                         kfree(mr);
941                         break;
942                 }
943
944                 mr->mr_xprt = r_xprt;
945
946                 spin_lock(&buf->rb_lock);
947                 rpcrdma_mr_push(mr, &buf->rb_mrs);
948                 list_add(&mr->mr_all, &buf->rb_all_mrs);
949                 spin_unlock(&buf->rb_lock);
950         }
951
952         r_xprt->rx_stats.mrs_allocated += count;
953         trace_xprtrdma_createmrs(r_xprt, count);
954 }
955
956 static void
957 rpcrdma_mr_refresh_worker(struct work_struct *work)
958 {
959         struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
960                                                   rb_refresh_worker);
961         struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
962                                                    rx_buf);
963
964         rpcrdma_mrs_create(r_xprt);
965         xprt_write_space(&r_xprt->rx_xprt);
966 }
967
968 /**
969  * rpcrdma_mrs_refresh - Wake the MR refresh worker
970  * @r_xprt: controlling transport instance
971  *
972  */
973 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
974 {
975         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
976         struct rpcrdma_ep *ep = &r_xprt->rx_ep;
977
978         /* If there is no underlying device, it's no use to
979          * wake the refresh worker.
980          */
981         if (ep->rep_connected != -ENODEV) {
982                 /* The work is scheduled on a WQ_MEM_RECLAIM
983                  * workqueue in order to prevent MR allocation
984                  * from recursing into NFS during direct reclaim.
985                  */
986                 queue_work(xprtiod_workqueue, &buf->rb_refresh_worker);
987         }
988 }
989
990 /**
991  * rpcrdma_req_create - Allocate an rpcrdma_req object
992  * @r_xprt: controlling r_xprt
993  * @size: initial size, in bytes, of send and receive buffers
994  * @flags: GFP flags passed to memory allocators
995  *
996  * Returns an allocated and fully initialized rpcrdma_req or NULL.
997  */
998 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
999                                        gfp_t flags)
1000 {
1001         struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
1002         struct rpcrdma_req *req;
1003
1004         req = kzalloc(sizeof(*req), flags);
1005         if (req == NULL)
1006                 goto out1;
1007
1008         req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
1009         if (!req->rl_sendbuf)
1010                 goto out2;
1011
1012         req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
1013         if (!req->rl_recvbuf)
1014                 goto out3;
1015
1016         INIT_LIST_HEAD(&req->rl_free_mrs);
1017         INIT_LIST_HEAD(&req->rl_registered);
1018         spin_lock(&buffer->rb_lock);
1019         list_add(&req->rl_all, &buffer->rb_allreqs);
1020         spin_unlock(&buffer->rb_lock);
1021         return req;
1022
1023 out3:
1024         kfree(req->rl_sendbuf);
1025 out2:
1026         kfree(req);
1027 out1:
1028         return NULL;
1029 }
1030
1031 /**
1032  * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object
1033  * @r_xprt: controlling transport instance
1034  * @req: rpcrdma_req object to set up
1035  *
1036  * Returns zero on success, and a negative errno on failure.
1037  */
1038 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
1039 {
1040         struct rpcrdma_regbuf *rb;
1041         size_t maxhdrsize;
1042
1043         /* Compute maximum header buffer size in bytes */
1044         maxhdrsize = rpcrdma_fixed_maxsz + 3 +
1045                      r_xprt->rx_ia.ri_max_rdma_segs * rpcrdma_readchunk_maxsz;
1046         maxhdrsize *= sizeof(__be32);
1047         rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
1048                                   DMA_TO_DEVICE, GFP_KERNEL);
1049         if (!rb)
1050                 goto out;
1051
1052         if (!__rpcrdma_regbuf_dma_map(r_xprt, rb))
1053                 goto out_free;
1054
1055         req->rl_rdmabuf = rb;
1056         xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
1057         return 0;
1058
1059 out_free:
1060         rpcrdma_regbuf_free(rb);
1061 out:
1062         return -ENOMEM;
1063 }
1064
1065 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
1066  * and thus can be walked without holding rb_lock. Eg. the
1067  * caller is holding the transport send lock to exclude
1068  * device removal or disconnection.
1069  */
1070 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt)
1071 {
1072         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1073         struct rpcrdma_req *req;
1074         int rc;
1075
1076         list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
1077                 rc = rpcrdma_req_setup(r_xprt, req);
1078                 if (rc)
1079                         return rc;
1080         }
1081         return 0;
1082 }
1083
1084 static void rpcrdma_req_reset(struct rpcrdma_req *req)
1085 {
1086         /* Credits are valid for only one connection */
1087         req->rl_slot.rq_cong = 0;
1088
1089         rpcrdma_regbuf_free(req->rl_rdmabuf);
1090         req->rl_rdmabuf = NULL;
1091
1092         rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
1093         rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
1094 }
1095
1096 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
1097  * and thus can be walked without holding rb_lock. Eg. the
1098  * caller is holding the transport send lock to exclude
1099  * device removal or disconnection.
1100  */
1101 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
1102 {
1103         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1104         struct rpcrdma_req *req;
1105
1106         list_for_each_entry(req, &buf->rb_allreqs, rl_all)
1107                 rpcrdma_req_reset(req);
1108 }
1109
1110 /* No locking needed here. This function is called only by the
1111  * Receive completion handler.
1112  */
1113 static noinline
1114 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
1115                                        bool temp)
1116 {
1117         struct rpcrdma_rep *rep;
1118
1119         rep = kzalloc(sizeof(*rep), GFP_KERNEL);
1120         if (rep == NULL)
1121                 goto out;
1122
1123         rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep.rep_inline_recv,
1124                                                DMA_FROM_DEVICE, GFP_KERNEL);
1125         if (!rep->rr_rdmabuf)
1126                 goto out_free;
1127
1128         if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf))
1129                 goto out_free_regbuf;
1130
1131         xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
1132                      rdmab_length(rep->rr_rdmabuf));
1133         rep->rr_cqe.done = rpcrdma_wc_receive;
1134         rep->rr_rxprt = r_xprt;
1135         rep->rr_recv_wr.next = NULL;
1136         rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
1137         rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
1138         rep->rr_recv_wr.num_sge = 1;
1139         rep->rr_temp = temp;
1140         list_add(&rep->rr_all, &r_xprt->rx_buf.rb_all_reps);
1141         return rep;
1142
1143 out_free_regbuf:
1144         rpcrdma_regbuf_free(rep->rr_rdmabuf);
1145 out_free:
1146         kfree(rep);
1147 out:
1148         return NULL;
1149 }
1150
1151 /* No locking needed here. This function is invoked only by the
1152  * Receive completion handler, or during transport shutdown.
1153  */
1154 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
1155 {
1156         list_del(&rep->rr_all);
1157         rpcrdma_regbuf_free(rep->rr_rdmabuf);
1158         kfree(rep);
1159 }
1160
1161 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
1162 {
1163         struct llist_node *node;
1164
1165         /* Calls to llist_del_first are required to be serialized */
1166         node = llist_del_first(&buf->rb_free_reps);
1167         if (!node)
1168                 return NULL;
1169         return llist_entry(node, struct rpcrdma_rep, rr_node);
1170 }
1171
1172 static void rpcrdma_rep_put(struct rpcrdma_buffer *buf,
1173                             struct rpcrdma_rep *rep)
1174 {
1175         llist_add(&rep->rr_node, &buf->rb_free_reps);
1176 }
1177
1178 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1179 {
1180         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1181         struct rpcrdma_rep *rep;
1182
1183         list_for_each_entry(rep, &buf->rb_all_reps, rr_all) {
1184                 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1185                 rep->rr_temp = true;
1186         }
1187 }
1188
1189 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1190 {
1191         struct rpcrdma_rep *rep;
1192
1193         while ((rep = rpcrdma_rep_get_locked(buf)) != NULL)
1194                 rpcrdma_rep_destroy(rep);
1195 }
1196
1197 /**
1198  * rpcrdma_buffer_create - Create initial set of req/rep objects
1199  * @r_xprt: transport instance to (re)initialize
1200  *
1201  * Returns zero on success, otherwise a negative errno.
1202  */
1203 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1204 {
1205         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1206         int i, rc;
1207
1208         buf->rb_bc_srv_max_requests = 0;
1209         spin_lock_init(&buf->rb_lock);
1210         INIT_LIST_HEAD(&buf->rb_mrs);
1211         INIT_LIST_HEAD(&buf->rb_all_mrs);
1212         INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1213
1214         INIT_LIST_HEAD(&buf->rb_send_bufs);
1215         INIT_LIST_HEAD(&buf->rb_allreqs);
1216         INIT_LIST_HEAD(&buf->rb_all_reps);
1217
1218         rc = -ENOMEM;
1219         for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) {
1220                 struct rpcrdma_req *req;
1221
1222                 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2,
1223                                          GFP_KERNEL);
1224                 if (!req)
1225                         goto out;
1226                 list_add(&req->rl_list, &buf->rb_send_bufs);
1227         }
1228
1229         init_llist_head(&buf->rb_free_reps);
1230
1231         return 0;
1232 out:
1233         rpcrdma_buffer_destroy(buf);
1234         return rc;
1235 }
1236
1237 /**
1238  * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1239  * @req: unused object to be destroyed
1240  *
1241  * Relies on caller holding the transport send lock to protect
1242  * removing req->rl_all from buf->rb_all_reqs safely.
1243  */
1244 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1245 {
1246         struct rpcrdma_mr *mr;
1247
1248         list_del(&req->rl_all);
1249
1250         while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1251                 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1252
1253                 spin_lock(&buf->rb_lock);
1254                 list_del(&mr->mr_all);
1255                 spin_unlock(&buf->rb_lock);
1256
1257                 frwr_release_mr(mr);
1258         }
1259
1260         rpcrdma_regbuf_free(req->rl_recvbuf);
1261         rpcrdma_regbuf_free(req->rl_sendbuf);
1262         rpcrdma_regbuf_free(req->rl_rdmabuf);
1263         kfree(req);
1264 }
1265
1266 /**
1267  * rpcrdma_mrs_destroy - Release all of a transport's MRs
1268  * @r_xprt: controlling transport instance
1269  *
1270  * Relies on caller holding the transport send lock to protect
1271  * removing mr->mr_list from req->rl_free_mrs safely.
1272  */
1273 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1274 {
1275         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1276         struct rpcrdma_mr *mr;
1277
1278         cancel_work_sync(&buf->rb_refresh_worker);
1279
1280         spin_lock(&buf->rb_lock);
1281         while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1282                                               struct rpcrdma_mr,
1283                                               mr_all)) != NULL) {
1284                 list_del(&mr->mr_list);
1285                 list_del(&mr->mr_all);
1286                 spin_unlock(&buf->rb_lock);
1287
1288                 frwr_release_mr(mr);
1289
1290                 spin_lock(&buf->rb_lock);
1291         }
1292         spin_unlock(&buf->rb_lock);
1293 }
1294
1295 /**
1296  * rpcrdma_buffer_destroy - Release all hw resources
1297  * @buf: root control block for resources
1298  *
1299  * ORDERING: relies on a prior rpcrdma_xprt_drain :
1300  * - No more Send or Receive completions can occur
1301  * - All MRs, reps, and reqs are returned to their free lists
1302  */
1303 void
1304 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1305 {
1306         rpcrdma_reps_destroy(buf);
1307
1308         while (!list_empty(&buf->rb_send_bufs)) {
1309                 struct rpcrdma_req *req;
1310
1311                 req = list_first_entry(&buf->rb_send_bufs,
1312                                        struct rpcrdma_req, rl_list);
1313                 list_del(&req->rl_list);
1314                 rpcrdma_req_destroy(req);
1315         }
1316 }
1317
1318 /**
1319  * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1320  * @r_xprt: controlling transport
1321  *
1322  * Returns an initialized rpcrdma_mr or NULL if no free
1323  * rpcrdma_mr objects are available.
1324  */
1325 struct rpcrdma_mr *
1326 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1327 {
1328         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1329         struct rpcrdma_mr *mr;
1330
1331         spin_lock(&buf->rb_lock);
1332         mr = rpcrdma_mr_pop(&buf->rb_mrs);
1333         spin_unlock(&buf->rb_lock);
1334         return mr;
1335 }
1336
1337 /**
1338  * rpcrdma_mr_put - DMA unmap an MR and release it
1339  * @mr: MR to release
1340  *
1341  */
1342 void rpcrdma_mr_put(struct rpcrdma_mr *mr)
1343 {
1344         struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
1345
1346         if (mr->mr_dir != DMA_NONE) {
1347                 trace_xprtrdma_mr_unmap(mr);
1348                 ib_dma_unmap_sg(r_xprt->rx_ia.ri_id->device,
1349                                 mr->mr_sg, mr->mr_nents, mr->mr_dir);
1350                 mr->mr_dir = DMA_NONE;
1351         }
1352
1353         rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
1354 }
1355
1356 /**
1357  * rpcrdma_buffer_get - Get a request buffer
1358  * @buffers: Buffer pool from which to obtain a buffer
1359  *
1360  * Returns a fresh rpcrdma_req, or NULL if none are available.
1361  */
1362 struct rpcrdma_req *
1363 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1364 {
1365         struct rpcrdma_req *req;
1366
1367         spin_lock(&buffers->rb_lock);
1368         req = list_first_entry_or_null(&buffers->rb_send_bufs,
1369                                        struct rpcrdma_req, rl_list);
1370         if (req)
1371                 list_del_init(&req->rl_list);
1372         spin_unlock(&buffers->rb_lock);
1373         return req;
1374 }
1375
1376 /**
1377  * rpcrdma_buffer_put - Put request/reply buffers back into pool
1378  * @buffers: buffer pool
1379  * @req: object to return
1380  *
1381  */
1382 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1383 {
1384         if (req->rl_reply)
1385                 rpcrdma_rep_put(buffers, req->rl_reply);
1386         req->rl_reply = NULL;
1387
1388         spin_lock(&buffers->rb_lock);
1389         list_add(&req->rl_list, &buffers->rb_send_bufs);
1390         spin_unlock(&buffers->rb_lock);
1391 }
1392
1393 /**
1394  * rpcrdma_recv_buffer_put - Release rpcrdma_rep back to free list
1395  * @rep: rep to release
1396  *
1397  * Used after error conditions.
1398  */
1399 void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1400 {
1401         rpcrdma_rep_put(&rep->rr_rxprt->rx_buf, rep);
1402 }
1403
1404 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1405  *
1406  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1407  * receiving the payload of RDMA RECV operations. During Long Calls
1408  * or Replies they may be registered externally via frwr_map.
1409  */
1410 static struct rpcrdma_regbuf *
1411 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1412                      gfp_t flags)
1413 {
1414         struct rpcrdma_regbuf *rb;
1415
1416         rb = kmalloc(sizeof(*rb), flags);
1417         if (!rb)
1418                 return NULL;
1419         rb->rg_data = kmalloc(size, flags);
1420         if (!rb->rg_data) {
1421                 kfree(rb);
1422                 return NULL;
1423         }
1424
1425         rb->rg_device = NULL;
1426         rb->rg_direction = direction;
1427         rb->rg_iov.length = size;
1428         return rb;
1429 }
1430
1431 /**
1432  * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1433  * @rb: regbuf to reallocate
1434  * @size: size of buffer to be allocated, in bytes
1435  * @flags: GFP flags
1436  *
1437  * Returns true if reallocation was successful. If false is
1438  * returned, @rb is left untouched.
1439  */
1440 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1441 {
1442         void *buf;
1443
1444         buf = kmalloc(size, flags);
1445         if (!buf)
1446                 return false;
1447
1448         rpcrdma_regbuf_dma_unmap(rb);
1449         kfree(rb->rg_data);
1450
1451         rb->rg_data = buf;
1452         rb->rg_iov.length = size;
1453         return true;
1454 }
1455
1456 /**
1457  * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1458  * @r_xprt: controlling transport instance
1459  * @rb: regbuf to be mapped
1460  *
1461  * Returns true if the buffer is now DMA mapped to @r_xprt's device
1462  */
1463 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1464                               struct rpcrdma_regbuf *rb)
1465 {
1466         struct ib_device *device = r_xprt->rx_ia.ri_id->device;
1467
1468         if (rb->rg_direction == DMA_NONE)
1469                 return false;
1470
1471         rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1472                                             rdmab_length(rb), rb->rg_direction);
1473         if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1474                 trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1475                 return false;
1476         }
1477
1478         rb->rg_device = device;
1479         rb->rg_iov.lkey = r_xprt->rx_ia.ri_pd->local_dma_lkey;
1480         return true;
1481 }
1482
1483 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1484 {
1485         if (!rb)
1486                 return;
1487
1488         if (!rpcrdma_regbuf_is_mapped(rb))
1489                 return;
1490
1491         ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1492                             rb->rg_direction);
1493         rb->rg_device = NULL;
1494 }
1495
1496 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1497 {
1498         rpcrdma_regbuf_dma_unmap(rb);
1499         if (rb)
1500                 kfree(rb->rg_data);
1501         kfree(rb);
1502 }
1503
1504 /**
1505  * rpcrdma_ep_post - Post WRs to a transport's Send Queue
1506  * @ia: transport's device information
1507  * @ep: transport's RDMA endpoint information
1508  * @req: rpcrdma_req containing the Send WR to post
1509  *
1510  * Returns 0 if the post was successful, otherwise -ENOTCONN
1511  * is returned.
1512  */
1513 int
1514 rpcrdma_ep_post(struct rpcrdma_ia *ia,
1515                 struct rpcrdma_ep *ep,
1516                 struct rpcrdma_req *req)
1517 {
1518         struct ib_send_wr *send_wr = &req->rl_wr;
1519         int rc;
1520
1521         if (!ep->rep_send_count || kref_read(&req->rl_kref) > 1) {
1522                 send_wr->send_flags |= IB_SEND_SIGNALED;
1523                 ep->rep_send_count = ep->rep_send_batch;
1524         } else {
1525                 send_wr->send_flags &= ~IB_SEND_SIGNALED;
1526                 --ep->rep_send_count;
1527         }
1528
1529         rc = frwr_send(ia, req);
1530         trace_xprtrdma_post_send(req, rc);
1531         if (rc)
1532                 return -ENOTCONN;
1533         return 0;
1534 }
1535
1536 /**
1537  * rpcrdma_post_recvs - Refill the Receive Queue
1538  * @r_xprt: controlling transport instance
1539  * @temp: mark Receive buffers to be deleted after use
1540  *
1541  */
1542 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp)
1543 {
1544         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1545         struct rpcrdma_ep *ep = &r_xprt->rx_ep;
1546         struct ib_recv_wr *wr, *bad_wr;
1547         struct rpcrdma_rep *rep;
1548         int needed, count, rc;
1549
1550         rc = 0;
1551         count = 0;
1552
1553         needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1);
1554         if (likely(ep->rep_receive_count > needed))
1555                 goto out;
1556         needed -= ep->rep_receive_count;
1557         if (!temp)
1558                 needed += RPCRDMA_MAX_RECV_BATCH;
1559
1560         /* fast path: all needed reps can be found on the free list */
1561         wr = NULL;
1562         while (needed) {
1563                 rep = rpcrdma_rep_get_locked(buf);
1564                 if (rep && rep->rr_temp) {
1565                         rpcrdma_rep_destroy(rep);
1566                         continue;
1567                 }
1568                 if (!rep)
1569                         rep = rpcrdma_rep_create(r_xprt, temp);
1570                 if (!rep)
1571                         break;
1572
1573                 trace_xprtrdma_post_recv(rep);
1574                 rep->rr_recv_wr.next = wr;
1575                 wr = &rep->rr_recv_wr;
1576                 --needed;
1577                 ++count;
1578         }
1579         if (!wr)
1580                 goto out;
1581
1582         rc = ib_post_recv(r_xprt->rx_ia.ri_id->qp, wr,
1583                           (const struct ib_recv_wr **)&bad_wr);
1584 out:
1585         trace_xprtrdma_post_recvs(r_xprt, count, rc);
1586         if (rc) {
1587                 for (wr = bad_wr; wr;) {
1588                         struct rpcrdma_rep *rep;
1589
1590                         rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1591                         wr = wr->next;
1592                         rpcrdma_recv_buffer_put(rep);
1593                         --count;
1594                 }
1595         }
1596         ep->rep_receive_count += count;
1597         return;
1598 }