]> asedeno.scripts.mit.edu Git - linux.git/blob - net/tls/tls_device.c
Merge tag 'intel-pinctrl-fixes-v5.4-2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 /* device_offload_lock is used to synchronize tls_dev_add
42  * against NETDEV_DOWN notifications.
43  */
44 static DECLARE_RWSEM(device_offload_lock);
45
46 static void tls_device_gc_task(struct work_struct *work);
47
48 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
49 static LIST_HEAD(tls_device_gc_list);
50 static LIST_HEAD(tls_device_list);
51 static DEFINE_SPINLOCK(tls_device_lock);
52
53 static void tls_device_free_ctx(struct tls_context *ctx)
54 {
55         if (ctx->tx_conf == TLS_HW) {
56                 kfree(tls_offload_ctx_tx(ctx));
57                 kfree(ctx->tx.rec_seq);
58                 kfree(ctx->tx.iv);
59         }
60
61         if (ctx->rx_conf == TLS_HW)
62                 kfree(tls_offload_ctx_rx(ctx));
63
64         tls_ctx_free(NULL, ctx);
65 }
66
67 static void tls_device_gc_task(struct work_struct *work)
68 {
69         struct tls_context *ctx, *tmp;
70         unsigned long flags;
71         LIST_HEAD(gc_list);
72
73         spin_lock_irqsave(&tls_device_lock, flags);
74         list_splice_init(&tls_device_gc_list, &gc_list);
75         spin_unlock_irqrestore(&tls_device_lock, flags);
76
77         list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
78                 struct net_device *netdev = ctx->netdev;
79
80                 if (netdev && ctx->tx_conf == TLS_HW) {
81                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
82                                                         TLS_OFFLOAD_CTX_DIR_TX);
83                         dev_put(netdev);
84                         ctx->netdev = NULL;
85                 }
86
87                 list_del(&ctx->list);
88                 tls_device_free_ctx(ctx);
89         }
90 }
91
92 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
93 {
94         unsigned long flags;
95
96         spin_lock_irqsave(&tls_device_lock, flags);
97         list_move_tail(&ctx->list, &tls_device_gc_list);
98
99         /* schedule_work inside the spinlock
100          * to make sure tls_device_down waits for that work.
101          */
102         schedule_work(&tls_device_gc_work);
103
104         spin_unlock_irqrestore(&tls_device_lock, flags);
105 }
106
107 /* We assume that the socket is already connected */
108 static struct net_device *get_netdev_for_sock(struct sock *sk)
109 {
110         struct dst_entry *dst = sk_dst_get(sk);
111         struct net_device *netdev = NULL;
112
113         if (likely(dst)) {
114                 netdev = dst->dev;
115                 dev_hold(netdev);
116         }
117
118         dst_release(dst);
119
120         return netdev;
121 }
122
123 static void destroy_record(struct tls_record_info *record)
124 {
125         int i;
126
127         for (i = 0; i < record->num_frags; i++)
128                 __skb_frag_unref(&record->frags[i]);
129         kfree(record);
130 }
131
132 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
133 {
134         struct tls_record_info *info, *temp;
135
136         list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
137                 list_del(&info->list);
138                 destroy_record(info);
139         }
140
141         offload_ctx->retransmit_hint = NULL;
142 }
143
144 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
145 {
146         struct tls_context *tls_ctx = tls_get_ctx(sk);
147         struct tls_record_info *info, *temp;
148         struct tls_offload_context_tx *ctx;
149         u64 deleted_records = 0;
150         unsigned long flags;
151
152         if (!tls_ctx)
153                 return;
154
155         ctx = tls_offload_ctx_tx(tls_ctx);
156
157         spin_lock_irqsave(&ctx->lock, flags);
158         info = ctx->retransmit_hint;
159         if (info && !before(acked_seq, info->end_seq))
160                 ctx->retransmit_hint = NULL;
161
162         list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
163                 if (before(acked_seq, info->end_seq))
164                         break;
165                 list_del(&info->list);
166
167                 destroy_record(info);
168                 deleted_records++;
169         }
170
171         ctx->unacked_record_sn += deleted_records;
172         spin_unlock_irqrestore(&ctx->lock, flags);
173 }
174
175 /* At this point, there should be no references on this
176  * socket and no in-flight SKBs associated with this
177  * socket, so it is safe to free all the resources.
178  */
179 static void tls_device_sk_destruct(struct sock *sk)
180 {
181         struct tls_context *tls_ctx = tls_get_ctx(sk);
182         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
183
184         tls_ctx->sk_destruct(sk);
185
186         if (tls_ctx->tx_conf == TLS_HW) {
187                 if (ctx->open_record)
188                         destroy_record(ctx->open_record);
189                 delete_all_records(ctx);
190                 crypto_free_aead(ctx->aead_send);
191                 clean_acked_data_disable(inet_csk(sk));
192         }
193
194         if (refcount_dec_and_test(&tls_ctx->refcount))
195                 tls_device_queue_ctx_destruction(tls_ctx);
196 }
197
198 void tls_device_free_resources_tx(struct sock *sk)
199 {
200         struct tls_context *tls_ctx = tls_get_ctx(sk);
201
202         tls_free_partial_record(sk, tls_ctx);
203 }
204
205 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
206                                  u32 seq)
207 {
208         struct net_device *netdev;
209         struct sk_buff *skb;
210         int err = 0;
211         u8 *rcd_sn;
212
213         skb = tcp_write_queue_tail(sk);
214         if (skb)
215                 TCP_SKB_CB(skb)->eor = 1;
216
217         rcd_sn = tls_ctx->tx.rec_seq;
218
219         down_read(&device_offload_lock);
220         netdev = tls_ctx->netdev;
221         if (netdev)
222                 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
223                                                          rcd_sn,
224                                                          TLS_OFFLOAD_CTX_DIR_TX);
225         up_read(&device_offload_lock);
226         if (err)
227                 return;
228
229         clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
230 }
231
232 static void tls_append_frag(struct tls_record_info *record,
233                             struct page_frag *pfrag,
234                             int size)
235 {
236         skb_frag_t *frag;
237
238         frag = &record->frags[record->num_frags - 1];
239         if (skb_frag_page(frag) == pfrag->page &&
240             skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
241                 skb_frag_size_add(frag, size);
242         } else {
243                 ++frag;
244                 __skb_frag_set_page(frag, pfrag->page);
245                 skb_frag_off_set(frag, pfrag->offset);
246                 skb_frag_size_set(frag, size);
247                 ++record->num_frags;
248                 get_page(pfrag->page);
249         }
250
251         pfrag->offset += size;
252         record->len += size;
253 }
254
255 static int tls_push_record(struct sock *sk,
256                            struct tls_context *ctx,
257                            struct tls_offload_context_tx *offload_ctx,
258                            struct tls_record_info *record,
259                            int flags)
260 {
261         struct tls_prot_info *prot = &ctx->prot_info;
262         struct tcp_sock *tp = tcp_sk(sk);
263         skb_frag_t *frag;
264         int i;
265
266         record->end_seq = tp->write_seq + record->len;
267         list_add_tail_rcu(&record->list, &offload_ctx->records_list);
268         offload_ctx->open_record = NULL;
269
270         if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
271                 tls_device_resync_tx(sk, ctx, tp->write_seq);
272
273         tls_advance_record_sn(sk, prot, &ctx->tx);
274
275         for (i = 0; i < record->num_frags; i++) {
276                 frag = &record->frags[i];
277                 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
278                 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
279                             skb_frag_size(frag), skb_frag_off(frag));
280                 sk_mem_charge(sk, skb_frag_size(frag));
281                 get_page(skb_frag_page(frag));
282         }
283         sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
284
285         /* all ready, send */
286         return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
287 }
288
289 static int tls_device_record_close(struct sock *sk,
290                                    struct tls_context *ctx,
291                                    struct tls_record_info *record,
292                                    struct page_frag *pfrag,
293                                    unsigned char record_type)
294 {
295         struct tls_prot_info *prot = &ctx->prot_info;
296         int ret;
297
298         /* append tag
299          * device will fill in the tag, we just need to append a placeholder
300          * use socket memory to improve coalescing (re-using a single buffer
301          * increases frag count)
302          * if we can't allocate memory now, steal some back from data
303          */
304         if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
305                                         sk->sk_allocation))) {
306                 ret = 0;
307                 tls_append_frag(record, pfrag, prot->tag_size);
308         } else {
309                 ret = prot->tag_size;
310                 if (record->len <= prot->overhead_size)
311                         return -ENOMEM;
312         }
313
314         /* fill prepend */
315         tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
316                          record->len - prot->overhead_size,
317                          record_type, prot->version);
318         return ret;
319 }
320
321 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
322                                  struct page_frag *pfrag,
323                                  size_t prepend_size)
324 {
325         struct tls_record_info *record;
326         skb_frag_t *frag;
327
328         record = kmalloc(sizeof(*record), GFP_KERNEL);
329         if (!record)
330                 return -ENOMEM;
331
332         frag = &record->frags[0];
333         __skb_frag_set_page(frag, pfrag->page);
334         skb_frag_off_set(frag, pfrag->offset);
335         skb_frag_size_set(frag, prepend_size);
336
337         get_page(pfrag->page);
338         pfrag->offset += prepend_size;
339
340         record->num_frags = 1;
341         record->len = prepend_size;
342         offload_ctx->open_record = record;
343         return 0;
344 }
345
346 static int tls_do_allocation(struct sock *sk,
347                              struct tls_offload_context_tx *offload_ctx,
348                              struct page_frag *pfrag,
349                              size_t prepend_size)
350 {
351         int ret;
352
353         if (!offload_ctx->open_record) {
354                 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
355                                                    sk->sk_allocation))) {
356                         sk->sk_prot->enter_memory_pressure(sk);
357                         sk_stream_moderate_sndbuf(sk);
358                         return -ENOMEM;
359                 }
360
361                 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
362                 if (ret)
363                         return ret;
364
365                 if (pfrag->size > pfrag->offset)
366                         return 0;
367         }
368
369         if (!sk_page_frag_refill(sk, pfrag))
370                 return -ENOMEM;
371
372         return 0;
373 }
374
375 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
376 {
377         size_t pre_copy, nocache;
378
379         pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
380         if (pre_copy) {
381                 pre_copy = min(pre_copy, bytes);
382                 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
383                         return -EFAULT;
384                 bytes -= pre_copy;
385                 addr += pre_copy;
386         }
387
388         nocache = round_down(bytes, SMP_CACHE_BYTES);
389         if (copy_from_iter_nocache(addr, nocache, i) != nocache)
390                 return -EFAULT;
391         bytes -= nocache;
392         addr += nocache;
393
394         if (bytes && copy_from_iter(addr, bytes, i) != bytes)
395                 return -EFAULT;
396
397         return 0;
398 }
399
400 static int tls_push_data(struct sock *sk,
401                          struct iov_iter *msg_iter,
402                          size_t size, int flags,
403                          unsigned char record_type)
404 {
405         struct tls_context *tls_ctx = tls_get_ctx(sk);
406         struct tls_prot_info *prot = &tls_ctx->prot_info;
407         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
408         int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
409         struct tls_record_info *record = ctx->open_record;
410         int tls_push_record_flags;
411         struct page_frag *pfrag;
412         size_t orig_size = size;
413         u32 max_open_record_len;
414         int copy, rc = 0;
415         bool done = false;
416         long timeo;
417
418         if (flags &
419             ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
420                 return -ENOTSUPP;
421
422         if (sk->sk_err)
423                 return -sk->sk_err;
424
425         flags |= MSG_SENDPAGE_DECRYPTED;
426         tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
427
428         timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
429         if (tls_is_partially_sent_record(tls_ctx)) {
430                 rc = tls_push_partial_record(sk, tls_ctx, flags);
431                 if (rc < 0)
432                         return rc;
433         }
434
435         pfrag = sk_page_frag(sk);
436
437         /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
438          * we need to leave room for an authentication tag.
439          */
440         max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
441                               prot->prepend_size;
442         do {
443                 rc = tls_do_allocation(sk, ctx, pfrag,
444                                        prot->prepend_size);
445                 if (rc) {
446                         rc = sk_stream_wait_memory(sk, &timeo);
447                         if (!rc)
448                                 continue;
449
450                         record = ctx->open_record;
451                         if (!record)
452                                 break;
453 handle_error:
454                         if (record_type != TLS_RECORD_TYPE_DATA) {
455                                 /* avoid sending partial
456                                  * record with type !=
457                                  * application_data
458                                  */
459                                 size = orig_size;
460                                 destroy_record(record);
461                                 ctx->open_record = NULL;
462                         } else if (record->len > prot->prepend_size) {
463                                 goto last_record;
464                         }
465
466                         break;
467                 }
468
469                 record = ctx->open_record;
470                 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
471                 copy = min_t(size_t, copy, (max_open_record_len - record->len));
472
473                 rc = tls_device_copy_data(page_address(pfrag->page) +
474                                           pfrag->offset, copy, msg_iter);
475                 if (rc)
476                         goto handle_error;
477                 tls_append_frag(record, pfrag, copy);
478
479                 size -= copy;
480                 if (!size) {
481 last_record:
482                         tls_push_record_flags = flags;
483                         if (more) {
484                                 tls_ctx->pending_open_record_frags =
485                                                 !!record->num_frags;
486                                 break;
487                         }
488
489                         done = true;
490                 }
491
492                 if (done || record->len >= max_open_record_len ||
493                     (record->num_frags >= MAX_SKB_FRAGS - 1)) {
494                         rc = tls_device_record_close(sk, tls_ctx, record,
495                                                      pfrag, record_type);
496                         if (rc) {
497                                 if (rc > 0) {
498                                         size += rc;
499                                 } else {
500                                         size = orig_size;
501                                         destroy_record(record);
502                                         ctx->open_record = NULL;
503                                         break;
504                                 }
505                         }
506
507                         rc = tls_push_record(sk,
508                                              tls_ctx,
509                                              ctx,
510                                              record,
511                                              tls_push_record_flags);
512                         if (rc < 0)
513                                 break;
514                 }
515         } while (!done);
516
517         if (orig_size - size > 0)
518                 rc = orig_size - size;
519
520         return rc;
521 }
522
523 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
524 {
525         unsigned char record_type = TLS_RECORD_TYPE_DATA;
526         int rc;
527
528         lock_sock(sk);
529
530         if (unlikely(msg->msg_controllen)) {
531                 rc = tls_proccess_cmsg(sk, msg, &record_type);
532                 if (rc)
533                         goto out;
534         }
535
536         rc = tls_push_data(sk, &msg->msg_iter, size,
537                            msg->msg_flags, record_type);
538
539 out:
540         release_sock(sk);
541         return rc;
542 }
543
544 int tls_device_sendpage(struct sock *sk, struct page *page,
545                         int offset, size_t size, int flags)
546 {
547         struct iov_iter msg_iter;
548         char *kaddr = kmap(page);
549         struct kvec iov;
550         int rc;
551
552         if (flags & MSG_SENDPAGE_NOTLAST)
553                 flags |= MSG_MORE;
554
555         lock_sock(sk);
556
557         if (flags & MSG_OOB) {
558                 rc = -ENOTSUPP;
559                 goto out;
560         }
561
562         iov.iov_base = kaddr + offset;
563         iov.iov_len = size;
564         iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
565         rc = tls_push_data(sk, &msg_iter, size,
566                            flags, TLS_RECORD_TYPE_DATA);
567         kunmap(page);
568
569 out:
570         release_sock(sk);
571         return rc;
572 }
573
574 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
575                                        u32 seq, u64 *p_record_sn)
576 {
577         u64 record_sn = context->hint_record_sn;
578         struct tls_record_info *info;
579
580         info = context->retransmit_hint;
581         if (!info ||
582             before(seq, info->end_seq - info->len)) {
583                 /* if retransmit_hint is irrelevant start
584                  * from the beggining of the list
585                  */
586                 info = list_first_entry_or_null(&context->records_list,
587                                                 struct tls_record_info, list);
588                 if (!info)
589                         return NULL;
590                 record_sn = context->unacked_record_sn;
591         }
592
593         /* We just need the _rcu for the READ_ONCE() */
594         rcu_read_lock();
595         list_for_each_entry_from_rcu(info, &context->records_list, list) {
596                 if (before(seq, info->end_seq)) {
597                         if (!context->retransmit_hint ||
598                             after(info->end_seq,
599                                   context->retransmit_hint->end_seq)) {
600                                 context->hint_record_sn = record_sn;
601                                 context->retransmit_hint = info;
602                         }
603                         *p_record_sn = record_sn;
604                         goto exit_rcu_unlock;
605                 }
606                 record_sn++;
607         }
608         info = NULL;
609
610 exit_rcu_unlock:
611         rcu_read_unlock();
612         return info;
613 }
614 EXPORT_SYMBOL(tls_get_record);
615
616 static int tls_device_push_pending_record(struct sock *sk, int flags)
617 {
618         struct iov_iter msg_iter;
619
620         iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
621         return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
622 }
623
624 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
625 {
626         if (!sk->sk_write_pending && tls_is_partially_sent_record(ctx)) {
627                 gfp_t sk_allocation = sk->sk_allocation;
628
629                 sk->sk_allocation = GFP_ATOMIC;
630                 tls_push_partial_record(sk, ctx,
631                                         MSG_DONTWAIT | MSG_NOSIGNAL |
632                                         MSG_SENDPAGE_DECRYPTED);
633                 sk->sk_allocation = sk_allocation;
634         }
635 }
636
637 static void tls_device_resync_rx(struct tls_context *tls_ctx,
638                                  struct sock *sk, u32 seq, u8 *rcd_sn)
639 {
640         struct net_device *netdev;
641
642         if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
643                 return;
644         netdev = READ_ONCE(tls_ctx->netdev);
645         if (netdev)
646                 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
647                                                    TLS_OFFLOAD_CTX_DIR_RX);
648         clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
649 }
650
651 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
652 {
653         struct tls_context *tls_ctx = tls_get_ctx(sk);
654         struct tls_offload_context_rx *rx_ctx;
655         u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
656         struct tls_prot_info *prot;
657         u32 is_req_pending;
658         s64 resync_req;
659         u32 req_seq;
660
661         if (tls_ctx->rx_conf != TLS_HW)
662                 return;
663
664         prot = &tls_ctx->prot_info;
665         rx_ctx = tls_offload_ctx_rx(tls_ctx);
666         memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
667
668         switch (rx_ctx->resync_type) {
669         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
670                 resync_req = atomic64_read(&rx_ctx->resync_req);
671                 req_seq = resync_req >> 32;
672                 seq += TLS_HEADER_SIZE - 1;
673                 is_req_pending = resync_req;
674
675                 if (likely(!is_req_pending) || req_seq != seq ||
676                     !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
677                         return;
678                 break;
679         case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
680                 if (likely(!rx_ctx->resync_nh_do_now))
681                         return;
682
683                 /* head of next rec is already in, note that the sock_inq will
684                  * include the currently parsed message when called from parser
685                  */
686                 if (tcp_inq(sk) > rcd_len)
687                         return;
688
689                 rx_ctx->resync_nh_do_now = 0;
690                 seq += rcd_len;
691                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
692                 break;
693         }
694
695         tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
696 }
697
698 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
699                                            struct tls_offload_context_rx *ctx,
700                                            struct sock *sk, struct sk_buff *skb)
701 {
702         struct strp_msg *rxm;
703
704         /* device will request resyncs by itself based on stream scan */
705         if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
706                 return;
707         /* already scheduled */
708         if (ctx->resync_nh_do_now)
709                 return;
710         /* seen decrypted fragments since last fully-failed record */
711         if (ctx->resync_nh_reset) {
712                 ctx->resync_nh_reset = 0;
713                 ctx->resync_nh.decrypted_failed = 1;
714                 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
715                 return;
716         }
717
718         if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
719                 return;
720
721         /* doing resync, bump the next target in case it fails */
722         if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
723                 ctx->resync_nh.decrypted_tgt *= 2;
724         else
725                 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
726
727         rxm = strp_msg(skb);
728
729         /* head of next rec is already in, parser will sync for us */
730         if (tcp_inq(sk) > rxm->full_len) {
731                 ctx->resync_nh_do_now = 1;
732         } else {
733                 struct tls_prot_info *prot = &tls_ctx->prot_info;
734                 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
735
736                 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
737                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
738
739                 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
740                                      rcd_sn);
741         }
742 }
743
744 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
745 {
746         struct strp_msg *rxm = strp_msg(skb);
747         int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
748         struct sk_buff *skb_iter, *unused;
749         struct scatterlist sg[1];
750         char *orig_buf, *buf;
751
752         orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
753                            TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
754         if (!orig_buf)
755                 return -ENOMEM;
756         buf = orig_buf;
757
758         nsg = skb_cow_data(skb, 0, &unused);
759         if (unlikely(nsg < 0)) {
760                 err = nsg;
761                 goto free_buf;
762         }
763
764         sg_init_table(sg, 1);
765         sg_set_buf(&sg[0], buf,
766                    rxm->full_len + TLS_HEADER_SIZE +
767                    TLS_CIPHER_AES_GCM_128_IV_SIZE);
768         err = skb_copy_bits(skb, offset, buf,
769                             TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
770         if (err)
771                 goto free_buf;
772
773         /* We are interested only in the decrypted data not the auth */
774         err = decrypt_skb(sk, skb, sg);
775         if (err != -EBADMSG)
776                 goto free_buf;
777         else
778                 err = 0;
779
780         data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
781
782         if (skb_pagelen(skb) > offset) {
783                 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
784
785                 if (skb->decrypted) {
786                         err = skb_store_bits(skb, offset, buf, copy);
787                         if (err)
788                                 goto free_buf;
789                 }
790
791                 offset += copy;
792                 buf += copy;
793         }
794
795         pos = skb_pagelen(skb);
796         skb_walk_frags(skb, skb_iter) {
797                 int frag_pos;
798
799                 /* Practically all frags must belong to msg if reencrypt
800                  * is needed with current strparser and coalescing logic,
801                  * but strparser may "get optimized", so let's be safe.
802                  */
803                 if (pos + skb_iter->len <= offset)
804                         goto done_with_frag;
805                 if (pos >= data_len + rxm->offset)
806                         break;
807
808                 frag_pos = offset - pos;
809                 copy = min_t(int, skb_iter->len - frag_pos,
810                              data_len + rxm->offset - offset);
811
812                 if (skb_iter->decrypted) {
813                         err = skb_store_bits(skb_iter, frag_pos, buf, copy);
814                         if (err)
815                                 goto free_buf;
816                 }
817
818                 offset += copy;
819                 buf += copy;
820 done_with_frag:
821                 pos += skb_iter->len;
822         }
823
824 free_buf:
825         kfree(orig_buf);
826         return err;
827 }
828
829 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
830 {
831         struct tls_context *tls_ctx = tls_get_ctx(sk);
832         struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
833         int is_decrypted = skb->decrypted;
834         int is_encrypted = !is_decrypted;
835         struct sk_buff *skb_iter;
836
837         /* Check if all the data is decrypted already */
838         skb_walk_frags(skb, skb_iter) {
839                 is_decrypted &= skb_iter->decrypted;
840                 is_encrypted &= !skb_iter->decrypted;
841         }
842
843         ctx->sw.decrypted |= is_decrypted;
844
845         /* Return immediately if the record is either entirely plaintext or
846          * entirely ciphertext. Otherwise handle reencrypt partially decrypted
847          * record.
848          */
849         if (is_decrypted) {
850                 ctx->resync_nh_reset = 1;
851                 return 0;
852         }
853         if (is_encrypted) {
854                 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
855                 return 0;
856         }
857
858         ctx->resync_nh_reset = 1;
859         return tls_device_reencrypt(sk, skb);
860 }
861
862 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
863                               struct net_device *netdev)
864 {
865         if (sk->sk_destruct != tls_device_sk_destruct) {
866                 refcount_set(&ctx->refcount, 1);
867                 dev_hold(netdev);
868                 ctx->netdev = netdev;
869                 spin_lock_irq(&tls_device_lock);
870                 list_add_tail(&ctx->list, &tls_device_list);
871                 spin_unlock_irq(&tls_device_lock);
872
873                 ctx->sk_destruct = sk->sk_destruct;
874                 sk->sk_destruct = tls_device_sk_destruct;
875         }
876 }
877
878 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
879 {
880         u16 nonce_size, tag_size, iv_size, rec_seq_size;
881         struct tls_context *tls_ctx = tls_get_ctx(sk);
882         struct tls_prot_info *prot = &tls_ctx->prot_info;
883         struct tls_record_info *start_marker_record;
884         struct tls_offload_context_tx *offload_ctx;
885         struct tls_crypto_info *crypto_info;
886         struct net_device *netdev;
887         char *iv, *rec_seq;
888         struct sk_buff *skb;
889         __be64 rcd_sn;
890         int rc;
891
892         if (!ctx)
893                 return -EINVAL;
894
895         if (ctx->priv_ctx_tx)
896                 return -EEXIST;
897
898         start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
899         if (!start_marker_record)
900                 return -ENOMEM;
901
902         offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
903         if (!offload_ctx) {
904                 rc = -ENOMEM;
905                 goto free_marker_record;
906         }
907
908         crypto_info = &ctx->crypto_send.info;
909         if (crypto_info->version != TLS_1_2_VERSION) {
910                 rc = -EOPNOTSUPP;
911                 goto free_offload_ctx;
912         }
913
914         switch (crypto_info->cipher_type) {
915         case TLS_CIPHER_AES_GCM_128:
916                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
917                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
918                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
919                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
920                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
921                 rec_seq =
922                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
923                 break;
924         default:
925                 rc = -EINVAL;
926                 goto free_offload_ctx;
927         }
928
929         /* Sanity-check the rec_seq_size for stack allocations */
930         if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
931                 rc = -EINVAL;
932                 goto free_offload_ctx;
933         }
934
935         prot->version = crypto_info->version;
936         prot->cipher_type = crypto_info->cipher_type;
937         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
938         prot->tag_size = tag_size;
939         prot->overhead_size = prot->prepend_size + prot->tag_size;
940         prot->iv_size = iv_size;
941         ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
942                              GFP_KERNEL);
943         if (!ctx->tx.iv) {
944                 rc = -ENOMEM;
945                 goto free_offload_ctx;
946         }
947
948         memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
949
950         prot->rec_seq_size = rec_seq_size;
951         ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
952         if (!ctx->tx.rec_seq) {
953                 rc = -ENOMEM;
954                 goto free_iv;
955         }
956
957         rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
958         if (rc)
959                 goto free_rec_seq;
960
961         /* start at rec_seq - 1 to account for the start marker record */
962         memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
963         offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
964
965         start_marker_record->end_seq = tcp_sk(sk)->write_seq;
966         start_marker_record->len = 0;
967         start_marker_record->num_frags = 0;
968
969         INIT_LIST_HEAD(&offload_ctx->records_list);
970         list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
971         spin_lock_init(&offload_ctx->lock);
972         sg_init_table(offload_ctx->sg_tx_data,
973                       ARRAY_SIZE(offload_ctx->sg_tx_data));
974
975         clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
976         ctx->push_pending_record = tls_device_push_pending_record;
977
978         /* TLS offload is greatly simplified if we don't send
979          * SKBs where only part of the payload needs to be encrypted.
980          * So mark the last skb in the write queue as end of record.
981          */
982         skb = tcp_write_queue_tail(sk);
983         if (skb)
984                 TCP_SKB_CB(skb)->eor = 1;
985
986         netdev = get_netdev_for_sock(sk);
987         if (!netdev) {
988                 pr_err_ratelimited("%s: netdev not found\n", __func__);
989                 rc = -EINVAL;
990                 goto disable_cad;
991         }
992
993         if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
994                 rc = -ENOTSUPP;
995                 goto release_netdev;
996         }
997
998         /* Avoid offloading if the device is down
999          * We don't want to offload new flows after
1000          * the NETDEV_DOWN event
1001          *
1002          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1003          * handler thus protecting from the device going down before
1004          * ctx was added to tls_device_list.
1005          */
1006         down_read(&device_offload_lock);
1007         if (!(netdev->flags & IFF_UP)) {
1008                 rc = -EINVAL;
1009                 goto release_lock;
1010         }
1011
1012         ctx->priv_ctx_tx = offload_ctx;
1013         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1014                                              &ctx->crypto_send.info,
1015                                              tcp_sk(sk)->write_seq);
1016         if (rc)
1017                 goto release_lock;
1018
1019         tls_device_attach(ctx, sk, netdev);
1020         up_read(&device_offload_lock);
1021
1022         /* following this assignment tls_is_sk_tx_device_offloaded
1023          * will return true and the context might be accessed
1024          * by the netdev's xmit function.
1025          */
1026         smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1027         dev_put(netdev);
1028
1029         return 0;
1030
1031 release_lock:
1032         up_read(&device_offload_lock);
1033 release_netdev:
1034         dev_put(netdev);
1035 disable_cad:
1036         clean_acked_data_disable(inet_csk(sk));
1037         crypto_free_aead(offload_ctx->aead_send);
1038 free_rec_seq:
1039         kfree(ctx->tx.rec_seq);
1040 free_iv:
1041         kfree(ctx->tx.iv);
1042 free_offload_ctx:
1043         kfree(offload_ctx);
1044         ctx->priv_ctx_tx = NULL;
1045 free_marker_record:
1046         kfree(start_marker_record);
1047         return rc;
1048 }
1049
1050 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1051 {
1052         struct tls_offload_context_rx *context;
1053         struct net_device *netdev;
1054         int rc = 0;
1055
1056         if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1057                 return -EOPNOTSUPP;
1058
1059         netdev = get_netdev_for_sock(sk);
1060         if (!netdev) {
1061                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1062                 return -EINVAL;
1063         }
1064
1065         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1066                 rc = -ENOTSUPP;
1067                 goto release_netdev;
1068         }
1069
1070         /* Avoid offloading if the device is down
1071          * We don't want to offload new flows after
1072          * the NETDEV_DOWN event
1073          *
1074          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1075          * handler thus protecting from the device going down before
1076          * ctx was added to tls_device_list.
1077          */
1078         down_read(&device_offload_lock);
1079         if (!(netdev->flags & IFF_UP)) {
1080                 rc = -EINVAL;
1081                 goto release_lock;
1082         }
1083
1084         context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1085         if (!context) {
1086                 rc = -ENOMEM;
1087                 goto release_lock;
1088         }
1089         context->resync_nh_reset = 1;
1090
1091         ctx->priv_ctx_rx = context;
1092         rc = tls_set_sw_offload(sk, ctx, 0);
1093         if (rc)
1094                 goto release_ctx;
1095
1096         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1097                                              &ctx->crypto_recv.info,
1098                                              tcp_sk(sk)->copied_seq);
1099         if (rc)
1100                 goto free_sw_resources;
1101
1102         tls_device_attach(ctx, sk, netdev);
1103         up_read(&device_offload_lock);
1104
1105         dev_put(netdev);
1106
1107         return 0;
1108
1109 free_sw_resources:
1110         up_read(&device_offload_lock);
1111         tls_sw_free_resources_rx(sk);
1112         down_read(&device_offload_lock);
1113 release_ctx:
1114         ctx->priv_ctx_rx = NULL;
1115 release_lock:
1116         up_read(&device_offload_lock);
1117 release_netdev:
1118         dev_put(netdev);
1119         return rc;
1120 }
1121
1122 void tls_device_offload_cleanup_rx(struct sock *sk)
1123 {
1124         struct tls_context *tls_ctx = tls_get_ctx(sk);
1125         struct net_device *netdev;
1126
1127         down_read(&device_offload_lock);
1128         netdev = tls_ctx->netdev;
1129         if (!netdev)
1130                 goto out;
1131
1132         netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1133                                         TLS_OFFLOAD_CTX_DIR_RX);
1134
1135         if (tls_ctx->tx_conf != TLS_HW) {
1136                 dev_put(netdev);
1137                 tls_ctx->netdev = NULL;
1138         }
1139 out:
1140         up_read(&device_offload_lock);
1141         tls_sw_release_resources_rx(sk);
1142 }
1143
1144 static int tls_device_down(struct net_device *netdev)
1145 {
1146         struct tls_context *ctx, *tmp;
1147         unsigned long flags;
1148         LIST_HEAD(list);
1149
1150         /* Request a write lock to block new offload attempts */
1151         down_write(&device_offload_lock);
1152
1153         spin_lock_irqsave(&tls_device_lock, flags);
1154         list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1155                 if (ctx->netdev != netdev ||
1156                     !refcount_inc_not_zero(&ctx->refcount))
1157                         continue;
1158
1159                 list_move(&ctx->list, &list);
1160         }
1161         spin_unlock_irqrestore(&tls_device_lock, flags);
1162
1163         list_for_each_entry_safe(ctx, tmp, &list, list) {
1164                 if (ctx->tx_conf == TLS_HW)
1165                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1166                                                         TLS_OFFLOAD_CTX_DIR_TX);
1167                 if (ctx->rx_conf == TLS_HW)
1168                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1169                                                         TLS_OFFLOAD_CTX_DIR_RX);
1170                 WRITE_ONCE(ctx->netdev, NULL);
1171                 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1172                 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1173                         usleep_range(10, 200);
1174                 dev_put(netdev);
1175                 list_del_init(&ctx->list);
1176
1177                 if (refcount_dec_and_test(&ctx->refcount))
1178                         tls_device_free_ctx(ctx);
1179         }
1180
1181         up_write(&device_offload_lock);
1182
1183         flush_work(&tls_device_gc_work);
1184
1185         return NOTIFY_DONE;
1186 }
1187
1188 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1189                          void *ptr)
1190 {
1191         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1192
1193         if (!dev->tlsdev_ops &&
1194             !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1195                 return NOTIFY_DONE;
1196
1197         switch (event) {
1198         case NETDEV_REGISTER:
1199         case NETDEV_FEAT_CHANGE:
1200                 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1201                     !dev->tlsdev_ops->tls_dev_resync)
1202                         return NOTIFY_BAD;
1203
1204                 if  (dev->tlsdev_ops &&
1205                      dev->tlsdev_ops->tls_dev_add &&
1206                      dev->tlsdev_ops->tls_dev_del)
1207                         return NOTIFY_DONE;
1208                 else
1209                         return NOTIFY_BAD;
1210         case NETDEV_DOWN:
1211                 return tls_device_down(dev);
1212         }
1213         return NOTIFY_DONE;
1214 }
1215
1216 static struct notifier_block tls_dev_notifier = {
1217         .notifier_call  = tls_dev_event,
1218 };
1219
1220 void __init tls_device_init(void)
1221 {
1222         register_netdevice_notifier(&tls_dev_notifier);
1223 }
1224
1225 void __exit tls_device_cleanup(void)
1226 {
1227         unregister_netdevice_notifier(&tls_dev_notifier);
1228         flush_work(&tls_device_gc_work);
1229         clean_acked_data_flush();
1230 }