]> asedeno.scripts.mit.edu Git - linux.git/blob - net/tls/tls_device.c
Merge tag 'asoc-fix-v5.5-rc2' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 /* device_offload_lock is used to synchronize tls_dev_add
42  * against NETDEV_DOWN notifications.
43  */
44 static DECLARE_RWSEM(device_offload_lock);
45
46 static void tls_device_gc_task(struct work_struct *work);
47
48 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
49 static LIST_HEAD(tls_device_gc_list);
50 static LIST_HEAD(tls_device_list);
51 static DEFINE_SPINLOCK(tls_device_lock);
52
53 static void tls_device_free_ctx(struct tls_context *ctx)
54 {
55         if (ctx->tx_conf == TLS_HW) {
56                 kfree(tls_offload_ctx_tx(ctx));
57                 kfree(ctx->tx.rec_seq);
58                 kfree(ctx->tx.iv);
59         }
60
61         if (ctx->rx_conf == TLS_HW)
62                 kfree(tls_offload_ctx_rx(ctx));
63
64         tls_ctx_free(NULL, ctx);
65 }
66
67 static void tls_device_gc_task(struct work_struct *work)
68 {
69         struct tls_context *ctx, *tmp;
70         unsigned long flags;
71         LIST_HEAD(gc_list);
72
73         spin_lock_irqsave(&tls_device_lock, flags);
74         list_splice_init(&tls_device_gc_list, &gc_list);
75         spin_unlock_irqrestore(&tls_device_lock, flags);
76
77         list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
78                 struct net_device *netdev = ctx->netdev;
79
80                 if (netdev && ctx->tx_conf == TLS_HW) {
81                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
82                                                         TLS_OFFLOAD_CTX_DIR_TX);
83                         dev_put(netdev);
84                         ctx->netdev = NULL;
85                 }
86
87                 list_del(&ctx->list);
88                 tls_device_free_ctx(ctx);
89         }
90 }
91
92 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
93 {
94         unsigned long flags;
95
96         spin_lock_irqsave(&tls_device_lock, flags);
97         list_move_tail(&ctx->list, &tls_device_gc_list);
98
99         /* schedule_work inside the spinlock
100          * to make sure tls_device_down waits for that work.
101          */
102         schedule_work(&tls_device_gc_work);
103
104         spin_unlock_irqrestore(&tls_device_lock, flags);
105 }
106
107 /* We assume that the socket is already connected */
108 static struct net_device *get_netdev_for_sock(struct sock *sk)
109 {
110         struct dst_entry *dst = sk_dst_get(sk);
111         struct net_device *netdev = NULL;
112
113         if (likely(dst)) {
114                 netdev = dst->dev;
115                 dev_hold(netdev);
116         }
117
118         dst_release(dst);
119
120         return netdev;
121 }
122
123 static void destroy_record(struct tls_record_info *record)
124 {
125         int i;
126
127         for (i = 0; i < record->num_frags; i++)
128                 __skb_frag_unref(&record->frags[i]);
129         kfree(record);
130 }
131
132 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
133 {
134         struct tls_record_info *info, *temp;
135
136         list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
137                 list_del(&info->list);
138                 destroy_record(info);
139         }
140
141         offload_ctx->retransmit_hint = NULL;
142 }
143
144 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
145 {
146         struct tls_context *tls_ctx = tls_get_ctx(sk);
147         struct tls_record_info *info, *temp;
148         struct tls_offload_context_tx *ctx;
149         u64 deleted_records = 0;
150         unsigned long flags;
151
152         if (!tls_ctx)
153                 return;
154
155         ctx = tls_offload_ctx_tx(tls_ctx);
156
157         spin_lock_irqsave(&ctx->lock, flags);
158         info = ctx->retransmit_hint;
159         if (info && !before(acked_seq, info->end_seq))
160                 ctx->retransmit_hint = NULL;
161
162         list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
163                 if (before(acked_seq, info->end_seq))
164                         break;
165                 list_del(&info->list);
166
167                 destroy_record(info);
168                 deleted_records++;
169         }
170
171         ctx->unacked_record_sn += deleted_records;
172         spin_unlock_irqrestore(&ctx->lock, flags);
173 }
174
175 /* At this point, there should be no references on this
176  * socket and no in-flight SKBs associated with this
177  * socket, so it is safe to free all the resources.
178  */
179 static void tls_device_sk_destruct(struct sock *sk)
180 {
181         struct tls_context *tls_ctx = tls_get_ctx(sk);
182         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
183
184         tls_ctx->sk_destruct(sk);
185
186         if (tls_ctx->tx_conf == TLS_HW) {
187                 if (ctx->open_record)
188                         destroy_record(ctx->open_record);
189                 delete_all_records(ctx);
190                 crypto_free_aead(ctx->aead_send);
191                 clean_acked_data_disable(inet_csk(sk));
192         }
193
194         if (refcount_dec_and_test(&tls_ctx->refcount))
195                 tls_device_queue_ctx_destruction(tls_ctx);
196 }
197
198 void tls_device_free_resources_tx(struct sock *sk)
199 {
200         struct tls_context *tls_ctx = tls_get_ctx(sk);
201
202         tls_free_partial_record(sk, tls_ctx);
203 }
204
205 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
206                                  u32 seq)
207 {
208         struct net_device *netdev;
209         struct sk_buff *skb;
210         int err = 0;
211         u8 *rcd_sn;
212
213         skb = tcp_write_queue_tail(sk);
214         if (skb)
215                 TCP_SKB_CB(skb)->eor = 1;
216
217         rcd_sn = tls_ctx->tx.rec_seq;
218
219         down_read(&device_offload_lock);
220         netdev = tls_ctx->netdev;
221         if (netdev)
222                 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
223                                                          rcd_sn,
224                                                          TLS_OFFLOAD_CTX_DIR_TX);
225         up_read(&device_offload_lock);
226         if (err)
227                 return;
228
229         clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
230 }
231
232 static void tls_append_frag(struct tls_record_info *record,
233                             struct page_frag *pfrag,
234                             int size)
235 {
236         skb_frag_t *frag;
237
238         frag = &record->frags[record->num_frags - 1];
239         if (skb_frag_page(frag) == pfrag->page &&
240             skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
241                 skb_frag_size_add(frag, size);
242         } else {
243                 ++frag;
244                 __skb_frag_set_page(frag, pfrag->page);
245                 skb_frag_off_set(frag, pfrag->offset);
246                 skb_frag_size_set(frag, size);
247                 ++record->num_frags;
248                 get_page(pfrag->page);
249         }
250
251         pfrag->offset += size;
252         record->len += size;
253 }
254
255 static int tls_push_record(struct sock *sk,
256                            struct tls_context *ctx,
257                            struct tls_offload_context_tx *offload_ctx,
258                            struct tls_record_info *record,
259                            int flags)
260 {
261         struct tls_prot_info *prot = &ctx->prot_info;
262         struct tcp_sock *tp = tcp_sk(sk);
263         skb_frag_t *frag;
264         int i;
265
266         record->end_seq = tp->write_seq + record->len;
267         list_add_tail_rcu(&record->list, &offload_ctx->records_list);
268         offload_ctx->open_record = NULL;
269
270         if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
271                 tls_device_resync_tx(sk, ctx, tp->write_seq);
272
273         tls_advance_record_sn(sk, prot, &ctx->tx);
274
275         for (i = 0; i < record->num_frags; i++) {
276                 frag = &record->frags[i];
277                 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
278                 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
279                             skb_frag_size(frag), skb_frag_off(frag));
280                 sk_mem_charge(sk, skb_frag_size(frag));
281                 get_page(skb_frag_page(frag));
282         }
283         sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
284
285         /* all ready, send */
286         return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
287 }
288
289 static int tls_device_record_close(struct sock *sk,
290                                    struct tls_context *ctx,
291                                    struct tls_record_info *record,
292                                    struct page_frag *pfrag,
293                                    unsigned char record_type)
294 {
295         struct tls_prot_info *prot = &ctx->prot_info;
296         int ret;
297
298         /* append tag
299          * device will fill in the tag, we just need to append a placeholder
300          * use socket memory to improve coalescing (re-using a single buffer
301          * increases frag count)
302          * if we can't allocate memory now, steal some back from data
303          */
304         if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
305                                         sk->sk_allocation))) {
306                 ret = 0;
307                 tls_append_frag(record, pfrag, prot->tag_size);
308         } else {
309                 ret = prot->tag_size;
310                 if (record->len <= prot->overhead_size)
311                         return -ENOMEM;
312         }
313
314         /* fill prepend */
315         tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
316                          record->len - prot->overhead_size,
317                          record_type, prot->version);
318         return ret;
319 }
320
321 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
322                                  struct page_frag *pfrag,
323                                  size_t prepend_size)
324 {
325         struct tls_record_info *record;
326         skb_frag_t *frag;
327
328         record = kmalloc(sizeof(*record), GFP_KERNEL);
329         if (!record)
330                 return -ENOMEM;
331
332         frag = &record->frags[0];
333         __skb_frag_set_page(frag, pfrag->page);
334         skb_frag_off_set(frag, pfrag->offset);
335         skb_frag_size_set(frag, prepend_size);
336
337         get_page(pfrag->page);
338         pfrag->offset += prepend_size;
339
340         record->num_frags = 1;
341         record->len = prepend_size;
342         offload_ctx->open_record = record;
343         return 0;
344 }
345
346 static int tls_do_allocation(struct sock *sk,
347                              struct tls_offload_context_tx *offload_ctx,
348                              struct page_frag *pfrag,
349                              size_t prepend_size)
350 {
351         int ret;
352
353         if (!offload_ctx->open_record) {
354                 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
355                                                    sk->sk_allocation))) {
356                         sk->sk_prot->enter_memory_pressure(sk);
357                         sk_stream_moderate_sndbuf(sk);
358                         return -ENOMEM;
359                 }
360
361                 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
362                 if (ret)
363                         return ret;
364
365                 if (pfrag->size > pfrag->offset)
366                         return 0;
367         }
368
369         if (!sk_page_frag_refill(sk, pfrag))
370                 return -ENOMEM;
371
372         return 0;
373 }
374
375 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
376 {
377         size_t pre_copy, nocache;
378
379         pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
380         if (pre_copy) {
381                 pre_copy = min(pre_copy, bytes);
382                 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
383                         return -EFAULT;
384                 bytes -= pre_copy;
385                 addr += pre_copy;
386         }
387
388         nocache = round_down(bytes, SMP_CACHE_BYTES);
389         if (copy_from_iter_nocache(addr, nocache, i) != nocache)
390                 return -EFAULT;
391         bytes -= nocache;
392         addr += nocache;
393
394         if (bytes && copy_from_iter(addr, bytes, i) != bytes)
395                 return -EFAULT;
396
397         return 0;
398 }
399
400 static int tls_push_data(struct sock *sk,
401                          struct iov_iter *msg_iter,
402                          size_t size, int flags,
403                          unsigned char record_type)
404 {
405         struct tls_context *tls_ctx = tls_get_ctx(sk);
406         struct tls_prot_info *prot = &tls_ctx->prot_info;
407         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
408         int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
409         struct tls_record_info *record = ctx->open_record;
410         int tls_push_record_flags;
411         struct page_frag *pfrag;
412         size_t orig_size = size;
413         u32 max_open_record_len;
414         int copy, rc = 0;
415         bool done = false;
416         long timeo;
417
418         if (flags &
419             ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
420                 return -ENOTSUPP;
421
422         if (sk->sk_err)
423                 return -sk->sk_err;
424
425         flags |= MSG_SENDPAGE_DECRYPTED;
426         tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
427
428         timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
429         if (tls_is_partially_sent_record(tls_ctx)) {
430                 rc = tls_push_partial_record(sk, tls_ctx, flags);
431                 if (rc < 0)
432                         return rc;
433         }
434
435         pfrag = sk_page_frag(sk);
436
437         /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
438          * we need to leave room for an authentication tag.
439          */
440         max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
441                               prot->prepend_size;
442         do {
443                 rc = tls_do_allocation(sk, ctx, pfrag,
444                                        prot->prepend_size);
445                 if (rc) {
446                         rc = sk_stream_wait_memory(sk, &timeo);
447                         if (!rc)
448                                 continue;
449
450                         record = ctx->open_record;
451                         if (!record)
452                                 break;
453 handle_error:
454                         if (record_type != TLS_RECORD_TYPE_DATA) {
455                                 /* avoid sending partial
456                                  * record with type !=
457                                  * application_data
458                                  */
459                                 size = orig_size;
460                                 destroy_record(record);
461                                 ctx->open_record = NULL;
462                         } else if (record->len > prot->prepend_size) {
463                                 goto last_record;
464                         }
465
466                         break;
467                 }
468
469                 record = ctx->open_record;
470                 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
471                 copy = min_t(size_t, copy, (max_open_record_len - record->len));
472
473                 rc = tls_device_copy_data(page_address(pfrag->page) +
474                                           pfrag->offset, copy, msg_iter);
475                 if (rc)
476                         goto handle_error;
477                 tls_append_frag(record, pfrag, copy);
478
479                 size -= copy;
480                 if (!size) {
481 last_record:
482                         tls_push_record_flags = flags;
483                         if (more) {
484                                 tls_ctx->pending_open_record_frags =
485                                                 !!record->num_frags;
486                                 break;
487                         }
488
489                         done = true;
490                 }
491
492                 if (done || record->len >= max_open_record_len ||
493                     (record->num_frags >= MAX_SKB_FRAGS - 1)) {
494                         rc = tls_device_record_close(sk, tls_ctx, record,
495                                                      pfrag, record_type);
496                         if (rc) {
497                                 if (rc > 0) {
498                                         size += rc;
499                                 } else {
500                                         size = orig_size;
501                                         destroy_record(record);
502                                         ctx->open_record = NULL;
503                                         break;
504                                 }
505                         }
506
507                         rc = tls_push_record(sk,
508                                              tls_ctx,
509                                              ctx,
510                                              record,
511                                              tls_push_record_flags);
512                         if (rc < 0)
513                                 break;
514                 }
515         } while (!done);
516
517         if (orig_size - size > 0)
518                 rc = orig_size - size;
519
520         return rc;
521 }
522
523 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
524 {
525         unsigned char record_type = TLS_RECORD_TYPE_DATA;
526         struct tls_context *tls_ctx = tls_get_ctx(sk);
527         int rc;
528
529         mutex_lock(&tls_ctx->tx_lock);
530         lock_sock(sk);
531
532         if (unlikely(msg->msg_controllen)) {
533                 rc = tls_proccess_cmsg(sk, msg, &record_type);
534                 if (rc)
535                         goto out;
536         }
537
538         rc = tls_push_data(sk, &msg->msg_iter, size,
539                            msg->msg_flags, record_type);
540
541 out:
542         release_sock(sk);
543         mutex_unlock(&tls_ctx->tx_lock);
544         return rc;
545 }
546
547 int tls_device_sendpage(struct sock *sk, struct page *page,
548                         int offset, size_t size, int flags)
549 {
550         struct tls_context *tls_ctx = tls_get_ctx(sk);
551         struct iov_iter msg_iter;
552         char *kaddr = kmap(page);
553         struct kvec iov;
554         int rc;
555
556         if (flags & MSG_SENDPAGE_NOTLAST)
557                 flags |= MSG_MORE;
558
559         mutex_lock(&tls_ctx->tx_lock);
560         lock_sock(sk);
561
562         if (flags & MSG_OOB) {
563                 rc = -ENOTSUPP;
564                 goto out;
565         }
566
567         iov.iov_base = kaddr + offset;
568         iov.iov_len = size;
569         iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
570         rc = tls_push_data(sk, &msg_iter, size,
571                            flags, TLS_RECORD_TYPE_DATA);
572         kunmap(page);
573
574 out:
575         release_sock(sk);
576         mutex_unlock(&tls_ctx->tx_lock);
577         return rc;
578 }
579
580 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
581                                        u32 seq, u64 *p_record_sn)
582 {
583         u64 record_sn = context->hint_record_sn;
584         struct tls_record_info *info;
585
586         info = context->retransmit_hint;
587         if (!info ||
588             before(seq, info->end_seq - info->len)) {
589                 /* if retransmit_hint is irrelevant start
590                  * from the beggining of the list
591                  */
592                 info = list_first_entry_or_null(&context->records_list,
593                                                 struct tls_record_info, list);
594                 if (!info)
595                         return NULL;
596                 record_sn = context->unacked_record_sn;
597         }
598
599         /* We just need the _rcu for the READ_ONCE() */
600         rcu_read_lock();
601         list_for_each_entry_from_rcu(info, &context->records_list, list) {
602                 if (before(seq, info->end_seq)) {
603                         if (!context->retransmit_hint ||
604                             after(info->end_seq,
605                                   context->retransmit_hint->end_seq)) {
606                                 context->hint_record_sn = record_sn;
607                                 context->retransmit_hint = info;
608                         }
609                         *p_record_sn = record_sn;
610                         goto exit_rcu_unlock;
611                 }
612                 record_sn++;
613         }
614         info = NULL;
615
616 exit_rcu_unlock:
617         rcu_read_unlock();
618         return info;
619 }
620 EXPORT_SYMBOL(tls_get_record);
621
622 static int tls_device_push_pending_record(struct sock *sk, int flags)
623 {
624         struct iov_iter msg_iter;
625
626         iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
627         return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
628 }
629
630 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
631 {
632         if (tls_is_partially_sent_record(ctx)) {
633                 gfp_t sk_allocation = sk->sk_allocation;
634
635                 WARN_ON_ONCE(sk->sk_write_pending);
636
637                 sk->sk_allocation = GFP_ATOMIC;
638                 tls_push_partial_record(sk, ctx,
639                                         MSG_DONTWAIT | MSG_NOSIGNAL |
640                                         MSG_SENDPAGE_DECRYPTED);
641                 sk->sk_allocation = sk_allocation;
642         }
643 }
644
645 static void tls_device_resync_rx(struct tls_context *tls_ctx,
646                                  struct sock *sk, u32 seq, u8 *rcd_sn)
647 {
648         struct net_device *netdev;
649
650         if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
651                 return;
652         netdev = READ_ONCE(tls_ctx->netdev);
653         if (netdev)
654                 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
655                                                    TLS_OFFLOAD_CTX_DIR_RX);
656         clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
657 }
658
659 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
660 {
661         struct tls_context *tls_ctx = tls_get_ctx(sk);
662         struct tls_offload_context_rx *rx_ctx;
663         u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
664         struct tls_prot_info *prot;
665         u32 is_req_pending;
666         s64 resync_req;
667         u32 req_seq;
668
669         if (tls_ctx->rx_conf != TLS_HW)
670                 return;
671
672         prot = &tls_ctx->prot_info;
673         rx_ctx = tls_offload_ctx_rx(tls_ctx);
674         memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
675
676         switch (rx_ctx->resync_type) {
677         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
678                 resync_req = atomic64_read(&rx_ctx->resync_req);
679                 req_seq = resync_req >> 32;
680                 seq += TLS_HEADER_SIZE - 1;
681                 is_req_pending = resync_req;
682
683                 if (likely(!is_req_pending) || req_seq != seq ||
684                     !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
685                         return;
686                 break;
687         case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
688                 if (likely(!rx_ctx->resync_nh_do_now))
689                         return;
690
691                 /* head of next rec is already in, note that the sock_inq will
692                  * include the currently parsed message when called from parser
693                  */
694                 if (tcp_inq(sk) > rcd_len)
695                         return;
696
697                 rx_ctx->resync_nh_do_now = 0;
698                 seq += rcd_len;
699                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
700                 break;
701         }
702
703         tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
704 }
705
706 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
707                                            struct tls_offload_context_rx *ctx,
708                                            struct sock *sk, struct sk_buff *skb)
709 {
710         struct strp_msg *rxm;
711
712         /* device will request resyncs by itself based on stream scan */
713         if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
714                 return;
715         /* already scheduled */
716         if (ctx->resync_nh_do_now)
717                 return;
718         /* seen decrypted fragments since last fully-failed record */
719         if (ctx->resync_nh_reset) {
720                 ctx->resync_nh_reset = 0;
721                 ctx->resync_nh.decrypted_failed = 1;
722                 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
723                 return;
724         }
725
726         if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
727                 return;
728
729         /* doing resync, bump the next target in case it fails */
730         if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
731                 ctx->resync_nh.decrypted_tgt *= 2;
732         else
733                 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
734
735         rxm = strp_msg(skb);
736
737         /* head of next rec is already in, parser will sync for us */
738         if (tcp_inq(sk) > rxm->full_len) {
739                 ctx->resync_nh_do_now = 1;
740         } else {
741                 struct tls_prot_info *prot = &tls_ctx->prot_info;
742                 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
743
744                 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
745                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
746
747                 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
748                                      rcd_sn);
749         }
750 }
751
752 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
753 {
754         struct strp_msg *rxm = strp_msg(skb);
755         int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
756         struct sk_buff *skb_iter, *unused;
757         struct scatterlist sg[1];
758         char *orig_buf, *buf;
759
760         orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
761                            TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
762         if (!orig_buf)
763                 return -ENOMEM;
764         buf = orig_buf;
765
766         nsg = skb_cow_data(skb, 0, &unused);
767         if (unlikely(nsg < 0)) {
768                 err = nsg;
769                 goto free_buf;
770         }
771
772         sg_init_table(sg, 1);
773         sg_set_buf(&sg[0], buf,
774                    rxm->full_len + TLS_HEADER_SIZE +
775                    TLS_CIPHER_AES_GCM_128_IV_SIZE);
776         err = skb_copy_bits(skb, offset, buf,
777                             TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
778         if (err)
779                 goto free_buf;
780
781         /* We are interested only in the decrypted data not the auth */
782         err = decrypt_skb(sk, skb, sg);
783         if (err != -EBADMSG)
784                 goto free_buf;
785         else
786                 err = 0;
787
788         data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
789
790         if (skb_pagelen(skb) > offset) {
791                 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
792
793                 if (skb->decrypted) {
794                         err = skb_store_bits(skb, offset, buf, copy);
795                         if (err)
796                                 goto free_buf;
797                 }
798
799                 offset += copy;
800                 buf += copy;
801         }
802
803         pos = skb_pagelen(skb);
804         skb_walk_frags(skb, skb_iter) {
805                 int frag_pos;
806
807                 /* Practically all frags must belong to msg if reencrypt
808                  * is needed with current strparser and coalescing logic,
809                  * but strparser may "get optimized", so let's be safe.
810                  */
811                 if (pos + skb_iter->len <= offset)
812                         goto done_with_frag;
813                 if (pos >= data_len + rxm->offset)
814                         break;
815
816                 frag_pos = offset - pos;
817                 copy = min_t(int, skb_iter->len - frag_pos,
818                              data_len + rxm->offset - offset);
819
820                 if (skb_iter->decrypted) {
821                         err = skb_store_bits(skb_iter, frag_pos, buf, copy);
822                         if (err)
823                                 goto free_buf;
824                 }
825
826                 offset += copy;
827                 buf += copy;
828 done_with_frag:
829                 pos += skb_iter->len;
830         }
831
832 free_buf:
833         kfree(orig_buf);
834         return err;
835 }
836
837 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
838 {
839         struct tls_context *tls_ctx = tls_get_ctx(sk);
840         struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
841         int is_decrypted = skb->decrypted;
842         int is_encrypted = !is_decrypted;
843         struct sk_buff *skb_iter;
844
845         /* Check if all the data is decrypted already */
846         skb_walk_frags(skb, skb_iter) {
847                 is_decrypted &= skb_iter->decrypted;
848                 is_encrypted &= !skb_iter->decrypted;
849         }
850
851         ctx->sw.decrypted |= is_decrypted;
852
853         /* Return immediately if the record is either entirely plaintext or
854          * entirely ciphertext. Otherwise handle reencrypt partially decrypted
855          * record.
856          */
857         if (is_decrypted) {
858                 ctx->resync_nh_reset = 1;
859                 return 0;
860         }
861         if (is_encrypted) {
862                 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
863                 return 0;
864         }
865
866         ctx->resync_nh_reset = 1;
867         return tls_device_reencrypt(sk, skb);
868 }
869
870 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
871                               struct net_device *netdev)
872 {
873         if (sk->sk_destruct != tls_device_sk_destruct) {
874                 refcount_set(&ctx->refcount, 1);
875                 dev_hold(netdev);
876                 ctx->netdev = netdev;
877                 spin_lock_irq(&tls_device_lock);
878                 list_add_tail(&ctx->list, &tls_device_list);
879                 spin_unlock_irq(&tls_device_lock);
880
881                 ctx->sk_destruct = sk->sk_destruct;
882                 sk->sk_destruct = tls_device_sk_destruct;
883         }
884 }
885
886 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
887 {
888         u16 nonce_size, tag_size, iv_size, rec_seq_size;
889         struct tls_context *tls_ctx = tls_get_ctx(sk);
890         struct tls_prot_info *prot = &tls_ctx->prot_info;
891         struct tls_record_info *start_marker_record;
892         struct tls_offload_context_tx *offload_ctx;
893         struct tls_crypto_info *crypto_info;
894         struct net_device *netdev;
895         char *iv, *rec_seq;
896         struct sk_buff *skb;
897         __be64 rcd_sn;
898         int rc;
899
900         if (!ctx)
901                 return -EINVAL;
902
903         if (ctx->priv_ctx_tx)
904                 return -EEXIST;
905
906         start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
907         if (!start_marker_record)
908                 return -ENOMEM;
909
910         offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
911         if (!offload_ctx) {
912                 rc = -ENOMEM;
913                 goto free_marker_record;
914         }
915
916         crypto_info = &ctx->crypto_send.info;
917         if (crypto_info->version != TLS_1_2_VERSION) {
918                 rc = -EOPNOTSUPP;
919                 goto free_offload_ctx;
920         }
921
922         switch (crypto_info->cipher_type) {
923         case TLS_CIPHER_AES_GCM_128:
924                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
925                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
926                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
927                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
928                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
929                 rec_seq =
930                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
931                 break;
932         default:
933                 rc = -EINVAL;
934                 goto free_offload_ctx;
935         }
936
937         /* Sanity-check the rec_seq_size for stack allocations */
938         if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
939                 rc = -EINVAL;
940                 goto free_offload_ctx;
941         }
942
943         prot->version = crypto_info->version;
944         prot->cipher_type = crypto_info->cipher_type;
945         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
946         prot->tag_size = tag_size;
947         prot->overhead_size = prot->prepend_size + prot->tag_size;
948         prot->iv_size = iv_size;
949         ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
950                              GFP_KERNEL);
951         if (!ctx->tx.iv) {
952                 rc = -ENOMEM;
953                 goto free_offload_ctx;
954         }
955
956         memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
957
958         prot->rec_seq_size = rec_seq_size;
959         ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
960         if (!ctx->tx.rec_seq) {
961                 rc = -ENOMEM;
962                 goto free_iv;
963         }
964
965         rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
966         if (rc)
967                 goto free_rec_seq;
968
969         /* start at rec_seq - 1 to account for the start marker record */
970         memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
971         offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
972
973         start_marker_record->end_seq = tcp_sk(sk)->write_seq;
974         start_marker_record->len = 0;
975         start_marker_record->num_frags = 0;
976
977         INIT_LIST_HEAD(&offload_ctx->records_list);
978         list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
979         spin_lock_init(&offload_ctx->lock);
980         sg_init_table(offload_ctx->sg_tx_data,
981                       ARRAY_SIZE(offload_ctx->sg_tx_data));
982
983         clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
984         ctx->push_pending_record = tls_device_push_pending_record;
985
986         /* TLS offload is greatly simplified if we don't send
987          * SKBs where only part of the payload needs to be encrypted.
988          * So mark the last skb in the write queue as end of record.
989          */
990         skb = tcp_write_queue_tail(sk);
991         if (skb)
992                 TCP_SKB_CB(skb)->eor = 1;
993
994         netdev = get_netdev_for_sock(sk);
995         if (!netdev) {
996                 pr_err_ratelimited("%s: netdev not found\n", __func__);
997                 rc = -EINVAL;
998                 goto disable_cad;
999         }
1000
1001         if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1002                 rc = -ENOTSUPP;
1003                 goto release_netdev;
1004         }
1005
1006         /* Avoid offloading if the device is down
1007          * We don't want to offload new flows after
1008          * the NETDEV_DOWN event
1009          *
1010          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1011          * handler thus protecting from the device going down before
1012          * ctx was added to tls_device_list.
1013          */
1014         down_read(&device_offload_lock);
1015         if (!(netdev->flags & IFF_UP)) {
1016                 rc = -EINVAL;
1017                 goto release_lock;
1018         }
1019
1020         ctx->priv_ctx_tx = offload_ctx;
1021         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1022                                              &ctx->crypto_send.info,
1023                                              tcp_sk(sk)->write_seq);
1024         if (rc)
1025                 goto release_lock;
1026
1027         tls_device_attach(ctx, sk, netdev);
1028         up_read(&device_offload_lock);
1029
1030         /* following this assignment tls_is_sk_tx_device_offloaded
1031          * will return true and the context might be accessed
1032          * by the netdev's xmit function.
1033          */
1034         smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1035         dev_put(netdev);
1036
1037         return 0;
1038
1039 release_lock:
1040         up_read(&device_offload_lock);
1041 release_netdev:
1042         dev_put(netdev);
1043 disable_cad:
1044         clean_acked_data_disable(inet_csk(sk));
1045         crypto_free_aead(offload_ctx->aead_send);
1046 free_rec_seq:
1047         kfree(ctx->tx.rec_seq);
1048 free_iv:
1049         kfree(ctx->tx.iv);
1050 free_offload_ctx:
1051         kfree(offload_ctx);
1052         ctx->priv_ctx_tx = NULL;
1053 free_marker_record:
1054         kfree(start_marker_record);
1055         return rc;
1056 }
1057
1058 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1059 {
1060         struct tls_offload_context_rx *context;
1061         struct net_device *netdev;
1062         int rc = 0;
1063
1064         if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1065                 return -EOPNOTSUPP;
1066
1067         netdev = get_netdev_for_sock(sk);
1068         if (!netdev) {
1069                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1070                 return -EINVAL;
1071         }
1072
1073         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1074                 rc = -ENOTSUPP;
1075                 goto release_netdev;
1076         }
1077
1078         /* Avoid offloading if the device is down
1079          * We don't want to offload new flows after
1080          * the NETDEV_DOWN event
1081          *
1082          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1083          * handler thus protecting from the device going down before
1084          * ctx was added to tls_device_list.
1085          */
1086         down_read(&device_offload_lock);
1087         if (!(netdev->flags & IFF_UP)) {
1088                 rc = -EINVAL;
1089                 goto release_lock;
1090         }
1091
1092         context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1093         if (!context) {
1094                 rc = -ENOMEM;
1095                 goto release_lock;
1096         }
1097         context->resync_nh_reset = 1;
1098
1099         ctx->priv_ctx_rx = context;
1100         rc = tls_set_sw_offload(sk, ctx, 0);
1101         if (rc)
1102                 goto release_ctx;
1103
1104         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1105                                              &ctx->crypto_recv.info,
1106                                              tcp_sk(sk)->copied_seq);
1107         if (rc)
1108                 goto free_sw_resources;
1109
1110         tls_device_attach(ctx, sk, netdev);
1111         up_read(&device_offload_lock);
1112
1113         dev_put(netdev);
1114
1115         return 0;
1116
1117 free_sw_resources:
1118         up_read(&device_offload_lock);
1119         tls_sw_free_resources_rx(sk);
1120         down_read(&device_offload_lock);
1121 release_ctx:
1122         ctx->priv_ctx_rx = NULL;
1123 release_lock:
1124         up_read(&device_offload_lock);
1125 release_netdev:
1126         dev_put(netdev);
1127         return rc;
1128 }
1129
1130 void tls_device_offload_cleanup_rx(struct sock *sk)
1131 {
1132         struct tls_context *tls_ctx = tls_get_ctx(sk);
1133         struct net_device *netdev;
1134
1135         down_read(&device_offload_lock);
1136         netdev = tls_ctx->netdev;
1137         if (!netdev)
1138                 goto out;
1139
1140         netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1141                                         TLS_OFFLOAD_CTX_DIR_RX);
1142
1143         if (tls_ctx->tx_conf != TLS_HW) {
1144                 dev_put(netdev);
1145                 tls_ctx->netdev = NULL;
1146         }
1147 out:
1148         up_read(&device_offload_lock);
1149         tls_sw_release_resources_rx(sk);
1150 }
1151
1152 static int tls_device_down(struct net_device *netdev)
1153 {
1154         struct tls_context *ctx, *tmp;
1155         unsigned long flags;
1156         LIST_HEAD(list);
1157
1158         /* Request a write lock to block new offload attempts */
1159         down_write(&device_offload_lock);
1160
1161         spin_lock_irqsave(&tls_device_lock, flags);
1162         list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1163                 if (ctx->netdev != netdev ||
1164                     !refcount_inc_not_zero(&ctx->refcount))
1165                         continue;
1166
1167                 list_move(&ctx->list, &list);
1168         }
1169         spin_unlock_irqrestore(&tls_device_lock, flags);
1170
1171         list_for_each_entry_safe(ctx, tmp, &list, list) {
1172                 if (ctx->tx_conf == TLS_HW)
1173                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1174                                                         TLS_OFFLOAD_CTX_DIR_TX);
1175                 if (ctx->rx_conf == TLS_HW)
1176                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1177                                                         TLS_OFFLOAD_CTX_DIR_RX);
1178                 WRITE_ONCE(ctx->netdev, NULL);
1179                 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1180                 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1181                         usleep_range(10, 200);
1182                 dev_put(netdev);
1183                 list_del_init(&ctx->list);
1184
1185                 if (refcount_dec_and_test(&ctx->refcount))
1186                         tls_device_free_ctx(ctx);
1187         }
1188
1189         up_write(&device_offload_lock);
1190
1191         flush_work(&tls_device_gc_work);
1192
1193         return NOTIFY_DONE;
1194 }
1195
1196 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1197                          void *ptr)
1198 {
1199         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1200
1201         if (!dev->tlsdev_ops &&
1202             !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1203                 return NOTIFY_DONE;
1204
1205         switch (event) {
1206         case NETDEV_REGISTER:
1207         case NETDEV_FEAT_CHANGE:
1208                 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1209                     !dev->tlsdev_ops->tls_dev_resync)
1210                         return NOTIFY_BAD;
1211
1212                 if  (dev->tlsdev_ops &&
1213                      dev->tlsdev_ops->tls_dev_add &&
1214                      dev->tlsdev_ops->tls_dev_del)
1215                         return NOTIFY_DONE;
1216                 else
1217                         return NOTIFY_BAD;
1218         case NETDEV_DOWN:
1219                 return tls_device_down(dev);
1220         }
1221         return NOTIFY_DONE;
1222 }
1223
1224 static struct notifier_block tls_dev_notifier = {
1225         .notifier_call  = tls_dev_event,
1226 };
1227
1228 void __init tls_device_init(void)
1229 {
1230         register_netdevice_notifier(&tls_dev_notifier);
1231 }
1232
1233 void __exit tls_device_cleanup(void)
1234 {
1235         unregister_netdevice_notifier(&tls_dev_notifier);
1236         flush_work(&tls_device_gc_work);
1237         clean_acked_data_flush();
1238 }