]> asedeno.scripts.mit.edu Git - linux.git/blob - net/tls/tls_device.c
Merge branch 'next' into for-linus
[linux.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 #include "trace.h"
42
43 /* device_offload_lock is used to synchronize tls_dev_add
44  * against NETDEV_DOWN notifications.
45  */
46 static DECLARE_RWSEM(device_offload_lock);
47
48 static void tls_device_gc_task(struct work_struct *work);
49
50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
51 static LIST_HEAD(tls_device_gc_list);
52 static LIST_HEAD(tls_device_list);
53 static DEFINE_SPINLOCK(tls_device_lock);
54
55 static void tls_device_free_ctx(struct tls_context *ctx)
56 {
57         if (ctx->tx_conf == TLS_HW) {
58                 kfree(tls_offload_ctx_tx(ctx));
59                 kfree(ctx->tx.rec_seq);
60                 kfree(ctx->tx.iv);
61         }
62
63         if (ctx->rx_conf == TLS_HW)
64                 kfree(tls_offload_ctx_rx(ctx));
65
66         tls_ctx_free(NULL, ctx);
67 }
68
69 static void tls_device_gc_task(struct work_struct *work)
70 {
71         struct tls_context *ctx, *tmp;
72         unsigned long flags;
73         LIST_HEAD(gc_list);
74
75         spin_lock_irqsave(&tls_device_lock, flags);
76         list_splice_init(&tls_device_gc_list, &gc_list);
77         spin_unlock_irqrestore(&tls_device_lock, flags);
78
79         list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
80                 struct net_device *netdev = ctx->netdev;
81
82                 if (netdev && ctx->tx_conf == TLS_HW) {
83                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
84                                                         TLS_OFFLOAD_CTX_DIR_TX);
85                         dev_put(netdev);
86                         ctx->netdev = NULL;
87                 }
88
89                 list_del(&ctx->list);
90                 tls_device_free_ctx(ctx);
91         }
92 }
93
94 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
95 {
96         unsigned long flags;
97
98         spin_lock_irqsave(&tls_device_lock, flags);
99         list_move_tail(&ctx->list, &tls_device_gc_list);
100
101         /* schedule_work inside the spinlock
102          * to make sure tls_device_down waits for that work.
103          */
104         schedule_work(&tls_device_gc_work);
105
106         spin_unlock_irqrestore(&tls_device_lock, flags);
107 }
108
109 /* We assume that the socket is already connected */
110 static struct net_device *get_netdev_for_sock(struct sock *sk)
111 {
112         struct dst_entry *dst = sk_dst_get(sk);
113         struct net_device *netdev = NULL;
114
115         if (likely(dst)) {
116                 netdev = dst->dev;
117                 dev_hold(netdev);
118         }
119
120         dst_release(dst);
121
122         return netdev;
123 }
124
125 static void destroy_record(struct tls_record_info *record)
126 {
127         int i;
128
129         for (i = 0; i < record->num_frags; i++)
130                 __skb_frag_unref(&record->frags[i]);
131         kfree(record);
132 }
133
134 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
135 {
136         struct tls_record_info *info, *temp;
137
138         list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
139                 list_del(&info->list);
140                 destroy_record(info);
141         }
142
143         offload_ctx->retransmit_hint = NULL;
144 }
145
146 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
147 {
148         struct tls_context *tls_ctx = tls_get_ctx(sk);
149         struct tls_record_info *info, *temp;
150         struct tls_offload_context_tx *ctx;
151         u64 deleted_records = 0;
152         unsigned long flags;
153
154         if (!tls_ctx)
155                 return;
156
157         ctx = tls_offload_ctx_tx(tls_ctx);
158
159         spin_lock_irqsave(&ctx->lock, flags);
160         info = ctx->retransmit_hint;
161         if (info && !before(acked_seq, info->end_seq))
162                 ctx->retransmit_hint = NULL;
163
164         list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
165                 if (before(acked_seq, info->end_seq))
166                         break;
167                 list_del(&info->list);
168
169                 destroy_record(info);
170                 deleted_records++;
171         }
172
173         ctx->unacked_record_sn += deleted_records;
174         spin_unlock_irqrestore(&ctx->lock, flags);
175 }
176
177 /* At this point, there should be no references on this
178  * socket and no in-flight SKBs associated with this
179  * socket, so it is safe to free all the resources.
180  */
181 static void tls_device_sk_destruct(struct sock *sk)
182 {
183         struct tls_context *tls_ctx = tls_get_ctx(sk);
184         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
185
186         tls_ctx->sk_destruct(sk);
187
188         if (tls_ctx->tx_conf == TLS_HW) {
189                 if (ctx->open_record)
190                         destroy_record(ctx->open_record);
191                 delete_all_records(ctx);
192                 crypto_free_aead(ctx->aead_send);
193                 clean_acked_data_disable(inet_csk(sk));
194         }
195
196         if (refcount_dec_and_test(&tls_ctx->refcount))
197                 tls_device_queue_ctx_destruction(tls_ctx);
198 }
199
200 void tls_device_free_resources_tx(struct sock *sk)
201 {
202         struct tls_context *tls_ctx = tls_get_ctx(sk);
203
204         tls_free_partial_record(sk, tls_ctx);
205 }
206
207 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
208 {
209         struct tls_context *tls_ctx = tls_get_ctx(sk);
210
211         trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
212         WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
213 }
214 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
215
216 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
217                                  u32 seq)
218 {
219         struct net_device *netdev;
220         struct sk_buff *skb;
221         int err = 0;
222         u8 *rcd_sn;
223
224         skb = tcp_write_queue_tail(sk);
225         if (skb)
226                 TCP_SKB_CB(skb)->eor = 1;
227
228         rcd_sn = tls_ctx->tx.rec_seq;
229
230         trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
231         down_read(&device_offload_lock);
232         netdev = tls_ctx->netdev;
233         if (netdev)
234                 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
235                                                          rcd_sn,
236                                                          TLS_OFFLOAD_CTX_DIR_TX);
237         up_read(&device_offload_lock);
238         if (err)
239                 return;
240
241         clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
242 }
243
244 static void tls_append_frag(struct tls_record_info *record,
245                             struct page_frag *pfrag,
246                             int size)
247 {
248         skb_frag_t *frag;
249
250         frag = &record->frags[record->num_frags - 1];
251         if (skb_frag_page(frag) == pfrag->page &&
252             skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
253                 skb_frag_size_add(frag, size);
254         } else {
255                 ++frag;
256                 __skb_frag_set_page(frag, pfrag->page);
257                 skb_frag_off_set(frag, pfrag->offset);
258                 skb_frag_size_set(frag, size);
259                 ++record->num_frags;
260                 get_page(pfrag->page);
261         }
262
263         pfrag->offset += size;
264         record->len += size;
265 }
266
267 static int tls_push_record(struct sock *sk,
268                            struct tls_context *ctx,
269                            struct tls_offload_context_tx *offload_ctx,
270                            struct tls_record_info *record,
271                            int flags)
272 {
273         struct tls_prot_info *prot = &ctx->prot_info;
274         struct tcp_sock *tp = tcp_sk(sk);
275         skb_frag_t *frag;
276         int i;
277
278         record->end_seq = tp->write_seq + record->len;
279         list_add_tail_rcu(&record->list, &offload_ctx->records_list);
280         offload_ctx->open_record = NULL;
281
282         if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
283                 tls_device_resync_tx(sk, ctx, tp->write_seq);
284
285         tls_advance_record_sn(sk, prot, &ctx->tx);
286
287         for (i = 0; i < record->num_frags; i++) {
288                 frag = &record->frags[i];
289                 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
290                 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
291                             skb_frag_size(frag), skb_frag_off(frag));
292                 sk_mem_charge(sk, skb_frag_size(frag));
293                 get_page(skb_frag_page(frag));
294         }
295         sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
296
297         /* all ready, send */
298         return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
299 }
300
301 static int tls_device_record_close(struct sock *sk,
302                                    struct tls_context *ctx,
303                                    struct tls_record_info *record,
304                                    struct page_frag *pfrag,
305                                    unsigned char record_type)
306 {
307         struct tls_prot_info *prot = &ctx->prot_info;
308         int ret;
309
310         /* append tag
311          * device will fill in the tag, we just need to append a placeholder
312          * use socket memory to improve coalescing (re-using a single buffer
313          * increases frag count)
314          * if we can't allocate memory now, steal some back from data
315          */
316         if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
317                                         sk->sk_allocation))) {
318                 ret = 0;
319                 tls_append_frag(record, pfrag, prot->tag_size);
320         } else {
321                 ret = prot->tag_size;
322                 if (record->len <= prot->overhead_size)
323                         return -ENOMEM;
324         }
325
326         /* fill prepend */
327         tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
328                          record->len - prot->overhead_size,
329                          record_type, prot->version);
330         return ret;
331 }
332
333 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
334                                  struct page_frag *pfrag,
335                                  size_t prepend_size)
336 {
337         struct tls_record_info *record;
338         skb_frag_t *frag;
339
340         record = kmalloc(sizeof(*record), GFP_KERNEL);
341         if (!record)
342                 return -ENOMEM;
343
344         frag = &record->frags[0];
345         __skb_frag_set_page(frag, pfrag->page);
346         skb_frag_off_set(frag, pfrag->offset);
347         skb_frag_size_set(frag, prepend_size);
348
349         get_page(pfrag->page);
350         pfrag->offset += prepend_size;
351
352         record->num_frags = 1;
353         record->len = prepend_size;
354         offload_ctx->open_record = record;
355         return 0;
356 }
357
358 static int tls_do_allocation(struct sock *sk,
359                              struct tls_offload_context_tx *offload_ctx,
360                              struct page_frag *pfrag,
361                              size_t prepend_size)
362 {
363         int ret;
364
365         if (!offload_ctx->open_record) {
366                 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
367                                                    sk->sk_allocation))) {
368                         sk->sk_prot->enter_memory_pressure(sk);
369                         sk_stream_moderate_sndbuf(sk);
370                         return -ENOMEM;
371                 }
372
373                 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
374                 if (ret)
375                         return ret;
376
377                 if (pfrag->size > pfrag->offset)
378                         return 0;
379         }
380
381         if (!sk_page_frag_refill(sk, pfrag))
382                 return -ENOMEM;
383
384         return 0;
385 }
386
387 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
388 {
389         size_t pre_copy, nocache;
390
391         pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
392         if (pre_copy) {
393                 pre_copy = min(pre_copy, bytes);
394                 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
395                         return -EFAULT;
396                 bytes -= pre_copy;
397                 addr += pre_copy;
398         }
399
400         nocache = round_down(bytes, SMP_CACHE_BYTES);
401         if (copy_from_iter_nocache(addr, nocache, i) != nocache)
402                 return -EFAULT;
403         bytes -= nocache;
404         addr += nocache;
405
406         if (bytes && copy_from_iter(addr, bytes, i) != bytes)
407                 return -EFAULT;
408
409         return 0;
410 }
411
412 static int tls_push_data(struct sock *sk,
413                          struct iov_iter *msg_iter,
414                          size_t size, int flags,
415                          unsigned char record_type)
416 {
417         struct tls_context *tls_ctx = tls_get_ctx(sk);
418         struct tls_prot_info *prot = &tls_ctx->prot_info;
419         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
420         int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
421         struct tls_record_info *record = ctx->open_record;
422         int tls_push_record_flags;
423         struct page_frag *pfrag;
424         size_t orig_size = size;
425         u32 max_open_record_len;
426         int copy, rc = 0;
427         bool done = false;
428         long timeo;
429
430         if (flags &
431             ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
432                 return -EOPNOTSUPP;
433
434         if (unlikely(sk->sk_err))
435                 return -sk->sk_err;
436
437         flags |= MSG_SENDPAGE_DECRYPTED;
438         tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
439
440         timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
441         if (tls_is_partially_sent_record(tls_ctx)) {
442                 rc = tls_push_partial_record(sk, tls_ctx, flags);
443                 if (rc < 0)
444                         return rc;
445         }
446
447         pfrag = sk_page_frag(sk);
448
449         /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
450          * we need to leave room for an authentication tag.
451          */
452         max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
453                               prot->prepend_size;
454         do {
455                 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
456                 if (unlikely(rc)) {
457                         rc = sk_stream_wait_memory(sk, &timeo);
458                         if (!rc)
459                                 continue;
460
461                         record = ctx->open_record;
462                         if (!record)
463                                 break;
464 handle_error:
465                         if (record_type != TLS_RECORD_TYPE_DATA) {
466                                 /* avoid sending partial
467                                  * record with type !=
468                                  * application_data
469                                  */
470                                 size = orig_size;
471                                 destroy_record(record);
472                                 ctx->open_record = NULL;
473                         } else if (record->len > prot->prepend_size) {
474                                 goto last_record;
475                         }
476
477                         break;
478                 }
479
480                 record = ctx->open_record;
481                 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
482                 copy = min_t(size_t, copy, (max_open_record_len - record->len));
483
484                 rc = tls_device_copy_data(page_address(pfrag->page) +
485                                           pfrag->offset, copy, msg_iter);
486                 if (rc)
487                         goto handle_error;
488                 tls_append_frag(record, pfrag, copy);
489
490                 size -= copy;
491                 if (!size) {
492 last_record:
493                         tls_push_record_flags = flags;
494                         if (more) {
495                                 tls_ctx->pending_open_record_frags =
496                                                 !!record->num_frags;
497                                 break;
498                         }
499
500                         done = true;
501                 }
502
503                 if (done || record->len >= max_open_record_len ||
504                     (record->num_frags >= MAX_SKB_FRAGS - 1)) {
505                         rc = tls_device_record_close(sk, tls_ctx, record,
506                                                      pfrag, record_type);
507                         if (rc) {
508                                 if (rc > 0) {
509                                         size += rc;
510                                 } else {
511                                         size = orig_size;
512                                         destroy_record(record);
513                                         ctx->open_record = NULL;
514                                         break;
515                                 }
516                         }
517
518                         rc = tls_push_record(sk,
519                                              tls_ctx,
520                                              ctx,
521                                              record,
522                                              tls_push_record_flags);
523                         if (rc < 0)
524                                 break;
525                 }
526         } while (!done);
527
528         if (orig_size - size > 0)
529                 rc = orig_size - size;
530
531         return rc;
532 }
533
534 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
535 {
536         unsigned char record_type = TLS_RECORD_TYPE_DATA;
537         struct tls_context *tls_ctx = tls_get_ctx(sk);
538         int rc;
539
540         mutex_lock(&tls_ctx->tx_lock);
541         lock_sock(sk);
542
543         if (unlikely(msg->msg_controllen)) {
544                 rc = tls_proccess_cmsg(sk, msg, &record_type);
545                 if (rc)
546                         goto out;
547         }
548
549         rc = tls_push_data(sk, &msg->msg_iter, size,
550                            msg->msg_flags, record_type);
551
552 out:
553         release_sock(sk);
554         mutex_unlock(&tls_ctx->tx_lock);
555         return rc;
556 }
557
558 int tls_device_sendpage(struct sock *sk, struct page *page,
559                         int offset, size_t size, int flags)
560 {
561         struct tls_context *tls_ctx = tls_get_ctx(sk);
562         struct iov_iter msg_iter;
563         char *kaddr = kmap(page);
564         struct kvec iov;
565         int rc;
566
567         if (flags & MSG_SENDPAGE_NOTLAST)
568                 flags |= MSG_MORE;
569
570         mutex_lock(&tls_ctx->tx_lock);
571         lock_sock(sk);
572
573         if (flags & MSG_OOB) {
574                 rc = -EOPNOTSUPP;
575                 goto out;
576         }
577
578         iov.iov_base = kaddr + offset;
579         iov.iov_len = size;
580         iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
581         rc = tls_push_data(sk, &msg_iter, size,
582                            flags, TLS_RECORD_TYPE_DATA);
583         kunmap(page);
584
585 out:
586         release_sock(sk);
587         mutex_unlock(&tls_ctx->tx_lock);
588         return rc;
589 }
590
591 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
592                                        u32 seq, u64 *p_record_sn)
593 {
594         u64 record_sn = context->hint_record_sn;
595         struct tls_record_info *info;
596
597         info = context->retransmit_hint;
598         if (!info ||
599             before(seq, info->end_seq - info->len)) {
600                 /* if retransmit_hint is irrelevant start
601                  * from the beggining of the list
602                  */
603                 info = list_first_entry_or_null(&context->records_list,
604                                                 struct tls_record_info, list);
605                 if (!info)
606                         return NULL;
607                 record_sn = context->unacked_record_sn;
608         }
609
610         /* We just need the _rcu for the READ_ONCE() */
611         rcu_read_lock();
612         list_for_each_entry_from_rcu(info, &context->records_list, list) {
613                 if (before(seq, info->end_seq)) {
614                         if (!context->retransmit_hint ||
615                             after(info->end_seq,
616                                   context->retransmit_hint->end_seq)) {
617                                 context->hint_record_sn = record_sn;
618                                 context->retransmit_hint = info;
619                         }
620                         *p_record_sn = record_sn;
621                         goto exit_rcu_unlock;
622                 }
623                 record_sn++;
624         }
625         info = NULL;
626
627 exit_rcu_unlock:
628         rcu_read_unlock();
629         return info;
630 }
631 EXPORT_SYMBOL(tls_get_record);
632
633 static int tls_device_push_pending_record(struct sock *sk, int flags)
634 {
635         struct iov_iter msg_iter;
636
637         iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
638         return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
639 }
640
641 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
642 {
643         if (tls_is_partially_sent_record(ctx)) {
644                 gfp_t sk_allocation = sk->sk_allocation;
645
646                 WARN_ON_ONCE(sk->sk_write_pending);
647
648                 sk->sk_allocation = GFP_ATOMIC;
649                 tls_push_partial_record(sk, ctx,
650                                         MSG_DONTWAIT | MSG_NOSIGNAL |
651                                         MSG_SENDPAGE_DECRYPTED);
652                 sk->sk_allocation = sk_allocation;
653         }
654 }
655
656 static void tls_device_resync_rx(struct tls_context *tls_ctx,
657                                  struct sock *sk, u32 seq, u8 *rcd_sn)
658 {
659         struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
660         struct net_device *netdev;
661
662         if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
663                 return;
664
665         trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
666         netdev = READ_ONCE(tls_ctx->netdev);
667         if (netdev)
668                 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
669                                                    TLS_OFFLOAD_CTX_DIR_RX);
670         clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
671         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
672 }
673
674 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
675 {
676         struct tls_context *tls_ctx = tls_get_ctx(sk);
677         struct tls_offload_context_rx *rx_ctx;
678         u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
679         u32 sock_data, is_req_pending;
680         struct tls_prot_info *prot;
681         s64 resync_req;
682         u32 req_seq;
683
684         if (tls_ctx->rx_conf != TLS_HW)
685                 return;
686
687         prot = &tls_ctx->prot_info;
688         rx_ctx = tls_offload_ctx_rx(tls_ctx);
689         memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
690
691         switch (rx_ctx->resync_type) {
692         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
693                 resync_req = atomic64_read(&rx_ctx->resync_req);
694                 req_seq = resync_req >> 32;
695                 seq += TLS_HEADER_SIZE - 1;
696                 is_req_pending = resync_req;
697
698                 if (likely(!is_req_pending) || req_seq != seq ||
699                     !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
700                         return;
701                 break;
702         case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
703                 if (likely(!rx_ctx->resync_nh_do_now))
704                         return;
705
706                 /* head of next rec is already in, note that the sock_inq will
707                  * include the currently parsed message when called from parser
708                  */
709                 sock_data = tcp_inq(sk);
710                 if (sock_data > rcd_len) {
711                         trace_tls_device_rx_resync_nh_delay(sk, sock_data,
712                                                             rcd_len);
713                         return;
714                 }
715
716                 rx_ctx->resync_nh_do_now = 0;
717                 seq += rcd_len;
718                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
719                 break;
720         }
721
722         tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
723 }
724
725 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
726                                            struct tls_offload_context_rx *ctx,
727                                            struct sock *sk, struct sk_buff *skb)
728 {
729         struct strp_msg *rxm;
730
731         /* device will request resyncs by itself based on stream scan */
732         if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
733                 return;
734         /* already scheduled */
735         if (ctx->resync_nh_do_now)
736                 return;
737         /* seen decrypted fragments since last fully-failed record */
738         if (ctx->resync_nh_reset) {
739                 ctx->resync_nh_reset = 0;
740                 ctx->resync_nh.decrypted_failed = 1;
741                 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
742                 return;
743         }
744
745         if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
746                 return;
747
748         /* doing resync, bump the next target in case it fails */
749         if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
750                 ctx->resync_nh.decrypted_tgt *= 2;
751         else
752                 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
753
754         rxm = strp_msg(skb);
755
756         /* head of next rec is already in, parser will sync for us */
757         if (tcp_inq(sk) > rxm->full_len) {
758                 trace_tls_device_rx_resync_nh_schedule(sk);
759                 ctx->resync_nh_do_now = 1;
760         } else {
761                 struct tls_prot_info *prot = &tls_ctx->prot_info;
762                 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
763
764                 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
765                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
766
767                 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
768                                      rcd_sn);
769         }
770 }
771
772 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
773 {
774         struct strp_msg *rxm = strp_msg(skb);
775         int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
776         struct sk_buff *skb_iter, *unused;
777         struct scatterlist sg[1];
778         char *orig_buf, *buf;
779
780         orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
781                            TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
782         if (!orig_buf)
783                 return -ENOMEM;
784         buf = orig_buf;
785
786         nsg = skb_cow_data(skb, 0, &unused);
787         if (unlikely(nsg < 0)) {
788                 err = nsg;
789                 goto free_buf;
790         }
791
792         sg_init_table(sg, 1);
793         sg_set_buf(&sg[0], buf,
794                    rxm->full_len + TLS_HEADER_SIZE +
795                    TLS_CIPHER_AES_GCM_128_IV_SIZE);
796         err = skb_copy_bits(skb, offset, buf,
797                             TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
798         if (err)
799                 goto free_buf;
800
801         /* We are interested only in the decrypted data not the auth */
802         err = decrypt_skb(sk, skb, sg);
803         if (err != -EBADMSG)
804                 goto free_buf;
805         else
806                 err = 0;
807
808         data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
809
810         if (skb_pagelen(skb) > offset) {
811                 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
812
813                 if (skb->decrypted) {
814                         err = skb_store_bits(skb, offset, buf, copy);
815                         if (err)
816                                 goto free_buf;
817                 }
818
819                 offset += copy;
820                 buf += copy;
821         }
822
823         pos = skb_pagelen(skb);
824         skb_walk_frags(skb, skb_iter) {
825                 int frag_pos;
826
827                 /* Practically all frags must belong to msg if reencrypt
828                  * is needed with current strparser and coalescing logic,
829                  * but strparser may "get optimized", so let's be safe.
830                  */
831                 if (pos + skb_iter->len <= offset)
832                         goto done_with_frag;
833                 if (pos >= data_len + rxm->offset)
834                         break;
835
836                 frag_pos = offset - pos;
837                 copy = min_t(int, skb_iter->len - frag_pos,
838                              data_len + rxm->offset - offset);
839
840                 if (skb_iter->decrypted) {
841                         err = skb_store_bits(skb_iter, frag_pos, buf, copy);
842                         if (err)
843                                 goto free_buf;
844                 }
845
846                 offset += copy;
847                 buf += copy;
848 done_with_frag:
849                 pos += skb_iter->len;
850         }
851
852 free_buf:
853         kfree(orig_buf);
854         return err;
855 }
856
857 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
858                          struct sk_buff *skb, struct strp_msg *rxm)
859 {
860         struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
861         int is_decrypted = skb->decrypted;
862         int is_encrypted = !is_decrypted;
863         struct sk_buff *skb_iter;
864
865         /* Check if all the data is decrypted already */
866         skb_walk_frags(skb, skb_iter) {
867                 is_decrypted &= skb_iter->decrypted;
868                 is_encrypted &= !skb_iter->decrypted;
869         }
870
871         trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
872                                    tls_ctx->rx.rec_seq, rxm->full_len,
873                                    is_encrypted, is_decrypted);
874
875         ctx->sw.decrypted |= is_decrypted;
876
877         /* Return immediately if the record is either entirely plaintext or
878          * entirely ciphertext. Otherwise handle reencrypt partially decrypted
879          * record.
880          */
881         if (is_decrypted) {
882                 ctx->resync_nh_reset = 1;
883                 return 0;
884         }
885         if (is_encrypted) {
886                 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
887                 return 0;
888         }
889
890         ctx->resync_nh_reset = 1;
891         return tls_device_reencrypt(sk, skb);
892 }
893
894 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
895                               struct net_device *netdev)
896 {
897         if (sk->sk_destruct != tls_device_sk_destruct) {
898                 refcount_set(&ctx->refcount, 1);
899                 dev_hold(netdev);
900                 ctx->netdev = netdev;
901                 spin_lock_irq(&tls_device_lock);
902                 list_add_tail(&ctx->list, &tls_device_list);
903                 spin_unlock_irq(&tls_device_lock);
904
905                 ctx->sk_destruct = sk->sk_destruct;
906                 sk->sk_destruct = tls_device_sk_destruct;
907         }
908 }
909
910 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
911 {
912         u16 nonce_size, tag_size, iv_size, rec_seq_size;
913         struct tls_context *tls_ctx = tls_get_ctx(sk);
914         struct tls_prot_info *prot = &tls_ctx->prot_info;
915         struct tls_record_info *start_marker_record;
916         struct tls_offload_context_tx *offload_ctx;
917         struct tls_crypto_info *crypto_info;
918         struct net_device *netdev;
919         char *iv, *rec_seq;
920         struct sk_buff *skb;
921         __be64 rcd_sn;
922         int rc;
923
924         if (!ctx)
925                 return -EINVAL;
926
927         if (ctx->priv_ctx_tx)
928                 return -EEXIST;
929
930         start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
931         if (!start_marker_record)
932                 return -ENOMEM;
933
934         offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
935         if (!offload_ctx) {
936                 rc = -ENOMEM;
937                 goto free_marker_record;
938         }
939
940         crypto_info = &ctx->crypto_send.info;
941         if (crypto_info->version != TLS_1_2_VERSION) {
942                 rc = -EOPNOTSUPP;
943                 goto free_offload_ctx;
944         }
945
946         switch (crypto_info->cipher_type) {
947         case TLS_CIPHER_AES_GCM_128:
948                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
949                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
950                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
951                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
952                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
953                 rec_seq =
954                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
955                 break;
956         default:
957                 rc = -EINVAL;
958                 goto free_offload_ctx;
959         }
960
961         /* Sanity-check the rec_seq_size for stack allocations */
962         if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
963                 rc = -EINVAL;
964                 goto free_offload_ctx;
965         }
966
967         prot->version = crypto_info->version;
968         prot->cipher_type = crypto_info->cipher_type;
969         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
970         prot->tag_size = tag_size;
971         prot->overhead_size = prot->prepend_size + prot->tag_size;
972         prot->iv_size = iv_size;
973         ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
974                              GFP_KERNEL);
975         if (!ctx->tx.iv) {
976                 rc = -ENOMEM;
977                 goto free_offload_ctx;
978         }
979
980         memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
981
982         prot->rec_seq_size = rec_seq_size;
983         ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
984         if (!ctx->tx.rec_seq) {
985                 rc = -ENOMEM;
986                 goto free_iv;
987         }
988
989         rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
990         if (rc)
991                 goto free_rec_seq;
992
993         /* start at rec_seq - 1 to account for the start marker record */
994         memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
995         offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
996
997         start_marker_record->end_seq = tcp_sk(sk)->write_seq;
998         start_marker_record->len = 0;
999         start_marker_record->num_frags = 0;
1000
1001         INIT_LIST_HEAD(&offload_ctx->records_list);
1002         list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1003         spin_lock_init(&offload_ctx->lock);
1004         sg_init_table(offload_ctx->sg_tx_data,
1005                       ARRAY_SIZE(offload_ctx->sg_tx_data));
1006
1007         clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1008         ctx->push_pending_record = tls_device_push_pending_record;
1009
1010         /* TLS offload is greatly simplified if we don't send
1011          * SKBs where only part of the payload needs to be encrypted.
1012          * So mark the last skb in the write queue as end of record.
1013          */
1014         skb = tcp_write_queue_tail(sk);
1015         if (skb)
1016                 TCP_SKB_CB(skb)->eor = 1;
1017
1018         netdev = get_netdev_for_sock(sk);
1019         if (!netdev) {
1020                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1021                 rc = -EINVAL;
1022                 goto disable_cad;
1023         }
1024
1025         if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1026                 rc = -EOPNOTSUPP;
1027                 goto release_netdev;
1028         }
1029
1030         /* Avoid offloading if the device is down
1031          * We don't want to offload new flows after
1032          * the NETDEV_DOWN event
1033          *
1034          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1035          * handler thus protecting from the device going down before
1036          * ctx was added to tls_device_list.
1037          */
1038         down_read(&device_offload_lock);
1039         if (!(netdev->flags & IFF_UP)) {
1040                 rc = -EINVAL;
1041                 goto release_lock;
1042         }
1043
1044         ctx->priv_ctx_tx = offload_ctx;
1045         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1046                                              &ctx->crypto_send.info,
1047                                              tcp_sk(sk)->write_seq);
1048         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1049                                      tcp_sk(sk)->write_seq, rec_seq, rc);
1050         if (rc)
1051                 goto release_lock;
1052
1053         tls_device_attach(ctx, sk, netdev);
1054         up_read(&device_offload_lock);
1055
1056         /* following this assignment tls_is_sk_tx_device_offloaded
1057          * will return true and the context might be accessed
1058          * by the netdev's xmit function.
1059          */
1060         smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1061         dev_put(netdev);
1062
1063         return 0;
1064
1065 release_lock:
1066         up_read(&device_offload_lock);
1067 release_netdev:
1068         dev_put(netdev);
1069 disable_cad:
1070         clean_acked_data_disable(inet_csk(sk));
1071         crypto_free_aead(offload_ctx->aead_send);
1072 free_rec_seq:
1073         kfree(ctx->tx.rec_seq);
1074 free_iv:
1075         kfree(ctx->tx.iv);
1076 free_offload_ctx:
1077         kfree(offload_ctx);
1078         ctx->priv_ctx_tx = NULL;
1079 free_marker_record:
1080         kfree(start_marker_record);
1081         return rc;
1082 }
1083
1084 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1085 {
1086         struct tls12_crypto_info_aes_gcm_128 *info;
1087         struct tls_offload_context_rx *context;
1088         struct net_device *netdev;
1089         int rc = 0;
1090
1091         if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1092                 return -EOPNOTSUPP;
1093
1094         netdev = get_netdev_for_sock(sk);
1095         if (!netdev) {
1096                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1097                 return -EINVAL;
1098         }
1099
1100         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1101                 rc = -EOPNOTSUPP;
1102                 goto release_netdev;
1103         }
1104
1105         /* Avoid offloading if the device is down
1106          * We don't want to offload new flows after
1107          * the NETDEV_DOWN event
1108          *
1109          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1110          * handler thus protecting from the device going down before
1111          * ctx was added to tls_device_list.
1112          */
1113         down_read(&device_offload_lock);
1114         if (!(netdev->flags & IFF_UP)) {
1115                 rc = -EINVAL;
1116                 goto release_lock;
1117         }
1118
1119         context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1120         if (!context) {
1121                 rc = -ENOMEM;
1122                 goto release_lock;
1123         }
1124         context->resync_nh_reset = 1;
1125
1126         ctx->priv_ctx_rx = context;
1127         rc = tls_set_sw_offload(sk, ctx, 0);
1128         if (rc)
1129                 goto release_ctx;
1130
1131         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1132                                              &ctx->crypto_recv.info,
1133                                              tcp_sk(sk)->copied_seq);
1134         info = (void *)&ctx->crypto_recv.info;
1135         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1136                                      tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1137         if (rc)
1138                 goto free_sw_resources;
1139
1140         tls_device_attach(ctx, sk, netdev);
1141         up_read(&device_offload_lock);
1142
1143         dev_put(netdev);
1144
1145         return 0;
1146
1147 free_sw_resources:
1148         up_read(&device_offload_lock);
1149         tls_sw_free_resources_rx(sk);
1150         down_read(&device_offload_lock);
1151 release_ctx:
1152         ctx->priv_ctx_rx = NULL;
1153 release_lock:
1154         up_read(&device_offload_lock);
1155 release_netdev:
1156         dev_put(netdev);
1157         return rc;
1158 }
1159
1160 void tls_device_offload_cleanup_rx(struct sock *sk)
1161 {
1162         struct tls_context *tls_ctx = tls_get_ctx(sk);
1163         struct net_device *netdev;
1164
1165         down_read(&device_offload_lock);
1166         netdev = tls_ctx->netdev;
1167         if (!netdev)
1168                 goto out;
1169
1170         netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1171                                         TLS_OFFLOAD_CTX_DIR_RX);
1172
1173         if (tls_ctx->tx_conf != TLS_HW) {
1174                 dev_put(netdev);
1175                 tls_ctx->netdev = NULL;
1176         }
1177 out:
1178         up_read(&device_offload_lock);
1179         tls_sw_release_resources_rx(sk);
1180 }
1181
1182 static int tls_device_down(struct net_device *netdev)
1183 {
1184         struct tls_context *ctx, *tmp;
1185         unsigned long flags;
1186         LIST_HEAD(list);
1187
1188         /* Request a write lock to block new offload attempts */
1189         down_write(&device_offload_lock);
1190
1191         spin_lock_irqsave(&tls_device_lock, flags);
1192         list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1193                 if (ctx->netdev != netdev ||
1194                     !refcount_inc_not_zero(&ctx->refcount))
1195                         continue;
1196
1197                 list_move(&ctx->list, &list);
1198         }
1199         spin_unlock_irqrestore(&tls_device_lock, flags);
1200
1201         list_for_each_entry_safe(ctx, tmp, &list, list) {
1202                 if (ctx->tx_conf == TLS_HW)
1203                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1204                                                         TLS_OFFLOAD_CTX_DIR_TX);
1205                 if (ctx->rx_conf == TLS_HW)
1206                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1207                                                         TLS_OFFLOAD_CTX_DIR_RX);
1208                 WRITE_ONCE(ctx->netdev, NULL);
1209                 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1210                 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1211                         usleep_range(10, 200);
1212                 dev_put(netdev);
1213                 list_del_init(&ctx->list);
1214
1215                 if (refcount_dec_and_test(&ctx->refcount))
1216                         tls_device_free_ctx(ctx);
1217         }
1218
1219         up_write(&device_offload_lock);
1220
1221         flush_work(&tls_device_gc_work);
1222
1223         return NOTIFY_DONE;
1224 }
1225
1226 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1227                          void *ptr)
1228 {
1229         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1230
1231         if (!dev->tlsdev_ops &&
1232             !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1233                 return NOTIFY_DONE;
1234
1235         switch (event) {
1236         case NETDEV_REGISTER:
1237         case NETDEV_FEAT_CHANGE:
1238                 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1239                     !dev->tlsdev_ops->tls_dev_resync)
1240                         return NOTIFY_BAD;
1241
1242                 if  (dev->tlsdev_ops &&
1243                      dev->tlsdev_ops->tls_dev_add &&
1244                      dev->tlsdev_ops->tls_dev_del)
1245                         return NOTIFY_DONE;
1246                 else
1247                         return NOTIFY_BAD;
1248         case NETDEV_DOWN:
1249                 return tls_device_down(dev);
1250         }
1251         return NOTIFY_DONE;
1252 }
1253
1254 static struct notifier_block tls_dev_notifier = {
1255         .notifier_call  = tls_dev_event,
1256 };
1257
1258 void __init tls_device_init(void)
1259 {
1260         register_netdevice_notifier(&tls_dev_notifier);
1261 }
1262
1263 void __exit tls_device_cleanup(void)
1264 {
1265         unregister_netdevice_notifier(&tls_dev_notifier);
1266         flush_work(&tls_device_gc_work);
1267         clean_acked_data_flush();
1268 }