]> asedeno.scripts.mit.edu Git - linux.git/blob - net/tls/tls_main.c
545bf34ed599d80de96dceab7053508460a75420
[linux.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48
49 enum {
50         TLSV4,
51         TLSV6,
52         TLS_NUM_PROTS,
53 };
54 enum {
55         TLS_BASE,
56         TLS_SW,
57         TLS_HW_RECORD,
58         TLS_NUM_CONFIG,
59 };
60
61 static struct proto *saved_tcpv6_prot;
62 static DEFINE_MUTEX(tcpv6_prot_mutex);
63 static LIST_HEAD(device_list);
64 static DEFINE_MUTEX(device_mutex);
65 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
66 static struct proto_ops tls_sw_proto_ops;
67
68 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
73 }
74
75 int wait_on_pending_writer(struct sock *sk, long *timeo)
76 {
77         int rc = 0;
78         DEFINE_WAIT_FUNC(wait, woken_wake_function);
79
80         add_wait_queue(sk_sleep(sk), &wait);
81         while (1) {
82                 if (!*timeo) {
83                         rc = -EAGAIN;
84                         break;
85                 }
86
87                 if (signal_pending(current)) {
88                         rc = sock_intr_errno(*timeo);
89                         break;
90                 }
91
92                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
93                         break;
94         }
95         remove_wait_queue(sk_sleep(sk), &wait);
96         return rc;
97 }
98
99 int tls_push_sg(struct sock *sk,
100                 struct tls_context *ctx,
101                 struct scatterlist *sg,
102                 u16 first_offset,
103                 int flags)
104 {
105         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
106         int ret = 0;
107         struct page *p;
108         size_t size;
109         int offset = first_offset;
110
111         size = sg->length - offset;
112         offset += sg->offset;
113
114         while (1) {
115                 if (sg_is_last(sg))
116                         sendpage_flags = flags;
117
118                 /* is sending application-limited? */
119                 tcp_rate_check_app_limited(sk);
120                 p = sg_page(sg);
121 retry:
122                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
123
124                 if (ret != size) {
125                         if (ret > 0) {
126                                 offset += ret;
127                                 size -= ret;
128                                 goto retry;
129                         }
130
131                         offset -= sg->offset;
132                         ctx->partially_sent_offset = offset;
133                         ctx->partially_sent_record = (void *)sg;
134                         return ret;
135                 }
136
137                 put_page(p);
138                 sk_mem_uncharge(sk, sg->length);
139                 sg = sg_next(sg);
140                 if (!sg)
141                         break;
142
143                 offset = sg->offset;
144                 size = sg->length;
145         }
146
147         clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
148
149         return 0;
150 }
151
152 static int tls_handle_open_record(struct sock *sk, int flags)
153 {
154         struct tls_context *ctx = tls_get_ctx(sk);
155
156         if (tls_is_pending_open_record(ctx))
157                 return ctx->push_pending_record(sk, flags);
158
159         return 0;
160 }
161
162 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
163                       unsigned char *record_type)
164 {
165         struct cmsghdr *cmsg;
166         int rc = -EINVAL;
167
168         for_each_cmsghdr(cmsg, msg) {
169                 if (!CMSG_OK(msg, cmsg))
170                         return -EINVAL;
171                 if (cmsg->cmsg_level != SOL_TLS)
172                         continue;
173
174                 switch (cmsg->cmsg_type) {
175                 case TLS_SET_RECORD_TYPE:
176                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
177                                 return -EINVAL;
178
179                         if (msg->msg_flags & MSG_MORE)
180                                 return -EINVAL;
181
182                         rc = tls_handle_open_record(sk, msg->msg_flags);
183                         if (rc)
184                                 return rc;
185
186                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
187                         rc = 0;
188                         break;
189                 default:
190                         return -EINVAL;
191                 }
192         }
193
194         return rc;
195 }
196
197 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
198                                    int flags, long *timeo)
199 {
200         struct scatterlist *sg;
201         u16 offset;
202
203         if (!tls_is_partially_sent_record(ctx))
204                 return ctx->push_pending_record(sk, flags);
205
206         sg = ctx->partially_sent_record;
207         offset = ctx->partially_sent_offset;
208
209         ctx->partially_sent_record = NULL;
210         return tls_push_sg(sk, ctx, sg, offset, flags);
211 }
212
213 static void tls_write_space(struct sock *sk)
214 {
215         struct tls_context *ctx = tls_get_ctx(sk);
216
217         if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
218                 gfp_t sk_allocation = sk->sk_allocation;
219                 int rc;
220                 long timeo = 0;
221
222                 sk->sk_allocation = GFP_ATOMIC;
223                 rc = tls_push_pending_closed_record(sk, ctx,
224                                                     MSG_DONTWAIT |
225                                                     MSG_NOSIGNAL,
226                                                     &timeo);
227                 sk->sk_allocation = sk_allocation;
228
229                 if (rc < 0)
230                         return;
231         }
232
233         ctx->sk_write_space(sk);
234 }
235
236 static void tls_sk_proto_close(struct sock *sk, long timeout)
237 {
238         struct tls_context *ctx = tls_get_ctx(sk);
239         long timeo = sock_sndtimeo(sk, 0);
240         void (*sk_proto_close)(struct sock *sk, long timeout);
241
242         lock_sock(sk);
243         sk_proto_close = ctx->sk_proto_close;
244
245         if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD)
246                 goto skip_tx_cleanup;
247
248         if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) {
249                 kfree(ctx);
250                 ctx = NULL;
251                 goto skip_tx_cleanup;
252         }
253
254         if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
255                 tls_handle_open_record(sk, 0);
256
257         if (ctx->partially_sent_record) {
258                 struct scatterlist *sg = ctx->partially_sent_record;
259
260                 while (1) {
261                         put_page(sg_page(sg));
262                         sk_mem_uncharge(sk, sg->length);
263
264                         if (sg_is_last(sg))
265                                 break;
266                         sg++;
267                 }
268         }
269
270         /* We need these for tls_sw_fallback handling of other packets */
271         if (ctx->tx_conf == TLS_SW) {
272                 kfree(ctx->tx.rec_seq);
273                 kfree(ctx->tx.iv);
274                 tls_sw_free_resources_tx(sk);
275         }
276
277         if (ctx->rx_conf == TLS_SW) {
278                 kfree(ctx->rx.rec_seq);
279                 kfree(ctx->rx.iv);
280                 tls_sw_free_resources_rx(sk);
281         }
282
283 skip_tx_cleanup:
284         release_sock(sk);
285         sk_proto_close(sk, timeout);
286         /* free ctx for TLS_HW_RECORD, used by tcp_set_state
287          * for sk->sk_prot->unhash [tls_hw_unhash]
288          */
289         if (ctx && ctx->tx_conf == TLS_HW_RECORD &&
290             ctx->rx_conf == TLS_HW_RECORD)
291                 kfree(ctx);
292 }
293
294 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
295                                 int __user *optlen)
296 {
297         int rc = 0;
298         struct tls_context *ctx = tls_get_ctx(sk);
299         struct tls_crypto_info *crypto_info;
300         int len;
301
302         if (get_user(len, optlen))
303                 return -EFAULT;
304
305         if (!optval || (len < sizeof(*crypto_info))) {
306                 rc = -EINVAL;
307                 goto out;
308         }
309
310         if (!ctx) {
311                 rc = -EBUSY;
312                 goto out;
313         }
314
315         /* get user crypto info */
316         crypto_info = &ctx->crypto_send;
317
318         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
319                 rc = -EBUSY;
320                 goto out;
321         }
322
323         if (len == sizeof(*crypto_info)) {
324                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
325                         rc = -EFAULT;
326                 goto out;
327         }
328
329         switch (crypto_info->cipher_type) {
330         case TLS_CIPHER_AES_GCM_128: {
331                 struct tls12_crypto_info_aes_gcm_128 *
332                   crypto_info_aes_gcm_128 =
333                   container_of(crypto_info,
334                                struct tls12_crypto_info_aes_gcm_128,
335                                info);
336
337                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
338                         rc = -EINVAL;
339                         goto out;
340                 }
341                 lock_sock(sk);
342                 memcpy(crypto_info_aes_gcm_128->iv,
343                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
344                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
345                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
346                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
347                 release_sock(sk);
348                 if (copy_to_user(optval,
349                                  crypto_info_aes_gcm_128,
350                                  sizeof(*crypto_info_aes_gcm_128)))
351                         rc = -EFAULT;
352                 break;
353         }
354         default:
355                 rc = -EINVAL;
356         }
357
358 out:
359         return rc;
360 }
361
362 static int do_tls_getsockopt(struct sock *sk, int optname,
363                              char __user *optval, int __user *optlen)
364 {
365         int rc = 0;
366
367         switch (optname) {
368         case TLS_TX:
369                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
370                 break;
371         default:
372                 rc = -ENOPROTOOPT;
373                 break;
374         }
375         return rc;
376 }
377
378 static int tls_getsockopt(struct sock *sk, int level, int optname,
379                           char __user *optval, int __user *optlen)
380 {
381         struct tls_context *ctx = tls_get_ctx(sk);
382
383         if (level != SOL_TLS)
384                 return ctx->getsockopt(sk, level, optname, optval, optlen);
385
386         return do_tls_getsockopt(sk, optname, optval, optlen);
387 }
388
389 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
390                                   unsigned int optlen, int tx)
391 {
392         struct tls_crypto_info *crypto_info;
393         struct tls_context *ctx = tls_get_ctx(sk);
394         int rc = 0;
395         int conf;
396
397         if (!optval || (optlen < sizeof(*crypto_info))) {
398                 rc = -EINVAL;
399                 goto out;
400         }
401
402         if (tx)
403                 crypto_info = &ctx->crypto_send;
404         else
405                 crypto_info = &ctx->crypto_recv;
406
407         /* Currently we don't support set crypto info more than one time */
408         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
409                 rc = -EBUSY;
410                 goto out;
411         }
412
413         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
414         if (rc) {
415                 rc = -EFAULT;
416                 goto err_crypto_info;
417         }
418
419         /* check version */
420         if (crypto_info->version != TLS_1_2_VERSION) {
421                 rc = -ENOTSUPP;
422                 goto err_crypto_info;
423         }
424
425         switch (crypto_info->cipher_type) {
426         case TLS_CIPHER_AES_GCM_128: {
427                 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
428                         rc = -EINVAL;
429                         goto err_crypto_info;
430                 }
431                 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
432                                     optlen - sizeof(*crypto_info));
433                 if (rc) {
434                         rc = -EFAULT;
435                         goto err_crypto_info;
436                 }
437                 break;
438         }
439         default:
440                 rc = -EINVAL;
441                 goto err_crypto_info;
442         }
443
444         if (tx) {
445                 rc = tls_set_sw_offload(sk, ctx, 1);
446                 conf = TLS_SW;
447         } else {
448                 rc = tls_set_sw_offload(sk, ctx, 0);
449                 conf = TLS_SW;
450         }
451
452         if (rc)
453                 goto err_crypto_info;
454
455         if (tx)
456                 ctx->tx_conf = conf;
457         else
458                 ctx->rx_conf = conf;
459         update_sk_prot(sk, ctx);
460         if (tx) {
461                 ctx->sk_write_space = sk->sk_write_space;
462                 sk->sk_write_space = tls_write_space;
463         } else {
464                 sk->sk_socket->ops = &tls_sw_proto_ops;
465         }
466         goto out;
467
468 err_crypto_info:
469         memset(crypto_info, 0, sizeof(*crypto_info));
470 out:
471         return rc;
472 }
473
474 static int do_tls_setsockopt(struct sock *sk, int optname,
475                              char __user *optval, unsigned int optlen)
476 {
477         int rc = 0;
478
479         switch (optname) {
480         case TLS_TX:
481         case TLS_RX:
482                 lock_sock(sk);
483                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
484                                             optname == TLS_TX);
485                 release_sock(sk);
486                 break;
487         default:
488                 rc = -ENOPROTOOPT;
489                 break;
490         }
491         return rc;
492 }
493
494 static int tls_setsockopt(struct sock *sk, int level, int optname,
495                           char __user *optval, unsigned int optlen)
496 {
497         struct tls_context *ctx = tls_get_ctx(sk);
498
499         if (level != SOL_TLS)
500                 return ctx->setsockopt(sk, level, optname, optval, optlen);
501
502         return do_tls_setsockopt(sk, optname, optval, optlen);
503 }
504
505 static struct tls_context *create_ctx(struct sock *sk)
506 {
507         struct inet_connection_sock *icsk = inet_csk(sk);
508         struct tls_context *ctx;
509
510         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
511         if (!ctx)
512                 return NULL;
513
514         icsk->icsk_ulp_data = ctx;
515         return ctx;
516 }
517
518 static int tls_hw_prot(struct sock *sk)
519 {
520         struct tls_context *ctx;
521         struct tls_device *dev;
522         int rc = 0;
523
524         mutex_lock(&device_mutex);
525         list_for_each_entry(dev, &device_list, dev_list) {
526                 if (dev->feature && dev->feature(dev)) {
527                         ctx = create_ctx(sk);
528                         if (!ctx)
529                                 goto out;
530
531                         ctx->hash = sk->sk_prot->hash;
532                         ctx->unhash = sk->sk_prot->unhash;
533                         ctx->sk_proto_close = sk->sk_prot->close;
534                         ctx->rx_conf = TLS_HW_RECORD;
535                         ctx->tx_conf = TLS_HW_RECORD;
536                         update_sk_prot(sk, ctx);
537                         rc = 1;
538                         break;
539                 }
540         }
541 out:
542         mutex_unlock(&device_mutex);
543         return rc;
544 }
545
546 static void tls_hw_unhash(struct sock *sk)
547 {
548         struct tls_context *ctx = tls_get_ctx(sk);
549         struct tls_device *dev;
550
551         mutex_lock(&device_mutex);
552         list_for_each_entry(dev, &device_list, dev_list) {
553                 if (dev->unhash)
554                         dev->unhash(dev, sk);
555         }
556         mutex_unlock(&device_mutex);
557         ctx->unhash(sk);
558 }
559
560 static int tls_hw_hash(struct sock *sk)
561 {
562         struct tls_context *ctx = tls_get_ctx(sk);
563         struct tls_device *dev;
564         int err;
565
566         err = ctx->hash(sk);
567         mutex_lock(&device_mutex);
568         list_for_each_entry(dev, &device_list, dev_list) {
569                 if (dev->hash)
570                         err |= dev->hash(dev, sk);
571         }
572         mutex_unlock(&device_mutex);
573
574         if (err)
575                 tls_hw_unhash(sk);
576         return err;
577 }
578
579 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
580                          struct proto *base)
581 {
582         prot[TLS_BASE][TLS_BASE] = *base;
583         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
584         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
585         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
586
587         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
588         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
589         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
590
591         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
592         prot[TLS_BASE][TLS_SW].recvmsg          = tls_sw_recvmsg;
593         prot[TLS_BASE][TLS_SW].close            = tls_sk_proto_close;
594
595         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
596         prot[TLS_SW][TLS_SW].recvmsg    = tls_sw_recvmsg;
597         prot[TLS_SW][TLS_SW].close      = tls_sk_proto_close;
598
599         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
600         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
601         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
602         prot[TLS_HW_RECORD][TLS_HW_RECORD].close        = tls_sk_proto_close;
603 }
604
605 static int tls_init(struct sock *sk)
606 {
607         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
608         struct tls_context *ctx;
609         int rc = 0;
610
611         if (tls_hw_prot(sk))
612                 goto out;
613
614         /* The TLS ulp is currently supported only for TCP sockets
615          * in ESTABLISHED state.
616          * Supporting sockets in LISTEN state will require us
617          * to modify the accept implementation to clone rather then
618          * share the ulp context.
619          */
620         if (sk->sk_state != TCP_ESTABLISHED)
621                 return -ENOTSUPP;
622
623         /* allocate tls context */
624         ctx = create_ctx(sk);
625         if (!ctx) {
626                 rc = -ENOMEM;
627                 goto out;
628         }
629         ctx->setsockopt = sk->sk_prot->setsockopt;
630         ctx->getsockopt = sk->sk_prot->getsockopt;
631         ctx->sk_proto_close = sk->sk_prot->close;
632
633         /* Build IPv6 TLS whenever the address of tcpv6_prot changes */
634         if (ip_ver == TLSV6 &&
635             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
636                 mutex_lock(&tcpv6_prot_mutex);
637                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
638                         build_protos(tls_prots[TLSV6], sk->sk_prot);
639                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
640                 }
641                 mutex_unlock(&tcpv6_prot_mutex);
642         }
643
644         ctx->tx_conf = TLS_BASE;
645         ctx->rx_conf = TLS_BASE;
646         update_sk_prot(sk, ctx);
647 out:
648         return rc;
649 }
650
651 void tls_register_device(struct tls_device *device)
652 {
653         mutex_lock(&device_mutex);
654         list_add_tail(&device->dev_list, &device_list);
655         mutex_unlock(&device_mutex);
656 }
657 EXPORT_SYMBOL(tls_register_device);
658
659 void tls_unregister_device(struct tls_device *device)
660 {
661         mutex_lock(&device_mutex);
662         list_del(&device->dev_list);
663         mutex_unlock(&device_mutex);
664 }
665 EXPORT_SYMBOL(tls_unregister_device);
666
667 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
668         .name                   = "tls",
669         .uid                    = TCP_ULP_TLS,
670         .user_visible           = true,
671         .owner                  = THIS_MODULE,
672         .init                   = tls_init,
673 };
674
675 static int __init tls_register(void)
676 {
677         build_protos(tls_prots[TLSV4], &tcp_prot);
678
679         tls_sw_proto_ops = inet_stream_ops;
680         tls_sw_proto_ops.poll = tls_sw_poll;
681         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
682
683         tcp_register_ulp(&tcp_tls_ulp_ops);
684
685         return 0;
686 }
687
688 static void __exit tls_unregister(void)
689 {
690         tcp_unregister_ulp(&tcp_tls_ulp_ops);
691 }
692
693 module_init(tls_register);
694 module_exit(tls_unregister);