]> asedeno.scripts.mit.edu Git - linux.git/blob - net/tls/tls_main.c
Merge branch 'for-4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
[linux.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51         TLSV4,
52         TLSV6,
53         TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static LIST_HEAD(device_list);
59 static DEFINE_MUTEX(device_mutex);
60 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
61 static struct proto_ops tls_sw_proto_ops;
62
63 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
64 {
65         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
66
67         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
68 }
69
70 int wait_on_pending_writer(struct sock *sk, long *timeo)
71 {
72         int rc = 0;
73         DEFINE_WAIT_FUNC(wait, woken_wake_function);
74
75         add_wait_queue(sk_sleep(sk), &wait);
76         while (1) {
77                 if (!*timeo) {
78                         rc = -EAGAIN;
79                         break;
80                 }
81
82                 if (signal_pending(current)) {
83                         rc = sock_intr_errno(*timeo);
84                         break;
85                 }
86
87                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
88                         break;
89         }
90         remove_wait_queue(sk_sleep(sk), &wait);
91         return rc;
92 }
93
94 int tls_push_sg(struct sock *sk,
95                 struct tls_context *ctx,
96                 struct scatterlist *sg,
97                 u16 first_offset,
98                 int flags)
99 {
100         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
101         int ret = 0;
102         struct page *p;
103         size_t size;
104         int offset = first_offset;
105
106         size = sg->length - offset;
107         offset += sg->offset;
108
109         ctx->in_tcp_sendpages = true;
110         while (1) {
111                 if (sg_is_last(sg))
112                         sendpage_flags = flags;
113
114                 /* is sending application-limited? */
115                 tcp_rate_check_app_limited(sk);
116                 p = sg_page(sg);
117 retry:
118                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
119
120                 if (ret != size) {
121                         if (ret > 0) {
122                                 offset += ret;
123                                 size -= ret;
124                                 goto retry;
125                         }
126
127                         offset -= sg->offset;
128                         ctx->partially_sent_offset = offset;
129                         ctx->partially_sent_record = (void *)sg;
130                         ctx->in_tcp_sendpages = false;
131                         return ret;
132                 }
133
134                 put_page(p);
135                 sk_mem_uncharge(sk, sg->length);
136                 sg = sg_next(sg);
137                 if (!sg)
138                         break;
139
140                 offset = sg->offset;
141                 size = sg->length;
142         }
143
144         clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
145         ctx->in_tcp_sendpages = false;
146         ctx->sk_write_space(sk);
147
148         return 0;
149 }
150
151 static int tls_handle_open_record(struct sock *sk, int flags)
152 {
153         struct tls_context *ctx = tls_get_ctx(sk);
154
155         if (tls_is_pending_open_record(ctx))
156                 return ctx->push_pending_record(sk, flags);
157
158         return 0;
159 }
160
161 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
162                       unsigned char *record_type)
163 {
164         struct cmsghdr *cmsg;
165         int rc = -EINVAL;
166
167         for_each_cmsghdr(cmsg, msg) {
168                 if (!CMSG_OK(msg, cmsg))
169                         return -EINVAL;
170                 if (cmsg->cmsg_level != SOL_TLS)
171                         continue;
172
173                 switch (cmsg->cmsg_type) {
174                 case TLS_SET_RECORD_TYPE:
175                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
176                                 return -EINVAL;
177
178                         if (msg->msg_flags & MSG_MORE)
179                                 return -EINVAL;
180
181                         rc = tls_handle_open_record(sk, msg->msg_flags);
182                         if (rc)
183                                 return rc;
184
185                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
186                         rc = 0;
187                         break;
188                 default:
189                         return -EINVAL;
190                 }
191         }
192
193         return rc;
194 }
195
196 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
197                                    int flags, long *timeo)
198 {
199         struct scatterlist *sg;
200         u16 offset;
201
202         if (!tls_is_partially_sent_record(ctx))
203                 return ctx->push_pending_record(sk, flags);
204
205         sg = ctx->partially_sent_record;
206         offset = ctx->partially_sent_offset;
207
208         ctx->partially_sent_record = NULL;
209         return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211
212 static void tls_write_space(struct sock *sk)
213 {
214         struct tls_context *ctx = tls_get_ctx(sk);
215
216         /* We are already sending pages, ignore notification */
217         if (ctx->in_tcp_sendpages)
218                 return;
219
220         if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
221                 gfp_t sk_allocation = sk->sk_allocation;
222                 int rc;
223                 long timeo = 0;
224
225                 sk->sk_allocation = GFP_ATOMIC;
226                 rc = tls_push_pending_closed_record(sk, ctx,
227                                                     MSG_DONTWAIT |
228                                                     MSG_NOSIGNAL,
229                                                     &timeo);
230                 sk->sk_allocation = sk_allocation;
231
232                 if (rc < 0)
233                         return;
234         }
235
236         ctx->sk_write_space(sk);
237 }
238
239 static void tls_sk_proto_close(struct sock *sk, long timeout)
240 {
241         struct tls_context *ctx = tls_get_ctx(sk);
242         long timeo = sock_sndtimeo(sk, 0);
243         void (*sk_proto_close)(struct sock *sk, long timeout);
244         bool free_ctx = false;
245
246         lock_sock(sk);
247         sk_proto_close = ctx->sk_proto_close;
248
249         if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
250             (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
251                 free_ctx = true;
252                 goto skip_tx_cleanup;
253         }
254
255         if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
256                 tls_handle_open_record(sk, 0);
257
258         if (ctx->partially_sent_record) {
259                 struct scatterlist *sg = ctx->partially_sent_record;
260
261                 while (1) {
262                         put_page(sg_page(sg));
263                         sk_mem_uncharge(sk, sg->length);
264
265                         if (sg_is_last(sg))
266                                 break;
267                         sg++;
268                 }
269         }
270
271         /* We need these for tls_sw_fallback handling of other packets */
272         if (ctx->tx_conf == TLS_SW) {
273                 kfree(ctx->tx.rec_seq);
274                 kfree(ctx->tx.iv);
275                 tls_sw_free_resources_tx(sk);
276         }
277
278         if (ctx->rx_conf == TLS_SW) {
279                 kfree(ctx->rx.rec_seq);
280                 kfree(ctx->rx.iv);
281                 tls_sw_free_resources_rx(sk);
282         }
283
284 #ifdef CONFIG_TLS_DEVICE
285         if (ctx->rx_conf == TLS_HW)
286                 tls_device_offload_cleanup_rx(sk);
287
288         if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
289 #else
290         {
291 #endif
292                 kfree(ctx);
293                 ctx = NULL;
294         }
295
296 skip_tx_cleanup:
297         release_sock(sk);
298         sk_proto_close(sk, timeout);
299         /* free ctx for TLS_HW_RECORD, used by tcp_set_state
300          * for sk->sk_prot->unhash [tls_hw_unhash]
301          */
302         if (free_ctx)
303                 kfree(ctx);
304 }
305
306 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
307                                 int __user *optlen)
308 {
309         int rc = 0;
310         struct tls_context *ctx = tls_get_ctx(sk);
311         struct tls_crypto_info *crypto_info;
312         int len;
313
314         if (get_user(len, optlen))
315                 return -EFAULT;
316
317         if (!optval || (len < sizeof(*crypto_info))) {
318                 rc = -EINVAL;
319                 goto out;
320         }
321
322         if (!ctx) {
323                 rc = -EBUSY;
324                 goto out;
325         }
326
327         /* get user crypto info */
328         crypto_info = &ctx->crypto_send;
329
330         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
331                 rc = -EBUSY;
332                 goto out;
333         }
334
335         if (len == sizeof(*crypto_info)) {
336                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
337                         rc = -EFAULT;
338                 goto out;
339         }
340
341         switch (crypto_info->cipher_type) {
342         case TLS_CIPHER_AES_GCM_128: {
343                 struct tls12_crypto_info_aes_gcm_128 *
344                   crypto_info_aes_gcm_128 =
345                   container_of(crypto_info,
346                                struct tls12_crypto_info_aes_gcm_128,
347                                info);
348
349                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
350                         rc = -EINVAL;
351                         goto out;
352                 }
353                 lock_sock(sk);
354                 memcpy(crypto_info_aes_gcm_128->iv,
355                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
356                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
357                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
358                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
359                 release_sock(sk);
360                 if (copy_to_user(optval,
361                                  crypto_info_aes_gcm_128,
362                                  sizeof(*crypto_info_aes_gcm_128)))
363                         rc = -EFAULT;
364                 break;
365         }
366         default:
367                 rc = -EINVAL;
368         }
369
370 out:
371         return rc;
372 }
373
374 static int do_tls_getsockopt(struct sock *sk, int optname,
375                              char __user *optval, int __user *optlen)
376 {
377         int rc = 0;
378
379         switch (optname) {
380         case TLS_TX:
381                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
382                 break;
383         default:
384                 rc = -ENOPROTOOPT;
385                 break;
386         }
387         return rc;
388 }
389
390 static int tls_getsockopt(struct sock *sk, int level, int optname,
391                           char __user *optval, int __user *optlen)
392 {
393         struct tls_context *ctx = tls_get_ctx(sk);
394
395         if (level != SOL_TLS)
396                 return ctx->getsockopt(sk, level, optname, optval, optlen);
397
398         return do_tls_getsockopt(sk, optname, optval, optlen);
399 }
400
401 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
402                                   unsigned int optlen, int tx)
403 {
404         struct tls_crypto_info *crypto_info;
405         struct tls_context *ctx = tls_get_ctx(sk);
406         int rc = 0;
407         int conf;
408
409         if (!optval || (optlen < sizeof(*crypto_info))) {
410                 rc = -EINVAL;
411                 goto out;
412         }
413
414         if (tx)
415                 crypto_info = &ctx->crypto_send;
416         else
417                 crypto_info = &ctx->crypto_recv;
418
419         /* Currently we don't support set crypto info more than one time */
420         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
421                 rc = -EBUSY;
422                 goto out;
423         }
424
425         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
426         if (rc) {
427                 rc = -EFAULT;
428                 goto err_crypto_info;
429         }
430
431         /* check version */
432         if (crypto_info->version != TLS_1_2_VERSION) {
433                 rc = -ENOTSUPP;
434                 goto err_crypto_info;
435         }
436
437         switch (crypto_info->cipher_type) {
438         case TLS_CIPHER_AES_GCM_128: {
439                 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
440                         rc = -EINVAL;
441                         goto err_crypto_info;
442                 }
443                 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
444                                     optlen - sizeof(*crypto_info));
445                 if (rc) {
446                         rc = -EFAULT;
447                         goto err_crypto_info;
448                 }
449                 break;
450         }
451         default:
452                 rc = -EINVAL;
453                 goto err_crypto_info;
454         }
455
456         if (tx) {
457 #ifdef CONFIG_TLS_DEVICE
458                 rc = tls_set_device_offload(sk, ctx);
459                 conf = TLS_HW;
460                 if (rc) {
461 #else
462                 {
463 #endif
464                         rc = tls_set_sw_offload(sk, ctx, 1);
465                         conf = TLS_SW;
466                 }
467         } else {
468 #ifdef CONFIG_TLS_DEVICE
469                 rc = tls_set_device_offload_rx(sk, ctx);
470                 conf = TLS_HW;
471                 if (rc) {
472 #else
473                 {
474 #endif
475                         rc = tls_set_sw_offload(sk, ctx, 0);
476                         conf = TLS_SW;
477                 }
478         }
479
480         if (rc)
481                 goto err_crypto_info;
482
483         if (tx)
484                 ctx->tx_conf = conf;
485         else
486                 ctx->rx_conf = conf;
487         update_sk_prot(sk, ctx);
488         if (tx) {
489                 ctx->sk_write_space = sk->sk_write_space;
490                 sk->sk_write_space = tls_write_space;
491         } else {
492                 sk->sk_socket->ops = &tls_sw_proto_ops;
493         }
494         goto out;
495
496 err_crypto_info:
497         memset(crypto_info, 0, sizeof(*crypto_info));
498 out:
499         return rc;
500 }
501
502 static int do_tls_setsockopt(struct sock *sk, int optname,
503                              char __user *optval, unsigned int optlen)
504 {
505         int rc = 0;
506
507         switch (optname) {
508         case TLS_TX:
509         case TLS_RX:
510                 lock_sock(sk);
511                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
512                                             optname == TLS_TX);
513                 release_sock(sk);
514                 break;
515         default:
516                 rc = -ENOPROTOOPT;
517                 break;
518         }
519         return rc;
520 }
521
522 static int tls_setsockopt(struct sock *sk, int level, int optname,
523                           char __user *optval, unsigned int optlen)
524 {
525         struct tls_context *ctx = tls_get_ctx(sk);
526
527         if (level != SOL_TLS)
528                 return ctx->setsockopt(sk, level, optname, optval, optlen);
529
530         return do_tls_setsockopt(sk, optname, optval, optlen);
531 }
532
533 static struct tls_context *create_ctx(struct sock *sk)
534 {
535         struct inet_connection_sock *icsk = inet_csk(sk);
536         struct tls_context *ctx;
537
538         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
539         if (!ctx)
540                 return NULL;
541
542         icsk->icsk_ulp_data = ctx;
543         return ctx;
544 }
545
546 static int tls_hw_prot(struct sock *sk)
547 {
548         struct tls_context *ctx;
549         struct tls_device *dev;
550         int rc = 0;
551
552         mutex_lock(&device_mutex);
553         list_for_each_entry(dev, &device_list, dev_list) {
554                 if (dev->feature && dev->feature(dev)) {
555                         ctx = create_ctx(sk);
556                         if (!ctx)
557                                 goto out;
558
559                         ctx->hash = sk->sk_prot->hash;
560                         ctx->unhash = sk->sk_prot->unhash;
561                         ctx->sk_proto_close = sk->sk_prot->close;
562                         ctx->rx_conf = TLS_HW_RECORD;
563                         ctx->tx_conf = TLS_HW_RECORD;
564                         update_sk_prot(sk, ctx);
565                         rc = 1;
566                         break;
567                 }
568         }
569 out:
570         mutex_unlock(&device_mutex);
571         return rc;
572 }
573
574 static void tls_hw_unhash(struct sock *sk)
575 {
576         struct tls_context *ctx = tls_get_ctx(sk);
577         struct tls_device *dev;
578
579         mutex_lock(&device_mutex);
580         list_for_each_entry(dev, &device_list, dev_list) {
581                 if (dev->unhash)
582                         dev->unhash(dev, sk);
583         }
584         mutex_unlock(&device_mutex);
585         ctx->unhash(sk);
586 }
587
588 static int tls_hw_hash(struct sock *sk)
589 {
590         struct tls_context *ctx = tls_get_ctx(sk);
591         struct tls_device *dev;
592         int err;
593
594         err = ctx->hash(sk);
595         mutex_lock(&device_mutex);
596         list_for_each_entry(dev, &device_list, dev_list) {
597                 if (dev->hash)
598                         err |= dev->hash(dev, sk);
599         }
600         mutex_unlock(&device_mutex);
601
602         if (err)
603                 tls_hw_unhash(sk);
604         return err;
605 }
606
607 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
608                          struct proto *base)
609 {
610         prot[TLS_BASE][TLS_BASE] = *base;
611         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
612         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
613         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
614
615         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
616         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
617         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
618
619         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
620         prot[TLS_BASE][TLS_SW].recvmsg          = tls_sw_recvmsg;
621         prot[TLS_BASE][TLS_SW].close            = tls_sk_proto_close;
622
623         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
624         prot[TLS_SW][TLS_SW].recvmsg    = tls_sw_recvmsg;
625         prot[TLS_SW][TLS_SW].close      = tls_sk_proto_close;
626
627 #ifdef CONFIG_TLS_DEVICE
628         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
629         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
630         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
631
632         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
633         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
634         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
635
636         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
637
638         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
639
640         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
641 #endif
642
643         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
644         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
645         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
646         prot[TLS_HW_RECORD][TLS_HW_RECORD].close        = tls_sk_proto_close;
647 }
648
649 static int tls_init(struct sock *sk)
650 {
651         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
652         struct tls_context *ctx;
653         int rc = 0;
654
655         if (tls_hw_prot(sk))
656                 goto out;
657
658         /* The TLS ulp is currently supported only for TCP sockets
659          * in ESTABLISHED state.
660          * Supporting sockets in LISTEN state will require us
661          * to modify the accept implementation to clone rather then
662          * share the ulp context.
663          */
664         if (sk->sk_state != TCP_ESTABLISHED)
665                 return -ENOTSUPP;
666
667         /* allocate tls context */
668         ctx = create_ctx(sk);
669         if (!ctx) {
670                 rc = -ENOMEM;
671                 goto out;
672         }
673         ctx->setsockopt = sk->sk_prot->setsockopt;
674         ctx->getsockopt = sk->sk_prot->getsockopt;
675         ctx->sk_proto_close = sk->sk_prot->close;
676
677         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
678         if (ip_ver == TLSV6 &&
679             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
680                 mutex_lock(&tcpv6_prot_mutex);
681                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
682                         build_protos(tls_prots[TLSV6], sk->sk_prot);
683                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
684                 }
685                 mutex_unlock(&tcpv6_prot_mutex);
686         }
687
688         ctx->tx_conf = TLS_BASE;
689         ctx->rx_conf = TLS_BASE;
690         update_sk_prot(sk, ctx);
691 out:
692         return rc;
693 }
694
695 void tls_register_device(struct tls_device *device)
696 {
697         mutex_lock(&device_mutex);
698         list_add_tail(&device->dev_list, &device_list);
699         mutex_unlock(&device_mutex);
700 }
701 EXPORT_SYMBOL(tls_register_device);
702
703 void tls_unregister_device(struct tls_device *device)
704 {
705         mutex_lock(&device_mutex);
706         list_del(&device->dev_list);
707         mutex_unlock(&device_mutex);
708 }
709 EXPORT_SYMBOL(tls_unregister_device);
710
711 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
712         .name                   = "tls",
713         .uid                    = TCP_ULP_TLS,
714         .user_visible           = true,
715         .owner                  = THIS_MODULE,
716         .init                   = tls_init,
717 };
718
719 static int __init tls_register(void)
720 {
721         build_protos(tls_prots[TLSV4], &tcp_prot);
722
723         tls_sw_proto_ops = inet_stream_ops;
724         tls_sw_proto_ops.poll = tls_sw_poll;
725         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
726
727 #ifdef CONFIG_TLS_DEVICE
728         tls_device_init();
729 #endif
730         tcp_register_ulp(&tcp_tls_ulp_ops);
731
732         return 0;
733 }
734
735 static void __exit tls_unregister(void)
736 {
737         tcp_unregister_ulp(&tcp_tls_ulp_ops);
738 #ifdef CONFIG_TLS_DEVICE
739         tls_device_cleanup();
740 #endif
741 }
742
743 module_init(tls_register);
744 module_exit(tls_unregister);