]> asedeno.scripts.mit.edu Git - linux.git/blob - net/tls/tls_main.c
Merge branch 'ili2xxx-touchscreen' into next
[linux.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/tls.h>
45
46 MODULE_AUTHOR("Mellanox Technologies");
47 MODULE_DESCRIPTION("Transport Layer Security Support");
48 MODULE_LICENSE("Dual BSD/GPL");
49 MODULE_ALIAS_TCP_ULP("tls");
50
51 enum {
52         TLSV4,
53         TLSV6,
54         TLS_NUM_PROTS,
55 };
56
57 static struct proto *saved_tcpv6_prot;
58 static DEFINE_MUTEX(tcpv6_prot_mutex);
59 static struct proto *saved_tcpv4_prot;
60 static DEFINE_MUTEX(tcpv4_prot_mutex);
61 static LIST_HEAD(device_list);
62 static DEFINE_SPINLOCK(device_spinlock);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_sw_proto_ops;
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66                          struct proto *base);
67
68 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
73 }
74
75 int wait_on_pending_writer(struct sock *sk, long *timeo)
76 {
77         int rc = 0;
78         DEFINE_WAIT_FUNC(wait, woken_wake_function);
79
80         add_wait_queue(sk_sleep(sk), &wait);
81         while (1) {
82                 if (!*timeo) {
83                         rc = -EAGAIN;
84                         break;
85                 }
86
87                 if (signal_pending(current)) {
88                         rc = sock_intr_errno(*timeo);
89                         break;
90                 }
91
92                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
93                         break;
94         }
95         remove_wait_queue(sk_sleep(sk), &wait);
96         return rc;
97 }
98
99 int tls_push_sg(struct sock *sk,
100                 struct tls_context *ctx,
101                 struct scatterlist *sg,
102                 u16 first_offset,
103                 int flags)
104 {
105         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
106         int ret = 0;
107         struct page *p;
108         size_t size;
109         int offset = first_offset;
110
111         size = sg->length - offset;
112         offset += sg->offset;
113
114         ctx->in_tcp_sendpages = true;
115         while (1) {
116                 if (sg_is_last(sg))
117                         sendpage_flags = flags;
118
119                 /* is sending application-limited? */
120                 tcp_rate_check_app_limited(sk);
121                 p = sg_page(sg);
122 retry:
123                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
124
125                 if (ret != size) {
126                         if (ret > 0) {
127                                 offset += ret;
128                                 size -= ret;
129                                 goto retry;
130                         }
131
132                         offset -= sg->offset;
133                         ctx->partially_sent_offset = offset;
134                         ctx->partially_sent_record = (void *)sg;
135                         ctx->in_tcp_sendpages = false;
136                         return ret;
137                 }
138
139                 put_page(p);
140                 sk_mem_uncharge(sk, sg->length);
141                 sg = sg_next(sg);
142                 if (!sg)
143                         break;
144
145                 offset = sg->offset;
146                 size = sg->length;
147         }
148
149         ctx->in_tcp_sendpages = false;
150
151         return 0;
152 }
153
154 static int tls_handle_open_record(struct sock *sk, int flags)
155 {
156         struct tls_context *ctx = tls_get_ctx(sk);
157
158         if (tls_is_pending_open_record(ctx))
159                 return ctx->push_pending_record(sk, flags);
160
161         return 0;
162 }
163
164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165                       unsigned char *record_type)
166 {
167         struct cmsghdr *cmsg;
168         int rc = -EINVAL;
169
170         for_each_cmsghdr(cmsg, msg) {
171                 if (!CMSG_OK(msg, cmsg))
172                         return -EINVAL;
173                 if (cmsg->cmsg_level != SOL_TLS)
174                         continue;
175
176                 switch (cmsg->cmsg_type) {
177                 case TLS_SET_RECORD_TYPE:
178                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179                                 return -EINVAL;
180
181                         if (msg->msg_flags & MSG_MORE)
182                                 return -EINVAL;
183
184                         rc = tls_handle_open_record(sk, msg->msg_flags);
185                         if (rc)
186                                 return rc;
187
188                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
189                         rc = 0;
190                         break;
191                 default:
192                         return -EINVAL;
193                 }
194         }
195
196         return rc;
197 }
198
199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200                             int flags)
201 {
202         struct scatterlist *sg;
203         u16 offset;
204
205         sg = ctx->partially_sent_record;
206         offset = ctx->partially_sent_offset;
207
208         ctx->partially_sent_record = NULL;
209         return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211
212 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
213 {
214         struct scatterlist *sg;
215
216         sg = ctx->partially_sent_record;
217         if (!sg)
218                 return false;
219
220         while (1) {
221                 put_page(sg_page(sg));
222                 sk_mem_uncharge(sk, sg->length);
223
224                 if (sg_is_last(sg))
225                         break;
226                 sg++;
227         }
228         ctx->partially_sent_record = NULL;
229         return true;
230 }
231
232 static void tls_write_space(struct sock *sk)
233 {
234         struct tls_context *ctx = tls_get_ctx(sk);
235
236         /* If in_tcp_sendpages call lower protocol write space handler
237          * to ensure we wake up any waiting operations there. For example
238          * if do_tcp_sendpages where to call sk_wait_event.
239          */
240         if (ctx->in_tcp_sendpages) {
241                 ctx->sk_write_space(sk);
242                 return;
243         }
244
245 #ifdef CONFIG_TLS_DEVICE
246         if (ctx->tx_conf == TLS_HW)
247                 tls_device_write_space(sk, ctx);
248         else
249 #endif
250                 tls_sw_write_space(sk, ctx);
251
252         ctx->sk_write_space(sk);
253 }
254
255 /**
256  * tls_ctx_free() - free TLS ULP context
257  * @sk:  socket to with @ctx is attached
258  * @ctx: TLS context structure
259  *
260  * Free TLS context. If @sk is %NULL caller guarantees that the socket
261  * to which @ctx was attached has no outstanding references.
262  */
263 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
264 {
265         if (!ctx)
266                 return;
267
268         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
269         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
270
271         if (sk)
272                 kfree_rcu(ctx, rcu);
273         else
274                 kfree(ctx);
275 }
276
277 static void tls_sk_proto_cleanup(struct sock *sk,
278                                  struct tls_context *ctx, long timeo)
279 {
280         if (unlikely(sk->sk_write_pending) &&
281             !wait_on_pending_writer(sk, &timeo))
282                 tls_handle_open_record(sk, 0);
283
284         /* We need these for tls_sw_fallback handling of other packets */
285         if (ctx->tx_conf == TLS_SW) {
286                 kfree(ctx->tx.rec_seq);
287                 kfree(ctx->tx.iv);
288                 tls_sw_release_resources_tx(sk);
289         } else if (ctx->tx_conf == TLS_HW) {
290                 tls_device_free_resources_tx(sk);
291         }
292
293         if (ctx->rx_conf == TLS_SW)
294                 tls_sw_release_resources_rx(sk);
295         else if (ctx->rx_conf == TLS_HW)
296                 tls_device_offload_cleanup_rx(sk);
297 }
298
299 static void tls_sk_proto_close(struct sock *sk, long timeout)
300 {
301         struct inet_connection_sock *icsk = inet_csk(sk);
302         struct tls_context *ctx = tls_get_ctx(sk);
303         long timeo = sock_sndtimeo(sk, 0);
304         bool free_ctx;
305
306         if (ctx->tx_conf == TLS_SW)
307                 tls_sw_cancel_work_tx(ctx);
308
309         lock_sock(sk);
310         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
311
312         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
313                 tls_sk_proto_cleanup(sk, ctx, timeo);
314
315         write_lock_bh(&sk->sk_callback_lock);
316         if (free_ctx)
317                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
318         sk->sk_prot = ctx->sk_proto;
319         if (sk->sk_write_space == tls_write_space)
320                 sk->sk_write_space = ctx->sk_write_space;
321         write_unlock_bh(&sk->sk_callback_lock);
322         release_sock(sk);
323         if (ctx->tx_conf == TLS_SW)
324                 tls_sw_free_ctx_tx(ctx);
325         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
326                 tls_sw_strparser_done(ctx);
327         if (ctx->rx_conf == TLS_SW)
328                 tls_sw_free_ctx_rx(ctx);
329         ctx->sk_proto->close(sk, timeout);
330
331         if (free_ctx)
332                 tls_ctx_free(sk, ctx);
333 }
334
335 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
336                                 int __user *optlen)
337 {
338         int rc = 0;
339         struct tls_context *ctx = tls_get_ctx(sk);
340         struct tls_crypto_info *crypto_info;
341         int len;
342
343         if (get_user(len, optlen))
344                 return -EFAULT;
345
346         if (!optval || (len < sizeof(*crypto_info))) {
347                 rc = -EINVAL;
348                 goto out;
349         }
350
351         if (!ctx) {
352                 rc = -EBUSY;
353                 goto out;
354         }
355
356         /* get user crypto info */
357         crypto_info = &ctx->crypto_send.info;
358
359         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
360                 rc = -EBUSY;
361                 goto out;
362         }
363
364         if (len == sizeof(*crypto_info)) {
365                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
366                         rc = -EFAULT;
367                 goto out;
368         }
369
370         switch (crypto_info->cipher_type) {
371         case TLS_CIPHER_AES_GCM_128: {
372                 struct tls12_crypto_info_aes_gcm_128 *
373                   crypto_info_aes_gcm_128 =
374                   container_of(crypto_info,
375                                struct tls12_crypto_info_aes_gcm_128,
376                                info);
377
378                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
379                         rc = -EINVAL;
380                         goto out;
381                 }
382                 lock_sock(sk);
383                 memcpy(crypto_info_aes_gcm_128->iv,
384                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
385                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
386                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
387                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
388                 release_sock(sk);
389                 if (copy_to_user(optval,
390                                  crypto_info_aes_gcm_128,
391                                  sizeof(*crypto_info_aes_gcm_128)))
392                         rc = -EFAULT;
393                 break;
394         }
395         case TLS_CIPHER_AES_GCM_256: {
396                 struct tls12_crypto_info_aes_gcm_256 *
397                   crypto_info_aes_gcm_256 =
398                   container_of(crypto_info,
399                                struct tls12_crypto_info_aes_gcm_256,
400                                info);
401
402                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
403                         rc = -EINVAL;
404                         goto out;
405                 }
406                 lock_sock(sk);
407                 memcpy(crypto_info_aes_gcm_256->iv,
408                        ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
409                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
410                 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
411                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
412                 release_sock(sk);
413                 if (copy_to_user(optval,
414                                  crypto_info_aes_gcm_256,
415                                  sizeof(*crypto_info_aes_gcm_256)))
416                         rc = -EFAULT;
417                 break;
418         }
419         default:
420                 rc = -EINVAL;
421         }
422
423 out:
424         return rc;
425 }
426
427 static int do_tls_getsockopt(struct sock *sk, int optname,
428                              char __user *optval, int __user *optlen)
429 {
430         int rc = 0;
431
432         switch (optname) {
433         case TLS_TX:
434                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
435                 break;
436         default:
437                 rc = -ENOPROTOOPT;
438                 break;
439         }
440         return rc;
441 }
442
443 static int tls_getsockopt(struct sock *sk, int level, int optname,
444                           char __user *optval, int __user *optlen)
445 {
446         struct tls_context *ctx = tls_get_ctx(sk);
447
448         if (level != SOL_TLS)
449                 return ctx->sk_proto->getsockopt(sk, level,
450                                                  optname, optval, optlen);
451
452         return do_tls_getsockopt(sk, optname, optval, optlen);
453 }
454
455 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
456                                   unsigned int optlen, int tx)
457 {
458         struct tls_crypto_info *crypto_info;
459         struct tls_crypto_info *alt_crypto_info;
460         struct tls_context *ctx = tls_get_ctx(sk);
461         size_t optsize;
462         int rc = 0;
463         int conf;
464
465         if (!optval || (optlen < sizeof(*crypto_info))) {
466                 rc = -EINVAL;
467                 goto out;
468         }
469
470         if (tx) {
471                 crypto_info = &ctx->crypto_send.info;
472                 alt_crypto_info = &ctx->crypto_recv.info;
473         } else {
474                 crypto_info = &ctx->crypto_recv.info;
475                 alt_crypto_info = &ctx->crypto_send.info;
476         }
477
478         /* Currently we don't support set crypto info more than one time */
479         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
480                 rc = -EBUSY;
481                 goto out;
482         }
483
484         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
485         if (rc) {
486                 rc = -EFAULT;
487                 goto err_crypto_info;
488         }
489
490         /* check version */
491         if (crypto_info->version != TLS_1_2_VERSION &&
492             crypto_info->version != TLS_1_3_VERSION) {
493                 rc = -ENOTSUPP;
494                 goto err_crypto_info;
495         }
496
497         /* Ensure that TLS version and ciphers are same in both directions */
498         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
499                 if (alt_crypto_info->version != crypto_info->version ||
500                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
501                         rc = -EINVAL;
502                         goto err_crypto_info;
503                 }
504         }
505
506         switch (crypto_info->cipher_type) {
507         case TLS_CIPHER_AES_GCM_128:
508                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
509                 break;
510         case TLS_CIPHER_AES_GCM_256: {
511                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
512                 break;
513         }
514         case TLS_CIPHER_AES_CCM_128:
515                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
516                 break;
517         default:
518                 rc = -EINVAL;
519                 goto err_crypto_info;
520         }
521
522         if (optlen != optsize) {
523                 rc = -EINVAL;
524                 goto err_crypto_info;
525         }
526
527         rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
528                             optlen - sizeof(*crypto_info));
529         if (rc) {
530                 rc = -EFAULT;
531                 goto err_crypto_info;
532         }
533
534         if (tx) {
535                 rc = tls_set_device_offload(sk, ctx);
536                 conf = TLS_HW;
537                 if (rc) {
538                         rc = tls_set_sw_offload(sk, ctx, 1);
539                         if (rc)
540                                 goto err_crypto_info;
541                         conf = TLS_SW;
542                 }
543         } else {
544                 rc = tls_set_device_offload_rx(sk, ctx);
545                 conf = TLS_HW;
546                 if (rc) {
547                         rc = tls_set_sw_offload(sk, ctx, 0);
548                         if (rc)
549                                 goto err_crypto_info;
550                         conf = TLS_SW;
551                 }
552                 tls_sw_strparser_arm(sk, ctx);
553         }
554
555         if (tx)
556                 ctx->tx_conf = conf;
557         else
558                 ctx->rx_conf = conf;
559         update_sk_prot(sk, ctx);
560         if (tx) {
561                 ctx->sk_write_space = sk->sk_write_space;
562                 sk->sk_write_space = tls_write_space;
563         } else {
564                 sk->sk_socket->ops = &tls_sw_proto_ops;
565         }
566         goto out;
567
568 err_crypto_info:
569         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
570 out:
571         return rc;
572 }
573
574 static int do_tls_setsockopt(struct sock *sk, int optname,
575                              char __user *optval, unsigned int optlen)
576 {
577         int rc = 0;
578
579         switch (optname) {
580         case TLS_TX:
581         case TLS_RX:
582                 lock_sock(sk);
583                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
584                                             optname == TLS_TX);
585                 release_sock(sk);
586                 break;
587         default:
588                 rc = -ENOPROTOOPT;
589                 break;
590         }
591         return rc;
592 }
593
594 static int tls_setsockopt(struct sock *sk, int level, int optname,
595                           char __user *optval, unsigned int optlen)
596 {
597         struct tls_context *ctx = tls_get_ctx(sk);
598
599         if (level != SOL_TLS)
600                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
601                                                  optlen);
602
603         return do_tls_setsockopt(sk, optname, optval, optlen);
604 }
605
606 static struct tls_context *create_ctx(struct sock *sk)
607 {
608         struct inet_connection_sock *icsk = inet_csk(sk);
609         struct tls_context *ctx;
610
611         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
612         if (!ctx)
613                 return NULL;
614
615         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
616         ctx->sk_proto = sk->sk_prot;
617         return ctx;
618 }
619
620 static void tls_build_proto(struct sock *sk)
621 {
622         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
623
624         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
625         if (ip_ver == TLSV6 &&
626             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
627                 mutex_lock(&tcpv6_prot_mutex);
628                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
629                         build_protos(tls_prots[TLSV6], sk->sk_prot);
630                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
631                 }
632                 mutex_unlock(&tcpv6_prot_mutex);
633         }
634
635         if (ip_ver == TLSV4 &&
636             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
637                 mutex_lock(&tcpv4_prot_mutex);
638                 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
639                         build_protos(tls_prots[TLSV4], sk->sk_prot);
640                         smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
641                 }
642                 mutex_unlock(&tcpv4_prot_mutex);
643         }
644 }
645
646 static void tls_hw_sk_destruct(struct sock *sk)
647 {
648         struct tls_context *ctx = tls_get_ctx(sk);
649         struct inet_connection_sock *icsk = inet_csk(sk);
650
651         ctx->sk_destruct(sk);
652         /* Free ctx */
653         rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
654         tls_ctx_free(sk, ctx);
655 }
656
657 static int tls_hw_prot(struct sock *sk)
658 {
659         struct tls_context *ctx;
660         struct tls_device *dev;
661         int rc = 0;
662
663         spin_lock_bh(&device_spinlock);
664         list_for_each_entry(dev, &device_list, dev_list) {
665                 if (dev->feature && dev->feature(dev)) {
666                         ctx = create_ctx(sk);
667                         if (!ctx)
668                                 goto out;
669
670                         spin_unlock_bh(&device_spinlock);
671                         tls_build_proto(sk);
672                         ctx->sk_destruct = sk->sk_destruct;
673                         sk->sk_destruct = tls_hw_sk_destruct;
674                         ctx->rx_conf = TLS_HW_RECORD;
675                         ctx->tx_conf = TLS_HW_RECORD;
676                         update_sk_prot(sk, ctx);
677                         spin_lock_bh(&device_spinlock);
678                         rc = 1;
679                         break;
680                 }
681         }
682 out:
683         spin_unlock_bh(&device_spinlock);
684         return rc;
685 }
686
687 static void tls_hw_unhash(struct sock *sk)
688 {
689         struct tls_context *ctx = tls_get_ctx(sk);
690         struct tls_device *dev;
691
692         spin_lock_bh(&device_spinlock);
693         list_for_each_entry(dev, &device_list, dev_list) {
694                 if (dev->unhash) {
695                         kref_get(&dev->kref);
696                         spin_unlock_bh(&device_spinlock);
697                         dev->unhash(dev, sk);
698                         kref_put(&dev->kref, dev->release);
699                         spin_lock_bh(&device_spinlock);
700                 }
701         }
702         spin_unlock_bh(&device_spinlock);
703         ctx->sk_proto->unhash(sk);
704 }
705
706 static int tls_hw_hash(struct sock *sk)
707 {
708         struct tls_context *ctx = tls_get_ctx(sk);
709         struct tls_device *dev;
710         int err;
711
712         err = ctx->sk_proto->hash(sk);
713         spin_lock_bh(&device_spinlock);
714         list_for_each_entry(dev, &device_list, dev_list) {
715                 if (dev->hash) {
716                         kref_get(&dev->kref);
717                         spin_unlock_bh(&device_spinlock);
718                         err |= dev->hash(dev, sk);
719                         kref_put(&dev->kref, dev->release);
720                         spin_lock_bh(&device_spinlock);
721                 }
722         }
723         spin_unlock_bh(&device_spinlock);
724
725         if (err)
726                 tls_hw_unhash(sk);
727         return err;
728 }
729
730 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
731                          struct proto *base)
732 {
733         prot[TLS_BASE][TLS_BASE] = *base;
734         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
735         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
736         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
737
738         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
739         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
740         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
741
742         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
743         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
744         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
745         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
746
747         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
748         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
749         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
750         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
751
752 #ifdef CONFIG_TLS_DEVICE
753         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
754         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
755         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
756
757         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
758         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
759         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
760
761         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
762
763         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
764
765         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
766 #endif
767
768         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
769         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
770         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
771 }
772
773 static int tls_init(struct sock *sk)
774 {
775         struct tls_context *ctx;
776         int rc = 0;
777
778         if (tls_hw_prot(sk))
779                 return 0;
780
781         /* The TLS ulp is currently supported only for TCP sockets
782          * in ESTABLISHED state.
783          * Supporting sockets in LISTEN state will require us
784          * to modify the accept implementation to clone rather then
785          * share the ulp context.
786          */
787         if (sk->sk_state != TCP_ESTABLISHED)
788                 return -ENOTSUPP;
789
790         tls_build_proto(sk);
791
792         /* allocate tls context */
793         write_lock_bh(&sk->sk_callback_lock);
794         ctx = create_ctx(sk);
795         if (!ctx) {
796                 rc = -ENOMEM;
797                 goto out;
798         }
799
800         ctx->tx_conf = TLS_BASE;
801         ctx->rx_conf = TLS_BASE;
802         update_sk_prot(sk, ctx);
803 out:
804         write_unlock_bh(&sk->sk_callback_lock);
805         return rc;
806 }
807
808 static void tls_update(struct sock *sk, struct proto *p)
809 {
810         struct tls_context *ctx;
811
812         ctx = tls_get_ctx(sk);
813         if (likely(ctx))
814                 ctx->sk_proto = p;
815         else
816                 sk->sk_prot = p;
817 }
818
819 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
820 {
821         u16 version, cipher_type;
822         struct tls_context *ctx;
823         struct nlattr *start;
824         int err;
825
826         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
827         if (!start)
828                 return -EMSGSIZE;
829
830         rcu_read_lock();
831         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
832         if (!ctx) {
833                 err = 0;
834                 goto nla_failure;
835         }
836         version = ctx->prot_info.version;
837         if (version) {
838                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
839                 if (err)
840                         goto nla_failure;
841         }
842         cipher_type = ctx->prot_info.cipher_type;
843         if (cipher_type) {
844                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
845                 if (err)
846                         goto nla_failure;
847         }
848         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
849         if (err)
850                 goto nla_failure;
851
852         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
853         if (err)
854                 goto nla_failure;
855
856         rcu_read_unlock();
857         nla_nest_end(skb, start);
858         return 0;
859
860 nla_failure:
861         rcu_read_unlock();
862         nla_nest_cancel(skb, start);
863         return err;
864 }
865
866 static size_t tls_get_info_size(const struct sock *sk)
867 {
868         size_t size = 0;
869
870         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
871                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
872                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
873                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
874                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
875                 0;
876
877         return size;
878 }
879
880 void tls_register_device(struct tls_device *device)
881 {
882         spin_lock_bh(&device_spinlock);
883         list_add_tail(&device->dev_list, &device_list);
884         spin_unlock_bh(&device_spinlock);
885 }
886 EXPORT_SYMBOL(tls_register_device);
887
888 void tls_unregister_device(struct tls_device *device)
889 {
890         spin_lock_bh(&device_spinlock);
891         list_del(&device->dev_list);
892         spin_unlock_bh(&device_spinlock);
893 }
894 EXPORT_SYMBOL(tls_unregister_device);
895
896 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
897         .name                   = "tls",
898         .owner                  = THIS_MODULE,
899         .init                   = tls_init,
900         .update                 = tls_update,
901         .get_info               = tls_get_info,
902         .get_info_size          = tls_get_info_size,
903 };
904
905 static int __init tls_register(void)
906 {
907         tls_sw_proto_ops = inet_stream_ops;
908         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
909
910         tls_device_init();
911         tcp_register_ulp(&tcp_tls_ulp_ops);
912
913         return 0;
914 }
915
916 static void __exit tls_unregister(void)
917 {
918         tcp_unregister_ulp(&tcp_tls_ulp_ops);
919         tls_device_cleanup();
920 }
921
922 module_init(tls_register);
923 module_exit(tls_unregister);