]> asedeno.scripts.mit.edu Git - linux.git/blob - net/tls/tls_main.c
Merge tag 'ceph-for-5.1-rc1' of git://github.com/ceph/ceph-client
[linux.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51         TLSV4,
52         TLSV6,
53         TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
65                          struct proto *base);
66
67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
68 {
69         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
70
71         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
72 }
73
74 int wait_on_pending_writer(struct sock *sk, long *timeo)
75 {
76         int rc = 0;
77         DEFINE_WAIT_FUNC(wait, woken_wake_function);
78
79         add_wait_queue(sk_sleep(sk), &wait);
80         while (1) {
81                 if (!*timeo) {
82                         rc = -EAGAIN;
83                         break;
84                 }
85
86                 if (signal_pending(current)) {
87                         rc = sock_intr_errno(*timeo);
88                         break;
89                 }
90
91                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
92                         break;
93         }
94         remove_wait_queue(sk_sleep(sk), &wait);
95         return rc;
96 }
97
98 int tls_push_sg(struct sock *sk,
99                 struct tls_context *ctx,
100                 struct scatterlist *sg,
101                 u16 first_offset,
102                 int flags)
103 {
104         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
105         int ret = 0;
106         struct page *p;
107         size_t size;
108         int offset = first_offset;
109
110         size = sg->length - offset;
111         offset += sg->offset;
112
113         ctx->in_tcp_sendpages = true;
114         while (1) {
115                 if (sg_is_last(sg))
116                         sendpage_flags = flags;
117
118                 /* is sending application-limited? */
119                 tcp_rate_check_app_limited(sk);
120                 p = sg_page(sg);
121 retry:
122                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
123
124                 if (ret != size) {
125                         if (ret > 0) {
126                                 offset += ret;
127                                 size -= ret;
128                                 goto retry;
129                         }
130
131                         offset -= sg->offset;
132                         ctx->partially_sent_offset = offset;
133                         ctx->partially_sent_record = (void *)sg;
134                         ctx->in_tcp_sendpages = false;
135                         return ret;
136                 }
137
138                 put_page(p);
139                 sk_mem_uncharge(sk, sg->length);
140                 sg = sg_next(sg);
141                 if (!sg)
142                         break;
143
144                 offset = sg->offset;
145                 size = sg->length;
146         }
147
148         ctx->in_tcp_sendpages = false;
149         ctx->sk_write_space(sk);
150
151         return 0;
152 }
153
154 static int tls_handle_open_record(struct sock *sk, int flags)
155 {
156         struct tls_context *ctx = tls_get_ctx(sk);
157
158         if (tls_is_pending_open_record(ctx))
159                 return ctx->push_pending_record(sk, flags);
160
161         return 0;
162 }
163
164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165                       unsigned char *record_type)
166 {
167         struct cmsghdr *cmsg;
168         int rc = -EINVAL;
169
170         for_each_cmsghdr(cmsg, msg) {
171                 if (!CMSG_OK(msg, cmsg))
172                         return -EINVAL;
173                 if (cmsg->cmsg_level != SOL_TLS)
174                         continue;
175
176                 switch (cmsg->cmsg_type) {
177                 case TLS_SET_RECORD_TYPE:
178                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179                                 return -EINVAL;
180
181                         if (msg->msg_flags & MSG_MORE)
182                                 return -EINVAL;
183
184                         rc = tls_handle_open_record(sk, msg->msg_flags);
185                         if (rc)
186                                 return rc;
187
188                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
189                         rc = 0;
190                         break;
191                 default:
192                         return -EINVAL;
193                 }
194         }
195
196         return rc;
197 }
198
199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200                             int flags)
201 {
202         struct scatterlist *sg;
203         u16 offset;
204
205         sg = ctx->partially_sent_record;
206         offset = ctx->partially_sent_offset;
207
208         ctx->partially_sent_record = NULL;
209         return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211
212 static void tls_write_space(struct sock *sk)
213 {
214         struct tls_context *ctx = tls_get_ctx(sk);
215
216         /* If in_tcp_sendpages call lower protocol write space handler
217          * to ensure we wake up any waiting operations there. For example
218          * if do_tcp_sendpages where to call sk_wait_event.
219          */
220         if (ctx->in_tcp_sendpages) {
221                 ctx->sk_write_space(sk);
222                 return;
223         }
224
225 #ifdef CONFIG_TLS_DEVICE
226         if (ctx->tx_conf == TLS_HW)
227                 tls_device_write_space(sk, ctx);
228         else
229 #endif
230                 tls_sw_write_space(sk, ctx);
231 }
232
233 static void tls_ctx_free(struct tls_context *ctx)
234 {
235         if (!ctx)
236                 return;
237
238         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
239         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
240         kfree(ctx);
241 }
242
243 static void tls_sk_proto_close(struct sock *sk, long timeout)
244 {
245         struct tls_context *ctx = tls_get_ctx(sk);
246         long timeo = sock_sndtimeo(sk, 0);
247         void (*sk_proto_close)(struct sock *sk, long timeout);
248         bool free_ctx = false;
249
250         lock_sock(sk);
251         sk_proto_close = ctx->sk_proto_close;
252
253         if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD)
254                 goto skip_tx_cleanup;
255
256         if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) {
257                 free_ctx = true;
258                 goto skip_tx_cleanup;
259         }
260
261         if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
262                 tls_handle_open_record(sk, 0);
263
264         /* We need these for tls_sw_fallback handling of other packets */
265         if (ctx->tx_conf == TLS_SW) {
266                 kfree(ctx->tx.rec_seq);
267                 kfree(ctx->tx.iv);
268                 tls_sw_free_resources_tx(sk);
269         }
270
271         if (ctx->rx_conf == TLS_SW) {
272                 kfree(ctx->rx.rec_seq);
273                 kfree(ctx->rx.iv);
274                 tls_sw_free_resources_rx(sk);
275         }
276
277 #ifdef CONFIG_TLS_DEVICE
278         if (ctx->rx_conf == TLS_HW)
279                 tls_device_offload_cleanup_rx(sk);
280
281         if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
282 #else
283         {
284 #endif
285                 tls_ctx_free(ctx);
286                 ctx = NULL;
287         }
288
289 skip_tx_cleanup:
290         release_sock(sk);
291         sk_proto_close(sk, timeout);
292         /* free ctx for TLS_HW_RECORD, used by tcp_set_state
293          * for sk->sk_prot->unhash [tls_hw_unhash]
294          */
295         if (free_ctx)
296                 tls_ctx_free(ctx);
297 }
298
299 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
300                                 int __user *optlen)
301 {
302         int rc = 0;
303         struct tls_context *ctx = tls_get_ctx(sk);
304         struct tls_crypto_info *crypto_info;
305         int len;
306
307         if (get_user(len, optlen))
308                 return -EFAULT;
309
310         if (!optval || (len < sizeof(*crypto_info))) {
311                 rc = -EINVAL;
312                 goto out;
313         }
314
315         if (!ctx) {
316                 rc = -EBUSY;
317                 goto out;
318         }
319
320         /* get user crypto info */
321         crypto_info = &ctx->crypto_send.info;
322
323         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
324                 rc = -EBUSY;
325                 goto out;
326         }
327
328         if (len == sizeof(*crypto_info)) {
329                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
330                         rc = -EFAULT;
331                 goto out;
332         }
333
334         switch (crypto_info->cipher_type) {
335         case TLS_CIPHER_AES_GCM_128: {
336                 struct tls12_crypto_info_aes_gcm_128 *
337                   crypto_info_aes_gcm_128 =
338                   container_of(crypto_info,
339                                struct tls12_crypto_info_aes_gcm_128,
340                                info);
341
342                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
343                         rc = -EINVAL;
344                         goto out;
345                 }
346                 lock_sock(sk);
347                 memcpy(crypto_info_aes_gcm_128->iv,
348                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
349                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
350                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
351                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
352                 release_sock(sk);
353                 if (copy_to_user(optval,
354                                  crypto_info_aes_gcm_128,
355                                  sizeof(*crypto_info_aes_gcm_128)))
356                         rc = -EFAULT;
357                 break;
358         }
359         case TLS_CIPHER_AES_GCM_256: {
360                 struct tls12_crypto_info_aes_gcm_256 *
361                   crypto_info_aes_gcm_256 =
362                   container_of(crypto_info,
363                                struct tls12_crypto_info_aes_gcm_256,
364                                info);
365
366                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
367                         rc = -EINVAL;
368                         goto out;
369                 }
370                 lock_sock(sk);
371                 memcpy(crypto_info_aes_gcm_256->iv,
372                        ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
373                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
374                 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
375                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
376                 release_sock(sk);
377                 if (copy_to_user(optval,
378                                  crypto_info_aes_gcm_256,
379                                  sizeof(*crypto_info_aes_gcm_256)))
380                         rc = -EFAULT;
381                 break;
382         }
383         default:
384                 rc = -EINVAL;
385         }
386
387 out:
388         return rc;
389 }
390
391 static int do_tls_getsockopt(struct sock *sk, int optname,
392                              char __user *optval, int __user *optlen)
393 {
394         int rc = 0;
395
396         switch (optname) {
397         case TLS_TX:
398                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
399                 break;
400         default:
401                 rc = -ENOPROTOOPT;
402                 break;
403         }
404         return rc;
405 }
406
407 static int tls_getsockopt(struct sock *sk, int level, int optname,
408                           char __user *optval, int __user *optlen)
409 {
410         struct tls_context *ctx = tls_get_ctx(sk);
411
412         if (level != SOL_TLS)
413                 return ctx->getsockopt(sk, level, optname, optval, optlen);
414
415         return do_tls_getsockopt(sk, optname, optval, optlen);
416 }
417
418 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
419                                   unsigned int optlen, int tx)
420 {
421         struct tls_crypto_info *crypto_info;
422         struct tls_crypto_info *alt_crypto_info;
423         struct tls_context *ctx = tls_get_ctx(sk);
424         size_t optsize;
425         int rc = 0;
426         int conf;
427
428         if (!optval || (optlen < sizeof(*crypto_info))) {
429                 rc = -EINVAL;
430                 goto out;
431         }
432
433         if (tx) {
434                 crypto_info = &ctx->crypto_send.info;
435                 alt_crypto_info = &ctx->crypto_recv.info;
436         } else {
437                 crypto_info = &ctx->crypto_recv.info;
438                 alt_crypto_info = &ctx->crypto_send.info;
439         }
440
441         /* Currently we don't support set crypto info more than one time */
442         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
443                 rc = -EBUSY;
444                 goto out;
445         }
446
447         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
448         if (rc) {
449                 rc = -EFAULT;
450                 goto err_crypto_info;
451         }
452
453         /* check version */
454         if (crypto_info->version != TLS_1_2_VERSION &&
455             crypto_info->version != TLS_1_3_VERSION) {
456                 rc = -ENOTSUPP;
457                 goto err_crypto_info;
458         }
459
460         /* Ensure that TLS version and ciphers are same in both directions */
461         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
462                 if (alt_crypto_info->version != crypto_info->version ||
463                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
464                         rc = -EINVAL;
465                         goto err_crypto_info;
466                 }
467         }
468
469         switch (crypto_info->cipher_type) {
470         case TLS_CIPHER_AES_GCM_128:
471         case TLS_CIPHER_AES_GCM_256: {
472                 optsize = crypto_info->cipher_type == TLS_CIPHER_AES_GCM_128 ?
473                         sizeof(struct tls12_crypto_info_aes_gcm_128) :
474                         sizeof(struct tls12_crypto_info_aes_gcm_256);
475                 if (optlen != optsize) {
476                         rc = -EINVAL;
477                         goto err_crypto_info;
478                 }
479                 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
480                                     optlen - sizeof(*crypto_info));
481                 if (rc) {
482                         rc = -EFAULT;
483                         goto err_crypto_info;
484                 }
485                 break;
486         }
487         default:
488                 rc = -EINVAL;
489                 goto err_crypto_info;
490         }
491
492         if (tx) {
493 #ifdef CONFIG_TLS_DEVICE
494                 rc = tls_set_device_offload(sk, ctx);
495                 conf = TLS_HW;
496                 if (rc) {
497 #else
498                 {
499 #endif
500                         rc = tls_set_sw_offload(sk, ctx, 1);
501                         conf = TLS_SW;
502                 }
503         } else {
504 #ifdef CONFIG_TLS_DEVICE
505                 rc = tls_set_device_offload_rx(sk, ctx);
506                 conf = TLS_HW;
507                 if (rc) {
508 #else
509                 {
510 #endif
511                         rc = tls_set_sw_offload(sk, ctx, 0);
512                         conf = TLS_SW;
513                 }
514         }
515
516         if (rc)
517                 goto err_crypto_info;
518
519         if (tx)
520                 ctx->tx_conf = conf;
521         else
522                 ctx->rx_conf = conf;
523         update_sk_prot(sk, ctx);
524         if (tx) {
525                 ctx->sk_write_space = sk->sk_write_space;
526                 sk->sk_write_space = tls_write_space;
527         } else {
528                 sk->sk_socket->ops = &tls_sw_proto_ops;
529         }
530         goto out;
531
532 err_crypto_info:
533         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
534 out:
535         return rc;
536 }
537
538 static int do_tls_setsockopt(struct sock *sk, int optname,
539                              char __user *optval, unsigned int optlen)
540 {
541         int rc = 0;
542
543         switch (optname) {
544         case TLS_TX:
545         case TLS_RX:
546                 lock_sock(sk);
547                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
548                                             optname == TLS_TX);
549                 release_sock(sk);
550                 break;
551         default:
552                 rc = -ENOPROTOOPT;
553                 break;
554         }
555         return rc;
556 }
557
558 static int tls_setsockopt(struct sock *sk, int level, int optname,
559                           char __user *optval, unsigned int optlen)
560 {
561         struct tls_context *ctx = tls_get_ctx(sk);
562
563         if (level != SOL_TLS)
564                 return ctx->setsockopt(sk, level, optname, optval, optlen);
565
566         return do_tls_setsockopt(sk, optname, optval, optlen);
567 }
568
569 static struct tls_context *create_ctx(struct sock *sk)
570 {
571         struct inet_connection_sock *icsk = inet_csk(sk);
572         struct tls_context *ctx;
573
574         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
575         if (!ctx)
576                 return NULL;
577
578         icsk->icsk_ulp_data = ctx;
579         ctx->setsockopt = sk->sk_prot->setsockopt;
580         ctx->getsockopt = sk->sk_prot->getsockopt;
581         ctx->sk_proto_close = sk->sk_prot->close;
582         return ctx;
583 }
584
585 static void tls_build_proto(struct sock *sk)
586 {
587         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
588
589         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
590         if (ip_ver == TLSV6 &&
591             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
592                 mutex_lock(&tcpv6_prot_mutex);
593                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
594                         build_protos(tls_prots[TLSV6], sk->sk_prot);
595                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
596                 }
597                 mutex_unlock(&tcpv6_prot_mutex);
598         }
599
600         if (ip_ver == TLSV4 &&
601             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
602                 mutex_lock(&tcpv4_prot_mutex);
603                 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
604                         build_protos(tls_prots[TLSV4], sk->sk_prot);
605                         smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
606                 }
607                 mutex_unlock(&tcpv4_prot_mutex);
608         }
609 }
610
611 static void tls_hw_sk_destruct(struct sock *sk)
612 {
613         struct tls_context *ctx = tls_get_ctx(sk);
614         struct inet_connection_sock *icsk = inet_csk(sk);
615
616         ctx->sk_destruct(sk);
617         /* Free ctx */
618         kfree(ctx);
619         icsk->icsk_ulp_data = NULL;
620 }
621
622 static int tls_hw_prot(struct sock *sk)
623 {
624         struct tls_context *ctx;
625         struct tls_device *dev;
626         int rc = 0;
627
628         spin_lock_bh(&device_spinlock);
629         list_for_each_entry(dev, &device_list, dev_list) {
630                 if (dev->feature && dev->feature(dev)) {
631                         ctx = create_ctx(sk);
632                         if (!ctx)
633                                 goto out;
634
635                         spin_unlock_bh(&device_spinlock);
636                         tls_build_proto(sk);
637                         ctx->hash = sk->sk_prot->hash;
638                         ctx->unhash = sk->sk_prot->unhash;
639                         ctx->sk_proto_close = sk->sk_prot->close;
640                         ctx->sk_destruct = sk->sk_destruct;
641                         sk->sk_destruct = tls_hw_sk_destruct;
642                         ctx->rx_conf = TLS_HW_RECORD;
643                         ctx->tx_conf = TLS_HW_RECORD;
644                         update_sk_prot(sk, ctx);
645                         spin_lock_bh(&device_spinlock);
646                         rc = 1;
647                         break;
648                 }
649         }
650 out:
651         spin_unlock_bh(&device_spinlock);
652         return rc;
653 }
654
655 static void tls_hw_unhash(struct sock *sk)
656 {
657         struct tls_context *ctx = tls_get_ctx(sk);
658         struct tls_device *dev;
659
660         spin_lock_bh(&device_spinlock);
661         list_for_each_entry(dev, &device_list, dev_list) {
662                 if (dev->unhash) {
663                         kref_get(&dev->kref);
664                         spin_unlock_bh(&device_spinlock);
665                         dev->unhash(dev, sk);
666                         kref_put(&dev->kref, dev->release);
667                         spin_lock_bh(&device_spinlock);
668                 }
669         }
670         spin_unlock_bh(&device_spinlock);
671         ctx->unhash(sk);
672 }
673
674 static int tls_hw_hash(struct sock *sk)
675 {
676         struct tls_context *ctx = tls_get_ctx(sk);
677         struct tls_device *dev;
678         int err;
679
680         err = ctx->hash(sk);
681         spin_lock_bh(&device_spinlock);
682         list_for_each_entry(dev, &device_list, dev_list) {
683                 if (dev->hash) {
684                         kref_get(&dev->kref);
685                         spin_unlock_bh(&device_spinlock);
686                         err |= dev->hash(dev, sk);
687                         kref_put(&dev->kref, dev->release);
688                         spin_lock_bh(&device_spinlock);
689                 }
690         }
691         spin_unlock_bh(&device_spinlock);
692
693         if (err)
694                 tls_hw_unhash(sk);
695         return err;
696 }
697
698 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
699                          struct proto *base)
700 {
701         prot[TLS_BASE][TLS_BASE] = *base;
702         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
703         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
704         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
705
706         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
707         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
708         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
709
710         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
711         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
712         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
713         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
714
715         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
716         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
717         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
718         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
719
720 #ifdef CONFIG_TLS_DEVICE
721         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
722         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
723         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
724
725         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
726         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
727         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
728
729         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
730
731         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
732
733         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
734 #endif
735
736         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
737         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
738         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
739         prot[TLS_HW_RECORD][TLS_HW_RECORD].close        = tls_sk_proto_close;
740 }
741
742 static int tls_init(struct sock *sk)
743 {
744         struct tls_context *ctx;
745         int rc = 0;
746
747         if (tls_hw_prot(sk))
748                 goto out;
749
750         /* The TLS ulp is currently supported only for TCP sockets
751          * in ESTABLISHED state.
752          * Supporting sockets in LISTEN state will require us
753          * to modify the accept implementation to clone rather then
754          * share the ulp context.
755          */
756         if (sk->sk_state != TCP_ESTABLISHED)
757                 return -ENOTSUPP;
758
759         /* allocate tls context */
760         ctx = create_ctx(sk);
761         if (!ctx) {
762                 rc = -ENOMEM;
763                 goto out;
764         }
765
766         tls_build_proto(sk);
767         ctx->tx_conf = TLS_BASE;
768         ctx->rx_conf = TLS_BASE;
769         update_sk_prot(sk, ctx);
770 out:
771         return rc;
772 }
773
774 void tls_register_device(struct tls_device *device)
775 {
776         spin_lock_bh(&device_spinlock);
777         list_add_tail(&device->dev_list, &device_list);
778         spin_unlock_bh(&device_spinlock);
779 }
780 EXPORT_SYMBOL(tls_register_device);
781
782 void tls_unregister_device(struct tls_device *device)
783 {
784         spin_lock_bh(&device_spinlock);
785         list_del(&device->dev_list);
786         spin_unlock_bh(&device_spinlock);
787 }
788 EXPORT_SYMBOL(tls_unregister_device);
789
790 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
791         .name                   = "tls",
792         .owner                  = THIS_MODULE,
793         .init                   = tls_init,
794 };
795
796 static int __init tls_register(void)
797 {
798         tls_sw_proto_ops = inet_stream_ops;
799         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
800
801 #ifdef CONFIG_TLS_DEVICE
802         tls_device_init();
803 #endif
804         tcp_register_ulp(&tcp_tls_ulp_ops);
805
806         return 0;
807 }
808
809 static void __exit tls_unregister(void)
810 {
811         tcp_unregister_ulp(&tcp_tls_ulp_ops);
812 #ifdef CONFIG_TLS_DEVICE
813         tls_device_cleanup();
814 #endif
815 }
816
817 module_init(tls_register);
818 module_exit(tls_unregister);