]> asedeno.scripts.mit.edu Git - linux.git/blob - net/tls/tls_main.c
Merge branches 'misc', 'sa1100-for-next' and 'spectre' into for-linus
[linux.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51         TLSV4,
52         TLSV6,
53         TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static LIST_HEAD(device_list);
59 static DEFINE_MUTEX(device_mutex);
60 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
61 static struct proto_ops tls_sw_proto_ops;
62
63 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
64 {
65         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
66
67         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
68 }
69
70 int wait_on_pending_writer(struct sock *sk, long *timeo)
71 {
72         int rc = 0;
73         DEFINE_WAIT_FUNC(wait, woken_wake_function);
74
75         add_wait_queue(sk_sleep(sk), &wait);
76         while (1) {
77                 if (!*timeo) {
78                         rc = -EAGAIN;
79                         break;
80                 }
81
82                 if (signal_pending(current)) {
83                         rc = sock_intr_errno(*timeo);
84                         break;
85                 }
86
87                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
88                         break;
89         }
90         remove_wait_queue(sk_sleep(sk), &wait);
91         return rc;
92 }
93
94 int tls_push_sg(struct sock *sk,
95                 struct tls_context *ctx,
96                 struct scatterlist *sg,
97                 u16 first_offset,
98                 int flags)
99 {
100         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
101         int ret = 0;
102         struct page *p;
103         size_t size;
104         int offset = first_offset;
105
106         size = sg->length - offset;
107         offset += sg->offset;
108
109         ctx->in_tcp_sendpages = true;
110         while (1) {
111                 if (sg_is_last(sg))
112                         sendpage_flags = flags;
113
114                 /* is sending application-limited? */
115                 tcp_rate_check_app_limited(sk);
116                 p = sg_page(sg);
117 retry:
118                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
119
120                 if (ret != size) {
121                         if (ret > 0) {
122                                 offset += ret;
123                                 size -= ret;
124                                 goto retry;
125                         }
126
127                         offset -= sg->offset;
128                         ctx->partially_sent_offset = offset;
129                         ctx->partially_sent_record = (void *)sg;
130                         ctx->in_tcp_sendpages = false;
131                         return ret;
132                 }
133
134                 put_page(p);
135                 sk_mem_uncharge(sk, sg->length);
136                 sg = sg_next(sg);
137                 if (!sg)
138                         break;
139
140                 offset = sg->offset;
141                 size = sg->length;
142         }
143
144         ctx->in_tcp_sendpages = false;
145         ctx->sk_write_space(sk);
146
147         return 0;
148 }
149
150 static int tls_handle_open_record(struct sock *sk, int flags)
151 {
152         struct tls_context *ctx = tls_get_ctx(sk);
153
154         if (tls_is_pending_open_record(ctx))
155                 return ctx->push_pending_record(sk, flags);
156
157         return 0;
158 }
159
160 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
161                       unsigned char *record_type)
162 {
163         struct cmsghdr *cmsg;
164         int rc = -EINVAL;
165
166         for_each_cmsghdr(cmsg, msg) {
167                 if (!CMSG_OK(msg, cmsg))
168                         return -EINVAL;
169                 if (cmsg->cmsg_level != SOL_TLS)
170                         continue;
171
172                 switch (cmsg->cmsg_type) {
173                 case TLS_SET_RECORD_TYPE:
174                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
175                                 return -EINVAL;
176
177                         if (msg->msg_flags & MSG_MORE)
178                                 return -EINVAL;
179
180                         rc = tls_handle_open_record(sk, msg->msg_flags);
181                         if (rc)
182                                 return rc;
183
184                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
185                         rc = 0;
186                         break;
187                 default:
188                         return -EINVAL;
189                 }
190         }
191
192         return rc;
193 }
194
195 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
196                             int flags)
197 {
198         struct scatterlist *sg;
199         u16 offset;
200
201         sg = ctx->partially_sent_record;
202         offset = ctx->partially_sent_offset;
203
204         ctx->partially_sent_record = NULL;
205         return tls_push_sg(sk, ctx, sg, offset, flags);
206 }
207
208 int tls_push_pending_closed_record(struct sock *sk,
209                                    struct tls_context *tls_ctx,
210                                    int flags, long *timeo)
211 {
212         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
213
214         if (tls_is_partially_sent_record(tls_ctx) ||
215             !list_empty(&ctx->tx_list))
216                 return tls_tx_records(sk, flags);
217         else
218                 return tls_ctx->push_pending_record(sk, flags);
219 }
220
221 static void tls_write_space(struct sock *sk)
222 {
223         struct tls_context *ctx = tls_get_ctx(sk);
224         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
225
226         /* If in_tcp_sendpages call lower protocol write space handler
227          * to ensure we wake up any waiting operations there. For example
228          * if do_tcp_sendpages where to call sk_wait_event.
229          */
230         if (ctx->in_tcp_sendpages) {
231                 ctx->sk_write_space(sk);
232                 return;
233         }
234
235         /* Schedule the transmission if tx list is ready */
236         if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) {
237                 /* Schedule the transmission */
238                 if (!test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
239                         schedule_delayed_work(&tx_ctx->tx_work.work, 0);
240         }
241
242         ctx->sk_write_space(sk);
243 }
244
245 static void tls_ctx_free(struct tls_context *ctx)
246 {
247         if (!ctx)
248                 return;
249
250         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
251         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
252         kfree(ctx);
253 }
254
255 static void tls_sk_proto_close(struct sock *sk, long timeout)
256 {
257         struct tls_context *ctx = tls_get_ctx(sk);
258         long timeo = sock_sndtimeo(sk, 0);
259         void (*sk_proto_close)(struct sock *sk, long timeout);
260         bool free_ctx = false;
261
262         lock_sock(sk);
263         sk_proto_close = ctx->sk_proto_close;
264
265         if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
266             (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
267                 free_ctx = true;
268                 goto skip_tx_cleanup;
269         }
270
271         if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
272                 tls_handle_open_record(sk, 0);
273
274         /* We need these for tls_sw_fallback handling of other packets */
275         if (ctx->tx_conf == TLS_SW) {
276                 kfree(ctx->tx.rec_seq);
277                 kfree(ctx->tx.iv);
278                 tls_sw_free_resources_tx(sk);
279         }
280
281         if (ctx->rx_conf == TLS_SW) {
282                 kfree(ctx->rx.rec_seq);
283                 kfree(ctx->rx.iv);
284                 tls_sw_free_resources_rx(sk);
285         }
286
287 #ifdef CONFIG_TLS_DEVICE
288         if (ctx->rx_conf == TLS_HW)
289                 tls_device_offload_cleanup_rx(sk);
290
291         if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
292 #else
293         {
294 #endif
295                 tls_ctx_free(ctx);
296                 ctx = NULL;
297         }
298
299 skip_tx_cleanup:
300         release_sock(sk);
301         sk_proto_close(sk, timeout);
302         /* free ctx for TLS_HW_RECORD, used by tcp_set_state
303          * for sk->sk_prot->unhash [tls_hw_unhash]
304          */
305         if (free_ctx)
306                 tls_ctx_free(ctx);
307 }
308
309 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
310                                 int __user *optlen)
311 {
312         int rc = 0;
313         struct tls_context *ctx = tls_get_ctx(sk);
314         struct tls_crypto_info *crypto_info;
315         int len;
316
317         if (get_user(len, optlen))
318                 return -EFAULT;
319
320         if (!optval || (len < sizeof(*crypto_info))) {
321                 rc = -EINVAL;
322                 goto out;
323         }
324
325         if (!ctx) {
326                 rc = -EBUSY;
327                 goto out;
328         }
329
330         /* get user crypto info */
331         crypto_info = &ctx->crypto_send.info;
332
333         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
334                 rc = -EBUSY;
335                 goto out;
336         }
337
338         if (len == sizeof(*crypto_info)) {
339                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
340                         rc = -EFAULT;
341                 goto out;
342         }
343
344         switch (crypto_info->cipher_type) {
345         case TLS_CIPHER_AES_GCM_128: {
346                 struct tls12_crypto_info_aes_gcm_128 *
347                   crypto_info_aes_gcm_128 =
348                   container_of(crypto_info,
349                                struct tls12_crypto_info_aes_gcm_128,
350                                info);
351
352                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
353                         rc = -EINVAL;
354                         goto out;
355                 }
356                 lock_sock(sk);
357                 memcpy(crypto_info_aes_gcm_128->iv,
358                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
359                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
360                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
361                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
362                 release_sock(sk);
363                 if (copy_to_user(optval,
364                                  crypto_info_aes_gcm_128,
365                                  sizeof(*crypto_info_aes_gcm_128)))
366                         rc = -EFAULT;
367                 break;
368         }
369         default:
370                 rc = -EINVAL;
371         }
372
373 out:
374         return rc;
375 }
376
377 static int do_tls_getsockopt(struct sock *sk, int optname,
378                              char __user *optval, int __user *optlen)
379 {
380         int rc = 0;
381
382         switch (optname) {
383         case TLS_TX:
384                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
385                 break;
386         default:
387                 rc = -ENOPROTOOPT;
388                 break;
389         }
390         return rc;
391 }
392
393 static int tls_getsockopt(struct sock *sk, int level, int optname,
394                           char __user *optval, int __user *optlen)
395 {
396         struct tls_context *ctx = tls_get_ctx(sk);
397
398         if (level != SOL_TLS)
399                 return ctx->getsockopt(sk, level, optname, optval, optlen);
400
401         return do_tls_getsockopt(sk, optname, optval, optlen);
402 }
403
404 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
405                                   unsigned int optlen, int tx)
406 {
407         struct tls_crypto_info *crypto_info;
408         struct tls_context *ctx = tls_get_ctx(sk);
409         int rc = 0;
410         int conf;
411
412         if (!optval || (optlen < sizeof(*crypto_info))) {
413                 rc = -EINVAL;
414                 goto out;
415         }
416
417         if (tx)
418                 crypto_info = &ctx->crypto_send.info;
419         else
420                 crypto_info = &ctx->crypto_recv.info;
421
422         /* Currently we don't support set crypto info more than one time */
423         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
424                 rc = -EBUSY;
425                 goto out;
426         }
427
428         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
429         if (rc) {
430                 rc = -EFAULT;
431                 goto err_crypto_info;
432         }
433
434         /* check version */
435         if (crypto_info->version != TLS_1_2_VERSION) {
436                 rc = -ENOTSUPP;
437                 goto err_crypto_info;
438         }
439
440         switch (crypto_info->cipher_type) {
441         case TLS_CIPHER_AES_GCM_128: {
442                 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
443                         rc = -EINVAL;
444                         goto err_crypto_info;
445                 }
446                 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
447                                     optlen - sizeof(*crypto_info));
448                 if (rc) {
449                         rc = -EFAULT;
450                         goto err_crypto_info;
451                 }
452                 break;
453         }
454         default:
455                 rc = -EINVAL;
456                 goto err_crypto_info;
457         }
458
459         if (tx) {
460 #ifdef CONFIG_TLS_DEVICE
461                 rc = tls_set_device_offload(sk, ctx);
462                 conf = TLS_HW;
463                 if (rc) {
464 #else
465                 {
466 #endif
467                         rc = tls_set_sw_offload(sk, ctx, 1);
468                         conf = TLS_SW;
469                 }
470         } else {
471 #ifdef CONFIG_TLS_DEVICE
472                 rc = tls_set_device_offload_rx(sk, ctx);
473                 conf = TLS_HW;
474                 if (rc) {
475 #else
476                 {
477 #endif
478                         rc = tls_set_sw_offload(sk, ctx, 0);
479                         conf = TLS_SW;
480                 }
481         }
482
483         if (rc)
484                 goto err_crypto_info;
485
486         if (tx)
487                 ctx->tx_conf = conf;
488         else
489                 ctx->rx_conf = conf;
490         update_sk_prot(sk, ctx);
491         if (tx) {
492                 ctx->sk_write_space = sk->sk_write_space;
493                 sk->sk_write_space = tls_write_space;
494         } else {
495                 sk->sk_socket->ops = &tls_sw_proto_ops;
496         }
497         goto out;
498
499 err_crypto_info:
500         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
501 out:
502         return rc;
503 }
504
505 static int do_tls_setsockopt(struct sock *sk, int optname,
506                              char __user *optval, unsigned int optlen)
507 {
508         int rc = 0;
509
510         switch (optname) {
511         case TLS_TX:
512         case TLS_RX:
513                 lock_sock(sk);
514                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
515                                             optname == TLS_TX);
516                 release_sock(sk);
517                 break;
518         default:
519                 rc = -ENOPROTOOPT;
520                 break;
521         }
522         return rc;
523 }
524
525 static int tls_setsockopt(struct sock *sk, int level, int optname,
526                           char __user *optval, unsigned int optlen)
527 {
528         struct tls_context *ctx = tls_get_ctx(sk);
529
530         if (level != SOL_TLS)
531                 return ctx->setsockopt(sk, level, optname, optval, optlen);
532
533         return do_tls_setsockopt(sk, optname, optval, optlen);
534 }
535
536 static struct tls_context *create_ctx(struct sock *sk)
537 {
538         struct inet_connection_sock *icsk = inet_csk(sk);
539         struct tls_context *ctx;
540
541         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
542         if (!ctx)
543                 return NULL;
544
545         icsk->icsk_ulp_data = ctx;
546         return ctx;
547 }
548
549 static int tls_hw_prot(struct sock *sk)
550 {
551         struct tls_context *ctx;
552         struct tls_device *dev;
553         int rc = 0;
554
555         mutex_lock(&device_mutex);
556         list_for_each_entry(dev, &device_list, dev_list) {
557                 if (dev->feature && dev->feature(dev)) {
558                         ctx = create_ctx(sk);
559                         if (!ctx)
560                                 goto out;
561
562                         ctx->hash = sk->sk_prot->hash;
563                         ctx->unhash = sk->sk_prot->unhash;
564                         ctx->sk_proto_close = sk->sk_prot->close;
565                         ctx->rx_conf = TLS_HW_RECORD;
566                         ctx->tx_conf = TLS_HW_RECORD;
567                         update_sk_prot(sk, ctx);
568                         rc = 1;
569                         break;
570                 }
571         }
572 out:
573         mutex_unlock(&device_mutex);
574         return rc;
575 }
576
577 static void tls_hw_unhash(struct sock *sk)
578 {
579         struct tls_context *ctx = tls_get_ctx(sk);
580         struct tls_device *dev;
581
582         mutex_lock(&device_mutex);
583         list_for_each_entry(dev, &device_list, dev_list) {
584                 if (dev->unhash)
585                         dev->unhash(dev, sk);
586         }
587         mutex_unlock(&device_mutex);
588         ctx->unhash(sk);
589 }
590
591 static int tls_hw_hash(struct sock *sk)
592 {
593         struct tls_context *ctx = tls_get_ctx(sk);
594         struct tls_device *dev;
595         int err;
596
597         err = ctx->hash(sk);
598         mutex_lock(&device_mutex);
599         list_for_each_entry(dev, &device_list, dev_list) {
600                 if (dev->hash)
601                         err |= dev->hash(dev, sk);
602         }
603         mutex_unlock(&device_mutex);
604
605         if (err)
606                 tls_hw_unhash(sk);
607         return err;
608 }
609
610 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
611                          struct proto *base)
612 {
613         prot[TLS_BASE][TLS_BASE] = *base;
614         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
615         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
616         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
617
618         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
619         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
620         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
621
622         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
623         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
624         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
625         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
626
627         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
628         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
629         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
630         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
631
632 #ifdef CONFIG_TLS_DEVICE
633         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
634         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
635         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
636
637         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
638         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
639         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
640
641         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
642
643         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
644
645         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
646 #endif
647
648         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
649         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
650         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
651         prot[TLS_HW_RECORD][TLS_HW_RECORD].close        = tls_sk_proto_close;
652 }
653
654 static int tls_init(struct sock *sk)
655 {
656         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
657         struct tls_context *ctx;
658         int rc = 0;
659
660         if (tls_hw_prot(sk))
661                 goto out;
662
663         /* The TLS ulp is currently supported only for TCP sockets
664          * in ESTABLISHED state.
665          * Supporting sockets in LISTEN state will require us
666          * to modify the accept implementation to clone rather then
667          * share the ulp context.
668          */
669         if (sk->sk_state != TCP_ESTABLISHED)
670                 return -ENOTSUPP;
671
672         /* allocate tls context */
673         ctx = create_ctx(sk);
674         if (!ctx) {
675                 rc = -ENOMEM;
676                 goto out;
677         }
678         ctx->setsockopt = sk->sk_prot->setsockopt;
679         ctx->getsockopt = sk->sk_prot->getsockopt;
680         ctx->sk_proto_close = sk->sk_prot->close;
681
682         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
683         if (ip_ver == TLSV6 &&
684             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
685                 mutex_lock(&tcpv6_prot_mutex);
686                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
687                         build_protos(tls_prots[TLSV6], sk->sk_prot);
688                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
689                 }
690                 mutex_unlock(&tcpv6_prot_mutex);
691         }
692
693         ctx->tx_conf = TLS_BASE;
694         ctx->rx_conf = TLS_BASE;
695         update_sk_prot(sk, ctx);
696 out:
697         return rc;
698 }
699
700 void tls_register_device(struct tls_device *device)
701 {
702         mutex_lock(&device_mutex);
703         list_add_tail(&device->dev_list, &device_list);
704         mutex_unlock(&device_mutex);
705 }
706 EXPORT_SYMBOL(tls_register_device);
707
708 void tls_unregister_device(struct tls_device *device)
709 {
710         mutex_lock(&device_mutex);
711         list_del(&device->dev_list);
712         mutex_unlock(&device_mutex);
713 }
714 EXPORT_SYMBOL(tls_unregister_device);
715
716 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
717         .name                   = "tls",
718         .owner                  = THIS_MODULE,
719         .init                   = tls_init,
720 };
721
722 static int __init tls_register(void)
723 {
724         build_protos(tls_prots[TLSV4], &tcp_prot);
725
726         tls_sw_proto_ops = inet_stream_ops;
727         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
728
729 #ifdef CONFIG_TLS_DEVICE
730         tls_device_init();
731 #endif
732         tcp_register_ulp(&tcp_tls_ulp_ops);
733
734         return 0;
735 }
736
737 static void __exit tls_unregister(void)
738 {
739         tcp_unregister_ulp(&tcp_tls_ulp_ops);
740 #ifdef CONFIG_TLS_DEVICE
741         tls_device_cleanup();
742 #endif
743 }
744
745 module_init(tls_register);
746 module_exit(tls_unregister);