]> asedeno.scripts.mit.edu Git - linux.git/blob - net/tls/tls_main.c
Merge branches 'pm-avs', 'pm-docs' and 'pm-tools'
[linux.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/tls.h>
45
46 MODULE_AUTHOR("Mellanox Technologies");
47 MODULE_DESCRIPTION("Transport Layer Security Support");
48 MODULE_LICENSE("Dual BSD/GPL");
49 MODULE_ALIAS_TCP_ULP("tls");
50
51 enum {
52         TLSV4,
53         TLSV6,
54         TLS_NUM_PROTS,
55 };
56
57 static struct proto *saved_tcpv6_prot;
58 static DEFINE_MUTEX(tcpv6_prot_mutex);
59 static struct proto *saved_tcpv4_prot;
60 static DEFINE_MUTEX(tcpv4_prot_mutex);
61 static LIST_HEAD(device_list);
62 static DEFINE_SPINLOCK(device_spinlock);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_sw_proto_ops;
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66                          struct proto *base);
67
68 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
73 }
74
75 int wait_on_pending_writer(struct sock *sk, long *timeo)
76 {
77         int rc = 0;
78         DEFINE_WAIT_FUNC(wait, woken_wake_function);
79
80         add_wait_queue(sk_sleep(sk), &wait);
81         while (1) {
82                 if (!*timeo) {
83                         rc = -EAGAIN;
84                         break;
85                 }
86
87                 if (signal_pending(current)) {
88                         rc = sock_intr_errno(*timeo);
89                         break;
90                 }
91
92                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
93                         break;
94         }
95         remove_wait_queue(sk_sleep(sk), &wait);
96         return rc;
97 }
98
99 int tls_push_sg(struct sock *sk,
100                 struct tls_context *ctx,
101                 struct scatterlist *sg,
102                 u16 first_offset,
103                 int flags)
104 {
105         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
106         int ret = 0;
107         struct page *p;
108         size_t size;
109         int offset = first_offset;
110
111         size = sg->length - offset;
112         offset += sg->offset;
113
114         ctx->in_tcp_sendpages = true;
115         while (1) {
116                 if (sg_is_last(sg))
117                         sendpage_flags = flags;
118
119                 /* is sending application-limited? */
120                 tcp_rate_check_app_limited(sk);
121                 p = sg_page(sg);
122 retry:
123                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
124
125                 if (ret != size) {
126                         if (ret > 0) {
127                                 offset += ret;
128                                 size -= ret;
129                                 goto retry;
130                         }
131
132                         offset -= sg->offset;
133                         ctx->partially_sent_offset = offset;
134                         ctx->partially_sent_record = (void *)sg;
135                         ctx->in_tcp_sendpages = false;
136                         return ret;
137                 }
138
139                 put_page(p);
140                 sk_mem_uncharge(sk, sg->length);
141                 sg = sg_next(sg);
142                 if (!sg)
143                         break;
144
145                 offset = sg->offset;
146                 size = sg->length;
147         }
148
149         ctx->in_tcp_sendpages = false;
150
151         return 0;
152 }
153
154 static int tls_handle_open_record(struct sock *sk, int flags)
155 {
156         struct tls_context *ctx = tls_get_ctx(sk);
157
158         if (tls_is_pending_open_record(ctx))
159                 return ctx->push_pending_record(sk, flags);
160
161         return 0;
162 }
163
164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165                       unsigned char *record_type)
166 {
167         struct cmsghdr *cmsg;
168         int rc = -EINVAL;
169
170         for_each_cmsghdr(cmsg, msg) {
171                 if (!CMSG_OK(msg, cmsg))
172                         return -EINVAL;
173                 if (cmsg->cmsg_level != SOL_TLS)
174                         continue;
175
176                 switch (cmsg->cmsg_type) {
177                 case TLS_SET_RECORD_TYPE:
178                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179                                 return -EINVAL;
180
181                         if (msg->msg_flags & MSG_MORE)
182                                 return -EINVAL;
183
184                         rc = tls_handle_open_record(sk, msg->msg_flags);
185                         if (rc)
186                                 return rc;
187
188                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
189                         rc = 0;
190                         break;
191                 default:
192                         return -EINVAL;
193                 }
194         }
195
196         return rc;
197 }
198
199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200                             int flags)
201 {
202         struct scatterlist *sg;
203         u16 offset;
204
205         sg = ctx->partially_sent_record;
206         offset = ctx->partially_sent_offset;
207
208         ctx->partially_sent_record = NULL;
209         return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211
212 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
213 {
214         struct scatterlist *sg;
215
216         sg = ctx->partially_sent_record;
217         if (!sg)
218                 return false;
219
220         while (1) {
221                 put_page(sg_page(sg));
222                 sk_mem_uncharge(sk, sg->length);
223
224                 if (sg_is_last(sg))
225                         break;
226                 sg++;
227         }
228         ctx->partially_sent_record = NULL;
229         return true;
230 }
231
232 static void tls_write_space(struct sock *sk)
233 {
234         struct tls_context *ctx = tls_get_ctx(sk);
235
236         /* If in_tcp_sendpages call lower protocol write space handler
237          * to ensure we wake up any waiting operations there. For example
238          * if do_tcp_sendpages where to call sk_wait_event.
239          */
240         if (ctx->in_tcp_sendpages) {
241                 ctx->sk_write_space(sk);
242                 return;
243         }
244
245 #ifdef CONFIG_TLS_DEVICE
246         if (ctx->tx_conf == TLS_HW)
247                 tls_device_write_space(sk, ctx);
248         else
249 #endif
250                 tls_sw_write_space(sk, ctx);
251
252         ctx->sk_write_space(sk);
253 }
254
255 /**
256  * tls_ctx_free() - free TLS ULP context
257  * @sk:  socket to with @ctx is attached
258  * @ctx: TLS context structure
259  *
260  * Free TLS context. If @sk is %NULL caller guarantees that the socket
261  * to which @ctx was attached has no outstanding references.
262  */
263 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
264 {
265         if (!ctx)
266                 return;
267
268         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
269         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
270         mutex_destroy(&ctx->tx_lock);
271
272         if (sk)
273                 kfree_rcu(ctx, rcu);
274         else
275                 kfree(ctx);
276 }
277
278 static void tls_sk_proto_cleanup(struct sock *sk,
279                                  struct tls_context *ctx, long timeo)
280 {
281         if (unlikely(sk->sk_write_pending) &&
282             !wait_on_pending_writer(sk, &timeo))
283                 tls_handle_open_record(sk, 0);
284
285         /* We need these for tls_sw_fallback handling of other packets */
286         if (ctx->tx_conf == TLS_SW) {
287                 kfree(ctx->tx.rec_seq);
288                 kfree(ctx->tx.iv);
289                 tls_sw_release_resources_tx(sk);
290         } else if (ctx->tx_conf == TLS_HW) {
291                 tls_device_free_resources_tx(sk);
292         }
293
294         if (ctx->rx_conf == TLS_SW)
295                 tls_sw_release_resources_rx(sk);
296         else if (ctx->rx_conf == TLS_HW)
297                 tls_device_offload_cleanup_rx(sk);
298 }
299
300 static void tls_sk_proto_close(struct sock *sk, long timeout)
301 {
302         struct inet_connection_sock *icsk = inet_csk(sk);
303         struct tls_context *ctx = tls_get_ctx(sk);
304         long timeo = sock_sndtimeo(sk, 0);
305         bool free_ctx;
306
307         if (ctx->tx_conf == TLS_SW)
308                 tls_sw_cancel_work_tx(ctx);
309
310         lock_sock(sk);
311         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
312
313         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
314                 tls_sk_proto_cleanup(sk, ctx, timeo);
315
316         write_lock_bh(&sk->sk_callback_lock);
317         if (free_ctx)
318                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
319         sk->sk_prot = ctx->sk_proto;
320         if (sk->sk_write_space == tls_write_space)
321                 sk->sk_write_space = ctx->sk_write_space;
322         write_unlock_bh(&sk->sk_callback_lock);
323         release_sock(sk);
324         if (ctx->tx_conf == TLS_SW)
325                 tls_sw_free_ctx_tx(ctx);
326         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
327                 tls_sw_strparser_done(ctx);
328         if (ctx->rx_conf == TLS_SW)
329                 tls_sw_free_ctx_rx(ctx);
330         ctx->sk_proto->close(sk, timeout);
331
332         if (free_ctx)
333                 tls_ctx_free(sk, ctx);
334 }
335
336 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
337                                 int __user *optlen)
338 {
339         int rc = 0;
340         struct tls_context *ctx = tls_get_ctx(sk);
341         struct tls_crypto_info *crypto_info;
342         int len;
343
344         if (get_user(len, optlen))
345                 return -EFAULT;
346
347         if (!optval || (len < sizeof(*crypto_info))) {
348                 rc = -EINVAL;
349                 goto out;
350         }
351
352         if (!ctx) {
353                 rc = -EBUSY;
354                 goto out;
355         }
356
357         /* get user crypto info */
358         crypto_info = &ctx->crypto_send.info;
359
360         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
361                 rc = -EBUSY;
362                 goto out;
363         }
364
365         if (len == sizeof(*crypto_info)) {
366                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
367                         rc = -EFAULT;
368                 goto out;
369         }
370
371         switch (crypto_info->cipher_type) {
372         case TLS_CIPHER_AES_GCM_128: {
373                 struct tls12_crypto_info_aes_gcm_128 *
374                   crypto_info_aes_gcm_128 =
375                   container_of(crypto_info,
376                                struct tls12_crypto_info_aes_gcm_128,
377                                info);
378
379                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
380                         rc = -EINVAL;
381                         goto out;
382                 }
383                 lock_sock(sk);
384                 memcpy(crypto_info_aes_gcm_128->iv,
385                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
386                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
387                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
388                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
389                 release_sock(sk);
390                 if (copy_to_user(optval,
391                                  crypto_info_aes_gcm_128,
392                                  sizeof(*crypto_info_aes_gcm_128)))
393                         rc = -EFAULT;
394                 break;
395         }
396         case TLS_CIPHER_AES_GCM_256: {
397                 struct tls12_crypto_info_aes_gcm_256 *
398                   crypto_info_aes_gcm_256 =
399                   container_of(crypto_info,
400                                struct tls12_crypto_info_aes_gcm_256,
401                                info);
402
403                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
404                         rc = -EINVAL;
405                         goto out;
406                 }
407                 lock_sock(sk);
408                 memcpy(crypto_info_aes_gcm_256->iv,
409                        ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
410                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
411                 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
412                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
413                 release_sock(sk);
414                 if (copy_to_user(optval,
415                                  crypto_info_aes_gcm_256,
416                                  sizeof(*crypto_info_aes_gcm_256)))
417                         rc = -EFAULT;
418                 break;
419         }
420         default:
421                 rc = -EINVAL;
422         }
423
424 out:
425         return rc;
426 }
427
428 static int do_tls_getsockopt(struct sock *sk, int optname,
429                              char __user *optval, int __user *optlen)
430 {
431         int rc = 0;
432
433         switch (optname) {
434         case TLS_TX:
435                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
436                 break;
437         default:
438                 rc = -ENOPROTOOPT;
439                 break;
440         }
441         return rc;
442 }
443
444 static int tls_getsockopt(struct sock *sk, int level, int optname,
445                           char __user *optval, int __user *optlen)
446 {
447         struct tls_context *ctx = tls_get_ctx(sk);
448
449         if (level != SOL_TLS)
450                 return ctx->sk_proto->getsockopt(sk, level,
451                                                  optname, optval, optlen);
452
453         return do_tls_getsockopt(sk, optname, optval, optlen);
454 }
455
456 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
457                                   unsigned int optlen, int tx)
458 {
459         struct tls_crypto_info *crypto_info;
460         struct tls_crypto_info *alt_crypto_info;
461         struct tls_context *ctx = tls_get_ctx(sk);
462         size_t optsize;
463         int rc = 0;
464         int conf;
465
466         if (!optval || (optlen < sizeof(*crypto_info))) {
467                 rc = -EINVAL;
468                 goto out;
469         }
470
471         if (tx) {
472                 crypto_info = &ctx->crypto_send.info;
473                 alt_crypto_info = &ctx->crypto_recv.info;
474         } else {
475                 crypto_info = &ctx->crypto_recv.info;
476                 alt_crypto_info = &ctx->crypto_send.info;
477         }
478
479         /* Currently we don't support set crypto info more than one time */
480         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
481                 rc = -EBUSY;
482                 goto out;
483         }
484
485         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
486         if (rc) {
487                 rc = -EFAULT;
488                 goto err_crypto_info;
489         }
490
491         /* check version */
492         if (crypto_info->version != TLS_1_2_VERSION &&
493             crypto_info->version != TLS_1_3_VERSION) {
494                 rc = -ENOTSUPP;
495                 goto err_crypto_info;
496         }
497
498         /* Ensure that TLS version and ciphers are same in both directions */
499         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
500                 if (alt_crypto_info->version != crypto_info->version ||
501                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
502                         rc = -EINVAL;
503                         goto err_crypto_info;
504                 }
505         }
506
507         switch (crypto_info->cipher_type) {
508         case TLS_CIPHER_AES_GCM_128:
509                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
510                 break;
511         case TLS_CIPHER_AES_GCM_256: {
512                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
513                 break;
514         }
515         case TLS_CIPHER_AES_CCM_128:
516                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
517                 break;
518         default:
519                 rc = -EINVAL;
520                 goto err_crypto_info;
521         }
522
523         if (optlen != optsize) {
524                 rc = -EINVAL;
525                 goto err_crypto_info;
526         }
527
528         rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
529                             optlen - sizeof(*crypto_info));
530         if (rc) {
531                 rc = -EFAULT;
532                 goto err_crypto_info;
533         }
534
535         if (tx) {
536                 rc = tls_set_device_offload(sk, ctx);
537                 conf = TLS_HW;
538                 if (rc) {
539                         rc = tls_set_sw_offload(sk, ctx, 1);
540                         if (rc)
541                                 goto err_crypto_info;
542                         conf = TLS_SW;
543                 }
544         } else {
545                 rc = tls_set_device_offload_rx(sk, ctx);
546                 conf = TLS_HW;
547                 if (rc) {
548                         rc = tls_set_sw_offload(sk, ctx, 0);
549                         if (rc)
550                                 goto err_crypto_info;
551                         conf = TLS_SW;
552                 }
553                 tls_sw_strparser_arm(sk, ctx);
554         }
555
556         if (tx)
557                 ctx->tx_conf = conf;
558         else
559                 ctx->rx_conf = conf;
560         update_sk_prot(sk, ctx);
561         if (tx) {
562                 ctx->sk_write_space = sk->sk_write_space;
563                 sk->sk_write_space = tls_write_space;
564         } else {
565                 sk->sk_socket->ops = &tls_sw_proto_ops;
566         }
567         goto out;
568
569 err_crypto_info:
570         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
571 out:
572         return rc;
573 }
574
575 static int do_tls_setsockopt(struct sock *sk, int optname,
576                              char __user *optval, unsigned int optlen)
577 {
578         int rc = 0;
579
580         switch (optname) {
581         case TLS_TX:
582         case TLS_RX:
583                 lock_sock(sk);
584                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
585                                             optname == TLS_TX);
586                 release_sock(sk);
587                 break;
588         default:
589                 rc = -ENOPROTOOPT;
590                 break;
591         }
592         return rc;
593 }
594
595 static int tls_setsockopt(struct sock *sk, int level, int optname,
596                           char __user *optval, unsigned int optlen)
597 {
598         struct tls_context *ctx = tls_get_ctx(sk);
599
600         if (level != SOL_TLS)
601                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
602                                                  optlen);
603
604         return do_tls_setsockopt(sk, optname, optval, optlen);
605 }
606
607 static struct tls_context *create_ctx(struct sock *sk)
608 {
609         struct inet_connection_sock *icsk = inet_csk(sk);
610         struct tls_context *ctx;
611
612         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
613         if (!ctx)
614                 return NULL;
615
616         mutex_init(&ctx->tx_lock);
617         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
618         ctx->sk_proto = sk->sk_prot;
619         return ctx;
620 }
621
622 static void tls_build_proto(struct sock *sk)
623 {
624         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
625
626         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
627         if (ip_ver == TLSV6 &&
628             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
629                 mutex_lock(&tcpv6_prot_mutex);
630                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
631                         build_protos(tls_prots[TLSV6], sk->sk_prot);
632                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
633                 }
634                 mutex_unlock(&tcpv6_prot_mutex);
635         }
636
637         if (ip_ver == TLSV4 &&
638             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
639                 mutex_lock(&tcpv4_prot_mutex);
640                 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
641                         build_protos(tls_prots[TLSV4], sk->sk_prot);
642                         smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
643                 }
644                 mutex_unlock(&tcpv4_prot_mutex);
645         }
646 }
647
648 static void tls_hw_sk_destruct(struct sock *sk)
649 {
650         struct tls_context *ctx = tls_get_ctx(sk);
651         struct inet_connection_sock *icsk = inet_csk(sk);
652
653         ctx->sk_destruct(sk);
654         /* Free ctx */
655         rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
656         tls_ctx_free(sk, ctx);
657 }
658
659 static int tls_hw_prot(struct sock *sk)
660 {
661         struct tls_context *ctx;
662         struct tls_device *dev;
663         int rc = 0;
664
665         spin_lock_bh(&device_spinlock);
666         list_for_each_entry(dev, &device_list, dev_list) {
667                 if (dev->feature && dev->feature(dev)) {
668                         ctx = create_ctx(sk);
669                         if (!ctx)
670                                 goto out;
671
672                         spin_unlock_bh(&device_spinlock);
673                         tls_build_proto(sk);
674                         ctx->sk_destruct = sk->sk_destruct;
675                         sk->sk_destruct = tls_hw_sk_destruct;
676                         ctx->rx_conf = TLS_HW_RECORD;
677                         ctx->tx_conf = TLS_HW_RECORD;
678                         update_sk_prot(sk, ctx);
679                         spin_lock_bh(&device_spinlock);
680                         rc = 1;
681                         break;
682                 }
683         }
684 out:
685         spin_unlock_bh(&device_spinlock);
686         return rc;
687 }
688
689 static void tls_hw_unhash(struct sock *sk)
690 {
691         struct tls_context *ctx = tls_get_ctx(sk);
692         struct tls_device *dev;
693
694         spin_lock_bh(&device_spinlock);
695         list_for_each_entry(dev, &device_list, dev_list) {
696                 if (dev->unhash) {
697                         kref_get(&dev->kref);
698                         spin_unlock_bh(&device_spinlock);
699                         dev->unhash(dev, sk);
700                         kref_put(&dev->kref, dev->release);
701                         spin_lock_bh(&device_spinlock);
702                 }
703         }
704         spin_unlock_bh(&device_spinlock);
705         ctx->sk_proto->unhash(sk);
706 }
707
708 static int tls_hw_hash(struct sock *sk)
709 {
710         struct tls_context *ctx = tls_get_ctx(sk);
711         struct tls_device *dev;
712         int err;
713
714         err = ctx->sk_proto->hash(sk);
715         spin_lock_bh(&device_spinlock);
716         list_for_each_entry(dev, &device_list, dev_list) {
717                 if (dev->hash) {
718                         kref_get(&dev->kref);
719                         spin_unlock_bh(&device_spinlock);
720                         err |= dev->hash(dev, sk);
721                         kref_put(&dev->kref, dev->release);
722                         spin_lock_bh(&device_spinlock);
723                 }
724         }
725         spin_unlock_bh(&device_spinlock);
726
727         if (err)
728                 tls_hw_unhash(sk);
729         return err;
730 }
731
732 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
733                          struct proto *base)
734 {
735         prot[TLS_BASE][TLS_BASE] = *base;
736         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
737         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
738         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
739
740         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
741         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
742         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
743
744         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
745         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
746         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
747         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
748
749         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
750         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
751         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
752         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
753
754 #ifdef CONFIG_TLS_DEVICE
755         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
756         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
757         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
758
759         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
760         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
761         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
762
763         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
764
765         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
766
767         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
768 #endif
769
770         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
771         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
772         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
773 }
774
775 static int tls_init(struct sock *sk)
776 {
777         struct tls_context *ctx;
778         int rc = 0;
779
780         if (tls_hw_prot(sk))
781                 return 0;
782
783         /* The TLS ulp is currently supported only for TCP sockets
784          * in ESTABLISHED state.
785          * Supporting sockets in LISTEN state will require us
786          * to modify the accept implementation to clone rather then
787          * share the ulp context.
788          */
789         if (sk->sk_state != TCP_ESTABLISHED)
790                 return -ENOTSUPP;
791
792         tls_build_proto(sk);
793
794         /* allocate tls context */
795         write_lock_bh(&sk->sk_callback_lock);
796         ctx = create_ctx(sk);
797         if (!ctx) {
798                 rc = -ENOMEM;
799                 goto out;
800         }
801
802         ctx->tx_conf = TLS_BASE;
803         ctx->rx_conf = TLS_BASE;
804         update_sk_prot(sk, ctx);
805 out:
806         write_unlock_bh(&sk->sk_callback_lock);
807         return rc;
808 }
809
810 static void tls_update(struct sock *sk, struct proto *p)
811 {
812         struct tls_context *ctx;
813
814         ctx = tls_get_ctx(sk);
815         if (likely(ctx))
816                 ctx->sk_proto = p;
817         else
818                 sk->sk_prot = p;
819 }
820
821 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
822 {
823         u16 version, cipher_type;
824         struct tls_context *ctx;
825         struct nlattr *start;
826         int err;
827
828         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
829         if (!start)
830                 return -EMSGSIZE;
831
832         rcu_read_lock();
833         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
834         if (!ctx) {
835                 err = 0;
836                 goto nla_failure;
837         }
838         version = ctx->prot_info.version;
839         if (version) {
840                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
841                 if (err)
842                         goto nla_failure;
843         }
844         cipher_type = ctx->prot_info.cipher_type;
845         if (cipher_type) {
846                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
847                 if (err)
848                         goto nla_failure;
849         }
850         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
851         if (err)
852                 goto nla_failure;
853
854         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
855         if (err)
856                 goto nla_failure;
857
858         rcu_read_unlock();
859         nla_nest_end(skb, start);
860         return 0;
861
862 nla_failure:
863         rcu_read_unlock();
864         nla_nest_cancel(skb, start);
865         return err;
866 }
867
868 static size_t tls_get_info_size(const struct sock *sk)
869 {
870         size_t size = 0;
871
872         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
873                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
874                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
875                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
876                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
877                 0;
878
879         return size;
880 }
881
882 void tls_register_device(struct tls_device *device)
883 {
884         spin_lock_bh(&device_spinlock);
885         list_add_tail(&device->dev_list, &device_list);
886         spin_unlock_bh(&device_spinlock);
887 }
888 EXPORT_SYMBOL(tls_register_device);
889
890 void tls_unregister_device(struct tls_device *device)
891 {
892         spin_lock_bh(&device_spinlock);
893         list_del(&device->dev_list);
894         spin_unlock_bh(&device_spinlock);
895 }
896 EXPORT_SYMBOL(tls_unregister_device);
897
898 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
899         .name                   = "tls",
900         .owner                  = THIS_MODULE,
901         .init                   = tls_init,
902         .update                 = tls_update,
903         .get_info               = tls_get_info,
904         .get_info_size          = tls_get_info_size,
905 };
906
907 static int __init tls_register(void)
908 {
909         tls_sw_proto_ops = inet_stream_ops;
910         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
911
912         tls_device_init();
913         tcp_register_ulp(&tcp_tls_ulp_ops);
914
915         return 0;
916 }
917
918 static void __exit tls_unregister(void)
919 {
920         tcp_unregister_ulp(&tcp_tls_ulp_ops);
921         tls_device_cleanup();
922 }
923
924 module_init(tls_register);
925 module_exit(tls_unregister);