]> asedeno.scripts.mit.edu Git - linux.git/blob - net/tls/tls_main.c
Merge tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
[linux.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51         TLSV4,
52         TLSV6,
53         TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
65                          struct proto *base);
66
67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
68 {
69         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
70
71         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
72 }
73
74 int wait_on_pending_writer(struct sock *sk, long *timeo)
75 {
76         int rc = 0;
77         DEFINE_WAIT_FUNC(wait, woken_wake_function);
78
79         add_wait_queue(sk_sleep(sk), &wait);
80         while (1) {
81                 if (!*timeo) {
82                         rc = -EAGAIN;
83                         break;
84                 }
85
86                 if (signal_pending(current)) {
87                         rc = sock_intr_errno(*timeo);
88                         break;
89                 }
90
91                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
92                         break;
93         }
94         remove_wait_queue(sk_sleep(sk), &wait);
95         return rc;
96 }
97
98 int tls_push_sg(struct sock *sk,
99                 struct tls_context *ctx,
100                 struct scatterlist *sg,
101                 u16 first_offset,
102                 int flags)
103 {
104         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
105         int ret = 0;
106         struct page *p;
107         size_t size;
108         int offset = first_offset;
109
110         size = sg->length - offset;
111         offset += sg->offset;
112
113         ctx->in_tcp_sendpages = true;
114         while (1) {
115                 if (sg_is_last(sg))
116                         sendpage_flags = flags;
117
118                 /* is sending application-limited? */
119                 tcp_rate_check_app_limited(sk);
120                 p = sg_page(sg);
121 retry:
122                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
123
124                 if (ret != size) {
125                         if (ret > 0) {
126                                 offset += ret;
127                                 size -= ret;
128                                 goto retry;
129                         }
130
131                         offset -= sg->offset;
132                         ctx->partially_sent_offset = offset;
133                         ctx->partially_sent_record = (void *)sg;
134                         ctx->in_tcp_sendpages = false;
135                         return ret;
136                 }
137
138                 put_page(p);
139                 sk_mem_uncharge(sk, sg->length);
140                 sg = sg_next(sg);
141                 if (!sg)
142                         break;
143
144                 offset = sg->offset;
145                 size = sg->length;
146         }
147
148         ctx->in_tcp_sendpages = false;
149
150         return 0;
151 }
152
153 static int tls_handle_open_record(struct sock *sk, int flags)
154 {
155         struct tls_context *ctx = tls_get_ctx(sk);
156
157         if (tls_is_pending_open_record(ctx))
158                 return ctx->push_pending_record(sk, flags);
159
160         return 0;
161 }
162
163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
164                       unsigned char *record_type)
165 {
166         struct cmsghdr *cmsg;
167         int rc = -EINVAL;
168
169         for_each_cmsghdr(cmsg, msg) {
170                 if (!CMSG_OK(msg, cmsg))
171                         return -EINVAL;
172                 if (cmsg->cmsg_level != SOL_TLS)
173                         continue;
174
175                 switch (cmsg->cmsg_type) {
176                 case TLS_SET_RECORD_TYPE:
177                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
178                                 return -EINVAL;
179
180                         if (msg->msg_flags & MSG_MORE)
181                                 return -EINVAL;
182
183                         rc = tls_handle_open_record(sk, msg->msg_flags);
184                         if (rc)
185                                 return rc;
186
187                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
188                         rc = 0;
189                         break;
190                 default:
191                         return -EINVAL;
192                 }
193         }
194
195         return rc;
196 }
197
198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
199                             int flags)
200 {
201         struct scatterlist *sg;
202         u16 offset;
203
204         sg = ctx->partially_sent_record;
205         offset = ctx->partially_sent_offset;
206
207         ctx->partially_sent_record = NULL;
208         return tls_push_sg(sk, ctx, sg, offset, flags);
209 }
210
211 static void tls_write_space(struct sock *sk)
212 {
213         struct tls_context *ctx = tls_get_ctx(sk);
214
215         /* If in_tcp_sendpages call lower protocol write space handler
216          * to ensure we wake up any waiting operations there. For example
217          * if do_tcp_sendpages where to call sk_wait_event.
218          */
219         if (ctx->in_tcp_sendpages) {
220                 ctx->sk_write_space(sk);
221                 return;
222         }
223
224 #ifdef CONFIG_TLS_DEVICE
225         if (ctx->tx_conf == TLS_HW)
226                 tls_device_write_space(sk, ctx);
227         else
228 #endif
229                 tls_sw_write_space(sk, ctx);
230
231         ctx->sk_write_space(sk);
232 }
233
234 static void tls_ctx_free(struct tls_context *ctx)
235 {
236         if (!ctx)
237                 return;
238
239         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
240         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
241         kfree(ctx);
242 }
243
244 static void tls_sk_proto_close(struct sock *sk, long timeout)
245 {
246         struct tls_context *ctx = tls_get_ctx(sk);
247         long timeo = sock_sndtimeo(sk, 0);
248         void (*sk_proto_close)(struct sock *sk, long timeout);
249         bool free_ctx = false;
250
251         lock_sock(sk);
252         sk_proto_close = ctx->sk_proto_close;
253
254         if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD)
255                 goto skip_tx_cleanup;
256
257         if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) {
258                 free_ctx = true;
259                 goto skip_tx_cleanup;
260         }
261
262         if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
263                 tls_handle_open_record(sk, 0);
264
265         /* We need these for tls_sw_fallback handling of other packets */
266         if (ctx->tx_conf == TLS_SW) {
267                 kfree(ctx->tx.rec_seq);
268                 kfree(ctx->tx.iv);
269                 tls_sw_free_resources_tx(sk);
270         }
271
272         if (ctx->rx_conf == TLS_SW) {
273                 kfree(ctx->rx.rec_seq);
274                 kfree(ctx->rx.iv);
275                 tls_sw_free_resources_rx(sk);
276         }
277
278 #ifdef CONFIG_TLS_DEVICE
279         if (ctx->rx_conf == TLS_HW)
280                 tls_device_offload_cleanup_rx(sk);
281
282         if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
283 #else
284         {
285 #endif
286                 tls_ctx_free(ctx);
287                 ctx = NULL;
288         }
289
290 skip_tx_cleanup:
291         release_sock(sk);
292         sk_proto_close(sk, timeout);
293         /* free ctx for TLS_HW_RECORD, used by tcp_set_state
294          * for sk->sk_prot->unhash [tls_hw_unhash]
295          */
296         if (free_ctx)
297                 tls_ctx_free(ctx);
298 }
299
300 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
301                                 int __user *optlen)
302 {
303         int rc = 0;
304         struct tls_context *ctx = tls_get_ctx(sk);
305         struct tls_crypto_info *crypto_info;
306         int len;
307
308         if (get_user(len, optlen))
309                 return -EFAULT;
310
311         if (!optval || (len < sizeof(*crypto_info))) {
312                 rc = -EINVAL;
313                 goto out;
314         }
315
316         if (!ctx) {
317                 rc = -EBUSY;
318                 goto out;
319         }
320
321         /* get user crypto info */
322         crypto_info = &ctx->crypto_send.info;
323
324         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
325                 rc = -EBUSY;
326                 goto out;
327         }
328
329         if (len == sizeof(*crypto_info)) {
330                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
331                         rc = -EFAULT;
332                 goto out;
333         }
334
335         switch (crypto_info->cipher_type) {
336         case TLS_CIPHER_AES_GCM_128: {
337                 struct tls12_crypto_info_aes_gcm_128 *
338                   crypto_info_aes_gcm_128 =
339                   container_of(crypto_info,
340                                struct tls12_crypto_info_aes_gcm_128,
341                                info);
342
343                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
344                         rc = -EINVAL;
345                         goto out;
346                 }
347                 lock_sock(sk);
348                 memcpy(crypto_info_aes_gcm_128->iv,
349                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
350                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
351                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
352                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
353                 release_sock(sk);
354                 if (copy_to_user(optval,
355                                  crypto_info_aes_gcm_128,
356                                  sizeof(*crypto_info_aes_gcm_128)))
357                         rc = -EFAULT;
358                 break;
359         }
360         case TLS_CIPHER_AES_GCM_256: {
361                 struct tls12_crypto_info_aes_gcm_256 *
362                   crypto_info_aes_gcm_256 =
363                   container_of(crypto_info,
364                                struct tls12_crypto_info_aes_gcm_256,
365                                info);
366
367                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
368                         rc = -EINVAL;
369                         goto out;
370                 }
371                 lock_sock(sk);
372                 memcpy(crypto_info_aes_gcm_256->iv,
373                        ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
374                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
375                 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
376                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
377                 release_sock(sk);
378                 if (copy_to_user(optval,
379                                  crypto_info_aes_gcm_256,
380                                  sizeof(*crypto_info_aes_gcm_256)))
381                         rc = -EFAULT;
382                 break;
383         }
384         default:
385                 rc = -EINVAL;
386         }
387
388 out:
389         return rc;
390 }
391
392 static int do_tls_getsockopt(struct sock *sk, int optname,
393                              char __user *optval, int __user *optlen)
394 {
395         int rc = 0;
396
397         switch (optname) {
398         case TLS_TX:
399                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
400                 break;
401         default:
402                 rc = -ENOPROTOOPT;
403                 break;
404         }
405         return rc;
406 }
407
408 static int tls_getsockopt(struct sock *sk, int level, int optname,
409                           char __user *optval, int __user *optlen)
410 {
411         struct tls_context *ctx = tls_get_ctx(sk);
412
413         if (level != SOL_TLS)
414                 return ctx->getsockopt(sk, level, optname, optval, optlen);
415
416         return do_tls_getsockopt(sk, optname, optval, optlen);
417 }
418
419 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
420                                   unsigned int optlen, int tx)
421 {
422         struct tls_crypto_info *crypto_info;
423         struct tls_crypto_info *alt_crypto_info;
424         struct tls_context *ctx = tls_get_ctx(sk);
425         size_t optsize;
426         int rc = 0;
427         int conf;
428
429         if (!optval || (optlen < sizeof(*crypto_info))) {
430                 rc = -EINVAL;
431                 goto out;
432         }
433
434         if (tx) {
435                 crypto_info = &ctx->crypto_send.info;
436                 alt_crypto_info = &ctx->crypto_recv.info;
437         } else {
438                 crypto_info = &ctx->crypto_recv.info;
439                 alt_crypto_info = &ctx->crypto_send.info;
440         }
441
442         /* Currently we don't support set crypto info more than one time */
443         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
444                 rc = -EBUSY;
445                 goto out;
446         }
447
448         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
449         if (rc) {
450                 rc = -EFAULT;
451                 goto err_crypto_info;
452         }
453
454         /* check version */
455         if (crypto_info->version != TLS_1_2_VERSION &&
456             crypto_info->version != TLS_1_3_VERSION) {
457                 rc = -ENOTSUPP;
458                 goto err_crypto_info;
459         }
460
461         /* Ensure that TLS version and ciphers are same in both directions */
462         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
463                 if (alt_crypto_info->version != crypto_info->version ||
464                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
465                         rc = -EINVAL;
466                         goto err_crypto_info;
467                 }
468         }
469
470         switch (crypto_info->cipher_type) {
471         case TLS_CIPHER_AES_GCM_128:
472         case TLS_CIPHER_AES_GCM_256: {
473                 optsize = crypto_info->cipher_type == TLS_CIPHER_AES_GCM_128 ?
474                         sizeof(struct tls12_crypto_info_aes_gcm_128) :
475                         sizeof(struct tls12_crypto_info_aes_gcm_256);
476                 if (optlen != optsize) {
477                         rc = -EINVAL;
478                         goto err_crypto_info;
479                 }
480                 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
481                                     optlen - sizeof(*crypto_info));
482                 if (rc) {
483                         rc = -EFAULT;
484                         goto err_crypto_info;
485                 }
486                 break;
487         }
488         default:
489                 rc = -EINVAL;
490                 goto err_crypto_info;
491         }
492
493         if (tx) {
494 #ifdef CONFIG_TLS_DEVICE
495                 rc = tls_set_device_offload(sk, ctx);
496                 conf = TLS_HW;
497                 if (rc) {
498 #else
499                 {
500 #endif
501                         rc = tls_set_sw_offload(sk, ctx, 1);
502                         conf = TLS_SW;
503                 }
504         } else {
505 #ifdef CONFIG_TLS_DEVICE
506                 rc = tls_set_device_offload_rx(sk, ctx);
507                 conf = TLS_HW;
508                 if (rc) {
509 #else
510                 {
511 #endif
512                         rc = tls_set_sw_offload(sk, ctx, 0);
513                         conf = TLS_SW;
514                 }
515         }
516
517         if (rc)
518                 goto err_crypto_info;
519
520         if (tx)
521                 ctx->tx_conf = conf;
522         else
523                 ctx->rx_conf = conf;
524         update_sk_prot(sk, ctx);
525         if (tx) {
526                 ctx->sk_write_space = sk->sk_write_space;
527                 sk->sk_write_space = tls_write_space;
528         } else {
529                 sk->sk_socket->ops = &tls_sw_proto_ops;
530         }
531         goto out;
532
533 err_crypto_info:
534         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
535 out:
536         return rc;
537 }
538
539 static int do_tls_setsockopt(struct sock *sk, int optname,
540                              char __user *optval, unsigned int optlen)
541 {
542         int rc = 0;
543
544         switch (optname) {
545         case TLS_TX:
546         case TLS_RX:
547                 lock_sock(sk);
548                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
549                                             optname == TLS_TX);
550                 release_sock(sk);
551                 break;
552         default:
553                 rc = -ENOPROTOOPT;
554                 break;
555         }
556         return rc;
557 }
558
559 static int tls_setsockopt(struct sock *sk, int level, int optname,
560                           char __user *optval, unsigned int optlen)
561 {
562         struct tls_context *ctx = tls_get_ctx(sk);
563
564         if (level != SOL_TLS)
565                 return ctx->setsockopt(sk, level, optname, optval, optlen);
566
567         return do_tls_setsockopt(sk, optname, optval, optlen);
568 }
569
570 static struct tls_context *create_ctx(struct sock *sk)
571 {
572         struct inet_connection_sock *icsk = inet_csk(sk);
573         struct tls_context *ctx;
574
575         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
576         if (!ctx)
577                 return NULL;
578
579         icsk->icsk_ulp_data = ctx;
580         ctx->setsockopt = sk->sk_prot->setsockopt;
581         ctx->getsockopt = sk->sk_prot->getsockopt;
582         ctx->sk_proto_close = sk->sk_prot->close;
583         return ctx;
584 }
585
586 static void tls_build_proto(struct sock *sk)
587 {
588         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
589
590         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
591         if (ip_ver == TLSV6 &&
592             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
593                 mutex_lock(&tcpv6_prot_mutex);
594                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
595                         build_protos(tls_prots[TLSV6], sk->sk_prot);
596                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
597                 }
598                 mutex_unlock(&tcpv6_prot_mutex);
599         }
600
601         if (ip_ver == TLSV4 &&
602             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
603                 mutex_lock(&tcpv4_prot_mutex);
604                 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
605                         build_protos(tls_prots[TLSV4], sk->sk_prot);
606                         smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
607                 }
608                 mutex_unlock(&tcpv4_prot_mutex);
609         }
610 }
611
612 static void tls_hw_sk_destruct(struct sock *sk)
613 {
614         struct tls_context *ctx = tls_get_ctx(sk);
615         struct inet_connection_sock *icsk = inet_csk(sk);
616
617         ctx->sk_destruct(sk);
618         /* Free ctx */
619         kfree(ctx);
620         icsk->icsk_ulp_data = NULL;
621 }
622
623 static int tls_hw_prot(struct sock *sk)
624 {
625         struct tls_context *ctx;
626         struct tls_device *dev;
627         int rc = 0;
628
629         spin_lock_bh(&device_spinlock);
630         list_for_each_entry(dev, &device_list, dev_list) {
631                 if (dev->feature && dev->feature(dev)) {
632                         ctx = create_ctx(sk);
633                         if (!ctx)
634                                 goto out;
635
636                         spin_unlock_bh(&device_spinlock);
637                         tls_build_proto(sk);
638                         ctx->hash = sk->sk_prot->hash;
639                         ctx->unhash = sk->sk_prot->unhash;
640                         ctx->sk_proto_close = sk->sk_prot->close;
641                         ctx->sk_destruct = sk->sk_destruct;
642                         sk->sk_destruct = tls_hw_sk_destruct;
643                         ctx->rx_conf = TLS_HW_RECORD;
644                         ctx->tx_conf = TLS_HW_RECORD;
645                         update_sk_prot(sk, ctx);
646                         spin_lock_bh(&device_spinlock);
647                         rc = 1;
648                         break;
649                 }
650         }
651 out:
652         spin_unlock_bh(&device_spinlock);
653         return rc;
654 }
655
656 static void tls_hw_unhash(struct sock *sk)
657 {
658         struct tls_context *ctx = tls_get_ctx(sk);
659         struct tls_device *dev;
660
661         spin_lock_bh(&device_spinlock);
662         list_for_each_entry(dev, &device_list, dev_list) {
663                 if (dev->unhash) {
664                         kref_get(&dev->kref);
665                         spin_unlock_bh(&device_spinlock);
666                         dev->unhash(dev, sk);
667                         kref_put(&dev->kref, dev->release);
668                         spin_lock_bh(&device_spinlock);
669                 }
670         }
671         spin_unlock_bh(&device_spinlock);
672         ctx->unhash(sk);
673 }
674
675 static int tls_hw_hash(struct sock *sk)
676 {
677         struct tls_context *ctx = tls_get_ctx(sk);
678         struct tls_device *dev;
679         int err;
680
681         err = ctx->hash(sk);
682         spin_lock_bh(&device_spinlock);
683         list_for_each_entry(dev, &device_list, dev_list) {
684                 if (dev->hash) {
685                         kref_get(&dev->kref);
686                         spin_unlock_bh(&device_spinlock);
687                         err |= dev->hash(dev, sk);
688                         kref_put(&dev->kref, dev->release);
689                         spin_lock_bh(&device_spinlock);
690                 }
691         }
692         spin_unlock_bh(&device_spinlock);
693
694         if (err)
695                 tls_hw_unhash(sk);
696         return err;
697 }
698
699 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
700                          struct proto *base)
701 {
702         prot[TLS_BASE][TLS_BASE] = *base;
703         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
704         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
705         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
706
707         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
708         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
709         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
710
711         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
712         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
713         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
714         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
715
716         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
717         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
718         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
719         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
720
721 #ifdef CONFIG_TLS_DEVICE
722         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
723         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
724         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
725
726         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
727         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
728         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
729
730         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
731
732         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
733
734         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
735 #endif
736
737         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
738         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
739         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
740         prot[TLS_HW_RECORD][TLS_HW_RECORD].close        = tls_sk_proto_close;
741 }
742
743 static int tls_init(struct sock *sk)
744 {
745         struct tls_context *ctx;
746         int rc = 0;
747
748         if (tls_hw_prot(sk))
749                 goto out;
750
751         /* The TLS ulp is currently supported only for TCP sockets
752          * in ESTABLISHED state.
753          * Supporting sockets in LISTEN state will require us
754          * to modify the accept implementation to clone rather then
755          * share the ulp context.
756          */
757         if (sk->sk_state != TCP_ESTABLISHED)
758                 return -ENOTSUPP;
759
760         /* allocate tls context */
761         ctx = create_ctx(sk);
762         if (!ctx) {
763                 rc = -ENOMEM;
764                 goto out;
765         }
766
767         tls_build_proto(sk);
768         ctx->tx_conf = TLS_BASE;
769         ctx->rx_conf = TLS_BASE;
770         update_sk_prot(sk, ctx);
771 out:
772         return rc;
773 }
774
775 void tls_register_device(struct tls_device *device)
776 {
777         spin_lock_bh(&device_spinlock);
778         list_add_tail(&device->dev_list, &device_list);
779         spin_unlock_bh(&device_spinlock);
780 }
781 EXPORT_SYMBOL(tls_register_device);
782
783 void tls_unregister_device(struct tls_device *device)
784 {
785         spin_lock_bh(&device_spinlock);
786         list_del(&device->dev_list);
787         spin_unlock_bh(&device_spinlock);
788 }
789 EXPORT_SYMBOL(tls_unregister_device);
790
791 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
792         .name                   = "tls",
793         .owner                  = THIS_MODULE,
794         .init                   = tls_init,
795 };
796
797 static int __init tls_register(void)
798 {
799         tls_sw_proto_ops = inet_stream_ops;
800         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
801
802 #ifdef CONFIG_TLS_DEVICE
803         tls_device_init();
804 #endif
805         tcp_register_ulp(&tcp_tls_ulp_ops);
806
807         return 0;
808 }
809
810 static void __exit tls_unregister(void)
811 {
812         tcp_unregister_ulp(&tcp_tls_ulp_ops);
813 #ifdef CONFIG_TLS_DEVICE
814         tls_device_cleanup();
815 #endif
816 }
817
818 module_init(tls_register);
819 module_exit(tls_unregister);