]> asedeno.scripts.mit.edu Git - linux.git/blob - net/tls/tls_main.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51         TLSV4,
52         TLSV6,
53         TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
65                          struct proto *base);
66
67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
68 {
69         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
70
71         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
72 }
73
74 int wait_on_pending_writer(struct sock *sk, long *timeo)
75 {
76         int rc = 0;
77         DEFINE_WAIT_FUNC(wait, woken_wake_function);
78
79         add_wait_queue(sk_sleep(sk), &wait);
80         while (1) {
81                 if (!*timeo) {
82                         rc = -EAGAIN;
83                         break;
84                 }
85
86                 if (signal_pending(current)) {
87                         rc = sock_intr_errno(*timeo);
88                         break;
89                 }
90
91                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
92                         break;
93         }
94         remove_wait_queue(sk_sleep(sk), &wait);
95         return rc;
96 }
97
98 int tls_push_sg(struct sock *sk,
99                 struct tls_context *ctx,
100                 struct scatterlist *sg,
101                 u16 first_offset,
102                 int flags)
103 {
104         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
105         int ret = 0;
106         struct page *p;
107         size_t size;
108         int offset = first_offset;
109
110         size = sg->length - offset;
111         offset += sg->offset;
112
113         ctx->in_tcp_sendpages = true;
114         while (1) {
115                 if (sg_is_last(sg))
116                         sendpage_flags = flags;
117
118                 /* is sending application-limited? */
119                 tcp_rate_check_app_limited(sk);
120                 p = sg_page(sg);
121 retry:
122                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
123
124                 if (ret != size) {
125                         if (ret > 0) {
126                                 offset += ret;
127                                 size -= ret;
128                                 goto retry;
129                         }
130
131                         offset -= sg->offset;
132                         ctx->partially_sent_offset = offset;
133                         ctx->partially_sent_record = (void *)sg;
134                         ctx->in_tcp_sendpages = false;
135                         return ret;
136                 }
137
138                 put_page(p);
139                 sk_mem_uncharge(sk, sg->length);
140                 sg = sg_next(sg);
141                 if (!sg)
142                         break;
143
144                 offset = sg->offset;
145                 size = sg->length;
146         }
147
148         ctx->in_tcp_sendpages = false;
149
150         return 0;
151 }
152
153 static int tls_handle_open_record(struct sock *sk, int flags)
154 {
155         struct tls_context *ctx = tls_get_ctx(sk);
156
157         if (tls_is_pending_open_record(ctx))
158                 return ctx->push_pending_record(sk, flags);
159
160         return 0;
161 }
162
163 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
164                       unsigned char *record_type)
165 {
166         struct cmsghdr *cmsg;
167         int rc = -EINVAL;
168
169         for_each_cmsghdr(cmsg, msg) {
170                 if (!CMSG_OK(msg, cmsg))
171                         return -EINVAL;
172                 if (cmsg->cmsg_level != SOL_TLS)
173                         continue;
174
175                 switch (cmsg->cmsg_type) {
176                 case TLS_SET_RECORD_TYPE:
177                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
178                                 return -EINVAL;
179
180                         if (msg->msg_flags & MSG_MORE)
181                                 return -EINVAL;
182
183                         rc = tls_handle_open_record(sk, msg->msg_flags);
184                         if (rc)
185                                 return rc;
186
187                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
188                         rc = 0;
189                         break;
190                 default:
191                         return -EINVAL;
192                 }
193         }
194
195         return rc;
196 }
197
198 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
199                             int flags)
200 {
201         struct scatterlist *sg;
202         u16 offset;
203
204         sg = ctx->partially_sent_record;
205         offset = ctx->partially_sent_offset;
206
207         ctx->partially_sent_record = NULL;
208         return tls_push_sg(sk, ctx, sg, offset, flags);
209 }
210
211 static void tls_write_space(struct sock *sk)
212 {
213         struct tls_context *ctx = tls_get_ctx(sk);
214
215         /* If in_tcp_sendpages call lower protocol write space handler
216          * to ensure we wake up any waiting operations there. For example
217          * if do_tcp_sendpages where to call sk_wait_event.
218          */
219         if (ctx->in_tcp_sendpages) {
220                 ctx->sk_write_space(sk);
221                 return;
222         }
223
224 #ifdef CONFIG_TLS_DEVICE
225         if (ctx->tx_conf == TLS_HW)
226                 tls_device_write_space(sk, ctx);
227         else
228 #endif
229                 tls_sw_write_space(sk, ctx);
230
231         ctx->sk_write_space(sk);
232 }
233
234 static void tls_ctx_free(struct tls_context *ctx)
235 {
236         if (!ctx)
237                 return;
238
239         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
240         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
241         kfree(ctx);
242 }
243
244 static void tls_sk_proto_close(struct sock *sk, long timeout)
245 {
246         struct tls_context *ctx = tls_get_ctx(sk);
247         long timeo = sock_sndtimeo(sk, 0);
248         void (*sk_proto_close)(struct sock *sk, long timeout);
249         bool free_ctx = false;
250
251         lock_sock(sk);
252         sk_proto_close = ctx->sk_proto_close;
253
254         if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD)
255                 goto skip_tx_cleanup;
256
257         if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) {
258                 free_ctx = true;
259                 goto skip_tx_cleanup;
260         }
261
262         if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
263                 tls_handle_open_record(sk, 0);
264
265         /* We need these for tls_sw_fallback handling of other packets */
266         if (ctx->tx_conf == TLS_SW) {
267                 kfree(ctx->tx.rec_seq);
268                 kfree(ctx->tx.iv);
269                 tls_sw_free_resources_tx(sk);
270         }
271
272         if (ctx->rx_conf == TLS_SW) {
273                 kfree(ctx->rx.rec_seq);
274                 kfree(ctx->rx.iv);
275                 tls_sw_free_resources_rx(sk);
276         }
277
278 #ifdef CONFIG_TLS_DEVICE
279         if (ctx->rx_conf == TLS_HW)
280                 tls_device_offload_cleanup_rx(sk);
281
282         if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
283 #else
284         {
285 #endif
286                 tls_ctx_free(ctx);
287                 ctx = NULL;
288         }
289
290 skip_tx_cleanup:
291         release_sock(sk);
292         sk_proto_close(sk, timeout);
293         /* free ctx for TLS_HW_RECORD, used by tcp_set_state
294          * for sk->sk_prot->unhash [tls_hw_unhash]
295          */
296         if (free_ctx)
297                 tls_ctx_free(ctx);
298 }
299
300 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
301                                 int __user *optlen)
302 {
303         int rc = 0;
304         struct tls_context *ctx = tls_get_ctx(sk);
305         struct tls_crypto_info *crypto_info;
306         int len;
307
308         if (get_user(len, optlen))
309                 return -EFAULT;
310
311         if (!optval || (len < sizeof(*crypto_info))) {
312                 rc = -EINVAL;
313                 goto out;
314         }
315
316         if (!ctx) {
317                 rc = -EBUSY;
318                 goto out;
319         }
320
321         /* get user crypto info */
322         crypto_info = &ctx->crypto_send.info;
323
324         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
325                 rc = -EBUSY;
326                 goto out;
327         }
328
329         if (len == sizeof(*crypto_info)) {
330                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
331                         rc = -EFAULT;
332                 goto out;
333         }
334
335         switch (crypto_info->cipher_type) {
336         case TLS_CIPHER_AES_GCM_128: {
337                 struct tls12_crypto_info_aes_gcm_128 *
338                   crypto_info_aes_gcm_128 =
339                   container_of(crypto_info,
340                                struct tls12_crypto_info_aes_gcm_128,
341                                info);
342
343                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
344                         rc = -EINVAL;
345                         goto out;
346                 }
347                 lock_sock(sk);
348                 memcpy(crypto_info_aes_gcm_128->iv,
349                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
350                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
351                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
352                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
353                 release_sock(sk);
354                 if (copy_to_user(optval,
355                                  crypto_info_aes_gcm_128,
356                                  sizeof(*crypto_info_aes_gcm_128)))
357                         rc = -EFAULT;
358                 break;
359         }
360         case TLS_CIPHER_AES_GCM_256: {
361                 struct tls12_crypto_info_aes_gcm_256 *
362                   crypto_info_aes_gcm_256 =
363                   container_of(crypto_info,
364                                struct tls12_crypto_info_aes_gcm_256,
365                                info);
366
367                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
368                         rc = -EINVAL;
369                         goto out;
370                 }
371                 lock_sock(sk);
372                 memcpy(crypto_info_aes_gcm_256->iv,
373                        ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
374                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
375                 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
376                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
377                 release_sock(sk);
378                 if (copy_to_user(optval,
379                                  crypto_info_aes_gcm_256,
380                                  sizeof(*crypto_info_aes_gcm_256)))
381                         rc = -EFAULT;
382                 break;
383         }
384         default:
385                 rc = -EINVAL;
386         }
387
388 out:
389         return rc;
390 }
391
392 static int do_tls_getsockopt(struct sock *sk, int optname,
393                              char __user *optval, int __user *optlen)
394 {
395         int rc = 0;
396
397         switch (optname) {
398         case TLS_TX:
399                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
400                 break;
401         default:
402                 rc = -ENOPROTOOPT;
403                 break;
404         }
405         return rc;
406 }
407
408 static int tls_getsockopt(struct sock *sk, int level, int optname,
409                           char __user *optval, int __user *optlen)
410 {
411         struct tls_context *ctx = tls_get_ctx(sk);
412
413         if (level != SOL_TLS)
414                 return ctx->getsockopt(sk, level, optname, optval, optlen);
415
416         return do_tls_getsockopt(sk, optname, optval, optlen);
417 }
418
419 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
420                                   unsigned int optlen, int tx)
421 {
422         struct tls_crypto_info *crypto_info;
423         struct tls_crypto_info *alt_crypto_info;
424         struct tls_context *ctx = tls_get_ctx(sk);
425         size_t optsize;
426         int rc = 0;
427         int conf;
428
429         if (!optval || (optlen < sizeof(*crypto_info))) {
430                 rc = -EINVAL;
431                 goto out;
432         }
433
434         if (tx) {
435                 crypto_info = &ctx->crypto_send.info;
436                 alt_crypto_info = &ctx->crypto_recv.info;
437         } else {
438                 crypto_info = &ctx->crypto_recv.info;
439                 alt_crypto_info = &ctx->crypto_send.info;
440         }
441
442         /* Currently we don't support set crypto info more than one time */
443         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
444                 rc = -EBUSY;
445                 goto out;
446         }
447
448         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
449         if (rc) {
450                 rc = -EFAULT;
451                 goto err_crypto_info;
452         }
453
454         /* check version */
455         if (crypto_info->version != TLS_1_2_VERSION &&
456             crypto_info->version != TLS_1_3_VERSION) {
457                 rc = -ENOTSUPP;
458                 goto err_crypto_info;
459         }
460
461         /* Ensure that TLS version and ciphers are same in both directions */
462         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
463                 if (alt_crypto_info->version != crypto_info->version ||
464                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
465                         rc = -EINVAL;
466                         goto err_crypto_info;
467                 }
468         }
469
470         switch (crypto_info->cipher_type) {
471         case TLS_CIPHER_AES_GCM_128:
472                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
473                 break;
474         case TLS_CIPHER_AES_GCM_256: {
475                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
476                 break;
477         }
478         case TLS_CIPHER_AES_CCM_128:
479                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
480                 break;
481         default:
482                 rc = -EINVAL;
483                 goto err_crypto_info;
484         }
485
486         if (optlen != optsize) {
487                 rc = -EINVAL;
488                 goto err_crypto_info;
489         }
490
491         rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
492                             optlen - sizeof(*crypto_info));
493         if (rc) {
494                 rc = -EFAULT;
495                 goto err_crypto_info;
496         }
497
498         if (tx) {
499 #ifdef CONFIG_TLS_DEVICE
500                 rc = tls_set_device_offload(sk, ctx);
501                 conf = TLS_HW;
502                 if (rc) {
503 #else
504                 {
505 #endif
506                         rc = tls_set_sw_offload(sk, ctx, 1);
507                         conf = TLS_SW;
508                 }
509         } else {
510 #ifdef CONFIG_TLS_DEVICE
511                 rc = tls_set_device_offload_rx(sk, ctx);
512                 conf = TLS_HW;
513                 if (rc) {
514 #else
515                 {
516 #endif
517                         rc = tls_set_sw_offload(sk, ctx, 0);
518                         conf = TLS_SW;
519                 }
520         }
521
522         if (rc)
523                 goto err_crypto_info;
524
525         if (tx)
526                 ctx->tx_conf = conf;
527         else
528                 ctx->rx_conf = conf;
529         update_sk_prot(sk, ctx);
530         if (tx) {
531                 ctx->sk_write_space = sk->sk_write_space;
532                 sk->sk_write_space = tls_write_space;
533         } else {
534                 sk->sk_socket->ops = &tls_sw_proto_ops;
535         }
536         goto out;
537
538 err_crypto_info:
539         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
540 out:
541         return rc;
542 }
543
544 static int do_tls_setsockopt(struct sock *sk, int optname,
545                              char __user *optval, unsigned int optlen)
546 {
547         int rc = 0;
548
549         switch (optname) {
550         case TLS_TX:
551         case TLS_RX:
552                 lock_sock(sk);
553                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
554                                             optname == TLS_TX);
555                 release_sock(sk);
556                 break;
557         default:
558                 rc = -ENOPROTOOPT;
559                 break;
560         }
561         return rc;
562 }
563
564 static int tls_setsockopt(struct sock *sk, int level, int optname,
565                           char __user *optval, unsigned int optlen)
566 {
567         struct tls_context *ctx = tls_get_ctx(sk);
568
569         if (level != SOL_TLS)
570                 return ctx->setsockopt(sk, level, optname, optval, optlen);
571
572         return do_tls_setsockopt(sk, optname, optval, optlen);
573 }
574
575 static struct tls_context *create_ctx(struct sock *sk)
576 {
577         struct inet_connection_sock *icsk = inet_csk(sk);
578         struct tls_context *ctx;
579
580         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
581         if (!ctx)
582                 return NULL;
583
584         icsk->icsk_ulp_data = ctx;
585         ctx->setsockopt = sk->sk_prot->setsockopt;
586         ctx->getsockopt = sk->sk_prot->getsockopt;
587         ctx->sk_proto_close = sk->sk_prot->close;
588         return ctx;
589 }
590
591 static void tls_build_proto(struct sock *sk)
592 {
593         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
594
595         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
596         if (ip_ver == TLSV6 &&
597             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
598                 mutex_lock(&tcpv6_prot_mutex);
599                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
600                         build_protos(tls_prots[TLSV6], sk->sk_prot);
601                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
602                 }
603                 mutex_unlock(&tcpv6_prot_mutex);
604         }
605
606         if (ip_ver == TLSV4 &&
607             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
608                 mutex_lock(&tcpv4_prot_mutex);
609                 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
610                         build_protos(tls_prots[TLSV4], sk->sk_prot);
611                         smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
612                 }
613                 mutex_unlock(&tcpv4_prot_mutex);
614         }
615 }
616
617 static void tls_hw_sk_destruct(struct sock *sk)
618 {
619         struct tls_context *ctx = tls_get_ctx(sk);
620         struct inet_connection_sock *icsk = inet_csk(sk);
621
622         ctx->sk_destruct(sk);
623         /* Free ctx */
624         kfree(ctx);
625         icsk->icsk_ulp_data = NULL;
626 }
627
628 static int tls_hw_prot(struct sock *sk)
629 {
630         struct tls_context *ctx;
631         struct tls_device *dev;
632         int rc = 0;
633
634         spin_lock_bh(&device_spinlock);
635         list_for_each_entry(dev, &device_list, dev_list) {
636                 if (dev->feature && dev->feature(dev)) {
637                         ctx = create_ctx(sk);
638                         if (!ctx)
639                                 goto out;
640
641                         spin_unlock_bh(&device_spinlock);
642                         tls_build_proto(sk);
643                         ctx->hash = sk->sk_prot->hash;
644                         ctx->unhash = sk->sk_prot->unhash;
645                         ctx->sk_proto_close = sk->sk_prot->close;
646                         ctx->sk_destruct = sk->sk_destruct;
647                         sk->sk_destruct = tls_hw_sk_destruct;
648                         ctx->rx_conf = TLS_HW_RECORD;
649                         ctx->tx_conf = TLS_HW_RECORD;
650                         update_sk_prot(sk, ctx);
651                         spin_lock_bh(&device_spinlock);
652                         rc = 1;
653                         break;
654                 }
655         }
656 out:
657         spin_unlock_bh(&device_spinlock);
658         return rc;
659 }
660
661 static void tls_hw_unhash(struct sock *sk)
662 {
663         struct tls_context *ctx = tls_get_ctx(sk);
664         struct tls_device *dev;
665
666         spin_lock_bh(&device_spinlock);
667         list_for_each_entry(dev, &device_list, dev_list) {
668                 if (dev->unhash) {
669                         kref_get(&dev->kref);
670                         spin_unlock_bh(&device_spinlock);
671                         dev->unhash(dev, sk);
672                         kref_put(&dev->kref, dev->release);
673                         spin_lock_bh(&device_spinlock);
674                 }
675         }
676         spin_unlock_bh(&device_spinlock);
677         ctx->unhash(sk);
678 }
679
680 static int tls_hw_hash(struct sock *sk)
681 {
682         struct tls_context *ctx = tls_get_ctx(sk);
683         struct tls_device *dev;
684         int err;
685
686         err = ctx->hash(sk);
687         spin_lock_bh(&device_spinlock);
688         list_for_each_entry(dev, &device_list, dev_list) {
689                 if (dev->hash) {
690                         kref_get(&dev->kref);
691                         spin_unlock_bh(&device_spinlock);
692                         err |= dev->hash(dev, sk);
693                         kref_put(&dev->kref, dev->release);
694                         spin_lock_bh(&device_spinlock);
695                 }
696         }
697         spin_unlock_bh(&device_spinlock);
698
699         if (err)
700                 tls_hw_unhash(sk);
701         return err;
702 }
703
704 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
705                          struct proto *base)
706 {
707         prot[TLS_BASE][TLS_BASE] = *base;
708         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
709         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
710         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
711
712         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
713         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
714         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
715
716         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
717         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
718         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
719         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
720
721         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
722         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
723         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
724         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
725
726 #ifdef CONFIG_TLS_DEVICE
727         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
728         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
729         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
730
731         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
732         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
733         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
734
735         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
736
737         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
738
739         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
740 #endif
741
742         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
743         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
744         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
745         prot[TLS_HW_RECORD][TLS_HW_RECORD].close        = tls_sk_proto_close;
746 }
747
748 static int tls_init(struct sock *sk)
749 {
750         struct tls_context *ctx;
751         int rc = 0;
752
753         if (tls_hw_prot(sk))
754                 goto out;
755
756         /* The TLS ulp is currently supported only for TCP sockets
757          * in ESTABLISHED state.
758          * Supporting sockets in LISTEN state will require us
759          * to modify the accept implementation to clone rather then
760          * share the ulp context.
761          */
762         if (sk->sk_state != TCP_ESTABLISHED)
763                 return -ENOTSUPP;
764
765         /* allocate tls context */
766         ctx = create_ctx(sk);
767         if (!ctx) {
768                 rc = -ENOMEM;
769                 goto out;
770         }
771
772         tls_build_proto(sk);
773         ctx->tx_conf = TLS_BASE;
774         ctx->rx_conf = TLS_BASE;
775         update_sk_prot(sk, ctx);
776 out:
777         return rc;
778 }
779
780 void tls_register_device(struct tls_device *device)
781 {
782         spin_lock_bh(&device_spinlock);
783         list_add_tail(&device->dev_list, &device_list);
784         spin_unlock_bh(&device_spinlock);
785 }
786 EXPORT_SYMBOL(tls_register_device);
787
788 void tls_unregister_device(struct tls_device *device)
789 {
790         spin_lock_bh(&device_spinlock);
791         list_del(&device->dev_list);
792         spin_unlock_bh(&device_spinlock);
793 }
794 EXPORT_SYMBOL(tls_unregister_device);
795
796 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
797         .name                   = "tls",
798         .owner                  = THIS_MODULE,
799         .init                   = tls_init,
800 };
801
802 static int __init tls_register(void)
803 {
804         tls_sw_proto_ops = inet_stream_ops;
805         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
806
807 #ifdef CONFIG_TLS_DEVICE
808         tls_device_init();
809 #endif
810         tcp_register_ulp(&tcp_tls_ulp_ops);
811
812         return 0;
813 }
814
815 static void __exit tls_unregister(void)
816 {
817         tcp_unregister_ulp(&tcp_tls_ulp_ops);
818 #ifdef CONFIG_TLS_DEVICE
819         tls_device_cleanup();
820 #endif
821 }
822
823 module_init(tls_register);
824 module_exit(tls_unregister);