]> asedeno.scripts.mit.edu Git - linux.git/blob - net/tls/tls_sw.c
Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41
42 #include <net/strparser.h>
43 #include <net/tls.h>
44
45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46                      unsigned int recursion_level)
47 {
48         int start = skb_headlen(skb);
49         int i, chunk = start - offset;
50         struct sk_buff *frag_iter;
51         int elt = 0;
52
53         if (unlikely(recursion_level >= 24))
54                 return -EMSGSIZE;
55
56         if (chunk > 0) {
57                 if (chunk > len)
58                         chunk = len;
59                 elt++;
60                 len -= chunk;
61                 if (len == 0)
62                         return elt;
63                 offset += chunk;
64         }
65
66         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67                 int end;
68
69                 WARN_ON(start > offset + len);
70
71                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72                 chunk = end - offset;
73                 if (chunk > 0) {
74                         if (chunk > len)
75                                 chunk = len;
76                         elt++;
77                         len -= chunk;
78                         if (len == 0)
79                                 return elt;
80                         offset += chunk;
81                 }
82                 start = end;
83         }
84
85         if (unlikely(skb_has_frag_list(skb))) {
86                 skb_walk_frags(skb, frag_iter) {
87                         int end, ret;
88
89                         WARN_ON(start > offset + len);
90
91                         end = start + frag_iter->len;
92                         chunk = end - offset;
93                         if (chunk > 0) {
94                                 if (chunk > len)
95                                         chunk = len;
96                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
97                                                 recursion_level + 1);
98                                 if (unlikely(ret < 0))
99                                         return ret;
100                                 elt += ret;
101                                 len -= chunk;
102                                 if (len == 0)
103                                         return elt;
104                                 offset += chunk;
105                         }
106                         start = end;
107                 }
108         }
109         BUG_ON(len);
110         return elt;
111 }
112
113 /* Return the number of scatterlist elements required to completely map the
114  * skb, or -EMSGSIZE if the recursion depth is exceeded.
115  */
116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
117 {
118         return __skb_nsg(skb, offset, len, 0);
119 }
120
121 static int padding_length(struct tls_sw_context_rx *ctx,
122                           struct tls_prot_info *prot, struct sk_buff *skb)
123 {
124         struct strp_msg *rxm = strp_msg(skb);
125         int sub = 0;
126
127         /* Determine zero-padding length */
128         if (prot->version == TLS_1_3_VERSION) {
129                 char content_type = 0;
130                 int err;
131                 int back = 17;
132
133                 while (content_type == 0) {
134                         if (back > rxm->full_len - prot->prepend_size)
135                                 return -EBADMSG;
136                         err = skb_copy_bits(skb,
137                                             rxm->offset + rxm->full_len - back,
138                                             &content_type, 1);
139                         if (err)
140                                 return err;
141                         if (content_type)
142                                 break;
143                         sub++;
144                         back++;
145                 }
146                 ctx->control = content_type;
147         }
148         return sub;
149 }
150
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153         struct aead_request *aead_req = (struct aead_request *)req;
154         struct scatterlist *sgout = aead_req->dst;
155         struct scatterlist *sgin = aead_req->src;
156         struct tls_sw_context_rx *ctx;
157         struct tls_context *tls_ctx;
158         struct tls_prot_info *prot;
159         struct scatterlist *sg;
160         struct sk_buff *skb;
161         unsigned int pages;
162         int pending;
163
164         skb = (struct sk_buff *)req->data;
165         tls_ctx = tls_get_ctx(skb->sk);
166         ctx = tls_sw_ctx_rx(tls_ctx);
167         prot = &tls_ctx->prot_info;
168
169         /* Propagate if there was an err */
170         if (err) {
171                 if (err == -EBADMSG)
172                         TLS_INC_STATS(sock_net(skb->sk),
173                                       LINUX_MIB_TLSDECRYPTERROR);
174                 ctx->async_wait.err = err;
175                 tls_err_abort(skb->sk, err);
176         } else {
177                 struct strp_msg *rxm = strp_msg(skb);
178                 int pad;
179
180                 pad = padding_length(ctx, prot, skb);
181                 if (pad < 0) {
182                         ctx->async_wait.err = pad;
183                         tls_err_abort(skb->sk, pad);
184                 } else {
185                         rxm->full_len -= pad;
186                         rxm->offset += prot->prepend_size;
187                         rxm->full_len -= prot->overhead_size;
188                 }
189         }
190
191         /* After using skb->sk to propagate sk through crypto async callback
192          * we need to NULL it again.
193          */
194         skb->sk = NULL;
195
196
197         /* Free the destination pages if skb was not decrypted inplace */
198         if (sgout != sgin) {
199                 /* Skip the first S/G entry as it points to AAD */
200                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
201                         if (!sg)
202                                 break;
203                         put_page(sg_page(sg));
204                 }
205         }
206
207         kfree(aead_req);
208
209         pending = atomic_dec_return(&ctx->decrypt_pending);
210
211         if (!pending && READ_ONCE(ctx->async_notify))
212                 complete(&ctx->async_wait.completion);
213 }
214
215 static int tls_do_decryption(struct sock *sk,
216                              struct sk_buff *skb,
217                              struct scatterlist *sgin,
218                              struct scatterlist *sgout,
219                              char *iv_recv,
220                              size_t data_len,
221                              struct aead_request *aead_req,
222                              bool async)
223 {
224         struct tls_context *tls_ctx = tls_get_ctx(sk);
225         struct tls_prot_info *prot = &tls_ctx->prot_info;
226         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
227         int ret;
228
229         aead_request_set_tfm(aead_req, ctx->aead_recv);
230         aead_request_set_ad(aead_req, prot->aad_size);
231         aead_request_set_crypt(aead_req, sgin, sgout,
232                                data_len + prot->tag_size,
233                                (u8 *)iv_recv);
234
235         if (async) {
236                 /* Using skb->sk to push sk through to crypto async callback
237                  * handler. This allows propagating errors up to the socket
238                  * if needed. It _must_ be cleared in the async handler
239                  * before consume_skb is called. We _know_ skb->sk is NULL
240                  * because it is a clone from strparser.
241                  */
242                 skb->sk = sk;
243                 aead_request_set_callback(aead_req,
244                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
245                                           tls_decrypt_done, skb);
246                 atomic_inc(&ctx->decrypt_pending);
247         } else {
248                 aead_request_set_callback(aead_req,
249                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
250                                           crypto_req_done, &ctx->async_wait);
251         }
252
253         ret = crypto_aead_decrypt(aead_req);
254         if (ret == -EINPROGRESS) {
255                 if (async)
256                         return ret;
257
258                 ret = crypto_wait_req(ret, &ctx->async_wait);
259         } else if (ret == -EBADMSG) {
260                 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
261         }
262
263         if (async)
264                 atomic_dec(&ctx->decrypt_pending);
265
266         return ret;
267 }
268
269 static void tls_trim_both_msgs(struct sock *sk, int target_size)
270 {
271         struct tls_context *tls_ctx = tls_get_ctx(sk);
272         struct tls_prot_info *prot = &tls_ctx->prot_info;
273         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
274         struct tls_rec *rec = ctx->open_rec;
275
276         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
277         if (target_size > 0)
278                 target_size += prot->overhead_size;
279         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
280 }
281
282 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
283 {
284         struct tls_context *tls_ctx = tls_get_ctx(sk);
285         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
286         struct tls_rec *rec = ctx->open_rec;
287         struct sk_msg *msg_en = &rec->msg_encrypted;
288
289         return sk_msg_alloc(sk, msg_en, len, 0);
290 }
291
292 static int tls_clone_plaintext_msg(struct sock *sk, int required)
293 {
294         struct tls_context *tls_ctx = tls_get_ctx(sk);
295         struct tls_prot_info *prot = &tls_ctx->prot_info;
296         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
297         struct tls_rec *rec = ctx->open_rec;
298         struct sk_msg *msg_pl = &rec->msg_plaintext;
299         struct sk_msg *msg_en = &rec->msg_encrypted;
300         int skip, len;
301
302         /* We add page references worth len bytes from encrypted sg
303          * at the end of plaintext sg. It is guaranteed that msg_en
304          * has enough required room (ensured by caller).
305          */
306         len = required - msg_pl->sg.size;
307
308         /* Skip initial bytes in msg_en's data to be able to use
309          * same offset of both plain and encrypted data.
310          */
311         skip = prot->prepend_size + msg_pl->sg.size;
312
313         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
314 }
315
316 static struct tls_rec *tls_get_rec(struct sock *sk)
317 {
318         struct tls_context *tls_ctx = tls_get_ctx(sk);
319         struct tls_prot_info *prot = &tls_ctx->prot_info;
320         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
321         struct sk_msg *msg_pl, *msg_en;
322         struct tls_rec *rec;
323         int mem_size;
324
325         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
326
327         rec = kzalloc(mem_size, sk->sk_allocation);
328         if (!rec)
329                 return NULL;
330
331         msg_pl = &rec->msg_plaintext;
332         msg_en = &rec->msg_encrypted;
333
334         sk_msg_init(msg_pl);
335         sk_msg_init(msg_en);
336
337         sg_init_table(rec->sg_aead_in, 2);
338         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
339         sg_unmark_end(&rec->sg_aead_in[1]);
340
341         sg_init_table(rec->sg_aead_out, 2);
342         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
343         sg_unmark_end(&rec->sg_aead_out[1]);
344
345         return rec;
346 }
347
348 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
349 {
350         sk_msg_free(sk, &rec->msg_encrypted);
351         sk_msg_free(sk, &rec->msg_plaintext);
352         kfree(rec);
353 }
354
355 static void tls_free_open_rec(struct sock *sk)
356 {
357         struct tls_context *tls_ctx = tls_get_ctx(sk);
358         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
359         struct tls_rec *rec = ctx->open_rec;
360
361         if (rec) {
362                 tls_free_rec(sk, rec);
363                 ctx->open_rec = NULL;
364         }
365 }
366
367 int tls_tx_records(struct sock *sk, int flags)
368 {
369         struct tls_context *tls_ctx = tls_get_ctx(sk);
370         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
371         struct tls_rec *rec, *tmp;
372         struct sk_msg *msg_en;
373         int tx_flags, rc = 0;
374
375         if (tls_is_partially_sent_record(tls_ctx)) {
376                 rec = list_first_entry(&ctx->tx_list,
377                                        struct tls_rec, list);
378
379                 if (flags == -1)
380                         tx_flags = rec->tx_flags;
381                 else
382                         tx_flags = flags;
383
384                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
385                 if (rc)
386                         goto tx_err;
387
388                 /* Full record has been transmitted.
389                  * Remove the head of tx_list
390                  */
391                 list_del(&rec->list);
392                 sk_msg_free(sk, &rec->msg_plaintext);
393                 kfree(rec);
394         }
395
396         /* Tx all ready records */
397         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
398                 if (READ_ONCE(rec->tx_ready)) {
399                         if (flags == -1)
400                                 tx_flags = rec->tx_flags;
401                         else
402                                 tx_flags = flags;
403
404                         msg_en = &rec->msg_encrypted;
405                         rc = tls_push_sg(sk, tls_ctx,
406                                          &msg_en->sg.data[msg_en->sg.curr],
407                                          0, tx_flags);
408                         if (rc)
409                                 goto tx_err;
410
411                         list_del(&rec->list);
412                         sk_msg_free(sk, &rec->msg_plaintext);
413                         kfree(rec);
414                 } else {
415                         break;
416                 }
417         }
418
419 tx_err:
420         if (rc < 0 && rc != -EAGAIN)
421                 tls_err_abort(sk, EBADMSG);
422
423         return rc;
424 }
425
426 static void tls_encrypt_done(struct crypto_async_request *req, int err)
427 {
428         struct aead_request *aead_req = (struct aead_request *)req;
429         struct sock *sk = req->data;
430         struct tls_context *tls_ctx = tls_get_ctx(sk);
431         struct tls_prot_info *prot = &tls_ctx->prot_info;
432         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
433         struct scatterlist *sge;
434         struct sk_msg *msg_en;
435         struct tls_rec *rec;
436         bool ready = false;
437         int pending;
438
439         rec = container_of(aead_req, struct tls_rec, aead_req);
440         msg_en = &rec->msg_encrypted;
441
442         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
443         sge->offset -= prot->prepend_size;
444         sge->length += prot->prepend_size;
445
446         /* Check if error is previously set on socket */
447         if (err || sk->sk_err) {
448                 rec = NULL;
449
450                 /* If err is already set on socket, return the same code */
451                 if (sk->sk_err) {
452                         ctx->async_wait.err = sk->sk_err;
453                 } else {
454                         ctx->async_wait.err = err;
455                         tls_err_abort(sk, err);
456                 }
457         }
458
459         if (rec) {
460                 struct tls_rec *first_rec;
461
462                 /* Mark the record as ready for transmission */
463                 smp_store_mb(rec->tx_ready, true);
464
465                 /* If received record is at head of tx_list, schedule tx */
466                 first_rec = list_first_entry(&ctx->tx_list,
467                                              struct tls_rec, list);
468                 if (rec == first_rec)
469                         ready = true;
470         }
471
472         pending = atomic_dec_return(&ctx->encrypt_pending);
473
474         if (!pending && READ_ONCE(ctx->async_notify))
475                 complete(&ctx->async_wait.completion);
476
477         if (!ready)
478                 return;
479
480         /* Schedule the transmission */
481         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
482                 schedule_delayed_work(&ctx->tx_work.work, 1);
483 }
484
485 static int tls_do_encryption(struct sock *sk,
486                              struct tls_context *tls_ctx,
487                              struct tls_sw_context_tx *ctx,
488                              struct aead_request *aead_req,
489                              size_t data_len, u32 start)
490 {
491         struct tls_prot_info *prot = &tls_ctx->prot_info;
492         struct tls_rec *rec = ctx->open_rec;
493         struct sk_msg *msg_en = &rec->msg_encrypted;
494         struct scatterlist *sge = sk_msg_elem(msg_en, start);
495         int rc, iv_offset = 0;
496
497         /* For CCM based ciphers, first byte of IV is a constant */
498         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
499                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
500                 iv_offset = 1;
501         }
502
503         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
504                prot->iv_size + prot->salt_size);
505
506         xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
507
508         sge->offset += prot->prepend_size;
509         sge->length -= prot->prepend_size;
510
511         msg_en->sg.curr = start;
512
513         aead_request_set_tfm(aead_req, ctx->aead_send);
514         aead_request_set_ad(aead_req, prot->aad_size);
515         aead_request_set_crypt(aead_req, rec->sg_aead_in,
516                                rec->sg_aead_out,
517                                data_len, rec->iv_data);
518
519         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
520                                   tls_encrypt_done, sk);
521
522         /* Add the record in tx_list */
523         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
524         atomic_inc(&ctx->encrypt_pending);
525
526         rc = crypto_aead_encrypt(aead_req);
527         if (!rc || rc != -EINPROGRESS) {
528                 atomic_dec(&ctx->encrypt_pending);
529                 sge->offset -= prot->prepend_size;
530                 sge->length += prot->prepend_size;
531         }
532
533         if (!rc) {
534                 WRITE_ONCE(rec->tx_ready, true);
535         } else if (rc != -EINPROGRESS) {
536                 list_del(&rec->list);
537                 return rc;
538         }
539
540         /* Unhook the record from context if encryption is not failure */
541         ctx->open_rec = NULL;
542         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
543         return rc;
544 }
545
546 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
547                                  struct tls_rec **to, struct sk_msg *msg_opl,
548                                  struct sk_msg *msg_oen, u32 split_point,
549                                  u32 tx_overhead_size, u32 *orig_end)
550 {
551         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
552         struct scatterlist *sge, *osge, *nsge;
553         u32 orig_size = msg_opl->sg.size;
554         struct scatterlist tmp = { };
555         struct sk_msg *msg_npl;
556         struct tls_rec *new;
557         int ret;
558
559         new = tls_get_rec(sk);
560         if (!new)
561                 return -ENOMEM;
562         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
563                            tx_overhead_size, 0);
564         if (ret < 0) {
565                 tls_free_rec(sk, new);
566                 return ret;
567         }
568
569         *orig_end = msg_opl->sg.end;
570         i = msg_opl->sg.start;
571         sge = sk_msg_elem(msg_opl, i);
572         while (apply && sge->length) {
573                 if (sge->length > apply) {
574                         u32 len = sge->length - apply;
575
576                         get_page(sg_page(sge));
577                         sg_set_page(&tmp, sg_page(sge), len,
578                                     sge->offset + apply);
579                         sge->length = apply;
580                         bytes += apply;
581                         apply = 0;
582                 } else {
583                         apply -= sge->length;
584                         bytes += sge->length;
585                 }
586
587                 sk_msg_iter_var_next(i);
588                 if (i == msg_opl->sg.end)
589                         break;
590                 sge = sk_msg_elem(msg_opl, i);
591         }
592
593         msg_opl->sg.end = i;
594         msg_opl->sg.curr = i;
595         msg_opl->sg.copybreak = 0;
596         msg_opl->apply_bytes = 0;
597         msg_opl->sg.size = bytes;
598
599         msg_npl = &new->msg_plaintext;
600         msg_npl->apply_bytes = apply;
601         msg_npl->sg.size = orig_size - bytes;
602
603         j = msg_npl->sg.start;
604         nsge = sk_msg_elem(msg_npl, j);
605         if (tmp.length) {
606                 memcpy(nsge, &tmp, sizeof(*nsge));
607                 sk_msg_iter_var_next(j);
608                 nsge = sk_msg_elem(msg_npl, j);
609         }
610
611         osge = sk_msg_elem(msg_opl, i);
612         while (osge->length) {
613                 memcpy(nsge, osge, sizeof(*nsge));
614                 sg_unmark_end(nsge);
615                 sk_msg_iter_var_next(i);
616                 sk_msg_iter_var_next(j);
617                 if (i == *orig_end)
618                         break;
619                 osge = sk_msg_elem(msg_opl, i);
620                 nsge = sk_msg_elem(msg_npl, j);
621         }
622
623         msg_npl->sg.end = j;
624         msg_npl->sg.curr = j;
625         msg_npl->sg.copybreak = 0;
626
627         *to = new;
628         return 0;
629 }
630
631 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
632                                   struct tls_rec *from, u32 orig_end)
633 {
634         struct sk_msg *msg_npl = &from->msg_plaintext;
635         struct sk_msg *msg_opl = &to->msg_plaintext;
636         struct scatterlist *osge, *nsge;
637         u32 i, j;
638
639         i = msg_opl->sg.end;
640         sk_msg_iter_var_prev(i);
641         j = msg_npl->sg.start;
642
643         osge = sk_msg_elem(msg_opl, i);
644         nsge = sk_msg_elem(msg_npl, j);
645
646         if (sg_page(osge) == sg_page(nsge) &&
647             osge->offset + osge->length == nsge->offset) {
648                 osge->length += nsge->length;
649                 put_page(sg_page(nsge));
650         }
651
652         msg_opl->sg.end = orig_end;
653         msg_opl->sg.curr = orig_end;
654         msg_opl->sg.copybreak = 0;
655         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
656         msg_opl->sg.size += msg_npl->sg.size;
657
658         sk_msg_free(sk, &to->msg_encrypted);
659         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
660
661         kfree(from);
662 }
663
664 static int tls_push_record(struct sock *sk, int flags,
665                            unsigned char record_type)
666 {
667         struct tls_context *tls_ctx = tls_get_ctx(sk);
668         struct tls_prot_info *prot = &tls_ctx->prot_info;
669         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
670         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
671         u32 i, split_point, uninitialized_var(orig_end);
672         struct sk_msg *msg_pl, *msg_en;
673         struct aead_request *req;
674         bool split;
675         int rc;
676
677         if (!rec)
678                 return 0;
679
680         msg_pl = &rec->msg_plaintext;
681         msg_en = &rec->msg_encrypted;
682
683         split_point = msg_pl->apply_bytes;
684         split = split_point && split_point < msg_pl->sg.size;
685         if (split) {
686                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
687                                            split_point, prot->overhead_size,
688                                            &orig_end);
689                 if (rc < 0)
690                         return rc;
691                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
692                             prot->overhead_size);
693         }
694
695         rec->tx_flags = flags;
696         req = &rec->aead_req;
697
698         i = msg_pl->sg.end;
699         sk_msg_iter_var_prev(i);
700
701         rec->content_type = record_type;
702         if (prot->version == TLS_1_3_VERSION) {
703                 /* Add content type to end of message.  No padding added */
704                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
705                 sg_mark_end(&rec->sg_content_type);
706                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
707                          &rec->sg_content_type);
708         } else {
709                 sg_mark_end(sk_msg_elem(msg_pl, i));
710         }
711
712         i = msg_pl->sg.start;
713         sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
714                  &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
715
716         i = msg_en->sg.end;
717         sk_msg_iter_var_prev(i);
718         sg_mark_end(sk_msg_elem(msg_en, i));
719
720         i = msg_en->sg.start;
721         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
722
723         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
724                      tls_ctx->tx.rec_seq, prot->rec_seq_size,
725                      record_type, prot->version);
726
727         tls_fill_prepend(tls_ctx,
728                          page_address(sg_page(&msg_en->sg.data[i])) +
729                          msg_en->sg.data[i].offset,
730                          msg_pl->sg.size + prot->tail_size,
731                          record_type, prot->version);
732
733         tls_ctx->pending_open_record_frags = false;
734
735         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
736                                msg_pl->sg.size + prot->tail_size, i);
737         if (rc < 0) {
738                 if (rc != -EINPROGRESS) {
739                         tls_err_abort(sk, EBADMSG);
740                         if (split) {
741                                 tls_ctx->pending_open_record_frags = true;
742                                 tls_merge_open_record(sk, rec, tmp, orig_end);
743                         }
744                 }
745                 ctx->async_capable = 1;
746                 return rc;
747         } else if (split) {
748                 msg_pl = &tmp->msg_plaintext;
749                 msg_en = &tmp->msg_encrypted;
750                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
751                 tls_ctx->pending_open_record_frags = true;
752                 ctx->open_rec = tmp;
753         }
754
755         return tls_tx_records(sk, flags);
756 }
757
758 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
759                                bool full_record, u8 record_type,
760                                size_t *copied, int flags)
761 {
762         struct tls_context *tls_ctx = tls_get_ctx(sk);
763         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
764         struct sk_msg msg_redir = { };
765         struct sk_psock *psock;
766         struct sock *sk_redir;
767         struct tls_rec *rec;
768         bool enospc, policy;
769         int err = 0, send;
770         u32 delta = 0;
771
772         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
773         psock = sk_psock_get(sk);
774         if (!psock || !policy)
775                 return tls_push_record(sk, flags, record_type);
776 more_data:
777         enospc = sk_msg_full(msg);
778         if (psock->eval == __SK_NONE) {
779                 delta = msg->sg.size;
780                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
781                 if (delta < msg->sg.size)
782                         delta -= msg->sg.size;
783                 else
784                         delta = 0;
785         }
786         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
787             !enospc && !full_record) {
788                 err = -ENOSPC;
789                 goto out_err;
790         }
791         msg->cork_bytes = 0;
792         send = msg->sg.size;
793         if (msg->apply_bytes && msg->apply_bytes < send)
794                 send = msg->apply_bytes;
795
796         switch (psock->eval) {
797         case __SK_PASS:
798                 err = tls_push_record(sk, flags, record_type);
799                 if (err < 0) {
800                         *copied -= sk_msg_free(sk, msg);
801                         tls_free_open_rec(sk);
802                         goto out_err;
803                 }
804                 break;
805         case __SK_REDIRECT:
806                 sk_redir = psock->sk_redir;
807                 memcpy(&msg_redir, msg, sizeof(*msg));
808                 if (msg->apply_bytes < send)
809                         msg->apply_bytes = 0;
810                 else
811                         msg->apply_bytes -= send;
812                 sk_msg_return_zero(sk, msg, send);
813                 msg->sg.size -= send;
814                 release_sock(sk);
815                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
816                 lock_sock(sk);
817                 if (err < 0) {
818                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
819                         msg->sg.size = 0;
820                 }
821                 if (msg->sg.size == 0)
822                         tls_free_open_rec(sk);
823                 break;
824         case __SK_DROP:
825         default:
826                 sk_msg_free_partial(sk, msg, send);
827                 if (msg->apply_bytes < send)
828                         msg->apply_bytes = 0;
829                 else
830                         msg->apply_bytes -= send;
831                 if (msg->sg.size == 0)
832                         tls_free_open_rec(sk);
833                 *copied -= (send + delta);
834                 err = -EACCES;
835         }
836
837         if (likely(!err)) {
838                 bool reset_eval = !ctx->open_rec;
839
840                 rec = ctx->open_rec;
841                 if (rec) {
842                         msg = &rec->msg_plaintext;
843                         if (!msg->apply_bytes)
844                                 reset_eval = true;
845                 }
846                 if (reset_eval) {
847                         psock->eval = __SK_NONE;
848                         if (psock->sk_redir) {
849                                 sock_put(psock->sk_redir);
850                                 psock->sk_redir = NULL;
851                         }
852                 }
853                 if (rec)
854                         goto more_data;
855         }
856  out_err:
857         sk_psock_put(sk, psock);
858         return err;
859 }
860
861 static int tls_sw_push_pending_record(struct sock *sk, int flags)
862 {
863         struct tls_context *tls_ctx = tls_get_ctx(sk);
864         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
865         struct tls_rec *rec = ctx->open_rec;
866         struct sk_msg *msg_pl;
867         size_t copied;
868
869         if (!rec)
870                 return 0;
871
872         msg_pl = &rec->msg_plaintext;
873         copied = msg_pl->sg.size;
874         if (!copied)
875                 return 0;
876
877         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
878                                    &copied, flags);
879 }
880
881 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
882 {
883         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
884         struct tls_context *tls_ctx = tls_get_ctx(sk);
885         struct tls_prot_info *prot = &tls_ctx->prot_info;
886         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
887         bool async_capable = ctx->async_capable;
888         unsigned char record_type = TLS_RECORD_TYPE_DATA;
889         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
890         bool eor = !(msg->msg_flags & MSG_MORE);
891         size_t try_to_copy, copied = 0;
892         struct sk_msg *msg_pl, *msg_en;
893         struct tls_rec *rec;
894         int required_size;
895         int num_async = 0;
896         bool full_record;
897         int record_room;
898         int num_zc = 0;
899         int orig_size;
900         int ret = 0;
901
902         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
903                 return -ENOTSUPP;
904
905         mutex_lock(&tls_ctx->tx_lock);
906         lock_sock(sk);
907
908         if (unlikely(msg->msg_controllen)) {
909                 ret = tls_proccess_cmsg(sk, msg, &record_type);
910                 if (ret) {
911                         if (ret == -EINPROGRESS)
912                                 num_async++;
913                         else if (ret != -EAGAIN)
914                                 goto send_end;
915                 }
916         }
917
918         while (msg_data_left(msg)) {
919                 if (sk->sk_err) {
920                         ret = -sk->sk_err;
921                         goto send_end;
922                 }
923
924                 if (ctx->open_rec)
925                         rec = ctx->open_rec;
926                 else
927                         rec = ctx->open_rec = tls_get_rec(sk);
928                 if (!rec) {
929                         ret = -ENOMEM;
930                         goto send_end;
931                 }
932
933                 msg_pl = &rec->msg_plaintext;
934                 msg_en = &rec->msg_encrypted;
935
936                 orig_size = msg_pl->sg.size;
937                 full_record = false;
938                 try_to_copy = msg_data_left(msg);
939                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
940                 if (try_to_copy >= record_room) {
941                         try_to_copy = record_room;
942                         full_record = true;
943                 }
944
945                 required_size = msg_pl->sg.size + try_to_copy +
946                                 prot->overhead_size;
947
948                 if (!sk_stream_memory_free(sk))
949                         goto wait_for_sndbuf;
950
951 alloc_encrypted:
952                 ret = tls_alloc_encrypted_msg(sk, required_size);
953                 if (ret) {
954                         if (ret != -ENOSPC)
955                                 goto wait_for_memory;
956
957                         /* Adjust try_to_copy according to the amount that was
958                          * actually allocated. The difference is due
959                          * to max sg elements limit
960                          */
961                         try_to_copy -= required_size - msg_en->sg.size;
962                         full_record = true;
963                 }
964
965                 if (!is_kvec && (full_record || eor) && !async_capable) {
966                         u32 first = msg_pl->sg.end;
967
968                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
969                                                         msg_pl, try_to_copy);
970                         if (ret)
971                                 goto fallback_to_reg_send;
972
973                         rec->inplace_crypto = 0;
974
975                         num_zc++;
976                         copied += try_to_copy;
977
978                         sk_msg_sg_copy_set(msg_pl, first);
979                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
980                                                   record_type, &copied,
981                                                   msg->msg_flags);
982                         if (ret) {
983                                 if (ret == -EINPROGRESS)
984                                         num_async++;
985                                 else if (ret == -ENOMEM)
986                                         goto wait_for_memory;
987                                 else if (ret == -ENOSPC)
988                                         goto rollback_iter;
989                                 else if (ret != -EAGAIN)
990                                         goto send_end;
991                         }
992                         continue;
993 rollback_iter:
994                         copied -= try_to_copy;
995                         sk_msg_sg_copy_clear(msg_pl, first);
996                         iov_iter_revert(&msg->msg_iter,
997                                         msg_pl->sg.size - orig_size);
998 fallback_to_reg_send:
999                         sk_msg_trim(sk, msg_pl, orig_size);
1000                 }
1001
1002                 required_size = msg_pl->sg.size + try_to_copy;
1003
1004                 ret = tls_clone_plaintext_msg(sk, required_size);
1005                 if (ret) {
1006                         if (ret != -ENOSPC)
1007                                 goto send_end;
1008
1009                         /* Adjust try_to_copy according to the amount that was
1010                          * actually allocated. The difference is due
1011                          * to max sg elements limit
1012                          */
1013                         try_to_copy -= required_size - msg_pl->sg.size;
1014                         full_record = true;
1015                         sk_msg_trim(sk, msg_en,
1016                                     msg_pl->sg.size + prot->overhead_size);
1017                 }
1018
1019                 if (try_to_copy) {
1020                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1021                                                        msg_pl, try_to_copy);
1022                         if (ret < 0)
1023                                 goto trim_sgl;
1024                 }
1025
1026                 /* Open records defined only if successfully copied, otherwise
1027                  * we would trim the sg but not reset the open record frags.
1028                  */
1029                 tls_ctx->pending_open_record_frags = true;
1030                 copied += try_to_copy;
1031                 if (full_record || eor) {
1032                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1033                                                   record_type, &copied,
1034                                                   msg->msg_flags);
1035                         if (ret) {
1036                                 if (ret == -EINPROGRESS)
1037                                         num_async++;
1038                                 else if (ret == -ENOMEM)
1039                                         goto wait_for_memory;
1040                                 else if (ret != -EAGAIN) {
1041                                         if (ret == -ENOSPC)
1042                                                 ret = 0;
1043                                         goto send_end;
1044                                 }
1045                         }
1046                 }
1047
1048                 continue;
1049
1050 wait_for_sndbuf:
1051                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1052 wait_for_memory:
1053                 ret = sk_stream_wait_memory(sk, &timeo);
1054                 if (ret) {
1055 trim_sgl:
1056                         tls_trim_both_msgs(sk, orig_size);
1057                         goto send_end;
1058                 }
1059
1060                 if (msg_en->sg.size < required_size)
1061                         goto alloc_encrypted;
1062         }
1063
1064         if (!num_async) {
1065                 goto send_end;
1066         } else if (num_zc) {
1067                 /* Wait for pending encryptions to get completed */
1068                 smp_store_mb(ctx->async_notify, true);
1069
1070                 if (atomic_read(&ctx->encrypt_pending))
1071                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1072                 else
1073                         reinit_completion(&ctx->async_wait.completion);
1074
1075                 WRITE_ONCE(ctx->async_notify, false);
1076
1077                 if (ctx->async_wait.err) {
1078                         ret = ctx->async_wait.err;
1079                         copied = 0;
1080                 }
1081         }
1082
1083         /* Transmit if any encryptions have completed */
1084         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1085                 cancel_delayed_work(&ctx->tx_work.work);
1086                 tls_tx_records(sk, msg->msg_flags);
1087         }
1088
1089 send_end:
1090         ret = sk_stream_error(sk, msg->msg_flags, ret);
1091
1092         release_sock(sk);
1093         mutex_unlock(&tls_ctx->tx_lock);
1094         return copied ? copied : ret;
1095 }
1096
1097 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1098                               int offset, size_t size, int flags)
1099 {
1100         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1101         struct tls_context *tls_ctx = tls_get_ctx(sk);
1102         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1103         struct tls_prot_info *prot = &tls_ctx->prot_info;
1104         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1105         struct sk_msg *msg_pl;
1106         struct tls_rec *rec;
1107         int num_async = 0;
1108         size_t copied = 0;
1109         bool full_record;
1110         int record_room;
1111         int ret = 0;
1112         bool eor;
1113
1114         eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1115         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1116
1117         /* Call the sk_stream functions to manage the sndbuf mem. */
1118         while (size > 0) {
1119                 size_t copy, required_size;
1120
1121                 if (sk->sk_err) {
1122                         ret = -sk->sk_err;
1123                         goto sendpage_end;
1124                 }
1125
1126                 if (ctx->open_rec)
1127                         rec = ctx->open_rec;
1128                 else
1129                         rec = ctx->open_rec = tls_get_rec(sk);
1130                 if (!rec) {
1131                         ret = -ENOMEM;
1132                         goto sendpage_end;
1133                 }
1134
1135                 msg_pl = &rec->msg_plaintext;
1136
1137                 full_record = false;
1138                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1139                 copy = size;
1140                 if (copy >= record_room) {
1141                         copy = record_room;
1142                         full_record = true;
1143                 }
1144
1145                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1146
1147                 if (!sk_stream_memory_free(sk))
1148                         goto wait_for_sndbuf;
1149 alloc_payload:
1150                 ret = tls_alloc_encrypted_msg(sk, required_size);
1151                 if (ret) {
1152                         if (ret != -ENOSPC)
1153                                 goto wait_for_memory;
1154
1155                         /* Adjust copy according to the amount that was
1156                          * actually allocated. The difference is due
1157                          * to max sg elements limit
1158                          */
1159                         copy -= required_size - msg_pl->sg.size;
1160                         full_record = true;
1161                 }
1162
1163                 sk_msg_page_add(msg_pl, page, copy, offset);
1164                 sk_mem_charge(sk, copy);
1165
1166                 offset += copy;
1167                 size -= copy;
1168                 copied += copy;
1169
1170                 tls_ctx->pending_open_record_frags = true;
1171                 if (full_record || eor || sk_msg_full(msg_pl)) {
1172                         rec->inplace_crypto = 0;
1173                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1174                                                   record_type, &copied, flags);
1175                         if (ret) {
1176                                 if (ret == -EINPROGRESS)
1177                                         num_async++;
1178                                 else if (ret == -ENOMEM)
1179                                         goto wait_for_memory;
1180                                 else if (ret != -EAGAIN) {
1181                                         if (ret == -ENOSPC)
1182                                                 ret = 0;
1183                                         goto sendpage_end;
1184                                 }
1185                         }
1186                 }
1187                 continue;
1188 wait_for_sndbuf:
1189                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1190 wait_for_memory:
1191                 ret = sk_stream_wait_memory(sk, &timeo);
1192                 if (ret) {
1193                         tls_trim_both_msgs(sk, msg_pl->sg.size);
1194                         goto sendpage_end;
1195                 }
1196
1197                 goto alloc_payload;
1198         }
1199
1200         if (num_async) {
1201                 /* Transmit if any encryptions have completed */
1202                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1203                         cancel_delayed_work(&ctx->tx_work.work);
1204                         tls_tx_records(sk, flags);
1205                 }
1206         }
1207 sendpage_end:
1208         ret = sk_stream_error(sk, flags, ret);
1209         return copied ? copied : ret;
1210 }
1211
1212 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1213                            int offset, size_t size, int flags)
1214 {
1215         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1216                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1217                       MSG_NO_SHARED_FRAGS))
1218                 return -ENOTSUPP;
1219
1220         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1221 }
1222
1223 int tls_sw_sendpage(struct sock *sk, struct page *page,
1224                     int offset, size_t size, int flags)
1225 {
1226         struct tls_context *tls_ctx = tls_get_ctx(sk);
1227         int ret;
1228
1229         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1230                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1231                 return -ENOTSUPP;
1232
1233         mutex_lock(&tls_ctx->tx_lock);
1234         lock_sock(sk);
1235         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1236         release_sock(sk);
1237         mutex_unlock(&tls_ctx->tx_lock);
1238         return ret;
1239 }
1240
1241 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1242                                      int flags, long timeo, int *err)
1243 {
1244         struct tls_context *tls_ctx = tls_get_ctx(sk);
1245         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1246         struct sk_buff *skb;
1247         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1248
1249         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1250                 if (sk->sk_err) {
1251                         *err = sock_error(sk);
1252                         return NULL;
1253                 }
1254
1255                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1256                         return NULL;
1257
1258                 if (sock_flag(sk, SOCK_DONE))
1259                         return NULL;
1260
1261                 if ((flags & MSG_DONTWAIT) || !timeo) {
1262                         *err = -EAGAIN;
1263                         return NULL;
1264                 }
1265
1266                 add_wait_queue(sk_sleep(sk), &wait);
1267                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1268                 sk_wait_event(sk, &timeo,
1269                               ctx->recv_pkt != skb ||
1270                               !sk_psock_queue_empty(psock),
1271                               &wait);
1272                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1273                 remove_wait_queue(sk_sleep(sk), &wait);
1274
1275                 /* Handle signals */
1276                 if (signal_pending(current)) {
1277                         *err = sock_intr_errno(timeo);
1278                         return NULL;
1279                 }
1280         }
1281
1282         return skb;
1283 }
1284
1285 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1286                                int length, int *pages_used,
1287                                unsigned int *size_used,
1288                                struct scatterlist *to,
1289                                int to_max_pages)
1290 {
1291         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1292         struct page *pages[MAX_SKB_FRAGS];
1293         unsigned int size = *size_used;
1294         ssize_t copied, use;
1295         size_t offset;
1296
1297         while (length > 0) {
1298                 i = 0;
1299                 maxpages = to_max_pages - num_elem;
1300                 if (maxpages == 0) {
1301                         rc = -EFAULT;
1302                         goto out;
1303                 }
1304                 copied = iov_iter_get_pages(from, pages,
1305                                             length,
1306                                             maxpages, &offset);
1307                 if (copied <= 0) {
1308                         rc = -EFAULT;
1309                         goto out;
1310                 }
1311
1312                 iov_iter_advance(from, copied);
1313
1314                 length -= copied;
1315                 size += copied;
1316                 while (copied) {
1317                         use = min_t(int, copied, PAGE_SIZE - offset);
1318
1319                         sg_set_page(&to[num_elem],
1320                                     pages[i], use, offset);
1321                         sg_unmark_end(&to[num_elem]);
1322                         /* We do not uncharge memory from this API */
1323
1324                         offset = 0;
1325                         copied -= use;
1326
1327                         i++;
1328                         num_elem++;
1329                 }
1330         }
1331         /* Mark the end in the last sg entry if newly added */
1332         if (num_elem > *pages_used)
1333                 sg_mark_end(&to[num_elem - 1]);
1334 out:
1335         if (rc)
1336                 iov_iter_revert(from, size - *size_used);
1337         *size_used = size;
1338         *pages_used = num_elem;
1339
1340         return rc;
1341 }
1342
1343 /* This function decrypts the input skb into either out_iov or in out_sg
1344  * or in skb buffers itself. The input parameter 'zc' indicates if
1345  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1346  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1347  * NULL, then the decryption happens inside skb buffers itself, i.e.
1348  * zero-copy gets disabled and 'zc' is updated.
1349  */
1350
1351 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1352                             struct iov_iter *out_iov,
1353                             struct scatterlist *out_sg,
1354                             int *chunk, bool *zc, bool async)
1355 {
1356         struct tls_context *tls_ctx = tls_get_ctx(sk);
1357         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1358         struct tls_prot_info *prot = &tls_ctx->prot_info;
1359         struct strp_msg *rxm = strp_msg(skb);
1360         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1361         struct aead_request *aead_req;
1362         struct sk_buff *unused;
1363         u8 *aad, *iv, *mem = NULL;
1364         struct scatterlist *sgin = NULL;
1365         struct scatterlist *sgout = NULL;
1366         const int data_len = rxm->full_len - prot->overhead_size +
1367                              prot->tail_size;
1368         int iv_offset = 0;
1369
1370         if (*zc && (out_iov || out_sg)) {
1371                 if (out_iov)
1372                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1373                 else
1374                         n_sgout = sg_nents(out_sg);
1375                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1376                                  rxm->full_len - prot->prepend_size);
1377         } else {
1378                 n_sgout = 0;
1379                 *zc = false;
1380                 n_sgin = skb_cow_data(skb, 0, &unused);
1381         }
1382
1383         if (n_sgin < 1)
1384                 return -EBADMSG;
1385
1386         /* Increment to accommodate AAD */
1387         n_sgin = n_sgin + 1;
1388
1389         nsg = n_sgin + n_sgout;
1390
1391         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1392         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1393         mem_size = mem_size + prot->aad_size;
1394         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1395
1396         /* Allocate a single block of memory which contains
1397          * aead_req || sgin[] || sgout[] || aad || iv.
1398          * This order achieves correct alignment for aead_req, sgin, sgout.
1399          */
1400         mem = kmalloc(mem_size, sk->sk_allocation);
1401         if (!mem)
1402                 return -ENOMEM;
1403
1404         /* Segment the allocated memory */
1405         aead_req = (struct aead_request *)mem;
1406         sgin = (struct scatterlist *)(mem + aead_size);
1407         sgout = sgin + n_sgin;
1408         aad = (u8 *)(sgout + n_sgout);
1409         iv = aad + prot->aad_size;
1410
1411         /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1412         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1413                 iv[0] = 2;
1414                 iv_offset = 1;
1415         }
1416
1417         /* Prepare IV */
1418         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1419                             iv + iv_offset + prot->salt_size,
1420                             prot->iv_size);
1421         if (err < 0) {
1422                 kfree(mem);
1423                 return err;
1424         }
1425         if (prot->version == TLS_1_3_VERSION)
1426                 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1427                        crypto_aead_ivsize(ctx->aead_recv));
1428         else
1429                 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1430
1431         xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1432
1433         /* Prepare AAD */
1434         tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1435                      prot->tail_size,
1436                      tls_ctx->rx.rec_seq, prot->rec_seq_size,
1437                      ctx->control, prot->version);
1438
1439         /* Prepare sgin */
1440         sg_init_table(sgin, n_sgin);
1441         sg_set_buf(&sgin[0], aad, prot->aad_size);
1442         err = skb_to_sgvec(skb, &sgin[1],
1443                            rxm->offset + prot->prepend_size,
1444                            rxm->full_len - prot->prepend_size);
1445         if (err < 0) {
1446                 kfree(mem);
1447                 return err;
1448         }
1449
1450         if (n_sgout) {
1451                 if (out_iov) {
1452                         sg_init_table(sgout, n_sgout);
1453                         sg_set_buf(&sgout[0], aad, prot->aad_size);
1454
1455                         *chunk = 0;
1456                         err = tls_setup_from_iter(sk, out_iov, data_len,
1457                                                   &pages, chunk, &sgout[1],
1458                                                   (n_sgout - 1));
1459                         if (err < 0)
1460                                 goto fallback_to_reg_recv;
1461                 } else if (out_sg) {
1462                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1463                 } else {
1464                         goto fallback_to_reg_recv;
1465                 }
1466         } else {
1467 fallback_to_reg_recv:
1468                 sgout = sgin;
1469                 pages = 0;
1470                 *chunk = data_len;
1471                 *zc = false;
1472         }
1473
1474         /* Prepare and submit AEAD request */
1475         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1476                                 data_len, aead_req, async);
1477         if (err == -EINPROGRESS)
1478                 return err;
1479
1480         /* Release the pages in case iov was mapped to pages */
1481         for (; pages > 0; pages--)
1482                 put_page(sg_page(&sgout[pages]));
1483
1484         kfree(mem);
1485         return err;
1486 }
1487
1488 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1489                               struct iov_iter *dest, int *chunk, bool *zc,
1490                               bool async)
1491 {
1492         struct tls_context *tls_ctx = tls_get_ctx(sk);
1493         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1494         struct tls_prot_info *prot = &tls_ctx->prot_info;
1495         struct strp_msg *rxm = strp_msg(skb);
1496         int pad, err = 0;
1497
1498         if (!ctx->decrypted) {
1499                 if (tls_ctx->rx_conf == TLS_HW) {
1500                         err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1501                         if (err < 0)
1502                                 return err;
1503                 }
1504
1505                 /* Still not decrypted after tls_device */
1506                 if (!ctx->decrypted) {
1507                         err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1508                                                async);
1509                         if (err < 0) {
1510                                 if (err == -EINPROGRESS)
1511                                         tls_advance_record_sn(sk, prot,
1512                                                               &tls_ctx->rx);
1513
1514                                 return err;
1515                         }
1516                 } else {
1517                         *zc = false;
1518                 }
1519
1520                 pad = padding_length(ctx, prot, skb);
1521                 if (pad < 0)
1522                         return pad;
1523
1524                 rxm->full_len -= pad;
1525                 rxm->offset += prot->prepend_size;
1526                 rxm->full_len -= prot->overhead_size;
1527                 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1528                 ctx->decrypted = 1;
1529                 ctx->saved_data_ready(sk);
1530         } else {
1531                 *zc = false;
1532         }
1533
1534         return err;
1535 }
1536
1537 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1538                 struct scatterlist *sgout)
1539 {
1540         bool zc = true;
1541         int chunk;
1542
1543         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1544 }
1545
1546 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1547                                unsigned int len)
1548 {
1549         struct tls_context *tls_ctx = tls_get_ctx(sk);
1550         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1551
1552         if (skb) {
1553                 struct strp_msg *rxm = strp_msg(skb);
1554
1555                 if (len < rxm->full_len) {
1556                         rxm->offset += len;
1557                         rxm->full_len -= len;
1558                         return false;
1559                 }
1560                 consume_skb(skb);
1561         }
1562
1563         /* Finished with message */
1564         ctx->recv_pkt = NULL;
1565         __strp_unpause(&ctx->strp);
1566
1567         return true;
1568 }
1569
1570 /* This function traverses the rx_list in tls receive context to copies the
1571  * decrypted records into the buffer provided by caller zero copy is not
1572  * true. Further, the records are removed from the rx_list if it is not a peek
1573  * case and the record has been consumed completely.
1574  */
1575 static int process_rx_list(struct tls_sw_context_rx *ctx,
1576                            struct msghdr *msg,
1577                            u8 *control,
1578                            bool *cmsg,
1579                            size_t skip,
1580                            size_t len,
1581                            bool zc,
1582                            bool is_peek)
1583 {
1584         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1585         u8 ctrl = *control;
1586         u8 msgc = *cmsg;
1587         struct tls_msg *tlm;
1588         ssize_t copied = 0;
1589
1590         /* Set the record type in 'control' if caller didn't pass it */
1591         if (!ctrl && skb) {
1592                 tlm = tls_msg(skb);
1593                 ctrl = tlm->control;
1594         }
1595
1596         while (skip && skb) {
1597                 struct strp_msg *rxm = strp_msg(skb);
1598                 tlm = tls_msg(skb);
1599
1600                 /* Cannot process a record of different type */
1601                 if (ctrl != tlm->control)
1602                         return 0;
1603
1604                 if (skip < rxm->full_len)
1605                         break;
1606
1607                 skip = skip - rxm->full_len;
1608                 skb = skb_peek_next(skb, &ctx->rx_list);
1609         }
1610
1611         while (len && skb) {
1612                 struct sk_buff *next_skb;
1613                 struct strp_msg *rxm = strp_msg(skb);
1614                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1615
1616                 tlm = tls_msg(skb);
1617
1618                 /* Cannot process a record of different type */
1619                 if (ctrl != tlm->control)
1620                         return 0;
1621
1622                 /* Set record type if not already done. For a non-data record,
1623                  * do not proceed if record type could not be copied.
1624                  */
1625                 if (!msgc) {
1626                         int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1627                                             sizeof(ctrl), &ctrl);
1628                         msgc = true;
1629                         if (ctrl != TLS_RECORD_TYPE_DATA) {
1630                                 if (cerr || msg->msg_flags & MSG_CTRUNC)
1631                                         return -EIO;
1632
1633                                 *cmsg = msgc;
1634                         }
1635                 }
1636
1637                 if (!zc || (rxm->full_len - skip) > len) {
1638                         int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1639                                                     msg, chunk);
1640                         if (err < 0)
1641                                 return err;
1642                 }
1643
1644                 len = len - chunk;
1645                 copied = copied + chunk;
1646
1647                 /* Consume the data from record if it is non-peek case*/
1648                 if (!is_peek) {
1649                         rxm->offset = rxm->offset + chunk;
1650                         rxm->full_len = rxm->full_len - chunk;
1651
1652                         /* Return if there is unconsumed data in the record */
1653                         if (rxm->full_len - skip)
1654                                 break;
1655                 }
1656
1657                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1658                  * So from the 2nd record, 'skip' should be 0.
1659                  */
1660                 skip = 0;
1661
1662                 if (msg)
1663                         msg->msg_flags |= MSG_EOR;
1664
1665                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1666
1667                 if (!is_peek) {
1668                         skb_unlink(skb, &ctx->rx_list);
1669                         consume_skb(skb);
1670                 }
1671
1672                 skb = next_skb;
1673         }
1674
1675         *control = ctrl;
1676         return copied;
1677 }
1678
1679 int tls_sw_recvmsg(struct sock *sk,
1680                    struct msghdr *msg,
1681                    size_t len,
1682                    int nonblock,
1683                    int flags,
1684                    int *addr_len)
1685 {
1686         struct tls_context *tls_ctx = tls_get_ctx(sk);
1687         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1688         struct tls_prot_info *prot = &tls_ctx->prot_info;
1689         struct sk_psock *psock;
1690         unsigned char control = 0;
1691         ssize_t decrypted = 0;
1692         struct strp_msg *rxm;
1693         struct tls_msg *tlm;
1694         struct sk_buff *skb;
1695         ssize_t copied = 0;
1696         bool cmsg = false;
1697         int target, err = 0;
1698         long timeo;
1699         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1700         bool is_peek = flags & MSG_PEEK;
1701         int num_async = 0;
1702
1703         flags |= nonblock;
1704
1705         if (unlikely(flags & MSG_ERRQUEUE))
1706                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1707
1708         psock = sk_psock_get(sk);
1709         lock_sock(sk);
1710
1711         /* Process pending decrypted records. It must be non-zero-copy */
1712         err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1713                               is_peek);
1714         if (err < 0) {
1715                 tls_err_abort(sk, err);
1716                 goto end;
1717         } else {
1718                 copied = err;
1719         }
1720
1721         if (len <= copied)
1722                 goto recv_end;
1723
1724         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1725         len = len - copied;
1726         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1727
1728         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1729                 bool retain_skb = false;
1730                 bool zc = false;
1731                 int to_decrypt;
1732                 int chunk = 0;
1733                 bool async_capable;
1734                 bool async = false;
1735
1736                 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1737                 if (!skb) {
1738                         if (psock) {
1739                                 int ret = __tcp_bpf_recvmsg(sk, psock,
1740                                                             msg, len, flags);
1741
1742                                 if (ret > 0) {
1743                                         decrypted += ret;
1744                                         len -= ret;
1745                                         continue;
1746                                 }
1747                         }
1748                         goto recv_end;
1749                 } else {
1750                         tlm = tls_msg(skb);
1751                         if (prot->version == TLS_1_3_VERSION)
1752                                 tlm->control = 0;
1753                         else
1754                                 tlm->control = ctx->control;
1755                 }
1756
1757                 rxm = strp_msg(skb);
1758
1759                 to_decrypt = rxm->full_len - prot->overhead_size;
1760
1761                 if (to_decrypt <= len && !is_kvec && !is_peek &&
1762                     ctx->control == TLS_RECORD_TYPE_DATA &&
1763                     prot->version != TLS_1_3_VERSION)
1764                         zc = true;
1765
1766                 /* Do not use async mode if record is non-data */
1767                 if (ctx->control == TLS_RECORD_TYPE_DATA)
1768                         async_capable = ctx->async_capable;
1769                 else
1770                         async_capable = false;
1771
1772                 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1773                                          &chunk, &zc, async_capable);
1774                 if (err < 0 && err != -EINPROGRESS) {
1775                         tls_err_abort(sk, EBADMSG);
1776                         goto recv_end;
1777                 }
1778
1779                 if (err == -EINPROGRESS) {
1780                         async = true;
1781                         num_async++;
1782                 } else if (prot->version == TLS_1_3_VERSION) {
1783                         tlm->control = ctx->control;
1784                 }
1785
1786                 /* If the type of records being processed is not known yet,
1787                  * set it to record type just dequeued. If it is already known,
1788                  * but does not match the record type just dequeued, go to end.
1789                  * We always get record type here since for tls1.2, record type
1790                  * is known just after record is dequeued from stream parser.
1791                  * For tls1.3, we disable async.
1792                  */
1793
1794                 if (!control)
1795                         control = tlm->control;
1796                 else if (control != tlm->control)
1797                         goto recv_end;
1798
1799                 if (!cmsg) {
1800                         int cerr;
1801
1802                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1803                                         sizeof(control), &control);
1804                         cmsg = true;
1805                         if (control != TLS_RECORD_TYPE_DATA) {
1806                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1807                                         err = -EIO;
1808                                         goto recv_end;
1809                                 }
1810                         }
1811                 }
1812
1813                 if (async)
1814                         goto pick_next_record;
1815
1816                 if (!zc) {
1817                         if (rxm->full_len > len) {
1818                                 retain_skb = true;
1819                                 chunk = len;
1820                         } else {
1821                                 chunk = rxm->full_len;
1822                         }
1823
1824                         err = skb_copy_datagram_msg(skb, rxm->offset,
1825                                                     msg, chunk);
1826                         if (err < 0)
1827                                 goto recv_end;
1828
1829                         if (!is_peek) {
1830                                 rxm->offset = rxm->offset + chunk;
1831                                 rxm->full_len = rxm->full_len - chunk;
1832                         }
1833                 }
1834
1835 pick_next_record:
1836                 if (chunk > len)
1837                         chunk = len;
1838
1839                 decrypted += chunk;
1840                 len -= chunk;
1841
1842                 /* For async or peek case, queue the current skb */
1843                 if (async || is_peek || retain_skb) {
1844                         skb_queue_tail(&ctx->rx_list, skb);
1845                         skb = NULL;
1846                 }
1847
1848                 if (tls_sw_advance_skb(sk, skb, chunk)) {
1849                         /* Return full control message to
1850                          * userspace before trying to parse
1851                          * another message type
1852                          */
1853                         msg->msg_flags |= MSG_EOR;
1854                         if (ctx->control != TLS_RECORD_TYPE_DATA)
1855                                 goto recv_end;
1856                 } else {
1857                         break;
1858                 }
1859         }
1860
1861 recv_end:
1862         if (num_async) {
1863                 /* Wait for all previously submitted records to be decrypted */
1864                 smp_store_mb(ctx->async_notify, true);
1865                 if (atomic_read(&ctx->decrypt_pending)) {
1866                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1867                         if (err) {
1868                                 /* one of async decrypt failed */
1869                                 tls_err_abort(sk, err);
1870                                 copied = 0;
1871                                 decrypted = 0;
1872                                 goto end;
1873                         }
1874                 } else {
1875                         reinit_completion(&ctx->async_wait.completion);
1876                 }
1877                 WRITE_ONCE(ctx->async_notify, false);
1878
1879                 /* Drain records from the rx_list & copy if required */
1880                 if (is_peek || is_kvec)
1881                         err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1882                                               decrypted, false, is_peek);
1883                 else
1884                         err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1885                                               decrypted, true, is_peek);
1886                 if (err < 0) {
1887                         tls_err_abort(sk, err);
1888                         copied = 0;
1889                         goto end;
1890                 }
1891         }
1892
1893         copied += decrypted;
1894
1895 end:
1896         release_sock(sk);
1897         if (psock)
1898                 sk_psock_put(sk, psock);
1899         return copied ? : err;
1900 }
1901
1902 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1903                            struct pipe_inode_info *pipe,
1904                            size_t len, unsigned int flags)
1905 {
1906         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1907         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1908         struct strp_msg *rxm = NULL;
1909         struct sock *sk = sock->sk;
1910         struct sk_buff *skb;
1911         ssize_t copied = 0;
1912         int err = 0;
1913         long timeo;
1914         int chunk;
1915         bool zc = false;
1916
1917         lock_sock(sk);
1918
1919         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1920
1921         skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1922         if (!skb)
1923                 goto splice_read_end;
1924
1925         if (!ctx->decrypted) {
1926                 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1927
1928                 /* splice does not support reading control messages */
1929                 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1930                         err = -ENOTSUPP;
1931                         goto splice_read_end;
1932                 }
1933
1934                 if (err < 0) {
1935                         tls_err_abort(sk, EBADMSG);
1936                         goto splice_read_end;
1937                 }
1938                 ctx->decrypted = 1;
1939         }
1940         rxm = strp_msg(skb);
1941
1942         chunk = min_t(unsigned int, rxm->full_len, len);
1943         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1944         if (copied < 0)
1945                 goto splice_read_end;
1946
1947         if (likely(!(flags & MSG_PEEK)))
1948                 tls_sw_advance_skb(sk, skb, copied);
1949
1950 splice_read_end:
1951         release_sock(sk);
1952         return copied ? : err;
1953 }
1954
1955 bool tls_sw_stream_read(const struct sock *sk)
1956 {
1957         struct tls_context *tls_ctx = tls_get_ctx(sk);
1958         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1959         bool ingress_empty = true;
1960         struct sk_psock *psock;
1961
1962         rcu_read_lock();
1963         psock = sk_psock(sk);
1964         if (psock)
1965                 ingress_empty = list_empty(&psock->ingress_msg);
1966         rcu_read_unlock();
1967
1968         return !ingress_empty || ctx->recv_pkt ||
1969                 !skb_queue_empty(&ctx->rx_list);
1970 }
1971
1972 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1973 {
1974         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1975         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1976         struct tls_prot_info *prot = &tls_ctx->prot_info;
1977         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1978         struct strp_msg *rxm = strp_msg(skb);
1979         size_t cipher_overhead;
1980         size_t data_len = 0;
1981         int ret;
1982
1983         /* Verify that we have a full TLS header, or wait for more data */
1984         if (rxm->offset + prot->prepend_size > skb->len)
1985                 return 0;
1986
1987         /* Sanity-check size of on-stack buffer. */
1988         if (WARN_ON(prot->prepend_size > sizeof(header))) {
1989                 ret = -EINVAL;
1990                 goto read_failure;
1991         }
1992
1993         /* Linearize header to local buffer */
1994         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
1995
1996         if (ret < 0)
1997                 goto read_failure;
1998
1999         ctx->control = header[0];
2000
2001         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2002
2003         cipher_overhead = prot->tag_size;
2004         if (prot->version != TLS_1_3_VERSION)
2005                 cipher_overhead += prot->iv_size;
2006
2007         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2008             prot->tail_size) {
2009                 ret = -EMSGSIZE;
2010                 goto read_failure;
2011         }
2012         if (data_len < cipher_overhead) {
2013                 ret = -EBADMSG;
2014                 goto read_failure;
2015         }
2016
2017         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2018         if (header[1] != TLS_1_2_VERSION_MINOR ||
2019             header[2] != TLS_1_2_VERSION_MAJOR) {
2020                 ret = -EINVAL;
2021                 goto read_failure;
2022         }
2023
2024         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2025                                      TCP_SKB_CB(skb)->seq + rxm->offset);
2026         return data_len + TLS_HEADER_SIZE;
2027
2028 read_failure:
2029         tls_err_abort(strp->sk, ret);
2030
2031         return ret;
2032 }
2033
2034 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2035 {
2036         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2037         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2038
2039         ctx->decrypted = 0;
2040
2041         ctx->recv_pkt = skb;
2042         strp_pause(strp);
2043
2044         ctx->saved_data_ready(strp->sk);
2045 }
2046
2047 static void tls_data_ready(struct sock *sk)
2048 {
2049         struct tls_context *tls_ctx = tls_get_ctx(sk);
2050         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2051         struct sk_psock *psock;
2052
2053         strp_data_ready(&ctx->strp);
2054
2055         psock = sk_psock_get(sk);
2056         if (psock && !list_empty(&psock->ingress_msg)) {
2057                 ctx->saved_data_ready(sk);
2058                 sk_psock_put(sk, psock);
2059         }
2060 }
2061
2062 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2063 {
2064         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2065
2066         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2067         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2068         cancel_delayed_work_sync(&ctx->tx_work.work);
2069 }
2070
2071 void tls_sw_release_resources_tx(struct sock *sk)
2072 {
2073         struct tls_context *tls_ctx = tls_get_ctx(sk);
2074         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2075         struct tls_rec *rec, *tmp;
2076
2077         /* Wait for any pending async encryptions to complete */
2078         smp_store_mb(ctx->async_notify, true);
2079         if (atomic_read(&ctx->encrypt_pending))
2080                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2081
2082         tls_tx_records(sk, -1);
2083
2084         /* Free up un-sent records in tx_list. First, free
2085          * the partially sent record if any at head of tx_list.
2086          */
2087         if (tls_free_partial_record(sk, tls_ctx)) {
2088                 rec = list_first_entry(&ctx->tx_list,
2089                                        struct tls_rec, list);
2090                 list_del(&rec->list);
2091                 sk_msg_free(sk, &rec->msg_plaintext);
2092                 kfree(rec);
2093         }
2094
2095         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2096                 list_del(&rec->list);
2097                 sk_msg_free(sk, &rec->msg_encrypted);
2098                 sk_msg_free(sk, &rec->msg_plaintext);
2099                 kfree(rec);
2100         }
2101
2102         crypto_free_aead(ctx->aead_send);
2103         tls_free_open_rec(sk);
2104 }
2105
2106 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2107 {
2108         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2109
2110         kfree(ctx);
2111 }
2112
2113 void tls_sw_release_resources_rx(struct sock *sk)
2114 {
2115         struct tls_context *tls_ctx = tls_get_ctx(sk);
2116         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2117
2118         kfree(tls_ctx->rx.rec_seq);
2119         kfree(tls_ctx->rx.iv);
2120
2121         if (ctx->aead_recv) {
2122                 kfree_skb(ctx->recv_pkt);
2123                 ctx->recv_pkt = NULL;
2124                 skb_queue_purge(&ctx->rx_list);
2125                 crypto_free_aead(ctx->aead_recv);
2126                 strp_stop(&ctx->strp);
2127                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2128                  * we still want to strp_stop(), but sk->sk_data_ready was
2129                  * never swapped.
2130                  */
2131                 if (ctx->saved_data_ready) {
2132                         write_lock_bh(&sk->sk_callback_lock);
2133                         sk->sk_data_ready = ctx->saved_data_ready;
2134                         write_unlock_bh(&sk->sk_callback_lock);
2135                 }
2136         }
2137 }
2138
2139 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2140 {
2141         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2142
2143         strp_done(&ctx->strp);
2144 }
2145
2146 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2147 {
2148         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2149
2150         kfree(ctx);
2151 }
2152
2153 void tls_sw_free_resources_rx(struct sock *sk)
2154 {
2155         struct tls_context *tls_ctx = tls_get_ctx(sk);
2156
2157         tls_sw_release_resources_rx(sk);
2158         tls_sw_free_ctx_rx(tls_ctx);
2159 }
2160
2161 /* The work handler to transmitt the encrypted records in tx_list */
2162 static void tx_work_handler(struct work_struct *work)
2163 {
2164         struct delayed_work *delayed_work = to_delayed_work(work);
2165         struct tx_work *tx_work = container_of(delayed_work,
2166                                                struct tx_work, work);
2167         struct sock *sk = tx_work->sk;
2168         struct tls_context *tls_ctx = tls_get_ctx(sk);
2169         struct tls_sw_context_tx *ctx;
2170
2171         if (unlikely(!tls_ctx))
2172                 return;
2173
2174         ctx = tls_sw_ctx_tx(tls_ctx);
2175         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2176                 return;
2177
2178         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2179                 return;
2180         mutex_lock(&tls_ctx->tx_lock);
2181         lock_sock(sk);
2182         tls_tx_records(sk, -1);
2183         release_sock(sk);
2184         mutex_unlock(&tls_ctx->tx_lock);
2185 }
2186
2187 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2188 {
2189         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2190
2191         /* Schedule the transmission if tx list is ready */
2192         if (is_tx_ready(tx_ctx) &&
2193             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2194                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2195 }
2196
2197 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2198 {
2199         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2200
2201         write_lock_bh(&sk->sk_callback_lock);
2202         rx_ctx->saved_data_ready = sk->sk_data_ready;
2203         sk->sk_data_ready = tls_data_ready;
2204         write_unlock_bh(&sk->sk_callback_lock);
2205
2206         strp_check_rcv(&rx_ctx->strp);
2207 }
2208
2209 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2210 {
2211         struct tls_context *tls_ctx = tls_get_ctx(sk);
2212         struct tls_prot_info *prot = &tls_ctx->prot_info;
2213         struct tls_crypto_info *crypto_info;
2214         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2215         struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2216         struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2217         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2218         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2219         struct cipher_context *cctx;
2220         struct crypto_aead **aead;
2221         struct strp_callbacks cb;
2222         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2223         struct crypto_tfm *tfm;
2224         char *iv, *rec_seq, *key, *salt, *cipher_name;
2225         size_t keysize;
2226         int rc = 0;
2227
2228         if (!ctx) {
2229                 rc = -EINVAL;
2230                 goto out;
2231         }
2232
2233         if (tx) {
2234                 if (!ctx->priv_ctx_tx) {
2235                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2236                         if (!sw_ctx_tx) {
2237                                 rc = -ENOMEM;
2238                                 goto out;
2239                         }
2240                         ctx->priv_ctx_tx = sw_ctx_tx;
2241                 } else {
2242                         sw_ctx_tx =
2243                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2244                 }
2245         } else {
2246                 if (!ctx->priv_ctx_rx) {
2247                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2248                         if (!sw_ctx_rx) {
2249                                 rc = -ENOMEM;
2250                                 goto out;
2251                         }
2252                         ctx->priv_ctx_rx = sw_ctx_rx;
2253                 } else {
2254                         sw_ctx_rx =
2255                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2256                 }
2257         }
2258
2259         if (tx) {
2260                 crypto_init_wait(&sw_ctx_tx->async_wait);
2261                 crypto_info = &ctx->crypto_send.info;
2262                 cctx = &ctx->tx;
2263                 aead = &sw_ctx_tx->aead_send;
2264                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2265                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2266                 sw_ctx_tx->tx_work.sk = sk;
2267         } else {
2268                 crypto_init_wait(&sw_ctx_rx->async_wait);
2269                 crypto_info = &ctx->crypto_recv.info;
2270                 cctx = &ctx->rx;
2271                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2272                 aead = &sw_ctx_rx->aead_recv;
2273         }
2274
2275         switch (crypto_info->cipher_type) {
2276         case TLS_CIPHER_AES_GCM_128: {
2277                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2278                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2279                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2280                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2281                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2282                 rec_seq =
2283                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2284                 gcm_128_info =
2285                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2286                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2287                 key = gcm_128_info->key;
2288                 salt = gcm_128_info->salt;
2289                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2290                 cipher_name = "gcm(aes)";
2291                 break;
2292         }
2293         case TLS_CIPHER_AES_GCM_256: {
2294                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2295                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2296                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2297                 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2298                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2299                 rec_seq =
2300                  ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2301                 gcm_256_info =
2302                         (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2303                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2304                 key = gcm_256_info->key;
2305                 salt = gcm_256_info->salt;
2306                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2307                 cipher_name = "gcm(aes)";
2308                 break;
2309         }
2310         case TLS_CIPHER_AES_CCM_128: {
2311                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2312                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2313                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2314                 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2315                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2316                 rec_seq =
2317                 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2318                 ccm_128_info =
2319                 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2320                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2321                 key = ccm_128_info->key;
2322                 salt = ccm_128_info->salt;
2323                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2324                 cipher_name = "ccm(aes)";
2325                 break;
2326         }
2327         default:
2328                 rc = -EINVAL;
2329                 goto free_priv;
2330         }
2331
2332         /* Sanity-check the sizes for stack allocations. */
2333         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2334             rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2335                 rc = -EINVAL;
2336                 goto free_priv;
2337         }
2338
2339         if (crypto_info->version == TLS_1_3_VERSION) {
2340                 nonce_size = 0;
2341                 prot->aad_size = TLS_HEADER_SIZE;
2342                 prot->tail_size = 1;
2343         } else {
2344                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2345                 prot->tail_size = 0;
2346         }
2347
2348         prot->version = crypto_info->version;
2349         prot->cipher_type = crypto_info->cipher_type;
2350         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2351         prot->tag_size = tag_size;
2352         prot->overhead_size = prot->prepend_size +
2353                               prot->tag_size + prot->tail_size;
2354         prot->iv_size = iv_size;
2355         prot->salt_size = salt_size;
2356         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2357         if (!cctx->iv) {
2358                 rc = -ENOMEM;
2359                 goto free_priv;
2360         }
2361         /* Note: 128 & 256 bit salt are the same size */
2362         prot->rec_seq_size = rec_seq_size;
2363         memcpy(cctx->iv, salt, salt_size);
2364         memcpy(cctx->iv + salt_size, iv, iv_size);
2365         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2366         if (!cctx->rec_seq) {
2367                 rc = -ENOMEM;
2368                 goto free_iv;
2369         }
2370
2371         if (!*aead) {
2372                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2373                 if (IS_ERR(*aead)) {
2374                         rc = PTR_ERR(*aead);
2375                         *aead = NULL;
2376                         goto free_rec_seq;
2377                 }
2378         }
2379
2380         ctx->push_pending_record = tls_sw_push_pending_record;
2381
2382         rc = crypto_aead_setkey(*aead, key, keysize);
2383
2384         if (rc)
2385                 goto free_aead;
2386
2387         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2388         if (rc)
2389                 goto free_aead;
2390
2391         if (sw_ctx_rx) {
2392                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2393
2394                 if (crypto_info->version == TLS_1_3_VERSION)
2395                         sw_ctx_rx->async_capable = 0;
2396                 else
2397                         sw_ctx_rx->async_capable =
2398                                 !!(tfm->__crt_alg->cra_flags &
2399                                    CRYPTO_ALG_ASYNC);
2400
2401                 /* Set up strparser */
2402                 memset(&cb, 0, sizeof(cb));
2403                 cb.rcv_msg = tls_queue;
2404                 cb.parse_msg = tls_read_size;
2405
2406                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2407         }
2408
2409         goto out;
2410
2411 free_aead:
2412         crypto_free_aead(*aead);
2413         *aead = NULL;
2414 free_rec_seq:
2415         kfree(cctx->rec_seq);
2416         cctx->rec_seq = NULL;
2417 free_iv:
2418         kfree(cctx->iv);
2419         cctx->iv = NULL;
2420 free_priv:
2421         if (tx) {
2422                 kfree(ctx->priv_ctx_tx);
2423                 ctx->priv_ctx_tx = NULL;
2424         } else {
2425                 kfree(ctx->priv_ctx_rx);
2426                 ctx->priv_ctx_rx = NULL;
2427         }
2428 out:
2429         return rc;
2430 }