]> asedeno.scripts.mit.edu Git - linux.git/blob - net/tls/tls_sw.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41
42 #include <net/strparser.h>
43 #include <net/tls.h>
44
45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46                      unsigned int recursion_level)
47 {
48         int start = skb_headlen(skb);
49         int i, chunk = start - offset;
50         struct sk_buff *frag_iter;
51         int elt = 0;
52
53         if (unlikely(recursion_level >= 24))
54                 return -EMSGSIZE;
55
56         if (chunk > 0) {
57                 if (chunk > len)
58                         chunk = len;
59                 elt++;
60                 len -= chunk;
61                 if (len == 0)
62                         return elt;
63                 offset += chunk;
64         }
65
66         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67                 int end;
68
69                 WARN_ON(start > offset + len);
70
71                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72                 chunk = end - offset;
73                 if (chunk > 0) {
74                         if (chunk > len)
75                                 chunk = len;
76                         elt++;
77                         len -= chunk;
78                         if (len == 0)
79                                 return elt;
80                         offset += chunk;
81                 }
82                 start = end;
83         }
84
85         if (unlikely(skb_has_frag_list(skb))) {
86                 skb_walk_frags(skb, frag_iter) {
87                         int end, ret;
88
89                         WARN_ON(start > offset + len);
90
91                         end = start + frag_iter->len;
92                         chunk = end - offset;
93                         if (chunk > 0) {
94                                 if (chunk > len)
95                                         chunk = len;
96                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
97                                                 recursion_level + 1);
98                                 if (unlikely(ret < 0))
99                                         return ret;
100                                 elt += ret;
101                                 len -= chunk;
102                                 if (len == 0)
103                                         return elt;
104                                 offset += chunk;
105                         }
106                         start = end;
107                 }
108         }
109         BUG_ON(len);
110         return elt;
111 }
112
113 /* Return the number of scatterlist elements required to completely map the
114  * skb, or -EMSGSIZE if the recursion depth is exceeded.
115  */
116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
117 {
118         return __skb_nsg(skb, offset, len, 0);
119 }
120
121 static int padding_length(struct tls_sw_context_rx *ctx,
122                           struct tls_context *tls_ctx, struct sk_buff *skb)
123 {
124         struct strp_msg *rxm = strp_msg(skb);
125         int sub = 0;
126
127         /* Determine zero-padding length */
128         if (tls_ctx->prot_info.version == TLS_1_3_VERSION) {
129                 char content_type = 0;
130                 int err;
131                 int back = 17;
132
133                 while (content_type == 0) {
134                         if (back > rxm->full_len)
135                                 return -EBADMSG;
136                         err = skb_copy_bits(skb,
137                                             rxm->offset + rxm->full_len - back,
138                                             &content_type, 1);
139                         if (content_type)
140                                 break;
141                         sub++;
142                         back++;
143                 }
144                 ctx->control = content_type;
145         }
146         return sub;
147 }
148
149 static void tls_decrypt_done(struct crypto_async_request *req, int err)
150 {
151         struct aead_request *aead_req = (struct aead_request *)req;
152         struct scatterlist *sgout = aead_req->dst;
153         struct scatterlist *sgin = aead_req->src;
154         struct tls_sw_context_rx *ctx;
155         struct tls_context *tls_ctx;
156         struct tls_prot_info *prot;
157         struct scatterlist *sg;
158         struct sk_buff *skb;
159         unsigned int pages;
160         int pending;
161
162         skb = (struct sk_buff *)req->data;
163         tls_ctx = tls_get_ctx(skb->sk);
164         ctx = tls_sw_ctx_rx(tls_ctx);
165         prot = &tls_ctx->prot_info;
166
167         /* Propagate if there was an err */
168         if (err) {
169                 ctx->async_wait.err = err;
170                 tls_err_abort(skb->sk, err);
171         } else {
172                 struct strp_msg *rxm = strp_msg(skb);
173                 rxm->full_len -= padding_length(ctx, tls_ctx, skb);
174                 rxm->offset += prot->prepend_size;
175                 rxm->full_len -= prot->overhead_size;
176         }
177
178         /* After using skb->sk to propagate sk through crypto async callback
179          * we need to NULL it again.
180          */
181         skb->sk = NULL;
182
183
184         /* Free the destination pages if skb was not decrypted inplace */
185         if (sgout != sgin) {
186                 /* Skip the first S/G entry as it points to AAD */
187                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
188                         if (!sg)
189                                 break;
190                         put_page(sg_page(sg));
191                 }
192         }
193
194         kfree(aead_req);
195
196         pending = atomic_dec_return(&ctx->decrypt_pending);
197
198         if (!pending && READ_ONCE(ctx->async_notify))
199                 complete(&ctx->async_wait.completion);
200 }
201
202 static int tls_do_decryption(struct sock *sk,
203                              struct sk_buff *skb,
204                              struct scatterlist *sgin,
205                              struct scatterlist *sgout,
206                              char *iv_recv,
207                              size_t data_len,
208                              struct aead_request *aead_req,
209                              bool async)
210 {
211         struct tls_context *tls_ctx = tls_get_ctx(sk);
212         struct tls_prot_info *prot = &tls_ctx->prot_info;
213         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
214         int ret;
215
216         aead_request_set_tfm(aead_req, ctx->aead_recv);
217         aead_request_set_ad(aead_req, prot->aad_size);
218         aead_request_set_crypt(aead_req, sgin, sgout,
219                                data_len + prot->tag_size,
220                                (u8 *)iv_recv);
221
222         if (async) {
223                 /* Using skb->sk to push sk through to crypto async callback
224                  * handler. This allows propagating errors up to the socket
225                  * if needed. It _must_ be cleared in the async handler
226                  * before consume_skb is called. We _know_ skb->sk is NULL
227                  * because it is a clone from strparser.
228                  */
229                 skb->sk = sk;
230                 aead_request_set_callback(aead_req,
231                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
232                                           tls_decrypt_done, skb);
233                 atomic_inc(&ctx->decrypt_pending);
234         } else {
235                 aead_request_set_callback(aead_req,
236                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
237                                           crypto_req_done, &ctx->async_wait);
238         }
239
240         ret = crypto_aead_decrypt(aead_req);
241         if (ret == -EINPROGRESS) {
242                 if (async)
243                         return ret;
244
245                 ret = crypto_wait_req(ret, &ctx->async_wait);
246         }
247
248         if (async)
249                 atomic_dec(&ctx->decrypt_pending);
250
251         return ret;
252 }
253
254 static void tls_trim_both_msgs(struct sock *sk, int target_size)
255 {
256         struct tls_context *tls_ctx = tls_get_ctx(sk);
257         struct tls_prot_info *prot = &tls_ctx->prot_info;
258         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
259         struct tls_rec *rec = ctx->open_rec;
260
261         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
262         if (target_size > 0)
263                 target_size += prot->overhead_size;
264         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
265 }
266
267 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
268 {
269         struct tls_context *tls_ctx = tls_get_ctx(sk);
270         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
271         struct tls_rec *rec = ctx->open_rec;
272         struct sk_msg *msg_en = &rec->msg_encrypted;
273
274         return sk_msg_alloc(sk, msg_en, len, 0);
275 }
276
277 static int tls_clone_plaintext_msg(struct sock *sk, int required)
278 {
279         struct tls_context *tls_ctx = tls_get_ctx(sk);
280         struct tls_prot_info *prot = &tls_ctx->prot_info;
281         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
282         struct tls_rec *rec = ctx->open_rec;
283         struct sk_msg *msg_pl = &rec->msg_plaintext;
284         struct sk_msg *msg_en = &rec->msg_encrypted;
285         int skip, len;
286
287         /* We add page references worth len bytes from encrypted sg
288          * at the end of plaintext sg. It is guaranteed that msg_en
289          * has enough required room (ensured by caller).
290          */
291         len = required - msg_pl->sg.size;
292
293         /* Skip initial bytes in msg_en's data to be able to use
294          * same offset of both plain and encrypted data.
295          */
296         skip = prot->prepend_size + msg_pl->sg.size;
297
298         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
299 }
300
301 static struct tls_rec *tls_get_rec(struct sock *sk)
302 {
303         struct tls_context *tls_ctx = tls_get_ctx(sk);
304         struct tls_prot_info *prot = &tls_ctx->prot_info;
305         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
306         struct sk_msg *msg_pl, *msg_en;
307         struct tls_rec *rec;
308         int mem_size;
309
310         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
311
312         rec = kzalloc(mem_size, sk->sk_allocation);
313         if (!rec)
314                 return NULL;
315
316         msg_pl = &rec->msg_plaintext;
317         msg_en = &rec->msg_encrypted;
318
319         sk_msg_init(msg_pl);
320         sk_msg_init(msg_en);
321
322         sg_init_table(rec->sg_aead_in, 2);
323         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
324         sg_unmark_end(&rec->sg_aead_in[1]);
325
326         sg_init_table(rec->sg_aead_out, 2);
327         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
328         sg_unmark_end(&rec->sg_aead_out[1]);
329
330         return rec;
331 }
332
333 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
334 {
335         sk_msg_free(sk, &rec->msg_encrypted);
336         sk_msg_free(sk, &rec->msg_plaintext);
337         kfree(rec);
338 }
339
340 static void tls_free_open_rec(struct sock *sk)
341 {
342         struct tls_context *tls_ctx = tls_get_ctx(sk);
343         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
344         struct tls_rec *rec = ctx->open_rec;
345
346         if (rec) {
347                 tls_free_rec(sk, rec);
348                 ctx->open_rec = NULL;
349         }
350 }
351
352 int tls_tx_records(struct sock *sk, int flags)
353 {
354         struct tls_context *tls_ctx = tls_get_ctx(sk);
355         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
356         struct tls_rec *rec, *tmp;
357         struct sk_msg *msg_en;
358         int tx_flags, rc = 0;
359
360         if (tls_is_partially_sent_record(tls_ctx)) {
361                 rec = list_first_entry(&ctx->tx_list,
362                                        struct tls_rec, list);
363
364                 if (flags == -1)
365                         tx_flags = rec->tx_flags;
366                 else
367                         tx_flags = flags;
368
369                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
370                 if (rc)
371                         goto tx_err;
372
373                 /* Full record has been transmitted.
374                  * Remove the head of tx_list
375                  */
376                 list_del(&rec->list);
377                 sk_msg_free(sk, &rec->msg_plaintext);
378                 kfree(rec);
379         }
380
381         /* Tx all ready records */
382         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
383                 if (READ_ONCE(rec->tx_ready)) {
384                         if (flags == -1)
385                                 tx_flags = rec->tx_flags;
386                         else
387                                 tx_flags = flags;
388
389                         msg_en = &rec->msg_encrypted;
390                         rc = tls_push_sg(sk, tls_ctx,
391                                          &msg_en->sg.data[msg_en->sg.curr],
392                                          0, tx_flags);
393                         if (rc)
394                                 goto tx_err;
395
396                         list_del(&rec->list);
397                         sk_msg_free(sk, &rec->msg_plaintext);
398                         kfree(rec);
399                 } else {
400                         break;
401                 }
402         }
403
404 tx_err:
405         if (rc < 0 && rc != -EAGAIN)
406                 tls_err_abort(sk, EBADMSG);
407
408         return rc;
409 }
410
411 static void tls_encrypt_done(struct crypto_async_request *req, int err)
412 {
413         struct aead_request *aead_req = (struct aead_request *)req;
414         struct sock *sk = req->data;
415         struct tls_context *tls_ctx = tls_get_ctx(sk);
416         struct tls_prot_info *prot = &tls_ctx->prot_info;
417         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
418         struct scatterlist *sge;
419         struct sk_msg *msg_en;
420         struct tls_rec *rec;
421         bool ready = false;
422         int pending;
423
424         rec = container_of(aead_req, struct tls_rec, aead_req);
425         msg_en = &rec->msg_encrypted;
426
427         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
428         sge->offset -= prot->prepend_size;
429         sge->length += prot->prepend_size;
430
431         /* Check if error is previously set on socket */
432         if (err || sk->sk_err) {
433                 rec = NULL;
434
435                 /* If err is already set on socket, return the same code */
436                 if (sk->sk_err) {
437                         ctx->async_wait.err = sk->sk_err;
438                 } else {
439                         ctx->async_wait.err = err;
440                         tls_err_abort(sk, err);
441                 }
442         }
443
444         if (rec) {
445                 struct tls_rec *first_rec;
446
447                 /* Mark the record as ready for transmission */
448                 smp_store_mb(rec->tx_ready, true);
449
450                 /* If received record is at head of tx_list, schedule tx */
451                 first_rec = list_first_entry(&ctx->tx_list,
452                                              struct tls_rec, list);
453                 if (rec == first_rec)
454                         ready = true;
455         }
456
457         pending = atomic_dec_return(&ctx->encrypt_pending);
458
459         if (!pending && READ_ONCE(ctx->async_notify))
460                 complete(&ctx->async_wait.completion);
461
462         if (!ready)
463                 return;
464
465         /* Schedule the transmission */
466         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
467                 schedule_delayed_work(&ctx->tx_work.work, 1);
468 }
469
470 static int tls_do_encryption(struct sock *sk,
471                              struct tls_context *tls_ctx,
472                              struct tls_sw_context_tx *ctx,
473                              struct aead_request *aead_req,
474                              size_t data_len, u32 start)
475 {
476         struct tls_prot_info *prot = &tls_ctx->prot_info;
477         struct tls_rec *rec = ctx->open_rec;
478         struct sk_msg *msg_en = &rec->msg_encrypted;
479         struct scatterlist *sge = sk_msg_elem(msg_en, start);
480         int rc, iv_offset = 0;
481
482         /* For CCM based ciphers, first byte of IV is a constant */
483         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
484                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
485                 iv_offset = 1;
486         }
487
488         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
489                prot->iv_size + prot->salt_size);
490
491         xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
492
493         sge->offset += prot->prepend_size;
494         sge->length -= prot->prepend_size;
495
496         msg_en->sg.curr = start;
497
498         aead_request_set_tfm(aead_req, ctx->aead_send);
499         aead_request_set_ad(aead_req, prot->aad_size);
500         aead_request_set_crypt(aead_req, rec->sg_aead_in,
501                                rec->sg_aead_out,
502                                data_len, rec->iv_data);
503
504         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
505                                   tls_encrypt_done, sk);
506
507         /* Add the record in tx_list */
508         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
509         atomic_inc(&ctx->encrypt_pending);
510
511         rc = crypto_aead_encrypt(aead_req);
512         if (!rc || rc != -EINPROGRESS) {
513                 atomic_dec(&ctx->encrypt_pending);
514                 sge->offset -= prot->prepend_size;
515                 sge->length += prot->prepend_size;
516         }
517
518         if (!rc) {
519                 WRITE_ONCE(rec->tx_ready, true);
520         } else if (rc != -EINPROGRESS) {
521                 list_del(&rec->list);
522                 return rc;
523         }
524
525         /* Unhook the record from context if encryption is not failure */
526         ctx->open_rec = NULL;
527         tls_advance_record_sn(sk, &tls_ctx->tx, prot->version);
528         return rc;
529 }
530
531 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
532                                  struct tls_rec **to, struct sk_msg *msg_opl,
533                                  struct sk_msg *msg_oen, u32 split_point,
534                                  u32 tx_overhead_size, u32 *orig_end)
535 {
536         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
537         struct scatterlist *sge, *osge, *nsge;
538         u32 orig_size = msg_opl->sg.size;
539         struct scatterlist tmp = { };
540         struct sk_msg *msg_npl;
541         struct tls_rec *new;
542         int ret;
543
544         new = tls_get_rec(sk);
545         if (!new)
546                 return -ENOMEM;
547         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
548                            tx_overhead_size, 0);
549         if (ret < 0) {
550                 tls_free_rec(sk, new);
551                 return ret;
552         }
553
554         *orig_end = msg_opl->sg.end;
555         i = msg_opl->sg.start;
556         sge = sk_msg_elem(msg_opl, i);
557         while (apply && sge->length) {
558                 if (sge->length > apply) {
559                         u32 len = sge->length - apply;
560
561                         get_page(sg_page(sge));
562                         sg_set_page(&tmp, sg_page(sge), len,
563                                     sge->offset + apply);
564                         sge->length = apply;
565                         bytes += apply;
566                         apply = 0;
567                 } else {
568                         apply -= sge->length;
569                         bytes += sge->length;
570                 }
571
572                 sk_msg_iter_var_next(i);
573                 if (i == msg_opl->sg.end)
574                         break;
575                 sge = sk_msg_elem(msg_opl, i);
576         }
577
578         msg_opl->sg.end = i;
579         msg_opl->sg.curr = i;
580         msg_opl->sg.copybreak = 0;
581         msg_opl->apply_bytes = 0;
582         msg_opl->sg.size = bytes;
583
584         msg_npl = &new->msg_plaintext;
585         msg_npl->apply_bytes = apply;
586         msg_npl->sg.size = orig_size - bytes;
587
588         j = msg_npl->sg.start;
589         nsge = sk_msg_elem(msg_npl, j);
590         if (tmp.length) {
591                 memcpy(nsge, &tmp, sizeof(*nsge));
592                 sk_msg_iter_var_next(j);
593                 nsge = sk_msg_elem(msg_npl, j);
594         }
595
596         osge = sk_msg_elem(msg_opl, i);
597         while (osge->length) {
598                 memcpy(nsge, osge, sizeof(*nsge));
599                 sg_unmark_end(nsge);
600                 sk_msg_iter_var_next(i);
601                 sk_msg_iter_var_next(j);
602                 if (i == *orig_end)
603                         break;
604                 osge = sk_msg_elem(msg_opl, i);
605                 nsge = sk_msg_elem(msg_npl, j);
606         }
607
608         msg_npl->sg.end = j;
609         msg_npl->sg.curr = j;
610         msg_npl->sg.copybreak = 0;
611
612         *to = new;
613         return 0;
614 }
615
616 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
617                                   struct tls_rec *from, u32 orig_end)
618 {
619         struct sk_msg *msg_npl = &from->msg_plaintext;
620         struct sk_msg *msg_opl = &to->msg_plaintext;
621         struct scatterlist *osge, *nsge;
622         u32 i, j;
623
624         i = msg_opl->sg.end;
625         sk_msg_iter_var_prev(i);
626         j = msg_npl->sg.start;
627
628         osge = sk_msg_elem(msg_opl, i);
629         nsge = sk_msg_elem(msg_npl, j);
630
631         if (sg_page(osge) == sg_page(nsge) &&
632             osge->offset + osge->length == nsge->offset) {
633                 osge->length += nsge->length;
634                 put_page(sg_page(nsge));
635         }
636
637         msg_opl->sg.end = orig_end;
638         msg_opl->sg.curr = orig_end;
639         msg_opl->sg.copybreak = 0;
640         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
641         msg_opl->sg.size += msg_npl->sg.size;
642
643         sk_msg_free(sk, &to->msg_encrypted);
644         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
645
646         kfree(from);
647 }
648
649 static int tls_push_record(struct sock *sk, int flags,
650                            unsigned char record_type)
651 {
652         struct tls_context *tls_ctx = tls_get_ctx(sk);
653         struct tls_prot_info *prot = &tls_ctx->prot_info;
654         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
655         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
656         u32 i, split_point, uninitialized_var(orig_end);
657         struct sk_msg *msg_pl, *msg_en;
658         struct aead_request *req;
659         bool split;
660         int rc;
661
662         if (!rec)
663                 return 0;
664
665         msg_pl = &rec->msg_plaintext;
666         msg_en = &rec->msg_encrypted;
667
668         split_point = msg_pl->apply_bytes;
669         split = split_point && split_point < msg_pl->sg.size;
670         if (split) {
671                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
672                                            split_point, prot->overhead_size,
673                                            &orig_end);
674                 if (rc < 0)
675                         return rc;
676                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
677                             prot->overhead_size);
678         }
679
680         rec->tx_flags = flags;
681         req = &rec->aead_req;
682
683         i = msg_pl->sg.end;
684         sk_msg_iter_var_prev(i);
685
686         rec->content_type = record_type;
687         if (prot->version == TLS_1_3_VERSION) {
688                 /* Add content type to end of message.  No padding added */
689                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
690                 sg_mark_end(&rec->sg_content_type);
691                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
692                          &rec->sg_content_type);
693         } else {
694                 sg_mark_end(sk_msg_elem(msg_pl, i));
695         }
696
697         i = msg_pl->sg.start;
698         sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
699                  &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
700
701         i = msg_en->sg.end;
702         sk_msg_iter_var_prev(i);
703         sg_mark_end(sk_msg_elem(msg_en, i));
704
705         i = msg_en->sg.start;
706         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
707
708         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
709                      tls_ctx->tx.rec_seq, prot->rec_seq_size,
710                      record_type, prot->version);
711
712         tls_fill_prepend(tls_ctx,
713                          page_address(sg_page(&msg_en->sg.data[i])) +
714                          msg_en->sg.data[i].offset,
715                          msg_pl->sg.size + prot->tail_size,
716                          record_type, prot->version);
717
718         tls_ctx->pending_open_record_frags = false;
719
720         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
721                                msg_pl->sg.size + prot->tail_size, i);
722         if (rc < 0) {
723                 if (rc != -EINPROGRESS) {
724                         tls_err_abort(sk, EBADMSG);
725                         if (split) {
726                                 tls_ctx->pending_open_record_frags = true;
727                                 tls_merge_open_record(sk, rec, tmp, orig_end);
728                         }
729                 }
730                 ctx->async_capable = 1;
731                 return rc;
732         } else if (split) {
733                 msg_pl = &tmp->msg_plaintext;
734                 msg_en = &tmp->msg_encrypted;
735                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
736                 tls_ctx->pending_open_record_frags = true;
737                 ctx->open_rec = tmp;
738         }
739
740         return tls_tx_records(sk, flags);
741 }
742
743 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
744                                bool full_record, u8 record_type,
745                                size_t *copied, int flags)
746 {
747         struct tls_context *tls_ctx = tls_get_ctx(sk);
748         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
749         struct sk_msg msg_redir = { };
750         struct sk_psock *psock;
751         struct sock *sk_redir;
752         struct tls_rec *rec;
753         bool enospc, policy;
754         int err = 0, send;
755         u32 delta = 0;
756
757         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
758         psock = sk_psock_get(sk);
759         if (!psock || !policy)
760                 return tls_push_record(sk, flags, record_type);
761 more_data:
762         enospc = sk_msg_full(msg);
763         if (psock->eval == __SK_NONE) {
764                 delta = msg->sg.size;
765                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
766                 if (delta < msg->sg.size)
767                         delta -= msg->sg.size;
768                 else
769                         delta = 0;
770         }
771         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
772             !enospc && !full_record) {
773                 err = -ENOSPC;
774                 goto out_err;
775         }
776         msg->cork_bytes = 0;
777         send = msg->sg.size;
778         if (msg->apply_bytes && msg->apply_bytes < send)
779                 send = msg->apply_bytes;
780
781         switch (psock->eval) {
782         case __SK_PASS:
783                 err = tls_push_record(sk, flags, record_type);
784                 if (err < 0) {
785                         *copied -= sk_msg_free(sk, msg);
786                         tls_free_open_rec(sk);
787                         goto out_err;
788                 }
789                 break;
790         case __SK_REDIRECT:
791                 sk_redir = psock->sk_redir;
792                 memcpy(&msg_redir, msg, sizeof(*msg));
793                 if (msg->apply_bytes < send)
794                         msg->apply_bytes = 0;
795                 else
796                         msg->apply_bytes -= send;
797                 sk_msg_return_zero(sk, msg, send);
798                 msg->sg.size -= send;
799                 release_sock(sk);
800                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
801                 lock_sock(sk);
802                 if (err < 0) {
803                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
804                         msg->sg.size = 0;
805                 }
806                 if (msg->sg.size == 0)
807                         tls_free_open_rec(sk);
808                 break;
809         case __SK_DROP:
810         default:
811                 sk_msg_free_partial(sk, msg, send);
812                 if (msg->apply_bytes < send)
813                         msg->apply_bytes = 0;
814                 else
815                         msg->apply_bytes -= send;
816                 if (msg->sg.size == 0)
817                         tls_free_open_rec(sk);
818                 *copied -= (send + delta);
819                 err = -EACCES;
820         }
821
822         if (likely(!err)) {
823                 bool reset_eval = !ctx->open_rec;
824
825                 rec = ctx->open_rec;
826                 if (rec) {
827                         msg = &rec->msg_plaintext;
828                         if (!msg->apply_bytes)
829                                 reset_eval = true;
830                 }
831                 if (reset_eval) {
832                         psock->eval = __SK_NONE;
833                         if (psock->sk_redir) {
834                                 sock_put(psock->sk_redir);
835                                 psock->sk_redir = NULL;
836                         }
837                 }
838                 if (rec)
839                         goto more_data;
840         }
841  out_err:
842         sk_psock_put(sk, psock);
843         return err;
844 }
845
846 static int tls_sw_push_pending_record(struct sock *sk, int flags)
847 {
848         struct tls_context *tls_ctx = tls_get_ctx(sk);
849         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
850         struct tls_rec *rec = ctx->open_rec;
851         struct sk_msg *msg_pl;
852         size_t copied;
853
854         if (!rec)
855                 return 0;
856
857         msg_pl = &rec->msg_plaintext;
858         copied = msg_pl->sg.size;
859         if (!copied)
860                 return 0;
861
862         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
863                                    &copied, flags);
864 }
865
866 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
867 {
868         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
869         struct tls_context *tls_ctx = tls_get_ctx(sk);
870         struct tls_prot_info *prot = &tls_ctx->prot_info;
871         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
872         bool async_capable = ctx->async_capable;
873         unsigned char record_type = TLS_RECORD_TYPE_DATA;
874         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
875         bool eor = !(msg->msg_flags & MSG_MORE);
876         size_t try_to_copy, copied = 0;
877         struct sk_msg *msg_pl, *msg_en;
878         struct tls_rec *rec;
879         int required_size;
880         int num_async = 0;
881         bool full_record;
882         int record_room;
883         int num_zc = 0;
884         int orig_size;
885         int ret = 0;
886
887         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
888                 return -ENOTSUPP;
889
890         lock_sock(sk);
891
892         /* Wait till there is any pending write on socket */
893         if (unlikely(sk->sk_write_pending)) {
894                 ret = wait_on_pending_writer(sk, &timeo);
895                 if (unlikely(ret))
896                         goto send_end;
897         }
898
899         if (unlikely(msg->msg_controllen)) {
900                 ret = tls_proccess_cmsg(sk, msg, &record_type);
901                 if (ret) {
902                         if (ret == -EINPROGRESS)
903                                 num_async++;
904                         else if (ret != -EAGAIN)
905                                 goto send_end;
906                 }
907         }
908
909         while (msg_data_left(msg)) {
910                 if (sk->sk_err) {
911                         ret = -sk->sk_err;
912                         goto send_end;
913                 }
914
915                 if (ctx->open_rec)
916                         rec = ctx->open_rec;
917                 else
918                         rec = ctx->open_rec = tls_get_rec(sk);
919                 if (!rec) {
920                         ret = -ENOMEM;
921                         goto send_end;
922                 }
923
924                 msg_pl = &rec->msg_plaintext;
925                 msg_en = &rec->msg_encrypted;
926
927                 orig_size = msg_pl->sg.size;
928                 full_record = false;
929                 try_to_copy = msg_data_left(msg);
930                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
931                 if (try_to_copy >= record_room) {
932                         try_to_copy = record_room;
933                         full_record = true;
934                 }
935
936                 required_size = msg_pl->sg.size + try_to_copy +
937                                 prot->overhead_size;
938
939                 if (!sk_stream_memory_free(sk))
940                         goto wait_for_sndbuf;
941
942 alloc_encrypted:
943                 ret = tls_alloc_encrypted_msg(sk, required_size);
944                 if (ret) {
945                         if (ret != -ENOSPC)
946                                 goto wait_for_memory;
947
948                         /* Adjust try_to_copy according to the amount that was
949                          * actually allocated. The difference is due
950                          * to max sg elements limit
951                          */
952                         try_to_copy -= required_size - msg_en->sg.size;
953                         full_record = true;
954                 }
955
956                 if (!is_kvec && (full_record || eor) && !async_capable) {
957                         u32 first = msg_pl->sg.end;
958
959                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
960                                                         msg_pl, try_to_copy);
961                         if (ret)
962                                 goto fallback_to_reg_send;
963
964                         rec->inplace_crypto = 0;
965
966                         num_zc++;
967                         copied += try_to_copy;
968
969                         sk_msg_sg_copy_set(msg_pl, first);
970                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
971                                                   record_type, &copied,
972                                                   msg->msg_flags);
973                         if (ret) {
974                                 if (ret == -EINPROGRESS)
975                                         num_async++;
976                                 else if (ret == -ENOMEM)
977                                         goto wait_for_memory;
978                                 else if (ret == -ENOSPC)
979                                         goto rollback_iter;
980                                 else if (ret != -EAGAIN)
981                                         goto send_end;
982                         }
983                         continue;
984 rollback_iter:
985                         copied -= try_to_copy;
986                         sk_msg_sg_copy_clear(msg_pl, first);
987                         iov_iter_revert(&msg->msg_iter,
988                                         msg_pl->sg.size - orig_size);
989 fallback_to_reg_send:
990                         sk_msg_trim(sk, msg_pl, orig_size);
991                 }
992
993                 required_size = msg_pl->sg.size + try_to_copy;
994
995                 ret = tls_clone_plaintext_msg(sk, required_size);
996                 if (ret) {
997                         if (ret != -ENOSPC)
998                                 goto send_end;
999
1000                         /* Adjust try_to_copy according to the amount that was
1001                          * actually allocated. The difference is due
1002                          * to max sg elements limit
1003                          */
1004                         try_to_copy -= required_size - msg_pl->sg.size;
1005                         full_record = true;
1006                         sk_msg_trim(sk, msg_en,
1007                                     msg_pl->sg.size + prot->overhead_size);
1008                 }
1009
1010                 if (try_to_copy) {
1011                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1012                                                        msg_pl, try_to_copy);
1013                         if (ret < 0)
1014                                 goto trim_sgl;
1015                 }
1016
1017                 /* Open records defined only if successfully copied, otherwise
1018                  * we would trim the sg but not reset the open record frags.
1019                  */
1020                 tls_ctx->pending_open_record_frags = true;
1021                 copied += try_to_copy;
1022                 if (full_record || eor) {
1023                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1024                                                   record_type, &copied,
1025                                                   msg->msg_flags);
1026                         if (ret) {
1027                                 if (ret == -EINPROGRESS)
1028                                         num_async++;
1029                                 else if (ret == -ENOMEM)
1030                                         goto wait_for_memory;
1031                                 else if (ret != -EAGAIN) {
1032                                         if (ret == -ENOSPC)
1033                                                 ret = 0;
1034                                         goto send_end;
1035                                 }
1036                         }
1037                 }
1038
1039                 continue;
1040
1041 wait_for_sndbuf:
1042                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1043 wait_for_memory:
1044                 ret = sk_stream_wait_memory(sk, &timeo);
1045                 if (ret) {
1046 trim_sgl:
1047                         tls_trim_both_msgs(sk, orig_size);
1048                         goto send_end;
1049                 }
1050
1051                 if (msg_en->sg.size < required_size)
1052                         goto alloc_encrypted;
1053         }
1054
1055         if (!num_async) {
1056                 goto send_end;
1057         } else if (num_zc) {
1058                 /* Wait for pending encryptions to get completed */
1059                 smp_store_mb(ctx->async_notify, true);
1060
1061                 if (atomic_read(&ctx->encrypt_pending))
1062                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1063                 else
1064                         reinit_completion(&ctx->async_wait.completion);
1065
1066                 WRITE_ONCE(ctx->async_notify, false);
1067
1068                 if (ctx->async_wait.err) {
1069                         ret = ctx->async_wait.err;
1070                         copied = 0;
1071                 }
1072         }
1073
1074         /* Transmit if any encryptions have completed */
1075         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1076                 cancel_delayed_work(&ctx->tx_work.work);
1077                 tls_tx_records(sk, msg->msg_flags);
1078         }
1079
1080 send_end:
1081         ret = sk_stream_error(sk, msg->msg_flags, ret);
1082
1083         release_sock(sk);
1084         return copied ? copied : ret;
1085 }
1086
1087 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1088                               int offset, size_t size, int flags)
1089 {
1090         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1091         struct tls_context *tls_ctx = tls_get_ctx(sk);
1092         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1093         struct tls_prot_info *prot = &tls_ctx->prot_info;
1094         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1095         struct sk_msg *msg_pl;
1096         struct tls_rec *rec;
1097         int num_async = 0;
1098         size_t copied = 0;
1099         bool full_record;
1100         int record_room;
1101         int ret = 0;
1102         bool eor;
1103
1104         eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1105         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1106
1107         /* Wait till there is any pending write on socket */
1108         if (unlikely(sk->sk_write_pending)) {
1109                 ret = wait_on_pending_writer(sk, &timeo);
1110                 if (unlikely(ret))
1111                         goto sendpage_end;
1112         }
1113
1114         /* Call the sk_stream functions to manage the sndbuf mem. */
1115         while (size > 0) {
1116                 size_t copy, required_size;
1117
1118                 if (sk->sk_err) {
1119                         ret = -sk->sk_err;
1120                         goto sendpage_end;
1121                 }
1122
1123                 if (ctx->open_rec)
1124                         rec = ctx->open_rec;
1125                 else
1126                         rec = ctx->open_rec = tls_get_rec(sk);
1127                 if (!rec) {
1128                         ret = -ENOMEM;
1129                         goto sendpage_end;
1130                 }
1131
1132                 msg_pl = &rec->msg_plaintext;
1133
1134                 full_record = false;
1135                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1136                 copied = 0;
1137                 copy = size;
1138                 if (copy >= record_room) {
1139                         copy = record_room;
1140                         full_record = true;
1141                 }
1142
1143                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1144
1145                 if (!sk_stream_memory_free(sk))
1146                         goto wait_for_sndbuf;
1147 alloc_payload:
1148                 ret = tls_alloc_encrypted_msg(sk, required_size);
1149                 if (ret) {
1150                         if (ret != -ENOSPC)
1151                                 goto wait_for_memory;
1152
1153                         /* Adjust copy according to the amount that was
1154                          * actually allocated. The difference is due
1155                          * to max sg elements limit
1156                          */
1157                         copy -= required_size - msg_pl->sg.size;
1158                         full_record = true;
1159                 }
1160
1161                 sk_msg_page_add(msg_pl, page, copy, offset);
1162                 sk_mem_charge(sk, copy);
1163
1164                 offset += copy;
1165                 size -= copy;
1166                 copied += copy;
1167
1168                 tls_ctx->pending_open_record_frags = true;
1169                 if (full_record || eor || sk_msg_full(msg_pl)) {
1170                         rec->inplace_crypto = 0;
1171                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1172                                                   record_type, &copied, flags);
1173                         if (ret) {
1174                                 if (ret == -EINPROGRESS)
1175                                         num_async++;
1176                                 else if (ret == -ENOMEM)
1177                                         goto wait_for_memory;
1178                                 else if (ret != -EAGAIN) {
1179                                         if (ret == -ENOSPC)
1180                                                 ret = 0;
1181                                         goto sendpage_end;
1182                                 }
1183                         }
1184                 }
1185                 continue;
1186 wait_for_sndbuf:
1187                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1188 wait_for_memory:
1189                 ret = sk_stream_wait_memory(sk, &timeo);
1190                 if (ret) {
1191                         tls_trim_both_msgs(sk, msg_pl->sg.size);
1192                         goto sendpage_end;
1193                 }
1194
1195                 goto alloc_payload;
1196         }
1197
1198         if (num_async) {
1199                 /* Transmit if any encryptions have completed */
1200                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1201                         cancel_delayed_work(&ctx->tx_work.work);
1202                         tls_tx_records(sk, flags);
1203                 }
1204         }
1205 sendpage_end:
1206         ret = sk_stream_error(sk, flags, ret);
1207         return copied ? copied : ret;
1208 }
1209
1210 int tls_sw_sendpage(struct sock *sk, struct page *page,
1211                     int offset, size_t size, int flags)
1212 {
1213         int ret;
1214
1215         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1216                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1217                 return -ENOTSUPP;
1218
1219         lock_sock(sk);
1220         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1221         release_sock(sk);
1222         return ret;
1223 }
1224
1225 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1226                                      int flags, long timeo, int *err)
1227 {
1228         struct tls_context *tls_ctx = tls_get_ctx(sk);
1229         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1230         struct sk_buff *skb;
1231         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1232
1233         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1234                 if (sk->sk_err) {
1235                         *err = sock_error(sk);
1236                         return NULL;
1237                 }
1238
1239                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1240                         return NULL;
1241
1242                 if (sock_flag(sk, SOCK_DONE))
1243                         return NULL;
1244
1245                 if ((flags & MSG_DONTWAIT) || !timeo) {
1246                         *err = -EAGAIN;
1247                         return NULL;
1248                 }
1249
1250                 add_wait_queue(sk_sleep(sk), &wait);
1251                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1252                 sk_wait_event(sk, &timeo,
1253                               ctx->recv_pkt != skb ||
1254                               !sk_psock_queue_empty(psock),
1255                               &wait);
1256                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1257                 remove_wait_queue(sk_sleep(sk), &wait);
1258
1259                 /* Handle signals */
1260                 if (signal_pending(current)) {
1261                         *err = sock_intr_errno(timeo);
1262                         return NULL;
1263                 }
1264         }
1265
1266         return skb;
1267 }
1268
1269 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1270                                int length, int *pages_used,
1271                                unsigned int *size_used,
1272                                struct scatterlist *to,
1273                                int to_max_pages)
1274 {
1275         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1276         struct page *pages[MAX_SKB_FRAGS];
1277         unsigned int size = *size_used;
1278         ssize_t copied, use;
1279         size_t offset;
1280
1281         while (length > 0) {
1282                 i = 0;
1283                 maxpages = to_max_pages - num_elem;
1284                 if (maxpages == 0) {
1285                         rc = -EFAULT;
1286                         goto out;
1287                 }
1288                 copied = iov_iter_get_pages(from, pages,
1289                                             length,
1290                                             maxpages, &offset);
1291                 if (copied <= 0) {
1292                         rc = -EFAULT;
1293                         goto out;
1294                 }
1295
1296                 iov_iter_advance(from, copied);
1297
1298                 length -= copied;
1299                 size += copied;
1300                 while (copied) {
1301                         use = min_t(int, copied, PAGE_SIZE - offset);
1302
1303                         sg_set_page(&to[num_elem],
1304                                     pages[i], use, offset);
1305                         sg_unmark_end(&to[num_elem]);
1306                         /* We do not uncharge memory from this API */
1307
1308                         offset = 0;
1309                         copied -= use;
1310
1311                         i++;
1312                         num_elem++;
1313                 }
1314         }
1315         /* Mark the end in the last sg entry if newly added */
1316         if (num_elem > *pages_used)
1317                 sg_mark_end(&to[num_elem - 1]);
1318 out:
1319         if (rc)
1320                 iov_iter_revert(from, size - *size_used);
1321         *size_used = size;
1322         *pages_used = num_elem;
1323
1324         return rc;
1325 }
1326
1327 /* This function decrypts the input skb into either out_iov or in out_sg
1328  * or in skb buffers itself. The input parameter 'zc' indicates if
1329  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1330  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1331  * NULL, then the decryption happens inside skb buffers itself, i.e.
1332  * zero-copy gets disabled and 'zc' is updated.
1333  */
1334
1335 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1336                             struct iov_iter *out_iov,
1337                             struct scatterlist *out_sg,
1338                             int *chunk, bool *zc, bool async)
1339 {
1340         struct tls_context *tls_ctx = tls_get_ctx(sk);
1341         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1342         struct tls_prot_info *prot = &tls_ctx->prot_info;
1343         struct strp_msg *rxm = strp_msg(skb);
1344         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1345         struct aead_request *aead_req;
1346         struct sk_buff *unused;
1347         u8 *aad, *iv, *mem = NULL;
1348         struct scatterlist *sgin = NULL;
1349         struct scatterlist *sgout = NULL;
1350         const int data_len = rxm->full_len - prot->overhead_size +
1351                              prot->tail_size;
1352         int iv_offset = 0;
1353
1354         if (*zc && (out_iov || out_sg)) {
1355                 if (out_iov)
1356                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1357                 else
1358                         n_sgout = sg_nents(out_sg);
1359                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1360                                  rxm->full_len - prot->prepend_size);
1361         } else {
1362                 n_sgout = 0;
1363                 *zc = false;
1364                 n_sgin = skb_cow_data(skb, 0, &unused);
1365         }
1366
1367         if (n_sgin < 1)
1368                 return -EBADMSG;
1369
1370         /* Increment to accommodate AAD */
1371         n_sgin = n_sgin + 1;
1372
1373         nsg = n_sgin + n_sgout;
1374
1375         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1376         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1377         mem_size = mem_size + prot->aad_size;
1378         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1379
1380         /* Allocate a single block of memory which contains
1381          * aead_req || sgin[] || sgout[] || aad || iv.
1382          * This order achieves correct alignment for aead_req, sgin, sgout.
1383          */
1384         mem = kmalloc(mem_size, sk->sk_allocation);
1385         if (!mem)
1386                 return -ENOMEM;
1387
1388         /* Segment the allocated memory */
1389         aead_req = (struct aead_request *)mem;
1390         sgin = (struct scatterlist *)(mem + aead_size);
1391         sgout = sgin + n_sgin;
1392         aad = (u8 *)(sgout + n_sgout);
1393         iv = aad + prot->aad_size;
1394
1395         /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1396         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1397                 iv[0] = 2;
1398                 iv_offset = 1;
1399         }
1400
1401         /* Prepare IV */
1402         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1403                             iv + iv_offset + prot->salt_size,
1404                             prot->iv_size);
1405         if (err < 0) {
1406                 kfree(mem);
1407                 return err;
1408         }
1409         if (prot->version == TLS_1_3_VERSION)
1410                 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1411                        crypto_aead_ivsize(ctx->aead_recv));
1412         else
1413                 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1414
1415         xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1416
1417         /* Prepare AAD */
1418         tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1419                      prot->tail_size,
1420                      tls_ctx->rx.rec_seq, prot->rec_seq_size,
1421                      ctx->control, prot->version);
1422
1423         /* Prepare sgin */
1424         sg_init_table(sgin, n_sgin);
1425         sg_set_buf(&sgin[0], aad, prot->aad_size);
1426         err = skb_to_sgvec(skb, &sgin[1],
1427                            rxm->offset + prot->prepend_size,
1428                            rxm->full_len - prot->prepend_size);
1429         if (err < 0) {
1430                 kfree(mem);
1431                 return err;
1432         }
1433
1434         if (n_sgout) {
1435                 if (out_iov) {
1436                         sg_init_table(sgout, n_sgout);
1437                         sg_set_buf(&sgout[0], aad, prot->aad_size);
1438
1439                         *chunk = 0;
1440                         err = tls_setup_from_iter(sk, out_iov, data_len,
1441                                                   &pages, chunk, &sgout[1],
1442                                                   (n_sgout - 1));
1443                         if (err < 0)
1444                                 goto fallback_to_reg_recv;
1445                 } else if (out_sg) {
1446                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1447                 } else {
1448                         goto fallback_to_reg_recv;
1449                 }
1450         } else {
1451 fallback_to_reg_recv:
1452                 sgout = sgin;
1453                 pages = 0;
1454                 *chunk = data_len;
1455                 *zc = false;
1456         }
1457
1458         /* Prepare and submit AEAD request */
1459         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1460                                 data_len, aead_req, async);
1461         if (err == -EINPROGRESS)
1462                 return err;
1463
1464         /* Release the pages in case iov was mapped to pages */
1465         for (; pages > 0; pages--)
1466                 put_page(sg_page(&sgout[pages]));
1467
1468         kfree(mem);
1469         return err;
1470 }
1471
1472 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1473                               struct iov_iter *dest, int *chunk, bool *zc,
1474                               bool async)
1475 {
1476         struct tls_context *tls_ctx = tls_get_ctx(sk);
1477         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1478         struct tls_prot_info *prot = &tls_ctx->prot_info;
1479         int version = prot->version;
1480         struct strp_msg *rxm = strp_msg(skb);
1481         int err = 0;
1482
1483         if (!ctx->decrypted) {
1484 #ifdef CONFIG_TLS_DEVICE
1485                 err = tls_device_decrypted(sk, skb);
1486                 if (err < 0)
1487                         return err;
1488 #endif
1489                 /* Still not decrypted after tls_device */
1490                 if (!ctx->decrypted) {
1491                         err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1492                                                async);
1493                         if (err < 0) {
1494                                 if (err == -EINPROGRESS)
1495                                         tls_advance_record_sn(sk, &tls_ctx->rx,
1496                                                               version);
1497
1498                                 return err;
1499                         }
1500                 } else {
1501                         *zc = false;
1502                 }
1503
1504                 rxm->full_len -= padding_length(ctx, tls_ctx, skb);
1505                 rxm->offset += prot->prepend_size;
1506                 rxm->full_len -= prot->overhead_size;
1507                 tls_advance_record_sn(sk, &tls_ctx->rx, version);
1508                 ctx->decrypted = true;
1509                 ctx->saved_data_ready(sk);
1510         } else {
1511                 *zc = false;
1512         }
1513
1514         return err;
1515 }
1516
1517 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1518                 struct scatterlist *sgout)
1519 {
1520         bool zc = true;
1521         int chunk;
1522
1523         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1524 }
1525
1526 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1527                                unsigned int len)
1528 {
1529         struct tls_context *tls_ctx = tls_get_ctx(sk);
1530         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1531
1532         if (skb) {
1533                 struct strp_msg *rxm = strp_msg(skb);
1534
1535                 if (len < rxm->full_len) {
1536                         rxm->offset += len;
1537                         rxm->full_len -= len;
1538                         return false;
1539                 }
1540                 consume_skb(skb);
1541         }
1542
1543         /* Finished with message */
1544         ctx->recv_pkt = NULL;
1545         __strp_unpause(&ctx->strp);
1546
1547         return true;
1548 }
1549
1550 /* This function traverses the rx_list in tls receive context to copies the
1551  * decrypted records into the buffer provided by caller zero copy is not
1552  * true. Further, the records are removed from the rx_list if it is not a peek
1553  * case and the record has been consumed completely.
1554  */
1555 static int process_rx_list(struct tls_sw_context_rx *ctx,
1556                            struct msghdr *msg,
1557                            u8 *control,
1558                            bool *cmsg,
1559                            size_t skip,
1560                            size_t len,
1561                            bool zc,
1562                            bool is_peek)
1563 {
1564         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1565         u8 ctrl = *control;
1566         u8 msgc = *cmsg;
1567         struct tls_msg *tlm;
1568         ssize_t copied = 0;
1569
1570         /* Set the record type in 'control' if caller didn't pass it */
1571         if (!ctrl && skb) {
1572                 tlm = tls_msg(skb);
1573                 ctrl = tlm->control;
1574         }
1575
1576         while (skip && skb) {
1577                 struct strp_msg *rxm = strp_msg(skb);
1578                 tlm = tls_msg(skb);
1579
1580                 /* Cannot process a record of different type */
1581                 if (ctrl != tlm->control)
1582                         return 0;
1583
1584                 if (skip < rxm->full_len)
1585                         break;
1586
1587                 skip = skip - rxm->full_len;
1588                 skb = skb_peek_next(skb, &ctx->rx_list);
1589         }
1590
1591         while (len && skb) {
1592                 struct sk_buff *next_skb;
1593                 struct strp_msg *rxm = strp_msg(skb);
1594                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1595
1596                 tlm = tls_msg(skb);
1597
1598                 /* Cannot process a record of different type */
1599                 if (ctrl != tlm->control)
1600                         return 0;
1601
1602                 /* Set record type if not already done. For a non-data record,
1603                  * do not proceed if record type could not be copied.
1604                  */
1605                 if (!msgc) {
1606                         int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1607                                             sizeof(ctrl), &ctrl);
1608                         msgc = true;
1609                         if (ctrl != TLS_RECORD_TYPE_DATA) {
1610                                 if (cerr || msg->msg_flags & MSG_CTRUNC)
1611                                         return -EIO;
1612
1613                                 *cmsg = msgc;
1614                         }
1615                 }
1616
1617                 if (!zc || (rxm->full_len - skip) > len) {
1618                         int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1619                                                     msg, chunk);
1620                         if (err < 0)
1621                                 return err;
1622                 }
1623
1624                 len = len - chunk;
1625                 copied = copied + chunk;
1626
1627                 /* Consume the data from record if it is non-peek case*/
1628                 if (!is_peek) {
1629                         rxm->offset = rxm->offset + chunk;
1630                         rxm->full_len = rxm->full_len - chunk;
1631
1632                         /* Return if there is unconsumed data in the record */
1633                         if (rxm->full_len - skip)
1634                                 break;
1635                 }
1636
1637                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1638                  * So from the 2nd record, 'skip' should be 0.
1639                  */
1640                 skip = 0;
1641
1642                 if (msg)
1643                         msg->msg_flags |= MSG_EOR;
1644
1645                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1646
1647                 if (!is_peek) {
1648                         skb_unlink(skb, &ctx->rx_list);
1649                         consume_skb(skb);
1650                 }
1651
1652                 skb = next_skb;
1653         }
1654
1655         *control = ctrl;
1656         return copied;
1657 }
1658
1659 int tls_sw_recvmsg(struct sock *sk,
1660                    struct msghdr *msg,
1661                    size_t len,
1662                    int nonblock,
1663                    int flags,
1664                    int *addr_len)
1665 {
1666         struct tls_context *tls_ctx = tls_get_ctx(sk);
1667         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1668         struct tls_prot_info *prot = &tls_ctx->prot_info;
1669         struct sk_psock *psock;
1670         unsigned char control = 0;
1671         ssize_t decrypted = 0;
1672         struct strp_msg *rxm;
1673         struct tls_msg *tlm;
1674         struct sk_buff *skb;
1675         ssize_t copied = 0;
1676         bool cmsg = false;
1677         int target, err = 0;
1678         long timeo;
1679         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1680         bool is_peek = flags & MSG_PEEK;
1681         int num_async = 0;
1682
1683         flags |= nonblock;
1684
1685         if (unlikely(flags & MSG_ERRQUEUE))
1686                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1687
1688         psock = sk_psock_get(sk);
1689         lock_sock(sk);
1690
1691         /* Process pending decrypted records. It must be non-zero-copy */
1692         err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1693                               is_peek);
1694         if (err < 0) {
1695                 tls_err_abort(sk, err);
1696                 goto end;
1697         } else {
1698                 copied = err;
1699         }
1700
1701         len = len - copied;
1702         if (len) {
1703                 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1704                 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1705         } else {
1706                 goto recv_end;
1707         }
1708
1709         do {
1710                 bool retain_skb = false;
1711                 bool zc = false;
1712                 int to_decrypt;
1713                 int chunk = 0;
1714                 bool async_capable;
1715                 bool async = false;
1716
1717                 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1718                 if (!skb) {
1719                         if (psock) {
1720                                 int ret = __tcp_bpf_recvmsg(sk, psock,
1721                                                             msg, len, flags);
1722
1723                                 if (ret > 0) {
1724                                         decrypted += ret;
1725                                         len -= ret;
1726                                         continue;
1727                                 }
1728                         }
1729                         goto recv_end;
1730                 } else {
1731                         tlm = tls_msg(skb);
1732                         if (prot->version == TLS_1_3_VERSION)
1733                                 tlm->control = 0;
1734                         else
1735                                 tlm->control = ctx->control;
1736                 }
1737
1738                 rxm = strp_msg(skb);
1739
1740                 to_decrypt = rxm->full_len - prot->overhead_size;
1741
1742                 if (to_decrypt <= len && !is_kvec && !is_peek &&
1743                     ctx->control == TLS_RECORD_TYPE_DATA &&
1744                     prot->version != TLS_1_3_VERSION)
1745                         zc = true;
1746
1747                 /* Do not use async mode if record is non-data */
1748                 if (ctx->control == TLS_RECORD_TYPE_DATA)
1749                         async_capable = ctx->async_capable;
1750                 else
1751                         async_capable = false;
1752
1753                 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1754                                          &chunk, &zc, async_capable);
1755                 if (err < 0 && err != -EINPROGRESS) {
1756                         tls_err_abort(sk, EBADMSG);
1757                         goto recv_end;
1758                 }
1759
1760                 if (err == -EINPROGRESS) {
1761                         async = true;
1762                         num_async++;
1763                 } else if (prot->version == TLS_1_3_VERSION) {
1764                         tlm->control = ctx->control;
1765                 }
1766
1767                 /* If the type of records being processed is not known yet,
1768                  * set it to record type just dequeued. If it is already known,
1769                  * but does not match the record type just dequeued, go to end.
1770                  * We always get record type here since for tls1.2, record type
1771                  * is known just after record is dequeued from stream parser.
1772                  * For tls1.3, we disable async.
1773                  */
1774
1775                 if (!control)
1776                         control = tlm->control;
1777                 else if (control != tlm->control)
1778                         goto recv_end;
1779
1780                 if (!cmsg) {
1781                         int cerr;
1782
1783                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1784                                         sizeof(control), &control);
1785                         cmsg = true;
1786                         if (control != TLS_RECORD_TYPE_DATA) {
1787                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1788                                         err = -EIO;
1789                                         goto recv_end;
1790                                 }
1791                         }
1792                 }
1793
1794                 if (async)
1795                         goto pick_next_record;
1796
1797                 if (!zc) {
1798                         if (rxm->full_len > len) {
1799                                 retain_skb = true;
1800                                 chunk = len;
1801                         } else {
1802                                 chunk = rxm->full_len;
1803                         }
1804
1805                         err = skb_copy_datagram_msg(skb, rxm->offset,
1806                                                     msg, chunk);
1807                         if (err < 0)
1808                                 goto recv_end;
1809
1810                         if (!is_peek) {
1811                                 rxm->offset = rxm->offset + chunk;
1812                                 rxm->full_len = rxm->full_len - chunk;
1813                         }
1814                 }
1815
1816 pick_next_record:
1817                 if (chunk > len)
1818                         chunk = len;
1819
1820                 decrypted += chunk;
1821                 len -= chunk;
1822
1823                 /* For async or peek case, queue the current skb */
1824                 if (async || is_peek || retain_skb) {
1825                         skb_queue_tail(&ctx->rx_list, skb);
1826                         skb = NULL;
1827                 }
1828
1829                 if (tls_sw_advance_skb(sk, skb, chunk)) {
1830                         /* Return full control message to
1831                          * userspace before trying to parse
1832                          * another message type
1833                          */
1834                         msg->msg_flags |= MSG_EOR;
1835                         if (ctx->control != TLS_RECORD_TYPE_DATA)
1836                                 goto recv_end;
1837                 } else {
1838                         break;
1839                 }
1840
1841                 /* If we have a new message from strparser, continue now. */
1842                 if (decrypted >= target && !ctx->recv_pkt)
1843                         break;
1844         } while (len);
1845
1846 recv_end:
1847         if (num_async) {
1848                 /* Wait for all previously submitted records to be decrypted */
1849                 smp_store_mb(ctx->async_notify, true);
1850                 if (atomic_read(&ctx->decrypt_pending)) {
1851                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1852                         if (err) {
1853                                 /* one of async decrypt failed */
1854                                 tls_err_abort(sk, err);
1855                                 copied = 0;
1856                                 decrypted = 0;
1857                                 goto end;
1858                         }
1859                 } else {
1860                         reinit_completion(&ctx->async_wait.completion);
1861                 }
1862                 WRITE_ONCE(ctx->async_notify, false);
1863
1864                 /* Drain records from the rx_list & copy if required */
1865                 if (is_peek || is_kvec)
1866                         err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1867                                               decrypted, false, is_peek);
1868                 else
1869                         err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1870                                               decrypted, true, is_peek);
1871                 if (err < 0) {
1872                         tls_err_abort(sk, err);
1873                         copied = 0;
1874                         goto end;
1875                 }
1876         }
1877
1878         copied += decrypted;
1879
1880 end:
1881         release_sock(sk);
1882         if (psock)
1883                 sk_psock_put(sk, psock);
1884         return copied ? : err;
1885 }
1886
1887 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1888                            struct pipe_inode_info *pipe,
1889                            size_t len, unsigned int flags)
1890 {
1891         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1892         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1893         struct strp_msg *rxm = NULL;
1894         struct sock *sk = sock->sk;
1895         struct sk_buff *skb;
1896         ssize_t copied = 0;
1897         int err = 0;
1898         long timeo;
1899         int chunk;
1900         bool zc = false;
1901
1902         lock_sock(sk);
1903
1904         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1905
1906         skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1907         if (!skb)
1908                 goto splice_read_end;
1909
1910         if (!ctx->decrypted) {
1911                 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1912
1913                 /* splice does not support reading control messages */
1914                 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1915                         err = -ENOTSUPP;
1916                         goto splice_read_end;
1917                 }
1918
1919                 if (err < 0) {
1920                         tls_err_abort(sk, EBADMSG);
1921                         goto splice_read_end;
1922                 }
1923                 ctx->decrypted = true;
1924         }
1925         rxm = strp_msg(skb);
1926
1927         chunk = min_t(unsigned int, rxm->full_len, len);
1928         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1929         if (copied < 0)
1930                 goto splice_read_end;
1931
1932         if (likely(!(flags & MSG_PEEK)))
1933                 tls_sw_advance_skb(sk, skb, copied);
1934
1935 splice_read_end:
1936         release_sock(sk);
1937         return copied ? : err;
1938 }
1939
1940 bool tls_sw_stream_read(const struct sock *sk)
1941 {
1942         struct tls_context *tls_ctx = tls_get_ctx(sk);
1943         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1944         bool ingress_empty = true;
1945         struct sk_psock *psock;
1946
1947         rcu_read_lock();
1948         psock = sk_psock(sk);
1949         if (psock)
1950                 ingress_empty = list_empty(&psock->ingress_msg);
1951         rcu_read_unlock();
1952
1953         return !ingress_empty || ctx->recv_pkt;
1954 }
1955
1956 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1957 {
1958         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1959         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1960         struct tls_prot_info *prot = &tls_ctx->prot_info;
1961         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1962         struct strp_msg *rxm = strp_msg(skb);
1963         size_t cipher_overhead;
1964         size_t data_len = 0;
1965         int ret;
1966
1967         /* Verify that we have a full TLS header, or wait for more data */
1968         if (rxm->offset + prot->prepend_size > skb->len)
1969                 return 0;
1970
1971         /* Sanity-check size of on-stack buffer. */
1972         if (WARN_ON(prot->prepend_size > sizeof(header))) {
1973                 ret = -EINVAL;
1974                 goto read_failure;
1975         }
1976
1977         /* Linearize header to local buffer */
1978         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
1979
1980         if (ret < 0)
1981                 goto read_failure;
1982
1983         ctx->control = header[0];
1984
1985         data_len = ((header[4] & 0xFF) | (header[3] << 8));
1986
1987         cipher_overhead = prot->tag_size;
1988         if (prot->version != TLS_1_3_VERSION)
1989                 cipher_overhead += prot->iv_size;
1990
1991         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
1992             prot->tail_size) {
1993                 ret = -EMSGSIZE;
1994                 goto read_failure;
1995         }
1996         if (data_len < cipher_overhead) {
1997                 ret = -EBADMSG;
1998                 goto read_failure;
1999         }
2000
2001         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2002         if (header[1] != TLS_1_2_VERSION_MINOR ||
2003             header[2] != TLS_1_2_VERSION_MAJOR) {
2004                 ret = -EINVAL;
2005                 goto read_failure;
2006         }
2007 #ifdef CONFIG_TLS_DEVICE
2008         handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
2009                              *(u64*)tls_ctx->rx.rec_seq);
2010 #endif
2011         return data_len + TLS_HEADER_SIZE;
2012
2013 read_failure:
2014         tls_err_abort(strp->sk, ret);
2015
2016         return ret;
2017 }
2018
2019 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2020 {
2021         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2022         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2023
2024         ctx->decrypted = false;
2025
2026         ctx->recv_pkt = skb;
2027         strp_pause(strp);
2028
2029         ctx->saved_data_ready(strp->sk);
2030 }
2031
2032 static void tls_data_ready(struct sock *sk)
2033 {
2034         struct tls_context *tls_ctx = tls_get_ctx(sk);
2035         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2036         struct sk_psock *psock;
2037
2038         strp_data_ready(&ctx->strp);
2039
2040         psock = sk_psock_get(sk);
2041         if (psock && !list_empty(&psock->ingress_msg)) {
2042                 ctx->saved_data_ready(sk);
2043                 sk_psock_put(sk, psock);
2044         }
2045 }
2046
2047 void tls_sw_free_resources_tx(struct sock *sk)
2048 {
2049         struct tls_context *tls_ctx = tls_get_ctx(sk);
2050         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2051         struct tls_rec *rec, *tmp;
2052
2053         /* Wait for any pending async encryptions to complete */
2054         smp_store_mb(ctx->async_notify, true);
2055         if (atomic_read(&ctx->encrypt_pending))
2056                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2057
2058         release_sock(sk);
2059         cancel_delayed_work_sync(&ctx->tx_work.work);
2060         lock_sock(sk);
2061
2062         /* Tx whatever records we can transmit and abandon the rest */
2063         tls_tx_records(sk, -1);
2064
2065         /* Free up un-sent records in tx_list. First, free
2066          * the partially sent record if any at head of tx_list.
2067          */
2068         if (tls_free_partial_record(sk, tls_ctx)) {
2069                 rec = list_first_entry(&ctx->tx_list,
2070                                        struct tls_rec, list);
2071                 list_del(&rec->list);
2072                 sk_msg_free(sk, &rec->msg_plaintext);
2073                 kfree(rec);
2074         }
2075
2076         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2077                 list_del(&rec->list);
2078                 sk_msg_free(sk, &rec->msg_encrypted);
2079                 sk_msg_free(sk, &rec->msg_plaintext);
2080                 kfree(rec);
2081         }
2082
2083         crypto_free_aead(ctx->aead_send);
2084         tls_free_open_rec(sk);
2085
2086         kfree(ctx);
2087 }
2088
2089 void tls_sw_release_resources_rx(struct sock *sk)
2090 {
2091         struct tls_context *tls_ctx = tls_get_ctx(sk);
2092         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2093
2094         if (ctx->aead_recv) {
2095                 kfree_skb(ctx->recv_pkt);
2096                 ctx->recv_pkt = NULL;
2097                 skb_queue_purge(&ctx->rx_list);
2098                 crypto_free_aead(ctx->aead_recv);
2099                 strp_stop(&ctx->strp);
2100                 write_lock_bh(&sk->sk_callback_lock);
2101                 sk->sk_data_ready = ctx->saved_data_ready;
2102                 write_unlock_bh(&sk->sk_callback_lock);
2103                 release_sock(sk);
2104                 strp_done(&ctx->strp);
2105                 lock_sock(sk);
2106         }
2107 }
2108
2109 void tls_sw_free_resources_rx(struct sock *sk)
2110 {
2111         struct tls_context *tls_ctx = tls_get_ctx(sk);
2112         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2113
2114         tls_sw_release_resources_rx(sk);
2115
2116         kfree(ctx);
2117 }
2118
2119 /* The work handler to transmitt the encrypted records in tx_list */
2120 static void tx_work_handler(struct work_struct *work)
2121 {
2122         struct delayed_work *delayed_work = to_delayed_work(work);
2123         struct tx_work *tx_work = container_of(delayed_work,
2124                                                struct tx_work, work);
2125         struct sock *sk = tx_work->sk;
2126         struct tls_context *tls_ctx = tls_get_ctx(sk);
2127         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2128
2129         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2130                 return;
2131
2132         lock_sock(sk);
2133         tls_tx_records(sk, -1);
2134         release_sock(sk);
2135 }
2136
2137 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2138 {
2139         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2140
2141         /* Schedule the transmission if tx list is ready */
2142         if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) {
2143                 /* Schedule the transmission */
2144                 if (!test_and_set_bit(BIT_TX_SCHEDULED,
2145                                       &tx_ctx->tx_bitmask))
2146                         schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2147         }
2148 }
2149
2150 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2151 {
2152         struct tls_context *tls_ctx = tls_get_ctx(sk);
2153         struct tls_prot_info *prot = &tls_ctx->prot_info;
2154         struct tls_crypto_info *crypto_info;
2155         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2156         struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2157         struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2158         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2159         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2160         struct cipher_context *cctx;
2161         struct crypto_aead **aead;
2162         struct strp_callbacks cb;
2163         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2164         struct crypto_tfm *tfm;
2165         char *iv, *rec_seq, *key, *salt, *cipher_name;
2166         size_t keysize;
2167         int rc = 0;
2168
2169         if (!ctx) {
2170                 rc = -EINVAL;
2171                 goto out;
2172         }
2173
2174         if (tx) {
2175                 if (!ctx->priv_ctx_tx) {
2176                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2177                         if (!sw_ctx_tx) {
2178                                 rc = -ENOMEM;
2179                                 goto out;
2180                         }
2181                         ctx->priv_ctx_tx = sw_ctx_tx;
2182                 } else {
2183                         sw_ctx_tx =
2184                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2185                 }
2186         } else {
2187                 if (!ctx->priv_ctx_rx) {
2188                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2189                         if (!sw_ctx_rx) {
2190                                 rc = -ENOMEM;
2191                                 goto out;
2192                         }
2193                         ctx->priv_ctx_rx = sw_ctx_rx;
2194                 } else {
2195                         sw_ctx_rx =
2196                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2197                 }
2198         }
2199
2200         if (tx) {
2201                 crypto_init_wait(&sw_ctx_tx->async_wait);
2202                 crypto_info = &ctx->crypto_send.info;
2203                 cctx = &ctx->tx;
2204                 aead = &sw_ctx_tx->aead_send;
2205                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2206                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2207                 sw_ctx_tx->tx_work.sk = sk;
2208         } else {
2209                 crypto_init_wait(&sw_ctx_rx->async_wait);
2210                 crypto_info = &ctx->crypto_recv.info;
2211                 cctx = &ctx->rx;
2212                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2213                 aead = &sw_ctx_rx->aead_recv;
2214         }
2215
2216         switch (crypto_info->cipher_type) {
2217         case TLS_CIPHER_AES_GCM_128: {
2218                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2219                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2220                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2221                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2222                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2223                 rec_seq =
2224                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2225                 gcm_128_info =
2226                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2227                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2228                 key = gcm_128_info->key;
2229                 salt = gcm_128_info->salt;
2230                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2231                 cipher_name = "gcm(aes)";
2232                 break;
2233         }
2234         case TLS_CIPHER_AES_GCM_256: {
2235                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2236                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2237                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2238                 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2239                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2240                 rec_seq =
2241                  ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2242                 gcm_256_info =
2243                         (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2244                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2245                 key = gcm_256_info->key;
2246                 salt = gcm_256_info->salt;
2247                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2248                 cipher_name = "gcm(aes)";
2249                 break;
2250         }
2251         case TLS_CIPHER_AES_CCM_128: {
2252                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2253                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2254                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2255                 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2256                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2257                 rec_seq =
2258                 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2259                 ccm_128_info =
2260                 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2261                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2262                 key = ccm_128_info->key;
2263                 salt = ccm_128_info->salt;
2264                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2265                 cipher_name = "ccm(aes)";
2266                 break;
2267         }
2268         default:
2269                 rc = -EINVAL;
2270                 goto free_priv;
2271         }
2272
2273         /* Sanity-check the IV size for stack allocations. */
2274         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
2275                 rc = -EINVAL;
2276                 goto free_priv;
2277         }
2278
2279         if (crypto_info->version == TLS_1_3_VERSION) {
2280                 nonce_size = 0;
2281                 prot->aad_size = TLS_HEADER_SIZE;
2282                 prot->tail_size = 1;
2283         } else {
2284                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2285                 prot->tail_size = 0;
2286         }
2287
2288         prot->version = crypto_info->version;
2289         prot->cipher_type = crypto_info->cipher_type;
2290         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2291         prot->tag_size = tag_size;
2292         prot->overhead_size = prot->prepend_size +
2293                               prot->tag_size + prot->tail_size;
2294         prot->iv_size = iv_size;
2295         prot->salt_size = salt_size;
2296         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2297         if (!cctx->iv) {
2298                 rc = -ENOMEM;
2299                 goto free_priv;
2300         }
2301         /* Note: 128 & 256 bit salt are the same size */
2302         prot->rec_seq_size = rec_seq_size;
2303         memcpy(cctx->iv, salt, salt_size);
2304         memcpy(cctx->iv + salt_size, iv, iv_size);
2305         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2306         if (!cctx->rec_seq) {
2307                 rc = -ENOMEM;
2308                 goto free_iv;
2309         }
2310
2311         if (!*aead) {
2312                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2313                 if (IS_ERR(*aead)) {
2314                         rc = PTR_ERR(*aead);
2315                         *aead = NULL;
2316                         goto free_rec_seq;
2317                 }
2318         }
2319
2320         ctx->push_pending_record = tls_sw_push_pending_record;
2321
2322         rc = crypto_aead_setkey(*aead, key, keysize);
2323
2324         if (rc)
2325                 goto free_aead;
2326
2327         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2328         if (rc)
2329                 goto free_aead;
2330
2331         if (sw_ctx_rx) {
2332                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2333
2334                 if (crypto_info->version == TLS_1_3_VERSION)
2335                         sw_ctx_rx->async_capable = false;
2336                 else
2337                         sw_ctx_rx->async_capable =
2338                                 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2339
2340                 /* Set up strparser */
2341                 memset(&cb, 0, sizeof(cb));
2342                 cb.rcv_msg = tls_queue;
2343                 cb.parse_msg = tls_read_size;
2344
2345                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2346
2347                 write_lock_bh(&sk->sk_callback_lock);
2348                 sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
2349                 sk->sk_data_ready = tls_data_ready;
2350                 write_unlock_bh(&sk->sk_callback_lock);
2351
2352                 strp_check_rcv(&sw_ctx_rx->strp);
2353         }
2354
2355         goto out;
2356
2357 free_aead:
2358         crypto_free_aead(*aead);
2359         *aead = NULL;
2360 free_rec_seq:
2361         kfree(cctx->rec_seq);
2362         cctx->rec_seq = NULL;
2363 free_iv:
2364         kfree(cctx->iv);
2365         cctx->iv = NULL;
2366 free_priv:
2367         if (tx) {
2368                 kfree(ctx->priv_ctx_tx);
2369                 ctx->priv_ctx_tx = NULL;
2370         } else {
2371                 kfree(ctx->priv_ctx_rx);
2372                 ctx->priv_ctx_rx = NULL;
2373         }
2374 out:
2375         return rc;
2376 }