]> asedeno.scripts.mit.edu Git - linux.git/blob - net/tls/tls_sw.c
Merge branches 'for-4.20/upstream-fixes', 'for-4.21/core', 'for-4.21/hid-asus', ...
[linux.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41
42 #include <net/strparser.h>
43 #include <net/tls.h>
44
45 #define MAX_IV_SIZE     TLS_CIPHER_AES_GCM_128_IV_SIZE
46
47 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
48                      unsigned int recursion_level)
49 {
50         int start = skb_headlen(skb);
51         int i, chunk = start - offset;
52         struct sk_buff *frag_iter;
53         int elt = 0;
54
55         if (unlikely(recursion_level >= 24))
56                 return -EMSGSIZE;
57
58         if (chunk > 0) {
59                 if (chunk > len)
60                         chunk = len;
61                 elt++;
62                 len -= chunk;
63                 if (len == 0)
64                         return elt;
65                 offset += chunk;
66         }
67
68         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
69                 int end;
70
71                 WARN_ON(start > offset + len);
72
73                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
74                 chunk = end - offset;
75                 if (chunk > 0) {
76                         if (chunk > len)
77                                 chunk = len;
78                         elt++;
79                         len -= chunk;
80                         if (len == 0)
81                                 return elt;
82                         offset += chunk;
83                 }
84                 start = end;
85         }
86
87         if (unlikely(skb_has_frag_list(skb))) {
88                 skb_walk_frags(skb, frag_iter) {
89                         int end, ret;
90
91                         WARN_ON(start > offset + len);
92
93                         end = start + frag_iter->len;
94                         chunk = end - offset;
95                         if (chunk > 0) {
96                                 if (chunk > len)
97                                         chunk = len;
98                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
99                                                 recursion_level + 1);
100                                 if (unlikely(ret < 0))
101                                         return ret;
102                                 elt += ret;
103                                 len -= chunk;
104                                 if (len == 0)
105                                         return elt;
106                                 offset += chunk;
107                         }
108                         start = end;
109                 }
110         }
111         BUG_ON(len);
112         return elt;
113 }
114
115 /* Return the number of scatterlist elements required to completely map the
116  * skb, or -EMSGSIZE if the recursion depth is exceeded.
117  */
118 static int skb_nsg(struct sk_buff *skb, int offset, int len)
119 {
120         return __skb_nsg(skb, offset, len, 0);
121 }
122
123 static void tls_decrypt_done(struct crypto_async_request *req, int err)
124 {
125         struct aead_request *aead_req = (struct aead_request *)req;
126         struct scatterlist *sgout = aead_req->dst;
127         struct tls_sw_context_rx *ctx;
128         struct tls_context *tls_ctx;
129         struct scatterlist *sg;
130         struct sk_buff *skb;
131         unsigned int pages;
132         int pending;
133
134         skb = (struct sk_buff *)req->data;
135         tls_ctx = tls_get_ctx(skb->sk);
136         ctx = tls_sw_ctx_rx(tls_ctx);
137         pending = atomic_dec_return(&ctx->decrypt_pending);
138
139         /* Propagate if there was an err */
140         if (err) {
141                 ctx->async_wait.err = err;
142                 tls_err_abort(skb->sk, err);
143         }
144
145         /* After using skb->sk to propagate sk through crypto async callback
146          * we need to NULL it again.
147          */
148         skb->sk = NULL;
149
150         /* Release the skb, pages and memory allocated for crypto req */
151         kfree_skb(skb);
152
153         /* Skip the first S/G entry as it points to AAD */
154         for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
155                 if (!sg)
156                         break;
157                 put_page(sg_page(sg));
158         }
159
160         kfree(aead_req);
161
162         if (!pending && READ_ONCE(ctx->async_notify))
163                 complete(&ctx->async_wait.completion);
164 }
165
166 static int tls_do_decryption(struct sock *sk,
167                              struct sk_buff *skb,
168                              struct scatterlist *sgin,
169                              struct scatterlist *sgout,
170                              char *iv_recv,
171                              size_t data_len,
172                              struct aead_request *aead_req,
173                              bool async)
174 {
175         struct tls_context *tls_ctx = tls_get_ctx(sk);
176         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
177         int ret;
178
179         aead_request_set_tfm(aead_req, ctx->aead_recv);
180         aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
181         aead_request_set_crypt(aead_req, sgin, sgout,
182                                data_len + tls_ctx->rx.tag_size,
183                                (u8 *)iv_recv);
184
185         if (async) {
186                 /* Using skb->sk to push sk through to crypto async callback
187                  * handler. This allows propagating errors up to the socket
188                  * if needed. It _must_ be cleared in the async handler
189                  * before kfree_skb is called. We _know_ skb->sk is NULL
190                  * because it is a clone from strparser.
191                  */
192                 skb->sk = sk;
193                 aead_request_set_callback(aead_req,
194                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
195                                           tls_decrypt_done, skb);
196                 atomic_inc(&ctx->decrypt_pending);
197         } else {
198                 aead_request_set_callback(aead_req,
199                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
200                                           crypto_req_done, &ctx->async_wait);
201         }
202
203         ret = crypto_aead_decrypt(aead_req);
204         if (ret == -EINPROGRESS) {
205                 if (async)
206                         return ret;
207
208                 ret = crypto_wait_req(ret, &ctx->async_wait);
209         }
210
211         if (async)
212                 atomic_dec(&ctx->decrypt_pending);
213
214         return ret;
215 }
216
217 static void tls_trim_both_msgs(struct sock *sk, int target_size)
218 {
219         struct tls_context *tls_ctx = tls_get_ctx(sk);
220         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
221         struct tls_rec *rec = ctx->open_rec;
222
223         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
224         if (target_size > 0)
225                 target_size += tls_ctx->tx.overhead_size;
226         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
227 }
228
229 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
230 {
231         struct tls_context *tls_ctx = tls_get_ctx(sk);
232         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
233         struct tls_rec *rec = ctx->open_rec;
234         struct sk_msg *msg_en = &rec->msg_encrypted;
235
236         return sk_msg_alloc(sk, msg_en, len, 0);
237 }
238
239 static int tls_clone_plaintext_msg(struct sock *sk, int required)
240 {
241         struct tls_context *tls_ctx = tls_get_ctx(sk);
242         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
243         struct tls_rec *rec = ctx->open_rec;
244         struct sk_msg *msg_pl = &rec->msg_plaintext;
245         struct sk_msg *msg_en = &rec->msg_encrypted;
246         int skip, len;
247
248         /* We add page references worth len bytes from encrypted sg
249          * at the end of plaintext sg. It is guaranteed that msg_en
250          * has enough required room (ensured by caller).
251          */
252         len = required - msg_pl->sg.size;
253
254         /* Skip initial bytes in msg_en's data to be able to use
255          * same offset of both plain and encrypted data.
256          */
257         skip = tls_ctx->tx.prepend_size + msg_pl->sg.size;
258
259         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
260 }
261
262 static struct tls_rec *tls_get_rec(struct sock *sk)
263 {
264         struct tls_context *tls_ctx = tls_get_ctx(sk);
265         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
266         struct sk_msg *msg_pl, *msg_en;
267         struct tls_rec *rec;
268         int mem_size;
269
270         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
271
272         rec = kzalloc(mem_size, sk->sk_allocation);
273         if (!rec)
274                 return NULL;
275
276         msg_pl = &rec->msg_plaintext;
277         msg_en = &rec->msg_encrypted;
278
279         sk_msg_init(msg_pl);
280         sk_msg_init(msg_en);
281
282         sg_init_table(rec->sg_aead_in, 2);
283         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space,
284                    sizeof(rec->aad_space));
285         sg_unmark_end(&rec->sg_aead_in[1]);
286
287         sg_init_table(rec->sg_aead_out, 2);
288         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space,
289                    sizeof(rec->aad_space));
290         sg_unmark_end(&rec->sg_aead_out[1]);
291
292         return rec;
293 }
294
295 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
296 {
297         sk_msg_free(sk, &rec->msg_encrypted);
298         sk_msg_free(sk, &rec->msg_plaintext);
299         kfree(rec);
300 }
301
302 static void tls_free_open_rec(struct sock *sk)
303 {
304         struct tls_context *tls_ctx = tls_get_ctx(sk);
305         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
306         struct tls_rec *rec = ctx->open_rec;
307
308         if (rec) {
309                 tls_free_rec(sk, rec);
310                 ctx->open_rec = NULL;
311         }
312 }
313
314 int tls_tx_records(struct sock *sk, int flags)
315 {
316         struct tls_context *tls_ctx = tls_get_ctx(sk);
317         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
318         struct tls_rec *rec, *tmp;
319         struct sk_msg *msg_en;
320         int tx_flags, rc = 0;
321
322         if (tls_is_partially_sent_record(tls_ctx)) {
323                 rec = list_first_entry(&ctx->tx_list,
324                                        struct tls_rec, list);
325
326                 if (flags == -1)
327                         tx_flags = rec->tx_flags;
328                 else
329                         tx_flags = flags;
330
331                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
332                 if (rc)
333                         goto tx_err;
334
335                 /* Full record has been transmitted.
336                  * Remove the head of tx_list
337                  */
338                 list_del(&rec->list);
339                 sk_msg_free(sk, &rec->msg_plaintext);
340                 kfree(rec);
341         }
342
343         /* Tx all ready records */
344         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
345                 if (READ_ONCE(rec->tx_ready)) {
346                         if (flags == -1)
347                                 tx_flags = rec->tx_flags;
348                         else
349                                 tx_flags = flags;
350
351                         msg_en = &rec->msg_encrypted;
352                         rc = tls_push_sg(sk, tls_ctx,
353                                          &msg_en->sg.data[msg_en->sg.curr],
354                                          0, tx_flags);
355                         if (rc)
356                                 goto tx_err;
357
358                         list_del(&rec->list);
359                         sk_msg_free(sk, &rec->msg_plaintext);
360                         kfree(rec);
361                 } else {
362                         break;
363                 }
364         }
365
366 tx_err:
367         if (rc < 0 && rc != -EAGAIN)
368                 tls_err_abort(sk, EBADMSG);
369
370         return rc;
371 }
372
373 static void tls_encrypt_done(struct crypto_async_request *req, int err)
374 {
375         struct aead_request *aead_req = (struct aead_request *)req;
376         struct sock *sk = req->data;
377         struct tls_context *tls_ctx = tls_get_ctx(sk);
378         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379         struct scatterlist *sge;
380         struct sk_msg *msg_en;
381         struct tls_rec *rec;
382         bool ready = false;
383         int pending;
384
385         rec = container_of(aead_req, struct tls_rec, aead_req);
386         msg_en = &rec->msg_encrypted;
387
388         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
389         sge->offset -= tls_ctx->tx.prepend_size;
390         sge->length += tls_ctx->tx.prepend_size;
391
392         /* Check if error is previously set on socket */
393         if (err || sk->sk_err) {
394                 rec = NULL;
395
396                 /* If err is already set on socket, return the same code */
397                 if (sk->sk_err) {
398                         ctx->async_wait.err = sk->sk_err;
399                 } else {
400                         ctx->async_wait.err = err;
401                         tls_err_abort(sk, err);
402                 }
403         }
404
405         if (rec) {
406                 struct tls_rec *first_rec;
407
408                 /* Mark the record as ready for transmission */
409                 smp_store_mb(rec->tx_ready, true);
410
411                 /* If received record is at head of tx_list, schedule tx */
412                 first_rec = list_first_entry(&ctx->tx_list,
413                                              struct tls_rec, list);
414                 if (rec == first_rec)
415                         ready = true;
416         }
417
418         pending = atomic_dec_return(&ctx->encrypt_pending);
419
420         if (!pending && READ_ONCE(ctx->async_notify))
421                 complete(&ctx->async_wait.completion);
422
423         if (!ready)
424                 return;
425
426         /* Schedule the transmission */
427         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
428                 schedule_delayed_work(&ctx->tx_work.work, 1);
429 }
430
431 static int tls_do_encryption(struct sock *sk,
432                              struct tls_context *tls_ctx,
433                              struct tls_sw_context_tx *ctx,
434                              struct aead_request *aead_req,
435                              size_t data_len, u32 start)
436 {
437         struct tls_rec *rec = ctx->open_rec;
438         struct sk_msg *msg_en = &rec->msg_encrypted;
439         struct scatterlist *sge = sk_msg_elem(msg_en, start);
440         int rc;
441
442         sge->offset += tls_ctx->tx.prepend_size;
443         sge->length -= tls_ctx->tx.prepend_size;
444
445         msg_en->sg.curr = start;
446
447         aead_request_set_tfm(aead_req, ctx->aead_send);
448         aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
449         aead_request_set_crypt(aead_req, rec->sg_aead_in,
450                                rec->sg_aead_out,
451                                data_len, tls_ctx->tx.iv);
452
453         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
454                                   tls_encrypt_done, sk);
455
456         /* Add the record in tx_list */
457         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
458         atomic_inc(&ctx->encrypt_pending);
459
460         rc = crypto_aead_encrypt(aead_req);
461         if (!rc || rc != -EINPROGRESS) {
462                 atomic_dec(&ctx->encrypt_pending);
463                 sge->offset -= tls_ctx->tx.prepend_size;
464                 sge->length += tls_ctx->tx.prepend_size;
465         }
466
467         if (!rc) {
468                 WRITE_ONCE(rec->tx_ready, true);
469         } else if (rc != -EINPROGRESS) {
470                 list_del(&rec->list);
471                 return rc;
472         }
473
474         /* Unhook the record from context if encryption is not failure */
475         ctx->open_rec = NULL;
476         tls_advance_record_sn(sk, &tls_ctx->tx);
477         return rc;
478 }
479
480 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
481                                  struct tls_rec **to, struct sk_msg *msg_opl,
482                                  struct sk_msg *msg_oen, u32 split_point,
483                                  u32 tx_overhead_size, u32 *orig_end)
484 {
485         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
486         struct scatterlist *sge, *osge, *nsge;
487         u32 orig_size = msg_opl->sg.size;
488         struct scatterlist tmp = { };
489         struct sk_msg *msg_npl;
490         struct tls_rec *new;
491         int ret;
492
493         new = tls_get_rec(sk);
494         if (!new)
495                 return -ENOMEM;
496         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
497                            tx_overhead_size, 0);
498         if (ret < 0) {
499                 tls_free_rec(sk, new);
500                 return ret;
501         }
502
503         *orig_end = msg_opl->sg.end;
504         i = msg_opl->sg.start;
505         sge = sk_msg_elem(msg_opl, i);
506         while (apply && sge->length) {
507                 if (sge->length > apply) {
508                         u32 len = sge->length - apply;
509
510                         get_page(sg_page(sge));
511                         sg_set_page(&tmp, sg_page(sge), len,
512                                     sge->offset + apply);
513                         sge->length = apply;
514                         bytes += apply;
515                         apply = 0;
516                 } else {
517                         apply -= sge->length;
518                         bytes += sge->length;
519                 }
520
521                 sk_msg_iter_var_next(i);
522                 if (i == msg_opl->sg.end)
523                         break;
524                 sge = sk_msg_elem(msg_opl, i);
525         }
526
527         msg_opl->sg.end = i;
528         msg_opl->sg.curr = i;
529         msg_opl->sg.copybreak = 0;
530         msg_opl->apply_bytes = 0;
531         msg_opl->sg.size = bytes;
532
533         msg_npl = &new->msg_plaintext;
534         msg_npl->apply_bytes = apply;
535         msg_npl->sg.size = orig_size - bytes;
536
537         j = msg_npl->sg.start;
538         nsge = sk_msg_elem(msg_npl, j);
539         if (tmp.length) {
540                 memcpy(nsge, &tmp, sizeof(*nsge));
541                 sk_msg_iter_var_next(j);
542                 nsge = sk_msg_elem(msg_npl, j);
543         }
544
545         osge = sk_msg_elem(msg_opl, i);
546         while (osge->length) {
547                 memcpy(nsge, osge, sizeof(*nsge));
548                 sg_unmark_end(nsge);
549                 sk_msg_iter_var_next(i);
550                 sk_msg_iter_var_next(j);
551                 if (i == *orig_end)
552                         break;
553                 osge = sk_msg_elem(msg_opl, i);
554                 nsge = sk_msg_elem(msg_npl, j);
555         }
556
557         msg_npl->sg.end = j;
558         msg_npl->sg.curr = j;
559         msg_npl->sg.copybreak = 0;
560
561         *to = new;
562         return 0;
563 }
564
565 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
566                                   struct tls_rec *from, u32 orig_end)
567 {
568         struct sk_msg *msg_npl = &from->msg_plaintext;
569         struct sk_msg *msg_opl = &to->msg_plaintext;
570         struct scatterlist *osge, *nsge;
571         u32 i, j;
572
573         i = msg_opl->sg.end;
574         sk_msg_iter_var_prev(i);
575         j = msg_npl->sg.start;
576
577         osge = sk_msg_elem(msg_opl, i);
578         nsge = sk_msg_elem(msg_npl, j);
579
580         if (sg_page(osge) == sg_page(nsge) &&
581             osge->offset + osge->length == nsge->offset) {
582                 osge->length += nsge->length;
583                 put_page(sg_page(nsge));
584         }
585
586         msg_opl->sg.end = orig_end;
587         msg_opl->sg.curr = orig_end;
588         msg_opl->sg.copybreak = 0;
589         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
590         msg_opl->sg.size += msg_npl->sg.size;
591
592         sk_msg_free(sk, &to->msg_encrypted);
593         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
594
595         kfree(from);
596 }
597
598 static int tls_push_record(struct sock *sk, int flags,
599                            unsigned char record_type)
600 {
601         struct tls_context *tls_ctx = tls_get_ctx(sk);
602         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
603         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
604         u32 i, split_point, uninitialized_var(orig_end);
605         struct sk_msg *msg_pl, *msg_en;
606         struct aead_request *req;
607         bool split;
608         int rc;
609
610         if (!rec)
611                 return 0;
612
613         msg_pl = &rec->msg_plaintext;
614         msg_en = &rec->msg_encrypted;
615
616         split_point = msg_pl->apply_bytes;
617         split = split_point && split_point < msg_pl->sg.size;
618         if (split) {
619                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
620                                            split_point, tls_ctx->tx.overhead_size,
621                                            &orig_end);
622                 if (rc < 0)
623                         return rc;
624                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
625                             tls_ctx->tx.overhead_size);
626         }
627
628         rec->tx_flags = flags;
629         req = &rec->aead_req;
630
631         i = msg_pl->sg.end;
632         sk_msg_iter_var_prev(i);
633         sg_mark_end(sk_msg_elem(msg_pl, i));
634
635         i = msg_pl->sg.start;
636         sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
637                  &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
638
639         i = msg_en->sg.end;
640         sk_msg_iter_var_prev(i);
641         sg_mark_end(sk_msg_elem(msg_en, i));
642
643         i = msg_en->sg.start;
644         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
645
646         tls_make_aad(rec->aad_space, msg_pl->sg.size,
647                      tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
648                      record_type);
649
650         tls_fill_prepend(tls_ctx,
651                          page_address(sg_page(&msg_en->sg.data[i])) +
652                          msg_en->sg.data[i].offset, msg_pl->sg.size,
653                          record_type);
654
655         tls_ctx->pending_open_record_frags = false;
656
657         rc = tls_do_encryption(sk, tls_ctx, ctx, req, msg_pl->sg.size, i);
658         if (rc < 0) {
659                 if (rc != -EINPROGRESS) {
660                         tls_err_abort(sk, EBADMSG);
661                         if (split) {
662                                 tls_ctx->pending_open_record_frags = true;
663                                 tls_merge_open_record(sk, rec, tmp, orig_end);
664                         }
665                 }
666                 return rc;
667         } else if (split) {
668                 msg_pl = &tmp->msg_plaintext;
669                 msg_en = &tmp->msg_encrypted;
670                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
671                             tls_ctx->tx.overhead_size);
672                 tls_ctx->pending_open_record_frags = true;
673                 ctx->open_rec = tmp;
674         }
675
676         return tls_tx_records(sk, flags);
677 }
678
679 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
680                                bool full_record, u8 record_type,
681                                size_t *copied, int flags)
682 {
683         struct tls_context *tls_ctx = tls_get_ctx(sk);
684         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
685         struct sk_msg msg_redir = { };
686         struct sk_psock *psock;
687         struct sock *sk_redir;
688         struct tls_rec *rec;
689         int err = 0, send;
690         bool enospc;
691
692         psock = sk_psock_get(sk);
693         if (!psock)
694                 return tls_push_record(sk, flags, record_type);
695 more_data:
696         enospc = sk_msg_full(msg);
697         if (psock->eval == __SK_NONE)
698                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
699         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
700             !enospc && !full_record) {
701                 err = -ENOSPC;
702                 goto out_err;
703         }
704         msg->cork_bytes = 0;
705         send = msg->sg.size;
706         if (msg->apply_bytes && msg->apply_bytes < send)
707                 send = msg->apply_bytes;
708
709         switch (psock->eval) {
710         case __SK_PASS:
711                 err = tls_push_record(sk, flags, record_type);
712                 if (err < 0) {
713                         *copied -= sk_msg_free(sk, msg);
714                         tls_free_open_rec(sk);
715                         goto out_err;
716                 }
717                 break;
718         case __SK_REDIRECT:
719                 sk_redir = psock->sk_redir;
720                 memcpy(&msg_redir, msg, sizeof(*msg));
721                 if (msg->apply_bytes < send)
722                         msg->apply_bytes = 0;
723                 else
724                         msg->apply_bytes -= send;
725                 sk_msg_return_zero(sk, msg, send);
726                 msg->sg.size -= send;
727                 release_sock(sk);
728                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
729                 lock_sock(sk);
730                 if (err < 0) {
731                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
732                         msg->sg.size = 0;
733                 }
734                 if (msg->sg.size == 0)
735                         tls_free_open_rec(sk);
736                 break;
737         case __SK_DROP:
738         default:
739                 sk_msg_free_partial(sk, msg, send);
740                 if (msg->apply_bytes < send)
741                         msg->apply_bytes = 0;
742                 else
743                         msg->apply_bytes -= send;
744                 if (msg->sg.size == 0)
745                         tls_free_open_rec(sk);
746                 *copied -= send;
747                 err = -EACCES;
748         }
749
750         if (likely(!err)) {
751                 bool reset_eval = !ctx->open_rec;
752
753                 rec = ctx->open_rec;
754                 if (rec) {
755                         msg = &rec->msg_plaintext;
756                         if (!msg->apply_bytes)
757                                 reset_eval = true;
758                 }
759                 if (reset_eval) {
760                         psock->eval = __SK_NONE;
761                         if (psock->sk_redir) {
762                                 sock_put(psock->sk_redir);
763                                 psock->sk_redir = NULL;
764                         }
765                 }
766                 if (rec)
767                         goto more_data;
768         }
769  out_err:
770         sk_psock_put(sk, psock);
771         return err;
772 }
773
774 static int tls_sw_push_pending_record(struct sock *sk, int flags)
775 {
776         struct tls_context *tls_ctx = tls_get_ctx(sk);
777         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
778         struct tls_rec *rec = ctx->open_rec;
779         struct sk_msg *msg_pl;
780         size_t copied;
781
782         if (!rec)
783                 return 0;
784
785         msg_pl = &rec->msg_plaintext;
786         copied = msg_pl->sg.size;
787         if (!copied)
788                 return 0;
789
790         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
791                                    &copied, flags);
792 }
793
794 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
795 {
796         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
797         struct tls_context *tls_ctx = tls_get_ctx(sk);
798         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
799         struct crypto_tfm *tfm = crypto_aead_tfm(ctx->aead_send);
800         bool async_capable = tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
801         unsigned char record_type = TLS_RECORD_TYPE_DATA;
802         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
803         bool eor = !(msg->msg_flags & MSG_MORE);
804         size_t try_to_copy, copied = 0;
805         struct sk_msg *msg_pl, *msg_en;
806         struct tls_rec *rec;
807         int required_size;
808         int num_async = 0;
809         bool full_record;
810         int record_room;
811         int num_zc = 0;
812         int orig_size;
813         int ret = 0;
814
815         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
816                 return -ENOTSUPP;
817
818         lock_sock(sk);
819
820         /* Wait till there is any pending write on socket */
821         if (unlikely(sk->sk_write_pending)) {
822                 ret = wait_on_pending_writer(sk, &timeo);
823                 if (unlikely(ret))
824                         goto send_end;
825         }
826
827         if (unlikely(msg->msg_controllen)) {
828                 ret = tls_proccess_cmsg(sk, msg, &record_type);
829                 if (ret) {
830                         if (ret == -EINPROGRESS)
831                                 num_async++;
832                         else if (ret != -EAGAIN)
833                                 goto send_end;
834                 }
835         }
836
837         while (msg_data_left(msg)) {
838                 if (sk->sk_err) {
839                         ret = -sk->sk_err;
840                         goto send_end;
841                 }
842
843                 if (ctx->open_rec)
844                         rec = ctx->open_rec;
845                 else
846                         rec = ctx->open_rec = tls_get_rec(sk);
847                 if (!rec) {
848                         ret = -ENOMEM;
849                         goto send_end;
850                 }
851
852                 msg_pl = &rec->msg_plaintext;
853                 msg_en = &rec->msg_encrypted;
854
855                 orig_size = msg_pl->sg.size;
856                 full_record = false;
857                 try_to_copy = msg_data_left(msg);
858                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
859                 if (try_to_copy >= record_room) {
860                         try_to_copy = record_room;
861                         full_record = true;
862                 }
863
864                 required_size = msg_pl->sg.size + try_to_copy +
865                                 tls_ctx->tx.overhead_size;
866
867                 if (!sk_stream_memory_free(sk))
868                         goto wait_for_sndbuf;
869
870 alloc_encrypted:
871                 ret = tls_alloc_encrypted_msg(sk, required_size);
872                 if (ret) {
873                         if (ret != -ENOSPC)
874                                 goto wait_for_memory;
875
876                         /* Adjust try_to_copy according to the amount that was
877                          * actually allocated. The difference is due
878                          * to max sg elements limit
879                          */
880                         try_to_copy -= required_size - msg_en->sg.size;
881                         full_record = true;
882                 }
883
884                 if (!is_kvec && (full_record || eor) && !async_capable) {
885                         u32 first = msg_pl->sg.end;
886
887                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
888                                                         msg_pl, try_to_copy);
889                         if (ret)
890                                 goto fallback_to_reg_send;
891
892                         rec->inplace_crypto = 0;
893
894                         num_zc++;
895                         copied += try_to_copy;
896
897                         sk_msg_sg_copy_set(msg_pl, first);
898                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
899                                                   record_type, &copied,
900                                                   msg->msg_flags);
901                         if (ret) {
902                                 if (ret == -EINPROGRESS)
903                                         num_async++;
904                                 else if (ret == -ENOMEM)
905                                         goto wait_for_memory;
906                                 else if (ret == -ENOSPC)
907                                         goto rollback_iter;
908                                 else if (ret != -EAGAIN)
909                                         goto send_end;
910                         }
911                         continue;
912 rollback_iter:
913                         copied -= try_to_copy;
914                         sk_msg_sg_copy_clear(msg_pl, first);
915                         iov_iter_revert(&msg->msg_iter,
916                                         msg_pl->sg.size - orig_size);
917 fallback_to_reg_send:
918                         sk_msg_trim(sk, msg_pl, orig_size);
919                 }
920
921                 required_size = msg_pl->sg.size + try_to_copy;
922
923                 ret = tls_clone_plaintext_msg(sk, required_size);
924                 if (ret) {
925                         if (ret != -ENOSPC)
926                                 goto send_end;
927
928                         /* Adjust try_to_copy according to the amount that was
929                          * actually allocated. The difference is due
930                          * to max sg elements limit
931                          */
932                         try_to_copy -= required_size - msg_pl->sg.size;
933                         full_record = true;
934                         sk_msg_trim(sk, msg_en, msg_pl->sg.size +
935                                     tls_ctx->tx.overhead_size);
936                 }
937
938                 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, msg_pl,
939                                                try_to_copy);
940                 if (ret < 0)
941                         goto trim_sgl;
942
943                 /* Open records defined only if successfully copied, otherwise
944                  * we would trim the sg but not reset the open record frags.
945                  */
946                 tls_ctx->pending_open_record_frags = true;
947                 copied += try_to_copy;
948                 if (full_record || eor) {
949                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
950                                                   record_type, &copied,
951                                                   msg->msg_flags);
952                         if (ret) {
953                                 if (ret == -EINPROGRESS)
954                                         num_async++;
955                                 else if (ret == -ENOMEM)
956                                         goto wait_for_memory;
957                                 else if (ret != -EAGAIN) {
958                                         if (ret == -ENOSPC)
959                                                 ret = 0;
960                                         goto send_end;
961                                 }
962                         }
963                 }
964
965                 continue;
966
967 wait_for_sndbuf:
968                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
969 wait_for_memory:
970                 ret = sk_stream_wait_memory(sk, &timeo);
971                 if (ret) {
972 trim_sgl:
973                         tls_trim_both_msgs(sk, orig_size);
974                         goto send_end;
975                 }
976
977                 if (msg_en->sg.size < required_size)
978                         goto alloc_encrypted;
979         }
980
981         if (!num_async) {
982                 goto send_end;
983         } else if (num_zc) {
984                 /* Wait for pending encryptions to get completed */
985                 smp_store_mb(ctx->async_notify, true);
986
987                 if (atomic_read(&ctx->encrypt_pending))
988                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
989                 else
990                         reinit_completion(&ctx->async_wait.completion);
991
992                 WRITE_ONCE(ctx->async_notify, false);
993
994                 if (ctx->async_wait.err) {
995                         ret = ctx->async_wait.err;
996                         copied = 0;
997                 }
998         }
999
1000         /* Transmit if any encryptions have completed */
1001         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1002                 cancel_delayed_work(&ctx->tx_work.work);
1003                 tls_tx_records(sk, msg->msg_flags);
1004         }
1005
1006 send_end:
1007         ret = sk_stream_error(sk, msg->msg_flags, ret);
1008
1009         release_sock(sk);
1010         return copied ? copied : ret;
1011 }
1012
1013 int tls_sw_sendpage(struct sock *sk, struct page *page,
1014                     int offset, size_t size, int flags)
1015 {
1016         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1017         struct tls_context *tls_ctx = tls_get_ctx(sk);
1018         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1019         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1020         struct sk_msg *msg_pl;
1021         struct tls_rec *rec;
1022         int num_async = 0;
1023         size_t copied = 0;
1024         bool full_record;
1025         int record_room;
1026         int ret = 0;
1027         bool eor;
1028
1029         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1030                       MSG_SENDPAGE_NOTLAST))
1031                 return -ENOTSUPP;
1032
1033         /* No MSG_EOR from splice, only look at MSG_MORE */
1034         eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1035
1036         lock_sock(sk);
1037
1038         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1039
1040         /* Wait till there is any pending write on socket */
1041         if (unlikely(sk->sk_write_pending)) {
1042                 ret = wait_on_pending_writer(sk, &timeo);
1043                 if (unlikely(ret))
1044                         goto sendpage_end;
1045         }
1046
1047         /* Call the sk_stream functions to manage the sndbuf mem. */
1048         while (size > 0) {
1049                 size_t copy, required_size;
1050
1051                 if (sk->sk_err) {
1052                         ret = -sk->sk_err;
1053                         goto sendpage_end;
1054                 }
1055
1056                 if (ctx->open_rec)
1057                         rec = ctx->open_rec;
1058                 else
1059                         rec = ctx->open_rec = tls_get_rec(sk);
1060                 if (!rec) {
1061                         ret = -ENOMEM;
1062                         goto sendpage_end;
1063                 }
1064
1065                 msg_pl = &rec->msg_plaintext;
1066
1067                 full_record = false;
1068                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1069                 copied = 0;
1070                 copy = size;
1071                 if (copy >= record_room) {
1072                         copy = record_room;
1073                         full_record = true;
1074                 }
1075
1076                 required_size = msg_pl->sg.size + copy +
1077                                 tls_ctx->tx.overhead_size;
1078
1079                 if (!sk_stream_memory_free(sk))
1080                         goto wait_for_sndbuf;
1081 alloc_payload:
1082                 ret = tls_alloc_encrypted_msg(sk, required_size);
1083                 if (ret) {
1084                         if (ret != -ENOSPC)
1085                                 goto wait_for_memory;
1086
1087                         /* Adjust copy according to the amount that was
1088                          * actually allocated. The difference is due
1089                          * to max sg elements limit
1090                          */
1091                         copy -= required_size - msg_pl->sg.size;
1092                         full_record = true;
1093                 }
1094
1095                 sk_msg_page_add(msg_pl, page, copy, offset);
1096                 sk_mem_charge(sk, copy);
1097
1098                 offset += copy;
1099                 size -= copy;
1100                 copied += copy;
1101
1102                 tls_ctx->pending_open_record_frags = true;
1103                 if (full_record || eor || sk_msg_full(msg_pl)) {
1104                         rec->inplace_crypto = 0;
1105                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1106                                                   record_type, &copied, flags);
1107                         if (ret) {
1108                                 if (ret == -EINPROGRESS)
1109                                         num_async++;
1110                                 else if (ret == -ENOMEM)
1111                                         goto wait_for_memory;
1112                                 else if (ret != -EAGAIN) {
1113                                         if (ret == -ENOSPC)
1114                                                 ret = 0;
1115                                         goto sendpage_end;
1116                                 }
1117                         }
1118                 }
1119                 continue;
1120 wait_for_sndbuf:
1121                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1122 wait_for_memory:
1123                 ret = sk_stream_wait_memory(sk, &timeo);
1124                 if (ret) {
1125                         tls_trim_both_msgs(sk, msg_pl->sg.size);
1126                         goto sendpage_end;
1127                 }
1128
1129                 goto alloc_payload;
1130         }
1131
1132         if (num_async) {
1133                 /* Transmit if any encryptions have completed */
1134                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1135                         cancel_delayed_work(&ctx->tx_work.work);
1136                         tls_tx_records(sk, flags);
1137                 }
1138         }
1139 sendpage_end:
1140         ret = sk_stream_error(sk, flags, ret);
1141         release_sock(sk);
1142         return copied ? copied : ret;
1143 }
1144
1145 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1146                                      int flags, long timeo, int *err)
1147 {
1148         struct tls_context *tls_ctx = tls_get_ctx(sk);
1149         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1150         struct sk_buff *skb;
1151         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1152
1153         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1154                 if (sk->sk_err) {
1155                         *err = sock_error(sk);
1156                         return NULL;
1157                 }
1158
1159                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1160                         return NULL;
1161
1162                 if (sock_flag(sk, SOCK_DONE))
1163                         return NULL;
1164
1165                 if ((flags & MSG_DONTWAIT) || !timeo) {
1166                         *err = -EAGAIN;
1167                         return NULL;
1168                 }
1169
1170                 add_wait_queue(sk_sleep(sk), &wait);
1171                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1172                 sk_wait_event(sk, &timeo,
1173                               ctx->recv_pkt != skb ||
1174                               !sk_psock_queue_empty(psock),
1175                               &wait);
1176                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1177                 remove_wait_queue(sk_sleep(sk), &wait);
1178
1179                 /* Handle signals */
1180                 if (signal_pending(current)) {
1181                         *err = sock_intr_errno(timeo);
1182                         return NULL;
1183                 }
1184         }
1185
1186         return skb;
1187 }
1188
1189 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1190                                int length, int *pages_used,
1191                                unsigned int *size_used,
1192                                struct scatterlist *to,
1193                                int to_max_pages)
1194 {
1195         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1196         struct page *pages[MAX_SKB_FRAGS];
1197         unsigned int size = *size_used;
1198         ssize_t copied, use;
1199         size_t offset;
1200
1201         while (length > 0) {
1202                 i = 0;
1203                 maxpages = to_max_pages - num_elem;
1204                 if (maxpages == 0) {
1205                         rc = -EFAULT;
1206                         goto out;
1207                 }
1208                 copied = iov_iter_get_pages(from, pages,
1209                                             length,
1210                                             maxpages, &offset);
1211                 if (copied <= 0) {
1212                         rc = -EFAULT;
1213                         goto out;
1214                 }
1215
1216                 iov_iter_advance(from, copied);
1217
1218                 length -= copied;
1219                 size += copied;
1220                 while (copied) {
1221                         use = min_t(int, copied, PAGE_SIZE - offset);
1222
1223                         sg_set_page(&to[num_elem],
1224                                     pages[i], use, offset);
1225                         sg_unmark_end(&to[num_elem]);
1226                         /* We do not uncharge memory from this API */
1227
1228                         offset = 0;
1229                         copied -= use;
1230
1231                         i++;
1232                         num_elem++;
1233                 }
1234         }
1235         /* Mark the end in the last sg entry if newly added */
1236         if (num_elem > *pages_used)
1237                 sg_mark_end(&to[num_elem - 1]);
1238 out:
1239         if (rc)
1240                 iov_iter_revert(from, size - *size_used);
1241         *size_used = size;
1242         *pages_used = num_elem;
1243
1244         return rc;
1245 }
1246
1247 /* This function decrypts the input skb into either out_iov or in out_sg
1248  * or in skb buffers itself. The input parameter 'zc' indicates if
1249  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1250  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1251  * NULL, then the decryption happens inside skb buffers itself, i.e.
1252  * zero-copy gets disabled and 'zc' is updated.
1253  */
1254
1255 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1256                             struct iov_iter *out_iov,
1257                             struct scatterlist *out_sg,
1258                             int *chunk, bool *zc)
1259 {
1260         struct tls_context *tls_ctx = tls_get_ctx(sk);
1261         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1262         struct strp_msg *rxm = strp_msg(skb);
1263         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1264         struct aead_request *aead_req;
1265         struct sk_buff *unused;
1266         u8 *aad, *iv, *mem = NULL;
1267         struct scatterlist *sgin = NULL;
1268         struct scatterlist *sgout = NULL;
1269         const int data_len = rxm->full_len - tls_ctx->rx.overhead_size;
1270
1271         if (*zc && (out_iov || out_sg)) {
1272                 if (out_iov)
1273                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1274                 else
1275                         n_sgout = sg_nents(out_sg);
1276                 n_sgin = skb_nsg(skb, rxm->offset + tls_ctx->rx.prepend_size,
1277                                  rxm->full_len - tls_ctx->rx.prepend_size);
1278         } else {
1279                 n_sgout = 0;
1280                 *zc = false;
1281                 n_sgin = skb_cow_data(skb, 0, &unused);
1282         }
1283
1284         if (n_sgin < 1)
1285                 return -EBADMSG;
1286
1287         /* Increment to accommodate AAD */
1288         n_sgin = n_sgin + 1;
1289
1290         nsg = n_sgin + n_sgout;
1291
1292         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1293         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1294         mem_size = mem_size + TLS_AAD_SPACE_SIZE;
1295         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1296
1297         /* Allocate a single block of memory which contains
1298          * aead_req || sgin[] || sgout[] || aad || iv.
1299          * This order achieves correct alignment for aead_req, sgin, sgout.
1300          */
1301         mem = kmalloc(mem_size, sk->sk_allocation);
1302         if (!mem)
1303                 return -ENOMEM;
1304
1305         /* Segment the allocated memory */
1306         aead_req = (struct aead_request *)mem;
1307         sgin = (struct scatterlist *)(mem + aead_size);
1308         sgout = sgin + n_sgin;
1309         aad = (u8 *)(sgout + n_sgout);
1310         iv = aad + TLS_AAD_SPACE_SIZE;
1311
1312         /* Prepare IV */
1313         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1314                             iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1315                             tls_ctx->rx.iv_size);
1316         if (err < 0) {
1317                 kfree(mem);
1318                 return err;
1319         }
1320         memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1321
1322         /* Prepare AAD */
1323         tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size,
1324                      tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size,
1325                      ctx->control);
1326
1327         /* Prepare sgin */
1328         sg_init_table(sgin, n_sgin);
1329         sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE);
1330         err = skb_to_sgvec(skb, &sgin[1],
1331                            rxm->offset + tls_ctx->rx.prepend_size,
1332                            rxm->full_len - tls_ctx->rx.prepend_size);
1333         if (err < 0) {
1334                 kfree(mem);
1335                 return err;
1336         }
1337
1338         if (n_sgout) {
1339                 if (out_iov) {
1340                         sg_init_table(sgout, n_sgout);
1341                         sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE);
1342
1343                         *chunk = 0;
1344                         err = tls_setup_from_iter(sk, out_iov, data_len,
1345                                                   &pages, chunk, &sgout[1],
1346                                                   (n_sgout - 1));
1347                         if (err < 0)
1348                                 goto fallback_to_reg_recv;
1349                 } else if (out_sg) {
1350                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1351                 } else {
1352                         goto fallback_to_reg_recv;
1353                 }
1354         } else {
1355 fallback_to_reg_recv:
1356                 sgout = sgin;
1357                 pages = 0;
1358                 *chunk = 0;
1359                 *zc = false;
1360         }
1361
1362         /* Prepare and submit AEAD request */
1363         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1364                                 data_len, aead_req, *zc);
1365         if (err == -EINPROGRESS)
1366                 return err;
1367
1368         /* Release the pages in case iov was mapped to pages */
1369         for (; pages > 0; pages--)
1370                 put_page(sg_page(&sgout[pages]));
1371
1372         kfree(mem);
1373         return err;
1374 }
1375
1376 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1377                               struct iov_iter *dest, int *chunk, bool *zc)
1378 {
1379         struct tls_context *tls_ctx = tls_get_ctx(sk);
1380         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1381         struct strp_msg *rxm = strp_msg(skb);
1382         int err = 0;
1383
1384 #ifdef CONFIG_TLS_DEVICE
1385         err = tls_device_decrypted(sk, skb);
1386         if (err < 0)
1387                 return err;
1388 #endif
1389         if (!ctx->decrypted) {
1390                 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc);
1391                 if (err < 0) {
1392                         if (err == -EINPROGRESS)
1393                                 tls_advance_record_sn(sk, &tls_ctx->rx);
1394
1395                         return err;
1396                 }
1397         } else {
1398                 *zc = false;
1399         }
1400
1401         rxm->offset += tls_ctx->rx.prepend_size;
1402         rxm->full_len -= tls_ctx->rx.overhead_size;
1403         tls_advance_record_sn(sk, &tls_ctx->rx);
1404         ctx->decrypted = true;
1405         ctx->saved_data_ready(sk);
1406
1407         return err;
1408 }
1409
1410 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1411                 struct scatterlist *sgout)
1412 {
1413         bool zc = true;
1414         int chunk;
1415
1416         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc);
1417 }
1418
1419 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1420                                unsigned int len)
1421 {
1422         struct tls_context *tls_ctx = tls_get_ctx(sk);
1423         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1424
1425         if (skb) {
1426                 struct strp_msg *rxm = strp_msg(skb);
1427
1428                 if (len < rxm->full_len) {
1429                         rxm->offset += len;
1430                         rxm->full_len -= len;
1431                         return false;
1432                 }
1433                 kfree_skb(skb);
1434         }
1435
1436         /* Finished with message */
1437         ctx->recv_pkt = NULL;
1438         __strp_unpause(&ctx->strp);
1439
1440         return true;
1441 }
1442
1443 int tls_sw_recvmsg(struct sock *sk,
1444                    struct msghdr *msg,
1445                    size_t len,
1446                    int nonblock,
1447                    int flags,
1448                    int *addr_len)
1449 {
1450         struct tls_context *tls_ctx = tls_get_ctx(sk);
1451         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1452         struct sk_psock *psock;
1453         unsigned char control;
1454         struct strp_msg *rxm;
1455         struct sk_buff *skb;
1456         ssize_t copied = 0;
1457         bool cmsg = false;
1458         int target, err = 0;
1459         long timeo;
1460         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1461         int num_async = 0;
1462
1463         flags |= nonblock;
1464
1465         if (unlikely(flags & MSG_ERRQUEUE))
1466                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1467
1468         psock = sk_psock_get(sk);
1469         lock_sock(sk);
1470
1471         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1472         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1473         do {
1474                 bool zc = false;
1475                 bool async = false;
1476                 int chunk = 0;
1477
1478                 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1479                 if (!skb) {
1480                         if (psock) {
1481                                 int ret = __tcp_bpf_recvmsg(sk, psock,
1482                                                             msg, len, flags);
1483
1484                                 if (ret > 0) {
1485                                         copied += ret;
1486                                         len -= ret;
1487                                         continue;
1488                                 }
1489                         }
1490                         goto recv_end;
1491                 }
1492
1493                 rxm = strp_msg(skb);
1494
1495                 if (!cmsg) {
1496                         int cerr;
1497
1498                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1499                                         sizeof(ctx->control), &ctx->control);
1500                         cmsg = true;
1501                         control = ctx->control;
1502                         if (ctx->control != TLS_RECORD_TYPE_DATA) {
1503                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1504                                         err = -EIO;
1505                                         goto recv_end;
1506                                 }
1507                         }
1508                 } else if (control != ctx->control) {
1509                         goto recv_end;
1510                 }
1511
1512                 if (!ctx->decrypted) {
1513                         int to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
1514
1515                         if (!is_kvec && to_copy <= len &&
1516                             likely(!(flags & MSG_PEEK)))
1517                                 zc = true;
1518
1519                         err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1520                                                  &chunk, &zc);
1521                         if (err < 0 && err != -EINPROGRESS) {
1522                                 tls_err_abort(sk, EBADMSG);
1523                                 goto recv_end;
1524                         }
1525
1526                         if (err == -EINPROGRESS) {
1527                                 async = true;
1528                                 num_async++;
1529                                 goto pick_next_record;
1530                         }
1531
1532                         ctx->decrypted = true;
1533                 }
1534
1535                 if (!zc) {
1536                         chunk = min_t(unsigned int, rxm->full_len, len);
1537
1538                         err = skb_copy_datagram_msg(skb, rxm->offset, msg,
1539                                                     chunk);
1540                         if (err < 0)
1541                                 goto recv_end;
1542                 }
1543
1544 pick_next_record:
1545                 copied += chunk;
1546                 len -= chunk;
1547                 if (likely(!(flags & MSG_PEEK))) {
1548                         u8 control = ctx->control;
1549
1550                         /* For async, drop current skb reference */
1551                         if (async)
1552                                 skb = NULL;
1553
1554                         if (tls_sw_advance_skb(sk, skb, chunk)) {
1555                                 /* Return full control message to
1556                                  * userspace before trying to parse
1557                                  * another message type
1558                                  */
1559                                 msg->msg_flags |= MSG_EOR;
1560                                 if (control != TLS_RECORD_TYPE_DATA)
1561                                         goto recv_end;
1562                         } else {
1563                                 break;
1564                         }
1565                 } else {
1566                         /* MSG_PEEK right now cannot look beyond current skb
1567                          * from strparser, meaning we cannot advance skb here
1568                          * and thus unpause strparser since we'd loose original
1569                          * one.
1570                          */
1571                         break;
1572                 }
1573
1574                 /* If we have a new message from strparser, continue now. */
1575                 if (copied >= target && !ctx->recv_pkt)
1576                         break;
1577         } while (len);
1578
1579 recv_end:
1580         if (num_async) {
1581                 /* Wait for all previously submitted records to be decrypted */
1582                 smp_store_mb(ctx->async_notify, true);
1583                 if (atomic_read(&ctx->decrypt_pending)) {
1584                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1585                         if (err) {
1586                                 /* one of async decrypt failed */
1587                                 tls_err_abort(sk, err);
1588                                 copied = 0;
1589                         }
1590                 } else {
1591                         reinit_completion(&ctx->async_wait.completion);
1592                 }
1593                 WRITE_ONCE(ctx->async_notify, false);
1594         }
1595
1596         release_sock(sk);
1597         if (psock)
1598                 sk_psock_put(sk, psock);
1599         return copied ? : err;
1600 }
1601
1602 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1603                            struct pipe_inode_info *pipe,
1604                            size_t len, unsigned int flags)
1605 {
1606         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1607         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1608         struct strp_msg *rxm = NULL;
1609         struct sock *sk = sock->sk;
1610         struct sk_buff *skb;
1611         ssize_t copied = 0;
1612         int err = 0;
1613         long timeo;
1614         int chunk;
1615         bool zc = false;
1616
1617         lock_sock(sk);
1618
1619         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1620
1621         skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1622         if (!skb)
1623                 goto splice_read_end;
1624
1625         /* splice does not support reading control messages */
1626         if (ctx->control != TLS_RECORD_TYPE_DATA) {
1627                 err = -ENOTSUPP;
1628                 goto splice_read_end;
1629         }
1630
1631         if (!ctx->decrypted) {
1632                 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc);
1633
1634                 if (err < 0) {
1635                         tls_err_abort(sk, EBADMSG);
1636                         goto splice_read_end;
1637                 }
1638                 ctx->decrypted = true;
1639         }
1640         rxm = strp_msg(skb);
1641
1642         chunk = min_t(unsigned int, rxm->full_len, len);
1643         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1644         if (copied < 0)
1645                 goto splice_read_end;
1646
1647         if (likely(!(flags & MSG_PEEK)))
1648                 tls_sw_advance_skb(sk, skb, copied);
1649
1650 splice_read_end:
1651         release_sock(sk);
1652         return copied ? : err;
1653 }
1654
1655 bool tls_sw_stream_read(const struct sock *sk)
1656 {
1657         struct tls_context *tls_ctx = tls_get_ctx(sk);
1658         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1659         bool ingress_empty = true;
1660         struct sk_psock *psock;
1661
1662         rcu_read_lock();
1663         psock = sk_psock(sk);
1664         if (psock)
1665                 ingress_empty = list_empty(&psock->ingress_msg);
1666         rcu_read_unlock();
1667
1668         return !ingress_empty || ctx->recv_pkt;
1669 }
1670
1671 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1672 {
1673         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1674         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1675         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1676         struct strp_msg *rxm = strp_msg(skb);
1677         size_t cipher_overhead;
1678         size_t data_len = 0;
1679         int ret;
1680
1681         /* Verify that we have a full TLS header, or wait for more data */
1682         if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
1683                 return 0;
1684
1685         /* Sanity-check size of on-stack buffer. */
1686         if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) {
1687                 ret = -EINVAL;
1688                 goto read_failure;
1689         }
1690
1691         /* Linearize header to local buffer */
1692         ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
1693
1694         if (ret < 0)
1695                 goto read_failure;
1696
1697         ctx->control = header[0];
1698
1699         data_len = ((header[4] & 0xFF) | (header[3] << 8));
1700
1701         cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
1702
1703         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
1704                 ret = -EMSGSIZE;
1705                 goto read_failure;
1706         }
1707         if (data_len < cipher_overhead) {
1708                 ret = -EBADMSG;
1709                 goto read_failure;
1710         }
1711
1712         if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.info.version) ||
1713             header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.info.version)) {
1714                 ret = -EINVAL;
1715                 goto read_failure;
1716         }
1717
1718 #ifdef CONFIG_TLS_DEVICE
1719         handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
1720                              *(u64*)tls_ctx->rx.rec_seq);
1721 #endif
1722         return data_len + TLS_HEADER_SIZE;
1723
1724 read_failure:
1725         tls_err_abort(strp->sk, ret);
1726
1727         return ret;
1728 }
1729
1730 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
1731 {
1732         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1733         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1734
1735         ctx->decrypted = false;
1736
1737         ctx->recv_pkt = skb;
1738         strp_pause(strp);
1739
1740         ctx->saved_data_ready(strp->sk);
1741 }
1742
1743 static void tls_data_ready(struct sock *sk)
1744 {
1745         struct tls_context *tls_ctx = tls_get_ctx(sk);
1746         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1747         struct sk_psock *psock;
1748
1749         strp_data_ready(&ctx->strp);
1750
1751         psock = sk_psock_get(sk);
1752         if (psock && !list_empty(&psock->ingress_msg)) {
1753                 ctx->saved_data_ready(sk);
1754                 sk_psock_put(sk, psock);
1755         }
1756 }
1757
1758 void tls_sw_free_resources_tx(struct sock *sk)
1759 {
1760         struct tls_context *tls_ctx = tls_get_ctx(sk);
1761         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1762         struct tls_rec *rec, *tmp;
1763
1764         /* Wait for any pending async encryptions to complete */
1765         smp_store_mb(ctx->async_notify, true);
1766         if (atomic_read(&ctx->encrypt_pending))
1767                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1768
1769         cancel_delayed_work_sync(&ctx->tx_work.work);
1770
1771         /* Tx whatever records we can transmit and abandon the rest */
1772         tls_tx_records(sk, -1);
1773
1774         /* Free up un-sent records in tx_list. First, free
1775          * the partially sent record if any at head of tx_list.
1776          */
1777         if (tls_ctx->partially_sent_record) {
1778                 struct scatterlist *sg = tls_ctx->partially_sent_record;
1779
1780                 while (1) {
1781                         put_page(sg_page(sg));
1782                         sk_mem_uncharge(sk, sg->length);
1783
1784                         if (sg_is_last(sg))
1785                                 break;
1786                         sg++;
1787                 }
1788
1789                 tls_ctx->partially_sent_record = NULL;
1790
1791                 rec = list_first_entry(&ctx->tx_list,
1792                                        struct tls_rec, list);
1793                 list_del(&rec->list);
1794                 sk_msg_free(sk, &rec->msg_plaintext);
1795                 kfree(rec);
1796         }
1797
1798         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
1799                 list_del(&rec->list);
1800                 sk_msg_free(sk, &rec->msg_encrypted);
1801                 sk_msg_free(sk, &rec->msg_plaintext);
1802                 kfree(rec);
1803         }
1804
1805         crypto_free_aead(ctx->aead_send);
1806         tls_free_open_rec(sk);
1807
1808         kfree(ctx);
1809 }
1810
1811 void tls_sw_release_resources_rx(struct sock *sk)
1812 {
1813         struct tls_context *tls_ctx = tls_get_ctx(sk);
1814         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1815
1816         if (ctx->aead_recv) {
1817                 kfree_skb(ctx->recv_pkt);
1818                 ctx->recv_pkt = NULL;
1819                 crypto_free_aead(ctx->aead_recv);
1820                 strp_stop(&ctx->strp);
1821                 write_lock_bh(&sk->sk_callback_lock);
1822                 sk->sk_data_ready = ctx->saved_data_ready;
1823                 write_unlock_bh(&sk->sk_callback_lock);
1824                 release_sock(sk);
1825                 strp_done(&ctx->strp);
1826                 lock_sock(sk);
1827         }
1828 }
1829
1830 void tls_sw_free_resources_rx(struct sock *sk)
1831 {
1832         struct tls_context *tls_ctx = tls_get_ctx(sk);
1833         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1834
1835         tls_sw_release_resources_rx(sk);
1836
1837         kfree(ctx);
1838 }
1839
1840 /* The work handler to transmitt the encrypted records in tx_list */
1841 static void tx_work_handler(struct work_struct *work)
1842 {
1843         struct delayed_work *delayed_work = to_delayed_work(work);
1844         struct tx_work *tx_work = container_of(delayed_work,
1845                                                struct tx_work, work);
1846         struct sock *sk = tx_work->sk;
1847         struct tls_context *tls_ctx = tls_get_ctx(sk);
1848         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1849
1850         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
1851                 return;
1852
1853         lock_sock(sk);
1854         tls_tx_records(sk, -1);
1855         release_sock(sk);
1856 }
1857
1858 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
1859 {
1860         struct tls_crypto_info *crypto_info;
1861         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
1862         struct tls_sw_context_tx *sw_ctx_tx = NULL;
1863         struct tls_sw_context_rx *sw_ctx_rx = NULL;
1864         struct cipher_context *cctx;
1865         struct crypto_aead **aead;
1866         struct strp_callbacks cb;
1867         u16 nonce_size, tag_size, iv_size, rec_seq_size;
1868         char *iv, *rec_seq;
1869         int rc = 0;
1870
1871         if (!ctx) {
1872                 rc = -EINVAL;
1873                 goto out;
1874         }
1875
1876         if (tx) {
1877                 if (!ctx->priv_ctx_tx) {
1878                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
1879                         if (!sw_ctx_tx) {
1880                                 rc = -ENOMEM;
1881                                 goto out;
1882                         }
1883                         ctx->priv_ctx_tx = sw_ctx_tx;
1884                 } else {
1885                         sw_ctx_tx =
1886                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
1887                 }
1888         } else {
1889                 if (!ctx->priv_ctx_rx) {
1890                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
1891                         if (!sw_ctx_rx) {
1892                                 rc = -ENOMEM;
1893                                 goto out;
1894                         }
1895                         ctx->priv_ctx_rx = sw_ctx_rx;
1896                 } else {
1897                         sw_ctx_rx =
1898                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
1899                 }
1900         }
1901
1902         if (tx) {
1903                 crypto_init_wait(&sw_ctx_tx->async_wait);
1904                 crypto_info = &ctx->crypto_send.info;
1905                 cctx = &ctx->tx;
1906                 aead = &sw_ctx_tx->aead_send;
1907                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
1908                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
1909                 sw_ctx_tx->tx_work.sk = sk;
1910         } else {
1911                 crypto_init_wait(&sw_ctx_rx->async_wait);
1912                 crypto_info = &ctx->crypto_recv.info;
1913                 cctx = &ctx->rx;
1914                 aead = &sw_ctx_rx->aead_recv;
1915         }
1916
1917         switch (crypto_info->cipher_type) {
1918         case TLS_CIPHER_AES_GCM_128: {
1919                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1920                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1921                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1922                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1923                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1924                 rec_seq =
1925                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1926                 gcm_128_info =
1927                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
1928                 break;
1929         }
1930         default:
1931                 rc = -EINVAL;
1932                 goto free_priv;
1933         }
1934
1935         /* Sanity-check the IV size for stack allocations. */
1936         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
1937                 rc = -EINVAL;
1938                 goto free_priv;
1939         }
1940
1941         cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
1942         cctx->tag_size = tag_size;
1943         cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
1944         cctx->iv_size = iv_size;
1945         cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1946                            GFP_KERNEL);
1947         if (!cctx->iv) {
1948                 rc = -ENOMEM;
1949                 goto free_priv;
1950         }
1951         memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1952         memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1953         cctx->rec_seq_size = rec_seq_size;
1954         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1955         if (!cctx->rec_seq) {
1956                 rc = -ENOMEM;
1957                 goto free_iv;
1958         }
1959
1960         if (!*aead) {
1961                 *aead = crypto_alloc_aead("gcm(aes)", 0, 0);
1962                 if (IS_ERR(*aead)) {
1963                         rc = PTR_ERR(*aead);
1964                         *aead = NULL;
1965                         goto free_rec_seq;
1966                 }
1967         }
1968
1969         ctx->push_pending_record = tls_sw_push_pending_record;
1970
1971         rc = crypto_aead_setkey(*aead, gcm_128_info->key,
1972                                 TLS_CIPHER_AES_GCM_128_KEY_SIZE);
1973         if (rc)
1974                 goto free_aead;
1975
1976         rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
1977         if (rc)
1978                 goto free_aead;
1979
1980         if (sw_ctx_rx) {
1981                 /* Set up strparser */
1982                 memset(&cb, 0, sizeof(cb));
1983                 cb.rcv_msg = tls_queue;
1984                 cb.parse_msg = tls_read_size;
1985
1986                 strp_init(&sw_ctx_rx->strp, sk, &cb);
1987
1988                 write_lock_bh(&sk->sk_callback_lock);
1989                 sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
1990                 sk->sk_data_ready = tls_data_ready;
1991                 write_unlock_bh(&sk->sk_callback_lock);
1992
1993                 strp_check_rcv(&sw_ctx_rx->strp);
1994         }
1995
1996         goto out;
1997
1998 free_aead:
1999         crypto_free_aead(*aead);
2000         *aead = NULL;
2001 free_rec_seq:
2002         kfree(cctx->rec_seq);
2003         cctx->rec_seq = NULL;
2004 free_iv:
2005         kfree(cctx->iv);
2006         cctx->iv = NULL;
2007 free_priv:
2008         if (tx) {
2009                 kfree(ctx->priv_ctx_tx);
2010                 ctx->priv_ctx_tx = NULL;
2011         } else {
2012                 kfree(ctx->priv_ctx_rx);
2013                 ctx->priv_ctx_rx = NULL;
2014         }
2015 out:
2016         return rc;
2017 }