]> asedeno.scripts.mit.edu Git - linux.git/blob - net/wireless/reg.c
Merge tag 'i3c/for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/i3c/linux
[linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2019 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139         return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141
142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144         return rcu_dereference_rtnl(wiphy->regd);
145 }
146
147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149         switch (dfs_region) {
150         case NL80211_DFS_UNSET:
151                 return "unset";
152         case NL80211_DFS_FCC:
153                 return "FCC";
154         case NL80211_DFS_ETSI:
155                 return "ETSI";
156         case NL80211_DFS_JP:
157                 return "JP";
158         }
159         return "Unknown";
160 }
161
162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164         const struct ieee80211_regdomain *regd = NULL;
165         const struct ieee80211_regdomain *wiphy_regd = NULL;
166
167         regd = get_cfg80211_regdom();
168         if (!wiphy)
169                 goto out;
170
171         wiphy_regd = get_wiphy_regdom(wiphy);
172         if (!wiphy_regd)
173                 goto out;
174
175         if (wiphy_regd->dfs_region == regd->dfs_region)
176                 goto out;
177
178         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179                  dev_name(&wiphy->dev),
180                  reg_dfs_region_str(wiphy_regd->dfs_region),
181                  reg_dfs_region_str(regd->dfs_region));
182
183 out:
184         return regd->dfs_region;
185 }
186
187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189         if (!r)
190                 return;
191         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193
194 static struct regulatory_request *get_last_request(void)
195 {
196         return rcu_dereference_rtnl(last_request);
197 }
198
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209
210 struct reg_beacon {
211         struct list_head list;
212         struct ieee80211_channel chan;
213 };
214
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223         .n_reg_rules = 8,
224         .alpha2 =  "00",
225         .reg_rules = {
226                 /* IEEE 802.11b/g, channels 1..11 */
227                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228                 /* IEEE 802.11b/g, channels 12..13. */
229                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231                 /* IEEE 802.11 channel 14 - Only JP enables
232                  * this and for 802.11b only */
233                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234                         NL80211_RRF_NO_IR |
235                         NL80211_RRF_NO_OFDM),
236                 /* IEEE 802.11a, channel 36..48 */
237                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238                         NL80211_RRF_NO_IR |
239                         NL80211_RRF_AUTO_BW),
240
241                 /* IEEE 802.11a, channel 52..64 - DFS required */
242                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243                         NL80211_RRF_NO_IR |
244                         NL80211_RRF_AUTO_BW |
245                         NL80211_RRF_DFS),
246
247                 /* IEEE 802.11a, channel 100..144 - DFS required */
248                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249                         NL80211_RRF_NO_IR |
250                         NL80211_RRF_DFS),
251
252                 /* IEEE 802.11a, channel 149..165 */
253                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254                         NL80211_RRF_NO_IR),
255
256                 /* IEEE 802.11ad (60GHz), channels 1..3 */
257                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258         }
259 };
260
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263         &world_regdom;
264
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271
272 static void reg_free_request(struct regulatory_request *request)
273 {
274         if (request == &core_request_world)
275                 return;
276
277         if (request != get_last_request())
278                 kfree(request);
279 }
280
281 static void reg_free_last_request(void)
282 {
283         struct regulatory_request *lr = get_last_request();
284
285         if (lr != &core_request_world && lr)
286                 kfree_rcu(lr, rcu_head);
287 }
288
289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291         struct regulatory_request *lr;
292
293         lr = get_last_request();
294         if (lr == request)
295                 return;
296
297         reg_free_last_request();
298         rcu_assign_pointer(last_request, request);
299 }
300
301 static void reset_regdomains(bool full_reset,
302                              const struct ieee80211_regdomain *new_regdom)
303 {
304         const struct ieee80211_regdomain *r;
305
306         ASSERT_RTNL();
307
308         r = get_cfg80211_regdom();
309
310         /* avoid freeing static information or freeing something twice */
311         if (r == cfg80211_world_regdom)
312                 r = NULL;
313         if (cfg80211_world_regdom == &world_regdom)
314                 cfg80211_world_regdom = NULL;
315         if (r == &world_regdom)
316                 r = NULL;
317
318         rcu_free_regdom(r);
319         rcu_free_regdom(cfg80211_world_regdom);
320
321         cfg80211_world_regdom = &world_regdom;
322         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324         if (!full_reset)
325                 return;
326
327         reg_update_last_request(&core_request_world);
328 }
329
330 /*
331  * Dynamic world regulatory domain requested by the wireless
332  * core upon initialization
333  */
334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336         struct regulatory_request *lr;
337
338         lr = get_last_request();
339
340         WARN_ON(!lr);
341
342         reset_regdomains(false, rd);
343
344         cfg80211_world_regdom = rd;
345 }
346
347 bool is_world_regdom(const char *alpha2)
348 {
349         if (!alpha2)
350                 return false;
351         return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353
354 static bool is_alpha2_set(const char *alpha2)
355 {
356         if (!alpha2)
357                 return false;
358         return alpha2[0] && alpha2[1];
359 }
360
361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363         if (!alpha2)
364                 return false;
365         /*
366          * Special case where regulatory domain was built by driver
367          * but a specific alpha2 cannot be determined
368          */
369         return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371
372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374         if (!alpha2)
375                 return false;
376         /*
377          * Special case where regulatory domain is the
378          * result of an intersection between two regulatory domain
379          * structures
380          */
381         return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383
384 static bool is_an_alpha2(const char *alpha2)
385 {
386         if (!alpha2)
387                 return false;
388         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390
391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393         if (!alpha2_x || !alpha2_y)
394                 return false;
395         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397
398 static bool regdom_changes(const char *alpha2)
399 {
400         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402         if (!r)
403                 return true;
404         return !alpha2_equal(r->alpha2, alpha2);
405 }
406
407 /*
408  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410  * has ever been issued.
411  */
412 static bool is_user_regdom_saved(void)
413 {
414         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415                 return false;
416
417         /* This would indicate a mistake on the design */
418         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419                  "Unexpected user alpha2: %c%c\n",
420                  user_alpha2[0], user_alpha2[1]))
421                 return false;
422
423         return true;
424 }
425
426 static const struct ieee80211_regdomain *
427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429         struct ieee80211_regdomain *regd;
430         unsigned int i;
431
432         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433                        GFP_KERNEL);
434         if (!regd)
435                 return ERR_PTR(-ENOMEM);
436
437         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438
439         for (i = 0; i < src_regd->n_reg_rules; i++)
440                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441                        sizeof(struct ieee80211_reg_rule));
442
443         return regd;
444 }
445
446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
447 {
448         ASSERT_RTNL();
449
450         if (!IS_ERR(cfg80211_user_regdom))
451                 kfree(cfg80211_user_regdom);
452         cfg80211_user_regdom = reg_copy_regd(rd);
453 }
454
455 struct reg_regdb_apply_request {
456         struct list_head list;
457         const struct ieee80211_regdomain *regdom;
458 };
459
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462
463 static void reg_regdb_apply(struct work_struct *work)
464 {
465         struct reg_regdb_apply_request *request;
466
467         rtnl_lock();
468
469         mutex_lock(&reg_regdb_apply_mutex);
470         while (!list_empty(&reg_regdb_apply_list)) {
471                 request = list_first_entry(&reg_regdb_apply_list,
472                                            struct reg_regdb_apply_request,
473                                            list);
474                 list_del(&request->list);
475
476                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477                 kfree(request);
478         }
479         mutex_unlock(&reg_regdb_apply_mutex);
480
481         rtnl_unlock();
482 }
483
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485
486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
487 {
488         struct reg_regdb_apply_request *request;
489
490         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491         if (!request) {
492                 kfree(regdom);
493                 return -ENOMEM;
494         }
495
496         request->regdom = regdom;
497
498         mutex_lock(&reg_regdb_apply_mutex);
499         list_add_tail(&request->list, &reg_regdb_apply_list);
500         mutex_unlock(&reg_regdb_apply_mutex);
501
502         schedule_work(&reg_regdb_work);
503         return 0;
504 }
505
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA  */
508 #define REG_MAX_CRDA_TIMEOUTS 10
509
510 static u32 reg_crda_timeouts;
511
512 static void crda_timeout_work(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
514
515 static void crda_timeout_work(struct work_struct *work)
516 {
517         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518         rtnl_lock();
519         reg_crda_timeouts++;
520         restore_regulatory_settings(true, false);
521         rtnl_unlock();
522 }
523
524 static void cancel_crda_timeout(void)
525 {
526         cancel_delayed_work(&crda_timeout);
527 }
528
529 static void cancel_crda_timeout_sync(void)
530 {
531         cancel_delayed_work_sync(&crda_timeout);
532 }
533
534 static void reset_crda_timeouts(void)
535 {
536         reg_crda_timeouts = 0;
537 }
538
539 /*
540  * This lets us keep regulatory code which is updated on a regulatory
541  * basis in userspace.
542  */
543 static int call_crda(const char *alpha2)
544 {
545         char country[12];
546         char *env[] = { country, NULL };
547         int ret;
548
549         snprintf(country, sizeof(country), "COUNTRY=%c%c",
550                  alpha2[0], alpha2[1]);
551
552         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554                 return -EINVAL;
555         }
556
557         if (!is_world_regdom((char *) alpha2))
558                 pr_debug("Calling CRDA for country: %c%c\n",
559                          alpha2[0], alpha2[1]);
560         else
561                 pr_debug("Calling CRDA to update world regulatory domain\n");
562
563         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
564         if (ret)
565                 return ret;
566
567         queue_delayed_work(system_power_efficient_wq,
568                            &crda_timeout, msecs_to_jiffies(3142));
569         return 0;
570 }
571 #else
572 static inline void cancel_crda_timeout(void) {}
573 static inline void cancel_crda_timeout_sync(void) {}
574 static inline void reset_crda_timeouts(void) {}
575 static inline int call_crda(const char *alpha2)
576 {
577         return -ENODATA;
578 }
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
580
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header *regdb;
583
584 struct fwdb_country {
585         u8 alpha2[2];
586         __be16 coll_ptr;
587         /* this struct cannot be extended */
588 } __packed __aligned(4);
589
590 struct fwdb_collection {
591         u8 len;
592         u8 n_rules;
593         u8 dfs_region;
594         /* no optional data yet */
595         /* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed __aligned(4);
597
598 enum fwdb_flags {
599         FWDB_FLAG_NO_OFDM       = BIT(0),
600         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
601         FWDB_FLAG_DFS           = BIT(2),
602         FWDB_FLAG_NO_IR         = BIT(3),
603         FWDB_FLAG_AUTO_BW       = BIT(4),
604 };
605
606 struct fwdb_wmm_ac {
607         u8 ecw;
608         u8 aifsn;
609         __be16 cot;
610 } __packed;
611
612 struct fwdb_wmm_rule {
613         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615 } __packed;
616
617 struct fwdb_rule {
618         u8 len;
619         u8 flags;
620         __be16 max_eirp;
621         __be32 start, end, max_bw;
622         /* start of optional data */
623         __be16 cac_timeout;
624         __be16 wmm_ptr;
625 } __packed __aligned(4);
626
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
629
630 struct fwdb_header {
631         __be32 magic;
632         __be32 version;
633         struct fwdb_country country[];
634 } __packed __aligned(4);
635
636 static int ecw2cw(int ecw)
637 {
638         return (1 << ecw) - 1;
639 }
640
641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
642 {
643         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644         int i;
645
646         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649                 u8 aifsn = ac[i].aifsn;
650
651                 if (cw_min >= cw_max)
652                         return false;
653
654                 if (aifsn < 1)
655                         return false;
656         }
657
658         return true;
659 }
660
661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
662 {
663         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
664
665         if ((u8 *)rule + sizeof(rule->len) > data + size)
666                 return false;
667
668         /* mandatory fields */
669         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670                 return false;
671         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673                 struct fwdb_wmm_rule *wmm;
674
675                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676                         return false;
677
678                 wmm = (void *)(data + wmm_ptr);
679
680                 if (!valid_wmm(wmm))
681                         return false;
682         }
683         return true;
684 }
685
686 static bool valid_country(const u8 *data, unsigned int size,
687                           const struct fwdb_country *country)
688 {
689         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690         struct fwdb_collection *coll = (void *)(data + ptr);
691         __be16 *rules_ptr;
692         unsigned int i;
693
694         /* make sure we can read len/n_rules */
695         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696                 return false;
697
698         /* make sure base struct and all rules fit */
699         if ((u8 *)coll + ALIGN(coll->len, 2) +
700             (coll->n_rules * 2) > data + size)
701                 return false;
702
703         /* mandatory fields must exist */
704         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705                 return false;
706
707         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
708
709         for (i = 0; i < coll->n_rules; i++) {
710                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
711
712                 if (!valid_rule(data, size, rule_ptr))
713                         return false;
714         }
715
716         return true;
717 }
718
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key *builtin_regdb_keys;
721
722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
723 {
724         const u8 *end = p + buflen;
725         size_t plen;
726         key_ref_t key;
727
728         while (p < end) {
729                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730                  * than 256 bytes in size.
731                  */
732                 if (end - p < 4)
733                         goto dodgy_cert;
734                 if (p[0] != 0x30 &&
735                     p[1] != 0x82)
736                         goto dodgy_cert;
737                 plen = (p[2] << 8) | p[3];
738                 plen += 4;
739                 if (plen > end - p)
740                         goto dodgy_cert;
741
742                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743                                            "asymmetric", NULL, p, plen,
744                                            &internal_key_acl, 
745                                            KEY_ALLOC_NOT_IN_QUOTA |
746                                            KEY_ALLOC_BUILT_IN |
747                                            KEY_ALLOC_BYPASS_RESTRICTION);
748                 if (IS_ERR(key)) {
749                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
750                                PTR_ERR(key));
751                 } else {
752                         pr_notice("Loaded X.509 cert '%s'\n",
753                                   key_ref_to_ptr(key)->description);
754                         key_ref_put(key);
755                 }
756                 p += plen;
757         }
758
759         return;
760
761 dodgy_cert:
762         pr_err("Problem parsing in-kernel X.509 certificate list\n");
763 }
764
765 static int __init load_builtin_regdb_keys(void)
766 {
767         builtin_regdb_keys =
768                 keyring_alloc(".builtin_regdb_keys",
769                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
770                               &internal_keyring_acl, 
771                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
772         if (IS_ERR(builtin_regdb_keys))
773                 return PTR_ERR(builtin_regdb_keys);
774
775         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
776
777 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
778         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
779 #endif
780 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
781         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
782                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
783 #endif
784
785         return 0;
786 }
787
788 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
789 {
790         const struct firmware *sig;
791         bool result;
792
793         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
794                 return false;
795
796         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
797                                         builtin_regdb_keys,
798                                         VERIFYING_UNSPECIFIED_SIGNATURE,
799                                         NULL, NULL) == 0;
800
801         release_firmware(sig);
802
803         return result;
804 }
805
806 static void free_regdb_keyring(void)
807 {
808         key_put(builtin_regdb_keys);
809 }
810 #else
811 static int load_builtin_regdb_keys(void)
812 {
813         return 0;
814 }
815
816 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
817 {
818         return true;
819 }
820
821 static void free_regdb_keyring(void)
822 {
823 }
824 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
825
826 static bool valid_regdb(const u8 *data, unsigned int size)
827 {
828         const struct fwdb_header *hdr = (void *)data;
829         const struct fwdb_country *country;
830
831         if (size < sizeof(*hdr))
832                 return false;
833
834         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
835                 return false;
836
837         if (hdr->version != cpu_to_be32(FWDB_VERSION))
838                 return false;
839
840         if (!regdb_has_valid_signature(data, size))
841                 return false;
842
843         country = &hdr->country[0];
844         while ((u8 *)(country + 1) <= data + size) {
845                 if (!country->coll_ptr)
846                         break;
847                 if (!valid_country(data, size, country))
848                         return false;
849                 country++;
850         }
851
852         return true;
853 }
854
855 static void set_wmm_rule(const struct fwdb_header *db,
856                          const struct fwdb_country *country,
857                          const struct fwdb_rule *rule,
858                          struct ieee80211_reg_rule *rrule)
859 {
860         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
861         struct fwdb_wmm_rule *wmm;
862         unsigned int i, wmm_ptr;
863
864         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
865         wmm = (void *)((u8 *)db + wmm_ptr);
866
867         if (!valid_wmm(wmm)) {
868                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
869                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
870                        country->alpha2[0], country->alpha2[1]);
871                 return;
872         }
873
874         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
875                 wmm_rule->client[i].cw_min =
876                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
877                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
878                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
879                 wmm_rule->client[i].cot =
880                         1000 * be16_to_cpu(wmm->client[i].cot);
881                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
882                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
883                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
884                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
885         }
886
887         rrule->has_wmm = true;
888 }
889
890 static int __regdb_query_wmm(const struct fwdb_header *db,
891                              const struct fwdb_country *country, int freq,
892                              struct ieee80211_reg_rule *rrule)
893 {
894         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
895         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
896         int i;
897
898         for (i = 0; i < coll->n_rules; i++) {
899                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
900                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
901                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
902
903                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
904                         continue;
905
906                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
907                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
908                         set_wmm_rule(db, country, rule, rrule);
909                         return 0;
910                 }
911         }
912
913         return -ENODATA;
914 }
915
916 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
917 {
918         const struct fwdb_header *hdr = regdb;
919         const struct fwdb_country *country;
920
921         if (!regdb)
922                 return -ENODATA;
923
924         if (IS_ERR(regdb))
925                 return PTR_ERR(regdb);
926
927         country = &hdr->country[0];
928         while (country->coll_ptr) {
929                 if (alpha2_equal(alpha2, country->alpha2))
930                         return __regdb_query_wmm(regdb, country, freq, rule);
931
932                 country++;
933         }
934
935         return -ENODATA;
936 }
937 EXPORT_SYMBOL(reg_query_regdb_wmm);
938
939 static int regdb_query_country(const struct fwdb_header *db,
940                                const struct fwdb_country *country)
941 {
942         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
943         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
944         struct ieee80211_regdomain *regdom;
945         unsigned int i;
946
947         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
948                          GFP_KERNEL);
949         if (!regdom)
950                 return -ENOMEM;
951
952         regdom->n_reg_rules = coll->n_rules;
953         regdom->alpha2[0] = country->alpha2[0];
954         regdom->alpha2[1] = country->alpha2[1];
955         regdom->dfs_region = coll->dfs_region;
956
957         for (i = 0; i < regdom->n_reg_rules; i++) {
958                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
959                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
960                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
961                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
962
963                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
964                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
965                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
966
967                 rrule->power_rule.max_antenna_gain = 0;
968                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
969
970                 rrule->flags = 0;
971                 if (rule->flags & FWDB_FLAG_NO_OFDM)
972                         rrule->flags |= NL80211_RRF_NO_OFDM;
973                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
974                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
975                 if (rule->flags & FWDB_FLAG_DFS)
976                         rrule->flags |= NL80211_RRF_DFS;
977                 if (rule->flags & FWDB_FLAG_NO_IR)
978                         rrule->flags |= NL80211_RRF_NO_IR;
979                 if (rule->flags & FWDB_FLAG_AUTO_BW)
980                         rrule->flags |= NL80211_RRF_AUTO_BW;
981
982                 rrule->dfs_cac_ms = 0;
983
984                 /* handle optional data */
985                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
986                         rrule->dfs_cac_ms =
987                                 1000 * be16_to_cpu(rule->cac_timeout);
988                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
989                         set_wmm_rule(db, country, rule, rrule);
990         }
991
992         return reg_schedule_apply(regdom);
993 }
994
995 static int query_regdb(const char *alpha2)
996 {
997         const struct fwdb_header *hdr = regdb;
998         const struct fwdb_country *country;
999
1000         ASSERT_RTNL();
1001
1002         if (IS_ERR(regdb))
1003                 return PTR_ERR(regdb);
1004
1005         country = &hdr->country[0];
1006         while (country->coll_ptr) {
1007                 if (alpha2_equal(alpha2, country->alpha2))
1008                         return regdb_query_country(regdb, country);
1009                 country++;
1010         }
1011
1012         return -ENODATA;
1013 }
1014
1015 static void regdb_fw_cb(const struct firmware *fw, void *context)
1016 {
1017         int set_error = 0;
1018         bool restore = true;
1019         void *db;
1020
1021         if (!fw) {
1022                 pr_info("failed to load regulatory.db\n");
1023                 set_error = -ENODATA;
1024         } else if (!valid_regdb(fw->data, fw->size)) {
1025                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1026                 set_error = -EINVAL;
1027         }
1028
1029         rtnl_lock();
1030         if (regdb && !IS_ERR(regdb)) {
1031                 /* negative case - a bug
1032                  * positive case - can happen due to race in case of multiple cb's in
1033                  * queue, due to usage of asynchronous callback
1034                  *
1035                  * Either case, just restore and free new db.
1036                  */
1037         } else if (set_error) {
1038                 regdb = ERR_PTR(set_error);
1039         } else if (fw) {
1040                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1041                 if (db) {
1042                         regdb = db;
1043                         restore = context && query_regdb(context);
1044                 } else {
1045                         restore = true;
1046                 }
1047         }
1048
1049         if (restore)
1050                 restore_regulatory_settings(true, false);
1051
1052         rtnl_unlock();
1053
1054         kfree(context);
1055
1056         release_firmware(fw);
1057 }
1058
1059 static int query_regdb_file(const char *alpha2)
1060 {
1061         ASSERT_RTNL();
1062
1063         if (regdb)
1064                 return query_regdb(alpha2);
1065
1066         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1067         if (!alpha2)
1068                 return -ENOMEM;
1069
1070         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1071                                        &reg_pdev->dev, GFP_KERNEL,
1072                                        (void *)alpha2, regdb_fw_cb);
1073 }
1074
1075 int reg_reload_regdb(void)
1076 {
1077         const struct firmware *fw;
1078         void *db;
1079         int err;
1080
1081         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1082         if (err)
1083                 return err;
1084
1085         if (!valid_regdb(fw->data, fw->size)) {
1086                 err = -ENODATA;
1087                 goto out;
1088         }
1089
1090         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1091         if (!db) {
1092                 err = -ENOMEM;
1093                 goto out;
1094         }
1095
1096         rtnl_lock();
1097         if (!IS_ERR_OR_NULL(regdb))
1098                 kfree(regdb);
1099         regdb = db;
1100         rtnl_unlock();
1101
1102  out:
1103         release_firmware(fw);
1104         return err;
1105 }
1106
1107 static bool reg_query_database(struct regulatory_request *request)
1108 {
1109         if (query_regdb_file(request->alpha2) == 0)
1110                 return true;
1111
1112         if (call_crda(request->alpha2) == 0)
1113                 return true;
1114
1115         return false;
1116 }
1117
1118 bool reg_is_valid_request(const char *alpha2)
1119 {
1120         struct regulatory_request *lr = get_last_request();
1121
1122         if (!lr || lr->processed)
1123                 return false;
1124
1125         return alpha2_equal(lr->alpha2, alpha2);
1126 }
1127
1128 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1129 {
1130         struct regulatory_request *lr = get_last_request();
1131
1132         /*
1133          * Follow the driver's regulatory domain, if present, unless a country
1134          * IE has been processed or a user wants to help complaince further
1135          */
1136         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1137             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1138             wiphy->regd)
1139                 return get_wiphy_regdom(wiphy);
1140
1141         return get_cfg80211_regdom();
1142 }
1143
1144 static unsigned int
1145 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1146                                  const struct ieee80211_reg_rule *rule)
1147 {
1148         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1149         const struct ieee80211_freq_range *freq_range_tmp;
1150         const struct ieee80211_reg_rule *tmp;
1151         u32 start_freq, end_freq, idx, no;
1152
1153         for (idx = 0; idx < rd->n_reg_rules; idx++)
1154                 if (rule == &rd->reg_rules[idx])
1155                         break;
1156
1157         if (idx == rd->n_reg_rules)
1158                 return 0;
1159
1160         /* get start_freq */
1161         no = idx;
1162
1163         while (no) {
1164                 tmp = &rd->reg_rules[--no];
1165                 freq_range_tmp = &tmp->freq_range;
1166
1167                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1168                         break;
1169
1170                 freq_range = freq_range_tmp;
1171         }
1172
1173         start_freq = freq_range->start_freq_khz;
1174
1175         /* get end_freq */
1176         freq_range = &rule->freq_range;
1177         no = idx;
1178
1179         while (no < rd->n_reg_rules - 1) {
1180                 tmp = &rd->reg_rules[++no];
1181                 freq_range_tmp = &tmp->freq_range;
1182
1183                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1184                         break;
1185
1186                 freq_range = freq_range_tmp;
1187         }
1188
1189         end_freq = freq_range->end_freq_khz;
1190
1191         return end_freq - start_freq;
1192 }
1193
1194 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1195                                    const struct ieee80211_reg_rule *rule)
1196 {
1197         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1198
1199         if (rule->flags & NL80211_RRF_NO_160MHZ)
1200                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1201         if (rule->flags & NL80211_RRF_NO_80MHZ)
1202                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1203
1204         /*
1205          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1206          * are not allowed.
1207          */
1208         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1209             rule->flags & NL80211_RRF_NO_HT40PLUS)
1210                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1211
1212         return bw;
1213 }
1214
1215 /* Sanity check on a regulatory rule */
1216 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1217 {
1218         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1219         u32 freq_diff;
1220
1221         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1222                 return false;
1223
1224         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1225                 return false;
1226
1227         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1228
1229         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1230             freq_range->max_bandwidth_khz > freq_diff)
1231                 return false;
1232
1233         return true;
1234 }
1235
1236 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1237 {
1238         const struct ieee80211_reg_rule *reg_rule = NULL;
1239         unsigned int i;
1240
1241         if (!rd->n_reg_rules)
1242                 return false;
1243
1244         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1245                 return false;
1246
1247         for (i = 0; i < rd->n_reg_rules; i++) {
1248                 reg_rule = &rd->reg_rules[i];
1249                 if (!is_valid_reg_rule(reg_rule))
1250                         return false;
1251         }
1252
1253         return true;
1254 }
1255
1256 /**
1257  * freq_in_rule_band - tells us if a frequency is in a frequency band
1258  * @freq_range: frequency rule we want to query
1259  * @freq_khz: frequency we are inquiring about
1260  *
1261  * This lets us know if a specific frequency rule is or is not relevant to
1262  * a specific frequency's band. Bands are device specific and artificial
1263  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1264  * however it is safe for now to assume that a frequency rule should not be
1265  * part of a frequency's band if the start freq or end freq are off by more
1266  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1267  * 60 GHz band.
1268  * This resolution can be lowered and should be considered as we add
1269  * regulatory rule support for other "bands".
1270  **/
1271 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1272                               u32 freq_khz)
1273 {
1274 #define ONE_GHZ_IN_KHZ  1000000
1275         /*
1276          * From 802.11ad: directional multi-gigabit (DMG):
1277          * Pertaining to operation in a frequency band containing a channel
1278          * with the Channel starting frequency above 45 GHz.
1279          */
1280         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1281                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1282         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1283                 return true;
1284         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1285                 return true;
1286         return false;
1287 #undef ONE_GHZ_IN_KHZ
1288 }
1289
1290 /*
1291  * Later on we can perhaps use the more restrictive DFS
1292  * region but we don't have information for that yet so
1293  * for now simply disallow conflicts.
1294  */
1295 static enum nl80211_dfs_regions
1296 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1297                          const enum nl80211_dfs_regions dfs_region2)
1298 {
1299         if (dfs_region1 != dfs_region2)
1300                 return NL80211_DFS_UNSET;
1301         return dfs_region1;
1302 }
1303
1304 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1305                                     const struct ieee80211_wmm_ac *wmm_ac2,
1306                                     struct ieee80211_wmm_ac *intersect)
1307 {
1308         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1309         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1310         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1311         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1312 }
1313
1314 /*
1315  * Helper for regdom_intersect(), this does the real
1316  * mathematical intersection fun
1317  */
1318 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1319                                const struct ieee80211_regdomain *rd2,
1320                                const struct ieee80211_reg_rule *rule1,
1321                                const struct ieee80211_reg_rule *rule2,
1322                                struct ieee80211_reg_rule *intersected_rule)
1323 {
1324         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1325         struct ieee80211_freq_range *freq_range;
1326         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1327         struct ieee80211_power_rule *power_rule;
1328         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1329         struct ieee80211_wmm_rule *wmm_rule;
1330         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1331
1332         freq_range1 = &rule1->freq_range;
1333         freq_range2 = &rule2->freq_range;
1334         freq_range = &intersected_rule->freq_range;
1335
1336         power_rule1 = &rule1->power_rule;
1337         power_rule2 = &rule2->power_rule;
1338         power_rule = &intersected_rule->power_rule;
1339
1340         wmm_rule1 = &rule1->wmm_rule;
1341         wmm_rule2 = &rule2->wmm_rule;
1342         wmm_rule = &intersected_rule->wmm_rule;
1343
1344         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1345                                          freq_range2->start_freq_khz);
1346         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1347                                        freq_range2->end_freq_khz);
1348
1349         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1350         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1351
1352         if (rule1->flags & NL80211_RRF_AUTO_BW)
1353                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1354         if (rule2->flags & NL80211_RRF_AUTO_BW)
1355                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1356
1357         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1358
1359         intersected_rule->flags = rule1->flags | rule2->flags;
1360
1361         /*
1362          * In case NL80211_RRF_AUTO_BW requested for both rules
1363          * set AUTO_BW in intersected rule also. Next we will
1364          * calculate BW correctly in handle_channel function.
1365          * In other case remove AUTO_BW flag while we calculate
1366          * maximum bandwidth correctly and auto calculation is
1367          * not required.
1368          */
1369         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1370             (rule2->flags & NL80211_RRF_AUTO_BW))
1371                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1372         else
1373                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1374
1375         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1376         if (freq_range->max_bandwidth_khz > freq_diff)
1377                 freq_range->max_bandwidth_khz = freq_diff;
1378
1379         power_rule->max_eirp = min(power_rule1->max_eirp,
1380                 power_rule2->max_eirp);
1381         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1382                 power_rule2->max_antenna_gain);
1383
1384         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1385                                            rule2->dfs_cac_ms);
1386
1387         if (rule1->has_wmm && rule2->has_wmm) {
1388                 u8 ac;
1389
1390                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1391                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1392                                                 &wmm_rule2->client[ac],
1393                                                 &wmm_rule->client[ac]);
1394                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1395                                                 &wmm_rule2->ap[ac],
1396                                                 &wmm_rule->ap[ac]);
1397                 }
1398
1399                 intersected_rule->has_wmm = true;
1400         } else if (rule1->has_wmm) {
1401                 *wmm_rule = *wmm_rule1;
1402                 intersected_rule->has_wmm = true;
1403         } else if (rule2->has_wmm) {
1404                 *wmm_rule = *wmm_rule2;
1405                 intersected_rule->has_wmm = true;
1406         } else {
1407                 intersected_rule->has_wmm = false;
1408         }
1409
1410         if (!is_valid_reg_rule(intersected_rule))
1411                 return -EINVAL;
1412
1413         return 0;
1414 }
1415
1416 /* check whether old rule contains new rule */
1417 static bool rule_contains(struct ieee80211_reg_rule *r1,
1418                           struct ieee80211_reg_rule *r2)
1419 {
1420         /* for simplicity, currently consider only same flags */
1421         if (r1->flags != r2->flags)
1422                 return false;
1423
1424         /* verify r1 is more restrictive */
1425         if ((r1->power_rule.max_antenna_gain >
1426              r2->power_rule.max_antenna_gain) ||
1427             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1428                 return false;
1429
1430         /* make sure r2's range is contained within r1 */
1431         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1432             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1433                 return false;
1434
1435         /* and finally verify that r1.max_bw >= r2.max_bw */
1436         if (r1->freq_range.max_bandwidth_khz <
1437             r2->freq_range.max_bandwidth_khz)
1438                 return false;
1439
1440         return true;
1441 }
1442
1443 /* add or extend current rules. do nothing if rule is already contained */
1444 static void add_rule(struct ieee80211_reg_rule *rule,
1445                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1446 {
1447         struct ieee80211_reg_rule *tmp_rule;
1448         int i;
1449
1450         for (i = 0; i < *n_rules; i++) {
1451                 tmp_rule = &reg_rules[i];
1452                 /* rule is already contained - do nothing */
1453                 if (rule_contains(tmp_rule, rule))
1454                         return;
1455
1456                 /* extend rule if possible */
1457                 if (rule_contains(rule, tmp_rule)) {
1458                         memcpy(tmp_rule, rule, sizeof(*rule));
1459                         return;
1460                 }
1461         }
1462
1463         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1464         (*n_rules)++;
1465 }
1466
1467 /**
1468  * regdom_intersect - do the intersection between two regulatory domains
1469  * @rd1: first regulatory domain
1470  * @rd2: second regulatory domain
1471  *
1472  * Use this function to get the intersection between two regulatory domains.
1473  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1474  * as no one single alpha2 can represent this regulatory domain.
1475  *
1476  * Returns a pointer to the regulatory domain structure which will hold the
1477  * resulting intersection of rules between rd1 and rd2. We will
1478  * kzalloc() this structure for you.
1479  */
1480 static struct ieee80211_regdomain *
1481 regdom_intersect(const struct ieee80211_regdomain *rd1,
1482                  const struct ieee80211_regdomain *rd2)
1483 {
1484         int r;
1485         unsigned int x, y;
1486         unsigned int num_rules = 0;
1487         const struct ieee80211_reg_rule *rule1, *rule2;
1488         struct ieee80211_reg_rule intersected_rule;
1489         struct ieee80211_regdomain *rd;
1490
1491         if (!rd1 || !rd2)
1492                 return NULL;
1493
1494         /*
1495          * First we get a count of the rules we'll need, then we actually
1496          * build them. This is to so we can malloc() and free() a
1497          * regdomain once. The reason we use reg_rules_intersect() here
1498          * is it will return -EINVAL if the rule computed makes no sense.
1499          * All rules that do check out OK are valid.
1500          */
1501
1502         for (x = 0; x < rd1->n_reg_rules; x++) {
1503                 rule1 = &rd1->reg_rules[x];
1504                 for (y = 0; y < rd2->n_reg_rules; y++) {
1505                         rule2 = &rd2->reg_rules[y];
1506                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1507                                                  &intersected_rule))
1508                                 num_rules++;
1509                 }
1510         }
1511
1512         if (!num_rules)
1513                 return NULL;
1514
1515         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1516         if (!rd)
1517                 return NULL;
1518
1519         for (x = 0; x < rd1->n_reg_rules; x++) {
1520                 rule1 = &rd1->reg_rules[x];
1521                 for (y = 0; y < rd2->n_reg_rules; y++) {
1522                         rule2 = &rd2->reg_rules[y];
1523                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1524                                                 &intersected_rule);
1525                         /*
1526                          * No need to memset here the intersected rule here as
1527                          * we're not using the stack anymore
1528                          */
1529                         if (r)
1530                                 continue;
1531
1532                         add_rule(&intersected_rule, rd->reg_rules,
1533                                  &rd->n_reg_rules);
1534                 }
1535         }
1536
1537         rd->alpha2[0] = '9';
1538         rd->alpha2[1] = '8';
1539         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1540                                                   rd2->dfs_region);
1541
1542         return rd;
1543 }
1544
1545 /*
1546  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1547  * want to just have the channel structure use these
1548  */
1549 static u32 map_regdom_flags(u32 rd_flags)
1550 {
1551         u32 channel_flags = 0;
1552         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1553                 channel_flags |= IEEE80211_CHAN_NO_IR;
1554         if (rd_flags & NL80211_RRF_DFS)
1555                 channel_flags |= IEEE80211_CHAN_RADAR;
1556         if (rd_flags & NL80211_RRF_NO_OFDM)
1557                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1558         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1559                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1560         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1561                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1562         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1563                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1564         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1565                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1566         if (rd_flags & NL80211_RRF_NO_80MHZ)
1567                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1568         if (rd_flags & NL80211_RRF_NO_160MHZ)
1569                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1570         return channel_flags;
1571 }
1572
1573 static const struct ieee80211_reg_rule *
1574 freq_reg_info_regd(u32 center_freq,
1575                    const struct ieee80211_regdomain *regd, u32 bw)
1576 {
1577         int i;
1578         bool band_rule_found = false;
1579         bool bw_fits = false;
1580
1581         if (!regd)
1582                 return ERR_PTR(-EINVAL);
1583
1584         for (i = 0; i < regd->n_reg_rules; i++) {
1585                 const struct ieee80211_reg_rule *rr;
1586                 const struct ieee80211_freq_range *fr = NULL;
1587
1588                 rr = &regd->reg_rules[i];
1589                 fr = &rr->freq_range;
1590
1591                 /*
1592                  * We only need to know if one frequency rule was
1593                  * was in center_freq's band, that's enough, so lets
1594                  * not overwrite it once found
1595                  */
1596                 if (!band_rule_found)
1597                         band_rule_found = freq_in_rule_band(fr, center_freq);
1598
1599                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1600
1601                 if (band_rule_found && bw_fits)
1602                         return rr;
1603         }
1604
1605         if (!band_rule_found)
1606                 return ERR_PTR(-ERANGE);
1607
1608         return ERR_PTR(-EINVAL);
1609 }
1610
1611 static const struct ieee80211_reg_rule *
1612 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1613 {
1614         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1615         const struct ieee80211_reg_rule *reg_rule = NULL;
1616         u32 bw;
1617
1618         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1619                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1620                 if (!IS_ERR(reg_rule))
1621                         return reg_rule;
1622         }
1623
1624         return reg_rule;
1625 }
1626
1627 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1628                                                u32 center_freq)
1629 {
1630         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1631 }
1632 EXPORT_SYMBOL(freq_reg_info);
1633
1634 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1635 {
1636         switch (initiator) {
1637         case NL80211_REGDOM_SET_BY_CORE:
1638                 return "core";
1639         case NL80211_REGDOM_SET_BY_USER:
1640                 return "user";
1641         case NL80211_REGDOM_SET_BY_DRIVER:
1642                 return "driver";
1643         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1644                 return "country element";
1645         default:
1646                 WARN_ON(1);
1647                 return "bug";
1648         }
1649 }
1650 EXPORT_SYMBOL(reg_initiator_name);
1651
1652 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1653                                           const struct ieee80211_reg_rule *reg_rule,
1654                                           const struct ieee80211_channel *chan)
1655 {
1656         const struct ieee80211_freq_range *freq_range = NULL;
1657         u32 max_bandwidth_khz, bw_flags = 0;
1658
1659         freq_range = &reg_rule->freq_range;
1660
1661         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1662         /* Check if auto calculation requested */
1663         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1664                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1665
1666         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1667         if (!cfg80211_does_bw_fit_range(freq_range,
1668                                         MHZ_TO_KHZ(chan->center_freq),
1669                                         MHZ_TO_KHZ(10)))
1670                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1671         if (!cfg80211_does_bw_fit_range(freq_range,
1672                                         MHZ_TO_KHZ(chan->center_freq),
1673                                         MHZ_TO_KHZ(20)))
1674                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1675
1676         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1677                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1678         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1679                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1680         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1681                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1682         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1683                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1684         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1685                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1686         return bw_flags;
1687 }
1688
1689 /*
1690  * Note that right now we assume the desired channel bandwidth
1691  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1692  * per channel, the primary and the extension channel).
1693  */
1694 static void handle_channel(struct wiphy *wiphy,
1695                            enum nl80211_reg_initiator initiator,
1696                            struct ieee80211_channel *chan)
1697 {
1698         u32 flags, bw_flags = 0;
1699         const struct ieee80211_reg_rule *reg_rule = NULL;
1700         const struct ieee80211_power_rule *power_rule = NULL;
1701         struct wiphy *request_wiphy = NULL;
1702         struct regulatory_request *lr = get_last_request();
1703         const struct ieee80211_regdomain *regd;
1704
1705         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1706
1707         flags = chan->orig_flags;
1708
1709         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1710         if (IS_ERR(reg_rule)) {
1711                 /*
1712                  * We will disable all channels that do not match our
1713                  * received regulatory rule unless the hint is coming
1714                  * from a Country IE and the Country IE had no information
1715                  * about a band. The IEEE 802.11 spec allows for an AP
1716                  * to send only a subset of the regulatory rules allowed,
1717                  * so an AP in the US that only supports 2.4 GHz may only send
1718                  * a country IE with information for the 2.4 GHz band
1719                  * while 5 GHz is still supported.
1720                  */
1721                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1722                     PTR_ERR(reg_rule) == -ERANGE)
1723                         return;
1724
1725                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1726                     request_wiphy && request_wiphy == wiphy &&
1727                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1728                         pr_debug("Disabling freq %d MHz for good\n",
1729                                  chan->center_freq);
1730                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1731                         chan->flags = chan->orig_flags;
1732                 } else {
1733                         pr_debug("Disabling freq %d MHz\n",
1734                                  chan->center_freq);
1735                         chan->flags |= IEEE80211_CHAN_DISABLED;
1736                 }
1737                 return;
1738         }
1739
1740         regd = reg_get_regdomain(wiphy);
1741
1742         power_rule = &reg_rule->power_rule;
1743         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1744
1745         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1746             request_wiphy && request_wiphy == wiphy &&
1747             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1748                 /*
1749                  * This guarantees the driver's requested regulatory domain
1750                  * will always be used as a base for further regulatory
1751                  * settings
1752                  */
1753                 chan->flags = chan->orig_flags =
1754                         map_regdom_flags(reg_rule->flags) | bw_flags;
1755                 chan->max_antenna_gain = chan->orig_mag =
1756                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1757                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1758                         (int) MBM_TO_DBM(power_rule->max_eirp);
1759
1760                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1761                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1762                         if (reg_rule->dfs_cac_ms)
1763                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1764                 }
1765
1766                 return;
1767         }
1768
1769         chan->dfs_state = NL80211_DFS_USABLE;
1770         chan->dfs_state_entered = jiffies;
1771
1772         chan->beacon_found = false;
1773         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1774         chan->max_antenna_gain =
1775                 min_t(int, chan->orig_mag,
1776                       MBI_TO_DBI(power_rule->max_antenna_gain));
1777         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1778
1779         if (chan->flags & IEEE80211_CHAN_RADAR) {
1780                 if (reg_rule->dfs_cac_ms)
1781                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1782                 else
1783                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1784         }
1785
1786         if (chan->orig_mpwr) {
1787                 /*
1788                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1789                  * will always follow the passed country IE power settings.
1790                  */
1791                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1792                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1793                         chan->max_power = chan->max_reg_power;
1794                 else
1795                         chan->max_power = min(chan->orig_mpwr,
1796                                               chan->max_reg_power);
1797         } else
1798                 chan->max_power = chan->max_reg_power;
1799 }
1800
1801 static void handle_band(struct wiphy *wiphy,
1802                         enum nl80211_reg_initiator initiator,
1803                         struct ieee80211_supported_band *sband)
1804 {
1805         unsigned int i;
1806
1807         if (!sband)
1808                 return;
1809
1810         for (i = 0; i < sband->n_channels; i++)
1811                 handle_channel(wiphy, initiator, &sband->channels[i]);
1812 }
1813
1814 static bool reg_request_cell_base(struct regulatory_request *request)
1815 {
1816         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1817                 return false;
1818         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1819 }
1820
1821 bool reg_last_request_cell_base(void)
1822 {
1823         return reg_request_cell_base(get_last_request());
1824 }
1825
1826 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1827 /* Core specific check */
1828 static enum reg_request_treatment
1829 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1830 {
1831         struct regulatory_request *lr = get_last_request();
1832
1833         if (!reg_num_devs_support_basehint)
1834                 return REG_REQ_IGNORE;
1835
1836         if (reg_request_cell_base(lr) &&
1837             !regdom_changes(pending_request->alpha2))
1838                 return REG_REQ_ALREADY_SET;
1839
1840         return REG_REQ_OK;
1841 }
1842
1843 /* Device specific check */
1844 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1845 {
1846         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1847 }
1848 #else
1849 static enum reg_request_treatment
1850 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1851 {
1852         return REG_REQ_IGNORE;
1853 }
1854
1855 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1856 {
1857         return true;
1858 }
1859 #endif
1860
1861 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1862 {
1863         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1864             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1865                 return true;
1866         return false;
1867 }
1868
1869 static bool ignore_reg_update(struct wiphy *wiphy,
1870                               enum nl80211_reg_initiator initiator)
1871 {
1872         struct regulatory_request *lr = get_last_request();
1873
1874         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1875                 return true;
1876
1877         if (!lr) {
1878                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1879                          reg_initiator_name(initiator));
1880                 return true;
1881         }
1882
1883         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1884             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1885                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1886                          reg_initiator_name(initiator));
1887                 return true;
1888         }
1889
1890         /*
1891          * wiphy->regd will be set once the device has its own
1892          * desired regulatory domain set
1893          */
1894         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1895             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1896             !is_world_regdom(lr->alpha2)) {
1897                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1898                          reg_initiator_name(initiator));
1899                 return true;
1900         }
1901
1902         if (reg_request_cell_base(lr))
1903                 return reg_dev_ignore_cell_hint(wiphy);
1904
1905         return false;
1906 }
1907
1908 static bool reg_is_world_roaming(struct wiphy *wiphy)
1909 {
1910         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1911         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1912         struct regulatory_request *lr = get_last_request();
1913
1914         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1915                 return true;
1916
1917         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1918             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1919                 return true;
1920
1921         return false;
1922 }
1923
1924 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1925                               struct reg_beacon *reg_beacon)
1926 {
1927         struct ieee80211_supported_band *sband;
1928         struct ieee80211_channel *chan;
1929         bool channel_changed = false;
1930         struct ieee80211_channel chan_before;
1931
1932         sband = wiphy->bands[reg_beacon->chan.band];
1933         chan = &sband->channels[chan_idx];
1934
1935         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1936                 return;
1937
1938         if (chan->beacon_found)
1939                 return;
1940
1941         chan->beacon_found = true;
1942
1943         if (!reg_is_world_roaming(wiphy))
1944                 return;
1945
1946         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1947                 return;
1948
1949         chan_before = *chan;
1950
1951         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1952                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1953                 channel_changed = true;
1954         }
1955
1956         if (channel_changed)
1957                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1958 }
1959
1960 /*
1961  * Called when a scan on a wiphy finds a beacon on
1962  * new channel
1963  */
1964 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1965                                     struct reg_beacon *reg_beacon)
1966 {
1967         unsigned int i;
1968         struct ieee80211_supported_band *sband;
1969
1970         if (!wiphy->bands[reg_beacon->chan.band])
1971                 return;
1972
1973         sband = wiphy->bands[reg_beacon->chan.band];
1974
1975         for (i = 0; i < sband->n_channels; i++)
1976                 handle_reg_beacon(wiphy, i, reg_beacon);
1977 }
1978
1979 /*
1980  * Called upon reg changes or a new wiphy is added
1981  */
1982 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1983 {
1984         unsigned int i;
1985         struct ieee80211_supported_band *sband;
1986         struct reg_beacon *reg_beacon;
1987
1988         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1989                 if (!wiphy->bands[reg_beacon->chan.band])
1990                         continue;
1991                 sband = wiphy->bands[reg_beacon->chan.band];
1992                 for (i = 0; i < sband->n_channels; i++)
1993                         handle_reg_beacon(wiphy, i, reg_beacon);
1994         }
1995 }
1996
1997 /* Reap the advantages of previously found beacons */
1998 static void reg_process_beacons(struct wiphy *wiphy)
1999 {
2000         /*
2001          * Means we are just firing up cfg80211, so no beacons would
2002          * have been processed yet.
2003          */
2004         if (!last_request)
2005                 return;
2006         wiphy_update_beacon_reg(wiphy);
2007 }
2008
2009 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2010 {
2011         if (!chan)
2012                 return false;
2013         if (chan->flags & IEEE80211_CHAN_DISABLED)
2014                 return false;
2015         /* This would happen when regulatory rules disallow HT40 completely */
2016         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2017                 return false;
2018         return true;
2019 }
2020
2021 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2022                                          struct ieee80211_channel *channel)
2023 {
2024         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2025         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2026         const struct ieee80211_regdomain *regd;
2027         unsigned int i;
2028         u32 flags;
2029
2030         if (!is_ht40_allowed(channel)) {
2031                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2032                 return;
2033         }
2034
2035         /*
2036          * We need to ensure the extension channels exist to
2037          * be able to use HT40- or HT40+, this finds them (or not)
2038          */
2039         for (i = 0; i < sband->n_channels; i++) {
2040                 struct ieee80211_channel *c = &sband->channels[i];
2041
2042                 if (c->center_freq == (channel->center_freq - 20))
2043                         channel_before = c;
2044                 if (c->center_freq == (channel->center_freq + 20))
2045                         channel_after = c;
2046         }
2047
2048         flags = 0;
2049         regd = get_wiphy_regdom(wiphy);
2050         if (regd) {
2051                 const struct ieee80211_reg_rule *reg_rule =
2052                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2053                                            regd, MHZ_TO_KHZ(20));
2054
2055                 if (!IS_ERR(reg_rule))
2056                         flags = reg_rule->flags;
2057         }
2058
2059         /*
2060          * Please note that this assumes target bandwidth is 20 MHz,
2061          * if that ever changes we also need to change the below logic
2062          * to include that as well.
2063          */
2064         if (!is_ht40_allowed(channel_before) ||
2065             flags & NL80211_RRF_NO_HT40MINUS)
2066                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2067         else
2068                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2069
2070         if (!is_ht40_allowed(channel_after) ||
2071             flags & NL80211_RRF_NO_HT40PLUS)
2072                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2073         else
2074                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2075 }
2076
2077 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2078                                       struct ieee80211_supported_band *sband)
2079 {
2080         unsigned int i;
2081
2082         if (!sband)
2083                 return;
2084
2085         for (i = 0; i < sband->n_channels; i++)
2086                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2087 }
2088
2089 static void reg_process_ht_flags(struct wiphy *wiphy)
2090 {
2091         enum nl80211_band band;
2092
2093         if (!wiphy)
2094                 return;
2095
2096         for (band = 0; band < NUM_NL80211_BANDS; band++)
2097                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2098 }
2099
2100 static void reg_call_notifier(struct wiphy *wiphy,
2101                               struct regulatory_request *request)
2102 {
2103         if (wiphy->reg_notifier)
2104                 wiphy->reg_notifier(wiphy, request);
2105 }
2106
2107 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2108 {
2109         struct cfg80211_chan_def chandef;
2110         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2111         enum nl80211_iftype iftype;
2112
2113         wdev_lock(wdev);
2114         iftype = wdev->iftype;
2115
2116         /* make sure the interface is active */
2117         if (!wdev->netdev || !netif_running(wdev->netdev))
2118                 goto wdev_inactive_unlock;
2119
2120         switch (iftype) {
2121         case NL80211_IFTYPE_AP:
2122         case NL80211_IFTYPE_P2P_GO:
2123                 if (!wdev->beacon_interval)
2124                         goto wdev_inactive_unlock;
2125                 chandef = wdev->chandef;
2126                 break;
2127         case NL80211_IFTYPE_ADHOC:
2128                 if (!wdev->ssid_len)
2129                         goto wdev_inactive_unlock;
2130                 chandef = wdev->chandef;
2131                 break;
2132         case NL80211_IFTYPE_STATION:
2133         case NL80211_IFTYPE_P2P_CLIENT:
2134                 if (!wdev->current_bss ||
2135                     !wdev->current_bss->pub.channel)
2136                         goto wdev_inactive_unlock;
2137
2138                 if (!rdev->ops->get_channel ||
2139                     rdev_get_channel(rdev, wdev, &chandef))
2140                         cfg80211_chandef_create(&chandef,
2141                                                 wdev->current_bss->pub.channel,
2142                                                 NL80211_CHAN_NO_HT);
2143                 break;
2144         case NL80211_IFTYPE_MONITOR:
2145         case NL80211_IFTYPE_AP_VLAN:
2146         case NL80211_IFTYPE_P2P_DEVICE:
2147                 /* no enforcement required */
2148                 break;
2149         default:
2150                 /* others not implemented for now */
2151                 WARN_ON(1);
2152                 break;
2153         }
2154
2155         wdev_unlock(wdev);
2156
2157         switch (iftype) {
2158         case NL80211_IFTYPE_AP:
2159         case NL80211_IFTYPE_P2P_GO:
2160         case NL80211_IFTYPE_ADHOC:
2161                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2162         case NL80211_IFTYPE_STATION:
2163         case NL80211_IFTYPE_P2P_CLIENT:
2164                 return cfg80211_chandef_usable(wiphy, &chandef,
2165                                                IEEE80211_CHAN_DISABLED);
2166         default:
2167                 break;
2168         }
2169
2170         return true;
2171
2172 wdev_inactive_unlock:
2173         wdev_unlock(wdev);
2174         return true;
2175 }
2176
2177 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2178 {
2179         struct wireless_dev *wdev;
2180         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2181
2182         ASSERT_RTNL();
2183
2184         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2185                 if (!reg_wdev_chan_valid(wiphy, wdev))
2186                         cfg80211_leave(rdev, wdev);
2187 }
2188
2189 static void reg_check_chans_work(struct work_struct *work)
2190 {
2191         struct cfg80211_registered_device *rdev;
2192
2193         pr_debug("Verifying active interfaces after reg change\n");
2194         rtnl_lock();
2195
2196         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2197                 if (!(rdev->wiphy.regulatory_flags &
2198                       REGULATORY_IGNORE_STALE_KICKOFF))
2199                         reg_leave_invalid_chans(&rdev->wiphy);
2200
2201         rtnl_unlock();
2202 }
2203
2204 static void reg_check_channels(void)
2205 {
2206         /*
2207          * Give usermode a chance to do something nicer (move to another
2208          * channel, orderly disconnection), before forcing a disconnection.
2209          */
2210         mod_delayed_work(system_power_efficient_wq,
2211                          &reg_check_chans,
2212                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2213 }
2214
2215 static void wiphy_update_regulatory(struct wiphy *wiphy,
2216                                     enum nl80211_reg_initiator initiator)
2217 {
2218         enum nl80211_band band;
2219         struct regulatory_request *lr = get_last_request();
2220
2221         if (ignore_reg_update(wiphy, initiator)) {
2222                 /*
2223                  * Regulatory updates set by CORE are ignored for custom
2224                  * regulatory cards. Let us notify the changes to the driver,
2225                  * as some drivers used this to restore its orig_* reg domain.
2226                  */
2227                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2228                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2229                     !(wiphy->regulatory_flags &
2230                       REGULATORY_WIPHY_SELF_MANAGED))
2231                         reg_call_notifier(wiphy, lr);
2232                 return;
2233         }
2234
2235         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2236
2237         for (band = 0; band < NUM_NL80211_BANDS; band++)
2238                 handle_band(wiphy, initiator, wiphy->bands[band]);
2239
2240         reg_process_beacons(wiphy);
2241         reg_process_ht_flags(wiphy);
2242         reg_call_notifier(wiphy, lr);
2243 }
2244
2245 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2246 {
2247         struct cfg80211_registered_device *rdev;
2248         struct wiphy *wiphy;
2249
2250         ASSERT_RTNL();
2251
2252         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2253                 wiphy = &rdev->wiphy;
2254                 wiphy_update_regulatory(wiphy, initiator);
2255         }
2256
2257         reg_check_channels();
2258 }
2259
2260 static void handle_channel_custom(struct wiphy *wiphy,
2261                                   struct ieee80211_channel *chan,
2262                                   const struct ieee80211_regdomain *regd)
2263 {
2264         u32 bw_flags = 0;
2265         const struct ieee80211_reg_rule *reg_rule = NULL;
2266         const struct ieee80211_power_rule *power_rule = NULL;
2267         u32 bw;
2268
2269         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2270                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2271                                               regd, bw);
2272                 if (!IS_ERR(reg_rule))
2273                         break;
2274         }
2275
2276         if (IS_ERR(reg_rule)) {
2277                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2278                          chan->center_freq);
2279                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2280                         chan->flags |= IEEE80211_CHAN_DISABLED;
2281                 } else {
2282                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2283                         chan->flags = chan->orig_flags;
2284                 }
2285                 return;
2286         }
2287
2288         power_rule = &reg_rule->power_rule;
2289         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2290
2291         chan->dfs_state_entered = jiffies;
2292         chan->dfs_state = NL80211_DFS_USABLE;
2293
2294         chan->beacon_found = false;
2295
2296         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2297                 chan->flags = chan->orig_flags | bw_flags |
2298                               map_regdom_flags(reg_rule->flags);
2299         else
2300                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2301
2302         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2303         chan->max_reg_power = chan->max_power =
2304                 (int) MBM_TO_DBM(power_rule->max_eirp);
2305
2306         if (chan->flags & IEEE80211_CHAN_RADAR) {
2307                 if (reg_rule->dfs_cac_ms)
2308                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2309                 else
2310                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2311         }
2312
2313         chan->max_power = chan->max_reg_power;
2314 }
2315
2316 static void handle_band_custom(struct wiphy *wiphy,
2317                                struct ieee80211_supported_band *sband,
2318                                const struct ieee80211_regdomain *regd)
2319 {
2320         unsigned int i;
2321
2322         if (!sband)
2323                 return;
2324
2325         for (i = 0; i < sband->n_channels; i++)
2326                 handle_channel_custom(wiphy, &sband->channels[i], regd);
2327 }
2328
2329 /* Used by drivers prior to wiphy registration */
2330 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2331                                    const struct ieee80211_regdomain *regd)
2332 {
2333         enum nl80211_band band;
2334         unsigned int bands_set = 0;
2335
2336         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2337              "wiphy should have REGULATORY_CUSTOM_REG\n");
2338         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2339
2340         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2341                 if (!wiphy->bands[band])
2342                         continue;
2343                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2344                 bands_set++;
2345         }
2346
2347         /*
2348          * no point in calling this if it won't have any effect
2349          * on your device's supported bands.
2350          */
2351         WARN_ON(!bands_set);
2352 }
2353 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2354
2355 static void reg_set_request_processed(void)
2356 {
2357         bool need_more_processing = false;
2358         struct regulatory_request *lr = get_last_request();
2359
2360         lr->processed = true;
2361
2362         spin_lock(&reg_requests_lock);
2363         if (!list_empty(&reg_requests_list))
2364                 need_more_processing = true;
2365         spin_unlock(&reg_requests_lock);
2366
2367         cancel_crda_timeout();
2368
2369         if (need_more_processing)
2370                 schedule_work(&reg_work);
2371 }
2372
2373 /**
2374  * reg_process_hint_core - process core regulatory requests
2375  * @pending_request: a pending core regulatory request
2376  *
2377  * The wireless subsystem can use this function to process
2378  * a regulatory request issued by the regulatory core.
2379  */
2380 static enum reg_request_treatment
2381 reg_process_hint_core(struct regulatory_request *core_request)
2382 {
2383         if (reg_query_database(core_request)) {
2384                 core_request->intersect = false;
2385                 core_request->processed = false;
2386                 reg_update_last_request(core_request);
2387                 return REG_REQ_OK;
2388         }
2389
2390         return REG_REQ_IGNORE;
2391 }
2392
2393 static enum reg_request_treatment
2394 __reg_process_hint_user(struct regulatory_request *user_request)
2395 {
2396         struct regulatory_request *lr = get_last_request();
2397
2398         if (reg_request_cell_base(user_request))
2399                 return reg_ignore_cell_hint(user_request);
2400
2401         if (reg_request_cell_base(lr))
2402                 return REG_REQ_IGNORE;
2403
2404         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2405                 return REG_REQ_INTERSECT;
2406         /*
2407          * If the user knows better the user should set the regdom
2408          * to their country before the IE is picked up
2409          */
2410         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2411             lr->intersect)
2412                 return REG_REQ_IGNORE;
2413         /*
2414          * Process user requests only after previous user/driver/core
2415          * requests have been processed
2416          */
2417         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2418              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2419              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2420             regdom_changes(lr->alpha2))
2421                 return REG_REQ_IGNORE;
2422
2423         if (!regdom_changes(user_request->alpha2))
2424                 return REG_REQ_ALREADY_SET;
2425
2426         return REG_REQ_OK;
2427 }
2428
2429 /**
2430  * reg_process_hint_user - process user regulatory requests
2431  * @user_request: a pending user regulatory request
2432  *
2433  * The wireless subsystem can use this function to process
2434  * a regulatory request initiated by userspace.
2435  */
2436 static enum reg_request_treatment
2437 reg_process_hint_user(struct regulatory_request *user_request)
2438 {
2439         enum reg_request_treatment treatment;
2440
2441         treatment = __reg_process_hint_user(user_request);
2442         if (treatment == REG_REQ_IGNORE ||
2443             treatment == REG_REQ_ALREADY_SET)
2444                 return REG_REQ_IGNORE;
2445
2446         user_request->intersect = treatment == REG_REQ_INTERSECT;
2447         user_request->processed = false;
2448
2449         if (reg_query_database(user_request)) {
2450                 reg_update_last_request(user_request);
2451                 user_alpha2[0] = user_request->alpha2[0];
2452                 user_alpha2[1] = user_request->alpha2[1];
2453                 return REG_REQ_OK;
2454         }
2455
2456         return REG_REQ_IGNORE;
2457 }
2458
2459 static enum reg_request_treatment
2460 __reg_process_hint_driver(struct regulatory_request *driver_request)
2461 {
2462         struct regulatory_request *lr = get_last_request();
2463
2464         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2465                 if (regdom_changes(driver_request->alpha2))
2466                         return REG_REQ_OK;
2467                 return REG_REQ_ALREADY_SET;
2468         }
2469
2470         /*
2471          * This would happen if you unplug and plug your card
2472          * back in or if you add a new device for which the previously
2473          * loaded card also agrees on the regulatory domain.
2474          */
2475         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2476             !regdom_changes(driver_request->alpha2))
2477                 return REG_REQ_ALREADY_SET;
2478
2479         return REG_REQ_INTERSECT;
2480 }
2481
2482 /**
2483  * reg_process_hint_driver - process driver regulatory requests
2484  * @driver_request: a pending driver regulatory request
2485  *
2486  * The wireless subsystem can use this function to process
2487  * a regulatory request issued by an 802.11 driver.
2488  *
2489  * Returns one of the different reg request treatment values.
2490  */
2491 static enum reg_request_treatment
2492 reg_process_hint_driver(struct wiphy *wiphy,
2493                         struct regulatory_request *driver_request)
2494 {
2495         const struct ieee80211_regdomain *regd, *tmp;
2496         enum reg_request_treatment treatment;
2497
2498         treatment = __reg_process_hint_driver(driver_request);
2499
2500         switch (treatment) {
2501         case REG_REQ_OK:
2502                 break;
2503         case REG_REQ_IGNORE:
2504                 return REG_REQ_IGNORE;
2505         case REG_REQ_INTERSECT:
2506         case REG_REQ_ALREADY_SET:
2507                 regd = reg_copy_regd(get_cfg80211_regdom());
2508                 if (IS_ERR(regd))
2509                         return REG_REQ_IGNORE;
2510
2511                 tmp = get_wiphy_regdom(wiphy);
2512                 rcu_assign_pointer(wiphy->regd, regd);
2513                 rcu_free_regdom(tmp);
2514         }
2515
2516
2517         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2518         driver_request->processed = false;
2519
2520         /*
2521          * Since CRDA will not be called in this case as we already
2522          * have applied the requested regulatory domain before we just
2523          * inform userspace we have processed the request
2524          */
2525         if (treatment == REG_REQ_ALREADY_SET) {
2526                 nl80211_send_reg_change_event(driver_request);
2527                 reg_update_last_request(driver_request);
2528                 reg_set_request_processed();
2529                 return REG_REQ_ALREADY_SET;
2530         }
2531
2532         if (reg_query_database(driver_request)) {
2533                 reg_update_last_request(driver_request);
2534                 return REG_REQ_OK;
2535         }
2536
2537         return REG_REQ_IGNORE;
2538 }
2539
2540 static enum reg_request_treatment
2541 __reg_process_hint_country_ie(struct wiphy *wiphy,
2542                               struct regulatory_request *country_ie_request)
2543 {
2544         struct wiphy *last_wiphy = NULL;
2545         struct regulatory_request *lr = get_last_request();
2546
2547         if (reg_request_cell_base(lr)) {
2548                 /* Trust a Cell base station over the AP's country IE */
2549                 if (regdom_changes(country_ie_request->alpha2))
2550                         return REG_REQ_IGNORE;
2551                 return REG_REQ_ALREADY_SET;
2552         } else {
2553                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2554                         return REG_REQ_IGNORE;
2555         }
2556
2557         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2558                 return -EINVAL;
2559
2560         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2561                 return REG_REQ_OK;
2562
2563         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2564
2565         if (last_wiphy != wiphy) {
2566                 /*
2567                  * Two cards with two APs claiming different
2568                  * Country IE alpha2s. We could
2569                  * intersect them, but that seems unlikely
2570                  * to be correct. Reject second one for now.
2571                  */
2572                 if (regdom_changes(country_ie_request->alpha2))
2573                         return REG_REQ_IGNORE;
2574                 return REG_REQ_ALREADY_SET;
2575         }
2576
2577         if (regdom_changes(country_ie_request->alpha2))
2578                 return REG_REQ_OK;
2579         return REG_REQ_ALREADY_SET;
2580 }
2581
2582 /**
2583  * reg_process_hint_country_ie - process regulatory requests from country IEs
2584  * @country_ie_request: a regulatory request from a country IE
2585  *
2586  * The wireless subsystem can use this function to process
2587  * a regulatory request issued by a country Information Element.
2588  *
2589  * Returns one of the different reg request treatment values.
2590  */
2591 static enum reg_request_treatment
2592 reg_process_hint_country_ie(struct wiphy *wiphy,
2593                             struct regulatory_request *country_ie_request)
2594 {
2595         enum reg_request_treatment treatment;
2596
2597         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2598
2599         switch (treatment) {
2600         case REG_REQ_OK:
2601                 break;
2602         case REG_REQ_IGNORE:
2603                 return REG_REQ_IGNORE;
2604         case REG_REQ_ALREADY_SET:
2605                 reg_free_request(country_ie_request);
2606                 return REG_REQ_ALREADY_SET;
2607         case REG_REQ_INTERSECT:
2608                 /*
2609                  * This doesn't happen yet, not sure we
2610                  * ever want to support it for this case.
2611                  */
2612                 WARN_ONCE(1, "Unexpected intersection for country elements");
2613                 return REG_REQ_IGNORE;
2614         }
2615
2616         country_ie_request->intersect = false;
2617         country_ie_request->processed = false;
2618
2619         if (reg_query_database(country_ie_request)) {
2620                 reg_update_last_request(country_ie_request);
2621                 return REG_REQ_OK;
2622         }
2623
2624         return REG_REQ_IGNORE;
2625 }
2626
2627 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2628 {
2629         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2630         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2631         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2632         bool dfs_domain_same;
2633
2634         rcu_read_lock();
2635
2636         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2637         wiphy1_regd = rcu_dereference(wiphy1->regd);
2638         if (!wiphy1_regd)
2639                 wiphy1_regd = cfg80211_regd;
2640
2641         wiphy2_regd = rcu_dereference(wiphy2->regd);
2642         if (!wiphy2_regd)
2643                 wiphy2_regd = cfg80211_regd;
2644
2645         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2646
2647         rcu_read_unlock();
2648
2649         return dfs_domain_same;
2650 }
2651
2652 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2653                                     struct ieee80211_channel *src_chan)
2654 {
2655         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2656             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2657                 return;
2658
2659         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2660             src_chan->flags & IEEE80211_CHAN_DISABLED)
2661                 return;
2662
2663         if (src_chan->center_freq == dst_chan->center_freq &&
2664             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2665                 dst_chan->dfs_state = src_chan->dfs_state;
2666                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2667         }
2668 }
2669
2670 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2671                                        struct wiphy *src_wiphy)
2672 {
2673         struct ieee80211_supported_band *src_sband, *dst_sband;
2674         struct ieee80211_channel *src_chan, *dst_chan;
2675         int i, j, band;
2676
2677         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2678                 return;
2679
2680         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2681                 dst_sband = dst_wiphy->bands[band];
2682                 src_sband = src_wiphy->bands[band];
2683                 if (!dst_sband || !src_sband)
2684                         continue;
2685
2686                 for (i = 0; i < dst_sband->n_channels; i++) {
2687                         dst_chan = &dst_sband->channels[i];
2688                         for (j = 0; j < src_sband->n_channels; j++) {
2689                                 src_chan = &src_sband->channels[j];
2690                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2691                         }
2692                 }
2693         }
2694 }
2695
2696 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2697 {
2698         struct cfg80211_registered_device *rdev;
2699
2700         ASSERT_RTNL();
2701
2702         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2703                 if (wiphy == &rdev->wiphy)
2704                         continue;
2705                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2706         }
2707 }
2708
2709 /* This processes *all* regulatory hints */
2710 static void reg_process_hint(struct regulatory_request *reg_request)
2711 {
2712         struct wiphy *wiphy = NULL;
2713         enum reg_request_treatment treatment;
2714         enum nl80211_reg_initiator initiator = reg_request->initiator;
2715
2716         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2717                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2718
2719         switch (initiator) {
2720         case NL80211_REGDOM_SET_BY_CORE:
2721                 treatment = reg_process_hint_core(reg_request);
2722                 break;
2723         case NL80211_REGDOM_SET_BY_USER:
2724                 treatment = reg_process_hint_user(reg_request);
2725                 break;
2726         case NL80211_REGDOM_SET_BY_DRIVER:
2727                 if (!wiphy)
2728                         goto out_free;
2729                 treatment = reg_process_hint_driver(wiphy, reg_request);
2730                 break;
2731         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2732                 if (!wiphy)
2733                         goto out_free;
2734                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2735                 break;
2736         default:
2737                 WARN(1, "invalid initiator %d\n", initiator);
2738                 goto out_free;
2739         }
2740
2741         if (treatment == REG_REQ_IGNORE)
2742                 goto out_free;
2743
2744         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2745              "unexpected treatment value %d\n", treatment);
2746
2747         /* This is required so that the orig_* parameters are saved.
2748          * NOTE: treatment must be set for any case that reaches here!
2749          */
2750         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2751             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2752                 wiphy_update_regulatory(wiphy, initiator);
2753                 wiphy_all_share_dfs_chan_state(wiphy);
2754                 reg_check_channels();
2755         }
2756
2757         return;
2758
2759 out_free:
2760         reg_free_request(reg_request);
2761 }
2762
2763 static void notify_self_managed_wiphys(struct regulatory_request *request)
2764 {
2765         struct cfg80211_registered_device *rdev;
2766         struct wiphy *wiphy;
2767
2768         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2769                 wiphy = &rdev->wiphy;
2770                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2771                     request->initiator == NL80211_REGDOM_SET_BY_USER)
2772                         reg_call_notifier(wiphy, request);
2773         }
2774 }
2775
2776 /*
2777  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2778  * Regulatory hints come on a first come first serve basis and we
2779  * must process each one atomically.
2780  */
2781 static void reg_process_pending_hints(void)
2782 {
2783         struct regulatory_request *reg_request, *lr;
2784
2785         lr = get_last_request();
2786
2787         /* When last_request->processed becomes true this will be rescheduled */
2788         if (lr && !lr->processed) {
2789                 reg_process_hint(lr);
2790                 return;
2791         }
2792
2793         spin_lock(&reg_requests_lock);
2794
2795         if (list_empty(&reg_requests_list)) {
2796                 spin_unlock(&reg_requests_lock);
2797                 return;
2798         }
2799
2800         reg_request = list_first_entry(&reg_requests_list,
2801                                        struct regulatory_request,
2802                                        list);
2803         list_del_init(&reg_request->list);
2804
2805         spin_unlock(&reg_requests_lock);
2806
2807         notify_self_managed_wiphys(reg_request);
2808
2809         reg_process_hint(reg_request);
2810
2811         lr = get_last_request();
2812
2813         spin_lock(&reg_requests_lock);
2814         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2815                 schedule_work(&reg_work);
2816         spin_unlock(&reg_requests_lock);
2817 }
2818
2819 /* Processes beacon hints -- this has nothing to do with country IEs */
2820 static void reg_process_pending_beacon_hints(void)
2821 {
2822         struct cfg80211_registered_device *rdev;
2823         struct reg_beacon *pending_beacon, *tmp;
2824
2825         /* This goes through the _pending_ beacon list */
2826         spin_lock_bh(&reg_pending_beacons_lock);
2827
2828         list_for_each_entry_safe(pending_beacon, tmp,
2829                                  &reg_pending_beacons, list) {
2830                 list_del_init(&pending_beacon->list);
2831
2832                 /* Applies the beacon hint to current wiphys */
2833                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2834                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2835
2836                 /* Remembers the beacon hint for new wiphys or reg changes */
2837                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2838         }
2839
2840         spin_unlock_bh(&reg_pending_beacons_lock);
2841 }
2842
2843 static void reg_process_self_managed_hints(void)
2844 {
2845         struct cfg80211_registered_device *rdev;
2846         struct wiphy *wiphy;
2847         const struct ieee80211_regdomain *tmp;
2848         const struct ieee80211_regdomain *regd;
2849         enum nl80211_band band;
2850         struct regulatory_request request = {};
2851
2852         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2853                 wiphy = &rdev->wiphy;
2854
2855                 spin_lock(&reg_requests_lock);
2856                 regd = rdev->requested_regd;
2857                 rdev->requested_regd = NULL;
2858                 spin_unlock(&reg_requests_lock);
2859
2860                 if (regd == NULL)
2861                         continue;
2862
2863                 tmp = get_wiphy_regdom(wiphy);
2864                 rcu_assign_pointer(wiphy->regd, regd);
2865                 rcu_free_regdom(tmp);
2866
2867                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2868                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2869
2870                 reg_process_ht_flags(wiphy);
2871
2872                 request.wiphy_idx = get_wiphy_idx(wiphy);
2873                 request.alpha2[0] = regd->alpha2[0];
2874                 request.alpha2[1] = regd->alpha2[1];
2875                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2876
2877                 nl80211_send_wiphy_reg_change_event(&request);
2878         }
2879
2880         reg_check_channels();
2881 }
2882
2883 static void reg_todo(struct work_struct *work)
2884 {
2885         rtnl_lock();
2886         reg_process_pending_hints();
2887         reg_process_pending_beacon_hints();
2888         reg_process_self_managed_hints();
2889         rtnl_unlock();
2890 }
2891
2892 static void queue_regulatory_request(struct regulatory_request *request)
2893 {
2894         request->alpha2[0] = toupper(request->alpha2[0]);
2895         request->alpha2[1] = toupper(request->alpha2[1]);
2896
2897         spin_lock(&reg_requests_lock);
2898         list_add_tail(&request->list, &reg_requests_list);
2899         spin_unlock(&reg_requests_lock);
2900
2901         schedule_work(&reg_work);
2902 }
2903
2904 /*
2905  * Core regulatory hint -- happens during cfg80211_init()
2906  * and when we restore regulatory settings.
2907  */
2908 static int regulatory_hint_core(const char *alpha2)
2909 {
2910         struct regulatory_request *request;
2911
2912         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2913         if (!request)
2914                 return -ENOMEM;
2915
2916         request->alpha2[0] = alpha2[0];
2917         request->alpha2[1] = alpha2[1];
2918         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2919         request->wiphy_idx = WIPHY_IDX_INVALID;
2920
2921         queue_regulatory_request(request);
2922
2923         return 0;
2924 }
2925
2926 /* User hints */
2927 int regulatory_hint_user(const char *alpha2,
2928                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2929 {
2930         struct regulatory_request *request;
2931
2932         if (WARN_ON(!alpha2))
2933                 return -EINVAL;
2934
2935         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2936         if (!request)
2937                 return -ENOMEM;
2938
2939         request->wiphy_idx = WIPHY_IDX_INVALID;
2940         request->alpha2[0] = alpha2[0];
2941         request->alpha2[1] = alpha2[1];
2942         request->initiator = NL80211_REGDOM_SET_BY_USER;
2943         request->user_reg_hint_type = user_reg_hint_type;
2944
2945         /* Allow calling CRDA again */
2946         reset_crda_timeouts();
2947
2948         queue_regulatory_request(request);
2949
2950         return 0;
2951 }
2952
2953 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2954 {
2955         spin_lock(&reg_indoor_lock);
2956
2957         /* It is possible that more than one user space process is trying to
2958          * configure the indoor setting. To handle such cases, clear the indoor
2959          * setting in case that some process does not think that the device
2960          * is operating in an indoor environment. In addition, if a user space
2961          * process indicates that it is controlling the indoor setting, save its
2962          * portid, i.e., make it the owner.
2963          */
2964         reg_is_indoor = is_indoor;
2965         if (reg_is_indoor) {
2966                 if (!reg_is_indoor_portid)
2967                         reg_is_indoor_portid = portid;
2968         } else {
2969                 reg_is_indoor_portid = 0;
2970         }
2971
2972         spin_unlock(&reg_indoor_lock);
2973
2974         if (!is_indoor)
2975                 reg_check_channels();
2976
2977         return 0;
2978 }
2979
2980 void regulatory_netlink_notify(u32 portid)
2981 {
2982         spin_lock(&reg_indoor_lock);
2983
2984         if (reg_is_indoor_portid != portid) {
2985                 spin_unlock(&reg_indoor_lock);
2986                 return;
2987         }
2988
2989         reg_is_indoor = false;
2990         reg_is_indoor_portid = 0;
2991
2992         spin_unlock(&reg_indoor_lock);
2993
2994         reg_check_channels();
2995 }
2996
2997 /* Driver hints */
2998 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2999 {
3000         struct regulatory_request *request;
3001
3002         if (WARN_ON(!alpha2 || !wiphy))
3003                 return -EINVAL;
3004
3005         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3006
3007         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3008         if (!request)
3009                 return -ENOMEM;
3010
3011         request->wiphy_idx = get_wiphy_idx(wiphy);
3012
3013         request->alpha2[0] = alpha2[0];
3014         request->alpha2[1] = alpha2[1];
3015         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3016
3017         /* Allow calling CRDA again */
3018         reset_crda_timeouts();
3019
3020         queue_regulatory_request(request);
3021
3022         return 0;
3023 }
3024 EXPORT_SYMBOL(regulatory_hint);
3025
3026 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3027                                 const u8 *country_ie, u8 country_ie_len)
3028 {
3029         char alpha2[2];
3030         enum environment_cap env = ENVIRON_ANY;
3031         struct regulatory_request *request = NULL, *lr;
3032
3033         /* IE len must be evenly divisible by 2 */
3034         if (country_ie_len & 0x01)
3035                 return;
3036
3037         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3038                 return;
3039
3040         request = kzalloc(sizeof(*request), GFP_KERNEL);
3041         if (!request)
3042                 return;
3043
3044         alpha2[0] = country_ie[0];
3045         alpha2[1] = country_ie[1];
3046
3047         if (country_ie[2] == 'I')
3048                 env = ENVIRON_INDOOR;
3049         else if (country_ie[2] == 'O')
3050                 env = ENVIRON_OUTDOOR;
3051
3052         rcu_read_lock();
3053         lr = get_last_request();
3054
3055         if (unlikely(!lr))
3056                 goto out;
3057
3058         /*
3059          * We will run this only upon a successful connection on cfg80211.
3060          * We leave conflict resolution to the workqueue, where can hold
3061          * the RTNL.
3062          */
3063         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3064             lr->wiphy_idx != WIPHY_IDX_INVALID)
3065                 goto out;
3066
3067         request->wiphy_idx = get_wiphy_idx(wiphy);
3068         request->alpha2[0] = alpha2[0];
3069         request->alpha2[1] = alpha2[1];
3070         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3071         request->country_ie_env = env;
3072
3073         /* Allow calling CRDA again */
3074         reset_crda_timeouts();
3075
3076         queue_regulatory_request(request);
3077         request = NULL;
3078 out:
3079         kfree(request);
3080         rcu_read_unlock();
3081 }
3082
3083 static void restore_alpha2(char *alpha2, bool reset_user)
3084 {
3085         /* indicates there is no alpha2 to consider for restoration */
3086         alpha2[0] = '9';
3087         alpha2[1] = '7';
3088
3089         /* The user setting has precedence over the module parameter */
3090         if (is_user_regdom_saved()) {
3091                 /* Unless we're asked to ignore it and reset it */
3092                 if (reset_user) {
3093                         pr_debug("Restoring regulatory settings including user preference\n");
3094                         user_alpha2[0] = '9';
3095                         user_alpha2[1] = '7';
3096
3097                         /*
3098                          * If we're ignoring user settings, we still need to
3099                          * check the module parameter to ensure we put things
3100                          * back as they were for a full restore.
3101                          */
3102                         if (!is_world_regdom(ieee80211_regdom)) {
3103                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3104                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3105                                 alpha2[0] = ieee80211_regdom[0];
3106                                 alpha2[1] = ieee80211_regdom[1];
3107                         }
3108                 } else {
3109                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3110                                  user_alpha2[0], user_alpha2[1]);
3111                         alpha2[0] = user_alpha2[0];
3112                         alpha2[1] = user_alpha2[1];
3113                 }
3114         } else if (!is_world_regdom(ieee80211_regdom)) {
3115                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3116                          ieee80211_regdom[0], ieee80211_regdom[1]);
3117                 alpha2[0] = ieee80211_regdom[0];
3118                 alpha2[1] = ieee80211_regdom[1];
3119         } else
3120                 pr_debug("Restoring regulatory settings\n");
3121 }
3122
3123 static void restore_custom_reg_settings(struct wiphy *wiphy)
3124 {
3125         struct ieee80211_supported_band *sband;
3126         enum nl80211_band band;
3127         struct ieee80211_channel *chan;
3128         int i;
3129
3130         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3131                 sband = wiphy->bands[band];
3132                 if (!sband)
3133                         continue;
3134                 for (i = 0; i < sband->n_channels; i++) {
3135                         chan = &sband->channels[i];
3136                         chan->flags = chan->orig_flags;
3137                         chan->max_antenna_gain = chan->orig_mag;
3138                         chan->max_power = chan->orig_mpwr;
3139                         chan->beacon_found = false;
3140                 }
3141         }
3142 }
3143
3144 /*
3145  * Restoring regulatory settings involves ingoring any
3146  * possibly stale country IE information and user regulatory
3147  * settings if so desired, this includes any beacon hints
3148  * learned as we could have traveled outside to another country
3149  * after disconnection. To restore regulatory settings we do
3150  * exactly what we did at bootup:
3151  *
3152  *   - send a core regulatory hint
3153  *   - send a user regulatory hint if applicable
3154  *
3155  * Device drivers that send a regulatory hint for a specific country
3156  * keep their own regulatory domain on wiphy->regd so that does does
3157  * not need to be remembered.
3158  */
3159 static void restore_regulatory_settings(bool reset_user, bool cached)
3160 {
3161         char alpha2[2];
3162         char world_alpha2[2];
3163         struct reg_beacon *reg_beacon, *btmp;
3164         LIST_HEAD(tmp_reg_req_list);
3165         struct cfg80211_registered_device *rdev;
3166
3167         ASSERT_RTNL();
3168
3169         /*
3170          * Clear the indoor setting in case that it is not controlled by user
3171          * space, as otherwise there is no guarantee that the device is still
3172          * operating in an indoor environment.
3173          */
3174         spin_lock(&reg_indoor_lock);
3175         if (reg_is_indoor && !reg_is_indoor_portid) {
3176                 reg_is_indoor = false;
3177                 reg_check_channels();
3178         }
3179         spin_unlock(&reg_indoor_lock);
3180
3181         reset_regdomains(true, &world_regdom);
3182         restore_alpha2(alpha2, reset_user);
3183
3184         /*
3185          * If there's any pending requests we simply
3186          * stash them to a temporary pending queue and
3187          * add then after we've restored regulatory
3188          * settings.
3189          */
3190         spin_lock(&reg_requests_lock);
3191         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3192         spin_unlock(&reg_requests_lock);
3193
3194         /* Clear beacon hints */
3195         spin_lock_bh(&reg_pending_beacons_lock);
3196         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3197                 list_del(&reg_beacon->list);
3198                 kfree(reg_beacon);
3199         }
3200         spin_unlock_bh(&reg_pending_beacons_lock);
3201
3202         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3203                 list_del(&reg_beacon->list);
3204                 kfree(reg_beacon);
3205         }
3206
3207         /* First restore to the basic regulatory settings */
3208         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3209         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3210
3211         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3212                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3213                         continue;
3214                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3215                         restore_custom_reg_settings(&rdev->wiphy);
3216         }
3217
3218         if (cached && (!is_an_alpha2(alpha2) ||
3219                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3220                 reset_regdomains(false, cfg80211_world_regdom);
3221                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3222                 print_regdomain(get_cfg80211_regdom());
3223                 nl80211_send_reg_change_event(&core_request_world);
3224                 reg_set_request_processed();
3225
3226                 if (is_an_alpha2(alpha2) &&
3227                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3228                         struct regulatory_request *ureq;
3229
3230                         spin_lock(&reg_requests_lock);
3231                         ureq = list_last_entry(&reg_requests_list,
3232                                                struct regulatory_request,
3233                                                list);
3234                         list_del(&ureq->list);
3235                         spin_unlock(&reg_requests_lock);
3236
3237                         notify_self_managed_wiphys(ureq);
3238                         reg_update_last_request(ureq);
3239                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3240                                    REGD_SOURCE_CACHED);
3241                 }
3242         } else {
3243                 regulatory_hint_core(world_alpha2);
3244
3245                 /*
3246                  * This restores the ieee80211_regdom module parameter
3247                  * preference or the last user requested regulatory
3248                  * settings, user regulatory settings takes precedence.
3249                  */
3250                 if (is_an_alpha2(alpha2))
3251                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3252         }
3253
3254         spin_lock(&reg_requests_lock);
3255         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3256         spin_unlock(&reg_requests_lock);
3257
3258         pr_debug("Kicking the queue\n");
3259
3260         schedule_work(&reg_work);
3261 }
3262
3263 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3264 {
3265         struct cfg80211_registered_device *rdev;
3266         struct wireless_dev *wdev;
3267
3268         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3269                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3270                         wdev_lock(wdev);
3271                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3272                                 wdev_unlock(wdev);
3273                                 return false;
3274                         }
3275                         wdev_unlock(wdev);
3276                 }
3277         }
3278
3279         return true;
3280 }
3281
3282 void regulatory_hint_disconnect(void)
3283 {
3284         /* Restore of regulatory settings is not required when wiphy(s)
3285          * ignore IE from connected access point but clearance of beacon hints
3286          * is required when wiphy(s) supports beacon hints.
3287          */
3288         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3289                 struct reg_beacon *reg_beacon, *btmp;
3290
3291                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3292                         return;
3293
3294                 spin_lock_bh(&reg_pending_beacons_lock);
3295                 list_for_each_entry_safe(reg_beacon, btmp,
3296                                          &reg_pending_beacons, list) {
3297                         list_del(&reg_beacon->list);
3298                         kfree(reg_beacon);
3299                 }
3300                 spin_unlock_bh(&reg_pending_beacons_lock);
3301
3302                 list_for_each_entry_safe(reg_beacon, btmp,
3303                                          &reg_beacon_list, list) {
3304                         list_del(&reg_beacon->list);
3305                         kfree(reg_beacon);
3306                 }
3307
3308                 return;
3309         }
3310
3311         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3312         restore_regulatory_settings(false, true);
3313 }
3314
3315 static bool freq_is_chan_12_13_14(u32 freq)
3316 {
3317         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3318             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3319             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3320                 return true;
3321         return false;
3322 }
3323
3324 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3325 {
3326         struct reg_beacon *pending_beacon;
3327
3328         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3329                 if (beacon_chan->center_freq ==
3330                     pending_beacon->chan.center_freq)
3331                         return true;
3332         return false;
3333 }
3334
3335 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3336                                  struct ieee80211_channel *beacon_chan,
3337                                  gfp_t gfp)
3338 {
3339         struct reg_beacon *reg_beacon;
3340         bool processing;
3341
3342         if (beacon_chan->beacon_found ||
3343             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3344             (beacon_chan->band == NL80211_BAND_2GHZ &&
3345              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3346                 return 0;
3347
3348         spin_lock_bh(&reg_pending_beacons_lock);
3349         processing = pending_reg_beacon(beacon_chan);
3350         spin_unlock_bh(&reg_pending_beacons_lock);
3351
3352         if (processing)
3353                 return 0;
3354
3355         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3356         if (!reg_beacon)
3357                 return -ENOMEM;
3358
3359         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3360                  beacon_chan->center_freq,
3361                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
3362                  wiphy_name(wiphy));
3363
3364         memcpy(&reg_beacon->chan, beacon_chan,
3365                sizeof(struct ieee80211_channel));
3366
3367         /*
3368          * Since we can be called from BH or and non-BH context
3369          * we must use spin_lock_bh()
3370          */
3371         spin_lock_bh(&reg_pending_beacons_lock);
3372         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3373         spin_unlock_bh(&reg_pending_beacons_lock);
3374
3375         schedule_work(&reg_work);
3376
3377         return 0;
3378 }
3379
3380 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3381 {
3382         unsigned int i;
3383         const struct ieee80211_reg_rule *reg_rule = NULL;
3384         const struct ieee80211_freq_range *freq_range = NULL;
3385         const struct ieee80211_power_rule *power_rule = NULL;
3386         char bw[32], cac_time[32];
3387
3388         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3389
3390         for (i = 0; i < rd->n_reg_rules; i++) {
3391                 reg_rule = &rd->reg_rules[i];
3392                 freq_range = &reg_rule->freq_range;
3393                 power_rule = &reg_rule->power_rule;
3394
3395                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3396                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3397                                  freq_range->max_bandwidth_khz,
3398                                  reg_get_max_bandwidth(rd, reg_rule));
3399                 else
3400                         snprintf(bw, sizeof(bw), "%d KHz",
3401                                  freq_range->max_bandwidth_khz);
3402
3403                 if (reg_rule->flags & NL80211_RRF_DFS)
3404                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3405                                   reg_rule->dfs_cac_ms/1000);
3406                 else
3407                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3408
3409
3410                 /*
3411                  * There may not be documentation for max antenna gain
3412                  * in certain regions
3413                  */
3414                 if (power_rule->max_antenna_gain)
3415                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3416                                 freq_range->start_freq_khz,
3417                                 freq_range->end_freq_khz,
3418                                 bw,
3419                                 power_rule->max_antenna_gain,
3420                                 power_rule->max_eirp,
3421                                 cac_time);
3422                 else
3423                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3424                                 freq_range->start_freq_khz,
3425                                 freq_range->end_freq_khz,
3426                                 bw,
3427                                 power_rule->max_eirp,
3428                                 cac_time);
3429         }
3430 }
3431
3432 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3433 {
3434         switch (dfs_region) {
3435         case NL80211_DFS_UNSET:
3436         case NL80211_DFS_FCC:
3437         case NL80211_DFS_ETSI:
3438         case NL80211_DFS_JP:
3439                 return true;
3440         default:
3441                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3442                 return false;
3443         }
3444 }
3445
3446 static void print_regdomain(const struct ieee80211_regdomain *rd)
3447 {
3448         struct regulatory_request *lr = get_last_request();
3449
3450         if (is_intersected_alpha2(rd->alpha2)) {
3451                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3452                         struct cfg80211_registered_device *rdev;
3453                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3454                         if (rdev) {
3455                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3456                                         rdev->country_ie_alpha2[0],
3457                                         rdev->country_ie_alpha2[1]);
3458                         } else
3459                                 pr_debug("Current regulatory domain intersected:\n");
3460                 } else
3461                         pr_debug("Current regulatory domain intersected:\n");
3462         } else if (is_world_regdom(rd->alpha2)) {
3463                 pr_debug("World regulatory domain updated:\n");
3464         } else {
3465                 if (is_unknown_alpha2(rd->alpha2))
3466                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3467                 else {
3468                         if (reg_request_cell_base(lr))
3469                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3470                                         rd->alpha2[0], rd->alpha2[1]);
3471                         else
3472                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3473                                         rd->alpha2[0], rd->alpha2[1]);
3474                 }
3475         }
3476
3477         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3478         print_rd_rules(rd);
3479 }
3480
3481 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3482 {
3483         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3484         print_rd_rules(rd);
3485 }
3486
3487 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3488 {
3489         if (!is_world_regdom(rd->alpha2))
3490                 return -EINVAL;
3491         update_world_regdomain(rd);
3492         return 0;
3493 }
3494
3495 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3496                            struct regulatory_request *user_request)
3497 {
3498         const struct ieee80211_regdomain *intersected_rd = NULL;
3499
3500         if (!regdom_changes(rd->alpha2))
3501                 return -EALREADY;
3502
3503         if (!is_valid_rd(rd)) {
3504                 pr_err("Invalid regulatory domain detected: %c%c\n",
3505                        rd->alpha2[0], rd->alpha2[1]);
3506                 print_regdomain_info(rd);
3507                 return -EINVAL;
3508         }
3509
3510         if (!user_request->intersect) {
3511                 reset_regdomains(false, rd);
3512                 return 0;
3513         }
3514
3515         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3516         if (!intersected_rd)
3517                 return -EINVAL;
3518
3519         kfree(rd);
3520         rd = NULL;
3521         reset_regdomains(false, intersected_rd);
3522
3523         return 0;
3524 }
3525
3526 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3527                              struct regulatory_request *driver_request)
3528 {
3529         const struct ieee80211_regdomain *regd;
3530         const struct ieee80211_regdomain *intersected_rd = NULL;
3531         const struct ieee80211_regdomain *tmp;
3532         struct wiphy *request_wiphy;
3533
3534         if (is_world_regdom(rd->alpha2))
3535                 return -EINVAL;
3536
3537         if (!regdom_changes(rd->alpha2))
3538                 return -EALREADY;
3539
3540         if (!is_valid_rd(rd)) {
3541                 pr_err("Invalid regulatory domain detected: %c%c\n",
3542                        rd->alpha2[0], rd->alpha2[1]);
3543                 print_regdomain_info(rd);
3544                 return -EINVAL;
3545         }
3546
3547         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3548         if (!request_wiphy)
3549                 return -ENODEV;
3550
3551         if (!driver_request->intersect) {
3552                 if (request_wiphy->regd)
3553                         return -EALREADY;
3554
3555                 regd = reg_copy_regd(rd);
3556                 if (IS_ERR(regd))
3557                         return PTR_ERR(regd);
3558
3559                 rcu_assign_pointer(request_wiphy->regd, regd);
3560                 reset_regdomains(false, rd);
3561                 return 0;
3562         }
3563
3564         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3565         if (!intersected_rd)
3566                 return -EINVAL;
3567
3568         /*
3569          * We can trash what CRDA provided now.
3570          * However if a driver requested this specific regulatory
3571          * domain we keep it for its private use
3572          */
3573         tmp = get_wiphy_regdom(request_wiphy);
3574         rcu_assign_pointer(request_wiphy->regd, rd);
3575         rcu_free_regdom(tmp);
3576
3577         rd = NULL;
3578
3579         reset_regdomains(false, intersected_rd);
3580
3581         return 0;
3582 }
3583
3584 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3585                                  struct regulatory_request *country_ie_request)
3586 {
3587         struct wiphy *request_wiphy;
3588
3589         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3590             !is_unknown_alpha2(rd->alpha2))
3591                 return -EINVAL;
3592
3593         /*
3594          * Lets only bother proceeding on the same alpha2 if the current
3595          * rd is non static (it means CRDA was present and was used last)
3596          * and the pending request came in from a country IE
3597          */
3598
3599         if (!is_valid_rd(rd)) {
3600                 pr_err("Invalid regulatory domain detected: %c%c\n",
3601                        rd->alpha2[0], rd->alpha2[1]);
3602                 print_regdomain_info(rd);
3603                 return -EINVAL;
3604         }
3605
3606         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3607         if (!request_wiphy)
3608                 return -ENODEV;
3609
3610         if (country_ie_request->intersect)
3611                 return -EINVAL;
3612
3613         reset_regdomains(false, rd);
3614         return 0;
3615 }
3616
3617 /*
3618  * Use this call to set the current regulatory domain. Conflicts with
3619  * multiple drivers can be ironed out later. Caller must've already
3620  * kmalloc'd the rd structure.
3621  */
3622 int set_regdom(const struct ieee80211_regdomain *rd,
3623                enum ieee80211_regd_source regd_src)
3624 {
3625         struct regulatory_request *lr;
3626         bool user_reset = false;
3627         int r;
3628
3629         if (IS_ERR_OR_NULL(rd))
3630                 return -ENODATA;
3631
3632         if (!reg_is_valid_request(rd->alpha2)) {
3633                 kfree(rd);
3634                 return -EINVAL;
3635         }
3636
3637         if (regd_src == REGD_SOURCE_CRDA)
3638                 reset_crda_timeouts();
3639
3640         lr = get_last_request();
3641
3642         /* Note that this doesn't update the wiphys, this is done below */
3643         switch (lr->initiator) {
3644         case NL80211_REGDOM_SET_BY_CORE:
3645                 r = reg_set_rd_core(rd);
3646                 break;
3647         case NL80211_REGDOM_SET_BY_USER:
3648                 cfg80211_save_user_regdom(rd);
3649                 r = reg_set_rd_user(rd, lr);
3650                 user_reset = true;
3651                 break;
3652         case NL80211_REGDOM_SET_BY_DRIVER:
3653                 r = reg_set_rd_driver(rd, lr);
3654                 break;
3655         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3656                 r = reg_set_rd_country_ie(rd, lr);
3657                 break;
3658         default:
3659                 WARN(1, "invalid initiator %d\n", lr->initiator);
3660                 kfree(rd);
3661                 return -EINVAL;
3662         }
3663
3664         if (r) {
3665                 switch (r) {
3666                 case -EALREADY:
3667                         reg_set_request_processed();
3668                         break;
3669                 default:
3670                         /* Back to world regulatory in case of errors */
3671                         restore_regulatory_settings(user_reset, false);
3672                 }
3673
3674                 kfree(rd);
3675                 return r;
3676         }
3677
3678         /* This would make this whole thing pointless */
3679         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3680                 return -EINVAL;
3681
3682         /* update all wiphys now with the new established regulatory domain */
3683         update_all_wiphy_regulatory(lr->initiator);
3684
3685         print_regdomain(get_cfg80211_regdom());
3686
3687         nl80211_send_reg_change_event(lr);
3688
3689         reg_set_request_processed();
3690
3691         return 0;
3692 }
3693
3694 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3695                                        struct ieee80211_regdomain *rd)
3696 {
3697         const struct ieee80211_regdomain *regd;
3698         const struct ieee80211_regdomain *prev_regd;
3699         struct cfg80211_registered_device *rdev;
3700
3701         if (WARN_ON(!wiphy || !rd))
3702                 return -EINVAL;
3703
3704         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3705                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3706                 return -EPERM;
3707
3708         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3709                 print_regdomain_info(rd);
3710                 return -EINVAL;
3711         }
3712
3713         regd = reg_copy_regd(rd);
3714         if (IS_ERR(regd))
3715                 return PTR_ERR(regd);
3716
3717         rdev = wiphy_to_rdev(wiphy);
3718
3719         spin_lock(&reg_requests_lock);
3720         prev_regd = rdev->requested_regd;
3721         rdev->requested_regd = regd;
3722         spin_unlock(&reg_requests_lock);
3723
3724         kfree(prev_regd);
3725         return 0;
3726 }
3727
3728 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3729                               struct ieee80211_regdomain *rd)
3730 {
3731         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3732
3733         if (ret)
3734                 return ret;
3735
3736         schedule_work(&reg_work);
3737         return 0;
3738 }
3739 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3740
3741 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3742                                         struct ieee80211_regdomain *rd)
3743 {
3744         int ret;
3745
3746         ASSERT_RTNL();
3747
3748         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3749         if (ret)
3750                 return ret;
3751
3752         /* process the request immediately */
3753         reg_process_self_managed_hints();
3754         return 0;
3755 }
3756 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3757
3758 void wiphy_regulatory_register(struct wiphy *wiphy)
3759 {
3760         struct regulatory_request *lr = get_last_request();
3761
3762         /* self-managed devices ignore beacon hints and country IE */
3763         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3764                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3765                                            REGULATORY_COUNTRY_IE_IGNORE;
3766
3767                 /*
3768                  * The last request may have been received before this
3769                  * registration call. Call the driver notifier if
3770                  * initiator is USER.
3771                  */
3772                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
3773                         reg_call_notifier(wiphy, lr);
3774         }
3775
3776         if (!reg_dev_ignore_cell_hint(wiphy))
3777                 reg_num_devs_support_basehint++;
3778
3779         wiphy_update_regulatory(wiphy, lr->initiator);
3780         wiphy_all_share_dfs_chan_state(wiphy);
3781 }
3782
3783 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3784 {
3785         struct wiphy *request_wiphy = NULL;
3786         struct regulatory_request *lr;
3787
3788         lr = get_last_request();
3789
3790         if (!reg_dev_ignore_cell_hint(wiphy))
3791                 reg_num_devs_support_basehint--;
3792
3793         rcu_free_regdom(get_wiphy_regdom(wiphy));
3794         RCU_INIT_POINTER(wiphy->regd, NULL);
3795
3796         if (lr)
3797                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3798
3799         if (!request_wiphy || request_wiphy != wiphy)
3800                 return;
3801
3802         lr->wiphy_idx = WIPHY_IDX_INVALID;
3803         lr->country_ie_env = ENVIRON_ANY;
3804 }
3805
3806 /*
3807  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3808  * UNII band definitions
3809  */
3810 int cfg80211_get_unii(int freq)
3811 {
3812         /* UNII-1 */
3813         if (freq >= 5150 && freq <= 5250)
3814                 return 0;
3815
3816         /* UNII-2A */
3817         if (freq > 5250 && freq <= 5350)
3818                 return 1;
3819
3820         /* UNII-2B */
3821         if (freq > 5350 && freq <= 5470)
3822                 return 2;
3823
3824         /* UNII-2C */
3825         if (freq > 5470 && freq <= 5725)
3826                 return 3;
3827
3828         /* UNII-3 */
3829         if (freq > 5725 && freq <= 5825)
3830                 return 4;
3831
3832         return -EINVAL;
3833 }
3834
3835 bool regulatory_indoor_allowed(void)
3836 {
3837         return reg_is_indoor;
3838 }
3839
3840 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3841 {
3842         const struct ieee80211_regdomain *regd = NULL;
3843         const struct ieee80211_regdomain *wiphy_regd = NULL;
3844         bool pre_cac_allowed = false;
3845
3846         rcu_read_lock();
3847
3848         regd = rcu_dereference(cfg80211_regdomain);
3849         wiphy_regd = rcu_dereference(wiphy->regd);
3850         if (!wiphy_regd) {
3851                 if (regd->dfs_region == NL80211_DFS_ETSI)
3852                         pre_cac_allowed = true;
3853
3854                 rcu_read_unlock();
3855
3856                 return pre_cac_allowed;
3857         }
3858
3859         if (regd->dfs_region == wiphy_regd->dfs_region &&
3860             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3861                 pre_cac_allowed = true;
3862
3863         rcu_read_unlock();
3864
3865         return pre_cac_allowed;
3866 }
3867
3868 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3869                                     struct cfg80211_chan_def *chandef,
3870                                     enum nl80211_dfs_state dfs_state,
3871                                     enum nl80211_radar_event event)
3872 {
3873         struct cfg80211_registered_device *rdev;
3874
3875         ASSERT_RTNL();
3876
3877         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3878                 return;
3879
3880         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3881                 if (wiphy == &rdev->wiphy)
3882                         continue;
3883
3884                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3885                         continue;
3886
3887                 if (!ieee80211_get_channel(&rdev->wiphy,
3888                                            chandef->chan->center_freq))
3889                         continue;
3890
3891                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3892
3893                 if (event == NL80211_RADAR_DETECTED ||
3894                     event == NL80211_RADAR_CAC_FINISHED)
3895                         cfg80211_sched_dfs_chan_update(rdev);
3896
3897                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3898         }
3899 }
3900
3901 static int __init regulatory_init_db(void)
3902 {
3903         int err;
3904
3905         /*
3906          * It's possible that - due to other bugs/issues - cfg80211
3907          * never called regulatory_init() below, or that it failed;
3908          * in that case, don't try to do any further work here as
3909          * it's doomed to lead to crashes.
3910          */
3911         if (IS_ERR_OR_NULL(reg_pdev))
3912                 return -EINVAL;
3913
3914         err = load_builtin_regdb_keys();
3915         if (err)
3916                 return err;
3917
3918         /* We always try to get an update for the static regdomain */
3919         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3920         if (err) {
3921                 if (err == -ENOMEM) {
3922                         platform_device_unregister(reg_pdev);
3923                         return err;
3924                 }
3925                 /*
3926                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3927                  * memory which is handled and propagated appropriately above
3928                  * but it can also fail during a netlink_broadcast() or during
3929                  * early boot for call_usermodehelper(). For now treat these
3930                  * errors as non-fatal.
3931                  */
3932                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3933         }
3934
3935         /*
3936          * Finally, if the user set the module parameter treat it
3937          * as a user hint.
3938          */
3939         if (!is_world_regdom(ieee80211_regdom))
3940                 regulatory_hint_user(ieee80211_regdom,
3941                                      NL80211_USER_REG_HINT_USER);
3942
3943         return 0;
3944 }
3945 #ifndef MODULE
3946 late_initcall(regulatory_init_db);
3947 #endif
3948
3949 int __init regulatory_init(void)
3950 {
3951         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3952         if (IS_ERR(reg_pdev))
3953                 return PTR_ERR(reg_pdev);
3954
3955         spin_lock_init(&reg_requests_lock);
3956         spin_lock_init(&reg_pending_beacons_lock);
3957         spin_lock_init(&reg_indoor_lock);
3958
3959         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3960
3961         user_alpha2[0] = '9';
3962         user_alpha2[1] = '7';
3963
3964 #ifdef MODULE
3965         return regulatory_init_db();
3966 #else
3967         return 0;
3968 #endif
3969 }
3970
3971 void regulatory_exit(void)
3972 {
3973         struct regulatory_request *reg_request, *tmp;
3974         struct reg_beacon *reg_beacon, *btmp;
3975
3976         cancel_work_sync(&reg_work);
3977         cancel_crda_timeout_sync();
3978         cancel_delayed_work_sync(&reg_check_chans);
3979
3980         /* Lock to suppress warnings */
3981         rtnl_lock();
3982         reset_regdomains(true, NULL);
3983         rtnl_unlock();
3984
3985         dev_set_uevent_suppress(&reg_pdev->dev, true);
3986
3987         platform_device_unregister(reg_pdev);
3988
3989         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3990                 list_del(&reg_beacon->list);
3991                 kfree(reg_beacon);
3992         }
3993
3994         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3995                 list_del(&reg_beacon->list);
3996                 kfree(reg_beacon);
3997         }
3998
3999         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4000                 list_del(&reg_request->list);
4001                 kfree(reg_request);
4002         }
4003
4004         if (!IS_ERR_OR_NULL(regdb))
4005                 kfree(regdb);
4006         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4007                 kfree(cfg80211_user_regdom);
4008
4009         free_regdb_keyring();
4010 }